1905-El Año de Eisntein

Conceptos Básicos de Electrostática Cargas Eléctricas

EXPERIMENTO CON CARGA ELÉCTRICAS EN LA ELECTROSTÁTICA

La palabra electricidad, empleada para designar la causa desconocida que daba a los cuerpos frotados la propiedad de atraer a otros, deriva, justamente, de elektron, nombre que en griego significa ámbar. Pero la voz electricidad, no usada por los griegos, fue introducida por Guillermo Gilbert (1540-1603), médico de cámara de la reina Isabel de Inglaterra. La soberana le acordó una pensión permanente para que se dedicara a la investigación científica sin preocupaciones económicas.

Gilbert Guillermo

Gilbert Guillermo, Médico

William Gilbert (1544-1603), físico y médico inglés conocido sobre todo por sus experimentos originales sobre la naturaleza de la electricidad y el magnetismo. Nació en Colchester, Essex, y estudió en el Saint John’s College de la Universidad de Cambridge. Comenzó a practicar la medicina en Londres en 1573 y en 1601 fue nombrado médico de Isabel I.

El doctor Gilbert, que fue el primero en estudiar sistemáticamente los fenómenos eléctricos, descubrió que otras substancias, entre ellas el vidrio, también adquirían por frotamiento la propiedad de atraer trocitos de cuerpos muy livianos. Esto puede comprobarse acercando pedacitos de papel a los dientes de un peine de material resinoso, seco, después de peinarse con él repetidas veces.

Si a una esferita de corcho, de médula de saúco o de girasol, suspendida de un hilo de seda, se acerca una barra de vidrio frotada, la esferita, por ebfenómeno de inducción electrostática, es atraída por la barra y repelida después del contacto. Lo mismo ocurre si se hace el experimento con una barra de ebonita.

Si se carga la esferita de un péndulo eléctrico o electrostático, así se llama el aparatito descripto más arriba, tocándolo con una barra de vidrio electrizada, y otro con una de ebonita en las mismas condiciones, se comnrobará. al acercarlas, aue se atraen; pero si ambas se tocan únicamente con la barra de vidrio, o con la de ebonita, en lugar de atraerse, al acercarlas se repelen.

pendulo electrostático

De estos hechos y otros análogos se sacaron las siguientes conclusiones:

a) Existen dos estados eléctricos opuestos, o como se dice ordinariamente, dos clases de electricidad, que se ha convenido en denominar vitrea o positiva y resinosa o negativa;

b) Electricidades de distinto nombre, o de signo contrario, se atraen; y del mismo nombre, o de igual signo, se rechazan y

c) Un cuerpo que no manifiesta acciones eléctricas se dice que está en estado neutro. La electrización de un cuerpo por frotamiento, vidrio por ejemplo, y los dos estados eléctricos o las dos clases de electricidad se explican así: el vidrio se electriza positivamente cuando se frota con una franela porque pierde electrones que los gana ésta, que se carga por ello negativamente. Como los electrones que pierde un cuerpo los gana el otro, se comprende por qué la carga eléctrica que aparece en ambos es igual; pero de nombre contrario.

Los cuerpos que como el vidrio, la ebonita, el lacre, la porcelana, etc., se electrizan por frotamiento y conservan durante bastante tiempo su estado eléctrico, son malos conductores de la electricidad; los que no se electrizan por frotamiento como, por ejemplo, los metales y el carbono, son buenos conductores de la electricidad. A los malos conductores se les denomina también aisladores.

cargas electricas

cuadro electoestática

En realidad, todos los cuerpos se electrizan por frotamiento, como se comprueba frotando un cuerpo conductor que se sostiene con un mango aislador. Lo que ocurre en ambos casos es lo siguiente: en un cuerpo mal conductor o aislador. el vidrio por ejemplo, las cargas eléctricas quedan localizadas en el lugar frotado; en un buen conductor no, pues deja pasar el estado eléctrico o la electricidad de un modo instantáneo a través del mismo y a otros conductores o lugares vecinos que estén en comunicación con él.

Conviene tener presente que la primera condición que se requiere para que un cuerpo sea mal conductor de la electricidad aislador de la misma, es que esté muy seco. Los electricistas no tienen miedo de tocar los cables que conducen la electricidad si están situados sobre madera bien seca, que es un aislador; en cambio no los tocan si están colocados sobre metales otro material conductor; inclusive la madera húmeda, pues b electricidad pasaría a tierra a rravés del cuerpo humano, que es un buen conductor, produciendo trastornos que pueden ocasionar la muerte.

Existen máquinas eléctricas que producen electricidad por frotamiento, que actualmente sólo tienen interés histórico y didáctico. Ellas se fundan en el hecho, ya explicado, según el cual cuando dos cuerpos se frotan entre sí, uno de ellos se electriza positivamente y el otro negativamente.

La primera máquina electrostática de frotamiento fue inventada por Otto de Guericke. Consistía en una esfera de azufre que giraba alrededor de uno de sus diámetros y se electrizaba frotándola con la mano. En la obscuridad despedía cierta luz acompañada de ruido.

El término electrostática se emplea para designar la parte de la física que estudia la electricidad estática, es decir, la que está en estado de equilibrio sobre los cuerpos —que se ha tratado en este artículo— para diferenciarla de la electricidad en movimiento, es decir, de la corriente eléctrica.

Historia del Progreso Tecnológico En El Uso de la Energía

El dominio del hombre sobre la materia creció en proporción directa con el control que adquirió sobre la energía. El proceso fue larguísimo. Durante siglos y siglos la humanidad sólo dispuso de la energía muscular, primero la suya propia y luego la de los animales domésticos.

Llegó a depender en tal forma de su ganado que cuando éste era muy especializado y el clima lo obligaba a emigrar, el hombre iba tras él; al final de la edad glacial, cuando el reno siguió los hielos en su retroceso, el hombre marchó a su zaga. Lo mismo ocurrió con el camello.

Cuando la actividad era medianamente inteligente, la ejecutaban casi exclusivamente los hombres: la pirámide de Keops se edificó en base a la técnica de las multitudes y costó, probablemente, cien mil vidas. Desde hace casi dos siglos, el hombre aprendió a disponer de cantidades abundantes de energía, e inició una era industrial muy diferente a las otras épocas históricas.

He aquí la lista de los pasos más importantes hacia el dominio de la energía:

CRONOLOGÍA DE LOS AVANCES TECNOLÓGICOS

domesticacion del caballo

4000 a. C. (aprox.): El hombre domestica al caballo.

la rueda

3500 a.  C.  (aprox.) Primeros   vehículos   con   ruedas,   en   Mesopotamia. 3000  a.  C.   (aprox.):   Arado   liviano   para   trabajo   continuo.

27  a.  C.  (aprox.):  Vitrubio   describe   molinos   de   agua,   ruedas a   vapor y  algunas  máquinas. 900  (aprox.):   Los persas utilizan molinos de viento. 1638:   Galileo   publica   sus  estudios  sobre  el   péndulo  y  loe   proyectiles.

1686:   Newton publica   sus  “Principia”,   en   los  que   formula   las leyes  de   la   mecánica   celeste. 1693:   Leibniz  establece  la   ley  de  conservación  y transformación de  la   energía   cinética   en   energía   potencial  y  viceversa.

maquina a vapor

1775:   Máquina de vapor de Watt.

lavoisier

1777: Lavoisier atribuye la energía animal a procesos químicos y compara   la   respiración  con   una   combustión   lenta,

1824:   Carnot  funda   la  termodinámica.

1831:  Faraday descubre  la  inducción  electromagnética.

1843/50: Joule determina   el  equivalente   mecánico  del   calor.

1847: Helmholtz incluye el calor en la ley de conservación de la energía.

1850 a 1854: Kelvin y Clausius formulan la primera y segunda ley de la  termodinámica y descubren  la  entropía.

maxwell electromagnetismo

1860/61: Maxwell y Boltzmann calculan la distribución estadística   de  la  energía  en  los  conjuntos  de  moléculas.

1866:   Primer   cable   eléctrico   submarino   a   través   del   Atlántico.

1876: Otto construye el primer motor de combustión interna a base  de  petróleo.

1879/80: Lámpara eléctrica de filamento carbónico de Edison y  Swan.

1884:  Turbina de vapor de Parsons.

becquerel radioactividad

1896:   Becquerel descubre  la  radiactividad.

albert einstein

1905: Einstein asimila la masa a la energía en una célebre ecuación   que  luego   permitirá   la   transmutación   de   una   en   otra.

1932: Chadwick descubre el neutrón, la partícula más eficaz para el  bombardeo  de  núcleos atómicos.

fision nuclear

1945: Primera reacción de fisión nuclear, con uranio (punto de partida de las centrales electroatómicas y de la propulsión atómica).

1951: Primera reacción de fusión nuclear, con hidrógeno pesado (reacciones termonucleares).

1956:   Primera   turbina   atómica,   en   Calder   Hall   (Gran   Bretaña!.

Naturaleza Ondulatoria de la Materia Resumen Descriptivo

RESUMEN DESCRIPTIVO DE LA FÍSICA CUÁNTICA APLICADA A LA MATERIA

Durante los últimos 300 años, los científicos han invertido mucho tiempo en discutir e investigar la naturaleza de la luz. En el siglo XVII, Isaac Newton sostenía que los rayos luminosos consistían en flujos de partículas muy pequeñas. Esta teoría corpuscular prevaleció durante muchos años, aunque Christian Huygens, contemporáneo de Newton, tenía el convencimiento de que la luz era trasmitida mediante vibraciones (es decir, ondas) en el éter.

Isaac Newton

HUYGENS Christian (1629-1695

En los primeros años del siglo XIX, Thomas Young realizó sus famosos experimentos sobre las interferencias luminosas. Estos fenómenos podían explicarse muy bien con sólo suponer que la luz es un conjunto de ondas y no un flujo de partículas.

Por consiguiente, la teoría ondulatoria parecía explicar satisfactoriamente todas las observaciones experimentales hechas hasta la época, por lo que se pensaba que remplazaría para siempre a la teoría corpuscular. Después, a fines del siglo XIX, se descubrió que, en ciertas condiciones, se liberaban electrones cuando incidía un rayo luminoso sobre una superficie.

Al incidir un haz de luz sobre ciertos materiales se desprenden electrones, creando una corriente electrica, medida por el galvanómetro.

La teoría ondulatoria no podía explicar este fenómeno, que conocemos con el nombre de efecto fotoeléctrico. Este nuevo descubrimiento planteó a los físicos un serio dilema. El efecto fotoeléctrico era más fácilmente explicable acudiendo a la teoría corpuscular, aunque casi todos los otros fenómenos luminosos se explicaban mejor a partir de la teoría ondulatoria.

Éstos eran algunos de los problemas teóricos que tenían planteados los físicos cuando apareció en escena el joven aristócrata francés Luis de Broglie. En una tesis publicada en 1922, cuando sólo tenía 30 años, sugirió que la luz presentaba un comportamiento a veces ondulatorio y a veces corpuscular, aunque no ambos al mismo tiempo.

Científico Luis De Broglie

LOUIS DE BROGLIE (1892-1960): Físico nacido en Francia el año 1892. Sus trabajos de investigación le permitieron descubrir la naturaleza ondulatoria de los electrones. Fue galardonado con el Premio Nobel de Física en 1929.

De Broglie supuso que, así como la luz, normalmente de naturaleza ondulatoria, podía, en ciertos fenómenos, comportarse corpuscularmente, las partículas pequeñas, tales como los electrones, podían presentar características ondulatorias. Pero tuvo que esperar 5 años para que se descubriera la evidencia de este fenómeno.

Fue en 1927 cuando los estadounidenses Clinton G. Davisson y L. H. Germer, trabajando en los laboratorios de la Bell Telephone, consiguieron producir fenómenos de  difracción  con un flujo de electrones, usando un cristal como red de difracción.

La teoría dualista de De Broglie puede aplicarse a todas las partículas en movimiento, cualquiera que sea su naturaleza.

La longitud de onda de esta onda De Broglie (la onda asociada con la partícula) se averigua dividiendo la constante de Planck por la cantidad de movimiento de la partícula. Luis Víctor de Broglie nació en Dieppe (Francia), en 1892. Su hermano mayor, Maurice, el sexto duque De Broglie, fue también un físico de cierta importancia.

Luis se interesó, primero, por la historia y la literatura, pero después, sirviendo en el ejército francés durante la primera guerra mundial, se dedicó a la física. En reconocimiento a su contribución al avance de la física teórica, Luis de Broglie fue galardonado, en 1929, con el premio Nobel. Desde 1928 fue profesor de física teórica en la Universidad de París, donde había cursado sus estudios.

PARA SABER MAS…

La teoría cuántica puso una bomba bajo la visión de física clásica y, al final, la derrocó. Uno de los pasos críticos de esta rebelión se dio cuando Erwin Schrodinger formuló su teoría de la mecánica de ondas, en la que sugería que un electrón, en un átomo, se comporta como una onda. Se guiaba por la belleza, por su principio básico de que si una solución no era matemáticamente hermosa, casi seguro era incorrecta. El trabajo de Schrodinger recibió un estímulo vital cuando leyó la tesis doctoral en Filosofía de Louis de Broglie, y fue oficialmente reconocido cuando, en 1933, Schrodinger compartió el Premio Nobel de Física con Paul Dirac.

El saludo de la onda de electrones
En 1900, Max Planck había sugerido por primera vez que la energía venía en conglomerados. Esto llevó a pensar que la luz — que es una forma de energía— también estaba compuesta de partículas. Al principio no parecía probable, pero Einstein había desarrollado el concepto hasta el punto de tener una credibilidad considerable, y las partículas de la luz se conocieron como fotones.

A pesar de que la luz era claramente una partícula, :ambién tenía propiedades de onda. El trabajo de Planck había demostrado que distintas luces se transformaban en diferentes colores porque los fotones tenían distintas cantidades de energía. Sin embargo, si se divide la energía por la frecuencia a la que ese color oscila, siempre resulta el mismo valor, la llamada constante de Planck.

Eso para la luz. ¿Pero qué hay de las partículas de materia? la pregunta empezó a tener respuesta cuando Louis de 3roglie, un aristocrático físico francés del siglo XX, sugirió c¡ue las partículas de los materiales parecían ser :onglomerados localizados porque no éramos capaces de verlas más de cerca. Una mejor observación, creía, revelaría que ellas también tienen propiedades de onda.

Buscando soporte para sus ideas sobre la teoría de la relatividad de Einstein, de Broglie demostró que, con las ecuaciones Je Einstein, podía representar el movimiento de la materia :omo ondas. Presentó sus descubrimientos en 1924, en su :esis doctoral Recherches sur la Théorie des Quanta (Investigación sobre la Teoría Cuántica).

Se demostró experimentalmente gracias al trabajo con electrones llevado a cabo por los físicos americanos Clinton Joseph Davisson y Lester Hallbert Germer en 1927, quienes demostraron que los electrones, aun siendo partículas, se comportan como ondas. Planck había cambiado nuestra visión de la luz, Broglie cambió la de la materia.

La aportación de Schrodinger en esta revelación, fue tomar .as observaciones de Broglie y desarrollar una ecuación que describía el comportamiento de los electrones. Usó la ecuación para definir los modos de movimiento de los electrones en los átomos, y descubrió que las ecuaciones sólo funcionaban cuando su componente de energía era múltiplo de la constante de Planck.

En 1933, Schrodinger recogió el Premio Nobel de Física, aero, al hacerlo, pagó tributo a Fritz Hasenhórl, el profesor de Esica que había estimulado su imaginación cuando era estudiante en la Universidad de Viena. Hasenhórl había sido asesinado en la Primera Guerra Mundial, pero durante su aiscurso de recepción, Schrodinger remarcó que de no haber ;:do por la guerra, habría sido Hasenhórl, y no él, quien recibiera el honor.

Fuente Consultada:
Las Grandes Ideas que Formaron Nuestro Mundo Pete Moore
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología

Funcionamiento de Olla a Presión Historia de Papin Denis

FUNCIONAMIENTO: Las ollas a presión suponen un enorme ahorro de tiempo en la cocina, ya que, permiten cocer los alimentos en un plazo mucho menor del requerido normalmente. El tiempo necesario para la cocción depende mucho de la temperatura del alimento y del ambiente que lo rodea. Por ejemplo, un trozo de carne tarda mucho más en asarse en un horno a fuego lento que si se aumenta la temperatura. Sin embargo, si ésta se aumenta demasiado, la carne se quema, en vez de cocerse como es debido.

Lo mismo ocurre cuando los alimentos se cuecen en agua. Por ejemplo, un huevo metido en agua a 80°C, tarda mucho más en cocerse que si el agua está hirviendo. Así, pues, el tiempo de cocción depende de la temperatura. Si se mide la temperatura a intervalos durante la cocción del huevo, se ve que aquélla aumenta, hasta que el agua comienza a hervir, y entonces permanece constante a 100°C

El proporcionarle mas calor no altera la temperatura: lo único que ocurre es que el agua hierve más vigorosamente. Bajo condiciones atmosféricas normales, el agua pura hierve a 100°C. Sin embargo, el punto de ebuffieión del agua varía con la presión. En la cumbre de una montaña elevada, donde el aire está enrarecido y la presión es inferior a la normal, el agua hierve a una temperatura más baja. Si por algún procedimiento se aumenta la presión del gas sobre el agua, su punto de ebullición sube.

Esto es exactamente lo que ocurre en las ollas a presión. Aumenta la presión del gas dentro de ellas y, por lo tanto, el punto de ebullición del agua que contienen, con lo cual los alimentos se cuecen más rápidamente a temperaturas más altas.

El agua hierve a 100 °C, a la presión atmosférica normal (1,03 kg. por centímetro cuadrado) . Si se aumenta la presión a 1,4 kg./cm2., hierve a 108 °C; si se incrementa a 1,75 kg./cm., lo hará a 115°C., y así sucesivamente. De hecho, algunas ollas trabajan a una presiones dos veces mayor que la atmosférica.

Las ollas a presión tienen que ser lo bastante sólidas para soportar las fuertes presiones, y la tapa ha de cerrar herméticamente, para que la presión interior se mantenga sin que se produzcan fugas.

La tapa lleva un punto débil, colocado deliberadamente para que actúe como dispositivo de seguridad, ya que, en caso de que se obstruyera la válvula de seguridad a través de la cual escapa normalmente el vapor, la olla podría convertirse en una bomba, de no existir dicho dispositivo, pues a medida que se siguiera aplicando calor la presión iría aumentando, hasta que, finalmente, explotaría.

Pero la olla no es tal arma mortífera y no ocurre eso, ya que, cuando la presión aumenta demasiado, la válvula de seguridad se abre y escapa el exceso de gas. En el centro de la tapa, hay un orificio en el que se asienta un manómetro de aguja, que lleva un peso. Se comienza la cocción sin colocar la válvula.

corte de una olla a presión

Corte de una olla a presión

El agua hierve a la presión atmosférica y la olla va llenándose de vapor, hasta que, por fin, brota un chorro de éste por el orificio. Entonces, se coloca el manómetro y el orificio queda bloqueado.

Esto impide que escape el vapor y, con ello, aumenta la presión. A medida que esto ocurre, el vapor acciona sobre el dispositivo, hasta que brota una nube que indica que la presión deseada se ha alcanzado. En este momento, debe regularse el gas o la electricidad, para mantener la presión.

Cuando se ha acabado la cocción, hay que enfriar la olla bajo la canilla de agua. El agua fría elimina calor de aquélla, y una parte del vapor interior se condensa en forma de gotitas acuosas. Con lo cual, al reducirse la cantidad de vapor, la presión disminuye. Entonces se puede abrir la olla.

Fuente Consultada: Enciclopedia de la Ciencia y la Tecnología TECNIRAMA N°126

SOBRE LA VIDA Y OBRA DE DENIS PAPIN: Uno de los trece hijos de un burgués protestante de Blois, llamado Denis Papin se orienta primero hacia la medicina, mostrando en la facultad de Angers un interés precoz por la mecánica y la cuestión de la conservación de los cadáveres. Su habilidad manual hace que repare en él un abate muy conocido, que lo recomienda a Christiaan Huygens, “inventor del reloj de péndulo”, como se lo presentaba entonces.

Retrato de Denis Papin (1647-1714). Trabajó con Robert Boyle en la investigación sobre el aire. Es recordado por sus inventos y es considerado uno de los grandes pioneros de la máquina de vapor moderna. La máquina de vapor de Papin se compone de un cilindro con un pistón que es levantado por la presión del vapor, y es descendente produciendo el trabajo.

Pilar de la Academia Real de Ciencias, dotado por el Rey de 1.200 libras de renta, el sabio holandés se instaló en la Biblioteca real, donde procedió a realizar múltiples experiencias. Es allí donde el joven Papin, brillante posdoctorado estilo siglo XVII, se inicia en la tecnología de la “bomba al vacío”, al tiempo que lleva a cabo investigaciones inéditas sobre la conservación de los alimentos. Para el gran asombro de Huygens, logra mantener una manzana en condiciones, bajo vacío, ¡durante cinco meses!.

Como los laboratorios de física no eran muy numerosos en 1675, no es nada sorprendente encontrar al joven oriundo de Blois en Londres, en casa de Robert Boyle, aristócrata de fortuna apasionado por la mecánica.

Provisto de un contrato bastante ventajoso pero que estipula el secreto, Papin construye para su amo bombas de un nuevo género (dos cilindros hermanados conducidos por una palanca común que permite una aspiración continua), con las cuales termina por efectuar las experiencias él mismo. Boyle nunca ocultará lo que le debe a su técnico francés, a quien cita con abundancia en sus publicaciones pero cuyos textos, aclara, reescribe sistemáticamente.

Es en ese laboratorio donde la gloria viene a coronar la doble obsesión, mecánica y culinaria, de Papin. Al adaptar una sopapa de seguridad, que inventa para la ocasión, sobre un recipiente metálico herméticamente cerrado con dos tornillos, crea el “digestor”, o “baño maría de rosca”, que se convertirá en la olla a presión, cuyo vapor pronto silba en las cocinas del Rey de Inglaterra y en la sala de sesiones de la Academia real de París.

Dice Denis: “Por medio de esta máquina , la vaca más vieja y más dura puede volverse tan tierna y de tan buen gusto como la carne mejor escogida”, y en la actualidad no se concibe adecuadamente el impacto que podía tener una declaración semejante: en 1680, a los treinta y tres años, Papin es elegido miembro de la Royal Society, como igual de sus famosos empleadores, incluso si su nivel de vida sigue siendo el de un técnico.

Aunque en 1617 se haya instalado en Inglaterra un sistema de patentes, a Papin no le parece de ninguna utilidad interesarse en eso. Mientras los artesanos ingleses hacen fortuna fabricando su marmita, él solicita a Colbert una renta vitalicia… que le es negada.

De todos modos, ahí lo tenemos, lanzado en el jet set intelectual de la época. Lo vemos disertando sobre la circulación de la sangre en casa de Ambrose Sarotti, en Venecia, experimentando con Huygens en París sobre la bomba balística (un pesado pistón puesto en movimiento por una carga de pólvora) y lanzando en Londres su candidatura al secretariado de la Royal Society.Por desgracia, el elegido será Halley.

Fatigado, sin dinero, Papin agobia a la Royal Society con candidos pedidos, antes de desaparecer definitivamente en 1712.

Fuente Consultada: Una Historia Sentimental de las Ciencias Nicolas Witkowski

Feymann Richard Fïsico Premio Nobel Teoría Electrodinámica Cuántica

El físico norteamericano Richard Phillips Feynman mereció el Premio Nobel en 1965  por sus estudios en el campo de la electrodinámica cuántica. Fue uno de los teóricos  más originales de la posguerra, ya que contribuyó de manera fundamental en muchos campos de la física. Su genial visión de fabricar productos en base a un  reordenamiento de átomos y moléculas dio pie al nacimiento de una de disciplinas científicas más prometedoras de la era moderna: la nanotecnología

Feymann Richard Físico

“Para la existencia de la ciencia son necesarias mentes que no acepten que
la naturaleza debe seguir ciertas condiciones preconcebidas.”

NUEVAS FRONTERAS
Con una curiosidad ilimitada ante los fenómenos de la naturaleza, Richard Feynman hizo contribuciones relevantes en diversos campos de la física y también fue un excelente divulgador, capaz de transmitir su pasión por la ciencia. De una intuición extraordinaria, buscaba siempre abordar los problemas de la física de manera diferente de la de sus colegas, quería presentar las cuestiones conocidas fuera de los caminos ya trillados.

La historia cuenta que durante una reunión de la Sociedad Americana de Física de la división de la Costa Oeste, en 1959, Feynman ofreció por primera vez una visión de la tecnología totalmente nueva, imaginando enciclopedias escritas en la cabeza de un pin. “Hay mucho sitio al fondo”, dijo en aquella célebre conferencia. Pero el fondo al que se refería no era el de la abarrotada sala de actos. Hablaba de otro fondo: el de las fronteras de la física, el mundo que existe a escala molecular, atómica y subatómica.

Un Visionario: Por primera vez, alguien pedía investigación para hacer cosas como escribir todos los libros de la Biblioteca del Congreso en una pieza plástica del tamaño de una mota de polvo, miniaturizar las computadoras, construir maquinarias de tamaño molecular y herramientas de cirugía capaces de introducirse en el cuerpo del paciente y operar desde el interior de sus tejidos.

La conferencia de Feynman está considerada como una de las más importantes y famosas de la historia de la física, que hoy cobra una vigencia no prevista en aquel entonces. Por eso muchos científicos consideran que Richard Feynman marca de algún modo el nacimiento de la nanotecnología, ciencia que se aplica a un nivel de nanoescala, esto es, unas medidas extremadamente pequeñas, “nanos”, que permiten trabajar y manipular las estructuras moleculares y sus átomos.

El futuro es impredecible: A pesar de que Feynman ignoraba en aquel entonces la capacidad de los átomos y las moléculas de unirse en estructuras complejas guiadas por sus interacciones físicas y químicas (algo muy presente hoy en día a escala nanométrica), queda su impresionante clarividencia en saber identificar en la naturaleza un abundante depósito de recursos, poniendo de manifiesto al mismo tiempo su confianza en el carácter ilimitado de la creatividad humana.

PORQUE SE LO RECUERDA:

  1. Es considerado una de las figuras pioneras de la nanotecnología, y una de las primeras personas en proponer la realización futura de las computadoras cuánticas.
  2. Su forma apasionada de hablar de física lo convirtió en un conferencista popular; muchas de sus charlas han sido publicadas en forma de libro, e incluso grabadas para la televisión.
  3. Feynman fue asignado al comité de investigación de la explosión en vuelo del transbordador de la NASA Challenger, en 1986. Demostró que el problema había sido un equipo defectuoso y no un error de un astronauta.
  4. Entre sus trabajos se destaca la elaboración de los diagramas de Feynman, una forma intuitiva de visualizar las interacciones de partículas atómicas en electrodinámica cuántica mediante aproximaciones gráficas en el tiempo.

Cronología:
NACIMIENTO: Richard Feymann nació el 11 de mayo en Nueva York. Descendiente cíe judíos rusos y polacos, estudiu física cu el Instituto Tecnológico de Massa-chusetts v se doctoró en la Universidad de Priiiceton.

PROYECTO MANHATTAN Participó en el proyecto Manhattan, que dio origen a la primera bomba atómica. Posteriormente, en 1950, fue nombrado titular de la cátedra de física teórica en el California Institute of Technology (foto).

PREMIO NOBEL: Recibió el Nobel de Física junto con J. Schwinger y S. Tomonaga, por sus trabajos en electrodinámica cuántica. Se mostró cómo abordar el estudio cuántico y relativista de sistemas con cargas eléctricas.

INTRODUCCIÓN AL CONCEPTO DEL QUARK: Trabajó en el acelerador de partículas de Stanford, período en el que introdujo la teoría de I partones, hipotéticas partículas localizadas en el núcleo atómico que daría pie más tarde al concepto de quark.

MUERTE: Tras luchar denodadamente durante cinco años con un cáncer abdominal, Feynman falleció el 15 de febrero, dos semanas después de dictar su última exposición como docente: su última clase versó sobre la curvatura espacio-temporal.

Fuente Consultada:Gran Atlas de la Ciencia La Materia National Geographic – Edición Clarín –

Historia de Ciencia Tecnica Tecnologia Curiosidades y Avances

Teoría de la Relatividad
Anécdotas Matemáticas
Tres Grandes Matemáticos
Ideas Geniales De Las Ciencias
Inventos Geniales
Medición Radio Terrestre En La Antigüedad
El Número Pi
El Átomo
La Partículas Elementales del la Materia
El Sistema Solar
Astronomía Para Principiantes
Conceptos Informáticos
La Vida de las Estrellas
El Genoma Humano
Estudio del Cuerpo Humano
Seres Humanos en el Espacio
Humanos en el Fondo del Mar
Los Tres Problemas Griegos
La Misión Apolo XI
 El Big Bang
 SQL Para Bases de Datos
 Los Efectos de Una Explosión Nuclear
 El Agua Potable
 Hidrógeno: El Combustible del Futuro
 El Planeta Sedna o Planetoide Sedna?
 La Energía Nuclear y Sus Usos
 El Petróleo:Una Noble Sustancia
 El Movimiento De Los Satélites Artificiales
 Porque hay rozamiento entre dos superficies?
 Consultas En Un Diccionario Medico Etimológico
 Internet y la WEB
 La Inteligencia Humana (Con Un Test)
 Dos Bellos Teoremas (La Raíz de 2 y Los 5 Sólidos Pitagóricos)
 Tres Conceptos Físicos Modernos
 Efecto Fotoeléctrico-Radiación Cuerpo Negro-El Cuanto de Energía
 Conceptos Básicos de Cohetería Moderna
Curiosas Cuestiones Físicas Explicadas Por Yakov Perelman
Tres Principios Físicos Básicos
Pascal-Arquímedes-Bernoulli
Hormigones y Morteros-Cálculo de Materiales por m3
 Centrales Generadoras de Energía
 Los Combustibles Fósiles
 La Célula y La Clonación
 Experimento De Las Esferas de Maldemburgo
 Teoría del Campo Unificado
 La Presión Atmosférica y La Experiencia de Torricelli
 La Teoría Cinética de los Gases
 Fórmula Matemática de la belleza Universal
 Método Gráfico (árabe) Para Resolver Una Ecuación de 2° Grado
 La Inteligencia Artificial
 La Inmunidad Humana
 Motores de Combustión Interna y Eléctricos
 Pilas y Baterías – Principio Físico de Funcionamiento
 Bell o Meucci Quien inventó el teléfono?
 Las Vacunas
 Las Vitaminas
 La Poliomielitis
 La Leyes de Kepler
 Eclipses de Sol y de Luna
 La Medición del la velocidad de la Luz
 Nuestra Querida Estrella: El Sol
 Las Leyes de la Mecánica Clásica de Newton
 Las Leyes del Péndulo Físico
 La Matemática en el Siglo XX – Desafíos Sin Resolver
 Aprende a Resolver Una Ecuación de 2do. Grado
 A que llamamos el pensamiento lateral? Problemas
 Desalinizar El Agua de Mar
 La Economía Como Ciencia
 Conceptos Básicos Sobre La Ciencia
 Teoría de la Deriva de los Continentes
 La Lucha contra las infecciones: los antibióticos
 Últimos avances científicos en medicina (2007)
 La Era Espacial: Las Misiones Espaciales
 Teorías Físicas Que Fracasaron
 Descubriendo Nuevos Metales en el Siglo XVII
 El Experimento del Siglo XXI: “La Máquina de Dios”
 Enanas Blancas, Neutrones y Agujeros Negros

 

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

La vida será sofisticada y eficiente. ¿Cuáles serán los chiches de la nueva era? Valerie, el androide doméstico dotado de inteligencia artificial —y buenas piernas—, será uno. Nos dará una mano con la limpieza y llamará a la policía ante urgencias. Otra aliada de las tareas será Scooba, la aspiradora de iRobot, que con sólo apretar un botón fregará los pisos hasta los rincones más recónditos. Asimismo, la Polara de Whirlpool nos facilitará las cosas. Combina las cualidades de una cocina convencional y una heladera: será posible dejar un pollo en el horno para que se ase en el horario programado.

El gatito Cat de Philips habitará el hogar del mañana. Genera expresiones faciales— felicidad, sorpresa, enojo, tristeza— y será compinche de los chicos.

¿Qué habrá de nuevo a la hora de comer? “Se elegirán alimentos que hagan bien a la piel y al organismo. De todas formas, no faltará quien ingiera por elección o comodidad, comida chatarra mientras lea una revista de salud y se prometa: “mañana empiezo el régimen”, opina la cocinera Alicia Berger. “Además, la gente se preocupará por el origen y calidad de los alimentos, y se revalorizará lo casero”, revela.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaY al irse a la cama, será posible introducirse en una que soporta ataques terroristas o desastres naturales —de Quantum Sleeper— o portar un reloj pulsera Sleeptracker (foto izquierda) que vía sensores, detecta nuestro sueño superficial y justo ahí hace sonar la alarma para que el despertar sea lo menos fastidioso posible.

¿Y el sexo para cuándo? Mal que nos pese, cada vez tendremos menos ganas, tiempo y pasión. “Vamos hacia el sexo virtual por sobre el real al menos en las grandes ciudades del mundo”, confirma el doctor Juan Carlos Kusnetzoff, director del programa de Sexología Clínica del Hospital de Clínicas, quien adelanta que para levantar el ánimo —y algo más— se desarrollarán nuevas píldoras. “La industria farmacéutica desea lograrlo a toda costa”, agrega.

Ocio y tiempo libre para todos los gustos

En el campo de las nuevas tecnologías, la convergencia de la telefonía móvil y el hogar será un hecho. “El móvil podría permitir el acceso a los diferentes elementos que se quieran controlar, como un control remoto universal. Además se crearían nuevos sensores para avisarnos de situaciones que requieran nuestra atención y cámaras de seguridad para ver desde el teléfono lo que sucede en otro lugar”, cuenta Axel Meyer, argentino que desde el 2000 trabaja en el centro de diseño de Nokia Desing, en Finlandia. Y agrega “Los teléfonos con doble cámara ya permiten hacer videollamadas. Y también podremos ver la emoción del otro mientras miramos la misma película o un gol de nuestro equipo”, explica.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaEn robótica, los avances irán a gran velocidad. Ya se está desarrollando en la Universidad de Tokio la piel de robot que permitirá a estas criaturas adquirir el sentido del tacto. Y eso no es todo. Se podrá bailar con ellos. El Dance Partner Robot es la compañera de baile ideal. Predice los movimientos de su coequipper y no le pisa los pies!

Para momentos de ocio, el turismo estará preparado para el disfrute. Pero, ¿se podría pensar en la pérdida de vigencia del agente de viajes tradicional? “Internet agiliza muchos aspectos de la gestión. Hay un antes y un después en la forma de hacer turismo, pero, ¿quién se atreve a viajar con su familia a destinos exóticos o países desconocidos sin un asesoramiento de confianza?”, se pregunta Ricardo Sánchez Sañudo, director de la revista Tiempo de Aventura, quien sostiene que ante la coyuntura mundial —terrorismo, inseguridad y desastres climáticos, entre otros—, la Argentina crecerá como destino. “Cuanto, más expuesto a estas amenazas esté el resto del mundo, tendremos ventajas comparativas que podremos aprovechar al máximo si conseguimos mantener esas amenazas fuera de nuestras fronteras, o al menos, razonablemente controladas”, manifiesta. Por otra parte, la vida al aire libre será la estrella. “Vida sana, naturaleza viva y desarrollo sustentable son principios insoslayables cuando se mira hacia adelante, y tanto deporte como turismo aventura son dos de sus mejores herramientas”, analiza.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaLos amantes del deporte encontrarán aliados perfectos para seguir ganando. El de los tenistas es la raqueta Magnetic Speed de Fischer, que permite mejores movimientos y mayor velocidad en los tiros. Los que prefieren la música se sorprenderán con instrumentos como el Hand Roll Piano de Yama-no Music, con teclado de silicona flexible.

Trasladarnos será más simple, cómodo y ecológico. Y ya hay algunos adelantos. Tweel de Michelin es una llanta sin aire. Así es que… la despedirse de las gomas pinchadas!

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Por otro lado, acaso debido al tránsito en las ciudades, los transportes individuales serán protagonistas. Como la bicicleta Shift, ideal para los chicos. Les permite adquirir estabilidad gradual sin necesidad de las dos rueditas.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Futuro saludable:

Que la salud avanza a pasos agigantados, no es una novedad. La noticia es que estará al alcance de todos en los próximos años.

Las cirugías estéticas, se popularizarán y masificarán. La lipoescultura será la más pedida, según el doctor Raúl Banegas, cirujano plástico, miembro titular de la Sociedad de Cirugía Plástica de Buenos Aires, debido a que “La demanda social de ser cada vez más lindos, delgados y jóvenes, se acrecienta”. Por otro lado, serán comunes las inyecciones de líquidos —fosfatidil colina— tendientes a disolver la grasa corporal, sin cirugía. En cuanto a rellenos, la toxina botulínica es irremplazable aunque sí se espera que se sintetice de manera tal que dure más tiempo —hoy, de 3 a 6 meses—.

“En cuanto a rellenos definitivos habrá infinidad de sintéticos. Lo que sí parece ser prometedor, aún en fase de investigación, es el cultivo del propio colágeno. En sólo unos meses se podrían obtener en laboratorio, varias jeringas, lo que descartaría toda posibilidad de reacción”, adelanta.

En Neurociencias, será posible el neuromarketing a partir de tomografías PET —por emisión de positrones—, aunque “en lo inmediato son técnicas caras y requieren de un sofisticado análisis de los datos”, anticipa el doctor Facundo Manes, director del Instituto de Neurología Cognitiva —INECO—. En lo que a neuroplastieidad se refiere, ya no diremos más aquello de que “neurona que se muere, se pierde”, viejo postulado que paralizó casi completamente durante décadas la investigación en esta área, según el especialista. Y el conocer acerca de qué pasa en la cabeza de un adicto u obeso permitirá complementar con medicamentos aquello que químicamente requiera cada cerebro.

“Conocer las bases cerebrales de un trastorno neuropsiquiátrico ayuda a localizar los neurotransmisores —mensajeros entre las neuronas— involucrados en una enfermedad; de esta manera se podría investigar una posible solución farmacológica a esa determinada condición médica”, comenta. En el campo de la reproducción asistida, las novedades son infinitas. “Cada vez se podrán hacer más y mejores cosas en pos de mejorar las chances de tener un chico en brazos y no un embarazo que no pudo ser”, adelanta la doctora Ester Polak de Fried, presidente de CER Instituto Médico, directora del departamento de medicina reproductiva de la institución.

“Los estudios genéticos, tanto de gametas como de óvulos fertilizados —preembriones—, que permiten transferir al útero materno únicamente los sanos, se convertirán en técnicas habituales para aquellas mujeres que sufren abortos a repetición, por ejemplo. En el área de la biología molecular, será posible encontrar marcadores génicos —detectan chances de reproducción—, tanto en los óvulos como en los espermatozoides para poder elegir los que tienen capacidades evolutivas, y así disminuir la cantidad de óvulos a poner a fertilizar y la problemática de tener gran cantidad de embriones criopreservados”, especifica quien es officer de la International Federation of Fertility Societies —IFFS—, que nuclea a 54 países.

Construcciòn, arte y moda

Uno de los cambios en lo que respecta a la construcción, al menos en Argentina, será la creciente conciencia ecológica y de cuidado del medio ambiente. “El futuro de La arquitectura está definido en su responsabilidad ecológica tanto con eL medio ambiente como con el medio social. No hay que explicar de qué manera el proyecto arquitectónico influye en el medio ambiente. La decisión de su tecnología y su consecuencia en el futuro mantenimiento conforman una huella ecológica que deberá ser cada vez más analizada y respetada”, analiza el arquitecto Flavio Janches. En cuanto a los materiales, “al menos en nuestro país, el ladrillo y la piedra, el hormigón y el revoque son materiales que no creo que se dejen de utilizar”, opina. La moda tendrá sus cambios, aunque más bien tendrán que ver con el cosechar la siembra, al menos para los diseñadores argentinos. “La gente va a reivindicar el diseño y pagarlo por lo que vale. Hoy por hoy, no existe esa conciencia, como en Estados Unidos, Europa o Japón”, asegura la diseñadora Jessica Trosman. En cuanto al arte, en el futuro abandonará un poco los museos y las galerías para darse una vuelta por las calles. Uno de los referentes de este movimiento es Julian Beever, artista inglés conocido por su trabajo en 3D, en veredas y pavimentos de Inglaterra, Francia, Alemania, Australia, Estados Unidos y Bélgica.

Y mientras se espera el futuro que se viene, a brindar por este 2006 que sí es inminente!

Fuente Consultada: Revista NUEVA Por Laura Zavoyovski (31-12-2005)
Ir a su sitio web

Principio de Bernoulli Teorema de la Hidrodinamica Resumen Teoria

Principio de Bernoulli – Teorema de la Hidrodinámica

INTRODUCCIÓN GENERAL:
Se denominan fluidos aquellos cuerpos cuyas moléculas tienen entre sí poca o ninguna coherencia y toman la forma de la vasija que los contiene, como los líquidos y los gases. Muchos de dichos cuerpos fluyen con bastante facilidad y raramente permanecen en reposo. La rama de la ciencia que trata de los fluidos en movimiento se conoce con el nombre de Hidrodinámica.

Como ejemplo, se puede citar el agua que circula por una tubería, o la corriente de aire que se origina sobre las alas de un avión en vuelo. El comportamiento de un fluido en movimiento es, naturalmente, más complicado que el de un fluido en reposo.

En Hidrostática (rama que trata de los fluidos en reposo), lo más importante de conocer, acerca del fluido, es la presión que actúa sobre el mismo. Un buzo experimenta tanto mayor aumento de presión cuanto mayor es la profundidad a la que está sumergido en el agua; la presión que soporta a una determinada profundidad es, simplemente, la suma del peso del agua por encima de él, y la presión del aire sobre la superficie del agua. Cuando el agua se pone en movimiento, la presión se modifica.

Es casi imposible predecir cuál es la presión y la velocidad del agua, por lo que el estudio de los fluidos en movimiento es muchísimo más complicado que el de los fluidos en reposo. Un buzo que se mueve a lo largo, y en el mismo sentido que una corriente submarina, probablemente no nota que la presión alrededor de él cambia. Pero, de hecho, al ponerse el agua en movimiento, la presión disminuye y, cuanto mayor es la velocidad, mayor es la caída de presión. Esto, en principio, sorprende, pues parece que un movimiento rápido ha de ejercer una presión mayor que un movimiento lento.

El hecho real, totalmente opuesto, fue primeramente expresado por el matemático suizo Daniel Bernoulli (1700-1782). Si un fluido comienza a moverse, originando una corriente continua, debe existir alguna causa que origine dicho movimiento. Este algo es una presión. Una vez el fluido en movimiento, la presión cambia, bien sea aumentando o disminuyendo. Supongamos que aumenta. Al aumentar la presión, crece la velocidad del fluido, que origina un nuevo aumento en la presión; este aumento hace crecer el valor de la velocidad, y así sucesivamente.

PRINCIPIO DE LA HIDRODINÁMICA: EXPLICACIÓN RESUMIDA DE LA TEORÍA:

A continuación estudiaremos la circulación de fluidos incompresibles, de manera que podremos explicar fenómenos tan distintos como el vuelo de un avión o la circulación del humo por una chimenea. El estudio de la dinámica de los fluidos fue bautizada hidrodinámica por el físico suizo Daniel Bernoulli, quien en 1738 encontró la relación fundamental entre la presión, la altura y la velocidad de un fluido ideal.

El teorema de Bernoulli demuestra que estas variables no pueden modificarse independientemente una de la otra, sino que están determinadas por la energía mecánica del sistema.

Supongamos que un fluido ideal circula por una cañería como la que muestra la figura. Concentremos nuestra atención en una pequeña porción de fluido V (coloreada con celeste): al cabo de cierto intervalo de tiempo Dt (delta t) , el fluido ocupará una nueva posición (coloreada con rojo) dentro de la Al cañería. ¿Cuál es la fuerza “exterior” a la porción V que la impulsa por la cañería?

Sobre el extremo inferior de esa porción, el fluido “que viene de atrás” ejerce una fuerza que, en términos de la presiónp1, puede expresarse corno p1 . A1, y está aplicada en el sentido del flujo. Análogamente, en el extremo superior, el fluido “que está adelante” ejerce una fuerza sobre la porción V que puede expresarse como P2 . A2, y está aplicada en sentido contrario al flujo. Es decir que el trabajo (T) de las fuerzas no conservativas que están actuando sobre la porción de fluido puede expresarse en la forma:

T=F1 . Dx1– F2. Dx2 = p1. A1. Dx1-p2. A2. Ax2

Si tenemos en cuenta que el fluido es ideal, el volumen que pasa por el punto 1 en un tiempo Dt (delta t) es el mismo que pasa por el punto 2 en el mismo intervalo de tiempo (conservación de caudal). Por lo tanto:

V=A1 . Dx1= A2. Dx2 entonces T= p1 . V – p2. V

El trabajo del fluido sobre esta porción particular se “invierte” en cambiar la velocidad del fluido y en levantar el agua en contra de la fuerza gravitatoria. En otras palabras, el trabajo de las fuerzas no conservativas que actúan sobre la porción del fluido es igual a la variación de su energía mecánica Tenemos entonces que:

T = DEcinética + AEpotencial = (Ec2 — Ec1) + (Ep2 — Ep1)

p1 . V — P2 . V = (1/2 .m . V2² — 1/2 . m. V1²) + (m . g . h2 — m . g . h1)

Considerando que la densidad del fluido está dada por d=m/V podemos acomodar la expresión anterior para demostrar que:

P1 + 1/2 . d. V1² + d . g. h1= P2 + 1/2 . d. V2² + d . g . h2

Noten que, como los puntos 1 y 2 son puntos cualesquiera dentro de la tubería, Bernoulli pudo demostrar que la presión, la velocidad y la altura de un fluido que circula varian siempre manteniendo una cierta cantidad constante, dada por:

p + 1/2. d . V² + d. g. h = constante

Veremos la cantidad de aplicaciones que pueden explicarse gracias a este teorema.

Fluido humano. Una multitud de espectadores pretende salir de una gran sala de proyecciones al término de la función de cine. El salón es muy ancho, pero tiene abierta al fondo sólo una pequeña puerta que franquea el paso a una galería estrecha que conduce hasta la calle. La gente, impaciente dentro de la sala, se agIomera contra la puerta, abriéndose paso a empujones y codazos. La velocidad con que avanza este “fluido humano” antes de cruzar la puerta es pequeña y la presión es grande. Cuando las personas acceden a la galería, el tránsito se hace más rápido y la presión se alivia. Si bien este fluido no es ideal, puesto que es compresible y viscoso (incluso podría ser turbulento), constituye un buen modelo de circulación dentro de un tubo que se estrecha. Observamos que en la zona angosta la velocidad de la corriente es mayor y la presión es menor.

APLICACIONES:

EL TEOREMA DE TORRICELLI

Consideremos un depósito ancho con un tubo de desagote angosto como el de la figura. Si destapamos el caño, el agua circula. ¿Con qué velocidad? ¿Cuál será el caudal? En A y en B la presión es la atmosférica PA=PB=Patm. Como el diámetro del depósito es muy grande respecto del diámetro del caño, la velocidad con que desciende la superficie libre del agua del depósito es muy lenta comparada con la velocidad de salida, por lo tanto podemos considerarla igual a cero, VA = 0

La ecuación de Bernoulli queda entonces:

d. g. hA + pA= 1/2 . d. hB + pB

entonces es:

g . hA = 1/2 . vB² + g. hB de donde VB²= 2. .g . (hA-hB)

de donde se deduce que:

VB² = 2. g(hA – hB)

Este resultado que se puede deducir de la ecuación de Bernoulli, se conoce como el teorema de Torricelli, quien lo enunció casi un siglo antes de que Bernoulli realizara sus estudios hidrodinámicos. La velocidad con que sale el agua por el desagote es la misma que hubiera adquirido en caída libre desde una altura hA, lo que no debería sorprendernos, ya que ejemplifica la transformación de la energía potencial del líquido en energía cinética.

EL GOL OLÍMPICO

A: Una pelota que rota sobre si misma arrastra consigo una fina capa de aire por efecto dei rozamiento.

B: Cuando una pelota se traslada, el flujo de aire es en sentido contrario al movimiento de la pelota.

C: Si la pelota, a la vez que avanza en el sentido del lanzamiento, gira sobre sí misma, se superponen los mapas de las situaciones A y B. El mapa de líneas de corrientes resulta de sumar en cada punto los vectores VA y VB. En consecuencia, a un lado de la pelota, los módulos de las velocidades se suman y, al otro, se restan. La velocidad del aire respecto de la pelota es mayor de un lado que del otro.

D: En la región de mayor velocidad, la presión (de acuerdo con el teorema de Bernoulli) resulta menor que la que hay en la región de menor velocidad. Por consiguiente, aparece una fuerza de una zona hacia la otra, que desvía la pelota de su trayectoria. Éste es el secreto del gol olímpico.

EL AERÓGRAFO

Las pistolas pulverizadoras de pintura funcionan con aire comprimido. Se dispara aire a gran velocidad por un tubo fino, justo por encima de otro tubito sumergido en un depósito de pintura. De acuerdo con el teorema de Bernoulli, se crea una zona de baja presión sobre el tubo de suministro de pintura y, en consecuencia, sube un chorro que se fragmenta en pequeñas gotas en forma de fina niebla.

FUERZA DE SUSTENTACIÓN: Cualquier cuerpo que se mueve a través del aire experimenta una fuerza que proviene de la resistencia del aire. Ésta puede dividirse en dos componentes que forman entre sí un ángulo recto. A uno se lo llama sustentación y se dirige verticalmente hacia arriba. El otro, llamado resistencia, actúa horizontalmente y en sentido opuesto a la dirección de desplazamiento del cuerpo. La fuerza de sustentación se opone al peso y la resistencia se opone al movimiento del
cuerpo. Para que un cuerpo pueda volar la fuerza de sustentación debe superar al peso y la resistencia debe ser tan reducida que no impida el movimiento.

Para obtener un resultado óptimo necesitamos un cuerpo con una alta relación entre la fuerza de sustentación y la resistencia. El índice más elevado se obtiene mediante un cuerpo diseñado especialmente que se denomina “perfil aerodinámico”. Por razones prácticas no es posible obtener un perfil aerodinámico perfecto en un aeroplano pero las alas se diseñan siempre de modo que suministren la sustentación que sostiene a la máquina en el aire. En un corte transversal un perfil aerodinámico exhibe una nariz redondeada, una superficie superior fuertemente curvada, la inferior más achatada y una cola aguzada.

El perfil se inclina formando un ligero ángulo con la dirección del flujo de aire. La fuerza ascendente se obtiene de dos modos: por encima del perfil aerodinámico el aire se mueve más rápido a causa de su forma curva. Por el principio descubierto por Bernoulli y resumido en una ecuación matemática, la presión de un fluido disminuye en relación con el aumento de su velocidad y viceversa.

De ese modo, la presión del aire que se mueve en la parte superior del perfil decrece creando una especie de succión que provoca el ascenso del perfil aerodinámico. Por otra parte el aire que fluye bajo el perfil angulado aminora su velocidad de manera que la presión aumenta. Esta acción eleva el perfil aerodinámico, dándole mayor poder de sustentación. La fuerza de sustentación total depende del tipo de perfil, de la superficie de las alas, de la velocidad del flujo y de la densidad del aire.

La fuerza ascensional disminuye con la altitud, donde el aire es menos denso, y aumenta con el cuadrado de la velocidad del aeroplano y también con la mayor superficie de las alas. El ángulo que forma el perfil aerodinámico con el flujo de aire se llama ángulo de incidencia. A mayor ángulo, mayor fuerza ascensorial hasta llegar a un punto crítico, después del cual la fuerza ascensorial diminuye bruscamente. El flujo de aire que hasta el momento había sido suave, se descompone repentinamente en forma de remolinos. Cuando ello ocurre se dice que el avión se ha desacelerado, y de ser así el avión comienza a caer, pues las alas ya no lo pueden sostener. Es muy peligroso en caso que al avión se encuentre cerca de la tierra.

diagrama fuerza ascensorial

El diagrama muestra una sección en corte del ala de un aeroplano, según un diseño aerodinámico. El aire fluye por encima y por debajo del ala, pero fluye más rápido por encima de la parte superior porque está más curvada, presentando un largo mayor. El flujo de aire más rápido ejerce menos presión; además, se produce otra presión hacia arriba, resultante de la menor velocidad del aire por debajo del ala, que la proveerá de fuerza ascensional. Ésta es la base del vuelo del aeroplano.

Fuente Consultada: Enciclopedia NATURCIENCIA Tomo 1

Principio de Arquimedes Teorema de la Hidroestática Empuje de Fluidos

Principio de Arquímedes Teorema de la Hidroestática

El teorema fundamental de la hidrostática

¿Por qué las paredes de un dique van aumentando su espesor hacia el fondo del lago? ¿Por qué aparecen las várices en las piernas?

Es un hecho experimental conocido que la presión en el seno de un líquido aumenta con la profundidad. Busquemos una expresión matemática que nos permita calcularla. Para ello, consideremos una superficie imaginaria horizontal S, ubicada a una profundidad h como se muestra en la figura de la derecha.

La presión que ejerce la columna de líquido sobre la superficie amarilla será:

p = Peso del líquido/Area de la base

Con matemática se escribe: p = P/S = (d . V)/S=(d . S . h)/S= d . h (porque la S se simplifican)

donde p es el peso específico del líquido y V es el volumen de la columna de fluido que descansa sobre la superficie S.

Es decir que la presión que ejerce un líquido en reposo depende del peso específico (p) del líquido y de la distancia (h) a la superficie libre de éste.

Si ahora consideramos dos puntos A y B a diferentes profundidades de una columna de líquido en equilibrio, el mismo razonamiento nos permite afirmar que la diferencia de presión será:

PA —PB = p . hA— d . hB

 Este resultado constituye el llamado teorema fundamental de la hidrostática:

La diferencia de presión entre dos puntos dentro de una misma masa líquida es el producto del peso específico del líquido por la distancia vertical que los separa.

Ésta es la razón por la cual dos puntos de un fluido a igual profundidad estarán a igual presión. Por el contrario, si la presión en ambos puntos no fuera la misma, existiría una fuerza horizontal desequilibrada y el líquido fluiría hasta hacer que la presión se igualara, alcanzando una situación de equilibrio.

Hasta aquí sólo hemos encontrado la expresión de la presión que ejerce el líquido sobre un cuerpo —imaginario o no— sumergido en una determinada profundidad h. Ahora bien, ¿cuál es la presión total ejercida en el cuerpo? Si tenemos en cuenta que, probablemente, por encima del líquido hay aire (que también es un fluido), podemos afirmar que la presión total ejercida sobre el cuerpo es debida a la presión de la columna del líquido más la presión que ejerce el aire sobre la columna. Es decir:

P = Paire + Plíquido = Patmosférica +  d . h

Este resultado tiene generalidad y puede ser deducido del teorema fundamental de la hidrostática. Veamos cómo. Si consideramos que el punto B se encuentra exactamente en la superficie del líquido, la presión en A es:

PA= PB+ d . Ah = Psuperficie + P. (hA-hB) = Patmosférica + d . h

Los vasos comunicantes son recipientes comunicados entre sí, generalmente por su base. No importa cuál sea la forma y el tamaño de los recipientes; en todos ellos, el líquido alcanza la misma altura.

Cuando tenemos un recipiente vertical conteniendo un liquido y le hacemos perforaciones en sus paredes, las emisiones del liquido de los agujeros de la base tendrán mayor alcance que las emisiones de arriba, ya que a mayor profundidad hay mayor presión.

EL EMPUJE: PRINCIPIO DE ARQUIMEDES  (Ver Su Biografía)

Resulta evidente que cada vez que un cuerpo se sumerge en un líquido es empujado de alguna manera por el fluido. A veces esa fuerza es capaz de sacarlo a flote y otras sólo logra provocar una aparente pérdida de peso. Pero, ¿cuál es el origen de esa fuerza de empuje? ¿De qué depende su intensidad?

Sabemos que la presión hidrostática aumenta con la profundidad y conocemos también que se manifiesta mediante fuerzas perpendiculares a las superficies sólidas que contacta. Esas fuerzas no sólo se ejercen sobre las paredes del contenedor del líquido sino también sobre las paredes de cualquier cuerpo sumergido en él.

Distribución de las fuerzas sobre un cuerpo sumergido

Imaginemos diferentes cuerpos sumergidos en agua y representemos la distribución de fuerzas sobre sus superficies teniendo en cuenta el teorema general de la hidrostática. La simetría de la distribución de las fuerzas permite deducir que la resultante de todas ellas en la dirección horizontal será cero. Pero en la dirección vertical las fuerzas no se compensan: sobre la parte superior de los cuerpos actúa una fuerza neta hacia abajo, mientras que sobre la parte inferior, una fuerza neta hacia arriba. Como la presión crece con la profundidad, resulta más intensa la fuerza sobre la superficie inferior. Concluimos entonces que: sobre el cuerpo actúa una resultante vertical hacia arriba que llamamos empuje.

¿Cuál es el valor de dicho empuje?

Tomemos el caso del cubo: la fuerza es el peso de la columna de agua ubicada por arriba de la cara superior (de altura h1). Análogamente, F2 corresponde al peso de la columna que va hasta la cara inferior del cubo (h2). El empuje resulta ser la diferencia de peso entre estas dos columnas, es decir el peso de una columna de líquido idéntica en volumen al cubo sumergido. Concluimos entonces que el módulo del empuje es igual al peso del líquido desplazado por el cuerpo sumergido.

Con un ejercicio de abstracción podremos generalizar este concepto para un cuerpo cualquiera. Concentremos nuestra atención en una porción de agua en reposo dentro de una pileta llena. ¿Por qué nuestra porción de agua no cae al fondo de la pileta bajo la acción de su propio peso? Evidentemente su entorno la está sosteniendo ejerciéndole una fuerza equilibrante hacia arriba igual a su propio peso (el empuje).

Ahora imaginemos que “sacamos” nuestra porción de agua para hacerle lugar a un cuerpo sólido que ocupa exactamente el mismo volumen. El entorno no se ha modificado en absoluto, por lo tanto, ejercerá sobre el cuerpo intruso la misma fuerza que recibía la porción de agua desalojada. Es decir:

Un cuerpo sumergido recibe un empuje vertical y hacia arriba igual al peso del volumen de líquido desplazado.

E = Peso del líquido desplazado = dlíq . g . Vliq desplazado = dliq . g . Vcuerpo

Es importante señalar que es el volumen del cuerpo, y no su peso, lo que determina el empuje cuando está totalmente sumergido. Un cuerpo grande sumergido recibirá un gran empuje; un cuerpo pequeño, un empuje pequeño.

Como hace un barco para flotar?
Pues bien, el mismo está diseñado de tal manera para que la parte sumergida  desplace un volumen de agua igual al peso del barco, a la vez, el barco es hueco (no macizo), por lo que se logra una densidad media pequeña. En el caso de los submarinos, tienen un sistema que le permite incorporar agua y de esta manera consiguen regular a sus necesidades la densidad media de la nave.

Él agua, el alcohol y el mercurio son líquidos, pero el principio de Arquímedes se aplica a todos los fluidos, es decir, también a los gases. Los gases fluidos son mucho menos densos y producen empujes mucho menores. Con todo, los objetos pesan menos en el aire de lo que pesarían en el vacío. Un globo lleno de hidrógeno puede flotar en el aire porque su peso —que tiende a arrastrarlo hacia la Tierra— está exactamente equilibrado por el empuje del aire. Este empuje es también igual al peso de aire desplazado.

El conocimiento del principio de Arquímedes es de gran importancia para todo aquél que se ocupe del proyecto de barcos y submarinos, cuyo empuje debe ser calculado. Es absolutamente esencial saber cuánto se hundirá un barco al ser botado, o cuál será el empuje de un submarino.

LA FLOTABILIDAD Y EL PRINCIPIO DE Arquímedes. El objeto pesa menos en agua que en aire. La pérdida aparente de peso se debe al empuje del agua sobre el objeto. Pesa aún menos en agua salada. Como el agua salada es más pesada que el agua dulce, el peso del líquido desplazado es mayor. El empuje sobre el objeto es mayor porque es igual al peso de agua salada desalojada. Debido a este mayor empuje es más fácil flotar en agua salada que en agua dulce. Cuanto más denso el líquido, tanto más fácil será flotar en él.

EL PROBLEMA DE LA CORONA DEL REY

El rey Hierón le entregó 2,5 kg de oro a su joyero para la construcción de la corona real. Si bien ése fue el peso de la corona terminada, el rey sospechó que el artesano lo había estafado sustituyendo oro por plata en el oculto interior de la corona. Le encomendó entonces a Arquímedes que dilucidara la cuestión sin dañar la corona.

Con sólo tres experiencias el sabio pudo determinar que al monarca le habían robado casi un kilo de oro. Veamos cómo lo hizo.

En primer lugar, Arquímedes sumergió una barra de medio kilo de oro puro y comprobó que desplazaba 25,9 cm3. Por lo tanto, el peso específico del oro es:

Poro = 500 gr/25.3 cm3 =19.3 gr/cm3 

Si el joyero hubiera hecho las cosas como le habían indicado, el volumen de líquido desplazado por la corona real, que pesaba 2,5 kilogramos, debería haber sido:

Vcorona = 2.500 gr/19.3 gr/cm3=129.5 cm3

A continuación, sumergió la corona real y midió que el volumen de agua desplazado era de 166 cm3, o sea, mayor del esperado. ¡Hierón había sido estafado! ¿En cuánto? Para saber qué cantidad de oro había sido reemplazado por plata, Arquímedes repitió la primera experiencia sumergiendo una barra de un kilo de plata para conocer su peso específico. Como el volumen desplazado resultó 95,2 cm3, se tiene que:

Pplata=1000 gr/95.2 gr/cm3=10.5 gr/cm3

Sabemos que el peso total de la corona es 2.500 gr. (el joyero tuvo la precaución de que así fuera) y su volumen total, de 166 cm3. Entonces:

Vcorona=Voro+Vplata=166 cm3

Vplata=166-Voro

Pcorona=Poro+Pplata=2500 gr.

Si reescribimos la última ecuación en función del peso específico y el volumen, nos queda que:

19.3 gr/cm3 . Voro + 10.5 gr/cm3 . Vplata = 2500 gr

Tenemos dos ecuaciones con dos incógnitas (Voro y Vplata). Sustituyendo una ecuación con la otra, se tiene que:

19,3 gr/cm3. Voro + 10.5 gr/cm3. (166 cm3-Voro) = 2.500 g

de donde se despeja la incógnita:

Voro =86cm3

con lo que se deduce que:

Poro =Poro Voro = 19,3 gr/cm3 .  86 cm3 = 1.660 gr

Pplata=Pcorona – Poro =2.500gr -1.660 gr =840 gr

De esta manera, Arquímedes pudo comprobar que al rey le habían cambiado 840 gr. de oro por plata. Cuenta la leyenda que el joyero no pudo disfrutar del oro mal habido.

 

Pilas y Baterias Acumuladores de energía electrica Funcionamiento

Alessandro Giuseppe Antonio Anastasio Volta, físico italiano, hijo de una madre procedente de la nobleza y de un padre de la alta burguesía, recibió una educación básica y media de características humanista, pero al llegar a la enseñanza superior optó por una formación científica. En el año 1774, es nombrado profesor de física de la Escuela Real de Como. Justamente, un año después Volta realiza su primer invento de un aparato relacionado con la electricidad.

Con dos discos metálicos, separados por un conductor húmedo, pero unidos con un circuito exterior logra, por primera vez, producir corriente eléctrica continua, se inventa el electróforo perpetuo, un dispositivo que una vez que se encuentra cargado puede transferir electricidad a otros objetos.

Entre los años 1776 y 1778 se dedica a la química y descubre y aísla el gas de metano. Un año más tarde, en 1779, es nombrado profesor titular de la cátedra de física experimental en la Universidad de Pavia. Voltio, la unidad de potencia eléctrica, se denomina así en honor a este portentoso –en el buen sentido- de las ciencias. Sus trabajos fueron publicados en cinco volúmenes en el año 1816, en Florencia. Sus últimos años de vida los pasó en su hacienda en Camnago cerca de Como, donde fallece el 5 de marzo de 1827.

El fundamento de las pilas y acumuladores es la transformación de la energía química en eléctrica, mediante reacciones de oxidación-reducción producidas en los electrodos, que generan una corriente de electrones.

Cuando se unen mediante un hilo metálico dos cuerpos entre los cuales existe una diferencia de potencial, se produce un paso de corriente que provoca la disminución gradual de dicha diferencia. Al final, cuando el potencial se iguala, el paso de corriente eléctrica cesa. Para que la corriente siga circulando debe mantenerse constante la diferencia de potencial.

En 1800, Alejandro Volta inventó un aparato generador de corriente. La pila de Volta (que él llamó «aparato electromotor de columna»> estaba constituida por un conjunto de pares de discos, unos de cobre y otros de cinc, con un disco de tela impregnada en agua salada —o en cualquier otro líquido conductor— intercalado entre dos pares sucesivos. Se trataba de un dispositivo muy cómodo y manejable, que funcionaba de modo continuo, y que posibilitó la aparición de nuevos descubrimientos sobre electricidad.

esquema pila de volta

Funcionamiento de una pila electroquímica

El funcionamiento de una pila es sencillo, consiste básicamente en introducir electrones en uno de los extremos de un alambre y extraerlos por el otro. La circulación de los electrones a lo largo del alambre constituye la corriente eléctrica. Para que se produzca, hay que conectar cada extremo del alambre a una placa o varilla metálica sumergida en un electrolito que suele ser una solución química de algún compuesto iónico.

Cuando ese compuesto se disuelve, las moléculas se dividen en iones positivos y negativos, que se mantienen separados entre sí por efecto de las moléculas del líquido. El electrolito que utilizó Volta era ácido sulfúrico; cada una de sus moléculas, al disolverse en agua, se descompone en dos protones H+ (iones positivos) y un ion sulfatoSO4– (ion negativo).

Las varillas metálicas de cobre y cinc constituyen los electrodos, que deben ser sumergidos en el electrolito sin que lleguen a entrar en contacto. La placa de cobre es el electrodo positivo o ánodo y la placa de cinc el electrodo negativo o cátodo.

Al reaccionar el electrolito con las varillas se produce una transmisión de electrones, que han sido extraídos de la placa de cinc, hacia la placa de cobre, con lo que los átomos de cinc son oxidados e incorporados a la disolución, según la reacción:

Zn —> Zn2++ 2e

Esto ocurre así y no al revés, del cobre al cinc, porque los átomos de cinc tienen más tendencia que los de cobre a ceder electrones.

En la varilla de cobre se produce una reducción de los iones hidrógeno H+ de la disolución, ya que los electrones liberados por los átomos de cinc recorren el hilo conductor hacia la placa de cobre y son captados por los H+, que se convierten en átomos de hidrógeno y escapan en forma de gas. Estos electrones en movimiento son los que originan la corriente eléctrica.

Por su parte, los iones SO4 reaccionan con los cationes Zn2+ y se convierten en moléculas de sulfato de cinc.

2 H~+2e —> H2

Zn2+ + SO42– —> ZnSO4

Cuando se corta la conexión exterior entre las placas, los electrones no pueden desplazarse a lo largo del hilo de una placa a la otra, con lo que se interrumpe la reacción.

El dispositivo funciona mientras existan átomos de cinc para formar el sulfato correspondiente. Cuando la placa de cinc se ha desintegrado por completo ya no puede producirse la reacción, por lo que la pila ya no tiene uso. Por este motivo, las pilas de este tipo reciben el nombre de pilas primarias.

Baterías

Las pilas secundarias o acumuladores son aquellas que pueden recargarse, es decir pueden reiniciar el proceso mediante el aporte de energía de una fuente exterior normal mente un generador, que hace que los compuestos químicos se transformen en los compuestos de partida, al hacer pasar corriente a través de ellos en sentido opuesto

Un acumulador es, por tanto, un aparato capaz de retener cierta cantidad de energía en su interior, suministrada externamente, para emplearla cuando la necesite.

Así, una batería está formada por varios acumuladores, y puede ser ácida o calina en función’de la naturaleza del electrolito. Por ejemplo, las baterías de los coches son ácidas, porque contienen un electrolito de ácido sulfúrico en el que se sumergen una placa de plomo metálico y otra de dióxido de plomo. Las reacciones en este caso son las siguientes:

H2SO4 —> 2H+ + SQ42-

Cátodo:……………   Pb + S042 —->  PbSO4 + 2e

Ánodo: …….. PbO2 + S042- +4 H30+ +  2 e- —>  PbSO4 + 6 H20

Cuando se agota el plomo o el dióxido de plomo la batería está gastada y para recargarla se hace pasar una corriente eléctrica de la placa positiva a la negativa mediante un alternador o dinamo, de manera que el sulfato de plomo se vuelve a des componer en plomo en la placa negativa, y en la positiva en dióxido de plomo

En las baterías alcalinas el electrolito suele ser hidróxido potásico, y las placas son habitualmente, de níquel y de hierro.

Pilas de combustible

Para solucionar el problema del agotamiento definitivo de las baterías y acumuladores, Francis Bacon inventó en 1959 la llamada pila de combustible, en la que las sustancias que generan la corriente eléctrica no están contenidas en la propia pila, sino que se van aportando a medida que se necesitan.

La primera pila de combustible, también llamada pila Bacon, era alimentada por hidrógeno y oxígeno gaseosos. Contiene un electrolito de hidróxido potásico disuelto en agua, entre dos placas metálicas porosas que no permiten el paso del electrolito a través de ellas, pero sí su penetración parcial.

Uno de los electrodos es alimentado con el gas hidrógeno y el otro con el oxígeno, a presiones determinadas para que sólo pueda penetrar una parte de la placa. Es a través de los poros de los metales de las placas por donde entran en contacto los gases con el electrolito. En la placa negativa se produce una combinación de las moléculas de hidrógeno con los iones hidroxilo del electrolito, suministrando electrones. En la placa positiva los átomos de oxígeno capturan los electrones y se combinan con moléculas de agua para formar iones hidroxilo, que se disuelven en el electrolito.

Las reacciones continúan y la corriente eléctrica se mantiene mientras los electrodos estén conectados exteriormente y se produzca el aporte de oxígeno e hidrógeno. A veces es necesario utilizar un metal que actúe como catalizador de la reacción. El idóneo es el platino, pero debido a su elevado coste suele emplearse níquel.

Este tipo de pilas son ideales para el suministro de energía en estaciones espaciales o submarinas, por ejemplo, donde no es fácil el montaje de equipos generadores de tipo convencional. Sin embargo, no son válidas para sustituir a la batería de los automóviles, ya que se necesita un equipo auxiliar que caliente la pila y elimine el exceso de agua —en el caso de la pila Bacon— o de dióxido de carbono —en otros tipos similares que emplean carbonatos como electrolitos.

ALGO MAS..

LA CORRIENTE ELÉCTRICA NO ES ALMACENABLE
La electricidad usual nos llega por cables desde la central eléctrica. Pero la corriente no puede almacenarse en “tanques” del mismo modo que el agua, pues no es más que el movimiento de los electrones bajo la influencia de una “presión” o diferencia de tensión, o “voltaje”, o “fuerza electromotriz”. Por eso, cuando necesitamos accionar pequeños aparatos, como linternas o radiorreceptores no conectados con la central eléctrica, empleamos pilas secas y acumuladores. En éstos la electricidad se produce químicamente.

LA PILA DE VOLTA
Si colocamos dos placas de metales diferentes en un recipiente con agua acidulada (puede ser una placa metálica y otra de carbono), el ácido ataca al metal y se produce una serie de complicadas reacciones químicas. El ácido toma átomos de una de las placas metálicas y en cambio libera ios átomos de hidrógeno que ¡o constituían., pero los electrones del hidrógeno quedan en la placa, que por eso se sobrecarga negativamente.

Los átomos de hidrógeno sin electrón (iones hidrógeno) recuperan sus electrones a costa de la segunda placa, que entonces queda cargada positivamente. En conjunto sucede como si los electrones de la segunda placa pasaran a !a primera. Si están unidas a un circuito exterior, circulará una corriente eléctrica de la primera a la segunda.

Hay un inconveniente en este fenómeno. Los átomos de hidrógeno (ya completos) se adhieren a la segunda placa formando una capa aislante y en cuestión de segundos impiden el acercamiento de nuevos iones, deteniéndose completamente la reacción. Para evitarlo, en la práctica se agrega una sustancia química que se combina fácilmente con el hidrógeno y lo elimina dé la placa. También se suele reemplazar el ácido sulfúrico por cloruro de amonio, sustancia de manipulación mucho menos peligrosa.

Existen otras pilas húmedas: la de Weston, de cadmio y mercurio, muy constante y estable a temperatura fija: suele ser de vidrio y se la emplea para comparar voltajes. La pila de Lalande no usa ácido, sino sosa cáustica, zinc y óxido de cobre.   Trabaja bien en frío.   Su densidad es baja.

LA PILA SECA
La pila seca consiste en un receptáculo de zinc (“placa” negativa de la pila) en cuyo interior hay una varilla de carbón rodeada de una mezcla de polvo de carbón, bióxido de manganeso (MnOa), cloruro de amonio y cloruro de zinc en agua. La reacción química entre el cloruro de amonio (CINHJ y el zinc deja a éste con un exceso de electrones mientras la varilla de carbón, que actúa como segunda “placa”, queda con escasez de electrones, es decir, cargada positivamente.

El bióxido de manganeso actúa como despolarizador: elimina el hidrógeno adherido al carbón. La diferencia entre la pila seca y la húmeda consiste en que en la primera el electrólito, absorbido por un medio poroso, no fluye, no se escurre. El uso ha reservado este nombre a las pilas Leclanché, pero existen otras. La varilla de carbón no suele ser de grafito, sino de negro de humo proveniente de la combustión de acetileno. La pasta gelatinosa que contiene el electrólito puede ser de almidón y harina, o una bobina de papel: las pilas modernas usan metilcelulosa  con  mejores resultados.    El  voltaje  obtenido es 1,6; por cada amperio se consume  1,2 gramos de zinc.

ACUMULADORES
La pila voltaica y la pila seca se llaman primarias o irreversibles porque las reacciones químicas no pueden invertirse, ni volver a emplearse los materiales gastados. Una pila secundaria o reversible (por ejemplo, una batería de automóvil) puede cargarse nuevamente y emplearse otra vez haciendo pasar en sentido opuesto una corriente continua. Así se invierten las reacciones químicas que tuvieron lugar durante la generación de electricidad y los materiales vuelven a su estado original.

El acumulador de plomo es un ejemplo de pila secundaria. En lugar de placas se compone de rejillas para aumentar la superficie de contacto con la solución de ácido sulfúrico en agua destilada. Los huecos de una placa están llenas de plomo esponjoso y ios de la otra de bióxido de plomo (PbCW. La placa de plomo metálico (negativa) corresponde al  zinc y  la  de  bióxido de plomo equivale  ai carbón de la pila seca (positiva).

Ambas placas reaccionan con el ácido sulfúrico y se forma sulfato de plomo. El acumulador se agota cuando ambas placas quedan recubiertas con un depósito blanco de sulfato de plomo y paralelamente disminuye la concentración del ácido sulfúrico.

La corriente eléctrica de recarga regenera en una placa el plomo esponjoso, en la otra el bióxido de plomo, y restituye el ácido sulfúrico al agua. La “batería” completa consta de varios acumuladores conectados  entre  sí  para  aumentar  la  tensión  eléctrica   o voltaje del conjunto.

Los acumuladores convienen para descargas breves de alto nivel (estaciones telefónicas, locomotoras, automóviles). Los nuevos plásticos les confieren menor peso. En autos y aviones las placas delgadas permiten reducir peso y espacio y proporcionar mejor rendimiento a bajas temperaturas. Pero las placas gruesas son sinónimo de larga vida, más o menos 1.000.000 de ciclos cortos.

Riesgos del Uso de Uranio en la Centrales Atomicas Ventajas Riesgos

Riesgos del Uso de Uranio en la Centrales Atómicas

DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:
La liberación de la energía nuclear:
En un trozo de uranio 235, un neutrón rompe Un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos. La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones. Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

El funcionamiento normal de las centrales nucleares esparce por todo el mundo un repugnante espectro de substancias letales que no podrán nunca ser contenidas de modo seguro y que el ambiente natural no puede absorber de modo seguro. Por fortuna, la energía nuclear es tan innecesaria como injustificada: podemos satisfacer las necesidades de electricidad del mundo sin una sola central nuclear de fisión, si atemperamos de modo razonable nuestra demandas de energía.

Las únicas centrales que existen actualmente utilizan la fisión. La fusión, una tecnología que podría revolucionar la vida sobre la Tierra si se logran superar a un coste competitivo las barreras científicas que lo impiden, no existirá, suponiendo que así sea, hasta finales de siglo.

La energía de la fisión se debe a la liberación de calor que se produce cuando los átomos de uranio, bombardeados por partícula» atómicas llamadas neutrones, absorben un neutrón y se dividen dando elementos más ligeros, como estroncio y yodo. La división de lo» átomos de uranio libera también otros neutrones que repiten el pro ceso, en una reacción en cadena.

Se crean también elementos mas pesados cuando algunos de los átomos de uranio 238 en lugar de dividirse se transforman en plutonio 239, absorbiendo un neutrón. Muchos de los elementos creados a consecuencia de la fisión son inestables, es decir, que pierden energía rápidamente emitiendo partícula», Estas emisiones, llamadas radioactividad, son peligrosas para lo» seres vivos porque pueden desorganizar los genes y los tejidos.

La energía de fisión tiene la característica única entre todos los sistemas de obtención de energía, de añadir a los niveles del fondo natural cantidades de radiación equivalente, lo que no hace ninguna otra tecnología. El calor liberado en la fisión, se utiliza para convertir agua en vapor, que una vez proyectado sobre las paletas de una turbina eléctrica crea electricidad por la rotación de una bobina dentro de un campo magnético.

Este proceso ha fascinado a los científicos, los ingenieros y burócratas, debido principalmente a un hecho asombroso: la fisión de unos 30 gramos de uranio libera la misma energía aproximadamente que la combustión de 100 toneladas de carbón. Muchas personas a la caza de esta milagrosa cornucopia de energía, han cernido los ojos a los problemas y consecuencias que la fisión trae para nuestro ambiente.

Los partidarios de la fisión nuclear aseguran que es asegura, barata y limpia con respecto al medio ambiente», y que sus riesgos son aceptables. Mantienen que la fisión es una tecnología probada, disponible, y «en producción», mientras que otras energías de recambio no producirán energía con la rapidez necesaria para satisfacer nuestras necesidades.

La Energía Nuclear aporta un 33% de la energía consumida en Europa, de manera limpia, sin emisiones de gases de efecto invernadero y causantes de la lluvia ácida y sin perjudicar la capa de ozono. Además las centrales nucleares producen cantidades muy pequeñas de residuos sólidos en proporción a las grandes cantidades de electricidad que producen y el efecto de las emisiones líquidas y gaseosas en el medio ambiente es inapreciable. Otro problema distinto, es donde almacenar los residuos que se producen, residuos con vidas media muy largas.

Por otro lado la Energía Nuclear no está sujeta a cambios en las condiciones climáticas, sino que las centrales nucleares operan 24 horas al día durante los 365 días del año, lo que supone una gran garantía de suministro. Además no sufre fluctuaciones imprevisibles en los costes y no depende de suministros del extranjero, lo que produce precios estables a medio y largo plazo.

Los que defienden energías de recambio están en total desacuerdo y aseguran que si se dispusiera de sólo una pequeña fracción de los fondos dedicados actualmente a la fisión nuclear, se podrían crear en unos pocos años industrias energéticas de recambio seguras, industrias que proporcionarían tanta energía como la que se obtiene de la fisión. Señalan especialmente que el desarrollo de «energías menos duras» ha sido perjudicado por la enorme sangría de recursos que la fisión nuclear ha impuesto a los fondos de investigación energética de los EE.UU.

Los problemas más serios de la fisión se deben a que una sola central nuclear de fisión de gran tamaño produce tanta radioactividad de vida prolongada como la explosión de 1.000 bombas atómicas de Hiroshima. Y se cree que la exposición de las personas a la radiación aumenta el riesgo de cáncer, de daños genéticos, enfermedades del corazón y muchas otras dolencias. Parece ser que en los niños que todavía no han nacido, la radiación aumenta los riesgos de defectos congénitos y retraso mental. Pero a pesar de esto, la Comisión de energía atómica (AEC), ha anunciado planes para autorizar la instalación de 1.000 centrales nucleares en los próximos 25 años.

El contaminante radioactivo más peligroso de los muchos que producen los reactores, es el plutonio. Se trata de una sustancia artificial, que no existe de modo natural en la Tierra, y que es el ingrediente explosivo de las armas nucleares. Es tan mortal, que tres cucharadas de plutonio contienen suficiente radioactividad para inducir el cáncer en más de 500 millones de personas, según el Dr. John W. Gofman, codescubridor del uranio 233.

En su opinión se trata de la sustancia más tóxica de la Tierra, y una mota infinitesimal, más pequeña que un grano de polen, produce cáncer si se respira o se traga con el agua. Y, sin embargo, el funciona-miento de 2.000 reactores producirá 400.000 kilos de este material cada año: un desecho para el cual no existen sistemas de recolección. Hay que guardar el plutonio en depósitos con una vigilancia sin falla por los menos durante 250.000 años, más de 125 veces la duración de toda la era cristiana, a no ser que se dé un gran paso en la tecnología de los deshechos radioactivos.

Hay que guardar también el plutonio para evitar que sea robado con fines terroristas. Se necesitan sólo unos pocos kilos de plutonio para fabricar una bomba que borraría del mapa ciudades como San Francisco, Nueva York o Moscú. Estas destrucciones pueden llevarse a cabo con una facilidad escandalosa. Un estudio secreto de la AEC informó que dos físicos que acababan de finalizar su carrera fueron capaces de diseñar una bomba atómica recurriendo únicamente a las obras accesibles al público.

Vivimos una época en la que casi cualquier país o grupo de presión con unos pocos científicos capacitados, puede convertirse en potencia nuclear, creando un riesgo terrible de guerra o accidente nuclear Si éstos fuesen los únicos peligros que presenta la energía de fisión, constituirían motivo suficiente para abandonarla.

Entre otros problemas están la falta de técnicas seguras de almacenamiento para los deshechos nucleares de alto nivel, la posibilidad de que se produzcan fugas catastróficas de radioactividad de las centrales nucleares, y emisiones normales radioactivas.

— Cuando sus recipientes sufren alteraciones normales escapan al medio ambiente deshechos de alto nivel, y los que critican el sistema aseguran que parte de los deshechos se ha incorporado al agua del suelo. Los deshechos se ven expuestos dentro de sus tanques a la acción de saboteadores, terremotos, guerras o accidentes; una sola de estas causas, bastaría para dejar sueltas de golpe cantidades colosales de radioactividad.

— Las medidas de protección destinadas a proteger al público contra accidentes nucleares serios, no se han puesto nunca a prueba de modo completo y en condiciones reales de funciona miento. La explosión de una central podría causar miles de muertos y daños por valor de 17.000 millones de dólares, según la AEC. (caso de Chernobyl en 1986 y Japón en 2010)

— La fuga de sólo un mínimo por ciento de la radioactividad del núcleo de un reactor, podría convertir en inhabitable una zona del tamaño de California.

— Aparte de los accidentes, las centrales de fisión emiten de modo normal radioactividad por los gases de sus chimeneas y por el agua de deshecho. Según cálculos realizados por eminentes cien tíficos, los límites federales legales para este tipo de radiación son tan altos que si cada persona en el país se viera expuesta a los límites de radiación permitidos, se producirían cada año, 32.000 fallecimientos más por cáncer y leucemia y de 150.000 a 1.500.000 fallecimientos genéticos adicionales. El coste-anual para la seguridad social de las enfermedades inducidas genéticamente ha sido calculado por el especialista en genética, premio Nobel, Joshua Lederberg, en 10.000 millones de dólares.

cuadro central nuclear

Cuadro funcionamiento de una central nuclear

Central Nuclear Atucha I

La Fision o Desintegracion Nuclear La Energia del Atomo de Uranio

TEORÍA ATÓMICA: FISIÓN NUCLEAR O ATÓMICA

TEORÍA ATÓMICA: FISIÓN NUCLEAR O ATÓMICA

Los fundamentos de la física atómica

DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:
La liberación de la energía nuclear:
En un trozo de uranio 235, un neutrón rompe Un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados. Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard.
El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente. En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances. Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico. Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo. Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada. Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico. El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235. Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila. Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos. Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción. Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico. De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones. Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba. Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático. Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba. Mas una conquista no puede medirse en vatios. La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada. Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores. El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.
En la pila de FERMI el factor de multiplicación era igual a 1,007.

puede ser comparado. Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana. Las presiones que se obtienen equivalen a billones de veces la presión atmosférica. En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige. Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante. Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria. Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar? No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos. Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra. En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado. Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana. Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar. Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años. Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba. Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión. El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre. El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

PARA SABER MAS…
1938:SE DESCUBRE LA FISIÓN NUCLEAR

A mediados de los anos treinta, físicos de Alemania, Francia e Italia competían por ser los primeros en conseguir romper un átomo. El físico francés Frédéric Joliot-Curie había iniciado la carrera al declarar que «las reacciones nucleares en cadena» conducían a la «liberación de enormes cantidades de energía aprovechable».

En 1935 había sido galardonado con el Premio Nobel (junto con su mujer, Irene Joliot-Curie) por el descubrimiento de la radiactividad artificial. En Berlín, un equipo de investigación compuesto por Otto Hahn, Fritz Strassmann y Lise Meitner empezó a bombardear átomos de uranio con neutrones. Los científicos esperaban que el proceso diera lugar a elementos radiactivos más pesados similares al uranio. En vez de esto, a finales de 1938, Hahn y Strassmann (Meitner, judía austríaca, había huido a Suecia después de que Hitler invadiera Austria en marzo) se sorprendieron al descubrir que su bombardeo sobre el uranio había dado lugar a un elemento mucho más ligero que el uranio, llamado bario.

Hahn y Strassmann enviaron sus resultados a Meitner, a Estocolmo, donde ella y su sobrino, el físico Otto Frisen, investigaron el misterio. Llegaron a la conclusión de que el núcleo del uranio, en vez de emitir una partícula o un pequeño grupo de partículas, como se suponía, desarrollaba una «cadena» y luego se rompía en dos fragmentos ligeros prácticamente iguales, cuyas masas, unidas, pesaban menos que el núcleo original del uranio. La diferencia de peso se convertía en energía.

Meitner dio el nombre de «fisión» al proceso. Joliot-Curie descubrió que la fisión del uranio producía la liberación de neutrones adicionales que, a su vez, podían ser utilizados para romper otros átomos de uranio. Se habían establecido las condiciones para el tipo de reacción en cadena que daría lugar a la bomba atómica.

Durante la guerra, Hahn y Strassmann permanecieron en Alemania. Hahn fue capturado por los aliados en la primavera de 1945 y, mientras se hallaba detenido en Inglaterra, se enteró de que había ganado el Nobel de Química de 1944. Cuando aceptó el premio, el sentimiento de que había realizado un gran descubrimiento científico estaba empañado a causa de que la fisión había hecho posible la destrucción de Hiroshima y Nagasaki. Después de la guerra, Hahn defendió con gran pasión el control de las armas nucleares.

Fuente Consultada: Historia de la Ciencia Desidero Papp

Pasos del Metodo Cientifico Etapas Metodo Experimental Deductivo

Pasos del Método Científico o Experimental

La ciencia sólo es posible cuando existe la libertad de cuestionar y de dudar de lo que siempre se ha considerado verdadero, y cuando ella misma es capaz de abandonar viejas creencias si contrarían los nuevos descubrimientos.

INTRODUCCIÓN: OBSERVACIÓN Y EXPERIMENTACIÓN

La ciencia comienza por observar, observación realizada con la máxima exactitud y la mayor frecuencia posible. Sólo así pueden discernirse claramente las características del problema que se estudia y ponerse en evidencia las incógnitas que plantea.

Luego de hacer las observaciones adecuadas, el paso siguiente es desarrollar alguna explicación de lo que se ha visto. Cada explicación recibe el nombre de hipótesis y por tanta es normal que haya varias hipótesis aparentemente encuadradas en los hechos observados. Todas ellas surgen por un proceso mental de deducción que, en cierto sentido no sería más que un ejercicio de imaginación.

En la vida diaria la gente muy a menudo se conforma con suposiciones ¡sólo porque las hace ella! En la ciencia es necesario suponer todas las explicaciones aceptables de los hechos, para luego seleccionar las mejor orientadas hacia la investigación propuesta. Esta selección se efectúa de acuerdo con otro proceso mental estudiado por la Lógica, conocido por deducción. Cada hipótesis se examina por turno para ver qué consecuencias implicaría en caso de ser cierta, qué ocurriría si fuera correcta. Es como obligar a la hipótesis a que se pronuncie.

metodo experimetal

Luego, una etapa crítica del método científico: la verificación, o sea la comprobación de las diversas hipótesis mediante nuevas observaciones. Éste es un proceso real y concreto, manual y sensorio. Siempre que sea posible, las comprobaciones se hacen en forma de experimentos, es decir, siempre por control del investigador. Si la hipótesis que se intenta probar no nos anticipa los acontecimientos registrados por la experimentación se la considera inútil y se la descarta. Si, en cambio, resultara correcta, sólo provisionalmente se la consideraría verdadera, esto es, mientras no aparezca algún hecho nuevo que obligue a modificarla.

Cuando las hipótesis no pueden ser comprobadas en las estrictas condiciones de un experimento habrá que esperar el resultado de nuevas experiencias cuando la evolución de los fenómenos naturales lo permita. En astronomía, por ejemplo, no es posible obligar a los cuerpos celestes a moverse y a ubicarse en situación de demostrar alguna hipótesis particular. pero, cuando se dan esas exposiciones, es posible controlar la efectividad de las hipótesis que se habían formulado.

A medida que se acumulan observaciones, sea durante experimentos o no, pueden aparecer casos que muestren la debilidad de la hipótesis anteriormente aceptada. Entonces resulta necesaria la formulación de otra hipótesis y se repite todo el procedimiento de nuestro método científico como si se tratara de un círculo, quizás una espiral, pues este nuevo ciclo se desarrolla en un nivel de mayor conocimiento.

Esto nos introduce en la idea de que la “verdad” científica es sólo relativa; es una aproximación y será abandonada y reemplazada por otra “verdad” nueva y mejor, cada vez que resulte necesario. Esto explica lo que para algunos es el obstáculo más grande referente a la ciencia: .que sus conclusiones ¡no son definitivas! Los científicos están siempre dispuestos y aun entusiastas para aceptar nuevas explicaciones si éstas se acercan más a los hechos conocidos.

La verdad científica, entonces, no es definitiva. Representa las etapas alcanzadas en cada oportunidad en la búsqueda del conocimiento. El nivel de éxito obtenido en esta búsqueda se medirá siempre por el grado de correlación que exista entre teoría y realidad. La verdad científica representa lo mejor que pudo hacerse en un momento determinado. No tiene autoridad para juzgar futuras investigaciones en el campo en que se aplica.

La aceptación de una hipótesis científica como cierta no surge de su elegancia ni de la sinceridad o entusiasmo con que ha sido presentada; tampoco reposa en factor personal alguno, como podría ser respecto de nuestra propia hipótesis o de la de alguien a quien respetamos. La única razón válida para aceptar una hipótesis como cierta es que apoyada en hechos conocidos, pueda anticipar otros. Esto es bastante distinto de la idea de verdad que se aplica en otros órdenes de la vida, y es una de las características distintivas de la actitud científica.

LOS PASOS DEL MÉTODO CIENTÍFICO:

1. LA OBSERVACIÓN DEL FENÓMENO
Una vez planteado el fenómeno que se quiere estudiar, lo primero que hay que hacer es observar su aparición, las circunstancias en las que se produce y sus características. Esta observación ha de ser reiterada (se debe realizar varias veces), minuciosa (se debe intentar apreciar el mayor número posible de detalles), rigurosa (se debe realizar con la mayor precisión posible) y sistemática (se debe efectuar de forma ordenada).

2. LA BÚSQUEDA DE INFORMACIÓN
Como paso siguiente, y con objeto de reafirmar las observaciones efectuadas, deben consultarse libros, enciclopedias o revistas científicas en los que se describa el fenómeno que se está estudiando, ya que en los libros se encuentra e conocimiento científico acumulado a través de la historia. Por este motivo, la búsqueda de información } la utilización de los conocimientos existentes son imprescindibles en todo trabajo científico.

3. LA FORMULACIÓN DE HIPÓTESIS
Después de haber observado el fenómeno y de haberse documentado suficientemente sobre el mismo, el científico debe buscar una explicación que permita explicar todas y cada una de las características de dicho fenómeno.
Como primer paso de esta fase, el científico suele efectuar varias conjeturas o suposiciones, de las que posteriormente, mediante una serie de comprobaciones experimentales, elegirá como explicación del fenómeno la más completa y sencilla, y la que mejor se ajuste a los conocimientos generales de la ciencia en ese momento. Esta explicación razonable y suficiente se denomina hipótesis científica.

4. LA COMPROBACIÓN EXPERIMENTAL
Una vez formulada la hipótesis, el científico ha de comprobar que ésta es válida en todos los casos, para lo cual debe realizar experiencias en las que se reproduzcan lo más fielmente posible las condiciones naturales en las que se produce el fenómeno estudiado. Si bajo dichas condiciones el fenómeno tiene lugar, la hipótesis tendrá validez.

instrumentos de presley cientifico

Lámina de «Observations on differents kinds of air» del gran científico Joseph Priestley, mostrando uno de sus experimentos para demostrar los efectos de la combustión, putrefacción y respiración en una planta de menta  y en ratones.

5. EL TRABAJO EN EL LABORATORIO
Una de las principales actividades del trabajo científico es la de realizar medidas sobre las diversas variables que intervienen en el fenómeno que se estudia y que son susceptibles de poder medirse. Si te fijas, en el experimento anterior no se ha podido tomar ninguna medida, por lo cual es conveniente repetir la experiencia en un lugar donde pueda tomarse, es decir, en el laboratorio.

Estas experiencias realizadas en los laboratorios se denominan experiencias científicas, y deben cumplir estos requisitos:

a) Deben permitir realizar una observación en la que puedan tomarse datos.

b) Deben permitir que los distintos factores que intervienen en el fenómeno (luminosidad, temperatura, etc.) puedan ser controlados.

c) Deben permitir que se puedan realizar tantas veces como se quiera y por distintos operadores.Habitualmente, en ciencias experimentales, los trabajos de laboratorio permiten establecer modelos, que son situaciones o supuestos teóricos mediante los que se efectúa una analogía entre el fenómeno que ocurre en la Naturaleza y el experimento que realizamos.

6. EL TRATAMIENTO DE LOS DATOS
Las medidas que se efectúan sobre los factores que intervienen en un determinado fenómeno deben permitirnos encontrar algún tipo de relación matemática entre las magnitudes físicas que caracterizan el fenómeno que se estudia. Para llegar a esa relación matemática, los científicos suelen seguir dos pasos previos: el análisis de los factores y la construcción de tablas y de gráficos.

7. EL ANÁLISIS DE LOS FACTORES
El estudio en profundidad de un fenómeno requiere en primer lugar la determinación de todos los factores que intervienen en él. Para que ese estudio se realice en la forma más sencilla, se fija una serie de magnitudes que no varían (variables controladas) y se estudia la forma en que varía una magnitud (variable dependiente) cuando se produce una variación de otra magnitud (variable independiente).

Así, por ejemplo, si lo que queremos es estudiar el alargamiento que experimenta un resorte cuando colgamos diversas pesas de uno de sus extremos, hay un conjunto de magnitudes que podemos considerar invariables (la temperatura del recinto donde hacemos el experimento, la presión atmosférica dentro del mismo, la humedad relativa del aire, etc.), que corresponden a las variables controladas. En este caso, la longitud del alargamiento del resorte será la variable dependiente, y el peso que colgamos de su extremo será la variable independiente.

8. LA CONSTRUCCIÓN DE TABLAS Y DE GRÁFICOS
La construcción de tablas consiste en ordenar los datos numéricos obtenidos sobre las variables independiente y dependiente. Siempre se han de especificar las unidades en las que se miden dichas variables, para lo cual se utilizan los paréntesis a continuación de sus nombres.

En el caso del resorte, la tabla podría ser así:
La representación gráfica consiste en representar los datos de las medidas en un sistema de ejes cartesianos, donde normalmente la variable independiente se hace corresponder con el eje X, mientras que la variable dependiente se hace corresponder con el eje Y.

Se llama ajuste de la gráfica al procedimiento mediante el cual se determina la línea que pasa por los puntos que se han representado o la más cercana a ellos.

En la mayoría de los casos, las gráficas que se obtienen son líneas rectas, lo que indica que la relación entre las magnitudes físicas representadas es de la forma y = k • x. donde k es una constante. En otros casos, la relación entre ambas magnitudes es de tipo parabólico, lo que matemáticamente representa que y = k • x2; o de tipo hiperbólico, cuya formulación es de la forma x • y = k.

9. LAS CONCLUSIONES Y LA COMUNICACIÓN DE RESULTADOS
El análisis de los datos y la comprobación de las hipótesis lleva a los científicos a emitir sus conclusiones, que pueden ser empíricas, es decir, basadas en la experiencia, o deductivas, es decir, obtenidas tras un proceso de razonamiento en el que se parte de una verdad conocida hasta llegar a la explicación del fenómeno.
Una vez obtenidas dichas conclusiones, éstas deben ser comunicadas y divulgadas al resto de la comunidad científica para que así sirvan como punto de arranque de otros descubrimientos, o como fundamento de una aplicación tecnológica práctica .

10. LA ELABORACIÓN DE LEYES Y TEORÍAS
El estudio científico de todos los aspectos de un fenómeno  natural lleva a la elaboración de leyes y teorías.

Una ley científica es una hipótesis que se ha comprobado que se verifica.

Una teoría científica es un conjunto de leyes que explican un determinado fenómeno.

Así, por ejemplo, la hipótesis comprobada de que el are iris se forma debido a la refracción que experimenta la li al atravesar las gotas de agua de la lluvia, es una ley que s enmarca dentro de un conjunto de leyes que rigen otros fenómenos luminosos (reflexión, dispersión, etc.). Este con junto se conoce como teoría sobre la luz.

Tanto las leyes como las teorías deben cumplir los siguientes requisitos:

1. Deben ser generales, es decir, no sólo deben explica casos particulares de un fenómeno.
2. Deben estar comprobadas, es decir, deben estar avaladas por la experiencia.
3. Deben estar matematizadas, es decir, deben pode expresarse mediante funciones matemáticas.

Las teorías científicas tienen validez hasta que son incapaces de explicar determinados hechos o fenómenos, o hasta que algún descubrimiento nuevo se contradice con ellas, a partir de ese momento, los científicos empiezan a plantearse la elaboración de otra teoría que pueda explicar eso; nuevos descubrimientos.

Rene Descartes

René Descartes creó la geometría analítica, también denominada «geometría cartesiana», en la que los problemas geométricos pueden traducirse a forma algebraica. Se trataba de un método extremadamente poderoso para resolver problemas geométricos y, a la postre, también dinámicos (el problema del movimiento de cuerpos), un método que conservamos más de tres siglos después.En más de un sentido la contribución de Descartes preparó el camino para el gran descubrimiento de Newton y Leibniz: el del cálculo diferencial (o infinitesimal) e integral, el universo de las derivadas y las integrales; un instrumento  incomparable para la indagación matemática y física.

Instrumentos de Boyle
Lámina donde se muestran los instrumentos del laboratorio de Boyle

CONOCIMIENTO CIENTÍFICO

La ciencia puede extender enormemente el alcance de los sentidos humanos, como podemos ver en las páginas de este libro, que se ocupan de algunos de los extraordinarios instrumentos científicos disponibles hoy. También puede aumentar su capacidad de prever los acontecimientos. Esto es de gran utilidad para el hombre porque le evita eventuales dificultades y porque le permite obtener los resultados previstos. De este modo la ciencia aumenta enormemente los medios a disposición del hombre para la consecución de sus fines, sean éstos constructivos o destructivos.

La ciencia, empero, no puede ocuparse de lo inobservable. Puede ocuparse de los electrones, que no son visibles directamente, porque éstos dejan huellas observables en la cámara de Wilson. Pero aunque la ciencia se interese por los electrones no puede ocuparse de proposiciones sobre ángeles aunque se diera el caso de que fueran ángeles guardianes quienes orientaran nuestra conducta individual. Como por definición los ángeles no pertenecen al mundo natural, es evidente que no pueden ser estudiados por el método científico.

Tampoco reemplaza la ciencia a la sabiduría. No puede juzgar entre los distintos fines que nos fijamos individual o colectivamente, aunque puede darnos los medios para llegar a ellos con mayor facilidad. Por lo menos hasta el presente la ciencia no está en condiciones de decirle al hombre qué es lo mejor para ver, lo mejor para gustar. Algunos piensan que jamás podrá hacerlo aunque el conocimiento científico a menudo nos predispone a las consecuencias de nuestras elecciones.

La ciencia no es una mera acumulación de conocimientos enciclopédicos. Tampoco es exactamente sentido común —por lo menos en lo que se refiere a algunas de sus conclusiones— como nos habremos percatado luego de leer los artículos sobre la naturaleza física del mundo en que vivimos. Es, sin embargo, completa y totalmente “sensata” en su dependencia del método de ensayo y error. No es un cuerpo de doctrina que se apoye en la autoridad de personas. No es la mera búsqueda de ingeniosos aparatos aunque éstos resulten una consecuencia del avance del conocimiento científico.

La ciencia es una manera de preguntar. Es un método para avanzar en el conocimiento de fenómenos que pueden ser observados y medidos. Es una aventura en lo desconocido, en pos de la comprensión buscada, comprensión a la que llegaremos mediante ensayos y errores, operando siempre que sea posible en las condiciones controladas de un experimento.

PARA SABER MAS…
EXPERIMENTO CIENTÍFICO

Un buen ejemplo de investigación científica mediante experiencias sensatas  es el modo en que Galileo estudió la fuerza de gravedad, llegando a descubrir la ley del movimiento uniformemente acelerado de los graves: un mentís clamoroso a la teoría de Aristóteles, que consideraba la velocidad de la caída proporcional al peso.

El plano inclinado que construyó para el estudio del movimiento gravitacional es relativamente simple desde el punto de vista tecnológico: consiste en una viga de seis metros de largo, de buena madera (para impedir que se combe) y que puede inclinarse a voluntad, dotada de una acanaladura cuidadosamente alisada para reducir al mínimo la fricción de las bolas.

Este aparato tan sencillo tiene ya las características de un moderno instrumento científico, porque permite modular a voluntad cualquier parámetro notable de la experiencia. La inclinación, por ejemplo, puede reducirse haciendo más lentos los tiempos de caída, o bien aumentarse hasta rozar la verticalidad (de este modo, la caída libre se convierte en un simple caso límite).

metodo cientifico

El primer plano inclinado de Galileo estaba provisto de campanillas
para señalar los tiempos de caída de la bola.

Al principio, el científico afrontó el problema central (es decir, la comprobación exacta de los tiempos de caída) situando en el plano inclinado a intervalos regulares unas campanillas, de modo que sonasen al paso de la bola. Galileo, además de haber estudiado música, era también un avezado intérprete y contaba con la sensibilidad de su oído, muy entrenado para percibir ritmos e intervalos sonoros. Pero se trataba evidentemente de una solución aún primitiva, insuficiente para llegar a una cuantificación precisa de los tiempos.

El ingenio de Galileo resolvió brillantemente el problema con la construcción de un reloj de agua. Hacía coincidir el comienzo de la caída del grávido con la apertura de un grifo colocado bajo un tanque (mantenido a presión constante en todas las mediciones).

Al final de la caída, bastaba con cerrar el grifo y ocuparse de pesar el líquido almacenado; de este modo transformaba las cantidades de tiempo en cantidades de peso, mensurables y cotejables con gran precisión. Galileo descubrió así que, aunque una mayor inclinación del plano hacía aumentar la velocidad de caída, la relación entre espacios recorridos y tiempos empleados se mantenía constante para cualquier inclinación (por lo tanto, también en el caso límite de la caída libre).

Descubrió sobre todo que esta aceleración no depende del peso, en contra de lo que afirmaba Aristóteles.

Revolucion cientifica Trabajo de Galvani

Grabado mostrando diferentes experimentos de Luigi Galvani (Viribus Electricitatis in Motu Musculari Commentarius [Comentarios relativos a los efectos de la electricidad sobre el movimiento muscular] 1791) acerca de los efectos de la electricidad en ranas y pollos.

La observación, la experimentación y la construcción de teorías y modelos
La recolección de datos es una empresa importante para sostener cualquier trabajo científico. Estos datos pueden ser obtenidos por la observación sistemática de situaciones espontáneas o por la experimentación, que consiste en provocar el fenómeno que se quiere estudiar. Lo importante es ver cómo estos datos se utilizan para formular teorías o modelos.

En la actualidad, casi todos los filósofos de la ciencia están de acuerdo en que los datos por sí solos no explican nada, e incluso hay muchos que ponen en duda que existan datos puros, ya que la observación, sea espontánea o provocada, está siempre condicionada por el conocimiento del observador.

Así, por ejemplo, si un químico se encuentra cerca de una industria que produce acero, olerá dióxido de azufre y podrá inferir qué le puede ocurrir a su cuerpo o al ambiente ante la presencia de esta sustancia. En cambio, un niño que pase por el mismo lugar solo percibirá olor a huevo podrido. Como se puede notar, tanto uno como otro participan de la misma situación, pero la interpretación varía enormemente en función de los conocimientos que cada uno posee acerca del fenómeno que observan.

Además del papel decisivo que tienen los conocimientos del observador, no se debe olvidar que muchas de las observaciones que se realizan se hacen en forma indirecta, es decir, a través de la utilización de instrumentos, indicadores, etcétera, que, en muchos casos, distorsionan el fenómeno.

En la experimentación, el fenómeno es preparado por el mismo investigador, quien fija las condiciones, el sitio y el momento de su realización y, además, puede repetirlo numerosas veces.

Dentro de las ciencias de la vida, la mejor manera de poner a prueba las teorías que se relacionan con el funcionamiento de los organismos es con la ayuda de experimentos. Pero hay ciencias en las que los experimentos no son posibles, como es el caso de las ciencias que estudian la historia de los seres vivos (evolución, Paleontología), en las cuales es preciso hacer observaciones adicionales para corroborar una hipótesis.

Otra forma de comprobar una teoría en Biología consiste en utilizar datos provenientes de fuentes distintas; por ejemplo: si para establecer relaciones filogenéticas en distintos grupos de organismos se utilizan evidencias morfológicas, se pueden buscar pruebas adicionales para validar esa hipótesis recurriendo a evidencias bioquímicas, biogeográficas, etcétera.

Hay que destacar que, si bien el surgimiento del método experimental fue fundamental para el avance de la ciencia moderna, este no es el único método utilizado por los científicos. Las metodologías que se utilizan en las investigaciones son variadas, con lo que se descarta la existencia de un único método científico universal.

Laboratorio de Lavoisier

Lavoisier en su laboratorio, experimentando sobre la respiración de un hombre en reposo (dibujo de Marie Anne Lavoisier).

RESPECTO A LA HIPÓTESIS DE INVESTIGACIÓN

El paso que sigue a la formulación del problema de investigación es enunciar las hipótesis que guiarán la investigación. Sin embargo, antes de dar este paso, será necesario fijar algunos criterios que permitan enunciar hipótesis adecuadas.

Como ya saben, una hipótesis es una respuesta posible aun interrogante planteado, que aún no ha sido puesta a prueba. Sin embargo, no todas las respuestas posibles para un problema de investigación son hipótesis.

Requisitos de una hipótesis
Para ser una hipótesis, la respuesta al problema debe reunir determinadas condiciones. Éstas son algunas de ellas. * Ser formulada en un lenguaje preciso y claro. Supongamos, por ejemplo, que alguien enuncia la siguiente hipótesis: “Los científicos que violan el código de ética profesional de la ciencia tienden a mostrar comportamientos amorales en otros ámbitos sociales”. Así formulada, la hipótesis tiene dos problemas: por un lado, no es evidente a qué se llama comportamientos amorales, ya que la expresión no está definida y puede tener más de una interpretación; por otro lado, no es muy claro el sentido de la expresión tienden a (¿cuántos comportamientos amorales tendría que manifestar un científico para que se configure una tendencia?).

* Ser coherente con el conjunto de los conocimientos disponibles sobre el problema de investigación. Por ejemplo, no seria muy interesante formular la hipótesis de que “La ciencia no se enfrenta con ningún problema ético” cuando son conocidos los debates que se plantean continuamente en torno de cuestiones éticas en el ámbito científico. i Hacer avanzar el conocimiento existente. Una hipótesis que reprodujera una afirmación unánimemente aceptada y comprobada en la comunidad científica no sería muy útil para saber más sobre el tema.
Por ejemplo, hoy no tendría sentido indagar la hipótesis de que “La Tierra gira alrededor del Sol”.

* Ser coherente con los objetivos del proyecto de investigación y, por lo tanto, con el tipo de proyecto de que se trate. Por ejemplo, si el proyecto es de naturaleza exploratoria -es decir que sus objetivos también lo son-, no se puede construir una hipótesis explicativa para ese proyecto y esos objetivos.

* Poder ser corroborada o refutada por los datos que se reúnen durante el proceso de investigación. Éste es un requisito muy importante, que los filósofos de la ciencia han debatido y fundamentado extensamente. En el apartado que sigue, se analiza con mayor profundidad.

DIFUSIÓN: Cuando el científico ha comunicado un resultado, su conocimiento permite a los tecnólogos imaginar aplicaciones a distintos sectores de la técnica. Otras veces marcha adelante el tecnólogo y descubre una propiedad desconocida; y es trabajo del científico explicar esa propiedad elaborando una teoría. En espectroscopia hay ejemplos de situaciones como ésas: primero se observaron las líneas espectrales y más tarde se desarrolló la teoría que las explica.

En el campo de la Metalurgia hay innumerables ejemplos: desde hace siglos se conoce y se usa la operación de templar un acero; pero la teoría del fenómeno sólo se conoce desde apenas unas décadas.

Otras veces el tecnólogo presenta sus requerimientos al científico, y éste investiga hasta determinar las condiciones que deben cumplirse para satisfacer aquellos requerimientos. Esto ha ocurrido con frecuencia en los últimos tiempos, por ejemplo en la resolución del problema de la reentrada en la atmósfera de una cápsula espacial: la alta temperatura desarrollada por la fricción con el aire funde cualquier material ordinario, y fue necesario desarrollar nuevos materiales con las propiedades adecuadas. Algunas veces los científicos responden satisfactoriamente a las demandas de los tecnólogos; otras, no. Los problemas y dificultades se renuevan continuamente: nunca estará todo resuelto, pues cada solución abre nuevos caminos, y recorrerlos crea a su vez nuevos problemas.

Experimento con plantas

Grabado reproduciendo un experimento sobre la respiración de plantas y animales, incluido en
Legons sur les phénoménes de la vie communs aux animaux et aux végétaux de Claude Bernard (1878).

¿Qué es cultura científica?
Cada persona que quiere ser útil a su país y a sus semejantes tiene, entre otras cosas, la responsabilidad de adquirir una educación en ciencia (en nuestro caso, a través de la Física y de la Química) que la transforma en una persona capaz de:

• conocer los principios, las leyes y las teorías más generales y sus aplicaciones prácticas más difundidas;

• interpretar fenómenos naturales frecuentes;

• advertir y comprender la incidencia del desarrollo científico y tecnológico sobre las estructuras económicas y sociales en todo el mundo;

• reconocer la universalidad de la ciencia, que por una parte no reconoce fronteras nacionales, y por otra constituye el medio necesario para que la comunidad que forma la nación atienda y resuelva problemas propios;

• detectar, en su región o en su país, problemas susceptibles de ser tratados científicamente, y reconocer la propia responsabilidad en su planteamiento y en la búsqueda de soluciones;

• distinguir entre una simple creencia o una opinión, o una superstición, y una verdad científica;

• comprender que una verdad científica no es una verdad inmutable sino modificable por avances científicos que elaboren una nueva verdad científica más general, que puede abarcar a la anterior;

• gustar del placer intelectual de advertir un fenómeno natural, hacer coherentes partes aparentemente inconexas, plantear una hipótesis plausible y verificarla experimental o teóricamente;

• gustar del placer intelectual de difundir conocimientos y actitudes científicas entre las personas que lo rodean;

• adquirir el amor por la verdad que caracteriza al auténtico pensamiento científico;

• relacionar las explicaciones científicas con otras manifestaciones de la cultura, tales como la filosofía o el arte.

El desarrollo científico y técnico de los últimos tiempos ha ampliado el concepto y las exigencias de “persona culta”, que ya no se limitan al campo de la literatura, las artes o las humanidades exclusivamente.

Fuente Consultada:
Atlas Universal de la Filosofía –
Manual Didáctico de Autores, Textos y Escuelas
Biología y Ciencias de la Tierra Estructura – Ecología – Evolución Polimodal
Formación Ética y Ciudadana Ética, Ley y Derechos Humanos 3° EGB
Elementos de Física y Química Maiztegui-Sabato

Las radiaciones de un nucleo atomico Tipos alfa, beta y gamma

LAS RADIACIONES DE UN NÚCLEO DE UN ÁTOMO

Átomo, la unidad más pequeña posible de un elemento químico. En la filosofía de la antigua Grecia, la palabra “átomo” se empleaba para referirse a la parte de materia más pequeño que podía concebirse. Esa “partícula fundamental”, por emplear el término moderno para ese concepto, se consideraba indestructible.

De hecho, átomo significa en griego “no divisible”. El conocimiento del tamaño y la naturaleza del átomo avanzó muy lentamente a lo largo de los siglos ya que la gente se limitaba a especular sobre él.

Con la llegada de la ciencia experimental en los siglos XVI y XVII  los avances en la teoría atómica se hicieron más rápidos. Los químicos se dieron cuenta muy pronto de que todos los líquidos, gases y sólidos pueden descomponerse en sus constituyentes últimos, o elementos.

Por ejemplo, se descubrió que la sal se componía de dos elementos diferentes, el sodio y el cloro, ligados en una unión íntima conocida como compuesto químico. El aire, en cambio, resultó ser una mezcla de los gases nitrógeno y oxígeno.

Todos sabemos que el átomo constituye una especie de sistema planetario en miniatura; el núcleo equivale al Sol, y los electrones a los planetas. Una de las primeras preguntas que se nos pueden ocurrir a este respecto, es la siguiente: ¿cómo está hecho el núcleo, ese sol de un universo infinitamente pequeño?

Sabemos que el núcleo atómico se compone, fundamentalmente, de dos tipos de partículas materiales: los protones, cargados de electricidad positiva, y los neutrones, desprovistos de carga eléctrica. En cambio, poco es lo que se sabe acerca de la disposición y movimiento de estas partículas. A diferencia de lo que sucede con los electrones (los “planetas”), que giran alrededor del núcleo, no existe un modelo que ilustre de manera intuitiva cómo los protones y neutrones se mueven y disponen en el interior del mismo núcleo.

Sin embargo, los estudios y las experiencias de física nuclear han permitido obtener algunas conclusiones y datos significativos. Por ejemplo, el núcleo del átomo del hierro, contiene 26 protones (en amarillo en la ilustración) o, lo que es lo mismo, 26 partículas provistas de una carga elemental positiva.

Estas 26 cargas positivas pueden sostener, en torno al núcleo, otras tantas cargas de signo opuesto. Así, en el átomo neutro de hierro, 26 electrones —es decir 26 partículas provistas de una carga elemental negativa— giran alrededor del núcleo, en órbitas distintas. Y, precisamente, es el número de protones (llamado “número atómico”), igual en el átomo neutro al número de electrones, lo que hace que el hierro sea hierro, con todas las propiedades químicas que lo distinguen. Cada elemento químico, en consecuencia, tiene un número atómico propio.

Pero si las propiedades químicas de un átomo dependen, exclusivamente, del número atómico, otras propiedades no menos importantes dependen, además, del llamado “número de masa”. Se trata de propiedades que no pueden observarse a simple vista, pero que se revelan de modo muy espectacular en las “reacciones nucleares” (pensemos, por ejemplo, en la bomba atómica).

Ya hemos dicho que en el núcleo, además de los protones, se encuentran los neutrones, o partículas desprovistas de carga eléctrica, que pesan, aproximadamente, igual que los protones. Pues bien: la suma del número de protones y de neutrones da el “número de masa”. Los átomos de igual número atómico, pero de distinto “número de masa”, son llamados “isótopos”: tienen idénticas propiedades químicas (puesto que idéntico es el número atómico), pero distintas propiedades nucleares, porque distinto es el número de masa o, lo que es lo mismo, el número de neutrones.

Tal como aparecen en la naturaleza, casi todos los elementos son mezclas de isótopos diferentes: el hierro, por ejemplo, además de átomos de 26 protones y 30 neutrones (que se hallan en franca mayoría, ya que constituyen el 91,68% de su materia), contiene también átomos de 28, 31 y 32 neutrones. Éstos son, precisamente, los isótopos del hierro (cuyos protones continúan siendo 26), todos ellos estables, es decir, existentes en la naturaleza, sin ninguna tendencia a transformarse espontáneamente en otra cosa.

En cambio, un átomo de hierro que, junto a los 26 protones habituales tuviese en el núcleo 33 neutrones, ya no sería estable, es decir, tendería a transformarse. Lo mismo puede decirse de los átomos de hierro con 27 ó 26 neutrones.

Se trata de un hecho muy importante, cuya significación es la siguiente: para que en un núcleo con un determinado número de protones (26 en el caso del hierro) haya estabilidad, los electrones no deben superar una cantidad determinada (28, 30, 31 y 32, en el caso del hierro).

En otras palabras: del número de neutrones depende la estabilidad del núcleo. Y ahora podemos dar otro paso y preguntarnos qué es lo que mantiene a protones y neutrones en el núcleo. Salta a la vista que el problema es más complejo que el que presentan los electrones girando alrededor del núcleo: en este caso se trata, simplemente, de partículas cargadas negativamente (electrones), que, en virtud de las fuerzas electrostáticas, son atraídas por cargas positivas de ciertos elementos del núcleo (protones). En el interior del núcleo, en cambio, los neutrones, desprovistos de carga, y los protones, que la tienen positiva, deberían repelerse, si sólo actuaran las fuerzas electrostáticas.

Como no sucede así, forzosamente tenemos que pensar en fuerzas de otra naturaleza; y éstas, llamadas por los científicos “fuerzas nucleares”, son aún muy misteriosas. Parece que los protones y neutrones se atraen independientemente de su carga; es decir, un protón atrae indiferentemente a otro protón, o a un neutrón, y lo mismo puede decirse de los neutrones. En el caso, sin embargo, de dos protones, la fuerza electrostática de repulsión es más potente que la fuerza nuclear de atracción.

Debido al complejo juego de estas fuerzas, la estabilidad del núcleo depende de las relaciones entre el número de protones y de neutrones, tal como hemos explicado.

Cuando la relación protones-neutrones no asegura la estabilidad del núcleo, éste tiende a modificar la relación, emitiendo radiaciones alfa o beta, y transformándose espontáneamente en un núcleo estable.

En las radiaciones alfa, el núcleo emite las “partículas alfa”, constituidas por dos protones y dos neutrones.
En las radiaciones beta, el núcleo sólo emite electrones, que no existían previamente en su interior, sino que se producen simultáneamente con la emisión, cuando un neutrón del núcleo se transforma en protón para establecer el necesario equilibrio numérico entre neutrones y protones.

PARTÍCULA ALFA:

Determinadas combinaciones de protones y neutrones pueden llegar a formar un núcleo durante algún tiempo; pero el núcleo no es estable y el átomo es radiactivo. Esta clase de átomos intenta variar la proporción de protones y neutrones en el núcleo, para formar una combinación más estable, y entonces el núcleo emite una radiación. El átomo se trasforma en el átomo de un elemento distinto y se dice que se trasmutó.

Dos protones no pueden permanecer juntos, porque ambos tienen carga positiva (cargas del mismo signo se repelen). Los núcleos que tienen protones en exceso se estabilizan por trasmutación.


El núcleo de helio, con dos protones y dos neutrones, es la combinación de protones y
neutrones más estable que se conoce. Es la “partícula alfa”.

Por ejemplo, si un núcleo contiene demasiados protones y neutrones para ser estable, puede expulsar algunas de estas partículas y alcanzar una mayor estabilidad. Para ello emite dos protones y dos neutrones firmemente unidos (el núcleo, muy estable, del átomo de helio), formando una partícula única, que se conoce con el nombre de partícula alfa. La partícula alfa lleva, por consiguiente, dos cargas positivas y tiene un peso atómico igual a cuatro, mientras que el átomo que ha emitido esta partícula alfa disminuye su número atómico en dos unidades, y su peso atómico en cuatro unidades.

Por ejemplo, los átomos de radio que se encuentran en la naturaleza (número atómico 88, peso atómico 226) emiten partículas alfa, y entonces se- trasforman en radón, un gas radiactivo (número atómico 86, peso atómico 222)

El radón mismo se trasmuta emitiendo partículas alfa. Las partículas alfa, que se emiten durante la trasmutación de los átomos, se desplazan en línea recta a través del aire, y pierden su energía a medida que van entrando en colisión con las moléculas de aire, deteniéndose, generalmente, al cabo de unos cuantos centímetros.

Todas las partículas alfa, emitidas por un isótopo determinado, suelen recorrer la misma distancia en el aire, ya que tienen la misma energía cinética, la cual van perdiendo en los choques; basta, sin embargo, interponer en su camino una hoja de papel para detener una partícula alfa.

LA PARTÍCULA BETA
Si un núcleo contiene demasiados neutrones, para ser estable puede convertir alguno de ellos en un protón. En realidad, el protón y el neutrón son partículas muy similares. Para que un neutrón se trasforme en protón basta con que emita un electrón. El neutrón pierde, entonces, una carga negativa y se trasforma en un protón cargado positivamente:

El electrón es emitido por el núcleo con una gran velocidad; recibe el nombre de partícula beta.

El átomo conserva el mismo peso molecular después de la trasmutación, ya que la suma de protones y neutrones en el núcleo permanece constante; pero el número atómico aumenta por existir un protón suplementario. Un ejemplo de trasmutación por emisión de partículas beta lo tenemos en el comportamiento del carbono radiactivo. Los átomos del carbono 14 (número atómico 6, peso atómico 14), que es un radioisótopo natural del carbono 12, se trasmutan, por emisión de partículas beta, en nitrógeno 14 (número atómico 7, peso atómico 14). que tiene un núcleo estable.

Aproximadamente, la mitad de los radioisótopos naturales se puede trasmutar por emisión de partículas beta. También muchos radioisótopos artificiales presentan una trasmutación de este tipo.

Las partículas beta son muy ligeras y se desvían muy fácilmente en su trayectoria. Por ello, no se desplazan en línea recta como las partículas alfa. Sin embargo, suelen recorrer un espacio superior. En el aire, una partícula beta puede alcanzar más de un metro o, incluso, atravesar una lámina de aluminio de algunos milímetros de espesor.

EL POSITRÓN
Además de las partículas alfa y beta, que emiten los radioisótopos naturales, los radioisótopos artificiales pueden emitir también una partícula, que tiene la misma masa que el electrón, pero con una carga positiva igual a la del protón. Esta partícula se llama positrón, y puede considerarse como un electrón con una carga positiva igual, pero de signo opuesto a la del electrón.

EMISIÓN DE POSITRONES
Se ha visto que la emisión de partículas beta puede tener lugar cuando el núcleo contiene demasiados neutrones para ser estable. Si la relación entre protones y neutrones es la correspondiente al núcleo estable, no hay radiactividad. Si, por el contrario, el núcleo contiene demasiados protones para ser estable, puede convertir uno de sus protones en un neutrón, emitiendo un positrón que, al no poder permanecer en el núcleo, es expulsado

El átomo conserva el mismo peso atómico, pero el número atómico disminuye por haberse convertido un protón en neutrón. En 1934, Irene Joliot-Curie formó átomos de nitrógeno 13 (número atómico 7, peso atómico 13) al bombardear boro 10 con partículas alfa. El nitrógeno 13 se trasmutaba, por emisión de positrones, en carbono 13 (número atómico 6, peso atómico 13), y la presencia de la radiación, debida a los positrones (éstos fueron descubiertos en 1932), le permitió anunciar el descubrimiento de la radiactividad artificial:

Hay, además, un tercer tipo de radiación nuclear, que siempre se presenta en compañía de una de las dos recién explicadas. Se trata de la radiación gamma, que es de naturaleza electromagnética, como la luz y los rayos X, de los que sólo difiere por el origen (la luz y los rayos X se originan en el exterior del núcleo, como consecuencia del paso de electrones de una órbita a otra de menor energía; las radiaciones gamma, en cambio, se originan en el interior del núcleo, como consecuencia de una sucesiva estabilización de éste, sin que se modifique la relación protones-neutrones).

Las radiaciones nucleares alfa, beta y gamma constituyen, pues, el instrumento que un núcleo inestable tiene a su disposición para alcanzar la estabilidad. En algunos elementos, tal como se encuentran en la naturaleza, la emisión de las radiaciones nucleares se verifica espontáneamente. Se trata de los famosos elementos radiactivos, como el radio y el uranio.

Pero fenómenos de este género pueden provocarse también en el laboratorio. Y, durante el transcurso de estas investigaciones, el hombre ha conseguido asomarse a los más profundos misterios del átomo, construir núcleos inexistentes en la naturaleza, liberar las energías encerradas dentro de los núcleos, e incluso, como veremos en otro artículo, transformar unos elementos en otros.

En 1934, Irene Joilot-Curie (hija de la famosa María Curie) y su marido, descubrieron que un isótopo estable natural (el boro 10) puede trasformarse en un elemento radiactivo distinto, por bombardeo con “partículas alfa”. La radiactividad de los átomos producidos artificialmente se llama “radiactividad artificial”.

 

Particulas elementales de la Materia quarks, bosones La antimateria

PARTÍCULAS ELEMENTALES DE LA MATERIA

Los fundamentos de la física atómica

La materia está constituida por un reducido número de las denominadas partículas elementales, cuyas propiedades pueden explicar la mayor parte de los fenómenos físicos que aquélla experimenta.

Las primeras partículas elementales halladas por el hombre fueron las moléculas que integran los distintos compuestos químicos existentes en la naturaleza. Después se descubrió que más elementales aún que las moléculas son los átomos que las constituyen, a su vez compuestos por un núcleo y unas partículas cargadas negativamente, los electrones, que se mueven en torno a él. Más adelante las investigaciones revelaron que el núcleo de los átomos está formado por dos tipos de partículas. los neutrones, que no poseen carga, y los protones, de carga positiva.

Si bien hasta hace relativamente poco se pensó que protones y neutrones eran las partículas más pequeñas de la naturaleza, desde 1933 se han descubierto más de 200 partículas diferentes, todavía más elementales, más simples y de tamaño más reducido que el protón, el neutrón y el electrón. Cada una de ellas, distintas entre si, está compuesta por cuatro subpartícutas básicas, denominadas quarks.

Actualmente, se sabe que ni los átomos, ni los electrones, ni los protones ni los neutrones son indivisibles. La duda está en identificar cuáles son las verdaderas partículas elementales. Dado que la longitud de onda de la luz es mucho mayor que el tamaño de un átomo, no es posible emplear la luz como instrumento para ver las partes que lo constituyen.

Las partículas elementales

Mediante la dualidad onda-partícula de la luz se puede describir todo en el Universo en términos de partículas; éstas poseen una propiedad, llamada espín, que establece su dirección. Todas las partículas se pueden dividir en dos grupos: las que poseen espín 1/2, que constituyen la materia, y las de espín 0, 1 y 2, que dan lugar a las fuerzas entre partículas materiales.

La teoría formulada por Dirac, en 1928, estableció a relación entre la mecánica cuántica y la relatividad propuesta por Einstein. Dirac explicó matemáticamente la razón por la cual el electrón posee espín 1/2, y predijo, además, que el electrón debía tener una pareja o antipartícula, el positrón. El descubrimiento del positrón, en 1932, motivó la concesión del premio Nobel al científico..

Imagen de un acelerador de partículas

Fuerzas de interacción entre partículas

En mecánica cuántica las partículas experimentan fuerzas de interacción entre ellas. Cada partícula elemental, como un electrón o un quark, emite una partícula portadora de fuerza, que colisiona con otra partícula material y es absorbida por ella. Si en la emisión de la partícula portadora de fuerza la partícula material que la emite cambia de velocidad por el retroceso experimentado en la emisión, también la partícula que la absorbe ve modificada su velocidad.

Dado que las partículas portadoras de fuerza no obedecen al principio de exclusión de Pauli, puede existir un número enorme de partículas intercambiables, con lo que se podrían producir una serie de fuerzas de interacción muy potentes.

Según la intensidad de la fuerza y del tipo de partículas implicadas, cabe distinguir cuatro tipos:

Fuerza gravitatoria

Es la fuerza experimentada por las partículas y, en general, por todos los cuerpos, por el simple hecho de poseer masa o energía. Es la más débil de las cuatro y se caracteriza por su gran alcance y porque siempre es atractiva. En mecánica cuántica se representa por una partícula de espín 2, que se llama gravitrón, y que no posee masa propia. Así, por ejemplo, la fuerza gravitatoria entre la Tierra y el Sol se entiende como un intercambio de gravitrones entre los dos cuerpos, más concretamente entre las partículas que los forman.

Fuerza electromagnética

Es la experimentada por las partículas cargadas eléctricamente y resulta muchísimo más intensa que la gravitatoria. Como la fuerza eléctrica entre dos cuerpos se traduce en mecánica cuántica en la atracción o repulsión entre las partículas que los componen, en general se anulan las fuerzas atractivas con las repulsivas, y el efecto es un  cuerpo en estado neutro. Si no se anulan por completo, casi llegan a hacerlo, por lo que el resultado es una fuerza electromagnética neta muy débil. No obstante, dominan a distancias muy pequeñas, como es el caso de los átomos y moléculas.

La fuerza de atracción eléctrica entre los protones del núcleo y los electrones de la corteza hace que éstos giren describiendo órbitas alrededor del núcleo del átomo.

El fotón es la partícula elemental que representa este tipo de fuerza, que se entiende como un intercambio de esta clase de partículas.

Fuerza nuclear fuerte

Es la que mantiene unidos a los quarks en el protón y el neutrón, y a éstos en el núcleo del átomo. Se piensa que es transmitida por otra partícula, llamada gluón, que sólo interacciona con los quarks y consigo misma. Para energías normales esta fuerza es muy inténsa, pero a altas energías se debilita, de manera que los quarks y los gluones se comportan como partículas casi libres.

Fuerza nuclear débil

Es la causante de la radiactividad, y actúa sobre todas las partículas materiales de espín 1/2, pero no sobre los fotones o los gravitrones, es decir, partículas de espín 0, 1 y 2.

En 1967 Salam y Weimberg propusieron una teoría para unificar esta fuerza con la electromagnética, y sugirieron la existencia de otras tres partículas de espín 1 además del fotón: los denominados bosones. Según esta hipótesis, para grandes energías (superiores a 100 GeV) los tres bosones y el fotón se comportarían de forma similar1 pero a energías más bajas los bosones adquirirían una gran masa y la fuerza que transmitirían sería de corto alcance. Esta teoría fue comprobada y ratificada más tarde, cuando se construyeron potentes aceleradores de partículas, capaces de alcanzar energías tan grandes. Las tres partículas compañeras del fotón fueron definitivamente identificadas en 1983, en el Centro Europeo para la Investigación Nuclear (CERN).

Antimateria

En la actualidad, se sabe que para cada tipo de partícula existen también antipartículas, y que si interacciona una partícula con su correspondiente antipartícula pueden aniquilarse. Pero no existe el mismo número de unas que de otras; en realidad, en condiciones normales no hay antiprotones ni antineutrones, éstos sólo se producen en los grandes aceleradores de partículas. Tampoco en el espacio hay más que unos pocos antiprotones y antineutrones en comparación con la cantidad de protones y neutrones existentes.

Si existiera una gran cantidad de antimateria en comparación con la materia, se producirían múltiples colisiones en el espacio, que provocarían la emisión de una gran cantidad de radiación; así, las partículas se aniquilarían con las antipartículas, desapareciendo la mayor parte de la materia existente.

En general, se acepta que todo el espacio está formado por quarks, no por antiquarks, porque las leyes de la física son diferentes para las partículas y las antipartículas. Siempre se había creído que las leyes de la física poseían tres simetrías:

C, P y 1. La simetría C supone que las leyes son las mismas para partículas y antipartículas; la simetría P, que las leyes son idénticas para, una situación cualquiera y su imagen especular, y la simetría 1 supone que el movimiento de un sistema no se altera si se invierte la dirección del movimiento de todas las partículas y antipartículas. Sin embargo, se ha demostrado que la interacción débil no cumple la simetría P, es decir, el efecto de la interacción débil hace que evolucionen de forma diferente las partículas de las antipartículas. Tampoco posee simetría C, ni simetría combinada PC.

Ver: Dualidad de la Materia, Onda o Partícula?

Consecuencias Políticas de la Bomba Atómica

Consecuencias Políticas de la Bomba Atómica

* Puedes Bajar Una Biografía Completa de Albert Einstein

* Bajar Su Libro Sobre La Relatividad-“.

La liberación de la energía atómica no ha creado un problema nuevo. Simplemente ha tomado más urgente la necesidad de resolver el ya existente. Podríamos decir que nos ha afectado cuantitativa y no cualitativamente.

Mientras haya naciones soberanas que posean gran poderío, la guerra será inevitable. Este aserto no es una tentativa tendiente a decir cuándo llegará la guerra, sino simplemente que es seguro que llegue.

El hecho era cierto antes que se fabricara la bomba atómica. Lo que se ha modificado es la destructividad de la guerra.

No creo que la civilización haya de ser borrada en una guerra librada con la bomba atómica. Tal vez dos terceras partes de la población de la Tierra pudiera ser muerta; pero quedaría un número suficiente de hombres capaces de pensar y libros suficientes para empezar de nuevo, y se restablecería la civilización.

El secreto de la bomba debiera serle confiado a un gobierno mundial. Dicho gobierno sería fundado por los Estados Unidos, la Unión Soviética y Gran Bretaña: las tres únicas potencias con gran poderío militar. ¿Que si temo la tiranía de un gobierno mundial? Claro está que sí. Pero temo todavía más la llegada de otra u otras guerras.

No me considero el padre del desencadenamiento de la energía atómica. Mi papel en ese terreno fue del todo indirecto. En realidad yo no preví que habría de ser liberada en momento alguno. Sólo pensé que tal liberación era teóricamente posible. Se volvió práctica por el descubrimiento accidental de las reacciones cadenarias, y eso es algo que yo no pude haber predicho. Fue descubierto por Hahn en Berlín, y él mismo interpretó equivocadamente su descubrimiento. Liso Meitner fue quien nos brindó la interpretación correcta, y huyó de Alemania para poner la información en manos de Niels Bohr.

No creo que haya de asegurarse una grande era de ciencia atómica con sólo organizar las ciencias en la forma en que se organizan las grandes empresas. Uno puede organizase para aplicar un descubrimiento que ya haya sido hecho; pero no hacer uno. Únicamente un individuo libre puede efectuar un descubrimiento.

Puede haber cierto tipo de organización por la cual a los hombres de ciencia se les asegure su libertad y las condiciones adecuadas para el trabajo. Por ejemplo, profesores de ciencias en las universidades debieran quedar libres de una parte de su enseñanza para disponer de tiempo que dedicar a más investigaciones. ¿Cabe imaginar una organización de estudiosos que realizara los descubrimientos de Carlos Darwin?

Tampoco creo que las vastas corporaciones particulares de los Estados Unidos sean adecuadas para las necesidades de estos tiempos. Si un visitante hubiera de venir a los Estados Unidos procedente de otro planeta, ¿no le extrañaría que en este país se otorgue tanto poderío a las corporaciones, sin que afronten una responsabilidad de igual grado? Digo esto para señalar que el gobierno tiene que mantener el control sobe la energía atómica, no porque el socialismo sea necesariamente deseable, sino porque la energía atómica fue desarrollada por el gobierno y sería inconcebible que dicha propiedad del pueblo fuera entregada a cualquier individuo.

En cuanto al socialismo, a menos que sea internacional hasta el grado de producir un gobierno mundial que domine a la totalidad del poderío militar, podría conducir a guerras más fácilmente que el capitalismo, porque representa una concentración de poderes todavía mayor.

Hacer un cálculo acerca del momento en que la energía atómica habrá de poderse aplicar a los fines constructivos es algo imposible. Lo único que sabemos es cómo utilizar una cantidad relativamente grande de uranio. Por el momento es imposible emplear cantidad suficientemente reducida como para mover, pongamos por caso, un automóvil o un aeroplano. Es indudable, que se logrará, pero nadie puede decir cuándo.

Tampoco se puede predecir cuando se logrará utilizar materiales más comunes que el uranio para proveer la energía atómica. Es probable que todos los materiales empleados con ese fin figurarán entre los elementos más pesados de elevado peso atómico.

Tales elementos son relativamente escasos, porque su estabilidad es menor. La mayoría de esos materiales quizás haya desaparecido ya por desintegración radioactiva. De ahí que si bien es posible que la liberación de la energía atómica pueda ser, e indudablemente será, una bendición para la humanidad, no se llegue a eso durante algún tiempo.

Como no preveo que la energía atómica haya de ser una bendición hasta dentro de mucho tiempo, debo manifestar que por el momento es una amenaza. Tal vez sea mejor que así ocurra. Podrá intimidar al género humano y hacerlo imponer el orden en los asuntos internacionales cosa que no haría sin la presión del temor.

Fuente Consultada: La Nación 135 Años Testimonios de Tres Siglos

Biografia de Albert Einstein Vida y Obra Cientifica del Físico

Biografía de Albert Einstein
Vida y Obra Científica del Físico

albert einstein

1905:Año Maravilloso El Efecto Fotoeléctrico El Movimiento Browiano Antecedentes de la Física – Implicancias de la Teoría  –  Explicación de la Teoría

Biografia de Albert Einstein Vida y Obra Cientifica del Físico* Puedes Bajar Una Biografía Completa de Albert Einstein

Albert Einstein tuvo una crianza normal. Nació en 1879 en la ciudad de Ulm, Alemania, y creció en Munich, donde asistió a una escuela católica (a pesar de ser judío). Sus padres, Hermann y Pauline, temieron que el niño fuera retrasado porque se demoró en hablar.

Por supuesto, sus temores eran infundados; el joven Albert estuvo entre los mejores estudiantes en la escuela elemental. En el colegio y en la universidad, sin embargo, Einstein fue tan independiente que a menudo se enfrentó a sus maestros y profesores.

Los Primeros Años: Albert Einstein nació el viernes 14 de marzo de 1879 a mediodía. En el verano de 1880, cuando Albert tenía poco más de un año, su familia se trasladó a Munich, donde su padre y su tío abrieron un negó-ció de ingeniería eléctrica (para reemplazar un negocio anterior que había fracasado). A finales de 1881, cuando Albert tenía dos años y medio, nació su hermana. La llamaron Marie, pero todos le decían Maja.

El nuevo negocio de Hermann Einstein iba bien y, cinco años después de su traslado a Munich, los Einstein compraron una linda casa con un gran jardín, en donde Albert y Maja pasaban muchas horas jugando. Albert y Maja eran muy apegados de niños, y de adultos mantuvieron una cariñosa relación. La mayor parte de lo que sabemos hoy sobre la niñez de Einstein se le debe a Maja, quien años después escribió un librito sobre los primeros años de su hermano.

Maja describe a Albert a la edad de cuatro años como un niño tranquilo, aislado, que no disfrutaba jugando con otros niños. Escribió que sus padres temían que Albert fuera retrasado pues aprendió a hablar muy tarde. Einstein recordaría después que sus padres lo llevaron donde el médico para saber si su lento desarrollo del lenguaje indicaba que algo iba mal.

La demora de Albert pudo haberse debido a timidez y orgullo; incluso a los dos años de edad quería hacer las cosas bien y evitar la faltas. Albert dijo más tarde que cuando joven había tomado la decisión da hablar sólo con frases completas. Ensayaba la frase entera  en su mente, a veces moviendo los labios, y cuando pensaba que la tenía lista la decía en voz alta.

Se puede decir que los primeros años de la vida de Einstein fueron estimulantes y colmados de afecto. Cuando tenía cuatro o cinco años, estando enfermo en cama, su padre le regaló una brújula magnética. El movimiento de la aguja, que volvía siempre a la misma dirección debido a un. misteriosa y desconocida causa, dejó en el niño una impresión tan “profunda y duradera” que escribió 60 años después sobre el asunto en sus notas autobiográficas.

¿Por qué se comportaba la brújula de esa manera? Esto era algo que Albert necesitaba comprender. Comenzamos a ver en este niño, maravillado por el movimiento de la aguja de la brújula, los comienzos del gran genio que revolucionó nuestro conocimiento del mundo. Aun a tan tierna edad, Einstein se sintió atraído por lo que se convertiría en uno de sus estudios favoritos: el electromagnetismo

Hermann y Pauline no eran judíos practicantes; les preocupaba más la educación de su hijo que las prácticas religiosas, de modo que matricularon a Einstein, a la edad de cinco años, en la escuela católica de la localidad, que era mejor, más cercana al hogar y más barata que la judía.

No existen pruebas de que Einstein hubiera sido objeto de discriminación religiosa en la escuela, a pesar de ser el único judío matriculado. No obstante, el joven Einstein no era feliz con la estricta disciplina de la institución. Se da por hecho que la mayoría de los niños detestan la disciplina, pero Einstein le profesaba una aversión que duró toda la vida.

A pesar de su disgusto con la escuela obtenía informes excelentes. A los siete años, por ejemplo, Pauline escribió a su madre: “Ayer le entregaron a Albert las calificaciones; de nuevo sacó el primer puesto y obtuvo un resultado brillante”. Un año después el abuelo escribía: “Hace una semana que el querido Albert ha vuelto a la escuela. Adoro a ese muchacho, porque no pueden imaginarse lo bueno e inteligente que es” (¿conoce alguien a un abuelo que no crea que su nieto es “bueno e inteligente”?)

Muchos testimonios sobre la vida de Einstein lo pintan como un niño lerdo, tal vez con un problema de aprendizaje. Más tarde el propio Einstein escribió que su desarrollo intelectual se había retardado y, en consecuencia, había comenzado a pensar sobre el espacio y el tiempo sólo a la edad adulta, no cuando niño.

Cuando Einstein tenía 13 años, un estudiante de medicina llamado Talmud le llevó la Crítica de la razón pura de Emanuel Kant, libro denso y difícil aun para los estudiantes de filosofía. Según Talmud, Einstein no se sintió amilanado, y desde ese momento los dos amigos hablaron de filosofía durante las visitas nocturnas de los miércoles. Durante varios años estudió Einstein otros libros de filosofía, a la par con sus lecturas científicas. Continuó interesado en el tema toda su vida, y a menudo discutía en sus escritos las opiniones de conocidos filósofos.

Talmud también le proporcionó varios libros de divulgación científica, que el muchacho leía entusiasmado. En particular, estaba encantado con un conjunto de 21 libros titulado Libros populares sobre la ciencia natural de Aaron Bernstein. Más tarde dijo que había leído cinco o seis volúmenes de la serie con “atención extrema”. Estos libros le procuraron una comprensión básica de la física y probablemente le ayudaron a desarrollar su asombrosa habilidad para descubrir en sus lecturas lo que era importante y lo que no lo era.

Einstein se interesó cierto verano en un texto de geometría que había recibido varios meses antes de que comenzara el año escolar. Comenzó a trabajar los problemas y le mostró sus soluciones a Talmud. Al finalizar el verano no sólo había resuelto todos los problemas del libro sino que había intentado pruebas alternas de los teoremas. Años después manifestó que este libro —al que llamaba su “libro sagrado de geometría”— había sido probablemente la causa de que se convirtiera en hombre de ciencia.

Para sus profesores del liceo Luitpold, el joven Albert Einstein nada tenía de superdotado: lo consideraban más bien como un alumno reacio a la autoridad, al que llegado el caso amonestaban en forma severa: «¡Por su sola presencia, usted altera el respeto de la clase hacia mi persona!», le espetó un docente.

El modelo prusiano que se propaló en Alemania a fines del siglo XIX y la militarización de la sociedad en su conjunto no le inspiraban más que aborrecimiento. Todo aprendizaje «de memoria» le repugnaba profundamente.

A los 11 años comenzó Einstein a recibir clases de religión, como era costumbre entre los estudiantes judíos. Sus padres no eran judíos practicantes y Einstein creció resentido con ellos porque no observaban las tradiciones religiosas. De suerte que decidió ser un ejemplo para la familia guardando el sábado, comiendo sólo alimentos kosher y hasta componiendo canciones religiosas que canturreaba mientras iba camino del colegio. El fervor religioso no le duró pues muchas cosas de la Bilbia se contradecían con lo que había aprendido en los libros de ciencias.

A los dieciséis años, sin terminar sus estudios secundarios, abandonó la escuela y Alemania: quería a toda costa evitar el servicio militar, adoptando la nacionalidad suiza. A raíz de un revés de la fortuna de su padre, que dirigía un negocio de equipos eléctricos, se exilió en Italia.

En 1895, el hijo se reunió con su familia en Pavia y preparó como candidato libre, con un año de anticipo respecto a la edad requerida, la prueba de ingreso al Instituto politécnico federal de Zurich, que formaba ingenieros. Fracasó en esa ocasión, pero tuvo éxito en el segundo intento, en octubre de 1896. Sentado en los bancos de esta institución austera, Einstein se enamoró de Mileva Marie, con la que se casaría sólo después de la muerte de su padre, en 1902: en efecto, el idilio suscitó la oposición de los padres de Albert.

Mientras estudiaba  fundó en esa época con sus amigos Maurice Solovine y Conrad Habicht la «Academia Olympia», que designaba con una solemnidad engañosa sus encuentros de estudiantes, amenizados con conversaciones filosóficas. Una vez obtenido su diploma en julio de 1900, Einstein buscó en vano un puesto de asistente en la universidad, pero sólo consiguió empleos precarios. Solamente un año y medio más tarde ingresó en la Oficina federal de patentes de Berna, trabajo que le dejaba suficiente disponibilidad de tiempo para dedicarse a los problemas de física que lo apasionaban.

LOS ARTÍCULOS DE 1905

El empleo en la administración pública le dio libertad para concentrarse en la ciencia. En el productivo año de 1905 publicó en la revista alemana Annalen der Physik su tesis doctoral y cinco artículos importantes. El primero, sobre el efecto fotoeléctrico de la luz, demostraba la teoría de Max Planck de que la luz se emite en paquetes, o cuantos, lo que revalidaba la física cuántica. Otros dos artículos trataban sobre el movimiento browniano, que es el que se produce en las partículas inmersas en un fluido al ser bombardeadas por las moléculas, lo que hace que tiemblen.

No obstante, la obra por la que es más famoso Einstein presentaba algo revolucionario: la teoría de la relatividad especial, una idea que al propio Einstein le costó aceptar. «Debo confesar —escribió más tarde—, que en el mismo comienzo, cuando la teoría de la relatividad especial empezaba a germinar dentro de mí, sufrí toda clase de conflictos nerviosos.»

 La relatividad especial introdujo el concepto de universo de cuatro dimensiones tejido a partir del espacio-tiempo: las tres dimensiones habituales más el tiempo. A las distancias insignificantes de la vida ordinaria, este concepto apenas hace mella, pero cuenta en las distancias astronómicas; cuando miramos hacia las estrellas, miramos hacia el espacio exterior y hacia atrás en el tiempo.

La física pasaba entonces por una crisis profunda. Las dos ramas principales de la disciplina, la mecánica -la ciencia del movimiento de los cuerpos- y el electromagnetismo -la ciencia de la luz- se contradecían en numerosos puntos, sumiendo a los investigadores en un callejón sin salida. En el primer artículo, Einstein atacó la concepción oficial según la cual la luz era una onda continua sostenida por el «éter», una sustancia inmóvil.

Para Einstein, al contrario, la luz «estaba constituida por un número finito de cuantos de energía localizados en puntos del espacio»: por lo tanto, era discontinua por definición. Einstein resolvió de este modo los problemas insolubles planteados por las supuestas propiedades de este éter: ¡éste no existía! No contento de haber puesto de acuerdo a sus colegas, Einstein esbozó uno de los ejes esenciales de la física moderna: la teoría cuántica.

El cuarto artículo, intitulado Sobre la electrodinámica de los cuerpos en movimiento, era muy revolucionario, según admitió el propio Einstein. Rechazó la idea de un tiempo absoluto e idéntico en todas partes. Por el contrario, afirmó que el tiempo era relativo. La única salvedad enunciada por el físico a este carácter móvil del tiempo era que la velocidad de la luz representaba un límite absoluto. Se llegó entonces a una teoría de la «relatividad restringida».

En un apéndice, Einstein desarrolló una idea totalmente nueva, al demostrarla equivalencia entre masa y energía: este descubrimiento se conoce de manera universal bajo la fórmula matemática E = mc2. Al comienzo, estos artículos pasaron inadvertidos, pero suscitaron luego el interés del gran investigador alemán Max Planck. Entonces se abrió un futuro brillante para Einstein. Nombrado en la universidad de Zurich en 1909, fue invitado al congreso de Solvay de 1911, que reunió a todos los grandes nombres de la comunidad científica internacional. Ese mismo año, Planck le propuso la dirección del Instituto de física Kaiser Wilhelm en Berlín.

El descubrimiento de la relatividad restringida no era empero más que el preludio de un cuestionamiento más avanzado de la física clásica, aún marcada por los descubrimientos de Newton y de Maxwell. A partir de 1907, Einstein se dedicó a la teoría de la gravitación. Tan sólo en 1915 formuló definitivamente la teoría de la relatividad general, que consideraba la gravitación como una deformación del espacio-tiempo.

La relatividad especial derrocó el supuesto newtoniano de que el espacio y el tiempo eran fijos. Operando a partir del principio de que el único imperativo cósmico es la velocidad de la luz, que en el vacío es siempre de 300.000 kilómetros por segundo, cualquiera que sea la localización del observador, Einstein se dio cuenta de que el tiempo y el espacio eran magnitudes que dependían de a qué velocidad y en qué dirección se moviera el observador. (puede entender de una manera fácil la teoría de relatividad desde aquí)

Una de las consecuencias de esta teoría fue verificada de manera experimental en 1919: los rayos de luz no atravesaban el espacio siguiendo una línea recta debido a la modificación de la forma del espacio-tiempo por las masas que allí se encuentran. Eso era, a lo menos, lo que afirmaba Einstein.

La teoría de la relatividad general ampliaba la teoría de la especial al ocuparse de lo que ocurre cuando cambia la velocidad. (De este trabajo procede la asombrosa paradoja de que si un gemelo se va de la Tierra, viaja en una nave espacial a muy altísima velocidad, da la vuelta y regresa, a su llegada será más joven que el gemelo que se quedó en casa.).

La teoría general demostraba que la masa hacía que el espacio se curvase a su alrededor. Imagínese una bola de bolera americana sobre una cama de agua. El colchón se curvará debajo de la bola. Póngase una canica sobre la cama de agua e inevitablemente caerá hacia la bola grande. Einstein se dio cuenta de que las masas menores caen hacia las mayores, no porque las masas mayores las «atraigan», sino porque los objetos se mueven por un espacio curvo. Este inevitable movimiento hacia la masa más pesada, demostró Einstein, explicaba el fenómeno conocido como la gravedad.

Las observaciones de una expedición científica inglesa realizada por el astrónomo Eddington durante un eclipse validaron sus previsiones: Einstein alcanzó entonces notoriedad internacional y se convirtió para el mundo en el nuevo Newton. Además, la idea de que observadores ingleses validasen los trabajos de un alemán les agradó a las muchedumbres que veían en ello el signo de un nuevo entendimiento internacional después de cuatro años de guerra homicida en Europa.

A pesar de este éxito manifiesto, el premio Nobel de física otorgado a Einstein en 1921 recompensaba sus trabajos sobre el efecto fotoeléctrico y no aquellos sobre la relatividad, que suscitaban aún mucha; reservas por su aspecto innovador.
«Dios no juega a los dados»

En 1905, Einstein había sido el iniciado de la teoría cuántica. Sus ideas fuero-retomadas y desarrolladas por jóvenes físicos agrupados en torno al danés Niels Bohr. Este último y Einstein fueron muy amigos, pero el desacuerdo científico era profundo y culminaría en 1927 con ocasión del quinto congreso de Solvay, en Bruselas. Einstein y Bohr realizaron feroces intercambios de réplicas. Las objeciones de Einstein a los desarrollos de la teoría cuántica estaban especialmente motivados por la imposibilidad de prever con certeza la posición de un electrón.

Este carácter «probabilista» de la teoría cuántica lo indisponía: para él, «Dios no juega a los dados». Rígido en esta postura de rechazo, Einstein se apartó un poco de las investigaciones más avanzadas, al considerar que la teoría cuántica solamente representaba una fase provisional del conocimiento físico.

La mayor ambición de los dos últimos decenios de su vida era elaborar una teoría unitaria que sería la síntesis de la gravitación y del electromagnetismo. Pero este trabajo titánico fue en vano. Estas dificultades lo condujeron a considerar con humildad su condición de físico: «Ustedes se imaginan que contemplo la obra de mi vida con una gran satisfacción. Pero visto de cerca, nada hay de eso. No hay un solo concepto del que esté convencido que vaya a durar e incluso me pregunto si estoy en el buen camino…».

Einstein y Elsa

Einstein y Elsa en 1931 antes que Hitler tomara el pode de Alemania

Ciudadano del mundo
Einstein permaneció toda su vida siendo el colegial hostil a toda forma de autoritarismo. En 1914 redactó un «Llamado a los europeos», invitando a los intelectuales a actuar en favor de la paz. Proveniente de una familia judía alemana, se sentía extraño al nacionalismo, incluso sentía una cierta simpatía hacia el movimiento sionista.

Eisntein en una conferenciaAceptó participar en una serie de viajes a Estados Unidos para recolectar los fondos necesarios para la fundación de una universidad en Jerusalén. Desde los primeros meses de la toma de poder de Hitler, Einstein se exilió en Estados Unidos y aceptó una cátedra en Princeton.

Convertido en ciudadano estadounidense en 1940, apoyó plenamente la idea de la guerra contra el nazismo. Ya en agosto de 1939 escribió al presidente Roosevelt para urgirlo a que implementase un programa de investigación atómica, expresando sus temores con respecto a que la Alemania hitleriana tuviese un cierto avance en esta materia.

Sin embargo, Einstein no participó en el proyecto Manhattan que dio a Estados Unidos un arma cuya eficacia trajo consigo a corto plazo la capitulación de Japón.

Horrorizado por el espectáculo de Hiroshima y de Nagasaki, Einstein militó desde entonces en las filas del pacifismo, asumiendo la presidencia del Comité de vigilancia de los investigadores sobre energía atómica, en mayo de 1946, y poniendo todo el peso de su nombre al servicio de la causa.

Preconizó la creación de un «gobierno mundial», que sería el único en tener el control del arma nuclear. Su último gesto político fue la redacción de un llamado a los científicos en favor de la abolición de la guerra, escrito en forma conjunta con el filósofo Bertrand Russel. Albert Einstein murió en Princeton el 18 de abril de 1955.

CRONOLOGÍA
1879
Nace el 14 de marzo en Ulm, Alemania
Pasa sus primeros años en Munich

1894
Después de repetidas quiebras del negocio familiar de
ingeniería eléctrica, la familia se muda a Milán, Italia

1895
Suspende un examen de ingreso en el Instituto Federal Suizo
de Tecnología, y estudia en Arrau, Suiza, pero falta a clase y prefiere leer sobre física o tocar su violín

1896
Renuncia a la nacionalidad alemana

1900
Deja el colegio, pero sus profesores no lo recomiendan para un curso universitario

1901
Toma nacionalidad suiza y publica un artículo sobre las fuerzas entre moléculas

1902
Se asegura un puesto como examinador en una oficina de patentes en Berna.

1903
Se casa con Mileva Maric, una serbia a la que conoció en una de sus clases de física, con la que tiene dos hijos, en 1904 y 1910, antes de separarse en 1914, y divorciarse en 1919

1905
Recibe su doctorado de la Universidad de Zurich

1905
Publica tres artículos sobre física teórica, el tercero de los cuales se titula “Sobre la Electrodinámica de los Cuerpos en Movimiento”, y que contiene la “teoría especial de la relatividad”

1909
Consigue su primer puesto académico en la Universidad de Zurich

1911
Se muda a una universidad de habla alemana en Praga, como profesor de física teórica.

1913
Es nombrado director del Instituto Kaiser Wilhelm para la Física

1916
Propone la teoría general de la relatividad, la cual se prueba tres años después

1919
Se casa con Elsa Lówenthal, una prima El informe de Eddington sobre la luz estelar curvándose alrededor del sol durante un eclipse solar confirma la teoría de Einstein

1922
Premio Nobel de Física

1933
Emigra a Princeton, Nueva jersey, EE. UU.

1939
Einstein se une a otros científicos y escribe al Presidente Franklin D. Roosevelt, indicando que la bomba atómica es posible, y que Alemania podría tener ya la tecnología

1952
Le ofrecen y declina la presidencia de Israel

1955
Muere mientras duerme en Princeton, EE. UU., el 18 de abril

CONFIRMACIÓN EXPERIMENTAL DE LA TEORÍA GENERAL DE LA RELATIVIDAD

EddingtonFascinado desde siempre por los números de muchas cifras, Eddington (imagen izq.) había intentado desde chico contabilizar todas las palabras de la Biblia; con su seguridad característica predijo el número de protones del Universo. La fórmula conocida como «Número de Eddington» es 136 x 2256.

En 1919 dirigió el equipo que probó la teoría general de la relatividad de Einstein. Aunque la lluvia y las nubes estorbaron la visión de Eddington de un eclipse solar en isla Príncipe, en la costa oeste de África, su equipo observó que los rayos de luz emitidos por las estrellas se desvían a medida que se acercan al Sol, tal y como había predicho Einstein. Unos meses después, las mediciones realizada: sus colaboradores en Brasil confirmaron estas observaciones, colega le dijo más tarde: «Debes s> una de las tres personas del mundo que comprende la teoría general d relatividad». Eddington declinó el cumplido. «No seas modesto», le respondió otro científico. «Al contrario, intento pensar quién es la tercera persona», replicó Eddington.

 

Fuente Consultadas:
Einstein y su Teoria de la relatividad Dr. Donald Goldsmith y Robert Libbon
Einstein Para Dummies Carlos I. Calle
Las Grandes Ideas Que Formaron Nuestro Mundo Peter Moore
El Universo Para Curiosos Nancy Hathawy
Biografías –  Hicieron Historia

Teorias Fisicas Que Fracasaron Errores de la Fisica Erroneas


PRIMERAS TEORÍAS FALSAS: Platón reconocía que el peso de los cuerpos no es más que el efecto de una fuerza que se ejerce sobre ellos de arriba a abajo, lo que equivale a una forma peculiar de concebir la gravedad. El autor del Timeo conoce también la capilaridad y refiere algunos experimentos realizados sobre este particular.

En cinemática, distingue el movimiento progresivo y el movimiento rotativo, reconoce la ley de conservación del plano de rotación en el movimiento de la peonza, apuntando así hacia la invención del giróscopo. Hay que insistir también en el hecho de que Platón recomienda repetidas veces la investigación experimental a la que concede una gran importancia.

La física de Aristóteles de Estagira (384-322) supone, por el contrario, una regresión bastante perjudicial en el terreno científico. El Estagirita rechaza formalmente el atomismo y sustituye la explicación cuantitativa de las cosas por una explicación cualitativa particularmente infantil. Mal matemático, pretende no querer fiarse más que de los datos de los sentidos. y como para él el tacto es el más fundamental de todos, hace dimanar todas las cosas complejas de una simple superposición de lo cálido, de lo frío, de lo seco y de lo húmedo a una hipotética materia prima sin atributo ni cualidad, lo que inevitablemente nos hace pensar en el famoso “cuchillo sin hoja al que le falta el mango” de que habla Rabelais.

Para Aristóteles hay cuerpos pesados y cuerpos ligeros: los primeros tienden hacia abajo y los segundos hacia arriba. Ya no hay ni fuerza centrífuga ni fuerza centrípeta, sino simplemente cualidades contrarias. Además, Aristóteles ha prestado un lamentable servicio a la física con su introducción de la quintaesencia y del éter que de aquí en adelante encontraremos como punto de partida de buen número de teorías, incluso en nuestros mismos días. Añadamos que la virtud de la quintaesencia es la de estar animada de un movimiento rotativo que contrasta con los movimientos ascendentes y descendentes de los cuerpos ligeros o pesados y tendremos una idea de toda la cinemática de Aristóteles.

El movimiento, según el Estagirita. se explica metafísicamente mediante el paso de la potencia al acto, concepto cuya claridad no es precisamente deslumbrante. Como contrapartida, la mecánica aristotélica admite, lo mismo que la de Pitágoras y la de Platón, que sólo el contacto puede explicar las acciones de unos cuerpos sobre otros.

Quizá conozca el lector la extraña balística de Aristóteles según la cual toda trayectoria se divide en tres partes. En la primera aparece el movimiento forzado, en la segunda el movimiento mixto y en la tercera el movimiento natural, lo que produce una curva ascendente, una parte mixta horizontal y una curva descendente. Hubo que esperar hasta 1537 después de Jesucristo para ver esta teoría contraria a toda observación refutada por Tartaglia.

La física de Aristóteles perjudicó a la ciencia en el curso de la Edad Media cuando sus conceptos fueron asimilados e impuestos a todo el mundo cristiano por Santo Tomás de Aquino. Durante los doscientos cincuenta años que siguieron a su muerte, Aristóteles fue ignorado por los grandes físicos del mundo antiguo:Arquímedes. Ctesibios y Herón de Alejandría. En efecto, estos tres genios fueron más hombres prácticos que soñadores, y puede decirse que el primero y mayor de todos ellos ha consagrado definitivamente la ruptura entre la metafísica y la física.

Biografía Fibonacci Leonardo de Pisa Aporte a la Matematica Serie de Fibonacci

Se Presenta a continuación, por orden cronológico, a los matemáticos más destacados en el Edad Media.

Leonardo de Pisa (Fibonaccí) (1170-1250)

Jordano Nemorarius (1225 – 1260)

Nicole Oresmes (1323 – 1382)

En este sitio se tratará sobre la vida y obra de Fibonacci

Leonardo de PISA
(FIBBONACI )(1170-1250)

Leonardo de PISA Matemático autodidacta italiano, nacido en Pisa en 1170, cuyo verdadero nombre era Leonardo de Pisa. Pero más conocido fue por el nombre de Fibonacci (nombre que proviene de la abreviatura de filiuis Bonacci, que significa hijo de Bonacci). Falleció también en Pisa en 1250.

Fue el matemático más importante de la Edad Media.

El padre de Fibonacci, Guilielmo, miembro de la familia Bonacci, era un importante mercader. Era el representante de los mercaderes de la República de Pisa en los negocios con Argelia. Esto le permitió viajar mucho, especialmente por el norte de Africa, donde pasó largos periodos de tiempo. Se trasladó allí a los 20 años y es donde aprendió Matemática.

Regresó de sus viajes a Pisa en 1200, donde tuvo buenas oportunidades para recopilar las matemáticas grecorromanas, árabes e hindúes, conocimientos que luego divulgó.

Su principal obra la publicó en 1202 y es Liber Abací (el Libro del ábaco), en el que se encuentran expuestos: el cálculo de números según el sistema de numeración posicional; operaciones con fracciones comunes, aplicaciones y cálculos comerciales como la regla de tres simple y compuesta.

La división proporcional, problemas sobre la determinación de calidad de las monedas; problemas de progresiones y ecuaciones; raíces cuadradas y cúbicas. En él se recomienda de manera contundente el uso de los números hindú-arábigos, los cuales introduce en Europa. De esta manera empieza a utilizarse el sistema para el cálculo, antes se usaba el ábaco.

(Pisa, ciudad de Italia central, capital de la provincia del mismo nombre, en la región de La Toscana, a orillas del río Amo, próximo al mar de Liguria.)

Sus trabajos sobre matemática recreativa se presentaba como historias, que se transformaron en desafíos mentales en el siglo XIII. Dichos problemas involucraban la suma de sucesiones recurrentes, como el problema de las parejas de conejos, que aparece publicado en la tercera sección de este Libro. Dicho problema da origen a la famosa sucesión de Fibonacci (1, 2, 3, 5, 8, 13,…), que él descubrió.

El problema es el siguiente:

Un hombre puso una pareja de conejos en un lugar cerrado. ¿Cuántos pares de conejos se pueden generar a partir de ese par en un año si se supone que una vez por mes, a partir del segundo mes de su vida, cada pareja da origen a otra nueva?.

  1+1=2 5+8=13  
          1+2=3          8+13=21  
                 2+3=5                  13+21=34  
                       3+5=8                            21+34=55  

Cada término de la sucesión se denomina número de Fibonacci (se obtiene sumando los dos números precedentes en la sucesión).

Veamos la resolución del problema:

La primera pareja tiene descendencia el primer mes, así que en este mes ya hay 2 parejas. La primera pareja vuelve a tener descendencia el segundo mes, con Lo que ya

tendríamos 3 parejas. Al mes siguiente procrean la primera pareja y la que nació en primer mes (pues ya tienen dos

meses de vida), habiendo entonces 5 parejas. El cuarto mes procrea, además de esas dos, la que nació el segundo mes, es decir, nacen

tres parejas más, ya tenemos 8 parejas. Podemos seguir haciendo cuentas y obtenemos la siguiente tabla con las parejas que hay cada mes del año:

Meses 1 2 3 4 5 6 7 8 9 10 11 12
Parejas 2 3 5 8 13 21 34 55 89 144 233 377

La respuesta al problema es, por lo tanto, 377 parejas.

Hay muchos lugares en la naturaleza donde sorprendentemente aparece esta sucesión en forma curiosa. Si uno toma ciertas plantas y comienza a partir de la base del tallo a contar las hojas, verá que al llegar a una hoja que está directamente sobre La hoja donde se comenzó el conteo, habrá Llegado a un número de Fíbonacci. Lo mismo ocurre con una planta de lechuga o cebollas.

Las escamas de una piña aparecen en espiral alrededor del vértice. Si contamos el número de espirales de una piña, encontraremos que siempre es igual a uno de los números de la sucesión  de Fibonacci.

Los números de Fibonacci verifican, entre otras, las siguientes propiedades matemáticas:

a) todo número positivo se puede expresar como suma de números de Fíbonacci no consecutivos.

b) dos números consecutivos de Fibonacci son primos entre si.

c) hay solo dos cuadrados perfectos, el 1 y el 144 y dos cubos perfectos, el 1 y el 8.

Muchos otros problemas se dan en esta tercera sección, por ejemplo:

Una araña sube, por una pared, durante el día, un determinado número de cms. y baja, durante (a noche, otro determinado número de cms. ¿Cuántos días le lleva subir la pared?.

Un perro de caza, cuya velocidad se incremento aritméticamente, persigue a una liebre, cuya velocidad también se incremento aritméticamente. ¿Cuánto recorren hasta que el perro alcanza a (a liebre?.

También hay problemas referidos a los números perfectos, y problemas que involucran a series aritméticas y geométricas.

Vivió antes de la aparición de la imprenta, por lo que sus libros fueron escritos a mano, y la única forma de tener una copia era haciendo otra copia a mano.

Otra de sus publicaciones fue Practica Geometriae (Prácticas de Geometría) en 1220, que consta de 8 capítulos, dedicada a resolver problemas geométricos y trigonométricos, especialmente medida de áreas de polígonos y volúmenes de cuerpos.

En 1225 publica Flos, donde da una exacta aproximación de la solución de 10x + 2x2 + = 20. Este problema lo toma del libro de Álgebra de Omar Khayyam, quién lo resuelve como intersección entre un círculo y una hipérbola. Fibonacci prueba que la solución no es ni un número entero, ni una fracción ni la raíz cuadrada de una fracción. Por eso dice que lo resuelve con una aproximación, pero no indica el método que usó. La solución la da en base 60, que convertida al sistema decimal es 1,3688081075. Esta solución tiene 9 decimales exactos.

En el mismo año escribe Líber Quadratorum, que es un libro sobre Teoría de números. Plantea que los cuadrados se pueden expresar como suma de números impares usando la fórmula:n2 + (2n+1 )= =(n+1)2 .

 También se ocupa de los tripletas pitagóricas que obtiene de la siguiente forma:

Cuando quiero obtener dos cuadrados cuya suma de otro cuadrado tomo cualquier número cuadrado impar como uno de los dos números cuadrados y busco el otro cuadrado sumando todos los números impares entre el 1 y el número cuadrado impar elegido, excluido éste.

Por ejemplo, elijo el 9 como uno de tos cuadrados mencionados, el otro cuadrado lo obtengo sumando los números impares desde 1 hasta 9 excluido, es decir, 1+3+5+7=16. Así 9+16=25.

Su libro sobre aritmética comercial Di minor guisa se perdió, lo mismo que su comentario sobre el libro X de Los Elementos de Euclides, que contenía un tratamiento de los números irracionales, que Euclides había abordado desde el punto de vista geométrico.

Después de explicar los procesos algorítmicos o aritméticos usuales, incluida la extracción de raíces, pone todo el énfasis en problemas de transacciones comerciales, utilizando un complicado sistema fraccionario.

La República de Pisa le asigna un salario anual en 1240 debido a sus contribuciones a la enseñanza de sus ciudadanos y los aportes a la contabilidad.

Ideas Geniales de la Ciencia Grandes Ideas Cientificas Gay Lusac

Científicos Creadores de Grandes Ideas

Tales de Mileto  –   Pitágoras   –   Arquímedes  –   Demócrito  –   Galileo Galilei

Lavoisier –   Newton  –   Faraday   –   Joule  –  Linneo

OTROS CIENTÍFICOS GENIALES

JOSÉ LUIS GAY-LUSSAC (1778-1850): José Luis Gay-Lussac nació el 6 de diciembre de 1778 en Saint Léonard, Francia. Físico y químico, descubrió la ley de dilatación de los gases. En colaboración con Thénard demostró que el cloro, hasta entonces considerado como un ácido, no contenía oxígeno, pero supieron que era un compuesto. Davy demostró que era un elemento.

Una aportación de Gay-Lussac fue el descubrimiento de que si se enfría un volumen definido de gas bajo presión constante a una temperatura de O grados C., el gas se contrae un 1/273 por cada grado centígrado que la temperatura descienda. Ello querría decir que, en teoría, el gas dejaría de existir al llegar a los 273 grados bajo 0. En la realidad el gas primero se licúa y luego se solidifica.

Simultáneamente, otro científico francés, Charles, descubría él mismo fenómeno, que se conoce como ley de Charles o de Gay-Lussac, la que expresa que, si la presión de un gas es constante, su volumen será directamente proporcional a su temperatura absoluta. Este concepto fue el que originó una nueva escala de temperaturas, la de Lord Kelvin, que se emplea mucho en los laboratorios químicos. La temperatura de 173 grados C. bajo O se denomina O absoluto, punto en que cesa todo movimiento molecular.

Estudiando la relación entre la temperatura y la presión, propuso la teoría que cuando un gas se calienta, sus moléculas tienden a apartarse, ejerciendo mayor presión sobre las paredes del recipiente que lo contiene. Es decir, cuanto más aumente la temperatura mayor será la presión ejercida por el gas contra las paredes del recipiente. Esto se conoce como ley de Gay-Lussac.

En su colaboración con Thénard, Gay-Lussac mejoró los métodos del análisis orgánico, determinando la composición de numerosos elementos orgánicos. Su última investigación química se refirió al ácido prúsico, cuyo nombre químico es ácido cianhídrico, uno de los más potentes venenos conocidos. La fórmula de este ácido es HCN.

La determinación de la fórmula donde no aparece el oxígeno pero sí el hidrógeno, confirmó la teoría de que todos los ácidos contienen hidrógenos, pero no oxígeno como sostenía Lavoisier (oxígeno quiere decir generador de ácidos). Hay ácidos que pueden contener oxígeno, pero la acidez la determina el hidrógeno. Gay- Lussac murió en París el 9 de mayo de 1850, a la edad de setenta y dos años.

 HUMPHRY DAVY (1778-1829): Davy nació en Pensanse (Cornualles) sudoeste de Inglaterra, el 17 de diciembre de 1778. Hijo de un tallador de madera de bajos medios económicos, Davy entró el año 1795 de aprendiz de un cirujano. Como el muchacho tenía muchas inquietudes, decidió , simultáneamente instruirse a si mismo. Fue así como estudió idiomas, filosofía y, por supuesto, 

ciencias. En 1798 ingresó al Beddoes’s Pneumatic Insitute de Bristol en calidad de supervisor de experimentos.

En Beddoes conoció al gran poeta Samuel Coleridge de quien llegó a ser muy amigo. Coleridge fue una fuerte influencia sobre Davy y le inició en la filosofía de la ciencia de Kant. En 1800 Davy publicó un libro sobre el óxido nitroso (gas de la risa) que tuvo gran éxito, creándole una reputación.

Fue hacia 1806 que emprendió estudios sistemáticos de electroquímica. Ideó y desarrolló métodos de análisis fundados en el uso de corrientes eléctricas. Davy tenía el convencimiento de que la afinidad química tenía un fundamento eléctrico. Aplicando su procedimiento aisló el sodio, el potasio, el magnesio, calcio, bario, estroncio, boro, y silicio. Por aquellas fechas reinaba la teoría de Lavoisier de que el oxígeno era la base de los ácidos (oxígeno significa generador de ácidos). Davy refutó tal teoría y descubrió que los óxidos de los nuevos metales eran álcalis.

Davy se interesó siempre en las aplicaciones de la química y la física en la realidad de la industria. Fue un precursor de las aplicaciones de la química en la agricultura, dictando los primeros cursos sobre la materia en el mundo. Una obra suya, la lámpara de seguridad, alcanzó fama universal y salvó las vidas de miles de mineros.

A raíz de un horrible desastre minero en 1812, donde perecieron noventa y dos hombres y niños a raíz de una explosión a ciento ochenta metros bajo la superficie, los dueños de las minas plantearon a Davy el problema. Las velas y lámparas usadas por los mineros en ese tiempo producían con suma frecuencia el estallido del gas subterráneo, llamado “metano”.

Davy descubrió que ese gas no estallaba de modo violento en un tubo pequeño. Diseñó una lámpara en que el metano penetraba y salía por tubos muy pequeños. La lámpara tenía una malla de alambre que rodeaba la llama. La malla tenía 127 orificios por centímetros cuadrado, absorbía el calor del combustible que la hacía arder y lo conducía sin que el calor inflamara el gas que estaba fuera de la lámpara. La malla protectora se montaba sobre un bastidor de alambres verticales y se atornillaba en anillos de bronce, en el superior tenía un asa y el inferior estaba atornillado al cuello del depósito del combustible. La luz salía por una ventanilla de vidrio protegido.

Davy gozó en vida de una enorme celebridad y para la inmortalidad en su tumba está escrito el siguiente epitafio: “Summus arcanorum naturae indagator” (Sumo investigador de los arcanos de la naturaleza). Murió en Ginebra, Suiza, en 1829.