Agujero en la Capa de Ozono

Tipos de Habitat de Vida La Temperatura y la Civilización

LOS AMBIENTES DE VIDA DEL PLANETA – RELACIÓN VIDA – TEMPERATURA

Es posible que si escuchamos a una persona afirmar en una reunión que los animales más pequeños, e incluso las plantas, tienen un “domicilio” y hasta una “dirección”, lo tomemos por un poeta o por alguien que no se encuentra en sus cabales. Sin embargo, esta afirmación no tiene nada de falsa. Al contrario: muchos científicos y naturalistas dedican su vida para conocer más acerca de este tema. Es claro .. . ellos no hablan de “domicilio” y “dirección”, sino, de habitat, término que proviene del latín (habitationis) y que significa habitación.

En ecología, habitat es el conjunto de las condiciones físico-geográficas en que desarrolla su vida una especie. En realidad, lo podemos identificar con el ambiente que le es propio a cada planta, a cada animal e, incluso, a cada ser humano.

Cada especie posee un habitat particular. Este ambiente lo componen diversos factores, que en parte son elementos vivos y en parte elementos muertos. Los ecólogos han clasificado a estos componentes ambientales en edáficos, climáticos y bióticos.

Los edáficos son los que se refieren al suelo, el  que de acuerdo con su localización geográfica puede poseer distintos componentes minerales, mayor o menor proporción de arena o de limo o de cantos rodados (que hacen variar sus posibilidades de retener el agua recibida de las precipitaciones y deshielos, y su consistencia) e incluso, diferencias en la cantidad de material orgánico (humus) incorporado. En relación con los suelos, los habitat más “codiciados” son los que cuentan con una gruesa capa de humus, buena capacidad para retener el agua de lluvias, muchos minerales y pocas rocas de mediano o gran tramaño.

El aspecto climático se refiere a las variaciones meteorológicas que afectan a un sitio determinado. Los elementos que lo componen son la temperatura, la presión, las precipitaciones y las radiaciones cósmicas. Tamibén influyen, indirectamente, la distancia entre el punto estudiado y el océano, la altura sobre el nivel del mar y la proximidad de factores extraños como fuentes termales o volcanes.

Por supuesto, tendrá más “inquilinos” aquel habitat que posea un clima cálido y húmedo, porque allí las condiciones de vida son más fáciles. Por último, resulta de especial importancia el factor biótico (de bios — vida).

No es posible lograr un cuadro real que refleje la existencia de cualquier especie si no colocamos en él a todos los otros vegetales o animales que están asociados con ella. Por otra parte, existe una relación dominante de unas familias sobre otras. Donde no hay vegetales no pueden existir animales herbívoros. Donde faltan éstos, no pueden prosperar los carnívoros.

El habitat habla del lugar donde se vive, es decir, un área física, una parte específica de la superficie terrestre.

De acuerdo con este concepto, puede ser acuático, aéreo o terrestre. Para cada caso, la evolución biológica ha dotado a cada criatura viviente de las “armas” necesarias para desenvolverse exitosamente en su medio. Los topos tienen uñas poderosas, los peces aletas en forma de remo y los pájaros alas que les permiten volar. Para alcanzar estas herramientas perfeccionadas la naturaleza empleó siglos en probar y seleccionar, generación tras generación, cada uno de los adelantos aplicados.

Recordemos, asimismo, que el habitat puede tener dimensiones muy dispares. Puede ser tan grande como un mar o una pradera, intermedio como un bosque o una laguna, o pequeño como un tronco de árbol podrido o el intestino de un mamífero.

Después de la Primera Guerra Mundial, un grave problema que, es su momento, se intensificó día a día afectó a la humanidad entera: la vivienda. Sobre este tema, evidentemente, la ecología tiene mucho que decir. Cuando una población aumenta (trátese de heléchos, de ratas o de personas) se van haciendo cada vez más difíciles de satisfacer las necesidades de mantener un habitat determinado. No olvidemos que al comienzo habíamos dicho que habitat era equivalente a domicilio.

El hombre extendió, con hélices, motores y ruedas, su ambiente; pero, al mismo tiempo, debió someterse a los efectos de sus propios avances. Su “habitat privado”, la vivienda, paulatinamente se reduce a departamentos cada vez más pequeños, única solución para dar cabida a las nuevas generaciones, más numerosas que las anteriores.

SOL Y SOMBRA

En el fondo de nuestro jardín podremos realizar una interesante experiencia. Si observamos detenidamente las partes del suelo en las que una pared o arbusto dan sombra permanente, descubriremos que las hierbas crecen allí con menos densidad que en otros sitios. En cambio, notaremos que en esa zona la humedad es mucho mayor y que la tierra es menos granulosa y más compacta. Si tenemos paciencia, podremos comprobar asimismo que, mientras en las zonas donde da el sol predominan los insectos, aquí son más abundantes los gusanos.

En fin… dos mundos distintos se desarrollan a pocos centímetros de distancia. Todos los factores que componen el habitat interactúan de tal manera que llegan a constituir unidades casi independientes, con fisonomía propia. El suelo compacto, la humedad, la vegetación y la microfauna se “entremezclan” al pie de la pared umbría para dar origen a un habitat con rasgos particulares que lo identifican. Al lado, la influencia solar crea las condiciones para que se desenvuelvan con comodidad otras especies diferentes.

EL POTENCIAL BIÓTICO: ¿Qué posibilidades habrá de que en el tiempo en que uno se va de vacaciones, las hormigas, libres de toda persecución, acaben con los rosales del jardín? En las condiciones ambientales óptimas que implica un jardín sin depredadores ni insecticidas, es muy probable que las hormigas salgan triunfantes.

El potencial biótico es justamente eso, la capacidad de una población para prosperar en un medio óptimo. Lo que medimos, en este caso, es su velocidad de crecimiento cuando no hay obstáculos ni límites que la detengan. Mientras una pareja humana podría originar una descendencia de. 200.000 individuos en cien años, una mosca, qon su compañera, podría llegar en un año a la “considerable” cifra de un tres seguido de . . .¡cincuenta y cinco ceros!

Como vemos, el potencial biótico varía para cada especie. Y gracias a Dios existen controles naturales para algunos animales, porque de lo contrario viviríamos inundados de insectos, a tal punto que el sol se nos haría invisible.

Lo que impide que cierto grupo de animales o vegetales crezca en forma desmedida es la suma de los factores físicos, químicos y biológicos que hay en el am biente. Y que influyen, en diversa forma, para alterar las condiciones óptimas de desarrollo.

Una familia humana tipo, en la actualidad, no tiene por lo general más de tres vástagos, porque un número mayor de hijos haría difícil el mantenimiento del núcleo. Es un factor económico el que constituye el límite. Algunos peces, en cambio, son “regulados” por animales de mayor tamaño que se los comen, “recortando el excedente” como la tijera lo haría con un trozo de género que la modista quiere adecuar a un molde.

Todas estas maravillas sólo pueden producirse en un marco multifacético como es nuestra Tierra, donde siempre hay lugar para algo asombroso o inesperado.

LA TEMPERATURA Y LA CIVILIZACIÓN

Es un hecho interesante de destacar el que casi todas las grandes civilizaciones hayan florecido allí donde el clima no es ni muy cálido ni muy frío. Parece ser que el género humano necesita, para su progreso, el estímulo de una temperatura templada, pues tanto el frío riguroso como el calor excesivo han frustrado, de alguna manera, su desarrollo.

Así la raza negra, sofocada por el calor bochornoso de su tierra nativa, avanzó poco en agricultura, artes y ciencias, hasta la época en que los descubrimientos y colonizaciones la pusieron en contacto con los pueblos europeos. El clima en que vivía no era propicio para la actividad y la empresa, pero sí para proveerle de alimentos y ropas sin mayor esfuerzo.

En el extremo opuesto, la gente de las tierras árticas, esquimales y lapones, ha quedado atrás en la marcha general del progreso, porque la inclemencia de su clima no retribuía el enorme esfuerzo que demanda la subsistencia.

El hombre de los trópicos es, entonces, semejante al hombre rico, que no se aficiona al trabajo porque no tiene la coacción de la necesidad para hacerlo; mientras que el hombre de las tierras frías se asemeja al muy pobre, que tampoco hace mucho porque sus esfuerzos no parecen ser retribuidos.

Muchos aspectos del clima —lluvias, visibilidad, cambios de las estaciones, temperatura media del año— y las variaciones de duración del día y de la noche afectan las condiciones de vida, pero sobre todo este factor parece tener la mayor influencia en el aliento o desaliento del empeño humano. Aquellos que han estudiado el problema han llegado a la conclusión que cualquier temperatura, entre 0° y 22°, es favorable al progreso, y que una temperatura media de 10° es la ideal.

Vemos abajo un mapa con las temperaturas del planeta.

mapa de mundo con temperaturas por regionesn

Es bien destacable que la zona amarilla incluye a muchas de las más importantes ciudades del mundo, como ser Londres, Nueva York, París, Chicago, Tokio y Berlín. Aunque los climas de estas ciudades no son iguales, todos ellos comparten una temperatura media anual, entre los 5o y los 15°. También están, dentro del área amarilla, dos grandes civilizaciones de la antigüedad: la cretense y la romana. Dentro del área anaranjada, floreció la antigua civilización griega y más tarde las de Rusia y España, mientras que en el área de color castaño se desarrollaron las de los incas, China e India.

Dentro de la zona anaranjada florecieron, en la antigüedad, las civilizaciones egipcia y maya, pero ambas cesaron hace mucho de extender una considerable influencia sobre el resto del mundo. Dentro del área roja hubo dos tempranas civilizaciones: la de la India y la de la Mesopotamia. De esto se desprende que no es absoluta la conclusión según la cual los climas muy cálidos o muy fríos sean incompatibles con el progreso humano; pero sí podemos afirmar que no lo favorecen.

El hombre es ahora dueño de su ámbito como nunca lo fue en el pasado. Hoy se elevan ciudades en las zonas árticas y cerca del ecuador, en Latinoamérica y en Indonesia.

Es fácil ver por qué la civilización fue más lenta en desarrollarse en el hemisferio sur. Son comparativamente pocas las zonas al sur del ecuador que gocen de una temperatura cercana a la ideal. Además, la gran extensión de los océanos Pacífico e Indico aisla una región de otra y dificulta extremadamente todo contacto.

HABITAT Y LA VIDA DEL MUNDO ANIMAL EN EL MUNDO:
Sabemos que el factor geográfico tiene un importante papel en la conformación de las civilizaciones, en la distribución de las razas humanas, en las lenguas que la gente habla y aun en las religiones que profesan. Si el ambiente geográfico significa tanto en su conducta, no es de maravillarse que’ sea por lo menos igualmente importante en el mundo animal.

La zoogeografía estudia la distribución de los animales sobre la superficie de la tierra, distribución no sólo en sentido horizontal, sino también vertical, porque algunos viven en la alta montaña, otros en las zonas llanas y otros en las profundidades abisales.

Basados en las últimas enseñanzas de la ciencia, vamos a dar una noción clara de la delimitación de las diferentes regiones.

Muchas circunstancias determinan las áreas dentro de las que varios animales terrestres viven normalmente. No pueden cruzar con facilidad anchas barreras de agua que dividen una región de otra; es raro que logren atravesar una cadena de montañas altas; muy pocas veces cruzan las vastas tierras desérticas.

La mayoría de los animales se nutre de una clase limitada de alimentos. Si son herbívoros, no pueden sobrevivir mucho tiempo en regiones donde las plantas necesarias no crecen. Si son carnívoros, viven sólo donde sus presas puedan hacerlo también en cantidades suficientes.

De manera que, aunque no es posible dibujar una línea de demarcación en el mapa del mundo y declarar que sólo ciertos animales viven a un lado de ella, y otros muy diferentes al otro lado, es posible dividir el mapa en unas pocas regiones principales e indicar, con certeza, que cada una tiene su fauna característica, es decir, una vida animal que le es propia.

mapa de habitat del mundo

El mapa superior de la lámina está dividido en siete regiones:

A)   Oceanía (Australia e islas vecinas).
B)   América Central, del Sur e islas del Caribe, que los zoólogos llaman región neo-tropical.
C)   La región tropical, que incluye casi toda África, junto con Madagascar y parte de Arabia, se caracteriza por la. presencia de gran número de mamíferos con pezuñas: viven juntos en manadas y entre ellos encontramos jirafas, cebras, leones, el elefante africano (que es el animal terrestre más grande que hoy existe), el rinoceronte y el búfalo africano.
D)   India, S.E. de Asia, con sus guirnaldas insulares.
E)   Una gran extensión de tierra que cubre la mayor parte de Asia, casi toda Europa y parte N. de África, llamada la región paleártica: viven el caballo, el pequeño oso castaño, el camello, el alce y el ciervo
E)  La región neártica que incluye la mayor parte de América del Norte.
G) Las   tierras   árticas,   alrededor  del  polo norte.

Los animales nativos de la India o S.E. de Asia; son ellos el elefante de la India, más pequeño, de lomo más recto, orejas más pequeñas y más manso que el africano; el tigre, el orangután y el búfalo acuático de la India.

Los animales que viven en las tierras árticas; son el oso polar, el reno y el zorro ártico. El reno, ya muy domesticado, provee a los lapones de leche, carne y piel, y suele servir de bestia de carga.

Es también posible hacer una distribución vertical de los animales, aunque, naturalmente, por la facilidad de desplazamiento, los límites son menos precisos que aquellos que se demarcan para los vegetales. Por ejemplo, en los Alpes, el ciervo no traspasa el límite de los vegetales, mientras que la gamuza se aventura hasta la zona de las nieves eternas.

Los geólogos saben que Australia y algunas de las islas que la rodean han estado separadas de las grandes extensiones de tierra del mundo, por muchos millones de años. La vida animal, durante tanto tiempo, no ha evolucionado de la misma manera ni al mismo tiempo que en otros lugares. Cuando el hombre blanco se estableció por primera vez allí, se vio sorprendido por los animales raros que halló, seres por completo diferentes de los que existían en el Viejo Mundo.

El canguro, por ejemplo, a pesar de que mide casi 1,50 m. de largo, tiene hijuelos que al nacer no alcanzan a más de 5 cm. Estos pequeños pasan no corto período de su desarrollo dentro de una especie de bolsa ventral en el cuerpo materno, el marsupio, y permanecen allí hasta que están suficientemente desarrollados, como para comenzar una existencia independiente.

Aún más destacable es el ornitorrinco, aunque es mamífero y, por tanto, alimenta a sus pequeños con leche, es un animal ovíparo; en cierto sentido podemos considerarlo como un fósil viviente, o sea, un representante de ciertos animales que debieron abundar hace mucho tiempo, cuando los mamíferos hicieron por primera vez su aparición en la tierra.

Los otros animales que se hallan en la parte superior de la lámina son: el dingo (especie de perro salvaje, nativo de Australia); el kiwi neozelandés o ápterix (pájaro sin cola y con alas no desarrolladas); un pez con pulmones y el equidna (especie de oso hormiguero con el cuerpo cubierto de espinas).

América del Norte tiene muchos que son comunes en Europa y Asia. Sus representantes propios son ciertos tipos de zorros, el bisonte americano (a menudo llamado búfalo) y osos negros algo parduscos. Estos últimos, además del oso pardo de Alaska, son los más grandes y temidos de todos los osos, y hoy rara vez se los encuentra fuera de los grandes parques nacionales, donde se los preserva de la caza.

Los animales oriundos de América Central y América del Sur incluyen armadillos; osos hormigueros de lengua muy larga; perezosos; llamas; jaguares o yaguares y otros pocos mamíferos desdentados.

La llama fue el único animal que los pueblos aborígenes de América lograron domesticar antes de la llegada del hombre blanco. Los dos animales que en la lámina están asentados sobre una base de color verde claro, viven en el extremo norte de Canadá y Alaska; son el zorro negro y el anta, el más grande de la familia de los ciervos.

En las grandes extensiones heladas de la Antártida no hay animales terrestres, pues, a excepción de algunas zonas aisladas, los vegetales no crecen en cantidad suficiente como para alimentarlos. Pero en la franja costera de la Antártida habita un mamífero, el lobo marino, que es el miembro más grande de la familia de las focas. Hay también pingüinos, en grandes cantidades. Han perdido su posibilidad de volar, pero son buenos nadadores. Al vivir en una región donde no hay materiales para fabricar sus nidos, colocan los huevos arriba de sus pies, y tanto los machos como las hembras comparten la tarea de incubarlos.

No todos los animales están confinados para siempre a una sola región de la tierra. A menudo el hombre ha llevado ciertas especies de una región a otra. Las ratas viajan por todas las partes del mundo en las bodegas de los barcos. El cangrejo chino, trepado a los buques, ha sido llevado a varios estuarios de Europa.

El conejo, trasladado de Europa a Australia, se multiplicó de manera tan sorprendente que se ha convertido en una terrible plaga. Y los caballos salvajes, que por muchos años vagaron por las pampas de América del Sur, eran los descendientes de aquéllos que los conquistadores españoles trajeron a estas tierras.

Fuentes Consultadas:
Enciclopedia Ciencia Joven Fasc. N°8 Edit. Cuántica – Los Habitat del Mundo –
El Mundo en el Tiempo Tomo III Globerama Edit. CODEX

Consumo de Agua en el Mundo Huella Hídrica, Tablas y Mapa

CONCEPTO DE HUELLA HÍDRICA – HISTORIA DEL CONSUMO DEL AGUA POTABLE

HISTORIA: Cualquiera sea la actividad del hombre que consideremos, siempre el agua ocupará una parte esencial en ella. Si observamos su búsqueda de energía comprobamos que la primera fuente natural de energía que dominó fue la de las corrientes y caídas de agua. Cuando pensamos en el hombre como agricultor vemos que una de sus tareas más importantes es asegurar que sus tierras estén bien irrigadas y desaguadas. Aun en el transporte vemos que los barcos que navegan en mares y ríos tienen un papel dominante.

Todo esto no es extraño, pues más de siete décimos (70%) de toda la superficie del globo está cubierta de agua hasta una profundidad media de unos 4 kilómetros. Si multiplicamos el número de kilómetros cuadrados que forman las siete décimas partes del globo terrestre por 4, comprobamos que nuestro planeta contiene más de 1.000 millones de kilómetros cúbicos de agua.

Sin embargo, excepto como ruta para los barcos y ambiente vital para los peces, la gran abundancia de agua en mares y océanos es de poca utilidad directa para el hombre. No la puede usar para calmar su sed y la de sus animales domésticos o para irrigar sus campos. Para todos estos propósitos debe conformarse con la cantidad mucho menor que pasa de la superficie de los océanos al aire como vapor de agua, luego corre por los aires en forma de nubes y cae como lluvia o nieve. Y aún de esta cantidad, relativamente pequeña, la mayor parte, y con mucho, busca su camino en los ríos y vuelve al mar antes que el hombre la haya usado.

Así, aunque en un sentido el agua es extraordinariamente abundante, en otro aspecto es excepcionalmente escasa. En muchas regiones cálidas y secas, incluyendo partes de España, ex Yugoslavia y África del Norte, la poca lluvia que cae sobre la tierra se cuela rápidamente a través de una capa muy gruesa de suelo poroso antes de ser detenida por otra impermeable, de roca, profundamente situada por debajo de la superficie.

En tales regiones es necesario perforar profundos pozos hasta la roca, y los aguateros que transportan la valiosa agua de estos pozos a aldeas distantes la pueden vender tan fácilmente como se venden helados, en otras partes, en un caluroso día de verano. Aun en clima como el nuestro, no es extraño para la gente que vive en distritos con pobre provisión de agua el recoger el agua de lluvia de los techos en barriles y usarla para cualquier fin en el que la absoluta pureza no sea realmente indispensable.

Pero en regiones donde las lluvias no son demasiado escasas y especialmente en las que tienen un subsuelo calcáreo, generalmente es posible asegurarse una provisión de agua constante cavando un pozo no muy profundo.

El agua se puede elevar del pozo en baldes o, siempre que el nivel del agua (la napa) no esté a más de unos 10 metros bajo tierra, por medio de una simple bomba aspirante.  En regiones muy secas, donde el nivel del agua puede estar mucho más profundo, o en cualquier parte donde un pozo tenga que proveer grandes cantidades de agua, se pueden usar bombas más poderosas.

A veces ocurre que el agua queda apresada profundamente bajo tierra entre dos capas de roca impermeable de forma de casquete. Perforando a través de la capa superior, cerca de su punto más bajo, donde hay gran presión de agua, es posible producir un pozo artesiano.  La presión causa un constante fluir de agua, que sube a la superficie.

Para proveer las vastas cantidades de agua que consumen grandes pueblos y ciudades, los pozos y fuentes no son suficientes. Los romanos fueron los primeros en dar una excelente solución al problema, cuando derivaron el agua abundante de los ríos y arroyos de montaña y la transportaron a pueblos distantes por medio de acueductos.

CONCEPTO DE HUELLA HÍDRICA: La huella hídrica es un indicador que define el volumen total de agua dulce usado para producir los bienes y servicios producidos por una empresa, o consumidos por un individuo o comunidad. Mide en el volumen de agua consumida, evaporada o contaminada a lo largo de la cadena de suministro, ya sea por unidad de tiempo para individuos y comunidades, o por unidad producida para una empresa. Se puede calcular para cualquier grupo definido de consumidores (por ejemplo, individuos, familias, pueblos, ciudades, departamentos o naciones) o productores (por ejemplo, organismos públicos, empresas privadas o el sector económico).

concepto de huella hidrica

La tarea de suministrar agua potable a las poblaciones fue muy ardua ya en tiempos de los romanos, pero no lo era entonces casi nada si la comparamos con la de la actualidad. Primeramente, hay ahora muchos más pueblos y ciudades y, además de esto, no pocos de ellos son más grandes que las mayores ciudades de la antigüedad, porque los modernos métodos de transporte han capacitado a las zonas urbanas para crecer en una extensión antes imposible.

Lo que hace que el problema resulte aún más formidable es el hecho de que cada persona usa mucha más agua hoy, diariamente, que en tiempos pasados. Cuando la gente tenía que molestarse en obtener agua levantándola de los pozos, en baldes, cuidaba naturalmente mucho más de no derrocharla que nosotros que conseguimos toda la que deseamos con tan sólo abrir un grifo. Pero no son solamente el descuido y derroche los que han aumentado el consumo del agua. Otra causa importante es el continuo progreso del nivel medio de higiene.

Hace 400 años no se habían inventado los inodoros y hace ciento existían exclusivamente en las casas de los ricos; hoy cada casa usa probablemente más de 50 litros diarios de agua en el lavatorio. Hace poco más de 400 años ni siquiera los palacios poseían cuarto de baño; sin embargo, actualmente, la gran mayoría de las familias de la clase trabajadora, en los países más adelantados, tiene cuarto de baño en su hogar, y cada una de ellas seguramente consume centenares de litros de agua por semana. Además, la industria moderna gasta agua en abundancia.

De manera que no es de extrañar que los 5 ó 10 litros de agua por persona que bastaban para las necesidades diarias de nuestros antecesores ya no sean suficientes hoy para nosotros. En la moderna Bruselas, cada persona usa un promediode 160 litros de agua diariamente.

En Londres, la cantidad es de alrededor de 210 litros, en Estocolmo 245, en París 265 y en Nueva York llega a 440 litros. Aun la más pequeña de estas ciudades —Estocolmo— tiene una población de casi mas de un millón de almas, lo cual significa que necesita unos 250 millones de litros diarios. Nueva York, con su enorme población y su elevado consumo de agua por persona, necesita algo más de 4.400 millones de litros. ¿De dónde proceden tan vastas cantidades de agua?.

Pocas veces están al alcance mismo del sitio en que se las necesita y muy frecuentemente deben ser obtenidas de ríos, lagos o fuentes distantes y transportadas por gigantescas cañerías a plantas de potabilización cercanas a la ciudad que las consume.

Allí el agua ha de ser purificada y pasada a través de filtros. Éstos consisten en tanques enormes, que contienen, generalmente, primero una capa de pedregullo y arena gruesa, y luego, encima de ésta, una de arena fina. La arena filtra la mayor parte de las impurezas sólidas, pero no deja el agua libre de bacterias. De modo que ésta pasa a continuación a depósitos donde la acción de la luz del sol y el aire contribuyen a destruir los microorganismos. Generalmente se agrega también cierta cantidad de cloro, que actúa como germicida.

Cuando el agua está completamente purificada se la bombea a torres de agua, de modo que finalmente llegue a todas las casas de la ciudad con una presión uniforme. Sólo a partir del siglo XX el hombre ha tenido tan colosales exigencias de provisión de agua, y éstas nunca se hubieran satisfecho de no haberse tomado medidas para impedir que los ríos llevaran todo su caudal de agua al mar, como siempre.

Hoy, a lo largo de los cursos superiores y medios de muchos grandes ríos, los ingenieros han construido vertederos para controlar la corriente del agua. De modo que, excepto en épocas de muy prolongada sequía, las autoridades encargadas del suministro de agua pueden casi siempre conservar la cantidad suficiente como para satisfacer las necesidades de las poblaciones.

La Organización Mundial de la Salud (OMS) recomienda utilizar 50 litros de agua por día y por persona, pero en la Argentina se calcula un consumo de entre 500 a 613 litros diarios.   Así, el consumo de agua limpia es diez veces mayor a lo sugerido por la OMS y las causas más habituales de este derroche son “pérdidas en las canillas, dispendio en la higiene personal o limpieza de ropas y lavado de vehículos, vajillas, frutas y verduras, regado de plantas y jardines y el uso de desagües como vertederos”.

MAPA DEL CONSUMO DE AGUA EN EL MUNDO – m³/año/persona –

mapa de consumo de agua en el mundo

TABLA DE CONSUMO FAMILIAR APROXIMADOS:

1 Lavado de Auto 500 l.
2 Ducha de 10 minutos 70-150l.
3 Descarga Inodoro 20-25 l.
4 Lavado de Manos 3 l.
5 Lavarropa 100 l.
6 Consumo Familiar 4 Personas 1200 l.

TABLA DE CONSUMO INDUSTRIAL APROXIMADOS:

1 Cemento por Kg. 30 l.
2 Harina por Kg. 0,5 l.
3 Azúcar por Kg. 2 l.
4 Lana por Kg. 0,7 l.
5 Papel por Kg. 0,5 l.
6 Cerveza por litro 10 l.
7 Gaseosa por litro 5 l.
8 Pescado por Kg. 6 l.
9 Acero por Kg. 500 l.
10 Un automóvil 35.000 l.

Nuevas estadísticas sobre la  disponibilidad y la utilización de los recursos hídricos informan que que sector agrícola consume el 92% del agua.  Analizar el consumo globalmente, aseguran, ayudará a los gobiernos a establecer medidas para elaborar sus planes hídricos nacionales y gestionar mejor los limitados recursos hídricos. EEUU, India y China son los países que más agua gastan. Entre los tres consumen el 38% de los recursos hídricos del planeta

8 CONSEJOS PARA EL AHORRO DE AGUA

tabla con consejos para el ahorro de agua potable

LA DEPURACIÓN DEL AGUA: Quizás uno de los elementos más importantes para el desarrollo de la civilización actual sea algo tan simple como el agua. Ella es la base de las operaciones industriales; es requerida, también, como bebida fundamental. Y resulta indispensable para lograr una adecuada higiene, tanto en lo que hace al aseo personal como a la limpieza de habitaciones, veredas y edificios.

Constituye la base de los servicios sanitarios. De acuerdo con las más actualizadas tablas de valores, cada ser humano utiliza, en promedio, unos 125 litros diarios de agua. Esta cifra aumenta considerablemente si nos referimos a las ciudades, especialmente las europeas. En Los Ángeles, por ejemplo, se consume individualmente un promedio de 350 litros por día.

Veamos cuál es el método empleado para purificar este líquido. Baste calcular que sólo París necesita por día más de 2.500 millones de litros de agua potable. Todo el sistema sanitario de una ciudad se basa en obras de ingeniería, consistentes en tuberías y canalizaciones de distintos diámetros.

Desde ríos, a veces muy distantes, se hace llegar el agua a plantas de potabilización que, generalmente, se instalan cerca del núcleo urbano.

Allí el agua pasa por varias piletas, en las que las impurezas mayores se depositan en el fondo por un proceso mecánico de sedimentación. Luego el agua pasa a otras piletas que actúan como filtros gracias a la acción depuradora de la arena fina y el pedregullo que hay en su fondo.

En otras piletas el agua se somete a un nuevo proceso, ahora de orden químico, que consiste en el agregado de agentes germicidas como el cloro, el ozono, etc., que eliminan todo vestigio de parásitos y otros microorganismos nocivos. Ya en este momento el agua, transparente como un cristal, está preparada para ser bombeada a presión en las tuberías que lallevarán porlaciudad. En algunos casos se envía a torres elevadas para que su distribución se produzca sin inconvenientes.

Luego de la acción germicida, de los filtros y de las piletas de decantación, el agua está lista para ser sometida a todos los usos imaginables. Ya servidas, las aguas tienen que ser eliminadas de algún modo. Una de las formas más comunes es restituirlas a los ríos de donde se extrajeron -aunque aguas abajo-, o en el océano, si es que éste se encuentra próximo. Para poder cumplir esta tarea sin contaminar las cuencas hidrográficas o marinas, debe volver a someterse al agua a un nuevo proceso de purificación.

tratamiento de agua potable

A: Planta Potabilizadora
B: Planta Potabilizadora Por Ósmosis Invertida

Ampliar Este Tema

RETENER EL AGUA PARA PRODUCIR ENERGÍA: Hay todavía una razón más en la actualidad para construir diques y represas en los ríos: contener el agua de manera que se la pueda usar en un fluir constante y uniforme para producir energía hidroeléctrica.

Antiguamente, los habitantes de la Mesopotamia usaban ruedas de agua primitivas, accionadas por los ríos o arroyos, para obtener agua para la irrigación. Durante la Edad Media, en muchas partes de Europa se empezaron a usar ruedas mucho mejor ideadas para impulsar diversas clases de máquinas simples en los molinos.

Cerca de las caídas de agua de poco caudal, en lugares montañosos, construyeron molinos equipados de ruedas con cangilones. Éstas eran ruedas con paletas bastante livianas, que la fuerza del agua, al caer, hacía girar a considerable velocidad. Por medio de una serie de engranajes, cada uno con ún número diferente de dientes, este veloz movimiento podía disminuirse a una velocidad apropiada para la lenta y pesada maquinaria colocada adentro del molino. Cerca de ríos anchos, en regiones llanas, construyeron molinos con ruedas y paletas de distinta disposición, movidas lentamente por la corriente. Por medio de una serie de engranajes, este lento movimiento podía acelerarse a la velocidad requerida.

Todo esto representaba un gran adelanto en la conquista de la energía hidráulica, pero conservaba aún dos enormes inconvenientes. Primero, se podía sólo hacer uso de la energía mecánica del agua eii movimiento construyendo molinos en el lugar en que se encontraba y no donde era más conveniente hacerlo. Segundo, el natural fluir del agua variaba con las épocas y la cantidad de energía disponible variaba con ella. Después de lluvias prolongadas, en las caídas de agua y los ríos el caudal de agua llegaba al máximo y movía las ruedas a una velocidad excesiva, que amenazaba con destruirlas. Después de una sequía prolongada, las ruedas apenas giraban.

No hubo indicación alguna de cómo se podría subsanar el primer inconveniente, hasta comenzado el siglo XIX. Fue cuando el científico inglés Faraday descubrió que un imán que se movía rápidamente podía provocar el fluir de una corriente eléctrica a través de un cable. Aquí, entonces, había un medio de transformar energía mecánica —la clase de energía necesaria para mover el imán con rapidez— en energía eléctrica.

En ese tiempo, cuando la era de la máquina de vapor llegaba a su punto más alto, la obvia manera de poner el imán en movimiento era usar un motor de vapor. De modo que los imanes de los generadores de las primitivas usinas que surgieron años más tarde se accionaban con vapor y así es como funcionan hoy la mayoría de los generadores.

Pero no hay nada que impida que los imanes de los generadores funcionen por las caídas de agua, y en efecto así es como se mueven en las modernas usinas hidroeléctricas. De este modo la energía mecánica del agua en movimiento se transforma en energía eléctrica, la cual puede ser transportada en cables hacia donde haga falta. En los hogares y fábricas de cualquier sitio esta energía eléctrica puede convertirse nuevamente en energía mecánica por medio de motores, en los cuales la corriente eléctrica pone en movimiento un imán.

El otro problema era cómo asegurarse que el agua diera una producción de energía constante. Aquí surgió, precisamente, la necesidad de construir diques y represas. Cuando se construye un dique a través de un río, las aguas del curso superior son contenidas para formar un lago artificial. Éste sirve como enorme depósito desde el cual se puede dejar correr el agua hacia los generadores, a través de cañerías o túneles, a una velocidad constante durante todo el año.

En terrenos montañosos, el agua que cae de grandes alturas hace girar veloces ruedas Pelton, no muy diferentes de las ruedas de antaño, para impulsar a los generadores. En terreno llano, un volumen mayor de agua que cae de una altura menor hace girar las ruedas de turbina, que se parecen también mucho a las de la Edad Media.

Fuente Consultada:
El Triunfo de la Ciencia El Agua en el Mundo Globerama Tomo III Edit. CODEX

Impacto Ambiental de la lluvia ácida sobre el Suelo y Forestación

IMPACTO AMBIENTAL DE LA LLUVIA ÁCIDA EN EL SUELO

Los gases responsables del fenómeno conocido como lluvia ácida, que se examinó en esta primera parte —óxidos de azufre y de nitrógeno—, provienen principalmente de la quema de los combustibles fósiles (carbón, aceite y derivados) por los motores de los automóviles, las plantas productoras de electricidad y los complejos industriales.

Al combinarse con el vapor de agua, estos gases forman los ácidos nítrico (HNO3) y sulfúrico (H2S03), que transportados por el viento finalmente precipitan en forma de una lluvia muy ácida. El agua de lluvia normal tiene un pH de 5,65, como resultado de la presencia de carbonatos. Pero al formarse los ácidos mencionados, el pH baja del valor normal y frecuentemente puede llegar a ser inferior a 4.

esquema del fenomeno de la lluvia acida

(Gentileza Imagen Gobierno de Canarias)

La mayoría de los informes sobre la relación entre las lluvias ácidas y el declive forestal realizados en distintos países no resultan tan concluyentes a la hora de establecer una relación de causa-efecto. Pero no cabe duda de que las precipitaciones ácidas disminuyen la reserva mineral del suelo. Sobre terrenos calcáreos, la calcita (carbonato de calcio) de las rocas neutraliza rápidamente los ácidos. En suelos silíceos, por el contrario, la acidez aumenta.

Otro problema importante es el uso de sustancias químicas, como los biocidas (sustancias que eliminan distintas formas de vida, como los plaguicidas, fungicidas, herbicidas e insecticidas), que al acumularse en el suelo provoca importante foco de contaminación y degradación. En particular, los insecticidas, los herbicidas y los fungicidas tienen sustancias químicas potencialmente tóxicas, que pueden ingresar en las cadenas alimentarias, por ejemplo el DDT y el agente naranja, ambos cancerígenos.

Por otro lado, es importante destacar la persistencia de algunas de estas sustancias en las cadenas tróficas. Todas las actividades humanas generan residuos sólidos que se acumulan en el suelo. Desde el punto de vista químico, los residuos son fuente de carbono, oxígeno, hidrógeno, nitrógeno, azufre y de una fracción de cenizas, en las que hay fósforo, calcio, magnesio, potasio y sodio, entre otros.

En restos inorgánicos, como el vidrio y los metales, los porcentajes de cenizas pueden trepar a un 90%, y en restos de alimentos, papel, plásticos, gomas, maderas y cuero, el carbono representa porcentajes de entre el 35 y el 85 por ciento.

Esta acumulación de elementos químicos, además de ser una fuente de contaminación que se agrega a la de los biocidas, altera la productividad global. Además, otra característica importante de los residuos sólidos es que tienen un contenido hídrico que será mayor cuanto más predominen restos orgánicos de alimentos o de jardinería, y que suelen presentar porcentajes de agua entre el 55 y el 75 por ciento.

EFECTOS NOCIVOS: Los efectos más graves de este fenómeno fueron observados en las áreas boscosas de Alemania y los Países Bajos, destruidas en más del 50%; dichas áreas sumaban más de 2,5 millones de hectáreas de la Selva Negra. En Suecia, además de los bosques, llegó a comprometer la pesca en el 25% de los lagos, donde se registran valores de pH inferiores a 4,0, lo cual es incompatible con la existencia de formas superiores de vida acuática. Los componentes ácidos de la lluvia también están deteriorando estatuas, monumentos y edificaciones construidas en mármol.

Los efectos sobre la Acrópolis de Atenas y el Coliseo en Roma determinaron la intervención de gobiernos y organismos internacionales para impedir su completo deterioro; similares medidas fueron tomadas para las catedrales de Notre Dame, en París, y de Colonia, en Alemania. Gracias a los acuerdos internacionales para el control de la emisión de azufre (en Europa, por ejemplo,producto de la Convención sobre la Contaminación Atmosférica Transfronteriza a Larga Distancia) y a los cambios en los procesos industriales, esta emisión ha decrecido en casi todas partes en los últimos cinco o seis años.

En las costas del Atlántico Norte el agua se volvió del 10 al 30% más acida en los últimos veinte años, y esto se suma a la contaminación de las aguas por vertidos de diverso origen. Por su paite, en los montes Apalaches la acidez es diez veces superior a la de las áreas vecinas.

En el norte de América existe también una dispersión norte-sur de contaminantes industriales, afectando a numerosos ecosistemas mexicanos y canadienses. En lo que respecta a América latina, el grado de industrialización es mucho menor que en el hemisferio norte. No obstante, existen algunas zonas muy industrializadas, como Itaipú-Cubatao-San Pablo, donde la lluvia contiene más contaminantes de lo que toleran los patrones internacionales, pues las industrias generan cantidades importantes de ácidos cuyos efectos pueden afectar selvas y cultivos, tanto en el Brasil como en el Paraguay, el Uruguay y la Argentina.

La Ecología Industrial

Involucra proyectos que consideran el uso racional de los materiales, la reducción de los residuos y la prevención de la polución. Un objetivo de esta disciplina es establecer un sistema industrial tal, que todos los materiales sean obtenidos eliminando una mínima cantidad de desechos al medio ambiente, lo que se conoce como cero emisión. Para ello, es necesario analizar el flujo y el balance de materiales, desde la utilización de los recursos naturales, pasando por la manufactura y hasta el destino de los desechos.

En la actualidad, el desafío es organizar esos flujos de materiales, ya que no existen conjuntos de datos organizados, sino sólo datos aislados o, en el peor de los casos, ni siquiera existen datos; por eso, es necesario recopilar todas las fuentes de información en una forma útil. Se han hecho esfuerzos para trazar ciclos que detallen la masa de carbono, nitrógeno, azufre y fósforo ya que influyen en el funcionamiento biogeoquímico del planeta.

Además del papel de los ciclos de estos elementos en la biosfera, su importancia ambiental depende de su forma química; por ejemplo, se necesita encontrar alguna forma de reconversión del dióxido de carbono que se obtiene como subproducto de muchas industrias, aunque en estos momentos los esfuerzos están destinados al tratamiento de los residuos más nocivos para el ambiente.

La tabla periódica muestra elementos -por ejemplo los metales pesados (Cd, Pb, Zn, Hg)-, cuyo flujo de masa es necesario investigar, debido a su toxicidad y a la cantidad que se obtiene como residuo. Para sistemas industriales relativamente sencillos, el estudio del balance de masas está basado en la ley de conservación de la masa. Por el estudio del flujo de masa del material, se puede analizar la evolución del producto a lo largo de su vida y su impacto en el ambiente. Si se tiene en cuenta que para sintetizar un mismo producto pueden existir varios procedimientos, es preciso elegir aquel en el que se minimice la cantidad de desechos generados durante la manufactura, con el menor gasto de energía.

Otro aspecto importante es la recuperación de materiales para minimizar los desechos, ya que grandes cantidades de valiosos recursos son descartados anualmente como residuos. El análisis de estos desechos demuestra que su recuperación no sólo aporta un beneficio ambiental sino también económico. Estos materiales son subproductos de una actividad industrial en gran escala, y aunque en general no son tóxicos, pueden contener pequeñas cantidades de contaminantes.

Como conclusión, podemos decir que la industria ecológica busca proveer una comprensión técnica rigurosa de los sistemas de producción y consumo que puedan ser empleados, durante mucho tiempo, sin daño ambiental significativo, además de facilitar estrategias para el uso más eficiente de los recursos de energía y de los materiales para producir una disminución de los residuos tóxicos y no tóxicos.

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23) – Biología y Ciencias de la Tierra Cap. 19.

La lluvia Ácida Causas y Consecuencias Efecto Como se produce la LLuvia?

La Lluvia Ácida Causas y Consecuencias

El hombre, a través de sus actividades, perturba el medio ambiente e interfiere en la precipitación de dos maneras fundamentales: con la construcción de ciudades y con el vertido de contaminantes a la atmósfera. Respecto a la contaminación atmosférica, uno de sus efectos más destructivos es la lluvia ácida, así denominada por la elevada acidez del agua precipitada.

La lluvia acida es un problema ecológico que no respeta fronteras. La contaminación atmosférica que la causa es arrastrada por los vientos dominantes, desde las zonas industriales hasta montañas, lagos y bosques. Ni siquiera el Ártico está libre de tal contaminación.

¿De dónde proviene el ácido? Ya no hay duda de que la mayor parte se origina en automóviles, hogares, fábricas y plantas de energía. Siempre ha existido un poco de ácido en la lluvia alimentada por volcanes, pantanos y el plancton de los océanos; pero los científicos saben que ha aumentado abruptamente en los últimos 200 años. El hielo formado antes de la Revolución Industrial y atrapado en los glaciares resultó tener una acidez moderada, de origen natural.

La lluvia se vuelve acida principalmente por la presencia de dos elementos químicos: azufre y nitrógeno. El azufre se encuentra en la hulla y el petróleo. Al quemarse forma bióxido de azufre, que se mezcla con las gotas de agua en las nubes y se convierte en ácido sulfúrico. Como resultado de la combustión, el nitrógeno forma óxidos que se transforman en ácido nítrico al reaccionar con las moléculas de agua. Una parte de ambos ácidos cae donde se originan, mientras que el resto puede recorrer cientos de kilómetros.

La lluvia Ácida Causas y Consecuencias

La acidez de las precipitaciones está determinada por la concentración de iones de hidrógeno presentes en el agua; se expresa en términos de valor del pH, según una escala de O a 14, donde el valor 7 indica solución neutra (el agua destilada, por ejemplo), los valores inferiores, soluciones ácidas (manzanas, vinagre, zumo de limón), y los superiores, soluciones básicas (lejía, cal, amoniaco). Cada descenso del. pH en una unidad supone un aumento diez veces mayor en la acidez.

La lluvia ya es de por sí ligeramente ácida, pues contiene dióxido de carbono (también lo son la nieve, la niebla y las formaciones de hielo). Se considera lluvia ácida aquella que tiene un pH inferior a 5,6.

Existen diversas fuentes naturales de lluvia ácida: entre otras, los compuestos de azufre que resultan de las erupciones volcánicas, los manantiales termales y las fumarolas, y una cantidad considerable de óxidos de nitrógeno y azufre, producto final del metabolismo de diversos grupos bacterianos. A pesar de estos contaminantes naturales del aire, el pH del hielo glacial llega a casi 5,0, lo que significa que las emisiones naturales de los compuestos ácidos no son el origen principal de la lluvia ácida, sino las actividades de las sociedades humanas, .especialmente las más desarrolladas. 

La combustión de carburantes fósiles

La combustión de carburantes fósiles (petróleo, gas y carbón) por fábricas, centrales eléctricas, hogares y vehículos libera dióxido de azufre y óxidos de nitrógeno. Estos’ gases no sólo ejercen un efecto nocivo sobre las cosechas, los árboles y los edificios del entorno más inmediato, sino que atraviesan largos recorridos transportados por el viento. Durante el trayecto, los rayos solares los transforman en sulfatos y nitratos. Una vez secos, estos contaminantes se resisten a caer al suelo, y tan sólo la lluvia y la nieve logran extraerlos de la atmósfera. Así, son absorbidos por las nubes y convertidos en ácido sulfúrico y nítrico, ambos solubles en agua, que se depositan a continuación, disueltos en la lluvia, la nieve o la niebla, sobre las plantas, los árboles, los lagos y los ríos, los mares y los suelos. 

Efectos de la lluvia ácida sobre el terreno, las aguas dulces y el medio urbano

El fenómeno de la lluvia ácida (incluida también la nieve, las nieblas y los rocíos ácidos) tiene consecuencias negativas sobre el medio ambiente, porque no sólo afecta a la calidad del agua, sino también a los suelos, a los ecosistemas y, de modo particular a la vegetación: bastan 0,01-0,02 ppm de ácido (que corresponden a 10-20 mm./m3 en la atmósfera) para matar los líquenes; por su parte, las coníferas no sobreviven a concentraciones mayores de 0,07-0,08 ppm.

Los efectos de la lluvia ácida sobre el terreno dependen en gran medida del tipo de suelo sobre el que se deposita. Si el terreno es una formación de origen calcáreo, los ácidos serán rápidamente absorbidos por el carbonato cálcico que compone esta clase de suelos. Por el contrario, si la superficie de depósito es de composición arcillosa o granítica, las consecuencias son más graves, dado el enorme poder de disolución que tiene este tipo de agua de lluvia, que acaba alterando el pH medio del terreno1 originando una acidificación general. Al filtrarse en la tierra, los ácidos destruyen los nutrientes esenciales del suelo, tales como el magnesio, el calcio y el potasio, que alimentan a las plantas y los árboles. estos se vuelven ralos y descoloridos, y mueren.

Las regiones montañosas sometidas a precipitaciones de lluvia o nieve ácidas están, a menudo, compuestas por granito y otras rocas ígneas, que producen suelos delgados carentes de los agentes químicos capaces de neutralizar los ácidos presentes en esta clase de precipitaciones. 

Otro efecto de la lluvia ácida es el aumento de la acidez en las aguas dulces, como consecuencia del incremento de metales pesados muy tóxicos (plomo, aluminio, mercurio, cinc y manganeso), que provocan la ruptura de las cadenas tróficas y del proceso reproductivo de los peces, condenando a los ríos y lagos a una lenta pero implacable disminución de su fauna. Los lagos tienen un pH casi neutro, debido a que minerales como el calcio, liberados en sus aguas a través del suelo, neutralizan la lluvia natural. Sin embargo, este mecanismo amortiguador puede no ser suficiente para absorber el incremento de acidez de aquélla.

Los efectos de la lluvia ácida sobre el medio urbano son, por una parte, la corrosión de edificios, la degradación de las piedras de las catedrales y otros monumentos históricos y, por otra, las afecciones del aparato respiratorio en los seres humanos.                       

Las regiones del mundo que más sufren los efectos de la lluvia ácida son aquellas       dotadas de suelos sensibles, esto es, que carecen del porcentaje necesario de neutralizantes, sobre todo en áreas situadas dentro o cerca de grandes agentes contaminantes. También en ámbitos no industrializados, como áreas remotas de China, donde el carbón se utiliza para calefacción, cocina y depuración de agua, o en zonas de África donde se queman arbustos para propiciar el crecimiento de los pastos, se producen los   mismos efectos. Los contaminantes atraviesan largos recorridos  transportados por  el viento 

En virtud de los desplazamientos de las masas de aire, los contaminantes alcanzan zonas alejadas cientos de kilómetros del lugar donde han sido emitidos. Por esta razón, surge la necesidad de saber hacia dónde se dirigen las nubes contaminantes originadas en un país. Se han elaborado con este fin programas modelo, aplicados a distancias variables, que contemplan: ciclos convectivos, lluvias, nubes y el efecto del suelo. Pronostican variables de vientos, temperatura del aire, humedad relativa, superficie del mar, diferencias de presiones, etc.

Los métodos normalizados más empleados en el análisis de SO2 son los siguientes: método del peróxido de hidrógeno, método del yodo, método gravimétrico, método yodo-tiosulfato, métodos espectrofotométricos, métodos calorimétricos, etc. Se ha podido constatar, por un lado, que Gran Bretaña y Alemania son los grandes exportadores de SO2, al provocar lluvias ácidas en otros países de la UE. Por otro lado, se sabe que la acidez de las lluvias, en general, es mayor en los meses de primavera y verano, y no coinciden estas épocas con los meses en los cuales las cantidades emitidas de contaminantes son mayores (meses de invierno). Por último, también se ha comprobado que el transporte de contaminantes por las corrientes de aire es muy importante, ya que los efectos de lluvia ácida que sufre un país se deben, en su mayor parte, a las emisiones provocadas por otros países.

La lucha contra la lluvia ácida

Desde los años ochenta, se ha producido una toma de conciencia sobre la necesidad de controlar y paliar, en la medida de lo posible, los efectos perniciosos que sobre el medio natural ejercen las sociedades humanas. Las inversiones se han concentrado en impulsar el desarrollo de las llamadas energías limpias (solar y eólica, fundamentalmente), y la implantación de controles más rigurosos para limitar la liberación a la atmósfera de agentes contaminantes.

Los países industrializados han movilizado gran cantidad de recursos económicos para reducir las emisiones ácidas. En 1993, la UE acordó reducir las emisiones de óxidos de azufre en un 40% para el año 1998 y en un 60% para el 2003, y las de óxidos nitrosos, en un 30% para 1998. Otra de las medidas acordadas a partir del año 1993 fue la de instalar catalizadores en los coches de nueva fabricación, para conseguir la reducción de las emisiones de los mencionados gases. Uno de los progresos más significativos ha tenido lugar en las cámaras de producción de las centrales termoeléctricas, un causante esencial de las emisiones de ácidos a la atmósfera: se han incorporado técnicas que reducen e incluso eliminan la emisión de los óxidos de nitrógeno y azufre, que son recuperados y reutilizados como abono.

¿CÓMO SE MIDE LA ACIDEZ?

Los ácidos destruyen casi todo lo que alcanzan; son solubles en agua y su fuerza se mide por el pH (potencial de nitrógeno). La escala del pH abarca valores desde 1 hasta 14. El 1 indica acidez extrema y el 7 neutralidad; el 14 se da en líquidos de gran alcalinidad (lo opuesto a la acidez). El pH se determina con un medidor especial o papel indicador. Un ácido fuerte como el sulfúrico hace que el papel se coloree de rojo, uno neutro lo pone verde, y los líquidos muy alcalinas le dan una coloración púrpura.

LIQUIDO COLOR DEL INDICADOR PH
Acido Sulfúrico Concentrado Rojo 1.0
Jugo de Limón Rojo 2.3
Vinagre Rosa 3.3
Lluvia Zonas Industriales Rosa 4.3
Lluvia Normal Naranja 5.5
Lluvia Destilada Verde 7.0

 

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23).

Las Erupciones Volcanicas Mas Fuertes de la Historia Mas Famosas y Grandes

Grandes Erupciones Volcánicas

La lava cae y se desplaza llevando consigo todo lo que encuentra a su paso. Esto sucede en forma pausada e ininterrumpida, arrasando ciudades enteras, poblaciones, bosques y miles de vidas humanas. Uno de los ejemplos más famosos fue la erupción del monte Vesubio en el año 79 a: C.; que eliminó del planeta a dos ciudades y dos culturas, las de Pompeya y Herculano. Ya en el siglo XX, la erupción del monte Pelee destruyó en pocos minutos la ciudad de Saint Pierré en Martinica y mató al instante a casi toda su población. Detalles de algunas de las erupciones más relevantes

Erupciones Volcánicas

Erupciones Volcánicas

Vesubio año 79 d. C.
El año 79 d. C., el volcán Vesubio entró en erupción violenta y repentinamente, arrasando con nubes de cenizas calientes el romano centro comercial de Pompeya y enterrando bajo lodos volcánicos la pequeña ciudad residencial de Herculano, Hasta esta erupción los romanos habían considerado al Vesubio como un volcán extinguido: .no se tenía constancia de erupciones, y su cono, que había sufrido una fuerte erosión, estaba densamente poblado de vegetación, que incluía extensos viñedos en la parte inferior de sus laderas. El año 63 tuvo lugar un violento terremoto local, que produjo diversos daños en las ciudades que rodeaban al Vesubio. Los terremotos continuaron sucediéndose durante varios años; hoy esos fenómenos serían interpretados como indudables avisos de una próxima actividad volcánica.

La población local de aquella época no cayó en la cuenta de esta relación, quizá porque consideraban como absolutamente cierto que el volcán estaba extinguido. De esta forma la gran nube que surgió de la montaña alrededor del medio día del 24 de agosto constituyó para ellos un «shock» que los dejó estupefactos. La erupción es descrita con gráficos detalles por Punió el Joven en su carta a Tácito, que es probablemente el primer informe de una erupción volcánica realizado por un testigo ocular. Los detalles de este relato se han visto confirmados por el análisis de las rocas producto de la erupción, y de acuerdo con ellos parece que durante esta erupción tuvieron lugar muchos fenómenos que han podido ser observados en erupciones posteriores.

Se ha dicho con frecuencia que Pompeya quedó sepultada por depósitos de cenizas aéreas, mientras Herculano lo fue por una avalancha de lodo. Sin embargo, investigaciones recientes sugieren que los depósitos de coladas de lodo en Herculano pudieran ser de ignimbrita, y es probable que otras ciudades cercanas al Vesubio fueran también destruidas por nubes ardientes. Algunos pasajes de las cartas de Punió son asombrosamente similares a descripciones de nubes ardientes hechas por testigos modernos. Las extensas excavaciones llevadas a cabo en Pompeya  nos dan una clara idea de la belleza y prosperidad de esta zona antes de la erupción.

Las excavaciones en Herculano  se ven muy retrasadas por el hecho de haberse construido la ciudad de Resina exactamente encima de los restos de la ciudad romana. Una parte del borde exterior de una gigantesca caldera sobrevive en la parte norte del Vesubio recibiendo el nombre de Monte Somma; su formación se atribuye comúnmente a esta erupción del año 79. En el lado sur un nuevo cono volcánico, conocido como Gran Copo, se ha formado en épocas posteriores a la formación de la caldera.

¿La Atlántida?
Una enorme erupción, que tuvo lugar alrededor del año 1470 a. C. en la Isla de Thera, destruyó completamente una civilización, dando origen posiblemente a la leyenda de la Atlántida. La isla se colapso a causa de la erupción, formándose una inmensa caldera de 80 kilómetros cuadrados, inundada por el agua del mar y rodeada de escarpadas paredes de cenizas volcánicas.

El cataclismo arruinó la próspera civilización minoica, centrada durante la tardía Edad del Bronce en la isla de Creta, isla que fue devastada en su mayor parte por enormes olas y enterrada bajo espesas capas de cenizas. Las leyendas griegas aluden a esta tragedia, pero tanto la erupción como la civilización minoica cayeron en el olvido, hasta que investigaciones arqueológicas llevadas a cabo en este siglo las sacaron a la luz.

Un viajero griego, Solón, visitó Egipto probablemente el año 590 a. C., y allí oyó hablar a los historiadores egipcios de un desastre que en los tiempos antiguos destruyó el pueblo de Keftiu, situado «lejos hacia el Oeste», acabando con el comercio que existía entre ambos pueblos. Así nació la idea de unas islas perdidas en el mar, que Platón convirtió, alrededor del año 380 a. C., en la épica saga de la Atlántida.

Krakatoa en 1883
El Krakatoa es un volcán del mismo tipo que el de Thera. Ambos tenían una larga historia de pequeñas erupciones que fueron progresivamente formando grandes conos volcánicos, compuestos de basaltos y andesitas, seguidas por gigantescas erupciones que constituyeron auténticos cataclismos y provocaron el colapso del edificio volcánico, para a continuación volverse a formar lentamente un nuevo cono volcánico.

La última gran erupción del Krakatoa es lo suficientemente reciente como para estar bien documentada. Los efectos de la erupción se extendieron por todo el mundo. La explosión final, el domingo 27 de agosto de 1883, se oyó a 4,700 km. de distancia.

La onda expansiva y las olas marinas producidas por dicha explosión dieron la vuelta al globo; originales puestas de Sol, producidas por la presencia de finas arenas en la atmósfera, se pudieron observar incluso en Londres, y grandes islas flotantes de pumita fueron arrastradas por las corrientes de los océanos durante meses. La mayor parte de las 36.000 víctimas fueron debidas, sin embargo, a los tsunamis provocados por la explosión. Estos tsunamis, olas de hasta 35 metros de altura, arrasaron las costas de Java y Sumatra.

Valle de las Mil Chimeneas en 1912
El Valle de las Mil Chimeneas surgió en Alaska, en las cercanías del volcán Katmai, durante una erupción de este último. Tres grandes explosiones, que se pudieron oír a 950 km. de distancia, señalaron el comienzo de una erupción de coladas de cenizas calientes, que cubrieron el valle, alcanzando en algunos puntos espesores de más de 200 m. Las coladas de cenizas mantuvieron su calor durante muchos años; el agua subterránea, que se había filtrado hasta alcanzar esas zonas, se calentó lo suficiente como para escapar a la superficie en forma de innumerables fumarolas, las «Diez Mil Chimeneas».

Las cenizas aéreas afectaron a un área mucho mayor: el más próximo asentamiento humano de tamaño apreciable, Kodiak, a 160 km. del volcán, permaneció envuelto en una sofocante oscuridad durante dos días. El magma de esta erupción se acumuló inicialmente en una cámara magmática bajo el mismo volcán Katmai, pero no fue expulsado a la superficie por su cráter sino que a través de fisuras alcanzó un salidero alejado 10 km. de la cima del volcán originando un nuevo volcán, Novarupta. Al vaciarse la cámara magmática se produjo la fragmentación y el hundimiento de la cima del Katmai, formándose una caldera de 6 km. de diámetro y 800 m. de profundidad.

Nacimiento del Paricutín en 1943
Durante muchos años una pequeña fosa existente en un valle de una zona agrícola de México intrigó a los habitantes del valle, por su persistencia en reaparecer al poco tiempo de haber sido rellenada con tierra. El día 20 de febrero de 1943, un poco después de las cuatro de la tarde, se abrió a través de dicha fosa una grieta, por la que escapaba una pequeña columna de cenizas grises.

A las 24 horas, la lava estaba fluyendo de la base de un cono de escorias basálticas de 50 metros de alto, que se había formado durante este tiempo sobre la fisura. En unos pocos meses el nuevo volcán forzó a sus habitantes a desalojar Paricutín, localidad situada a 3 km. del volcán, y en junio de 1944 la capital del distrito, la ciudad de Para ngaricutiro, había sido completamente destruida por la lava. En septiembre de ese mismo año, la lava cubría ya una superficie de 25 km2, y las nuevas coladas se iban apilando sobre las antiguas.

Al cabo de dos años el volcán Paricutín alcanzó su máxima altura, 500 metros, y el ritmo de la erupción comenzó a declinar, hasta que, exactamente en su noveno aniversario, la erupción cesó bruscamente. El Paricutín ha sido el primer volcán que ha podido ser observado científicamente desde su nacimiento.

Destrucción de St. Fierre, Martinica, en 1902
La ciudad de St. Fierre y sus 30.000 habitantes fueron prácticamente borrados del mapa en unos pocos segundos, a las 7,50 de la mañana del día 8 de mayo de 1902, por una «nube ardiente» surgida del cercano volcán de Monte Peleé. El volcán había estado emitiendo cenizas y gases desde el 23 de abril, hasta el punto que los animales se desplomaban moribundos en las calles, a causa de los gases venenosos provenientes del volcán.

A pesar de esto no se había dado orden de evacuar la ciudad, pues era inminente la celebración de unas importantes elecciones en las que sólo se podía votar en su propio distrito. La actividad explosiva se incrementó en el cráter durante los días 5, 6 y 7 de mayo, dando lugar a coladas de lodos, que ocasionaron algunas víctimas
en las cercanías del volcán. La nube ardiente del 8 de mayo surgió repentinamente de una hendidura en la pared del cráter desplazándose ladera abajo a lo largo del valle de la Riviére Blanche; pasado St. Fierre giró bruscamente a la derecha internándose en el mar y dejando el valle de la Riviére Blanche cubierto de espesos y sofocantes depósitos de ignimbrita.

El frente de la nube lo constituía una onda de gases calientes y cenizas suspendidas que se expandía rápidamente en dirección a St. Fierre desvastando completamente la ciudad. La temperatura del gas que formaba la ola frontal era lo suficientemente elevada como para fundir el vidrio y determinados metales; dejó tras ella solamente una fina capa de ceniza que cubría el terreno como una ligera capa de nieve. El 14 de mayo, una semana después de la erupción, aún se desprendían volutas de humo de las brasas en que se habían convertido las ruinas de la ciudad. En los meses siguientes el volcán continuó expulsando nubes ardientes, aunque normalmente fueron menos violentas que la primera.

Este ciclo eruptivo, que presenta en primer lugar una fase de actividad gaseosa con desprendimiento de cenizas, seguido por una nube ardiente con gran desprendimiento de gases, y que termina con la formación de un domo y un pitón, es un proceso típico que se repite en muchos volcanes.

COMO ACTUAR FRENTE A LAS ERUPCIONES VOLCÁNICAS:

Entre 50 y 60 volcanes entran en erupción cada año: de 20 a 30 producen a veces flujos letales de lava y la misma cantidad generan explosiones más violentas, que crean nubes de ceniza asfixiantes. También existe la posibilidad de que haya emanaciones de lodo e inundaciones.

Qué hacer. Pronóstico de erupción
1. Manténgase informado. Escuche la radio, mire televisión o use Internet para obtener información actualizada.
2. Preste atención a las advertencias oficiales. Esté preparado para evacuar el lugar. Planifique qué llevará, adonde irá y cuáles son las rutas más seguras para llegar allí. Siga de inmediato todas las órdenes de evacuación emitidas por las autoridades. Si no es necesario evacuar el lugar, igualmente es fundamental contar con suministros de agua, comida y baterías.
3. Prepare un equipo de supervivencia. Debe incluir gafas de seguridad y mascarillas (tapabocas) desechables para cada persona además de los artículos habituales.

Caída de cenizas
1-Protéjase. Si se encuentra afuera cuando empiece a caer la ceniza, póngase ropa para cubrirse lo más posible y, si tiene un paraguas, ábralo para protegerse de las partículas filosas de roca. De ser posible, póngase gafas y una máscara. Si no tiene una máscara, átese una bufanda o un pañuelo humedecido en agua sobre la boca y la nariz. Use anteojos en lugar de lentes de contacto.

2. Busque refugio. Si puede, resguárdese dentro de un edificio o un auto. Si se encuentra de vacaciones cuando empiecen a caer las cenizas, quédese adentro (a menos que haya algún riesgo de que el techo colapse) y mantenga todas las ventanas bien cerradas. Cierre las entradas de aire y chimeneas con cartón y cinta adhesiva.

3. Prevenga los daños estructurales.’ Si está de vacaciones y se está alojando en un departamento o en un lugar con techo con poca inclinación, limpie periódicamente el techo para quitar las cenizas y evitar que colapse por el peso. Cuando las cenizas se mezclan con agua, se vuelven más pesadas y se pueden solidificar como cemento.

4. Evite viajar. No maneje a menos que sea esencial o que le indiquen que debe evacuar el lugar. Si está manejando, hágalo lentamente y evite levantar cenizas ya que podrían afectar el motor. Use los faros y cerciórese de que haya líquido de parabrisas. Use mucha agua para mantener el parabrisas despejado.

Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima

Los Efectos Nocivos sobre la Naturaleza
Accion del Hombre Sobre el Clima


Efecto Invernadero
Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima
Agujero Ozono
Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima
Lluvia Ácida

Muchos de los problemas ambientales que azotan a la sociedad moderna son el resultado de la interferencia humana en la forma como funcionan los ecosistemas. Los primeros habitantes humanos del planeta se mantuvieron con la energía que fluía del Sol y producían desechos que regresaban fácilmente a los ciclos de los nutrimentos. Sin embargo, conforme aumentó la población y la tecnología, el ser humano comenzó a actuar con mayor independencia de estos procesos naturales.

Hemos extraído de la tierra sustancias como plomo, arsénico, cadmio, mercurio, petróleo, uranio, que son extrañas a los ecosistemas naturales y tóxicas para muchos de los organismos en ellos.

En las fábricas se sintetizan sustancias que antes nunca se encontraban en la tierra: plaguicidas, solventes y una gran variedad de otras sustancias químicas industriales dañinas para muchas formas de vida.

La revolución industrial, que empezó a mediados del siglo XIX, dio como resultado un aumento tremendo del uso de energía producida por combustibles fósiles —en lugar de luz solar— para conseguir calor, luz, transporte, industria e incluso en la agricultura.

El hombre como transformador de la naturaleza
El hombre no sólo es miembro Integrante de la naturaleza, también se encuentra, en cierto sentido, por encima de ella. No es que sea su amo: ¡sería mucho decir! ¡Pero es su transformador! Tan pronto el hombre primitivo pasó de la mera recolección de los productos de la naturaleza virgen y de la caza de animales salvajes al cultivo de ciertas plantas y a la cría de animales, se inició su intervención transformadora sobre la naturaleza.

Se roturaron, entonces, o se destruyeron por el fuego, los montes, se regularon las aguas, se fundaron poblados cercanos en número creciente, se abrieron caminos. A medida que aumentan en cantidad, los hombres necesitan mayor superficie para sus cultivos: el paisaje natural se transforma en paisaje civilizado y, entre nosotros, ¡en estepa civilizada!

El bosque desaparece progresivamente, las turberas se hacen laborables; en su lugar aparecen tierras de labranza, prados y campos de pastoreo. En la actualidad sólo el 27% de la superficie de Alemania está cubierta de bosques en lugar del 60 al 75% de otros tiempos. Se prescribe al río por donde debe correr, al lago hasta qué altura debe crecer.

Las poblaciones van creciendo, se transforman en ciudades y aun en grandes ciudades; como consecuencia, la red de comunicaciones se hace más ceñida e invade una superficie cada vez mayor. Y además hay que eliminar los desechos de las grandes aglomeraciones humanas que contaminan las corrientes de agua.

La provisión de agua potable debe obtenerse directamente de las grandes reservas de las capas subterráneas; esto y el arrastre, cada vez más rápido, del sedimento en los cursos de agua rectificados, bajan el nivel de las aguas. La tierra se deseca; Europa se convierte en una estepa; se construyen Instalaciones de riego artificial. Se intenta prevenir el peligro de un descenso demasiado grande de las aguas provocado por aquellas mismas alteraciones o, como se dice, mejoramientos  y la contaminación demasiado intensa de los cursos de agua, sobre todo en las regiones industriales, por medio de la construcción de inmensos embalses.

Así nacen presas y lagos en lugares originariamente sólo surcados por arroyos y ríos. Canteras y yacimientos de carbón excavan profundas heridas en la superficie de la tierra; en el interior de ella, las cavidades de las minas adquieren una extensión gigantesca, y la ganga de los minerales forma en las laderas montañas.

Los establecimientos de la gran industria con sus chimeneas humeantes nublan el cielo de regiones enteras, y donde antes cubrían el paisaje verdegueantes bosques, hoy lo reviste una red de hilos eléctricos.

Vida y Mundo Circundante, August F. Thienemann. EUDEBA

Actualmente sabemos que la naturaleza es finita en sus recursos y que hemos llegado cerca de sus límites por las modificaciones descontroladas de los ambientes, alejándonos del equilibrio natural hacia un punto sin retorno, generando una maraña de problemas relacionados con la energía y el alimento. El hombre debe reflexionar antes de actuar sobre la naturaleza, para no seguir produciendo desequilibrios que la perjudiquen y comprometan los recursos naturales indispensables, y a la vez su bienestar y supervivencia, a tal punto que su existencia sea sobrevivir en un planeta hostil fabricado por él.

Lo múltiple y lo único
El estudio de la ecología nos enseña la interdependencia de todas las partes del planeta Tierra en relación sistémica: el sustrato geofísico, la atmósfera y el clima, las plantas y los animales. También es evidente que la Tierra depende del Sol como fuente de energía y de la Luna para sus mareas: el sistema es abierto y forma parte del Cosmos. Debido a esta interdependencia total de toda la miríada de componentes de un todo, no es arbitrario comparar la totalidad del sistema mundial con un organismo individual. Aceptamos la naturaleza sistémica de un individuo porque sabemos que existe una interdependencia evidente de los distintos órganos.

Si vemos a todo el planeta de esta manera, vacilaremos antes de efectuar cambios importantes y fundamentales en componentes determinados rápidamente y sin pensarlo….

…..Por esta razón ya no es una misteriosa paradoja ver a la naturaleza, a la vez, como lo múltiple y lo único. Los componentes del mundo natural son innumerables, pero constituyen un único sistema vivo. No hay escapatoria para nuestra interdependencia con la naturaleza; estamos entretejidos en la urdimbre más estrecha con la Tierra, el mar, el aire, las estaciones, los animales y todos los frutos de ella. Lo que afecta a uno afecta a todos; somos parte de un todo mayor: el cuerpo del planeta. Debemos respetar y amar su expresión múltiple si queremos sobrevivir.

Ecología humana: “El ecosistema humano”
Pasado, presente y futuro
Autor: Bernard Campbell
Biblioteca Científica Salvat (1985)

Fuente Consultada: Educación Para La Salud Liserre de Telechea – Cazado

Causas y Efectos del Efecto Invernadero Calentamiento Global

Causas y Efectos del  Efecto Invernadero

Introducción

Nuestra Tierra

El efecto invernadero

La capa de ozono

Calentamiento del planeta

Las consecuencias del Calentamiento Global

Sube el nivel del mar

1. Introducción

La temperatura de nuestro planeta es perfecta para la vida. Ni demasiado caliente como Venus, ni demasiado frío, como Marte. Gracias a estas condiciones, la vida se extiende por todos sitios.

La Tierra recibe el calor del Sol. Algunos gases de la atmósfera la retienen i evitan que parte de este calor se escape de retorno al espacio.

Hoy día esta situación de equilibrio delicado esta en peligro a causa de la contaminación de la atmósfera, que provoca que los gases retengan mucho calor cerca de la superficie. Las temperaturas de todo el planeta han aumentado en el ultimo siglo y esto podría provocar un cambio climático a nivel mundial.

El aumento del nivel del mar y otros cambios en el medio ambiente representan una amenaza para todos los seres vivos.

El termino efecto invernadero hace referencia al fenómeno por el cual la Tierra se mantiene caliente y también al calentamiento general del planeta. Para mantener las condiciones ambientales optimas para la vida es indispensable que entendamos las relaciones complejas que se establecen entre la Tierra y la atmósfera.

     2. Nuestra Tierra     

La Tierra es como una isla de vida en medio del espacio vacío. Los científicos no creen que exista vida en otro punto del sistema solar. En cambio, las condiciones de nuestro país son perfectas. No le falta ni aire ni agua y el Sol nos proporciona luz y calor.

Nuestro planeta esta rodeado por la atmósfera. Se trata de una fina capa de gases (principalmente de oxigeno y nitrógeno) que se extiende hasta unos 700 km. por sobre de la superficie terrestre. Es en la atmósfera, que mantiene el planeta caliente donde se producen todos los fenómenos climatológicos. Esta capa contiene también otros elementos químicos: nitrógeno, carbono y sofre, transferido constantemente a la Tierra y aprovechados por los seres vivos.

Las temperaturas de nuestro planeta son las mas adecuadas para que los animales y las plantas sobrevivan y se reproduzcan. Las temperaturas varían según la zona de la Tierra, des del frío de los casquetes polares hasta el calor extremo de la selva tropical y el desierto. Pero los seres vivos se han adaptado a todas las condiciones ambientales y podemos encontrar vida casi a todo el planeta.

Des del espacio se pueden ver los indicios del clima de la Tierra. La rotación del planeta y las diferencias de temperatura provocan movimientos de aire sobre la superficie terrestre. Así se forman el viento, las nubes y la lluvia. Las nubes transportan las lluvias que llenan los ríos y los lagos. La temperatura del planeta hace que el agua se mantenga en estado liquido. Si hiciera demasiado frío, el agua se helaría y si hiciera demasiado calor, se transformaría en vapor de agua.

    3. El efecto invernadero   

La atmósfera de la Tierra está compuesta de muchos gases. Los más abundantes son el nitrógeno y el oxígeno (este último es el que necesitamos para respirar). El resto, menos de una centésima parte, son gases llamados “de invernadero”. No los podemos ver ni oler, pero están allí. Algunos de ellos son el dióxido de carbono, el metano y el dióxido de nitrógeno.

causas el efecto invernadero

En pequeñas concentraciones, los gases de invernadero son vitales para nuestra supervivencia. Cuando la luz solar llega a la Tierra, un poco de esta energía se refleja en las nubes; el resto atraviesa la atmósfera y llega al suelo. Gracias a esta energía, por ejemplo, las plantas pueden crecer y desarrollarse.

Pero no toda la energía del Sol es aprovechada en la Tierra; una parte es “devuelta” al espacio. Como la Tierra es mucho más fría que el Sol, no

puede devolver la energía en forma de luz y calor. Por eso la envía de una manera diferente, llamada “infrarroja”. Un ejemplo de energía infrarroja es el calor que emana de una estufa eléctrica antes de que las barras comiencen a ponerse rojas.

Los gases de invernadero absorben esta energía infrarroja como una esponja, calentando tanto la superficie de la Tierra como el aire que la rodea. Si no existieran los gases de invernadero, el planeta sería cerca de 30 grados más frío de lo que es ahora! En esas condiciones, probablemente la vida nunca hubiera podido desarrollarse. Esto es lo que sucede, por ejemplo, en Marte.

En el pasado, la Tierra paso diversos periodos glaciales. Hoy día quedan pocas zonas cubiertas de hielo. Pero la temperatura mediana actual es solo 4 ºC superior a la del ultimo periodo glacial, hace 18000 años.

Marte tiene casi el mismo tamaño de la Tierra, y está a una distancia del Sol muy similar, pero es tan frío que no existe agua líquida (sólo hay hielo), ni se ha descubierto vida de ningún tipo. Esto es porque su atmósfera es mucho más delgada y casi no tiene gases de invernadero. Por otro lado, Venus tiene una atmósfera muy espesa, compuesta casi en su totalidad por gases de invernadero. ¿El resultado? Su superficie es 500ºC más caliente de lo que sería sin esos gases.

Por lo tanto, es una suerte que nuestro planeta tenga la cantidad apropiada de gases de invernadero.

El efecto de calentamiento que producen los gases se llama efecto invernadero: la energía del Sol queda atrapada por los gases, del mismo modo en que el calor queda atrapado detrás de los vidrios de un invernadero.

En el Sol se producen una serie de reacciones nucleares que tienen como consecuencia la emisión de cantidades enormes de energía. Una parte muy pequeña de esta energía llega a la Tierra, y participa en una serie de procesos físicos y químicos esenciales para la vida.

Prácticamente toda la energía que nos llega del Sol está constituida por radiación infrarroja, ultravioleta y luz visible. Mientras que la atmósfera absorbe la radiación infrarroja y ultravioleta, la luz visible llega a la superficie de la Tierra. Una parte muy pequeña de esta energía que nos llega en forma de luz visible es utilizada por las plantas verdes para producir hidratos de carbono, en un proceso químico conocido con el nombre de fotosíntesis. En este proceso, las plantas utilizan anhídrido carbónico y luz para producir hidratos de carbono (nuevos alimentos) y oxígeno. En consecuencia, las plantas verdes juegan un papel fundamental para la vida, ya que no sólo son la base de cualquier cadena alimenticia, al ser generadoras de alimentos sino que, además, constituyen el único aporte de oxígeno a la atmósfera.

En la fotosíntesis participa únicamente una cantidad muy pequeña de la energía que nos llega en forma de luz visible. El resto de esta energía es absorbida por la superficie de la Tierra que, a su vez, emite gran parte de ella como radiación infrarroja. Esta radiación infrarroja es absorbida por algunos de los componentes de la atmósfera (los mismos que absorben la radiación infrarroja que proviene del Sol) que, a su vez, la remiten de nuevo hacia la Tierra.

El resultado de todo esto es que hay una gran cantidad de energía circulando entre la superficie de la Tierra y la atmósfera, y esto provoca un calentamiento de la misma. Así, se ha estimado que, si no existiera este fenómeno, conocido con el nombre de efecto invernadero, la temperatura de la superficie de la Tierra sería de unos veinte grados bajo cero. Entre los componentes de la atmósfera implicados en este fenómeno, los más importantes son el anhídrido carbónico y el vapor de agua (la humedad), que actúan como un filtro en una dirección, es decir, dejan pasar energía, en forma de luz visible, hacia la Tierra, mientras que no permiten que la Tierra emita energía al espacio exterior en forma de radiación infrarroja.

A partir de la celebración, hace algo más de un año, de la Cumbre para la Tierra, empezaron a aparecer, con mayor frecuencia que la habitual en los medios de comunicación, noticias relacionadas con el efecto invernadero. El tema principal abordado en estas noticias es el cambio climático. Desde hace algunas décadas, los científicos han alertado sobre los desequilibrios medioambientales que están provocando las actividades humanas, así como de las consecuencias previsibles de éstos.

En lo que respecta al efecto invernadero, se está produciendo un incremento espectacular del contenido en anhídrido carbónico en la atmósfera a causa de la quema indiscriminada de combustibles fósiles, como el carbón y la gasolina, y de la destrucción de los bosques tropicales. Así, desde el comienzo de la Revolución Industrial, el contenido en anhídrido carbónico de la atmósfera se ha incrementado aproximadamente en un 20 %. La consecuencia previsible de esto es el aumento de la temperatura media de la superficie de la Tierra, con un cambio global del clima que afectará tanto a las plantas verdes como a los animales. Las previsiones más catastrofistas aseguran que incluso se producirá una fusión parcial del hielo que cubre permanentemente los Polos, con lo que muchas zonas costeras podrían quedar sumergidas bajo las aguas. Sin embargo, el efecto invernadero es un fenómeno muy complejo, en el que intervienen un gran número de factores, y resulta difícil evaluar tanto el previsible aumento en la temperatura media de la Tierra, como los efectos de éste sobre el clima.

Aún cuando no es posible cuantificar las consecuencias de éste fenómeno, la actitud más sensata es la prevención. El obtener un mayor rendimiento de la energía, así como el utilizar energías renovables, produciría una disminución del consumo de combustibles fósiles y, por lo tanto, de nuestro aporte de anhídrido carbónico a la atmósfera. Esta prevención también incluiría la reforestación, con el fin de aumentar los medios naturales de eliminación de anhídrido carbónico. En cualquier caso, lo importante es ser conscientes de cómo, en muchas ocasiones, nuestras acciones individuales tienen influencia tanto sobre la atmósfera como sobre la habitabilidad del planeta.

Consecuencias: Conocemos las consecuencias que podemos esperar del efecto invernadero para el próximo siglo, en caso de que no vuelva a valores más bajos:

  •     Aumento de la temperatura media del planeta.
  •     Aumento de sequías en unas zonas e inundaciones en otras.
  •     Mayor frecuencia de formación de huracanes.
  •     Progresivo deshielo de los casquetes polares, con la consiguiente subida de los niveles de los océanos.
  •     Incremento de las precipitaciones a nivel planetario pero lloverá menos días y más torrencialmente.
  •     Aumento de la cantidad de días calurosos, traducido en olas de calor.

pinguino emperador

El pingüino más grande de todas las especies es el emperador, y vive únicamente en la Antártida, En la parte más cálida de la región, península antartica; Pointe Géologie, han sufrido una importante disminución en décadas recientes. Las temperaturas más elevadas de los Inviernos han hecho que el hielo fuese más delgado, debilitándolo y haciendo que sea arrastrado por los frecuentes vientos. Como resultado, los huevos y los pinchones de los emperadores no llegan a adquirir la capacidad necesaria para sobrevivir por sus propios medios. Esta especie de ave necesita estabilidad, zonas bloqueadas por hielo marino donde puedan crecer y, al mismo tiempo, zonas del mar libres de hielo para alimentarse. En una zona al este de la Antártida la población se redujo al 50%. La mayor mortalidad fue en la década del 1970.

    4. La capa de ozono     

EL ozono es un gas cuyas moléculas están formadas por tres átomos de oxígeno(O3), uno más que las moléculas de oxígeno que respiramos. La capa de ozono se fue engrosando a medida que fue aumentando la cantidad de oxígeno. Esto es así porque su formación se debe a reacciones químicas entre el oxígeno y los rayos ultravioletas.

En la atmósfera, el ozono se concentra en un estrecha franja de la estratosfera, entre los 20 y 40 kilómetros de altura, formando la llamada capa de ozono, un elemento decisivo para la vida en el planeta. En efecto, la capa de ozono es para los seres vivos como un paraguas protector frente a los peligrosísimos rayos ultravioletas. Si estas radiaciones alcanzaran la superficie terrestre sin pasar por el filtro del ozono, causarían entre otros muchos efectos dañinos, la destrucción del fitoplacton, base de todas las cadenas alimentarias del océano, por lo que peligrarían todos los organismos marinos; en el hombre, la radiación ultravioleta causaría un debilitamiento general del sistema inmunológico, importantes daños en la vista, y un aumento de casos de cáncer de piel.

En 1974, dos científicos estadounidenses Sherwood Rowland y Mario Molina descubrieron que los CFC, sustancias muy utilizadas en la industria, destruyen el ozono.

Rowland y Molina fueron atacados por las empresas productoras, pero pocos años después se detectó que con la llegada de la primavera, el espesor de la capa de ozono sobre la Antártida era anormalmente delgado y se comprobó que la causa era el uso de CFC. En 1987, 40 países industrializados pactaron en Montreal la reducción de la producción de CFC en un 50% en el año 2000. En 1990 la Argentina firmó el protocolo.

    5. Calentamiento del planeta  

Algunos de los gases que producen el efecto invernadero, tienen un origen natural en la atmósfera y, gracias a ellos, la temperatura superficial del planeta a permitido el desarrollo de los seres vivos. De no existir estos gases, la temperatura media global seria de unos 20ºC bajo cero, el lugar de los 15ºC sobre cero de que actualmente disfrutamos. Pero las actividades humanas realizadas durante estos últimos siglos de revoluciones industriales, y especialmente en las ultimas décadas, han disparado la presencia de estos gases y han añadido otros con efectos invernadero adicionales, además de causar otros atentados ecológicos.

Es un hecho comprobado que las temperatura superficial de la Tierra está aumentando a un ritmo cada vez mayor. Si se continua así, la temperatura media de superficie terrestre aumentara 0,3ºC por década. Esta cifra, que parece a simple vista no excesiva, puede ocasionar, según los expertos grandes cambios climáticos en todas las regiones terrestres. La década de los años ochenta a sido la mas calurosa desde que empezaron a tomar mediciones globales de la temperatura y los científicos están de acuerdo en prever que, para el año 2020, la temperatura haya aumentado en 1,8ºC.

Hace demasiado calor…

Sí, demasiado calor como para que nosotros, los seres humanos, estemos tan tranquilos. Porque no estamos hablando sólo de un aumento de las temperaturas, sino de un cambio global que puede llegar a ser muy peligroso.

Pero no todo es tan malo: la causa de este calentamiento es la propia actividad humana. Por lo tanto, de nosotros depende detenerlo.

Entre el 1º y el 10 de diciembre de 1997, ciento sesenta países se reunieron en Kioto, Japón, para discutir sobre los cambios en el clima de la Tierra. Pero, ¿qué importancia tiene conocer cuántos grados aumentará la temperatura ambiente, dónde va a llover más o por qué no nevó tanto el año pasado?
Actualmente, estamos frente a un nuevo cambio climático, pero esta vez provocado por la actividad humana. La industria, los automóviles, los grande cultivos y la manutención de ganados, todo aquello que permite la supervivencia de los 5 mil millones de seres humanos que poblamos el planeta, provoca también grandes cambios. Uno de ellos, quizás el más preocupante, es el calentamiento global de la Tierra, provocado por un aumento del efecto invernadero.

    6. Las consecuencias del Calentamiento Global     

El clima en la Tierra es muy difícil de predecir, porque existen muchos factores para tomar en cuenta: lluvia, luz solar, vientos, temperatura… Por eso, no se puede definir exactamente qué efectos acarreará el Calentamiento Global. Pero, al parecer, los cambios climáticos podrían ser muy severos.

Una primera consecuencia, muy posible, es el aumento de las sequías: en algunos lugares disminuirá la cantidad de lluvias. En otros, la lluvia aumentará, provocando inundaciones.

Una atmósfera más calurosa podría provocar que el hielo cerca de los polos se derritiera. La cantidad de agua resultante elevaría el nivel del mar. Un aumento de sólo 60 centímetros podría inundar las tierras fértiles de Bangladesh, en India, de las cuales dependen cientos de miles de personas para obtener alimentos. Las tormentas tropicales podrían suceder con mayor frecuencia.

Los primeros pasos para detener el fenómeno

En la década de los 70, muchas personas comenzaron a darse cuenta de los cambios que estaba sufriendo la Tierra. Al estudiarlos, pudieron observar cuán frágil es el medio ambiente, y lo mucho que los seres humanos dependemos de él. Poco a poco, todos nos dimos cuenta de que no era posible seguir contaminando el agua, la tierra y el aire: la contaminación no iba a desaparecer por sí sola.

Además, muchas actividades humanas estaban afectando al clima de una manera muy, muy peligrosa.

En 1992, las Naciones Unidas realizaron la Primera Convención sobre el Cambio Climático. Desde 1980, científicos y representantes de diversos países se habían estado reuniendo para determinar cómo se producía este cambio y qué se podía hacer para frenarlo. Los resultados se dieron a conocer en la Cumbre de la Tierra, realizada en Río de Janeiro, Brasil, en 1992. El acuerdo fue firmado por 154 países.

¿Qué plantea el Acuerdo de Río? La necesidad de frenar el cambio climático, reduciendo las emisiones de gases de invernadero. Esto significa disminuir la cantidad de combustibles fósiles utilizados (petróleo, gas natural, carbón), y proteger los bosques (ellos atrapan y consumen el dióxido de carbono). También significa disminuir nuestro consumo de energía, y buscar otras fuente energéticas que no produzcan gases de invernadero (energía solar, energía del viento, del agua o de las olas del mar).

La Convención promueve el estudio y la investigación científica, para descubrir nuevas formas de acabar con el efecto invernadero. También se plantea la necesidad de intercambiar tecnología e ideas entre los países, promoviendo ayuda mutua. Además, se reconoce que existen áreas en el mundo que son muy especiales y delicadas (islas, montañas, ríos) y que deben ser especialmente protegidas de los cambios en el clima.

    7. Sube el nivel del mar     

Si la Tierra se calentar, los glaciares de las montañas y los casquetes del hielo del polo Norte y de la Antártida se fundirían. Si no se para de calentamiento en general el nivel del mar puede subir entre 20 y 40 cm a principios del siglo viniente, y luego aumentara aun mas.

Un incremento minúsculo del nivel del mar podría tener consecuencias catastróficas, especialmente por algunos países. Holanda, por ejemplo, ha ganado gran parte de su territorio a las aguas y muchas zonas se encuentran por debajo del nivel del mar. Si el agua subiera inundaría todos estos territorios o bien obligaría el país a construir unos diques de contención que representarían un gasto muy elevado. Las islas Maldivas, al océano Indico, también se encuentran a un nivel muy bajo. solo que el mar subiera un metro, las islas desaparecerian por debajo de las aguas. Si el aumento del nivel del mar fuera 4 y 8 metros, las consecuencias serian aun mas catastróficas.

Que se puede hacer?

Todos los habitantes de este planeta, estamos obligados a tomar medidas para detener el cambio climático y el aumento del efecto invernadero. Aunque las grandes decisiones, tomadas por los gobiernos de los países, son fundamentales, hay muchas formas de ayudar a la descontaminación que están a nuestro alcance.

Hemos de dejar de utilizar los CFC. Podemos sustituir los aerosoles, la fuente principal de estos gases, por pulverizadores que no perjudiquen el medio ambiente. También podemos encontrar métodos para reciclar o destruir los CFC que provienen de otras fuentes.

El metano procedente de los excrementos del ganado se puede reciclar en una planta química para producir energía.

Podemos plantar un árbol.

En casa, recordar no malgastar la energía eléctrica.

Podemos poner un buen aislante en el tejado y doble cristal en las ventanas para reducir los escapes del calor, con la cual cosa se necesita menos energia para mantener la casa caliente.

Utilizar un sistema de calefacción que aprovecha la energía al máximo y necesita mas energía para producir calor.

También podemos reducir el consumo de combustibles de los automóviles. Actualmente un coche desprende cada año cuatro veces su peso en dióxido de carbono. Si se diseñan modelos mas ligeros y aerodinámicos con motores de bajo consumo pueden llegar a consumir solo 1/3 parte de la energía que necesita un coche actual. Ya se han fabricado algunos automóviles que gastan menos de 2,8 litros por cada 100 kilómetros.

Apaga las luces cada vez que se salga de una pieza; los electrodomésticos i aparatos de bajo consumo. Las bombillas de bajo consumo pueden durar ocho veces mas y gastan solo 1/5 parte de la energía que necesita una bombilla normal. No dejar el televisor o el equipo de música encendidos cuando no lo usemos.

No dejar correr el agua caliente cuando se lava.

También puedes dar nuevos usos a las botellas. Recicla el vidrio, los plásticos y el papel. A demás así podemos salvar muchos árboles.

Recuerda siempre que cada minuto los seres humanos emitimos 48 mil toneladas de dióxido de carbono a la atmósfera. Y todos podemos ayudar a disminuir esta cantidad.

Enfermedades o Plagas Por el Calentamiento Global Cambio Climático

Enfermedades o Plagas Por el Calentamiento Global

PROBLEMAS AMBIENTALES EL CALENTAMIENTO GLOBAL:
La utilización de los bosques: una forma de afectar la biodiversidad

La biodiversidad, como su palabra lo indica, se refiere a la variedad de seres vivos del planeta. Este amplio abanico presenta un interés científico y un valor económico muy importante porque se puede utilizar en la agricultura, la industria y la medicina. En América Latina y el Caribe se erradican áreas vírgenes, con una heterogeneidad de flora y fauna importantes para cultivar plantas que no son del lugar, muchas veces con técnicas en las que no se cuida el suelo.

También en grandes áreas se eliminan las variedades biológicas para establecer campos ganaderos. En los distintos países de América Latina se establecen áreas protegidas, donde las comunidades vegetales y animales no pueden ser modificadas por las sociedades.

La Tierra Reseca

Disminución de vegetación, efecto invernadero y cambio climático
La disminución de la cobertura vegetal en América Latina y en otras partes del mundo, como África y Asia, da lugar a que haya menor cantidad de “verde” productor del oxígeno necesario para el mantenimiento de la vida de la mayoría de las comunidades biológicas. A su vez, los árboles tienen la capacidad de transformar el dióxido de carbono en oxígeno, motivo por el cual la cantidad de ese gas, perjudicial en exceso para la vida animal, está en constante aumento a nivel mundial.

Este gas es emanado por las comunidades biológicas pero también, y con mucha más intensidad, por los automotores y las industrias. Su concentración en la atmósfera, junto a otros como el metano, el óxido nitroso o los cloro-fluorocarbonos (CFCs), genera que los rayos solares que entran a la tierra no puedan ser reflejados al exterior. Esta capa de gases se comporta como si fuera un vidrio en un jardín de invierno: deja pasar la luz solar y retiene el calor dentro de él. Por ese motivo los especialistas llaman a este fenómeno como efecto invernadero.

El efecto invernadero está íntimamente vinculado a otro problema ambiental, que es el cambio climático del planeta. La Tierra, por el efecto invernadero, está sufriendo incrementos de la temperatura en forma constante. A este fenómeno se lo llama calentamiento global. En 1890, la temperatura mundial rondaba los catorce grados promedio. Noventa años después, en 1980, ya se encontraba en los quince. Algunos cálculos estiman que entre los años 2025 y 2050 la temperatura promedio mundial oscilará entre los dieciséis y diecinueve grados. Un aumento de tres grados de la temperatura llevará a que los mares aumenten su nivel en noventa centímetros, por el derretimiento de los hielos polares.

En el párrafo siguiente  se detallan los veinte países que más dióxido de carbono emiten por persona. Esta es una manera de apreciar mejor este problema:

Países petroleros: Qatar, Emiratos Árabes, Estados Unidos, Trinidad Tobago, Bahrain, Brunei, Arabia
Saudita y Kuwait. Sus economías son pequeñas y no aportan muchos gases al conjunto del planeta, con excepción ; de Arabia Saudita. Sin : embargo, la emisión de gases que es necesario  despedir en algunas de las fases del refinamiento revela que esta actividad es altamente contaminante.

Países con sistemas económicos pequeños o muy pequeños y altísimo nivel de vida, como Luxemburgo, emiten una alta cantidad de gases por persona. Esto significa que si todo el planeta se manejara con los niveles de vida de esta hiper-desarrollada pequeña nación, el problema del calentamiento global sería mucho más intenso aún. Algo similar ocurre con Noruega y Singapur.

Países con un fuerte desarrollo industrial, alto nivel de vida y economías grandes: Australia, Canadá, Alemania y Estados Unidos. Es importante destacar que este ultime país es el que más gases produce en el mundo, aunque se encuentra en el sexto lugar entre los que emiten mayor cantidad de dióxido de carbono por habitante (1992).

 Países que fueron socialistas y mantienen una industria atrasada y contaminante. Kazakstán, Federación Rusa, Estonia, República Checa y Ucrania son países que han tenido un muy importante desarrollo industrial hasta la década de 1970. A partir de ese momento la industria entró en decadencia. En la actualidad siguen funcionando, pero no se introdujeron aún medidas para corregir la alta emisión de gases que efectúa.

Un país con industrialización socialista vigente. Corea del Norte. Su situación es similar a la de los países del grupo anterior, aunque todavía sigue siendo socialista y no se prevé que reduzca los niveles de contaminación de una industria que parece que no va a modernizarse.

El período 1995-2005 fue la década más caliente registrada desde que comenzaron las mediciones regulares, en el siglo XIX. Además, esos años estuvieron marcados por varios fenómenos extremos: mayor frecuencia e intensidad de la corriente de El Niño; una canícula europea en 2003, que podría volverse cíclica; récord de huracanes tropicales en Estados Unidos y en Asia en 2004 y 2005. ¿Se trata de cuestiones coyunturales? Por otra parte, se confirman varios fenómenos estructurales, a pesar de que sus consecuencias difícilmente puedan ser previstas con precisión.

Además del recalentamiento de las regiones polares , el aumento de la temperatura tiene un efecto destructor sobre los corales, un medio vital de la vida marina, y también podría provocar un incremento en el nivel de las aguas de 25 centímetros a un metro, a raíz de la dilatación de los de entre 80 y 400 millones de “refugiados climáticos”.

Las perturbaciones en las precipitaciones influirían en la agricultura, en las áreas de propagación de enfermedades, etc. Las consecuencias sobre la biodiversidad también podrían ser gravísimas, a causa de la dificultad que encontrarán muchas especies para adaptarse a cambios tan rápidos. La destrucción y la contaminación causadas sistemáticamente por el ser humano son el origen de la sexta gran era de extinción biológica que registra el planeta.

Fuente Consultada:
Sociedad, Espacio y Cultura América y la Argentina E.G.B. Prislei-Tobío-Geli
El Atlas Le Monde Diplomatique

Desertizacion del Suelo Causas y Concepto Desertificación

CONCEPTO Y CAUSAS DE LA DESERTIZACIÓN y DESERTIFICACIÓN DEL SUELO

Desde que el hombre comenzó a crear poblaciones estables y abandonó las costumbres nómadas, la dependencia de los suelos productivos empezó a ser cada vez mayor, y esto condujo a una progresiva degradación y alteración de sus componentes.

Por su parte, la explotación de los ecosistemas forestales, que abarcan alrededor del 10% de la superficie del planeta y el 26% de la de los continentes, contribuyó también a la erosión y produjo un grave impacto en el clima. El resultado de ambos procesos es una creciente desertización y desertificación, que preocupan a muchos científicos.

Como concepto básico decimos que la DESERTIZACIÓN es el proceso natural erosivo que tranforma una tierra fértil en un desierto, por otro lado la DESERTIFICACIÓN es también un proceso erosivo de degradación de un suelo fértil pero por la intervención del hombre. Es bueno aclarar que La diferencia entre desertificación y desertización es bastante difusa debido a que es difícil determinar las causas puramente naturales de las que son inducidas por el hombre.

Cómo se forma el suelo: El suelo se forma cuando el agua, con productos químicos disueltos en ella, comienza a desgastar las rocas. Al mismo tiempo, microorganismo y raíces de plantas se introducen en las grietas de las rocas y las parten en diminutos fragmentos que a través de miles de años se van pulverizando en partículas, las que junto con ¡el material de las plantas muertas forman el suelo.

Las plantas que crecen en el suelo contribuyen a protegerlo. Las raíces lo unen y las hojas marchitas forman una capa oscura en la superficie que se conoce con el nombre de humus y ayuda a evitar que el suelo se reseque. Si se eliminan las plantas y se rompe la capa de humus con la labranza, el suelo queda desprotegido. El viento y la lluvia pueden desgastarlo.

La capa de suelo que cubre la superficie de la tierra es muy delgada. Puede tener 6 metros de profundidad, pero a menudo no tiene más que unos centímetros. El suelo proporciona a las plantas los nutrientes que necesitan. Puesto que las cosechas se pierden cuando no tienen suficientes nutrientes, un buen suelo, formado a través de miles de años, es muy valioso.

ETAPAS DE COMO EL HOMBRE PROVOCA LA EROSIÓN DEL SUELO: La pérdida del suelo, o erosión, constituye un serio problema en muchas partes del mundo. Este diagrama muestra cómo los malos métodos de cultivo pueden provocarla.

1-Durante miles de años el suelo se ha ido asentando en el bosque. Después  el   agricultor  derriba o incendia los árboles.

2-El agricultor cultiva la falda de los cerros. El arado rotura el suelo y todos los años, en la época de la cosecha, lo deja sin nutrientes. El suelo se va haciendo menos poroso y no puede absorber tanta agua de lluvia. Así que ésta corre cerro abajo arrastrando parte de la superficie del terreno.

3-El suelo ya no es ahora tan bueno para sembrar, y se deja para pastoreo. En cuanto los animales se ponen a apacentar, aparecen grandes espacios desnudos. La lluvia corre sobre sus huellas y arrastra el suelo. Cuando los pastos no son ya buenos para el ganado vacuno, se dejan para las ovejas o las cabras.

4-Las ovejas han terminado con el resto de pasto, y el agua de las lluvias ha cavado las huellas de los animales en condonadas que se van haciendo más profundas a medida que las lluvias arrastran más tierra. Al fin sólo queda la roca desnuda. La falda de la colina se ha convertido en un desierto estéril.

¿COMO REVERTIR LA EROSIÓN DEL SUELO? El paisaje griego actual se caracteriza por su desolación. Siglos de agricultura provocaron episodios de deforestación y erosión catastrófica de sus suelos. Hoy se cree que otras muchas civilizaciones, como las de los pueblos que habitaron en Egipto, en la antigua Mesopotamia limitada por los ríos Tigris y Eufrates y en la península de Yucatán (México), también pudieron haberse derrumbado como consecuencia, entre otros factores, de un manejo inadecuado de este importante recurso natural.

Un manejo moderno y adecuado del suelo implica llevar a cabo prácticas basadas en el conocimiento científico. El primer aspecto estriba en efectuar la labranza de manera adecuada. Por ejemplo, es bien sabido que la arada, que se viene practicando desde que comenzara la agricultura hace más de diez mil años, suele redundar, a corto plazo, en una serie de beneficios para la germinación de las semillas y el desarrollo de los cultivos, tales como la eliminación de las malezas, la aceleración de la descomposición de la materia orgánica y una mayor aireación y drenaje del suelo.

Sin embargo, hoy también se cree que la arada trae aparejada, a largo plazo, una serie de inconvenientes, tales como el aumento de la erosión. Por esta razón, en los últimos años se fueron desarrollando sistemas agrícolas que requieren pocas labores, conocidos con el nombre de labranza mínima. Uno de estos sistemas es el de siembra directa, en el cual, por medio de una sembradora especial, las semillas son plantadas directamente en el suelo sobre los residuos de la cosecha anterior, método que ayuda a retener la humedad.

Los problemas de erosión del suelo pueden ser particularmente graves en aquellas zonas donde la pendiente del terreno es elevada. En estos casos, se requiere que los surcos abiertos por las pasadas del tractor se realicen en dirección perpendicular a la pendiente, ya que así se logra que el agua se deslice por ellos y pueda infiltrarse.

La otra alternativa para combatir la erosión en zonas montañosas consiste en la construcción de terrazas, como las que empleaban los incas en los Andes peruanos.

Otro aspecto igualmente importante para el manejo del suelo es el mantenimiento constante del contenido de materia orgánica y de nutrientes. Cuando se cosecha un cultivo, se produce una pérdida de nutrientes en el sistema que, de otro modo, hubieran sido incorporados por los microorganismos descomponedores del suelo. Para reponer esta pérdida, se procede a la rotación programada, alternando, por ejemplo, cultivos de maíz con los de soja.

La selva, refugio de la biodiversidad: En los últimos 50 años, la extensión de las selvas ecuatoriales y tropicales se ha reducido a la mitad. Cada año se pierden más de 100.000 km² de este tipo de selva. La extensión actual de pluviselva es de 15 millones de km². Según estas cifras, nos quedaremos sin ella en unos 150 años. La mayor parte de las especies animales y vegetales del mundo se concentra en las pluviselvas. Se calcula que el número de especies que hay allí es de 5 a 10 millones frente a otros 5 millones que residirían en el resto del planeta. Cada año desaparecen unas 10.000 especies de seres vivos, la mayor parte de ellas en las selvas tropicales y ecuatoriales. Sin la intervención humana no desaparecerían más de una o dos especies al año. Estamos destruyendo especies antes de identificarlas y sin poder estudiarlas.

LA DESERTIZACIÓN DE LA SABANA: La tala de árboles, de arbustos y la quema de la pradera eliminan completamente la capa protectora del suelo que forman  estos vegetales.

A partir de este momento, la lluvia arrastrará los nutrientes y el propio terreno, y los rayos del sol incidirán directamente sobre el suelo desnudo y destruirán las sustancias nutritivas. Muchos agricultores son muy pobres y no disponen de abonos que sustituyan a estas sustancias.

El suelo se acaba agotando y se convierte en un desierto apelmazado. Queda entonces expuesto al sol, se endurece, se deseca y cuartea, y se transforma en coraza, ya que la tierra más ligera y fértil ha sido arrastrada por la lluvia. La coraza es una formación superficial dura, seca y pobre, tan difícil de romper como una roca, que puede alcanzar hasta 2 o 3 m de grosor.

imagen de la sabana

Imágenes de la Sabana Africana

sabana africana

ALGO MAS SOBRE EL TEMA…

desertificacion del suelo

Los bosques, principales productores de biomasa del mundo, ejercen una influencia decisiva en los intercambios energéticos entre la atmósfera y el suelo, interceptando la radiación solar, frenando el viento, fijando el gas carbónico y evapo-trans­pirando gran cantidad de agua. Directamente dependientes del clima, ellos son, a su vez, uno de los principales factores que lo regulan.

Desertificacion del suelo

Las interacciones entre bosque y clima siguen siendo un tema de debate entre especialistas. Un cientifico francés sostiene que el bosque “atrapa” la radiación solar con mayor eficacia que cualquier otra formación vegetal. El calor almacenado por la mañana es restituido por la noche y, al contacto con las masas de aire más húmedo que se mantienen sobre los árboles, origina precipitaciones tormentosas.

desertificacion del suelo

En el ciclo global del carbono en la superficie terrestre, los bosques desempeñan un doble papel de reserva: por una parte, absorben una cantidad importante del CO2 contenido en la atmós­fera y, por otra, lo restituyen. Por ahora, los eco-sistemas forestales “eliminan” bastante bien el CO2 que producimos, pero no podrán seguir ha­ciéndolo si las emisiones industriales continúan aumentando y si no se detiene la deforestación.

Desertizacion del suelo

La erosión es la pérdida progresiva de los componentes del suelo como consecuencia de la dis­gregación previa de las particulas, posteriormente arrastradas y transportadas a lugares más bajos. El impacto ambiental negativo de la erosión se relaciona con la degradación  progresiva del recurso suelo, además de ser irreversible a corto plazo. La intervención humana puede hacer que la velocidad del proceso aumente, por ejemplo, con la roturación del suelo cultivado.

Desertizacion del suelo

Los factores meteorológicos, topográficos y geográficos en una zona determinan el clima y las condiciones de distribución del agua a lo largo del año, y si las lluvias anuales se limitan a pocos días, se produce una situación de aridez. La sequía afecta o agrava la aridez cuando tiene un carácter temporal inesperado. Concretamente, se habla de desertización cuando los agentes naturales transforman el suelo, que alguna vez fue productivo o fértil, en un desierto.

desertizacion

El término desertificación fue introducido, en Aubreville, en 1949, y retomado en la Conferencia de Nairobi, en 1977. Se lo define como “la propagación de condiciones desérticas en áreas áridas y semiáridas con menos de 600 mm. de precipitaciones, debido a la influencia del hombre además de los cambios climáticos”. Por lo tanto, la desertificación constituye un verdadero impacto ambiental, relacionado con la defo­restación y la erosión antropogénica del suelo.

Meteorización  física o mecánica
El término meteorización alude a todos los procesos externos que operan en la superficie terrestre o cerca de ella, a través de los cuales las rocas experimentan descomposición química y desintegración física.

La meteorización física o mecánica se define como el proceso mediante el cual masas de roca sólida se rompen en fragmentos pequeños, en tanto que la meteorización química es el proceso mediante el cual los minerales constitutivos de las rocas allí presentes cambian su composición química. En esta descomposición, los minerales preexistentes se transforman en otros, de composición y de propiedades diferentes.

En las imágenes de abajo se muestran algunos de los procesos más importantes de meteorización física; en todos los casos, intervienen fuerzas que actúan sobre las rocas y provocan la desintegración. Analicen y comparen los procesos descritos.

Acción del hielo. Cuando el agua se congela, aumenta su volumen y, por lo tanto, aumenta la presión sobre las paredes de los espacios en que se encuentra. El agua penetra en cualquier espacio vacío de la roca y luego, al congelarse, ejerce la presión que lleva a la rotura de aquélla y al desprendimiento de los fragmentos que permanecían unidos por el hielo.

meteorizacion5

Oscilación térmica diaria. El calentamiento súbito e intenso por el incendio c; un bosque o de un monte bajo provoca serias escamaciones y laminaciones en las rocas que afloran. Pero no puede demostrarse que el ciclo térmico diario c; calentamiento solar y enfriamiento nocturno ejerza fuerzas lo suficientemente grandes como para provocar la fragmentación de una roca dura no alterada.

meteorizacion5

Cristalización de sales. El mecanismo resulta físicamente similar al de la acción del hielo, pero se produce cuando las grietas de las rocas se llenan de soluciones salinas muy concentradas. En los climas secos, durante los largos períodos de sequía, puede producirse continuamente evaporación, lo que permite que las sales disueltas en el agua se depositen en los huecos de las rocas.

meteorizacion5

Crecimiento de raíces. Las raíces de las plantas y de los árboles, al introducirse por las grietas de las rocas, provocan el ensanchamiento de éstas pues actúan como cuñas, lo cual favorece su rotura. En este caso, lo que provoca la fragmentación es la presión que ejercen las raíces.

meteorizacion5

Abrasión. Como consecuencia del choque y de :-fricción que se producen con las partículas arrastradas por el aire o por el agua, las rocas sufre determinado desgaste: los granos y los fragmetos de roca quedan redondeados. El mismo p”: ceso se puede observar en los fragmentos de roca y en los cantos rodados que son arrastradas por las corrientes fluviales.

meteorizacion5

En conclusión, el grado de meteorización mecánica depende directamente de las propiedades físicas de las rocas -presencia o ausencia de planos de debilidad, porosidad, etc.- y de las condiciones climáticas que prevalecen en una zona.

Acción del viento, de las aguas y de los seres vivos

Con frecuencia observamos que el aire arrastra nubes de polvo y fragmentos sólidos de gran tamaño. Este arrastre de partículas ocasiona el fenómeno llamado de corrosión. Las piedras sometidas a la acción del viento constante llegan a pulirse finamente; por otra parte, éste arrastra arenas y tiende a depositarlas, originando las dunas (montículos de arena que avanzan en la misma dirección que el viento). En muchas ciudades se han plantado pinos y otras plantas silicícolas a fin de fijar las dunas y evitar su desplazamiento.

El polvo sólido se halla en todas partes, pero hay una forma especial constituida por finos granos de sílice llamado loes (China), cubiertos de caliza. El viento y la erosión eólica se sitúan con preferencia en los desiertos, donde los furiosos vendavales, las impresionantes dunas, y los oasis anegados por las arenas y el finísimo polvo impiden respirar y endurecen la vida.

Los ríos llevan consigo, en su permanente discurrir, gran cantidad de tierras en suspensión. Estas tierras, que han sido arrancadas de las partes altas, se depositarán por sedimentación en el curso bajo. La acción de las aguas (ríos, mares, hielos, etc.) es la más importante para el modelado de la Tierra.

La erosión fluvial labra gargantas, curva los meandros, forma cataratas y rabiones. La fuerza de su corriente es ejemplo impresionante de este agente erosivo de primer orden.

El mar abre golfos, bahías, cubre playas de arena, desgasta y sedimenta, levanta y sepulta islas; en definitiva, remodela la estructura de las costas. Si está embravecido, desprende rocas, que son desmenuzadas y convertidas en arena.

Es sabido que la acumulación de vegetales formó el carbón mineral y que el petróleo se debe a la descomposición de materia orgánica; pero aún hoy la acción de vegetales y animales evoluciona los suelos. Los rebaños desmenuzan la tierra con sus pezuñas, los castores construyen presas que desvían arroyos, y nadie ignora la acción de ostras y moluscos sobre las rocas.

La acumulación de excrementos de aves marinas (guano) suele formar verdaderas montañas. Las variaciones que introduce el hombre tienen relativa importancia para el relieve terrestre total, aunque corresponde acreditarle la apertura de canales, las perforaciones y la conquista de tierras al mar, etcétera.

Fuente Consultada: Biología y Ciencias de la Tierra – Polimodal