Avances de la Ciencia

Biografía de Pauli Wolfgang Principio de Exclusión

BIOGRAFÍA DE PAULI, WOLFGANG
Físico austríaco-estadounidense

Wolfgang Pauli (1900-1958), físico estadounidense de origen austríaco, premiado con el Nobel y conocido por su definición del principio de exclusión en mecánica cuántica. Además su hipótesis, en 1931, de la existencia del neutrino, una partícula subátomica, constituyó una contribución fundamental al desarrollo de la teoría mesónica.

Fisico Pauli Wolfgang

Pauli formuló el principio de exclusión, que establece que dos electrones no pueden ocupar el mismo estado energético de forma simultánea en un átomo. Por este descubrimiento recibió, en 1945, el Premio Nobel de Física.

Se doctoró en 1921 en la Universidad de Munich y fue asistente en la Universidad de Gotinga. Continuó su formación en Copenhague, bajo la tutela de Niels Bohr. Trabajó inicialmente en la Universidad de Hamburgo y, luego, se mantuvo por espacio de veinticinco años como profesor de física teórica en la Escuela Politécnica Federal de Zurich.

Se le distingue como uno de los fundadores de la mecánica cuántica, junto con Heisenberg y Planck; adquirió gran prestigio por su principio de exclusión, enunciado en 1924, conocido también como principio de Pauli, según el cual dos partículas similares no pueden existir en el mismo estado, es decir, que ambas no pueden tener la misma posición y la misma velocidad, dentro de los límites fijados por el principio de incertidumbre de Heisenberg.

En otros términos, en un mismo átomo no pueden existir dos electrones con el mismo conjunto de números cuánticos –sabiendo que cada átomo queda descrito por completo una vez se han especificado sus cuatro números cuánticos– de donde resulta que al menos uno de ellos debe ser diferente. Mediante el Principio de Pauli se logró interpretar las propiedades químicas de los elementos cuando se agrupan ordenadamente por su número atómico creciente.

Pauli recibió el premio Nobel de física a la edad de 45 años, en 1945, “por el descubrimiento del principio de exclusión”. Al año siguiente, recibió la nacionalidad norteamericana y trabajó a partir de ese momento en el Instituto de Estudios Avanzados de Princeton, regresando posteriormente a Zurich.

DESCRIPCIÓN DE LA UBICACIÓN DE LOS LOS ELECTRONES EN UN ÁTOMO:

El núcleo y la disposición de los electrones a su alrededor, son los componentes cruciales que dictan la forma como se comporta un elemento.

Si pudiésemos tomar millones de fotografías de los electrones que orbitan alrededor del núcleo de un átomo, éstos aparecerían cada vez en una posición ligeramente diferente. Las distintas posiciones forman series de hasta 7 anillos de nubes u “órbitas” alrededor del núcleo, donde las posibilidades de encontrar un electrón son altas. En los átomos más pequeños, hidrógeno y helio, existe sólo una pequeña órbita cercana al núcleo. Los átomos del helio tienen dos electrones y los del hidrógeno uno, por lo que la opción de hallar un electrón en un punto determinado de esta órbita es dos veces mayor en el átomo de helio que en el de hidrógeno.

Existe siempre un límite al número de electrones que cada órbita puede albergar. En la órbita interior hay espacio sólo para dos, por lo cual, si un átomo tiene más electrones, éstos se desplazan a una segunda órbita, más retirada del núcleo. Esta segunda órbita puede albergar hasta 8 electrones. La tercera también puede mantener 8 electrones, e incluso más -hasta 18-,si existe otra órbita. Sólo excepcionalmente la órbita externa presenta más de 8 electrones.

http://historiaybiografias.com/archivos_varios5/atomo_pauli.jpg

Los átomos con 8 electrones en su órbita externa son muy estables y lentos para reaccionar con otros elementos, debido a que se requiere mucha energía para adicionar un electrón o para desplazarlo. Los átomos con un solo electrón en su órbita externa, como los del hidrógeno, sodio y potasio, son muy reactivos debido a que su electrón se remueve con facilidad.

de igual modo, los átomos a los que les falta uno de los 8 electrones son muy reactivos, pues aceptan con rapidez otro electrón en su órbita externa. El fluoruro (un átomo de flúor con un electrón obtenido de otro átomo) que encontramos en la crema dental protege los dientes al eliminar y remplazar un componente del esmalte dental que es afectado por los ácidos en los alimentos.

Puede Ampliar Este Tema Aquí

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Biografía de Eddington Arthur Trabajos Cientificos

Biografía de Eddington Arthur  y Su Trabajo Científico

BIOGRAFÍA DE EDDINGTON, Sir ARTHUR STANLEY (1882-1944): Astrónomo y físico británico, que realizó un importante trabajo en el campo de la relatividad y de la astronomía. Eddington nació en Kendal, por entonces en Westmorland (actualmente Cumbria) y estudió en el Owens College (actualmente Universidad de Manchester) y en el Trinity College de la Universidad de Cambridge. Fue ayudante jefe en el Real observatorio de Greenwich desde 1906 a 1913, año en que fue catedrático de astronomía en Cambridge.

En la década de los años veinte, este astrofísico inglés demostró que el interior del Sol era mucho más caliente de lo que se había pensado hasta entonces. Supuso al astro como una enorme y extremadamente caliente esfera de gas, con características similares a las de los gases estudiados en la Tierra.

Eddigton Arthur Stanley

Arthur Eddihton: famoso físico del siglo XX, cuyo trabajo mas destacado fue sobre la evolución y la constitución de las estrellas. Su trabajo en astronomía quedó reflejado en su clásico libro La constitución interna de las estrellas, que se publicó en 1926.

Sometido a la acción de la gravedad, su materia tendría que estar atraída hacia el centro y, por tratarse solamente de gas, no tardaría en colapsarse en un cuerpo mucho más pequeño. Ya que el Sol no entra en colapso e inclusive conserva medidas superiores a las establecidas para esa gravedad, debería existir alguna fuerza que impulse la expansión de la sustancia solar y resista a la tendencia de contracción.

El único fenómeno que podría explicar esta situación, según Eddington, sería el calor, ya que si se aumenta la temperatura, los gases se expanden y aumentan de volumen. Por lo tanto, el Sol permanece en un estado de equilibrio, con un calor interior tal que tiende a expandirlo, pero con una fuerza gravitatoria que lo induce a contraerse.

Concluyó que cuanto mayor es la masa de una estrella, mayor es la cantidad de calor que debe producir para no entrar en colapso, y que la cantidad de calor debe crecer con mayor rapidez que la masa.

Eddington se opuso a las teorías de su discípulo, Chandrasekhar, sobre la posibilidad de que existiera una estrella cuya masa alcanzara cierto límite y dejara de contraerse hasta llegar a un estado final como las estrellas enanas blancas.

Sus principales obras son: Espacio, Tiempo y Gravitación; Estrellas y Átomos; La Naturaleza del Mundo Físico; El Universo en Expansión y Nuevos Senderos de la Ciencia.

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Biografía de Doppler Christian Resumen Descripcion del Efecto

Biografía de Doppler Christian
Breve Explicación del Efecto Doppler

Christian Doppler (1803-1853), físico y matemático austriaco, nacido en Salzburgo. Estudió en dicha ciudad y posteriormente en Viena. Fue profesor en el Instituto técnico de Praga (Checoslovaquia) y en el Instituto politécnico de Viena, y ocupó el cargo de director del Instituto de Física de la Universidad de Viena en 1850. Describió el fenómeno físico que se conoce hoy como efecto Doppler en su artículo monográfico sobre los colores de la luz de las estrellas dobles, Acerca de la luz coloreada de las estrellas dobles (1842).

Doppler cientifico

Recibió su primera educación en Salzburgo y Viena, en donde llegó a ser profesor de física experimental. En 1850, fue nombrado director del Instituto de Física.

Doppler se preguntó por qué razón el sonido se percibía  de modo distinto, según la fuente se alejara o se acercara al receptor; en su época ya se sabía que el sonido está compuesto por una serie de ondas que se desplazaban en un medio determinado, y el físico encontró que, por ejemplo, cuando una locomotora se acercaba al punto donde estaba situado un observador, cada onda sónica sucesiva se captaba casi superpuesta a la anterior (un sonido agudo), de modo que el oído la captaba con frecuencia creciente; al alejarse, por el contrario, la frecuencia se espaciaba cada vez más (un sonido grave).

Doppler había relacionado matemáticamente la velocidad y la tonalidad del sonido y, para probar su teoría, consiguió que una locomotora arrastrase un vagón cargado con trompetistas hacia el punto de observación y luego se alejara de él, a velocidades diferentes.

En el punto de observación ubicó un grupo de músicos de fino oído, encargados de registrar los cambios que se producían en el diapasón a medida que el tren iba o venía. La medición de dichos cambios en la tonalidad, en realidad en la intensidad aparente del ruido (la relación entre frecuencia y velocidad), es lo que hoy se conoce como efecto Doppler, divulgado por primera vez en 1842.

Doppler también dejó planteada la analogía entre el sonido que emite una fuente móvil y la luz que proviene de una estrella en movimiento, ya que la luz también se transmite por medio de ondas, si bien mucho más finas que las sónicas. El físico francés Armand Fizeau (1819-1896), hizo notar que el llamado efecto Doppler tendría que funcionar en el desplazamiento de todo tipo de ondas en movimiento, incluyendo las de la luz.

Gracias a los experimentos de Doppler sabemos que si una estrella se mantuviera estática con respecto a la Tierra, las líneas oscuras de su espectro luminoso deberían permanecer en un mismo sitio, pero que si se está alejando de nosotros, la luz que emite va alargando su longitud de onda (algo equivalente al sonido grave en el experimento del tren) y las líneas oscuras se desplazarían hacia el extremo rojo del espectro.

Entre más grande sea ese desplazamiento, mayor es la rapidez con que la estrella se aleja. Por el contrario, si se estuviera acercando, la luz emitiría ondas cada vez más cortas (el tono agudo) y las líneas del espectro estarían acercándose al violeta.

DESCRIPCIÓN DEL EFECTO DOPPLER:

El efecto Doppler es el cambio en la frecuencia percibida de cualquier movimiento ondulatorio cuando el emisor, o foco de ondas, y el receptor, u observador, se desplazan uno respecto a otro.

efecto doppler

El móvil (auto) de la imagen superior se desplaza hacia la derecha. Cuando se acerca al niño se observa que la onda del sonido se “comprime”, la longitud de onda se corta y la frecuencia es alta, es decir un sonido agudo. A su vez para el caso del niño de la izquierda la situación es inversa, es decir la frecuencia del sonido será mas baja y el sonido que reciba sera grave.

http://historiaybiografias.com/archivos_varios5/efecto_dopler1.jpg

Explicación del Foco en reposo y observador en movimiento: La separación entre dos frentes de onda permanece constante en todo momento. Aunque la velocidad de las ondas en el medio v también es constante, la velocidad relativa vrel. percibida por el observador que viaja a una velocidad vR depende de si este se aleja o se acerca al foco. Cuando el foco se mueve y el observador está detenido el caso es el mismo. La velocidad del sonido en el aire es de 340 m/s.

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Cientificos Mas Importantes de la Historia y Sus Descubrimientos

GRANDES CIENTÍFICOS DE LA HISTORIA Y SUS OBRAS

Los primeros intentos de estudiar el mundo desde un punto de vista científico datan del antiguo Egipto y Babilonia. Sin embargo es a los griegos a quienes debemos las bases de muchos de nuestros pensamientos científicos; la geometría, la astronomía y la química fueron estudiadas frecuentemente de una manera amplia aunque, a veces, las conclusiones a que llegaron fueron desacertadas. Aristóteles creía (erróneamente) que la Tierra era el centro del Universo y que toda la materia estaba formada de cuatro elementos:  tierra, aire, fuego y agua.

Durante la edad media la química se hizo importante aunque no se la conocía por tal nombre. Los alquimistas, dedicados a cosas tales como producir oro de otros metales, realizaron individualmente muchos descubrimientos importantes, aunque poco contribuyeron a nuestro conocimiento de la naturaleza de la materia. La visión del Universo fue alterada radicalmente por las ideas de Copérnico (quien demostró que el centro del sistema solar era el Sol).

El siglo XVII vio un gran florecimiento de la investigación científica. Newton formuló sus leyes del movimiento y de la gravitación universal; en 1662 se fundó en Londres la Royal Society y se crearon en Europa muchos otros cuerpos de científicos organizados, los cuales allanaron el camino para el acercamiento a la ciencia moderna. Ésta ha evolucionado rápidamente a través de los siglos XVIII y XIX, hasta llegar al profesionalismo especializado de hoy. A continuación figuran muchos de los más grandes científicos.

CIENTÍFICOS FAMOSOS
Adrián,  Edgardo   (1889-       )   Inglés,  fisiólogo.  Renombrado por sus trabajos sobre el cerebro, el sistema nervioso y la función de los nervios.

Agassiz, Juan Luis Rodolfo  (1807-1873)   Suizo, naturalista. Una autoridad en peces, para los cuales, propuso  una  nueva  clasificación.  También  estudió  los glaciares.

Ampére, Andrés María (1775-1836) Francés, matemático. Estudió la electricidad y el magnetismo. Dio su nombre a la unidad de corriente eléctrica.

Appleton, Eduardo Víctor (1892-       ) Inglés, físico, investigó el comportamiento de las ondas de radio de largo alcance, especialmente su reflexión en la atmósfera superior.

Aristóteles (384-322 a. C.) Griego, filósofo. Hizo una clasificación del conocimiento y muchos estudios en. el campo de la metereología, biología y geología.

Arquímedes (287-212 a. C.)  Griego, matemático. Estableció  el principio  de Arquímedes,  dedujo la ley de las palancas e inventó el tornillo de Arquímedes y la polea compuesta o polipasto.

Baekeland, León  Hendrik   (1863-1944)   Belga,  químico. Descubrió  el primer  plástico  termo-endurecido de uso práctico. Esto llevó a la producción de la baquelita.

Baeyer, Adolfo de (1835-1917) Alemán, químico. Realizó investigaciones acerca de los compuestos del cacodilo; descubrió la eosina, la galeína y la ceruleína. Es también conocido por su teoría de la asimilación del ácido carbónico por las plantas. Premio Nobel de química en 1905.

Becquerel,  Antonio Enrique   (1852-1908).  Francés; descubrió la radiactividad mientras usaba sales de uranio.   También estudió la fosforescencia, la luz y el magnetismo.

Berzelius, Juan Jaoobo (1779-1848). Sueco, químico. Descubrió varios elementos, sugirió el uso de la primera letra de los nombres de los elementos como símbolos químicos y creó la primera tabla segura de pesos atómicos.

Black, José (1728-1799). Inglés, químico. Redescubrió el anhídrido carbónico, al que llamó “aire fijado”. Es también conocido por sus teorías sobre el calor latente y sobre el calor específico.

Blackett, Patricio Maynard Stuart (1897-       ). Inglés, físico.   Con la cámara de Wilson fotografió la división de un núcleo del nitrógeno) por una partícula alfa, en un protón y un núcleo de oxígeno.

Bohr Níels (1885- ). Dinamarqués, físico. Extendió grandemente la teoría de la estructura atómica al inventar un método explicativo del espectro de los elementos y su posición en la tabla periódica. Ayudó al desarrollo de la teoría cuántica.

Boussingault, Juan Bautista (1807-1887). Francés, biólogo. Explicó las diferencias básicas entre la nutrición animal y vegetal y demostró que las plantas obtienen nitrógeno de los nitratos del suelo y no de la atmósfera.

Boyle, Roberto (1627-1691). Inglés, químico. Figura destacada en la química del siglo XVII. Sus investigaciones cubrieron un campo muy amplio, incluso la neumática; es mejor recordado por la ley que lleva su nombre.

Bragg, Guillermo Enrique (1862-1942). Inglés, físico. Famoso por su trabajo sobre la estructura de los cristales y los átomos; aplicó el espectrógrafo de rayos X, que desarrollaron juntos él y su nijo G. L. Bragg.

Bragg,  Guillermo Lorenzo   (1890-       ).  Inglés,  físico. Trabajó con su padre  Sir G. E. Bragg en la estructura de los cristales.

Brahe, Tycho  (1546-1601). Dinamarqués, astrónomo. Hizo  muchas  observaciones  exactas  de los  planetas y  del  Sol.   Éstas  dieron  la  base  para las  leyes  de Kepler.

Brown, Roberto  (1773-1858). Inglés, botánico.   Fue el primero en observar los movimientos de las partículas suspendidas en un líquido.   En su honor, se llamó a este fenómeno “movimiento browniano”.

Buffon, Jorge Luis (1707-1788). Francés, naturalista. Dedicó su vida a describir y clasificar plantas. Notorio por su trabajo monumental, Historia Natural.

Bunsen, Roberto Guillermo Eberardo (1811-1899). Alemán, químico. Con Kirchhoff descubrió el análisis espectral. Es recordado por su invento del mechero de Bunsen, aunque hizo inventos y descubrimientos más importantes.

Cannizzaro, Estanislao (1826-1910). Italiano, químico. Aplicó la hipótesis de Avogadro para la determinación de los pesos atómicos; experimentó en química orgánica y descubrió la reacción que luego llevó su nombre.

Cavendish, Enrique (1731-1810). Inglés, físico y químico. Descubrió el hidrógeno y demostró que cuando éste se quema se produce agua. Realizó la primera’ determinación exacta del peso de la Tierra.

Chadwick, Jaime  (1891-       ). Inglés, físico. Trabajó en la  desintegración  nuclear y   en la  dispersión  de partículas alfa.   El bombardeo de berilo con éstas lo llevó al descubrimiento del neutrón.

Cockcrobt, Juan Douglas (1897- ). Inglés, físico. Trabajó en la transmutación del núcleo atómico mediante el uso de partículas atómicas aceleradas. Consiguió desintegrar el núcleo de litio, con protones de alta velocidad.

Copérnico, Nicolás (1473-1543). Polaco, astrónomo. Descubrió que el Sol es el centro del sistema solar. Comprendió que las estrellas están a una enorme distancia de la Tierra pero pensó que estaban fijadas en una esfera.

Crookes, Guillermo  (1832-1919). Inglés,  químico y físico. Inventó el tubo de Crookes y sugirió la verdadera naturaleza de los rayos catódicos.   Descubrió el talio y estudió la radiactividad.

Curie, María Sklodowska (1867-1934). Nació en Polonia y se radicó en Francia, química. Con su esposo separó el polonio de los minerales uraníferos; luego descubrieron  el radio.

Curie, Pedro (1859-1906). Francés, físico y químico. Trabajó en cristalografía, magnetismo y piezoelectricidad.    Ayudó   al   descubrimiento   del   radio   y   del polonio.

Cuvier, Jorge Leopoldo (1769-1832). Francés, naturalista. Trabajó en anatomía comparativa y propuso una clasificación completa del reino animal. Estableció la paleontología como una ciencia separada.

Darwin, Carlos Roberto (1809-1882). Inglés, naturalista. Como resultado de sus observaciones, mientras viajaba alrededor del mundo, propuso la teoría de la evolución. Ésta fue publicada en su libro El origen de las especies.

Davy, Hunfredo (1778-1829). Inglés, químico. Famoso por su invento de la lámpara de seguridad.  Experimentó con el gas hilarante,  aisló el sodio y otros metales reactivos y dio nombre al cloro.

Dewar, Jaime (1842-1923). Inglés, químico. Importante por sus investigaciones sobre el comportamiento de la materia a bajas temperaturas; fue el primero en licuar hidrógeno; inventó el vaso Dewar de vacío.

Eddington, Arturo Stanley (1882-1944). Inglés, químico.   Hizo notables contribuciones a la astrofísica, especialmente  sobre la  estructura  de las   estrellas, y calculó la edad del Sol.

Ehrlich, Pablo (1854-1915). Alemán, bacteriólogo. Descubrió que los microbios absorben colorantes en forma selectiva. Mediante la combinación de colorantes con productos químicos venenosos trató de matar los microbios patógenos.

Einstein, Albert (1879-1955). Nació en Alemania, físico matemático. Escribió la Teoría general de la relatividad para rectificar ideas fundamentales sobre la gravitación, relacionando masa con energía; demostró que el espacio y el tiempo eran conceptos inseparables. Ha realizado trabajos apreciables en la teoría  cuántica.

Faraday,  Miguel   (1791-1867).  Inglés,  físico  y  químico. Descubrió el principio de la inducción electromagnética usado en la dínamo.  También licuó cloro y formuló las leyes de la electrólisis.

Fermi, Enrique    (1901-1954).   Italiano,   físico.   Hizo notables contribuciones a la física nuclear por su investigación sobre substancias radiactivas artificiales y energía  atómica.

Fischer, Emilio Armando (1852-1919). Alemán, químico. Trabajó durante muchos años en la estructura de los hidratos de carbono y proteínas. Fabricó artificialmente algunas substancias naturales como la fructosa y la cafeína.

Flamsteed, Juan (1646-1719). Inglés, astrónomo. Primero en obtener el título de Astrónomo Real en Gran Bretaña, es famoso por haber inventado la proyección cónica de los mapas; realizó muchos adelantos en la mejora de los métodos de observación de las estrellas.

Fleming,   Alejandro    (1881-1955).   Inglés,   bacteriólogo. Renombrado por su descubrimiento  de la  penicilina.

Florey, Howard Gualterio (1889- ). Inglés, patólogo. Con Chain aisló una forma pura y estable de penicilina, adaptable al uso medicinal.

Franklin,   Benjamín   (1706-1790).   Norteamericano, hombre de estado y físico. Fue el primero en probar la  naturaleza   eléctrica   de  los   relámpagos   e   inventó el pararrayos.

Fraunhofer, José de (1787-1826). Alemán, físico. Fue suyo el primer estudio preciso de las líneas oscuras en el espectro del Sol, llamadas líneas Fraunhofer.

Galeno, Claudio (aproximadamente de 130-200). Griego, médico; autor fecundo de obras sobre anatomía y fisiología. Sus trabajos permanecieron en uso durante muchos años.

Galilei, Galileo (1564-1642). Italiano, matemático y astrónomo. Construyó el primer telescopio astronómico práctico, con el cual estudió la superficie de la Luna, la Vía Láctea, el Sol, y muchos de los planetas.

Galvani, Luis (1737-1798). Italiano, físico. Renombrado por su descubrimiento de la electricidad animal (galvanismo). Demostró que tocando el nervio que conduce a un músculo de la pata de la rana, éste se contrae.

Gauss, Carlos Federico   (1777-1855). Alemán, matemático. Ganó gran reputación por su trabajo en las teorías del magnetismo y de los números.

Gay-Lussac, José Luis  (1778-1850). Francés, químico y físico. Notorio por su ley de las proporciones definidas y por sus otros adelantos en química.

Gilbert, Guillermo (1544-1603). Inglés, físico. El padre del magnetismo, descubrió su ley básica, es decir, que polos iguales se repelen. Concibió que la Tierra en sí, actúa como un imán.

Golgi, Camilo (1843-1926). Italiano, histólogo. Descubrió el aparato Golgi, una red nerviosa en la mayor parte de las células; desarrolló muchas técnicas de coloración para el estudio de la estructura del sistema nervioso.

Graham,   Tomás   (1805-1869).   Inglés,   químico.   Famoso por su trabajo en la difusión de los gases. Formuló la Ley de Graham.

Guericke, Otón de (1602-1686). Alemán, físico. Inventó la bomba neumática; alcanzó la obtención de vacío y creó también un aparato para la producción de electricidad mediante la fricción de una esfera de sulfuro.

Haeckel, Ernesto Enrique (1834-1919). Alemán, biólogo. Sostuvo la teoría de Darwin y realizó importantes estudios sobre las medusas, corales y esponjas. Realizó las primeras tentativas para hacer el árbol genealógico del reino animal.

Halley, Edmundo (1656-1742). Inglés, astrónomo. Mejor conocido por sus observaciones del cometa que lleva su nombre. También trabajó sobre el magnetismo terrestre los vientos y el movimiento de las estrellas.

Harvey, Guillermo (1578-1657). inglés, médico. Llegó  a  la  fama   por   su   descubrimiento   de  la   circulación de la sangre.

Heisenberg, Werner Carlos (1901- ). Alemán, físico. Notorio por su trabajo sobre estructura atómica, fundó la mecánica cuántica. También formuló el principio de incertidumbre.

Herschel,  Federico  Guillermo   (1738-1822).  Nació en  Alemania,  astrónomo. Desarrolló  un  nuevo   tipo de telescopio reflector. Descubrió  Urano y  dos  de sus satélites.

Hertz, Enrique  (1857-1894). Alemán, físico.  Probó experimentalmente la existencia de las ondas de radio  y  demostró  su   semejanza  con  la  radiación  luminosa.

Hooke, Roberto  (1635-1703). Inglés, físico. Trabajó en  matemáticas,  presión  atmosférica y  magnetismo; también estudió el microscopio y telescopio.

Hooker, José Dalton   (1817-1911). Inglés, botánico. Notable por su libro Genera Plantarium que escribió con Bentham y que contiene un nuevo e importante sistema de clasificación de las plantas.

Hopkins, Federico Gowland (1861-1947). Inglés, bioquímico.  Sus investigaciones sobre las proteínas y vitaminas fueron de gran importancia. Su trabajo llevó al descubrimiento de los aminoácidos esenciales.

Humboldt,  Federico  de   (1769-1859).   Alemán,  geógrafo. Exploró América del Sur y Asia Central; hizo muchas observaciones de los fenómenos naturales.

Hunter, Juan (1728-1793). Inglés, cirujano y anatomista. El principal cirujano de su época. Hunter fundó la cirugía científica, donde introdujo muchas técnicas quirúrgicas.

Huxley, Tomás Enrique (1825-1895). Inglés, biólogo. Sostenedor de la teoría de Darwin, Huxley trabajó sobre los vertebrados (especialmente el hombre) y métodos de enseñanza científica.

Huygens, Cristian (1629-1695). Holandés, astrónomo y físico. Descubrió la naturaleza de los anillos de Saturno y uno de sus satélites. Formuló su teoría ondulatoria de la luz e inventó el reloj de péndulo.

Jenner, Eduardo (1749-1823). Inglés, médico. Descubrió   un  método   para   prevenir  la  viruela   por  inoculación.

Joliot,  Juan  Federico   (1900-1958).  Francés,   físico. Con  su  esposa Irene Joliot Curie bombardeó  boro con partículas alfa y produjo la primera substancia radiactiva artificial.

Joule, Jaime Prescott (1818-1889). Inglés, físico. Famoso por su determinación de la equivalencia mecánica del calor y sus investigaciones en electricidad y magnetismo. La unidad de energía tomó su nombre.

Kelvin, Guillermo Thompson (1824-1907). Inglés, matemático y físico. Inventó el galvanómetro de espejo, la balanza Kelvin y el electrómetro de cuadrante. Introdujo la escala Kelvin de temperatura absoluta.

Kepler, Juan (1571-1630). Alemán, astrónomo. Sus tres leyes del movimiento de los astros son de gran importancia para la astronomía, y proveyeron las bases de la investigación de Newton sobre la gravitación.

Koch, Roberto (1843-1910). Alemán, bacteriólogo. Descubrió los organismos que causan el ántrax, la tuberculosis y el cólera. Desarrolló también nuevas técnicas de coloración y nuevos métodos de cultivo de bacterias.

Lamarck, Juan Bautista (1744-1829). Francés, naturalista. Muy famoso por su teoría de la evolución (lamarquismo) en la cual la herencia de los caracteres adquiridos —se sostenía— explicaba el origen de las especies.

Laplace, Pedro Simón, de (1749-1827). Francés, matemático. Resolvió  muchos  de los problemas matemáticos del sistema solar.  Dedujo la ley que gobierna el campo magnético que rodea a una corriente.

Lavoisier, Antonio Lorenzo (1743-1794). Francés, químico. Descubrió la naturaleza de la combustión y, finalmente, refutó la teoría del flogisto. También descubrió que los animales necesitan oxígeno para vivir.

Leeuwenhoek, Antonio de (1632-1723). Holandés, óptico. Con lentes simples hizo muchos descubrimientos importantes, observaciones de microbios, corpúsculos de sangre y tejidos animales.

Liebig, Justo de (1803-1873). Alemán, químico. Mejor conocido por su invento del condensador ds Liebig. Es importante por sus trabajos en agricultura, nutrición de las plantas y química orgánica.

Linneo, Carlos (1707-1778). Sueco, botánico. Muy conocido por su trabajo sobre clasificación de animales y plantas. Escribió el Systema Naturae.

Lister, José (1827-1912). Inglés, cirujano. Introdujo los antisépticos en la ciencia médica y más tarde la cirugía aséptica.

Lovell, Alfredo Carlos Bernardo (1913- ). Inglés, astrónomo. Profesor de astronomía de la Universidad de Manchester, trabajó en varios problemas, especialmente en la exploración de las ondas de radio provenientes del espacio.

Lyell, Carlos (1797-1895). Inglés, geólogo. Autor de muchos trabajos de geología, Lyell sostuvo la teoría de que los cambios ocurridos en la corteza de la Tierra en el pasado, se debieron a las mismas causas que los cambios que están teniendo lugar ahora.

Malpighi,  Marcelo   (1628-1694).  Italiano,  médico  y anatomista.   Descubrió los capilares entre las arterias y venas y estudió la embriología de los animales y plantas, anatomía de las plantas  e  histología de los animales.

Manson, Patricio (1844-1922). Inglés, médico. Famoso por sus investigaciones de la medicina tropical, fue el primero en demostrar que los insectos son portadores de algunos de los organismos causantes de enfermedades.

Maxwell, Jaime Clerk (1831-1879). Inglés, físico. Famoso por sus investigaciones matemáticas que condujeron al descubrimiento de las trasmisiones radiales.

Mendel,  Gregorio Juan  (1822-1884). Austríaco, naturalista.  Famoso  por su  trabajo   sobre  la  herencia, pionero del estudio  de sus leyes fundamentales.   Su trabajo forma la base  del mendelismo.

Mendeleiev, Demetrio Ivanovich  (1834-1907). Ruso, químico.  Es   famoso   por   su  formulación   de   la  ley periódica basada en los pesos atómicos.

Michelson, Alberto Abraham (1852-1931). Norteamericano, físico. Determinó la velocidad de la luz y realizó estudios prácticos de las corrientes del éter. Inventó también un interferómetro para el estudio de las líneas del espectro.

Millikan, Roberto Andrews (1868-1935). Norteamericano,  físico.  Determinó   el  valor   de  la   carga   del electrón por medio de un famoso experimento en el que usó gotas de aceite.

Newton, Isaac (1642-1727). Inglés, matemático. Notorio por su trabajo sobre la gravedad. Descubrió las tres leyes básicas del movimiento y la relación entre los colores y la luz. Sus trabajos sobre óptica, problemas matemáticos y astronomía han sido de inmensa importancia.

Oersted, Juan Cristian (1777-1851). Dinamarqués, físico. Precursor de la investigación del electromagnetismo, descubrió el principio básico de que un alambre que lleva una corriente eléctrica es rodeado por un campo magnético.

Ohm, Jorge Simón (1787-1854). Alemán, físico. Se dio su nombre a la unidad de resistencia eléctrica y su ley es de fundamental importancia en electricidad.

Pasteur, Luis (1822-1895). Francés, bacteriólogo.  Sus experimentos sobre fermentación destruyeron el mito de la generación espontánea.  Fundó la ciencia de la bacteriología y descubrió la inmunidad artificial.

Pavlov, Juan Petsovich (1849-1936). Ruso, patólogo. Es notorio por su trabajo sobre la fisiología de la digestión, y los reflejos condicionados.

Planck Max Carlos Ernesto Luis (1858-1947). Alemán, físico. Desarrolló la teoría de los cuantos y también trabajó en termodinámica y óptica.

Priestley, José (1733-1804). Inglés, químico. Descubridor .del oxígeno, no llegó a concebir la verdadera I unción de éste en la combustión y le dio el nombre de “aire desflogistado”. También descubrió el amoníaco, el óxido de nitrógeno, el monóxido de carbono y el anhídrido sulfuroso.

Ramón y Cajal, Santiago (1852-1934). Español, histólogo. Es sobresaliente su trabajo sobre el sistema nervioso. Hizo importantes descubrimientos acerca de la estructura y forma de las células nerviosas, especialmente en el cerebro y la espina dorsal.

Ray, Juan (1627-1705). Inglés, naturalista. El más grande entre los primeros naturalistas ingleses, fue principalmente un botánico y señaló la diferencia entre las monocotiledóneas y las dicotiledóneas.

Roentgen, Guillermo Conrado (1845-1923). Alemán, físico. Su descubrimiento de los rayos X revolucionó ciertos aspectos de la física y la medicina.

Ross,  Ronaldo   (1857-1932).   Inglés,  médico.   Probó que la hembra del mosquito Anopheles transporta el parásito causante de la malaria.

Rutherford, Ernesto (1871-1937). Inglés, físico. Descubridor de los rayos alfa, beta y gamma emitidos por sus substancias radiactivas. Famoso por su teoría sobre la estructura del átomo, fue el primero en realizar la trasmutación de un elemento.

Scheele, Carlos Guillermo (1742-1786). Sueco, químico. Descubridor del oxígeno, el cloro y la glicerina, y sintetizó algunos compuestos orgánicos.

Schleiden, Matías Santiago (1804-1881). Alemán, botánico. Con Schwann desarrolló la “teoría celular”.

Schrodinger, Erwin (1887). Austííaco, físico. Especialmente notorio por su trabajo en la mecánica ondulatoria.

Schwann, Teodoro  (1810-1882). Alemán, anatomista. Desarrolló,  con Schleiden, la “teoría celular” trabajando en tejidos animales. Descubrió la enzima pepsina.

Simpson, Jaime Young (1811-1870). Inglés, médico. Famoso por su descubrimiento de las propiedades anestésicas del cloroformo; fue el primero en usar anestésicos en cirugía.                                        ,

Smith, Guillermo (1769-1839). Inglés, geólogo. Demostró que es posible determinar la edad de las rocas mediante el estudio de los fósiles contenidos en ellas.

Soddy, Federico (1877-1956). Inglés, físico y químico. Célebre por su descubrimiento de los isótopos y por el  trabajo  realizado  ulteriormente  sobre  éstos.  Con Rutherford   presentó  la   teoría   de  la  desintegración espontánea.

Stores, Jorce Gabriel (1819-1903). Inglés, matemático y físico. Descubrió cómo determinar la composición química del Sol y las estrellas por sus espectros. Formuló también la ley de Stokes de la viscosidad.

Thomson, J. J. (1856-1940). Inglés, físico. Conocido por su determinación del e/m (carga del electrón dividido su masa), y su descubrimiento de que los rayos, catódicos consisten en electrones, o sea, partículas cargadas negativamente.

Torricelli, Evangelista (1608-1647). Italiano, físico. Inventó el barómetro de mercurio y construyó un microscopio simple.

Urey, Haroldo Clayton  (1893-       ). Norteamericano, químico. Fue el primero en aislar agua pesada y de tal manera, en descubrir el deuterío. Es una autoridad en isótopos.

Van’t Hoff, Santiago Enrique  (1852-1911). Holandés, físico.   Su nombre se asocia a una ley relativa al equilibrio  de las reacciones  químicas.  Notable también por sus investigaciones en presión osmótica.

Vesalio, Andrés (1514-1564). Belga, anatomista. Visto como el padre de la anatomía moderna, hizo írmenos descubrimientos mediante concienzudas disecciones. Mucho de su trabajo está contenido en su libro De Corporis Humani Fabrica.

Volta, Alejandro (1745-1827). Italiano, físico. Desarrolló la teoría de las corrientes eléctricas e inventó la primera batería. La unidad de presión eléctrica es conocida como “voltio” en recuerdo de su nombre.

Wallace, Alfredo Kussel (1823-1913). Inglés, naturalista. Con Darwin, publicó un ensayo sobre la teoría de la evolución. La línea Wallace, línea imaginaria, separa las áreas de la fauna asiática de la australiana.

Wegener,   Alfredo   Lotario    (1880-1930).   Alemán, geólogo. Famoso por su tesis sobre el desplazamiento de los continentes.

Wilson, Carlos Thomson Rees (1869-1959). Inglés, físico. Famoso por su invento de la cámara de niebla, la cual ha probado ser de un valor inestimable en los estudios atómicos.

IMÁGENES

CIENTIFICOS

grandes cientificos del mundo

Fuente Consultada:Enciclopedia Juvenil Técnico-Cientifica Editorial Codex Volumen II – EntradaCientificos

Biografia de Ramon Cajal Santiago y Su Obra Científica Premio Nobel

Biografía de Ramón Cajal Santiago y Su Obra Científica

Santiago Ramón y Cajal nace en Petilla de Aragón el 1 de mayo de 1852, hijo de Justo Ramón y Antonia Cajal. Toda su niñez y adolescencia van a estar marcados por los continuos cambios de residencia entre las distintas poblaciones del Alto Aragón, traslados motivados por la profesión de médico que ejercía su padre. Su formación se inició en Valpalmas, donde acudió a la escuela local, aunque de hecho su primer maestro fue su propio padre, que le enseñó a leer y a escribir, le inició en la aritmética, en geografía y en francés.

En el año 1860 su padre es nombra do médico en Ayerbe, y toda la familia se traslada a dicha localidad. Allí se convirtió en un pésimo estudiante y se acentuaron sus travesuras al verse más desatendido por su padre. Por estos motivos le enviaron a estudiar el bachillerato al colegio de los Escolapios de Jaca en 1861.

El régimen de terror imperante en dicha institución hizo sus padres cambiar de opinión y le mandaron a estudiar al instituto de Huesca. Durante estos años y por orden expresa de su padre, compagina los estudios con el trabajo en una barbería.

ramon y cajal santiago cientifico

Santiago Ramón y Cajal (1852-1934): histólogo español obtuvo el Premio Nobel de Fisiología y Medicina en 1906. Pionero en la investigación de la estructura fina del sistema nervioso, Cajal fue galardonado por haber aislado las células nerviosas próximas a la superficie del cerebro.  En 1892 se instaló en Madrid y fue nombrado catedrático de histología de la universidad de Madrid, donde trabajó y prolongó su labor científica hasta su muerte.

En 1873, ganó por oposición una plaza de Sanidad Militar y al siguiente año fue destinado a Cuba con el grado de capitán. Se doctoró en Madrid en 1877. En 1879 fue, por oposición, director de Museos Anatómicos de la Universidad de Zaragoza; catedrático de Anatomía en la Universidad de Valencia (1883).

Fruto de sus trabajos fue el Manual de Histología y técnica micrográfica (1889). Catedrático de Histología en la Universidad de Barcelona (1887), dio a conocer poco después sus grandes descubrimientos sobre las células nerviosas. En 1892 obtuvo la cátedra de Histología normal y Anatomía patológica de la Universidad de Madrid.
El Gobierno español creó el Laboratorio de Investigaciones Biológicas y la revista Trabajos de Laboratorio, que substituyó a la Revista trimestral de Micrografia, publicada por él desde 1897, y le encomendó la dirección de ambos.
Entre 1899 y 1920 dirigió el Instituto Nacional de Higiene; en 1906 compartió con C. Golgi el premio Nobel de Medicina por sus investigaciones acerca de la estructura del sistema nervioso. Además de la obra citada, deben mencionarse entre las fundamentales las siguientes; Textura del sistema nervioso del hombre y de los vertebrados (1899-1904), Estudios sobre degeneración y regeneración del sistema nervioso (1913-14), Reglas y consejos sobre investigación biológica.
clase de disección dada por Ramón Cajal
SOBRE SU TRABAJO CIENTÍFICO:
Teoría de la neurona
1889: De todas las células, las nerviosas parecen las más complejas, y de todos los órganos y sistemas de órganos, el cerebro y el sistema nervioso parecen los más complejos. Además, de todas las partes del cuerpo humano, el cerebro y el sistema nervioso son, o deberían ser, los más interesantes, puesto que determinan nuestra condición de humanos.
Waldeyer-Hartz (véase 1888) fue el primero en sostener que el sistema nervioso estaba constituido por células separadas y por sus delicadas extensiones. Estas últimas, señalaba, se aproximaban entre sí pero no llegaban a tocarse y mucho menos a juntarse, de modo que las células nerviosas permanecían separadas. Llamó a las células nerviosas neuronas, y su tesis de que el sistema nervioso está compuesto por neuronas separadas es la llamada teoría de la neurona.
El histólogo italiano Camillo Golgi (Í843 o 1844-1926) había ideado quince años antes un sistema de tinción con compuestos de plata, que ponía al descubierto la estructura de las neuronas con todo detalle. Utilizando esa tinción, pudo demostrar que la tesis de Waldeyer-Hartz era correcta.
En efecto, mostró que en las neuronas se operaban complejos procesos, pero que los de una no afectaban a los de sus vecinas, pese a estar muy próxima a ellas. Los delgados espacios que las separaban se llaman sinapsis (es curioso que esta palabra derive de la griega que significa «unión», pues a simple vista parece que se unen, pero en realidad no es así).

Santiago Ramón y Cajal (1852-1934) perfeccionó la tinción de Golgi, y en 1889 desentrañó la estructura celular del cerebro y del bulbo raquídeo con detalle, fundamentando sólidamente la teoría de la neurona. Por sus trabajos sobre la teoría de la neurona, Golgi y Ramón y Cajal compartieron el premio Nobel de medicina y fisiología en 1906.

En 1904 concluye su gran obra Textura del sistema nervioso del hombre y de los vertebrados. Dos años después, en 1906, recibe junto al histólogo italiano Golgi el premio Nobel de Fisiología y Medicina.
 
SUS OBRAS: Su labor incesante durante toda su vida se ve plasmada en otras obras como Estudios sobre degeneración y regeneración del sistema nervioso (1913-14), Manual técnico de anatomía patológica (1918) y la creación de nuevos métodos como el del formal urano para la tinción del aparato endoneuronal de Golgi y la técnica del oro sublimado.
En 1922 se jubila como catedrático y le es concedida la medalla de Echegaray. Durante sus últimos años sigue publicando nuevas obras como Técnica micrográfica del sistema nervioso y ¿Neuronismo o reticulismo?, considerada como su testamento científico.
Su vida concluyó en Madrid el 17 de octubre de 1934 pero su obra siguió y sigue viva gracias a la creación de la institución científica que lleva su nombre.
ramon y cajal
En 1952 se rindió un homenaje a don Santiago en «Hipócrates Sacrum» en Montpellier; sus discípulos, doctor Turchini y doctor Paulís, muestran una abundante ilustración sobre la vida de Ramón y Cajal.
A pesar de la natural aversión que Ramón y Cajal sentía por la relación social, su extraordinaria popularidad y prestigio mundiales le obligaron a frecuentar los círculos selectos, políticos, intelectuales y distinguidos de la época. Tuvo ocasión así de relacionarse con las personalidades más destacadas de la nación: José Echegaray, Menéndez y Pelayo, Benito Pérez Galdós,  José Canalejas, conde de Romanones, Pelayo, Maura, Silvela y tantos otros
SU OBRA DURANTE LA PRIMERA GUERRA MUNDIAL
En 1914 el cruel estallido de la Primera Guerra Mundial conmovió a toda Europa. Aunque España guardó neutralidad, en su interior se vivía una política muy agitada. Pero ajenos, o casi ajenos, a los tristes acontecimientos europeos y españoles, don Santiago y sus colaboradores continuaban sin desfallecer sus investigaciones en el laboratorio. Las dificultades eran mayores que en tiempos pasados.
Trabajaban aislados, porque la guerra había roto toda comunicación entre los sabios europeos. Desconocían, pues, cuantos adelantos científicos se producían en el mundo. Los materiales y el equipo, que debían importarse, habían elevado excesivamente su costo y aumentado las dificultades de obtención.
También la cuestión de imprenta había elevado sus precios hasta hacerlos prácticamente inasequibles a las posibilidades del laboratorio. Todo eran problemas para don Santiago. No obstante, el tesón y la voluntad hicieron milagros y el equipo de investigadores logró varios descubrimientos importantes.
Una vez terminada la guerra y restablecida la comunicación en el mundo científico, Ramón y Cajal sufrió las mayores tristezas. Los que eran sus mejores amigos, admiradores y seguidores de su obra, habían muerto. Así, van Gebuchten, Waldeyer, Retzius, Ehrlich, Krause y Edinger. Sólo quedaban algunos científicos americanos interesados en sus investigaciones, pero no conocían el español.
Y entonces puso rápidamente manos a la obra, para remediar aquel error de previsión suyo. Hizo que se tradujesen al alemán, francés e inglés los trabajos más importantes suyos y de sus colaboradores, aunque tuvo que pasar por la amarga decepción de que, en general, sus trabajos quedaban desconocidos, pues eran varios los científicos que se atribuían descubrimientos hechos por él años antes.
UN GRAN CURIOSO PRECOZ:
Las continuas travesuras de Santiaguo tenían la virtud de acabar la paciencia del maestro, y no era para menos. Como castigo solía mandarlo al «cuarto oscuro», habitación casi subterránea habitada por abundantes ratas. A los demás chicos este castigo les horrorizaba, pero al indómito Santiaguo le servía para preparar con calma y tranquilidad las travesuras del día siguiente.
Fue en una de aquellas solitarias estancias en el «cuarto oscuro» cuando descubrió lo que él creyó algo nuevo, el principio de la cámara oscura. Pero se trataba de un descubrimiento físico ya hecho por Leonardo de Vinci. El cuarto tenía un solo ventanuco que daba a la plaza del pueblo, en la que batía el sol. Un día, estaba Santiagué mirando distraídamente el techo, cuando se dio cuenta de que el rayo de luz que penetraba por la rendija del ventanuco proyectaba en el techo, cabeza abajo y con sus propios colores, las personas, carretas y caballerías que pasaban por el exterior.
Quiso ensanchar la rendija y las figuras se desdibujaron y hasta se desvanecieron. Entonces la hizo más estrecha con la ayuda de papeles y observó que cuanto más pequeña era la rendija más vigorosas y detalladas se hacían las figuras. El descubrimiento le dio qué pensar y acabó por convencerse, con sus infantiles conclusiones, de que la física era una ciencia maravillosa.
A partir de aquel día Santiagué sacó el máximo provecho de sus castigos, pues se dedicó a calcar sobre papel las vivas y coloreadas figuras que llegaban hasta su prisión para aliviar su soledad. No es de extrañar que si hasta entonces el «cuarto oscuro» no había sido para él un castigo penoso, menos lo fuese desde que hizo su descubrimiento, llegando a tomar verdadero cariño a su cárcel y sus sombras brillantes.
monumento de ramon y cajal
La gloria se hizo piedra en este monumento de Victorio Macho. La fuente de la vida y de la muerte mezclan sus aguas, mientras los ojos del sabio quieren escudriñar el hondo misterio que les junta.
Fuente Consultada:
Gran Enciclopedia Universal Espasa Calpe Tomo 32 Entrada: Ramón y Cajal
Celebridades Biblioteca Hispania Ilustrada Edit. Ramón Sopena
Historia y Cronología de la Ciencia y Los Descubrimientos Isaac Asimov

 

Científicos Premio Nobel de Física Mas Influyentes

GRANDES FÍSICOS CONTEMPORÁNEOS

Como una extraña ironía, estado normal en el ánimo de la historia, lo que fuera la preocupación principal de los especulativos filósofos griegos de la antigüedad, siguió siendo la preocupación fundamental de los experimentados y altamente tecnificados hombres de ciencia del siglo XX: el elemento constitutivo de la materia, llamado átomo desde hace 25 siglos.

Fue prácticamente hasta los inicios de la presente centuria que la ciencia empezó a penetrar experimentalmente en las realidades atómicas, y a descubrir, de nuevo la ironía, que el átomo, llamado así por su supuesta indivisibilidad, era divisible. Mas aún, ya empezando la presente década, el abultado número de partículas subatómicas elementales descubiertas, hace necesario sospechar que están constituidas por alguna forma de realidad aún menor.

Y a pesar de que en nuestra escala de dimensiones cotidianas la distancia que separa al electrón más externo del centro del átomo es absolutamente insignificante, en la escala de la física contemporánea es inmensa, tanto que recorrerla ha tomado lo que llevamos de siglo, la participación de varias de las más agudas inteligencias de la humanidad y cientos de millones de dólares en tecnología, equipos y demás infraestructura.

En su camino, no obstante, muchos han sido los beneficios obtenidos por el hombre con el desarrollo de diversas formas de tecnología, aunque también se han dado malos usos a las inmensas fuerzas desatadas por las investigaciones. Pero por encima de todo ello, ha prevalecido un común estado del intelecto- el afán por conocer.

El Premio Nobel de Física ha seguido de cerca este desarrollo, y por lo tanto hacer un repaso suyo es recorrer la aventura de la inteligencia, con las emociones y asombros que nunca dejará de producirnos el conocimiento científico.

Por Nelson Arias Avila
Físico PhD, Instituto de Física de la Universidad de Kiev

Albert Einstein cientifico fisico nobel
1. Albert Einsten (1879-1955)
Considerado el padre de la física moderna y el científico más célebre del siglo XX.
Año: 1921 “Por sus servicios a la física teórica, y en especial por el descubrimiento de la
ley del efecto fotoeléctrico”.

Realizó sus estudios superiores en la Escuela Politécnica Federal Suiza en Zurich y terminó su doctorado, en 1905, en la Universidad de Zurich. Trabajó, entre 1902 y 1909, en la Oficina de Patentes de Berna; de allí pasó a ocupar el cargo de profesor adjunto en el Politécnico de Zurich. Más tarde ejerció también la docencia en la Universidad de Berlín y en la de Princeton; dictaría, además, innumerables conferencias en universidades de Europa, Estados Unidos y Oriente. Ocupó los cargos de director del Instituto de Física de Berlín y miembro vitalicio del Instituto de Estudios Avanzados de Princeton. En 1905 formuló la “teoría de la relatividad”, la cual amplió en 1916 (“teoría general de la relatividad”). En 1912 formuló la “ley de los efectos fotoeléctricos”. A partir de 1933 se dedicó al estudio de los problemas cosmológicos y a la formulación de la teoría del campo unificado, la cual no pudo culminar exitosamente. Además de su indiscutible aporte a la ciencia, Einstein realizó una labor prominente a favor de la paz y el humanitarismo.

Max Planck cientifico fisico nobel

2. Max Planck (1858-1947)
Recibió el Nobel en 1918 por su descubrimiento de la energía cuántica. Fundador de la física cuántica.
Año: 1918 “Como reconocimiento a los servicios que prestó al progreso de la física con
el descubrimiento
de la cuantificación de la energía”.
El principio de la termodinámica fue el tema de la tesis doctoral de Max Planck, en 1879. Había estudiado matemáticas y física en la Universidad de Munich y en la de Berlín, con científicos afamados de la época. Fue profesor e investigador de la Universidad de Kiel y profesor de física teórica en la Universidad de Berlín; así mismo, se desempeñó como “secretario perpetuo” de la Academia de Ciencias. Sus investigaciones más importantes están relacionadas con la termondinámica y las leyes de la radiación térmica; formuló la “teoría de los cuantos”, la cual se constituyó en la base de la física cuántica. Fue uno de los primeros en entender y aceptar la teoría de la relatividad y contribuyó a su desarrollo. Trabajó con bastante éxito también en las áreas de la mecánica y la electricidad.

Bardeen cientifico fisico nobel

3. John Bardeen (1908-1991)
Año: 1956 Único físico en ser premiado dos veces con el Nobel (1956 y 1972).
Destaca su desarrollo del transmisor.

Marie Curie cientifico fisico nobel
4. Marie Curie (1867-1934)
Física, química y Nobel de ambas disciplinas. Estudió junto con su marido el fenómeno de la radiactividad.
Año: 1903 “Como reconocimiento al extraordinario servicio que prestaron por sus investigaciones conjuntas sobre los fenómenos de radiación descubiertos por el profesor Henri Becquerel”

Madame Curie estudió física y matemáticas en París. Sus aportes a la física y a la química (cuyo Nobel también obtuvo en 1911) se inician con los estudios que desarrolló -en compañía de su marido Pierre- sobre los trabajos y observaciones de Henri Becquerel respecto de la radiactividad: Marie descubrió que la radiactividad es una propiedad del átomo; además descubrió y aisló dos elementos radiactivos: el polonio y el radio, en 1898 y 1902 respectivamente. En 1906 se constituyó en la primera mujer catedrática en La Sorbona, al ocupar la vacante tras la muerte de Pierre. Tres años más tarde publicó su “Tratado sobre la radiactividad” y en 1944 comenzó a dirigir el Instituto de Radio en París. Murió de leucemia, contraída probablemente en sus experimentos, al exponerse a la radiación.

Rontgen cientifico fisico nobel
5. Wilhelm Conrad Róntgen (1845-1923)
Primer galardonado con el Nobel de Física, en 1901, por su descubrimiento de los rayos X.
Año: 1901: “Como reconocimiento a los extraordinarios servicios que prestó a través del descubrimiento de los rayos X, que posteriormente recibieron su nombre”.
Sus aportes al campo de la física abarcan campos diversos desde investigaciones relacionadas con el calor específico, hasta los fenómenos de la capilaridad y la comprensibilidad; se interesó igualmente por el área de la radiación y la polarización eléctrica y magnética. El mayor reconocimiento de la comunidad científica internacional lo obtuvo cuando trabajaba en los laboratorios de la Universidad de Wurzburgo: allí, el 8 de noviembre de 1895, descubrió los que él mismo llamó “rayos X”, porque desconocía su naturaleza (también conocidos en la época como “rayos Róntgen”).

Marconi cientifico fisico nobel
6. Guglielmo Marconi (1874-1937)
Nobel en 1909, junto con Ferdinad Braun, por su contribución al desarrollo de la telegrafía inalámbrica.
Año: 1909: “Como reconocimiento a sus contribuciones para el desarrollo de la telegrafía inalámbrica”.
Aunque Marconi estudió en Liverno y Bolonia, su formación en el campo de la física y la ingeniería -en las cuales se destacó- fue poco académica. El conocimiento acerca de la producción y recepción de las ondas electromagnéticas –descritas por Hertz– causaron en Marconi una fascinación especial, sobre todo por su convencimiento de que las ondas en cuestión podían utilizarse en las comunicaciones: sus experimentos desembocaron en el nacimiento de la telegrafía sin hilos; inventó, además, la sintonía, el detector magnético, la antena directriz, el oscilador giratorio, las redes directivas y colaboró con sus trabajos a perfeccionar los instrumentos de microondas.

Enrico Fermi cientifico fisico nobel
7. Enrico Fermi (1901-1954)
Año: 1938: Galardonado en 1938. Sus investigaciones en radiactividad lo llevaron a
descubrir las reacciones nucleares.

Millikan cientifico fisico nobel
8. Robert A. Millikan (1868-1953)
Año: 1923: Determinó el valor de carga del electrón y trabajó en los efectos fotoeléctricos.
Recibió el Premio en 1923.

dirca cientifico fisico nobel
9. Paul A. M. Dirac (1902-1984)
Año: 1933: Uno de los fundadores de la mecánica y electrodinámica cuántica. Recibió el Nobel en 1933
junto a Erwin Schródinger.

cientifico fisico nobel Ernst Ruska
10. Ernst Ruska (1906-1988)
Año: 1986: Premio Nobel en 1986 por su investigación en óptica electrónica.
Diseñó el primer microscopio electrónico.

Fuente Consultada:
Revista TIME Historia del Siglo XX El Siglo de la Ciencia

Historia del Progreso Tecnológico En El Uso de la Energía

El dominio del hombre sobre la materia creció en proporción directa con el control que adquirió sobre la energía. El proceso fue larguísimo. Durante siglos y siglos la humanidad sólo dispuso de la energía muscular, primero la suya propia y luego la de los animales domésticos.

Llegó a depender en tal forma de su ganado que cuando éste era muy especializado y el clima lo obligaba a emigrar, el hombre iba tras él; al final de la edad glacial, cuando el reno siguió los hielos en su retroceso, el hombre marchó a su zaga. Lo mismo ocurrió con el camello.

Cuando la actividad era medianamente inteligente, la ejecutaban casi exclusivamente los hombres: la pirámide de Keops se edificó en base a la técnica de las multitudes y costó, probablemente, cien mil vidas. Desde hace casi dos siglos, el hombre aprendió a disponer de cantidades abundantes de energía, e inició una era industrial muy diferente a las otras épocas históricas.

He aquí la lista de los pasos más importantes hacia el dominio de la energía:

CRONOLOGÍA DE LOS AVANCES TECNOLÓGICOS

domesticacion del caballo

4000 a. C. (aprox.): El hombre domestica al caballo.

la rueda

3500 a.  C.  (aprox.) Primeros   vehículos   con   ruedas,   en   Mesopotamia. 3000  a.  C.   (aprox.):   Arado   liviano   para   trabajo   continuo.

27  a.  C.  (aprox.):  Vitrubio   describe   molinos   de   agua,   ruedas a   vapor y  algunas  máquinas. 900  (aprox.):   Los persas utilizan molinos de viento. 1638:   Galileo   publica   sus  estudios  sobre  el   péndulo  y  loe   proyectiles.

1686:   Newton publica   sus  “Principia”,   en   los  que   formula   las leyes  de   la   mecánica   celeste. 1693:   Leibniz  establece  la   ley  de  conservación  y transformación de  la   energía   cinética   en   energía   potencial  y  viceversa.

maquina a vapor

1775:   Máquina de vapor de Watt.

lavoisier

1777: Lavoisier atribuye la energía animal a procesos químicos y compara   la   respiración  con   una   combustión   lenta,

1824:   Carnot  funda   la  termodinámica.

1831:  Faraday descubre  la  inducción  electromagnética.

1843/50: Joule determina   el  equivalente   mecánico  del   calor.

1847: Helmholtz incluye el calor en la ley de conservación de la energía.

1850 a 1854: Kelvin y Clausius formulan la primera y segunda ley de la  termodinámica y descubren  la  entropía.

maxwell electromagnetismo

1860/61: Maxwell y Boltzmann calculan la distribución estadística   de  la  energía  en  los  conjuntos  de  moléculas.

1866:   Primer   cable   eléctrico   submarino   a   través   del   Atlántico.

1876: Otto construye el primer motor de combustión interna a base  de  petróleo.

1879/80: Lámpara eléctrica de filamento carbónico de Edison y  Swan.

1884:  Turbina de vapor de Parsons.

becquerel radioactividad

1896:   Becquerel descubre  la  radiactividad.

albert einstein

1905: Einstein asimila la masa a la energía en una célebre ecuación   que  luego   permitirá   la   transmutación   de   una   en   otra.

1932: Chadwick descubre el neutrón, la partícula más eficaz para el  bombardeo  de  núcleos atómicos.

fision nuclear

1945: Primera reacción de fisión nuclear, con uranio (punto de partida de las centrales electroatómicas y de la propulsión atómica).

1951: Primera reacción de fusión nuclear, con hidrógeno pesado (reacciones termonucleares).

1956:   Primera   turbina   atómica,   en   Calder   Hall   (Gran   Bretaña!.

Naturaleza Ondulatoria de la Materia Resumen Descriptivo

RESUMEN DESCRIPTIVO DE LA FÍSICA CUÁNTICA APLICADA A LA MATERIA

Durante los últimos 300 años, los científicos han invertido mucho tiempo en discutir e investigar la naturaleza de la luz. En el siglo XVII, Isaac Newton sostenía que los rayos luminosos consistían en flujos de partículas muy pequeñas. Esta teoría corpuscular prevaleció durante muchos años, aunque Christian Huygens, contemporáneo de Newton, tenía el convencimiento de que la luz era trasmitida mediante vibraciones (es decir, ondas) en el éter.

Isaac Newton

HUYGENS Christian (1629-1695

En los primeros años del siglo XIX, Thomas Young realizó sus famosos experimentos sobre las interferencias luminosas. Estos fenómenos podían explicarse muy bien con sólo suponer que la luz es un conjunto de ondas y no un flujo de partículas.

Por consiguiente, la teoría ondulatoria parecía explicar satisfactoriamente todas las observaciones experimentales hechas hasta la época, por lo que se pensaba que remplazaría para siempre a la teoría corpuscular. Después, a fines del siglo XIX, se descubrió que, en ciertas condiciones, se liberaban electrones cuando incidía un rayo luminoso sobre una superficie.

Al incidir un haz de luz sobre ciertos materiales se desprenden electrones, creando una corriente electrica, medida por el galvanómetro.

La teoría ondulatoria no podía explicar este fenómeno, que conocemos con el nombre de efecto fotoeléctrico. Este nuevo descubrimiento planteó a los físicos un serio dilema. El efecto fotoeléctrico era más fácilmente explicable acudiendo a la teoría corpuscular, aunque casi todos los otros fenómenos luminosos se explicaban mejor a partir de la teoría ondulatoria.

Éstos eran algunos de los problemas teóricos que tenían planteados los físicos cuando apareció en escena el joven aristócrata francés Luis de Broglie. En una tesis publicada en 1922, cuando sólo tenía 30 años, sugirió que la luz presentaba un comportamiento a veces ondulatorio y a veces corpuscular, aunque no ambos al mismo tiempo.

Científico Luis De Broglie

LOUIS DE BROGLIE (1892-1960): Físico nacido en Francia el año 1892. Sus trabajos de investigación le permitieron descubrir la naturaleza ondulatoria de los electrones. Fue galardonado con el Premio Nobel de Física en 1929.

De Broglie supuso que, así como la luz, normalmente de naturaleza ondulatoria, podía, en ciertos fenómenos, comportarse corpuscularmente, las partículas pequeñas, tales como los electrones, podían presentar características ondulatorias. Pero tuvo que esperar 5 años para que se descubriera la evidencia de este fenómeno.

Fue en 1927 cuando los estadounidenses Clinton G. Davisson y L. H. Germer, trabajando en los laboratorios de la Bell Telephone, consiguieron producir fenómenos de  difracción  con un flujo de electrones, usando un cristal como red de difracción.

La teoría dualista de De Broglie puede aplicarse a todas las partículas en movimiento, cualquiera que sea su naturaleza.

La longitud de onda de esta onda De Broglie (la onda asociada con la partícula) se averigua dividiendo la constante de Planck por la cantidad de movimiento de la partícula. Luis Víctor de Broglie nació en Dieppe (Francia), en 1892. Su hermano mayor, Maurice, el sexto duque De Broglie, fue también un físico de cierta importancia.

Luis se interesó, primero, por la historia y la literatura, pero después, sirviendo en el ejército francés durante la primera guerra mundial, se dedicó a la física. En reconocimiento a su contribución al avance de la física teórica, Luis de Broglie fue galardonado, en 1929, con el premio Nobel. Desde 1928 fue profesor de física teórica en la Universidad de París, donde había cursado sus estudios.

PARA SABER MAS…

La teoría cuántica puso una bomba bajo la visión de física clásica y, al final, la derrocó. Uno de los pasos críticos de esta rebelión se dio cuando Erwin Schrodinger formuló su teoría de la mecánica de ondas, en la que sugería que un electrón, en un átomo, se comporta como una onda. Se guiaba por la belleza, por su principio básico de que si una solución no era matemáticamente hermosa, casi seguro era incorrecta. El trabajo de Schrodinger recibió un estímulo vital cuando leyó la tesis doctoral en Filosofía de Louis de Broglie, y fue oficialmente reconocido cuando, en 1933, Schrodinger compartió el Premio Nobel de Física con Paul Dirac.

El saludo de la onda de electrones
En 1900, Max Planck había sugerido por primera vez que la energía venía en conglomerados. Esto llevó a pensar que la luz — que es una forma de energía— también estaba compuesta de partículas. Al principio no parecía probable, pero Einstein había desarrollado el concepto hasta el punto de tener una credibilidad considerable, y las partículas de la luz se conocieron como fotones.

A pesar de que la luz era claramente una partícula, :ambién tenía propiedades de onda. El trabajo de Planck había demostrado que distintas luces se transformaban en diferentes colores porque los fotones tenían distintas cantidades de energía. Sin embargo, si se divide la energía por la frecuencia a la que ese color oscila, siempre resulta el mismo valor, la llamada constante de Planck.

Eso para la luz. ¿Pero qué hay de las partículas de materia? la pregunta empezó a tener respuesta cuando Louis de 3roglie, un aristocrático físico francés del siglo XX, sugirió c¡ue las partículas de los materiales parecían ser :onglomerados localizados porque no éramos capaces de verlas más de cerca. Una mejor observación, creía, revelaría que ellas también tienen propiedades de onda.

Buscando soporte para sus ideas sobre la teoría de la relatividad de Einstein, de Broglie demostró que, con las ecuaciones Je Einstein, podía representar el movimiento de la materia :omo ondas. Presentó sus descubrimientos en 1924, en su :esis doctoral Recherches sur la Théorie des Quanta (Investigación sobre la Teoría Cuántica).

Se demostró experimentalmente gracias al trabajo con electrones llevado a cabo por los físicos americanos Clinton Joseph Davisson y Lester Hallbert Germer en 1927, quienes demostraron que los electrones, aun siendo partículas, se comportan como ondas. Planck había cambiado nuestra visión de la luz, Broglie cambió la de la materia.

La aportación de Schrodinger en esta revelación, fue tomar .as observaciones de Broglie y desarrollar una ecuación que describía el comportamiento de los electrones. Usó la ecuación para definir los modos de movimiento de los electrones en los átomos, y descubrió que las ecuaciones sólo funcionaban cuando su componente de energía era múltiplo de la constante de Planck.

En 1933, Schrodinger recogió el Premio Nobel de Física, aero, al hacerlo, pagó tributo a Fritz Hasenhórl, el profesor de Esica que había estimulado su imaginación cuando era estudiante en la Universidad de Viena. Hasenhórl había sido asesinado en la Primera Guerra Mundial, pero durante su aiscurso de recepción, Schrodinger remarcó que de no haber ;:do por la guerra, habría sido Hasenhórl, y no él, quien recibiera el honor.

Fuente Consultada:
Las Grandes Ideas que Formaron Nuestro Mundo Pete Moore
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología

Energía Mareomotriz Producir Electricidad Con Las Mareas

USINAS EECTRICAS QUE USAN LA FUERZAS DE LAS MAREAS

Hasta ahora, el hombre ha hecho muy poco para aprovechar la energía de los mares y utilizarla convenientemente. La central mareomotriz francesa de la Ranee, fue la primera en su estilo en el mundo, que produzcía electricidad a partir del regular flujo y reflujo de las mareas.

Ocurre que, en este lugar particular de la costa francesa, la diferencia entre pleamar y bajamar es lo suficientemente grande para poder hacer funcionar una planta eficaz. En realidad, hay pocos sitios en el globo terrestre donde el nivel del agua sube y baja lo suficiente como para que valga la pena llevar a cabo la operación.

El desnivel entre la pleamar y la bajamar en el estuario de la Rance tiene un valor medio de 11,4 metros y, por otra parte, la electricidad producida puede consumirse inmediatamente en la región. Por estas circunstancias, el proyecto resulta práctico. Dos veces en cada día lunar (24 horas y 50 minutos), una “ola astronómica” llega del Atlántico y penetra en el Canal de la Mancha.  Su potencia bruta se ha estimado en  56 millones de cabullos vapor.

Aproximadamente, una mitad de esta potencia se pierde en el Canal, al romper las olas y al rozar con el fondo del mar y a lo largo de la costa. Lo que los ingenieros intentan aprovechar con sus centrales mareomotrices es una parte de esta energía perdida.

El principio de la operación, en su conjunto, es sencillo. El hombre lo ha utilizado desde la antigüedad, con ruedas de molino impulsadas por la marea. Un canal, con una compuerta abierta cuando sube la marea, se llenará de agua.

Ésta podrá ser retenida cerrando la compuerta y, posteriormente, se utilizará para producir trabajo o para hacer funcionar algún tipo de planta generadora, cuando la marea baje.

Desgraciadamente, esta teoría tan sencilla fallará en la práctica, porque esto significa que sólo se puede producir electricidad cuando la marea está bajando, y una generación momentánea de electricidad en la madrugada no es útil a nadie. Se necesita una producción regular, para suministrar energía en el tiempo preciso, y esto exige una organización mucho más compleja.

En realidad, pura poder armonizar la producción de electricidad con la demanda se necesita una calculadora que dirija las operaciones de abrir y cerrar las compuertas.

VEINTICUATRO CENTRALES ELÉCTRICAS EN  UNA
La central de la Rance organiza su producción de electricidad por medio de veinticuatro elementos, que, para el espectador, aparecen como veinticuatro canales que corren a lo largo de una gran presa, construida a través del extremo del estuario de la Rance.

El conjunto tiene una longitud total de 750 m, y consta de Oeste a Este de:
  • Una esclusa que permite la navegación entre la parte embalsada y la parte de mar de la bahía, de 65 metros de largo por 13 metros de ancho.
  • Una planta mareomotriz de 390 metros de largo por 33 de ancho, formada por 24 turbinas “tipo bulbo”, de 10 MW cada una.
  • Un dique de entronque de 163 metros de largo que completa el cierre del estuario entre la planta y el islote de Chalibert.
  • Una pesa movil de 115 metros de largo, provista de 6 válvulas de tipo “wagon”, capaces de funcionar a una diferencia de altura de la columna de agua de 10 metros; siendo su ancho de 15 metros cada una.
  • Una carretera de doble sentido que une Dinard con St-Malo, la cual se ve sometida al paso de 26.000 coches diarios, siendo 60.000 en verano.

Represa Mareomotriz en Francia Dos veces al día pasan 184 millones de metros cúbicos a través de la presa, cayendo de una altura de 11,4 metros y proporcionando energía. Se eligen los momentos del día en que se necesita más electricidad, las horas de máximo consumo.

Lo energía básica de una central eléctrica mareomotriz depende de dos factores: la superficie del canal en el que se retiene el agua y la diferencia entre la pleamar y la bajamar. Por tanto, conviene elegir un lugar en el que este valor sea el más grande posible. El estuario de la Ronce tiene una superficie de 22 kilómetros cuadrados y el nivel del agua varía 11,4 metros, como valor medio, en cada marea, lo que significa una cantidad de agua de 184 millones de metros cúbicos que entra y sale dos veces al día. El Mediterráneo no podría utilizarse nunca para producir energía eléctrica, ya que la marea sólo hace variar el nivel del mar en pocos decímetros.

Cuando la marea sube, el agua se precipita dentro de los canales, impulsando las turbinas a su paso. Así se produce mucha menos energía que cuando las presas están vaciándose; pero, a pesar de todo, todavía resulta conveniente.

Al final de la marea se utiliza energía de la red ordinaria, para que la turbina siga girando y llene la presa por encima del nivel exterior durante esta operación. Este aumento extra de nivel es un métodopara obtener algo a partir de nada.

Cuesta muy poco tomar electricidad del sistema para hacer subir, artificialmente, el nivel del agua, digamos 50 centímetros más. Pero tres horas después, cuando el nivel del agua en el exterior haya bajado unos 6 metros, esta misma agua tendrá una caída de 6 metros y, en la práctica, podrá proporcionar una energía 12 veces mayor que la empleada para subirla a su posición inicial.

El tiempo en que se almacena el agua a este nivel artificial depende de la demanda de electricidad. En el momento oportuno, el agua puede salir hacia el mar y proporcionar así la electricidad a la red. La turbina que convierte el flujo de agua en   una   corriente   eléctrica   utilizable   está sumergida y se encuentra en el paso de la corriente de agua. Está rodeada de agua por todas partes y posee una gran hélice, que es impulsada por la corriente.

La hélice es de láminas ajustables, que pueden orientarse de modo que se adapte a las condiciones imperantes. Se puede llegar a la turbina sumergida por medio de un túnel con una escalera.

Cuando una presa se ha vaciado y alcanzó el nivel de la marea que la rodea, se toma otra vez un poco de energía de la red para producir un sobrevaciado. Entonces, el ciclo completo puede empezar nuevamente.

Cada pequeña central funciona independientemente de las demás, para responder a las distintas necesidades de corriente, según las diferentes mareas. El número de ciclos diversos que se pueden utilizar en el curso de un mes es variable, permitiendo, así, una adaptación a las más diversas demandas de electricidad y el mejor aprovechamiento de toda clase de mareas.

Es necesario tener en cuenta el hecho de que las mareas se retrasan 50 minutos cada día y no tienen siempre la misma amplitud. Se calcula que la producción anual de la central será de unos 540 millones de kilovatios-hora por año, producción muy pequeña para una central eléctrica. Pero el combustible no faltará nunca y la planta será una experiencia útil para decidir si se puede emplear el mismo principio en otro lugar del globo terráqueo.

esquema represa mareomotriz

La turbina, que está sumergida y se encuentra en el paso de la corriente de agua, gira,
proporcionando   una   pequeña   cantidad   de   electricidad.

Se toma de la red una pequeña cantidad de electricidad,
para elevar artificialmente el nivel del agua  en el estuario.

Represa mareomotriz

A medida que se vacía el embalse, la turbina produce una
gran cantidad de electricidad en el sistema.

Cuando el embalse está vacio, se toma un poco do electricidad para hacer
girar la turbina y vaciar todavía más la presa.

FUENTES DE ENERGÍA ELÉCTRICA
Casi toda la energía eléctrica producida actualmente prosede de combustible! extraídos de la Tierra, que pueden encontrarse en una u otra forma. Estos combustibles —carbón, petróleo y uranio— se extraen, retiran y trasporté?; antes de utilizarlos para trasformar el agua en el vapor que hará funcionar los generadores eléctricos. Además de estas fuentes de energía, existen otras —ríos de corriente rápida y el calor procedente del Sol.

En todos los métodos convencionales, la energía encerrada en el combustible se convierte, primero, en energía calorífica. En el carbón y en el petróleo, lo que se convierte es energía química; en el caso del uranio se utiliza la energía desprendida en la fisión controlada de los núcleos de uranio.

En la instalación de la Ranee, la energía mecánica de la marea se convertirá directamente en energía eléctrica.

El procedimiento es similar, en principio, a las centrales hidroeléctricas que funcionan en todo el mundo, mediante la energía mecánica que libera el agua al caer de un nivel a otro. Esta energía se convierte directamente en electricidad Este proyecto de la Ranee también se parece mucho a otros de almacenamiento por bombeo, ya en servicio en Luxemburgo (en Vianden) y en el país de Gales (en Ffestinlog).

En ambos proyectos, como en el de la Ranee, sólo se pers fluir el agua a través de los equipos generadores cuando se requiere, es decir, cuando hay una demanda en el circuito eléctrico. En los proyectos de almacenamiento por bombeo, el agua se hace subir a una colina desde una reserva hasta otra más elevada, en los momentos del día en que no hay una gran demanda de electricidad. Se guarda hasta que la demanda alcanza un máximo y entonces se libera, dejándosela fluir a través de los equipos generadores, para producir un suplemento de energía eléctrica, muy necesario.

Otro ejemplo de conversión de una energía natural es la utilización de la energía solar. Una gran cantidad de energía radiante procedente del Sol alcanza la superficie de la Tierra durante el día y puede utilizarse para trasformar agua en vapor. Este vapor puede hacer funcionar turbinas generadoras. Tales proyectos se han puesto en marcha en Rusia a partir de la década del 60´.

Fuente Consultada
Enciclopedia TECNIRAMA Fasc. N° 118 Electricidad Producida Por Las Mareas

Naturaleza de la Luz Onda o Partícula Teorías Fisicas

FÍSICA: TEORÍA ONDULATORIA Y CORPUSCULAR

LA CURIOSIDAD DEL HOMBRE: Un hombre de ciencia destina una buena parte de su tiempo en pensar “qué pasaría si …” ¿ … si alguien inventara algo para bloquear nuestra gravedad? ¿ … si la luz fuera a la vez una partícula y una onda? ¿ … si hubiera un mundo de antimateria? ¿ … si el Universo que ahora parece expandirse, se contrajera en ei futuro? El investigador científico plantea la pregunta fundamental: ¿Qué cíase de Universo es éste donde yo vivo?

Es muy improbable que alguna vez llegue el tiempo en que ios humanos agoten sus preguntas respecto a la naturaleza del Universo. Recordemos que Newton se comparaba a sí mismo con un niño jugando con guijarros y conchas en una playa, mientras el “gran océano de la verdad estaba sin ser descubierto” delante de él. El científico siempre trabaja en las orillas del “gran océano de la verdad”, esforzándose en descubrirle cada vez más.

A principios del siglo XX, algunos de los que se preguntaban “qué pasaría si . . .” expusieron ideas que, al principio, se veían tan imposibles como la afirmación de que la gente viviría felizmente en el centro de la Tierra. Al investigar estas ideas aprendieron mucho sobre la orilla del océano de la verdad.

Una de las preguntas más importantes fue estimulada por el estudio de la luz, en particular, de los espectros: ¿Es posible que la luz sea a la vez una onda y una partícula? Las consecuencias de esta pregunta han mantenido ocupados a los científicos por más de cincuenta años. Otras preguntas, relacionadas algunas con el problema de la onda-partícula y otras muy diferentes, han surgido en la actualidad.

La Física no está completa. El hombre está aún en la playa de Newton, tratando de comprender el océano que está delante de él. Ahora analizaremos lo relativo a la onda-partícula y también introduciremos algunas otras preguntas para las que están buscando respuestas los científicos actuales.

Como las teorías modernas con relación a la luz no son completas, se van agregando nuevas ideas. Sin embargo, una piedra angular de la teoría moderna es que la luz se propaga como ondas, que tienen muy corta longitud de onda.

PRIMERAS INTERPRETACIONES: El hombre es capaz de ver los objetos que lo rodean debido a la luz que, procedente de ellos, llega a sus ojos. Los objetos brillantes, tales como el Sol o una llama luminosa, emiten su propia luz. Todos los demás son visibles a causa de la luz que reflejan.

Un grupo de filósofos griegos del siglo IV a. de J. C. interpretó este hecho diciendo que la luz estaba formada por diminutos corpúsculos, emitidos por los objetos visibles y recibidos por el ojo humano. Esta hipótesis estaba en contradicción con las ideas postuladas por otra escuela del pensamiento griego, que interpretaba el mecanismo de la visión como productos de unos invisibles rayos, emitidos por el propio ojo para sondear sus alrededores.

Los rayos de luz obedecen a reglas muy simples, algunas de las cuales eran ya conocidas por los antiguos griegos. Así, por ejemplo, sabían que la luz sigue siempre trayectorias rectilíneas, empleando el menor tiempo posible en recorrer la distancia existente entre dos puntos. Del mismo modo, se sabía entonces que la luz era reflejada por la superficie del agua, o por una superficie metálica pulimentada, y se interpretó el fenómeno diciendo que los rayos luminosos, al llegar a estas superficies, sufrían un brusco cambio de dirección.

Hooke observa las ondas en un lago

También era conocida en aquella época la ley de la reflexión, es decir, que el ángulo, respecto a la normal, con que el rayo luminoso incide en la superficie, es igual al ángulo que forma, con dicha normal, el rayo reflejado.

Las lentes de vidrio y cuarzo eran también conocidas, así como las desviaciones que producían en los rayos de luz que las atravesaban. En este sentido, los griegos utilizaron el poder que poseen las lentes de concentrar la luz, y el calor a que ésta da lugar, par» encender fuego, por ejemplo.

Nada nuevo fue descubierto en este campo hasta la Edad Media, en que se construyeron lentes especiales para ser utilizadas como lupas. Un siglo después empezaron a emplearse las lentes para corregir los defectos de la visión humana, así como en la construcción de los telescopios astronómicos que utilizaron Galileo, Kepler y otros astrónomos. Leeuwenhoek las usó también para construir el primer microscopio.

En todos estos instrumentos, los rayos de luz sufren una desviación al pasar del aire al vidrio, o viceversa. La ley que gobierna esta desviación, propuesta primeramente por Willebrord Snell, en 1621, es la ley de la refracción.

LA LUZ COMO ONDA O COMO PARTÍCULA:

Las leyes de la reflexión y de la refracción son las dos leyes básicas por las que se rigen los rayos luminosos. Una vez descubiertas, faltaba una teoría, acerca de la naturaleza de la luz, que las explicase. Surgieron entonces dos distintas: la ondulatoria y la corpuscular.

Los principios de la teoría ondulatoria fueron expuestos por Roberto Hooke en 1607; éste comparó las ondas formadas en la superficie del agua cuando una piedra cae en ella, con el tipo de perturbación que se origina en un cuerpo emisor de luz.

robert hooke

Robert Hooke, concluyó que la luz se comporta como una onda

Ésta debía tener su origen en algún tipo de vibración producida en el interior del cuerpo emisor y, consecuentemente, se propagaría en forma de ondas. Hooke formuló estas ideas después de haber descubierto el fenómeno de la difracción, que hace aparecer iluminadas ciertas zonas que deberían ser oscuras. Encontró la explicación observando detenidamente el comportamiento de las ondas formadas en la superficie del agua.

En 1676, Olaus Roemer, considerando el carácter ondulatorio de la luz, pensó que ésta no podía tener una velocidad infinita, y se dispuso a medir la velocidad de las ondas luminosas. Observando los eclipses de las lunas de Júpiter notó que, cuando la Tierra se encontraba a la máxima distancia de dicho planeta, estos eclipses se retrasaban unos 15 minutos.

Ello quería decir que la luz empleaba este tiempo en recorrer la distancia adicional. Según este método, Roemer obtuvo para la velocidad de la luz un valor de 3.100.000 Km./seg., muy cercano al valor actual aceptado, que es de 2,990.000 Km./seg.

TEORÍA ONDULATORIA: Las leyes de la óptica se pueden deducir a partir de una teoría de la luz más sencilla pero de menores alcances propuesta en 1678 por el físico holandés Christian Huygens.

HUYGENS Christian (1629-1695)

Esta teoría supone simplemente que la luz es un fenómeno ondulatorio y no una corriente de partículas, pongamos por caso. No dice nada de la naturaleza de las ondas y, en particular —puesto que la teoría del electromagnetismo de Maxwell no apareció sino un siglo más tarde— no da ninguna idea del carácter electromagnético de la luz.

Huygens no supo si la luz era una onda transversal o longitudinal; no supo las longitudes de onda de la luz visible, sabía poco de la velocidad de la luz. No obstante, su teoría fue una guía útil para los experimentos durante muchos años y sigue siendo útil en la actualidad para fines pedagógicos y ciertos otros fines prácticos. No debemos esperar que rinda la misma riqueza de información detallada que da la teoría electromagnética más completa de Maxwell.

La teoría de Huygens está fundada en una construcción geométrica, llamada principio de Huygens que nos permite saber dónde está un frente de onda en un momento cualquiera en el futuro si conocemos su posición actual; es: Todos los puntos de un frente de onda se pueden considerar como centros emisores de ondas esféricassecundarias. Después de un tiempo t, la nueva posición del frente de onda será la superficie tangencial a esas ondas secundarias.

Ilustraremos lo anterior con un ejemplo muy sencillo: Dado un frente de onda en una onda plana en el espacio libre, ¿en dónde estará el frente de onda al cabo de un tiempo t? De acuerdo con el principio de Huygens, consideremos varios puntos en este plano (véanse los puntos) como centros emisores de pequeñas ondas secundarias que avanzan como ondas esféricas. En un tiempo t, el radio de estas ondas esféricas es ct, siendo c la velocidad de la luz en el espacio libre.

El plano tangente a estas esferas al cabo del tiempo t está representado por de. Como era de esperarse, es paralelo al plano ab y está a una distancia ct perpendicularmente a él. Así pues, los frentes de onda planos se propagan como planos y con una velocidad c. Nótese que el método de Huygens implica una construcción tridimensional y que la figura es la intersección de esta construcción con el plano de la misma.

frente de onda de luz

Frente de Onda de Luz

Primera Ley de la Óptica

“En la reflexión el ángulo de incidencia de una onda o rayo es igual al ángulo de reflexión, ósea en este caso i=r. Ambos rayos siempre se encuentran contenidos en un mismo plano.”

Llamamos refracción de la luz al fenómeno físico que consiste en la desviación de un rayo de luz al pasar de un medio transparente a otro medio también transparente. Un ejemplo diario es cuando miramos un lapiz dentro de un vaso de agua.

Difracción de la luz

Segunda Ley de la Óptica

“El cociente entre el seno del ángulo de incidencia y el seno del ángulo de refracción es constante para todos los rayos reflactados. Todos los rayos, incidentes y reflactados se encuentran en un mismo plano”

NACE LA TEORÍA CORPUSCULAR: La teoría de Hooke se vio pronto derrotada por las ideas de Isaac Newton, quien propuso otra teoría corpuscular corregida.

En su famoso libro titulado “Óptica”, éste describió un gran número de experimentos dirigidos a explicar el comportamiento de la luzen todos sus aspectos, entre los que se destacaba la descomposición de la luz en sus distintos colores, al atravesar un prisma. De acuerdo con la teoría corpuscular, Newton explicó los diferentes colores del espectro, mediante la existencia de distintos corpúsculos.

En el curso de sus elaborados experimentos, Newton descubrió el fenómeno de la difracción y el de la interferencia. Dos rayos de luz, ambos procedentes del Sol, y convenientemente separados para que sus recorridos fuesen diferentes, producían anillos luminosos, oscuros y coloreados (llamados anillos de Newton), cuando se los hacía pasar a través de la lente de un telescopio.

Hooke había descrito antes la formación de irisaciones en las pompas de jabón, pero fue incapaz de explicar el fenómeno. Tanto la debían a la interferencia de dos ondas luminosas, de recorridos ligeramente distintos.

El fenómeno de la difracción casi destruyó la ingeniosa interpretación corpuscular. Newton había llegado a los mismos resultados que Hooke, tras llevar a cabo experimentos muy cuidadosos: una pequeña porción de luz se extendía por una región que, seguía teoría corpuscular, debía permanecer totalmente a oscuras. Este hecho era, exactamente, lo que había predicho la teoría ondulatoria de la luz debida a Hooke.

El físico holandés Christian Huygens sentó las bases más generales de esta teoría, al explicar con todo detalle la propagación de los movimientos ondulatorios. Se estableció entonces una agitada controversia entre los partidarios de una y otra teoría, que quedó de momento sin resolver, debido a la carencia de aparatos lo suficientemente exactos que proporcionasen datos experimentales decisivos.

En 1801, Thomas Young asestó un terrible golpe a la teoría corpuscular con su experimento acerca de las interferencias; según éste, se producían franjas luminosas y oscuras que sólo podían ser explicadas aceptando que la luz tenía un carácter ondulatorio. El descubrimiento del fenómeno de la polarización, debido a Augustín Fresnel, en 1816, significó un nuevo apoyo en favor de la teoría ondulatoria. Según ella, la luz polarizada estaba compuesta por ondas que vibraban en un solo plano.

Tanto las ondas sonoras como las que se forman en el agua necesitan un medio para poder propagarse. Durante todo el siglo xix se consideró que las ondas luminosas eran perturbaciones producidas en el éter, sustancia invisible que lo invadía todo, incluso el espacio “vacío”. Clerk Maxwell llevó a cabo un tratamiento matemático de las ondas luminosas, demostrando que éstas eran un tipo dé radiación electromagnética, y similares, por tanto, a las ondas de radio. Una pregunta quedaba por hacer: ¿era necesaria la existencia del éter para la propagación de las radiaciones electromagnéticas?.

En seguida se pusieron en acción numerosos dispositivos experimentales, para tratar de demostrar su existencia; entre ellos puede señalarse el de Oliver Lodge —que constaba de dos discos que giraban muy próximos—, con el que trató de verificar si el éter ejercía algún tipo de fricción. Las observaciones astronómicas sugerían que si, de verdad, existía el éter y éste envolvía la Tierra, no debía de girar con ella, pues, de otro modo, su rotación habría afectado las observaciones de los telescopios.

Los estadounidenses Michelson y Morley realizaron una serie de experimentos para determinar el retraso de la rotación del éter con respecto a la de la Tierra, encontrando que era igual a cero. El éter, por tanto, permanecía estacionario, o no existía, o la luz se comportaba de un modo p’eculiar. De esta forma se llegó a la conclusión de que esta sustancia tan tenue, que tanta resistencia había opuesto a ser detectada, no era más que un ente hipotético.

El éter era una complicación innecesaria. La luz se comportaba de un modo peculiar cuando se trataba de medir su velocidad, ya que mantenía una propagación siempre igual. Este resultado condujo a Albert Einstein a formular su teoría de la relatividad, basada en la constancia de la velocidad de la luz.

La idea corpuscular es quizá la mejor forma de representarnos un rayo de luz. Los corpúsculos viajan en línea recta, ya que tienden siempre a desplazarse entre dos puntos por el camino más corto posible. Los cuerpos muy calientes, como el Sol o el filamento de una lampina eléctrica, emitirían un chorro de diminutas partícula. Los demás cuepos se ven debido a que reflejan algunos de los corpúsculos que los golpean.

El cuerpo humano no emite corpúsculos luminosos propios, pero se hace visible cuando refleja los corpúsculos en los ojos de las personas que están mirándolo. De acuerdo con la teoría corpuscular, toda la energía luminosa que llega a la Tierra, procedente del Sol, es transportada por corpúsculos.

Las teorías modernas sobre la naturaleza de la luz sugieren que es, en realidad, un conjunto de diminutas partículas emitidas por cuerpos calientes, como el Sol. Pero existe una sutil diferencia entre la moderna partícula luminosa, llamada fotón, y la versión antigua, el corpúsculo, consistente en que el fotón no transporta energía, sino que es energía.

Podemos pensar en un fotón como en un paquete de energía. Es diferente a todas las demás clases de energía, ya que existe sólo en movimiento. Cuando se desplaza a sus velocidades normales, aproximadamente 300.000 kilómetros por segundo, los fotones se comportan como un trozo ordinario de materia. Pueden entrar en colisión con partículas, tales como electrones y protones, y desviarlos, del mismo modo que si fueran partículas normales.

En los fotómetros fotoeléctricos, empleados en fotografía;, los fotones que golpean un trozo de metal sensible a la luz liberan electrones de él. Estos electrones forman una corriente eléctrica que mueve una aguja, indicando la intensidad de la luz. Se ha descubierto que un fotón libera un electrón.

Los electrones son partículas y se liberan por los fotones que se comportan como partículas. Isaac Newton fue defensor de la vieja teoría corpuscular, la cual, debido a su influencia, dominó durante el siglo XVIII. La teoría moderna de los fotones fue consecuencia del trabajo de Alberto Einstein sobre el efecto fotoeléctrico, en el año 1905.

Sigamos ahora con esta nueva visión física del fenómeno.

NUEVA VISIÓN CORPUSCULAR: EINSTEIN Y LOS CUANTOS DE LUZ (los fotones)
Cuando la luz choca con una superficie metálica sensible provoca un desprendimiento de electrones. En 1905, Alberto Einstein, examinando ese efecto (efecto fotoeléctrico), llegó a la conclusión de que las cosas sucedían como si la luz estuviese compuesta de pequeñas partículas (posteriormente denominadas cuantos).

albert einstein

Cada cuanto de luz provocaba la liberación de un electrón. Con ello se volvía de nuevo a los postulados de la teoría corpuscular. En el segundo decenio de nuestro siglo, Louis de Broglie propuso una arriesgada teoría: la luz posee una doble personalidad: unas veces se comporta como ondas y otras como partículas.

Broglie Louis

La teoría actualmente aceptada sugiere que la luz es algo aún más indefinido. Su comportamiento es regido por leyes estadísticas (mecánica ondulatoria). Para demostrarlo, podemos, por ejemplo, utilizar el experimento de Young sobre la formación de las interferencias, sólo que, en este caso, se emplea un haz luminoso de intensidad muy débil. Haciéndolo pasar a través de dos aberturas convenientemente situadas, se hace llegar la luz a una placa fotográfica.

En principio, hemos de esperar que cada cuanto de luz que llegue a la placa ennegrecerá una molécula de la emulsión que la recubre. Si el haz luminoso es lo suficientemente débil, al comienzo de la operación parece como si los electrones que llegan a la placa pudieran chocar con cualquier parte de ella; pero esto es algo muy fortuito.

A medida que pasa el tiempo, sin embargo, puede verse como las partes mas ennegredecidas van concentrándose gradualmente. Estas zonas son, precisamente, aquellas donde nan de producirse las franjas luminosas de interferencia. Según las modernas teorías, estas zonas son las que tienen mayor probabilidad de ser alcanzadas por la luz, de manera que sólo cuando el número de cuantos que llegan a la placa es suficientemente grande, las teorías estadísticas alcanzan el mismo resultado que las teorías clásicas.

Fuente Consultada:
FISICA I Resnick-Holliday
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología

Funcionamiento de Olla a Presión Historia de Papin Denis

FUNCIONAMIENTO: Las ollas a presión suponen un enorme ahorro de tiempo en la cocina, ya que, permiten cocer los alimentos en un plazo mucho menor del requerido normalmente. El tiempo necesario para la cocción depende mucho de la temperatura del alimento y del ambiente que lo rodea. Por ejemplo, un trozo de carne tarda mucho más en asarse en un horno a fuego lento que si se aumenta la temperatura. Sin embargo, si ésta se aumenta demasiado, la carne se quema, en vez de cocerse como es debido.

Lo mismo ocurre cuando los alimentos se cuecen en agua. Por ejemplo, un huevo metido en agua a 80°C, tarda mucho más en cocerse que si el agua está hirviendo. Así, pues, el tiempo de cocción depende de la temperatura. Si se mide la temperatura a intervalos durante la cocción del huevo, se ve que aquélla aumenta, hasta que el agua comienza a hervir, y entonces permanece constante a 100°C

El proporcionarle mas calor no altera la temperatura: lo único que ocurre es que el agua hierve más vigorosamente. Bajo condiciones atmosféricas normales, el agua pura hierve a 100°C. Sin embargo, el punto de ebuffieión del agua varía con la presión. En la cumbre de una montaña elevada, donde el aire está enrarecido y la presión es inferior a la normal, el agua hierve a una temperatura más baja. Si por algún procedimiento se aumenta la presión del gas sobre el agua, su punto de ebullición sube.

Esto es exactamente lo que ocurre en las ollas a presión. Aumenta la presión del gas dentro de ellas y, por lo tanto, el punto de ebullición del agua que contienen, con lo cual los alimentos se cuecen más rápidamente a temperaturas más altas.

El agua hierve a 100 °C, a la presión atmosférica normal (1,03 kg. por centímetro cuadrado) . Si se aumenta la presión a 1,4 kg./cm2., hierve a 108 °C; si se incrementa a 1,75 kg./cm., lo hará a 115°C., y así sucesivamente. De hecho, algunas ollas trabajan a una presiones dos veces mayor que la atmosférica.

Las ollas a presión tienen que ser lo bastante sólidas para soportar las fuertes presiones, y la tapa ha de cerrar herméticamente, para que la presión interior se mantenga sin que se produzcan fugas.

La tapa lleva un punto débil, colocado deliberadamente para que actúe como dispositivo de seguridad, ya que, en caso de que se obstruyera la válvula de seguridad a través de la cual escapa normalmente el vapor, la olla podría convertirse en una bomba, de no existir dicho dispositivo, pues a medida que se siguiera aplicando calor la presión iría aumentando, hasta que, finalmente, explotaría.

Pero la olla no es tal arma mortífera y no ocurre eso, ya que, cuando la presión aumenta demasiado, la válvula de seguridad se abre y escapa el exceso de gas. En el centro de la tapa, hay un orificio en el que se asienta un manómetro de aguja, que lleva un peso. Se comienza la cocción sin colocar la válvula.

corte de una olla a presión

Corte de una olla a presión

El agua hierve a la presión atmosférica y la olla va llenándose de vapor, hasta que, por fin, brota un chorro de éste por el orificio. Entonces, se coloca el manómetro y el orificio queda bloqueado.

Esto impide que escape el vapor y, con ello, aumenta la presión. A medida que esto ocurre, el vapor acciona sobre el dispositivo, hasta que brota una nube que indica que la presión deseada se ha alcanzado. En este momento, debe regularse el gas o la electricidad, para mantener la presión.

Cuando se ha acabado la cocción, hay que enfriar la olla bajo la canilla de agua. El agua fría elimina calor de aquélla, y una parte del vapor interior se condensa en forma de gotitas acuosas. Con lo cual, al reducirse la cantidad de vapor, la presión disminuye. Entonces se puede abrir la olla.

Fuente Consultada: Enciclopedia de la Ciencia y la Tecnología TECNIRAMA N°126

SOBRE LA VIDA Y OBRA DE DENIS PAPIN: Uno de los trece hijos de un burgués protestante de Blois, llamado Denis Papin se orienta primero hacia la medicina, mostrando en la facultad de Angers un interés precoz por la mecánica y la cuestión de la conservación de los cadáveres. Su habilidad manual hace que repare en él un abate muy conocido, que lo recomienda a Christiaan Huygens, “inventor del reloj de péndulo”, como se lo presentaba entonces.

Retrato de Denis Papin (1647-1714). Trabajó con Robert Boyle en la investigación sobre el aire. Es recordado por sus inventos y es considerado uno de los grandes pioneros de la máquina de vapor moderna. La máquina de vapor de Papin se compone de un cilindro con un pistón que es levantado por la presión del vapor, y es descendente produciendo el trabajo.

Pilar de la Academia Real de Ciencias, dotado por el Rey de 1.200 libras de renta, el sabio holandés se instaló en la Biblioteca real, donde procedió a realizar múltiples experiencias. Es allí donde el joven Papin, brillante posdoctorado estilo siglo XVII, se inicia en la tecnología de la “bomba al vacío”, al tiempo que lleva a cabo investigaciones inéditas sobre la conservación de los alimentos. Para el gran asombro de Huygens, logra mantener una manzana en condiciones, bajo vacío, ¡durante cinco meses!.

Como los laboratorios de física no eran muy numerosos en 1675, no es nada sorprendente encontrar al joven oriundo de Blois en Londres, en casa de Robert Boyle, aristócrata de fortuna apasionado por la mecánica.

Provisto de un contrato bastante ventajoso pero que estipula el secreto, Papin construye para su amo bombas de un nuevo género (dos cilindros hermanados conducidos por una palanca común que permite una aspiración continua), con las cuales termina por efectuar las experiencias él mismo. Boyle nunca ocultará lo que le debe a su técnico francés, a quien cita con abundancia en sus publicaciones pero cuyos textos, aclara, reescribe sistemáticamente.

Es en ese laboratorio donde la gloria viene a coronar la doble obsesión, mecánica y culinaria, de Papin. Al adaptar una sopapa de seguridad, que inventa para la ocasión, sobre un recipiente metálico herméticamente cerrado con dos tornillos, crea el “digestor”, o “baño maría de rosca”, que se convertirá en la olla a presión, cuyo vapor pronto silba en las cocinas del Rey de Inglaterra y en la sala de sesiones de la Academia real de París.

Dice Denis: “Por medio de esta máquina , la vaca más vieja y más dura puede volverse tan tierna y de tan buen gusto como la carne mejor escogida”, y en la actualidad no se concibe adecuadamente el impacto que podía tener una declaración semejante: en 1680, a los treinta y tres años, Papin es elegido miembro de la Royal Society, como igual de sus famosos empleadores, incluso si su nivel de vida sigue siendo el de un técnico.

Aunque en 1617 se haya instalado en Inglaterra un sistema de patentes, a Papin no le parece de ninguna utilidad interesarse en eso. Mientras los artesanos ingleses hacen fortuna fabricando su marmita, él solicita a Colbert una renta vitalicia… que le es negada.

De todos modos, ahí lo tenemos, lanzado en el jet set intelectual de la época. Lo vemos disertando sobre la circulación de la sangre en casa de Ambrose Sarotti, en Venecia, experimentando con Huygens en París sobre la bomba balística (un pesado pistón puesto en movimiento por una carga de pólvora) y lanzando en Londres su candidatura al secretariado de la Royal Society.Por desgracia, el elegido será Halley.

Fatigado, sin dinero, Papin agobia a la Royal Society con candidos pedidos, antes de desaparecer definitivamente en 1712.

Fuente Consultada: Una Historia Sentimental de las Ciencias Nicolas Witkowski

Concepto de Calor Latente Investigación de Black Joseph

CONCEPTO DE CALOR LATENTE

CALOR LATENTE:  Cuando calentamos una substancia esperamos que su temperatura ascienda. Un termómetro colocado en una olla con agua sobre un calentador registrará un aumento gradual de la temperatura hasta llegar a los 100°C, en que el agua entra en ebullición. No hay más cambios de temperatura hasta que toda el agua se evapora, aunque el calentador siga suministrando calor. Este calor, que no se pone en evidencia por el aumento de temperatura, se denomina calor latente de vaporización del agua. Latente quiere decir “oculto”.

Todo el calor que pasa al agua hirviendo se emplea en proveerla de la energía necesaria para transformarse en vapor. Las moléculas de vapor están mucho más alejadas entre sí que las del agua, y para separarlas es necesaria una cantidad de energía, que venza las fuerzas de atracción molecular.

Del mismo modo, todo el calor entregado al hielo se consume en transformarlo en agua, de modo que no queda calor disponible para elevar su temperatura. Cada sustancia requiere calor “latente” para permitirle cambiar de estado sólido a estado líquido, o de líquido a gas. Si el cambio de estado es de gas a líquido o de líquido a sólido, el calor “latente” es liberado.

Hablando en forma estricta, el calor latente se refiere a un gramo de substancia. Así el calor latente de vaporización del agua (calor latente del vapor) es la cantidad de calor necesaria para convertir un gramo de agua en vapor, sin cambio de temperatura. Su valor es de casi 540 calorías. El calor latente de fusión del hielo es la cantidad de calor necesaria para convertir un gramo de hielo en agua, sin cambio de temperatura, y vale 80 calorías.

La nevera o heladera se basa en el calor latente de algún gas fácilmente licuable, como el amoníaco. Se comprime el gas y se lo convierte en un líquido. En este proceso el gas entrega su calor latente. El líquido se envía por tubos al gabinete. Como en estos tubos la presión es menor, el líquido se gasifica nuevamente, tomando el calor necesario para este cambio de estado del gabinete y su contenido, y así hace bajar la temperatura del mismo.

La nafta volcada, sobre la piel da sensación de frío, porque se evapora rápidamente y absorbe calor latente. Del mismo modo, la evaporación del sudor en los climas cálidos es el procedimiento que emplea la naturaleza para que mantengamos frescos nuestros cuerpos. Por otra parte, el calor latente liberado cuando se forma hielo en los grandes lagos de Estados Unidos es de gran utilidad para los fruticultores de la zona, porque evita las heladas.

http://historiaybiografias.com/linea_divisoria2.jpg

PRIMERAS INVESTIGACIONES EN CALORIMETRÍA

Una de las formas de energía más familiar para nosotros es el calor. Diariamente hacemos uso de él para calentar nuestra casa, para preparar la comida, etc. La energía calorífica es debida al movimiento de las moléculas y de los átomos. La experiencia nos enseña que la energía de un cuerpo puede transformarse en calor, siendo también posible que la energía térmica se convierta en trabajo, como sucede en los motores de explosión o en las máquinas térmicas. Por todo ello decimos que el calor es una forma de energía.

DIFERENCIA ENTRE CALOR Y TEMPERATURA: Actualmente, está muy bien determinada la diferencia entre calor y temperatura, a pesar de que algunos estudiantes puedan confundir estos dos conceptos. Calor es la energia necesaria para calentar un cuerpo y temperatura es una medida de su grado de calor. Cuanto mas energía entreguemos mas temperatura tendrá el cuerpo.

Para pensar este tema, imaginemos que debemos calentar 1 litro de agua de 10°C a 20°C, es decir , elevarla 10°C mas. Para lograrlo debemos entregar energía a esa masa de agua, por ejemplo colocarla sobre la hornalla de una cocina. Observaremos que a medida que pasa el tiempo el agua se pone mas caliente, por lo que podemos concluir que a medida que entregamos energía el agua aumenta su temperatura. Vemos que hay dos conceptos definidos por un lado la cantidad de energía o calor entregado y por otro la medida de su temperatura.

Si por ejemplo ahora tenemos que calentar 2 litros de agua de 10°C a 20°C, entonces necesitaremos el doble de energia entregada, para lograr la misma temperatura.

Para medir la energia entregada en forma de calor, se define la caloría que es la cantidad de calor necesaria para calentar de 14°C a 15 °C un gramo de agua. La unidad así definida corresponde a una cantidad de calor muy pequeña, por lo que, generalmente, en la práctica se utiliza la kilocaloría, que corresponde a 1.000 calorías.

Se usa por definción de  14 a 15°C solo como una medida de referencia, en realidad lo que
objetivamente se quiere indicar, es que el aumento sea de 1°C.

Para medir temperaturas utilizamos un termómetro con diversas escalas, pero la mas popular es grados centígrados o Celsius, creador de esta escala, que comienza a O° cuando el hielo se congela y finaliza en 100°C cuando el agua entra en ebullición.

La temperatura (la intensidad de calor) puede medirse fácilmente usando un termómetro.  Por el contrario, para la medida del calor (cantidad de energía entregada para calentar la materia) se usa la caloría.

HISTORIA: Hace unos 200 años, Joseph Black llevó a cabo una serie de experimentos muy importantes sobre la medida del calor y las relaciones entre el calor y la temperatura.

Joseph Black fisico

Demostró que el hielo en fusión y el agua hirviendo, que produce vapor, absorben grandes cantidades de calor, a pesar de que no hay cambios de temperatura. Introdujo el concepto de calor latente, con el que designó el calor necesario para producir esos cambios de estado.

grafica calor latente

Observe por ejemplo que cuando la temperatura llega a B, por mas que se sigua agregando calor, la temperatura
permanece constante hasta que no haya mas sustancia sólida. Lo mismo ocurre para que la sustancia
cambie de líquida a gaseosa.

La energía necesaria para que una sustancia cambie de estado es: Q = m. L
Donde m es la masa de la sustancia considerada y L es una propiedad característica de cada sustancia, llamada calor latente. El calor latente se mide en Joule/kg en unidades del SI.

Black también descubrió que se necesitan distintas cantidades de calor para producir las mismas elevaciones de temperatura en masas iguales de sustancias diferentes. Por ejemplo, para aumentar la temperatura del agua de 15° a 25° hace falta aplicar 1,7 veces más calor que para producir el mismo cambio de temperatura en una masa igual de alcohol.

Para explicar esta variación entre las diferentes sustancias, Black introdujo la idea de calor específico. Al realizar este trabajo, sentó las bases de la medida del calor —la calorimetría—, que sigue teniendo vigencia aún. Durante los 100 años anteriores, o más, los avances de la química habían estado obstaculizados por la teoría del flogisto. Sin embargo, como Black no aceptaba las teorías que no estuviesen apoyadas por pruebas experimentales, hizo varias aportaciones valiosas a la ciencia química.

calor latente

Black definió el “calor latente” como la cantidad de calor para cambiar de estado una sustancia

Hasta mediados del siglo XVIII, se sabía muy poco acerca de los gases y, de hecho, muchas personas aseguraban que sólo existía un gas (el aire). Un siglo antes (en 1640, para precisar más), van Helmont había descubierto el gas que hoy llamamos anhídrido carbónico; pero, a causa del incremento de la teoría del flogisto, no se llegó a comprender la importancia de este hallazgo.

Black redescubrió el anhídrido carbónico en 1754, haciendo experimentos con dos álcalis débiles: los carbonatas de magnesio y de calcio. Comprobó que cuando estas sustancias se calientan, cada una de ellas produce un álcali más fuerte, liberando, al mismo tiempo, aire fijo (o sea, el anhídrido carbónico). El peso del álcali fuerte es menor que el del álcali débil del que procede.

Joseph Black nació en 1728, en Burdeos (Francia), de padres que descendían de escoceses. Después de pasar seis años en la escuela en Belfast, en 1746, ingresó a la Universidad de Glasgow, para estudiar química y medicina. En 1756, llegó a ser profesor de anatomía y de química en Glasgow.

Al cabo de 10 años pasó a la cátedra de medicina y química de la Universidad de Edimburgo. Black era muy popular entre los estudiantes porque preparaba concienzudamente los cursos y sus clases estaban ilustradas con muchos experimentos.

Al mismo tiempo que hacía notables aportaciones a la química y a la física, encontró tiempo suficiente para ejercer la medicina. Murió apaciblemente, todavía ocupando su cátedra, a la edad de 71 años.

Calor especifico

También definió el calor especifico, para tener en cuenta las diferentes cantidades de calor necesarias para producir un mismo aumento de temperatura en masas iguales de distintas sustancias.

No todos los materiales cambian su temperatura con la misma facilidad, ya que las partículas que los forman y las uniones entre ellas son diferentes. El calor específico Informa sobre la mayor o menor facilidad de las sustancias para aumentar su temperatura. El calor específico de una sustancia, ce, es la cantidad de calor necesaria para elevar un grado la temperatura de un kilogramo de dicha sustancia.

Algunos valores de calor específico expresado en: (Joule/Kg. °K)

Agua    4.180
Alcohol etílico    2.400
Hielo    2.090
Vapor de agua    1.920
Aire    1.000
Aceite    1.670
Aluminio    878
Vidrio    812
Arena    800
Hierro    460
Cobre    375
Mercurio    140
Plomo    125

Fuente Consultada:
Enciclopedia TECNIRAMA de la Ciencia y la Tecnología Fasc. N°112 Sabio Ilustre Joseph Black
Enciclopedia del Estudiante Tomo N°7 Física y Química

Conceptos Básicos de Electromagnetismo Historia y Aplicaciones

Antetodo se aclara que la explicación sobre este fenómeno físico es sólo descriptivo y tiene como objetivo describir las características mas imporatantes del mismo. Es una especie de descripción tecnico-histórica para darle al interesado una somera idea de como funciona la naturaleza en lo que respecta a la interacción de campos magnéticos y eléctricos.

De todas maneras es una interesante descripción  orientada a todos los curiosos de la física o para quellos estudiantes principiantes que desean adentrarse en el mundo del electromagnetismo. Leer con detenimiento estos conceptos básicos, ayudarán de sobremanera a enteder luego las explicaciones matemáticas o conclusiones finales de las experiencias de laboratorio.

Si el lector desea un estudio mas técnico, con las correspondientes deducciones matemáticas que implican un analisis profundo del fenómeno, debería hacer nuevas búsquedas, ya que existen muchos y excelentes sitios que explican muy didacticamente al electromagnetismo.

INTRODUCCIÓN HISTÓRICA: Los fenómenos conocidos de la electricidad estática y del magnetismo permanente han sido observados durante unos 2500 años. William Gilbert, en Inglaterra, realizó muchas investigaciones ingeniosas en electricidad y magnetismo. En 1600, publicó De Magnefe, el primer libro concluyente sobre este tema, donde explica muchas de las  semejanzas entre la electricidad y el magnetismo.

Una y otro poseen opuestos (positivo y negativo en electricidad, polo norte y polo sur en electromagnetismo). En ambos casos, los opuestos se atraen y los semejantes se repelen, y también en ambos casos la fuerza de la atracción o repulsión declina con el cuadrado de la distancia.

Nosotros, igual que los primeros observadores, hemos notado semejanzas entre los fenómenos relativos a la electricidad y los relacionados con el magnetismo.

Por ejemplo:
1.   Existen dos clases de concentración eléctrica —más y menos— y dos clases de concentración magnética  —norte y sur.
2.   Tanto en electricidad como en magnetismo, concentraciones del mismo nombre se repelen entre sí; mientras que concentraciones de nombre diferente se atraen mutuamente.
3.   Los efectos eléctricos y los magnéticos se describen  en función  de campos.
4.   En electricidad y en magnetismo, las fuerzas de atracción y repulsión están de acuerdo con la ley inversa  de  los cuadrados.
5.   Cuerpos apropiados pueden electrizarse frotándolos (como cuando se frota un objeto de plástico con una piel); análogamente, cuerpos apropiados pueden ser imantados por frotamiento (como cuando se frota una aguja de acero con un imán).
6.   Ni las cargas eléctricas, ni los polos magnéticos son visibles, ni tampoco los campos asociados, eléctrico o magnético. Tanto en electricidad como en magnetismo, las concentraciones y sus campos se conocen sólo por sus efectos.

Quizás podamos encontrar otras semejanzas. Se puede ver de qué modo ellas llevaron a los primeros científicos a sospechar que la electricidad y el magnetismo estaban íntimamente relacionados, siendo, posiblemente, manifestaciones distintas del mismo fenómeno fundamental.

Cuando en 1800, el físico italiano Alessandro Volta descubrió la primera pila electroquímica útil, los hombres de ciencia tuvieron la primera fuente segura de energía para hacer funcionar circuitos eléctricos. Todavía no se encontraban pruebas de alguna conexión entre los fenómenos eléctricos y magnéticos. Por consiguiente, en la primera mitad del siglo XIX los sabios opinaban que “a pesar de las semejanzas aparentes entre la electricidad y el magnetismo, estos dos fenómenos no están relacionados entre sí”.

Esta era la situación de 1819 cuando un profesor de ciencias danés, llamado Hans Christian Oersted, hizo una observación de gran importancia en este campo de la Física. Oersted, al parecer, había considerado y buscado un enlace entre la electricidad y el magnetismo.

Fisico Oerster

Hans Christian Oersted

De acuerdo con uno de sus alumnos, Oersted estaba utilizando una batería de las pilas voltaicas primitivas durante una de sus clases. En aquellos días, las baterías eran caras, difíciles de manejar y no duraban mucho tiempo.

Oersted deseaba usarla mientras fuera posible, así que colocó un alambre paralelo arriba de una brújula y cerró el circuito.

Posiblemente, Oersted trataba de demostrar a sus alumnos que la corriente eléctrica y el comportamiento de la brújula no estaban relacionados. Para su sorpresa, cuando cerró el circuito, la aguja de la brújula se movió y osciló a una posición que ya no era paralela al alambre. Oersted había tropezado con el fenómeno de que una corriente eléctrica está rodeada de un campo magnético.

Además, tenía su mente alerta y con el pensamiento abierto para reconocer un fenómeno inesperado   y   atribuirle   la   importancia   que   merecía.

Oersted efectuó muchos experimentos con estos nuevos fenómenos y, al principio del año siguiente, publicó una pequeña comunicación describiendo sus observaciones. Las noticias científicas viajan, en general, con rapidez y no pasó mucho tiempo cuando un gran número de investigadores capaces realizaban experiencias sobre electromagnetismo.

Entre ellos estaban Michael Faraday en Inglaterra, André Ampére en Francia y William Sturgeon, quien fabricó el primer electroimán con núcleo de hierro en 1823. Con toda seguridad el descubrimiento de Oersted, en su aula, fue un paso importante en el desarrollo de  los conceptos del electromagnetismo.

Una de las razones de que los efectos magnéticos de una corriente eléctrica fueran tan importantes es que introdujeron una nueva clase de fuerza. Todas las observaciones previas con cualquier tipo de fuerzas estaban relacionadas con acciones sobre la recta entre los cuerpos que producían la fuerza. Así, las fuerzas gravitacionales están siempre en la línea recta que une las dos masas; de este modo se comportan también las fuerzas atractivas y repulsivas entre cargas eléctricas y entre imanes.

Pero aquí, existía una fuerza donde la acción era perpendicular a la recta que une el alambre y la aguja de la brújula. Cuando Oersted colocó una corriente arriba y paralela a la brújula, la aguja giró alejándose de su posición paralela al alambre.

PARTE I: IMANES , MAGNETISMO Y CORRIENTES INDUCIDAS
En la Naturaleza existe un mineral, llamado magnetita por haber sido descubierto en la ciudad griega de Magnesia, que tiene la propiedad de atraer las limaduras de hierro. Este fenómeno se denomina magnetismo y los cuerpos que lo manifiestan se llaman imanes. Un imán tiene dos polos, uno en cada extremo, que llamanos Norte y Sur

Si tomamos un imán, que puede girar horizontalmente alrededor de su punto medio, y le acercamos un polo de otro imán se observa que los polos del mismo nombre se repelen y los de nombre distinto se atraen.

Al dividir un imán en varios trozos, cada uno de ellos, por pequeño que sea, posee los dos polos. Este comportamiento se explica suponiendo que los imanes están formados por una gran cantidad de minúsculos imanes ordenadamente dispuestos. Así, al frotar un trozo de hierro con con imán se ordenan los pequeños imanes que contiene el trozo de hierro, de tal modo que la acción magnética no se neutraliza entre ellos. El trozo de hierro así tratado manifiesta sus propiedades magnéticas y constituye un imán artificial.

Hoy se sabe que los imanes están formados por minúsculos imanes moleculares originados por el giro de electrones que dan lugar a corrientes eléctricas planas, y según el sentido de giro presentan una cara norte o una cara sur.

La región del espacio sensible a las acciones magnéticas se llama campo magnético.

Para visualizar el campo magnético, Michael Faraday (1791-1867), de quien hablaremos mas abajo, esparció limaduras de hierro sobre un papel colocado encima de un imán. Observó que las limaduras se situaban en líneas cerradas; es decir, líneas que parten de un polo del imán y que llegan al otro polo.

limaduras de hierro en un imán

Además, las líneas no se cortan. Estas líneas se llaman líneas de campo o de fuerza  y, por convenio, se dice que salen del polo norte y entran en el polo sur. No existe una expresión matemática sencilla que sirva para determinar el campo magnético en las inmediaciones de un imán, pero podemos decir que:

•  El campo magnético se reduce a medida que nos alejamos del imán.
•  El campo magnético depende del medio en el que situemos al imán.

Observemos el comportamiento de la brújula, frente al campo mágnetico que produce nuestro planeta.

El núcleo de la Tierra está compuesto  por una aleación de hierro y níquel. Este material es muy buen conductor de la electricidad y se mueve con facilidad por encontrarse en estado líquido.

La Tierra actúa como un imán: Campo magnético terrestre. Si tomamos una aguja imantada y la dejamos girar libremente, se orientará siempre en una misma dirección norte-sur. De ahí que al polo de un imán que se orienta hacia el norte geográfico le denominemos polo norte, y al otro polo del imán, polo sur. Esto quiere decir que la Tierra se comporta como un enorme imán. Y es debido a que a medida que la Tierra gira, también lo hace el hierro fundido que forma su núcleo.

El planeta Tierra es como un gran imán con dos polos.

 Los polos geográficos y los polos magnéticos de la Tierra no coinciden, es decir, que el eje  N-S
geográfico no es el mismo que el eje N-S magnético.

EXPLICACIÓN DE LAS EXPERIENCIAS:

Como parte de una demostración en clase, colocó la aguja de una brújula cerca de un alambre a través del cual pasaba corriente.

experimento de Oerster

Experimento de Oerster

La aguja dio una sacudida y no apuntó ni a la corriente ni en sentido contrario a ella, sino en una dirección perpendicular. 0rsted no ahondó en su descubrimiento, pero otros sí se basaron en él, y concluyeron:

1a-Antes de conectar la corriente eléctrica la aguja imantada se orienta al eje N-S geográfico.

1b-Al conectar el circuito eléctrico, la aguja tiende a orientarse perpendicularmente al hilo.

2a– Cambiamos el sentido de la corriente eléctrica invirtiendo las conexiones en los bornes de la pila.

Igual que en el primer experimento, antes de conectar la corriente eléctrica la aguja imantada se orienta al N-S geográfico. Pero al conectar ahora el circuito eléctrico, la aguja se orienta también perpendicularmente al hilo, aunque girando en dirección contraria a la efectuada anteriormente.

Las experiencias de Oersted demuestran que las cargas eléctricas en movimiento (corriente) crean un campo magnético, que es el causante de la desviación de la brújula; es decir, una corriente eléctrica crea a su alrededor un campo magnético.

•  La dirección del campo magnético depende del sentido de la corriente.
•  La intensidad del campo magnético depende de la intensidad de la corriente.
•  La intensidad del campo magnético disminuye con la distancia al conductor.

Llamamos campo magnético a la región del espacio en donde se puede apreciar los efectos del magnetismo, por ejemplo mientras la aguja se la brújula se desplaze hacia un costado, significa que estamos dentro de ese campo magnético. A medida que alejamos la brújula del conductor observaremos que el efecto se pierde pues el campo magnético creado desaparece. Para graficar un campo magnético utilizamos líneas circulares con flechas que muestran el sentido del campo y las denominamos: líneas de fuerza.

El físico francés André-Marie Ampére (1775-1836) quien continuó con el estudio de este fenómeno, dispuso dos alambres paralelos, uno de los cuales podía moverse libremente atrás y adelante. Cuando ambos alambres transportaban corriente en la misma dirección, se atraían de forma clara.

Ampere Fisico

André-Marie Ampére (1775-1836)

Si la corriente fluía en direcciones opuestas, se repelían. Si un alambre quedaba libre para girar, cuando las corrientes discurrían en direcciones opuestas, el alambre móvil describía un semicírculo, y cesaba de moverse cuando las corrientes tenían el mismo sentido en ambos alambres. Resultaba manifiesto que los alambres que transportaban una corriente eléctrica mostraban propiedades magnéticas.

Campo magnético creado por un conductor rectilíneo
Las líneas de fuerza del campo magnético creado por un conductor rectilíreo son circunferencias concéntricas y perpendiculares al conductor eléctrico. Para saber la dirección que llevan dichas líneas de fuerza nos ayudaremos con la regla de la mano derecha.

Regla de la mano derecha

Para aplicar dicha regla, realizaremos el siguiente proceso. Tomamos el hilo conductor con la mano derecha colocando el dedo pulgar extendido a lo largo del hilo en el sentido de la corriente. Los otros dedos de la mano indican el sentido de las líneas de fuerza del campo magnético creado.

Campo magnético creado por una espira
Una espira es un hilo conductor en forma de línea cerrada, pudiendo ser circular, rectangular, cuadrada, etc. Si por la espira hacemos circular una corriente eléctrica, el campo magnético creado se hace más Intenso en el Interior de ella. El sentido de las líneas de fuerza es el del avance de un sacacorchos que girase en el sentido de la corriente.

Campo magnético creado por un solenoide o bobina
Si en lugar de disponer de una sola espira, colocamos el hilo conductor en forma enrollada, obtendremos un solenoide o bobina. En este caso, el campo magnético creado por la corriente al pasar a través de la bobina será mucho mayor, puesto que el campo magnético final será la suma de campos creados por cada una de las espiras.

Así pues, en una bobina, el campo magnético será más intense cuanto mayor sea la intensidad de corriente que circule por el ella y el número de espiras que contenga la bobina. De esta forma, una bobina, por la que circule una corriente eléctrica equivaldría a un imán de barra. El sentido de las líneas de fuerza se determina a partir de cualquiera de sus espiras.

Solenoide

SOLENOIDE. Consiste en un conductor arrollado en hélice de modo que forme un cierto número de espiras circulares regularmente distribuidas unas a continuación de otras. Cuando una corriente eléctrica recorre el conductor, el solenoide adquiere las propiedades de un imán, con sus polos norte y sur correspondientes. Llegamos, pues, a la conclusión de que la corriente eléctrica crea un campo magnético. Las líneas de fuerza que en él se originan, por convenio, van del polo norte al polo sur en el exterior, y en sentido contrario por el interior. Para determinar el nombre de los polos de un solenoide se emplea una aguja imantada, hallándose que el extremo del solenoide por el que la corriente, visto desde fuera, circula por las espiras en el sentido de las agujas del reloj, es el polo sur, y el extremo opuesto es el polo norte.

ELECTROIMANES:

Como vimos anteriormente se puede obtener un campo magnético mayor a partir de corriente eléctrica si se acoplan muchas espiras, unas al lado de otras (por ejemplo, arrollando un hilo conductor), construyendo lo que se conoce como solenoide.

Para crear campos magnéticos aún más intensos, se construyen los electroimanes, que son solenoides en cuyo interior se aloja una barra de hierro dulce, es decir, un hierro libre de impurezas que tiene facilidad para imantarse temporalmente.

Cuando se hace circular corriente eléctrica por el solenoide, con centenares o miles de vueltas (es decir, centenares o miles de espiras), el campo magnético se refuerza extraordinariamente en su interior, y el solenoide se convierte en un poderoso imán con múltiples aplicaciones.

electroimán casero

Si arrollamos un conductor alrededor de una barra de hierro dulce (clavo) y hacemos pasar por
él la corriente eléctrica, tendremos un electroimán.

Al objeto de aumentar la intensidad del campo magnético creado por el electroimán, éstos se construyen en forma de herradura, pues así el espacio de aire que tienen que atravesar las líneas de fuerza para pasar de un polo a otro es menor.

Los electroimanes se emplean para obtener intensos campos magnéticos en motores y generadores. También se utilizan en timbres eléctricos, telégrafos y teléfonos, y actualmente se construyen gigantescos electroimanes para utilizarlos como grúas y para producir campos magnéticos intensos y uniformes, necesarios en trabajos de física nuclear.

Demos ahora un paso mas…

A partir de los descubrimientos de Oersted, algunos científicos de su época se plantearon si el efecto contrario podría ocurrir es decir, si un campo magnético sería o no capaz de generar una corriente eléctrica, algo que tendría unas interesantes consecuencias prácticas.

En 1831 Faraday observó que cuando se mueve un circuito cerrado a través de un campo magnético se origina una corriente eléctrica que recorre aquel circuito, y que se conoce con el nombre de corriente inducida. Dicha corriente cesa en el momento en que se interrumpe el movimiento.

induccion electromagnetica

Las experiencias de Faraday fueron las siguientes: tomó un  imán y lo colocó cerca de una bobina, la que tenía un conectado un medidor de corriente, llamado amperímetro o galvanómetro.

Pudo observar que cuando ambos elementos (imán-bobina) están en reposo, la corriente es nula, es decir, la aguja el amperimetro no se mueve.

Luego movió el iman hacia dentro de la bobina y notó que la aguja se movía, lo que determinó un pasaje de corriente por la misma. También notó que cuanto más rápido se desplazaba el imán mayor era la corriente medida.

Cuando el imán está en reposo, dentro o fuera de la bobina, no hay corriente y a aguja del galvanómetro permanece con medición nula.

También probó en sentido inverso, es decir, dejó inmovil el imán y desplazó la bobina y el efecto fue el mismo al antes explicado.

Conclusiones de Faraday: Inducción electromagnética
En todos los experimentos de Faraday, en los que se acerca un imán a un circuito cerrado o bobina, los efectos son los mismos si el imán permanece en reposo y es la bobina del circuito la que se mueve.

Faraday concluyó que para que se genere una corriente eléctrica en la bobina, es necesario que exista un movimiento relativo entre la bobina y el imán.

Si se mueve la bobina hacia el imán, hay una variación en el campo magnético en el circuito, pues el campo magnético es más intenso cerca del imán; si se mueve el imán hacia la bobina, el campo magnético también varía.

A la corriente generada se le llama corriente inducida y, al fenómeno, se le denomina inducción electromagnética.

Por lo tanto se obtiene energía eléctrica como consecuencia del movimiento del imán con respecto a la bobina o de la bobina con respecto al imán.

La inducción electromagnética es el fundamento de los generadores de corriente eléctrica, como son la dinamo y el alternador.

PARTE II: EFECTO MOTOR Y EFECTO GENERADOR

EFECTO MOTOR: Hasta ahora vimos ejemplos con circuitos cerrados pero sin que circule una corriente por ellos, simplemente el fenómeno aparece cuando movíamos el iman o la bobina respecto uno del otro.

Ahora estudiaremos cuando ademas del movimiento relativo, también circula una corriente por esa bobina. Para ello observemos la imagen de abajo, donde se coloca una alambre conectado a una batería dentro de un campo magnético de un imán.

Efecto Motor

Un alambre se coloca horizontalmente a través de un campo magnético. Al fluir los electrones hacia la derecha de la mano, el alambre recibe la acción de una fuerza hacia arriba.

La fem (voltaje) de la batería y la resistencia del circuito son adecuados para que la corriente valga unos pocos amperios. Al llevar cabo este experimento, se encuentra:

Se observa que:

a.   Cuando el alambre tiene corriente y se coloca a través del campo magnético, el alambre recibe la acción de una fuerza. (si hay fuerza hay un movimiento)

b.   Cuando el alambre con corriente se coloca bastante lejos del imán no experimenta ninguna fuerza.

c.   Cuando el alambre no lleva corriente y se coloca a través del campo magnético, no experimenta ninguna fuerza.

d.   Cuando el alambre no lleva corriente y se coloca bastante lejos del imán, no experimenta  ninguna  fuerza.

e.   Cuando el alambre con corriente se coloca paralelo al campo magnético, no experimenta ninguna fuerza.

De estas observaciones se puede deducir:
(1) que debe tener corriente y
(2) que su dirección debe cruzar el campo magnético, para que el alambre reciba la acción de una fuerza.

f.   Cuando el alambre conduce electrones que se alejan  del observador,  recibe la  acción de una fuerza vertical.

g.   Cuando el alambre conduce electrones hacia el observador, recibe la acción de una fuerza vertical opuesta a la del caso (f ).

De esto se puede concluir que el sentido de la fuerza sobre el alambre forma ángulos rectos con el sentido de la corriente y con el del campo magnético. Se deduce, que el sentido de la corriente influye sobre el sentido de la fuerza, h.   Si  se invierten los polos magnéticos, también se invierta el sentido de la fuerza que actúa sobre el alambre.

De esta observación puede verse que el sentido del campo magnético, influye sobre el sentido de la fuerza. i.   Si se varía la intensidad de la corriente en el alambre, la magnitud de la fuerza resultante varía en la misma proporción.
Esto indica que la fuerza que recibe el alambre depende directamente de la intensidad de la corriente. j.

Si se substituye el imán por uno más débil o más  potente,   la  magnitud  de  la  fuerza resultante varía en la misma proporción. Por tanto, la fuerza sobre el alambre es directamente proporcional a la densidad de flujo del campo magnético. Debido a que los principios fundamentales de este experimento son básicos para el trabajo de motores eléctricos, la existencia de una fuerza que  actúa  sobre  una  corriente  que  cruza  un campo magnético, se llama efecto motor

El efecto motor no debe ser ni sorprendente ni misterioso. Después de todo, una corriente eléctrica es un flujo de electrones que experimentan una fuerza deflectora cuando atraviesan un campo magnético. Puesto que no pueden escapar del alambre, lo arrastran con ellos.

regla de los 3 dedos de la mano izquierda

La regla de los tres dedos también se aplica a la desviación de un alambre con corriente a través de un campo magnético. Use la mano izquierda, con el mayor apunte en el sentido del flujo electrónico, de negativo a positivo.

EFECTO GENERADOR:

Efecto Generador

El alambre se empuja alejándolo del lector. Cuando esto se hace en condiciones apropiadas, los electrones libres del alambre son imrjulsados hacia arriba.

De nuevo se tiene un campo magnético debido a un potente imán permanente . Sin embargo, esta vez se mantiene el alambre vertical y lo mueve acercándolo y alejándolo, hacia adelante y atrás, atravesando el campo. El alambre en movimiento se conecta con un medidor eléctrico sensible —un galvanómetro— que indica la existencia de una corriente eléctrica débil y, por tanto, de una fuerza electromotriz o voltaje (fem) que produce dicha corriente. En este experimento el estudiante observará y deducirá lo siguiente:

a.   Cuando el alambre se mueve a través del campo magnético se produce una fem.
b.   Cuando el alambre se mueve en una región lejos del imán, no hay fem.
c.   Cuando el alambre se mueve paralelo al campo magnético, no hay fem.
d.   Cuando el alambre se mantiene fijo, en una posición lejos del imán, no hay fem.
e.   Cuando el alambre se mantiene fijo en una posición, dentro del campo magnético, no hay fem.
De estas observaciones se puede concluir que el alambre debe moverse a través del campo magnético para que se genere una fem. Es evidente, que la parte superior del alambre, es positiva o negativa con respecto a la parte inferior. De esto se puede deducir que la fem generada forma ángulos rectos con el movimiento y también con el campo magnético.
f.    Cuando el alambre se mueve a través del campo, alejándose del observador, se produce una fem.
g.  Cuando el alambre se mueve a través del campo acercándose al observador, se produce una fem cuya polaridad es opuesta a la del inciso anterior (f).
De estos hechos se puede ver que el sentido del movimiento  determina el  sentido  de la fem generada.
h. Si se invierten los polos magnéticos el sentido
de la fem generada se invierte. Esto indica que el sentido de la fem generada está determinado por el sentido del campo magnético.
i.   Si se varía la velocidad de movimiento del alambre, la magnitud de la fem generada varía también de acuerdo con ella. Este dato indica que la fem generada es directamente dependiente de la velocidad del alambre en movimiento.
j. Si se colocan imanes más débiles o más potentes, la magnitud de la fem generada disminuye o aumenta proporcionalmente. Por tanto, la fem generada es directamente dependiente de la densidad de flujo del campo magnético.

Si se realizan estos experimentos, puede ser difícil ver el movimiento de la aguja del galvanómetro, porque la fem es muy pequeña. Sin embargo, se puede fácilmente repetir un experimento de la imagen. Se enrolla una bobina de alambre con varias vueltas, se conectan sus extremos al galvanómetro y se mueve dicha bobina rápidamente hacia el polo N de una barra imantada.

El gavanómetro se desviará, demostrando que se ha producido una fem en la bobina. La fem cambia de sentido cuando se aleja la bobina del imán o cuando se usa el polo S en lugar del polo N.

En este caso el alambre en la bobina que se mueve en un campo magnético se desplaza, principalmente, de modo perpendicular al campo. De acuerdo con esto, debe generarse una fem. Se puede preferir pensar en la bobina de este modo: a través del área de la bobina pasa una cierta cantidad de flujo magnético, al mover la bobina hacia el imán, la cantidad de flujo a través de ella aumenta. Siempre que cambia el flujo por una bobina, se genera una fem.

Debido a que los principios en que se basan estos experimentos también son básicos para el funcionamiento de los generadores eléctricos, constituyen el llamado efecto generador: una fem se genera en un conductor, cuando éste se mueve a través de un campo magnético o cuando el campo magnético varía dentro de una bobina.

Fuente Consultada:
Enciclopedia TECNIRAMA De La Ciencia y la Tecnología
Enciclopedia Temática CONSULTORA Tomo 10 Física
FISICA Fundamentos y Fronetras Stollberg – Hill

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

La vida será sofisticada y eficiente. ¿Cuáles serán los chiches de la nueva era? Valerie, el androide doméstico dotado de inteligencia artificial —y buenas piernas—, será uno. Nos dará una mano con la limpieza y llamará a la policía ante urgencias. Otra aliada de las tareas será Scooba, la aspiradora de iRobot, que con sólo apretar un botón fregará los pisos hasta los rincones más recónditos. Asimismo, la Polara de Whirlpool nos facilitará las cosas. Combina las cualidades de una cocina convencional y una heladera: será posible dejar un pollo en el horno para que se ase en el horario programado.

El gatito Cat de Philips habitará el hogar del mañana. Genera expresiones faciales— felicidad, sorpresa, enojo, tristeza— y será compinche de los chicos.

¿Qué habrá de nuevo a la hora de comer? “Se elegirán alimentos que hagan bien a la piel y al organismo. De todas formas, no faltará quien ingiera por elección o comodidad, comida chatarra mientras lea una revista de salud y se prometa: “mañana empiezo el régimen”, opina la cocinera Alicia Berger. “Además, la gente se preocupará por el origen y calidad de los alimentos, y se revalorizará lo casero”, revela.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaY al irse a la cama, será posible introducirse en una que soporta ataques terroristas o desastres naturales —de Quantum Sleeper— o portar un reloj pulsera Sleeptracker (foto izquierda) que vía sensores, detecta nuestro sueño superficial y justo ahí hace sonar la alarma para que el despertar sea lo menos fastidioso posible.

¿Y el sexo para cuándo? Mal que nos pese, cada vez tendremos menos ganas, tiempo y pasión. “Vamos hacia el sexo virtual por sobre el real al menos en las grandes ciudades del mundo”, confirma el doctor Juan Carlos Kusnetzoff, director del programa de Sexología Clínica del Hospital de Clínicas, quien adelanta que para levantar el ánimo —y algo más— se desarrollarán nuevas píldoras. “La industria farmacéutica desea lograrlo a toda costa”, agrega.

Ocio y tiempo libre para todos los gustos

En el campo de las nuevas tecnologías, la convergencia de la telefonía móvil y el hogar será un hecho. “El móvil podría permitir el acceso a los diferentes elementos que se quieran controlar, como un control remoto universal. Además se crearían nuevos sensores para avisarnos de situaciones que requieran nuestra atención y cámaras de seguridad para ver desde el teléfono lo que sucede en otro lugar”, cuenta Axel Meyer, argentino que desde el 2000 trabaja en el centro de diseño de Nokia Desing, en Finlandia. Y agrega “Los teléfonos con doble cámara ya permiten hacer videollamadas. Y también podremos ver la emoción del otro mientras miramos la misma película o un gol de nuestro equipo”, explica.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaEn robótica, los avances irán a gran velocidad. Ya se está desarrollando en la Universidad de Tokio la piel de robot que permitirá a estas criaturas adquirir el sentido del tacto. Y eso no es todo. Se podrá bailar con ellos. El Dance Partner Robot es la compañera de baile ideal. Predice los movimientos de su coequipper y no le pisa los pies!

Para momentos de ocio, el turismo estará preparado para el disfrute. Pero, ¿se podría pensar en la pérdida de vigencia del agente de viajes tradicional? “Internet agiliza muchos aspectos de la gestión. Hay un antes y un después en la forma de hacer turismo, pero, ¿quién se atreve a viajar con su familia a destinos exóticos o países desconocidos sin un asesoramiento de confianza?”, se pregunta Ricardo Sánchez Sañudo, director de la revista Tiempo de Aventura, quien sostiene que ante la coyuntura mundial —terrorismo, inseguridad y desastres climáticos, entre otros—, la Argentina crecerá como destino. “Cuanto, más expuesto a estas amenazas esté el resto del mundo, tendremos ventajas comparativas que podremos aprovechar al máximo si conseguimos mantener esas amenazas fuera de nuestras fronteras, o al menos, razonablemente controladas”, manifiesta. Por otra parte, la vida al aire libre será la estrella. “Vida sana, naturaleza viva y desarrollo sustentable son principios insoslayables cuando se mira hacia adelante, y tanto deporte como turismo aventura son dos de sus mejores herramientas”, analiza.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaLos amantes del deporte encontrarán aliados perfectos para seguir ganando. El de los tenistas es la raqueta Magnetic Speed de Fischer, que permite mejores movimientos y mayor velocidad en los tiros. Los que prefieren la música se sorprenderán con instrumentos como el Hand Roll Piano de Yama-no Music, con teclado de silicona flexible.

Trasladarnos será más simple, cómodo y ecológico. Y ya hay algunos adelantos. Tweel de Michelin es una llanta sin aire. Así es que… la despedirse de las gomas pinchadas!

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Por otro lado, acaso debido al tránsito en las ciudades, los transportes individuales serán protagonistas. Como la bicicleta Shift, ideal para los chicos. Les permite adquirir estabilidad gradual sin necesidad de las dos rueditas.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Futuro saludable:

Que la salud avanza a pasos agigantados, no es una novedad. La noticia es que estará al alcance de todos en los próximos años.

Las cirugías estéticas, se popularizarán y masificarán. La lipoescultura será la más pedida, según el doctor Raúl Banegas, cirujano plástico, miembro titular de la Sociedad de Cirugía Plástica de Buenos Aires, debido a que “La demanda social de ser cada vez más lindos, delgados y jóvenes, se acrecienta”. Por otro lado, serán comunes las inyecciones de líquidos —fosfatidil colina— tendientes a disolver la grasa corporal, sin cirugía. En cuanto a rellenos, la toxina botulínica es irremplazable aunque sí se espera que se sintetice de manera tal que dure más tiempo —hoy, de 3 a 6 meses—.

“En cuanto a rellenos definitivos habrá infinidad de sintéticos. Lo que sí parece ser prometedor, aún en fase de investigación, es el cultivo del propio colágeno. En sólo unos meses se podrían obtener en laboratorio, varias jeringas, lo que descartaría toda posibilidad de reacción”, adelanta.

En Neurociencias, será posible el neuromarketing a partir de tomografías PET —por emisión de positrones—, aunque “en lo inmediato son técnicas caras y requieren de un sofisticado análisis de los datos”, anticipa el doctor Facundo Manes, director del Instituto de Neurología Cognitiva —INECO—. En lo que a neuroplastieidad se refiere, ya no diremos más aquello de que “neurona que se muere, se pierde”, viejo postulado que paralizó casi completamente durante décadas la investigación en esta área, según el especialista. Y el conocer acerca de qué pasa en la cabeza de un adicto u obeso permitirá complementar con medicamentos aquello que químicamente requiera cada cerebro.

“Conocer las bases cerebrales de un trastorno neuropsiquiátrico ayuda a localizar los neurotransmisores —mensajeros entre las neuronas— involucrados en una enfermedad; de esta manera se podría investigar una posible solución farmacológica a esa determinada condición médica”, comenta. En el campo de la reproducción asistida, las novedades son infinitas. “Cada vez se podrán hacer más y mejores cosas en pos de mejorar las chances de tener un chico en brazos y no un embarazo que no pudo ser”, adelanta la doctora Ester Polak de Fried, presidente de CER Instituto Médico, directora del departamento de medicina reproductiva de la institución.

“Los estudios genéticos, tanto de gametas como de óvulos fertilizados —preembriones—, que permiten transferir al útero materno únicamente los sanos, se convertirán en técnicas habituales para aquellas mujeres que sufren abortos a repetición, por ejemplo. En el área de la biología molecular, será posible encontrar marcadores génicos —detectan chances de reproducción—, tanto en los óvulos como en los espermatozoides para poder elegir los que tienen capacidades evolutivas, y así disminuir la cantidad de óvulos a poner a fertilizar y la problemática de tener gran cantidad de embriones criopreservados”, especifica quien es officer de la International Federation of Fertility Societies —IFFS—, que nuclea a 54 países.

Construcciòn, arte y moda

Uno de los cambios en lo que respecta a la construcción, al menos en Argentina, será la creciente conciencia ecológica y de cuidado del medio ambiente. “El futuro de La arquitectura está definido en su responsabilidad ecológica tanto con eL medio ambiente como con el medio social. No hay que explicar de qué manera el proyecto arquitectónico influye en el medio ambiente. La decisión de su tecnología y su consecuencia en el futuro mantenimiento conforman una huella ecológica que deberá ser cada vez más analizada y respetada”, analiza el arquitecto Flavio Janches. En cuanto a los materiales, “al menos en nuestro país, el ladrillo y la piedra, el hormigón y el revoque son materiales que no creo que se dejen de utilizar”, opina. La moda tendrá sus cambios, aunque más bien tendrán que ver con el cosechar la siembra, al menos para los diseñadores argentinos. “La gente va a reivindicar el diseño y pagarlo por lo que vale. Hoy por hoy, no existe esa conciencia, como en Estados Unidos, Europa o Japón”, asegura la diseñadora Jessica Trosman. En cuanto al arte, en el futuro abandonará un poco los museos y las galerías para darse una vuelta por las calles. Uno de los referentes de este movimiento es Julian Beever, artista inglés conocido por su trabajo en 3D, en veredas y pavimentos de Inglaterra, Francia, Alemania, Australia, Estados Unidos y Bélgica.

Y mientras se espera el futuro que se viene, a brindar por este 2006 que sí es inminente!

Fuente Consultada: Revista NUEVA Por Laura Zavoyovski (31-12-2005)
Ir a su sitio web

Principio de Bernoulli Teorema de la Hidrodinamica Resumen Teoria

Principio de Bernoulli – Teorema de la Hidrodinámica

INTRODUCCIÓN GENERAL:
Se denominan fluidos aquellos cuerpos cuyas moléculas tienen entre sí poca o ninguna coherencia y toman la forma de la vasija que los contiene, como los líquidos y los gases. Muchos de dichos cuerpos fluyen con bastante facilidad y raramente permanecen en reposo. La rama de la ciencia que trata de los fluidos en movimiento se conoce con el nombre de Hidrodinámica.

Como ejemplo, se puede citar el agua que circula por una tubería, o la corriente de aire que se origina sobre las alas de un avión en vuelo. El comportamiento de un fluido en movimiento es, naturalmente, más complicado que el de un fluido en reposo.

En Hidrostática (rama que trata de los fluidos en reposo), lo más importante de conocer, acerca del fluido, es la presión que actúa sobre el mismo. Un buzo experimenta tanto mayor aumento de presión cuanto mayor es la profundidad a la que está sumergido en el agua; la presión que soporta a una determinada profundidad es, simplemente, la suma del peso del agua por encima de él, y la presión del aire sobre la superficie del agua. Cuando el agua se pone en movimiento, la presión se modifica.

Es casi imposible predecir cuál es la presión y la velocidad del agua, por lo que el estudio de los fluidos en movimiento es muchísimo más complicado que el de los fluidos en reposo. Un buzo que se mueve a lo largo, y en el mismo sentido que una corriente submarina, probablemente no nota que la presión alrededor de él cambia. Pero, de hecho, al ponerse el agua en movimiento, la presión disminuye y, cuanto mayor es la velocidad, mayor es la caída de presión. Esto, en principio, sorprende, pues parece que un movimiento rápido ha de ejercer una presión mayor que un movimiento lento.

El hecho real, totalmente opuesto, fue primeramente expresado por el matemático suizo Daniel Bernoulli (1700-1782). Si un fluido comienza a moverse, originando una corriente continua, debe existir alguna causa que origine dicho movimiento. Este algo es una presión. Una vez el fluido en movimiento, la presión cambia, bien sea aumentando o disminuyendo. Supongamos que aumenta. Al aumentar la presión, crece la velocidad del fluido, que origina un nuevo aumento en la presión; este aumento hace crecer el valor de la velocidad, y así sucesivamente.

PRINCIPIO DE LA HIDRODINÁMICA: EXPLICACIÓN RESUMIDA DE LA TEORÍA:

A continuación estudiaremos la circulación de fluidos incompresibles, de manera que podremos explicar fenómenos tan distintos como el vuelo de un avión o la circulación del humo por una chimenea. El estudio de la dinámica de los fluidos fue bautizada hidrodinámica por el físico suizo Daniel Bernoulli, quien en 1738 encontró la relación fundamental entre la presión, la altura y la velocidad de un fluido ideal.

El teorema de Bernoulli demuestra que estas variables no pueden modificarse independientemente una de la otra, sino que están determinadas por la energía mecánica del sistema.

Supongamos que un fluido ideal circula por una cañería como la que muestra la figura. Concentremos nuestra atención en una pequeña porción de fluido V (coloreada con celeste): al cabo de cierto intervalo de tiempo Dt (delta t) , el fluido ocupará una nueva posición (coloreada con rojo) dentro de la Al cañería. ¿Cuál es la fuerza “exterior” a la porción V que la impulsa por la cañería?

Sobre el extremo inferior de esa porción, el fluido “que viene de atrás” ejerce una fuerza que, en términos de la presiónp1, puede expresarse corno p1 . A1, y está aplicada en el sentido del flujo. Análogamente, en el extremo superior, el fluido “que está adelante” ejerce una fuerza sobre la porción V que puede expresarse como P2 . A2, y está aplicada en sentido contrario al flujo. Es decir que el trabajo (T) de las fuerzas no conservativas que están actuando sobre la porción de fluido puede expresarse en la forma:

T=F1 . Dx1– F2. Dx2 = p1. A1. Dx1-p2. A2. Ax2

Si tenemos en cuenta que el fluido es ideal, el volumen que pasa por el punto 1 en un tiempo Dt (delta t) es el mismo que pasa por el punto 2 en el mismo intervalo de tiempo (conservación de caudal). Por lo tanto:

V=A1 . Dx1= A2. Dx2 entonces T= p1 . V – p2. V

El trabajo del fluido sobre esta porción particular se “invierte” en cambiar la velocidad del fluido y en levantar el agua en contra de la fuerza gravitatoria. En otras palabras, el trabajo de las fuerzas no conservativas que actúan sobre la porción del fluido es igual a la variación de su energía mecánica Tenemos entonces que:

T = DEcinética + AEpotencial = (Ec2 — Ec1) + (Ep2 — Ep1)

p1 . V — P2 . V = (1/2 .m . V2² — 1/2 . m. V1²) + (m . g . h2 — m . g . h1)

Considerando que la densidad del fluido está dada por d=m/V podemos acomodar la expresión anterior para demostrar que:

P1 + 1/2 . d. V1² + d . g. h1= P2 + 1/2 . d. V2² + d . g . h2

Noten que, como los puntos 1 y 2 son puntos cualesquiera dentro de la tubería, Bernoulli pudo demostrar que la presión, la velocidad y la altura de un fluido que circula varian siempre manteniendo una cierta cantidad constante, dada por:

p + 1/2. d . V² + d. g. h = constante

Veremos la cantidad de aplicaciones que pueden explicarse gracias a este teorema.

Fluido humano. Una multitud de espectadores pretende salir de una gran sala de proyecciones al término de la función de cine. El salón es muy ancho, pero tiene abierta al fondo sólo una pequeña puerta que franquea el paso a una galería estrecha que conduce hasta la calle. La gente, impaciente dentro de la sala, se agIomera contra la puerta, abriéndose paso a empujones y codazos. La velocidad con que avanza este “fluido humano” antes de cruzar la puerta es pequeña y la presión es grande. Cuando las personas acceden a la galería, el tránsito se hace más rápido y la presión se alivia. Si bien este fluido no es ideal, puesto que es compresible y viscoso (incluso podría ser turbulento), constituye un buen modelo de circulación dentro de un tubo que se estrecha. Observamos que en la zona angosta la velocidad de la corriente es mayor y la presión es menor.

APLICACIONES:

EL TEOREMA DE TORRICELLI

Consideremos un depósito ancho con un tubo de desagote angosto como el de la figura. Si destapamos el caño, el agua circula. ¿Con qué velocidad? ¿Cuál será el caudal? En A y en B la presión es la atmosférica PA=PB=Patm. Como el diámetro del depósito es muy grande respecto del diámetro del caño, la velocidad con que desciende la superficie libre del agua del depósito es muy lenta comparada con la velocidad de salida, por lo tanto podemos considerarla igual a cero, VA = 0

La ecuación de Bernoulli queda entonces:

d. g. hA + pA= 1/2 . d. hB + pB

entonces es:

g . hA = 1/2 . vB² + g. hB de donde VB²= 2. .g . (hA-hB)

de donde se deduce que:

VB² = 2. g(hA – hB)

Este resultado que se puede deducir de la ecuación de Bernoulli, se conoce como el teorema de Torricelli, quien lo enunció casi un siglo antes de que Bernoulli realizara sus estudios hidrodinámicos. La velocidad con que sale el agua por el desagote es la misma que hubiera adquirido en caída libre desde una altura hA, lo que no debería sorprendernos, ya que ejemplifica la transformación de la energía potencial del líquido en energía cinética.

EL GOL OLÍMPICO

A: Una pelota que rota sobre si misma arrastra consigo una fina capa de aire por efecto dei rozamiento.

B: Cuando una pelota se traslada, el flujo de aire es en sentido contrario al movimiento de la pelota.

C: Si la pelota, a la vez que avanza en el sentido del lanzamiento, gira sobre sí misma, se superponen los mapas de las situaciones A y B. El mapa de líneas de corrientes resulta de sumar en cada punto los vectores VA y VB. En consecuencia, a un lado de la pelota, los módulos de las velocidades se suman y, al otro, se restan. La velocidad del aire respecto de la pelota es mayor de un lado que del otro.

D: En la región de mayor velocidad, la presión (de acuerdo con el teorema de Bernoulli) resulta menor que la que hay en la región de menor velocidad. Por consiguiente, aparece una fuerza de una zona hacia la otra, que desvía la pelota de su trayectoria. Éste es el secreto del gol olímpico.

EL AERÓGRAFO

Las pistolas pulverizadoras de pintura funcionan con aire comprimido. Se dispara aire a gran velocidad por un tubo fino, justo por encima de otro tubito sumergido en un depósito de pintura. De acuerdo con el teorema de Bernoulli, se crea una zona de baja presión sobre el tubo de suministro de pintura y, en consecuencia, sube un chorro que se fragmenta en pequeñas gotas en forma de fina niebla.

FUERZA DE SUSTENTACIÓN: Cualquier cuerpo que se mueve a través del aire experimenta una fuerza que proviene de la resistencia del aire. Ésta puede dividirse en dos componentes que forman entre sí un ángulo recto. A uno se lo llama sustentación y se dirige verticalmente hacia arriba. El otro, llamado resistencia, actúa horizontalmente y en sentido opuesto a la dirección de desplazamiento del cuerpo. La fuerza de sustentación se opone al peso y la resistencia se opone al movimiento del
cuerpo. Para que un cuerpo pueda volar la fuerza de sustentación debe superar al peso y la resistencia debe ser tan reducida que no impida el movimiento.

Para obtener un resultado óptimo necesitamos un cuerpo con una alta relación entre la fuerza de sustentación y la resistencia. El índice más elevado se obtiene mediante un cuerpo diseñado especialmente que se denomina “perfil aerodinámico”. Por razones prácticas no es posible obtener un perfil aerodinámico perfecto en un aeroplano pero las alas se diseñan siempre de modo que suministren la sustentación que sostiene a la máquina en el aire. En un corte transversal un perfil aerodinámico exhibe una nariz redondeada, una superficie superior fuertemente curvada, la inferior más achatada y una cola aguzada.

El perfil se inclina formando un ligero ángulo con la dirección del flujo de aire. La fuerza ascendente se obtiene de dos modos: por encima del perfil aerodinámico el aire se mueve más rápido a causa de su forma curva. Por el principio descubierto por Bernoulli y resumido en una ecuación matemática, la presión de un fluido disminuye en relación con el aumento de su velocidad y viceversa.

De ese modo, la presión del aire que se mueve en la parte superior del perfil decrece creando una especie de succión que provoca el ascenso del perfil aerodinámico. Por otra parte el aire que fluye bajo el perfil angulado aminora su velocidad de manera que la presión aumenta. Esta acción eleva el perfil aerodinámico, dándole mayor poder de sustentación. La fuerza de sustentación total depende del tipo de perfil, de la superficie de las alas, de la velocidad del flujo y de la densidad del aire.

La fuerza ascensional disminuye con la altitud, donde el aire es menos denso, y aumenta con el cuadrado de la velocidad del aeroplano y también con la mayor superficie de las alas. El ángulo que forma el perfil aerodinámico con el flujo de aire se llama ángulo de incidencia. A mayor ángulo, mayor fuerza ascensorial hasta llegar a un punto crítico, después del cual la fuerza ascensorial diminuye bruscamente. El flujo de aire que hasta el momento había sido suave, se descompone repentinamente en forma de remolinos. Cuando ello ocurre se dice que el avión se ha desacelerado, y de ser así el avión comienza a caer, pues las alas ya no lo pueden sostener. Es muy peligroso en caso que al avión se encuentre cerca de la tierra.

diagrama fuerza ascensorial

El diagrama muestra una sección en corte del ala de un aeroplano, según un diseño aerodinámico. El aire fluye por encima y por debajo del ala, pero fluye más rápido por encima de la parte superior porque está más curvada, presentando un largo mayor. El flujo de aire más rápido ejerce menos presión; además, se produce otra presión hacia arriba, resultante de la menor velocidad del aire por debajo del ala, que la proveerá de fuerza ascensional. Ésta es la base del vuelo del aeroplano.

Fuente Consultada: Enciclopedia NATURCIENCIA Tomo 1

Principio de Arquimedes Teorema de la Hidroestática Empuje de Fluidos

Principio de Arquímedes Teorema de la Hidroestática

El teorema fundamental de la hidrostática

¿Por qué las paredes de un dique van aumentando su espesor hacia el fondo del lago? ¿Por qué aparecen las várices en las piernas?

Es un hecho experimental conocido que la presión en el seno de un líquido aumenta con la profundidad. Busquemos una expresión matemática que nos permita calcularla. Para ello, consideremos una superficie imaginaria horizontal S, ubicada a una profundidad h como se muestra en la figura de la derecha.

La presión que ejerce la columna de líquido sobre la superficie amarilla será:

p = Peso del líquido/Area de la base

Con matemática se escribe: p = P/S = (d . V)/S=(d . S . h)/S= d . h (porque la S se simplifican)

donde p es el peso específico del líquido y V es el volumen de la columna de fluido que descansa sobre la superficie S.

Es decir que la presión que ejerce un líquido en reposo depende del peso específico (p) del líquido y de la distancia (h) a la superficie libre de éste.

Si ahora consideramos dos puntos A y B a diferentes profundidades de una columna de líquido en equilibrio, el mismo razonamiento nos permite afirmar que la diferencia de presión será:

PA —PB = p . hA— d . hB

 Este resultado constituye el llamado teorema fundamental de la hidrostática:

La diferencia de presión entre dos puntos dentro de una misma masa líquida es el producto del peso específico del líquido por la distancia vertical que los separa.

Ésta es la razón por la cual dos puntos de un fluido a igual profundidad estarán a igual presión. Por el contrario, si la presión en ambos puntos no fuera la misma, existiría una fuerza horizontal desequilibrada y el líquido fluiría hasta hacer que la presión se igualara, alcanzando una situación de equilibrio.

Hasta aquí sólo hemos encontrado la expresión de la presión que ejerce el líquido sobre un cuerpo —imaginario o no— sumergido en una determinada profundidad h. Ahora bien, ¿cuál es la presión total ejercida en el cuerpo? Si tenemos en cuenta que, probablemente, por encima del líquido hay aire (que también es un fluido), podemos afirmar que la presión total ejercida sobre el cuerpo es debida a la presión de la columna del líquido más la presión que ejerce el aire sobre la columna. Es decir:

P = Paire + Plíquido = Patmosférica +  d . h

Este resultado tiene generalidad y puede ser deducido del teorema fundamental de la hidrostática. Veamos cómo. Si consideramos que el punto B se encuentra exactamente en la superficie del líquido, la presión en A es:

PA= PB+ d . Ah = Psuperficie + P. (hA-hB) = Patmosférica + d . h

Los vasos comunicantes son recipientes comunicados entre sí, generalmente por su base. No importa cuál sea la forma y el tamaño de los recipientes; en todos ellos, el líquido alcanza la misma altura.

Cuando tenemos un recipiente vertical conteniendo un liquido y le hacemos perforaciones en sus paredes, las emisiones del liquido de los agujeros de la base tendrán mayor alcance que las emisiones de arriba, ya que a mayor profundidad hay mayor presión.

EL EMPUJE: PRINCIPIO DE ARQUIMEDES  (Ver Su Biografía)

Resulta evidente que cada vez que un cuerpo se sumerge en un líquido es empujado de alguna manera por el fluido. A veces esa fuerza es capaz de sacarlo a flote y otras sólo logra provocar una aparente pérdida de peso. Pero, ¿cuál es el origen de esa fuerza de empuje? ¿De qué depende su intensidad?

Sabemos que la presión hidrostática aumenta con la profundidad y conocemos también que se manifiesta mediante fuerzas perpendiculares a las superficies sólidas que contacta. Esas fuerzas no sólo se ejercen sobre las paredes del contenedor del líquido sino también sobre las paredes de cualquier cuerpo sumergido en él.

Distribución de las fuerzas sobre un cuerpo sumergido

Imaginemos diferentes cuerpos sumergidos en agua y representemos la distribución de fuerzas sobre sus superficies teniendo en cuenta el teorema general de la hidrostática. La simetría de la distribución de las fuerzas permite deducir que la resultante de todas ellas en la dirección horizontal será cero. Pero en la dirección vertical las fuerzas no se compensan: sobre la parte superior de los cuerpos actúa una fuerza neta hacia abajo, mientras que sobre la parte inferior, una fuerza neta hacia arriba. Como la presión crece con la profundidad, resulta más intensa la fuerza sobre la superficie inferior. Concluimos entonces que: sobre el cuerpo actúa una resultante vertical hacia arriba que llamamos empuje.

¿Cuál es el valor de dicho empuje?

Tomemos el caso del cubo: la fuerza es el peso de la columna de agua ubicada por arriba de la cara superior (de altura h1). Análogamente, F2 corresponde al peso de la columna que va hasta la cara inferior del cubo (h2). El empuje resulta ser la diferencia de peso entre estas dos columnas, es decir el peso de una columna de líquido idéntica en volumen al cubo sumergido. Concluimos entonces que el módulo del empuje es igual al peso del líquido desplazado por el cuerpo sumergido.

Con un ejercicio de abstracción podremos generalizar este concepto para un cuerpo cualquiera. Concentremos nuestra atención en una porción de agua en reposo dentro de una pileta llena. ¿Por qué nuestra porción de agua no cae al fondo de la pileta bajo la acción de su propio peso? Evidentemente su entorno la está sosteniendo ejerciéndole una fuerza equilibrante hacia arriba igual a su propio peso (el empuje).

Ahora imaginemos que “sacamos” nuestra porción de agua para hacerle lugar a un cuerpo sólido que ocupa exactamente el mismo volumen. El entorno no se ha modificado en absoluto, por lo tanto, ejercerá sobre el cuerpo intruso la misma fuerza que recibía la porción de agua desalojada. Es decir:

Un cuerpo sumergido recibe un empuje vertical y hacia arriba igual al peso del volumen de líquido desplazado.

E = Peso del líquido desplazado = dlíq . g . Vliq desplazado = dliq . g . Vcuerpo

Es importante señalar que es el volumen del cuerpo, y no su peso, lo que determina el empuje cuando está totalmente sumergido. Un cuerpo grande sumergido recibirá un gran empuje; un cuerpo pequeño, un empuje pequeño.

Como hace un barco para flotar?
Pues bien, el mismo está diseñado de tal manera para que la parte sumergida  desplace un volumen de agua igual al peso del barco, a la vez, el barco es hueco (no macizo), por lo que se logra una densidad media pequeña. En el caso de los submarinos, tienen un sistema que le permite incorporar agua y de esta manera consiguen regular a sus necesidades la densidad media de la nave.

Él agua, el alcohol y el mercurio son líquidos, pero el principio de Arquímedes se aplica a todos los fluidos, es decir, también a los gases. Los gases fluidos son mucho menos densos y producen empujes mucho menores. Con todo, los objetos pesan menos en el aire de lo que pesarían en el vacío. Un globo lleno de hidrógeno puede flotar en el aire porque su peso —que tiende a arrastrarlo hacia la Tierra— está exactamente equilibrado por el empuje del aire. Este empuje es también igual al peso de aire desplazado.

El conocimiento del principio de Arquímedes es de gran importancia para todo aquél que se ocupe del proyecto de barcos y submarinos, cuyo empuje debe ser calculado. Es absolutamente esencial saber cuánto se hundirá un barco al ser botado, o cuál será el empuje de un submarino.

LA FLOTABILIDAD Y EL PRINCIPIO DE Arquímedes. El objeto pesa menos en agua que en aire. La pérdida aparente de peso se debe al empuje del agua sobre el objeto. Pesa aún menos en agua salada. Como el agua salada es más pesada que el agua dulce, el peso del líquido desplazado es mayor. El empuje sobre el objeto es mayor porque es igual al peso de agua salada desalojada. Debido a este mayor empuje es más fácil flotar en agua salada que en agua dulce. Cuanto más denso el líquido, tanto más fácil será flotar en él.

EL PROBLEMA DE LA CORONA DEL REY

El rey Hierón le entregó 2,5 kg de oro a su joyero para la construcción de la corona real. Si bien ése fue el peso de la corona terminada, el rey sospechó que el artesano lo había estafado sustituyendo oro por plata en el oculto interior de la corona. Le encomendó entonces a Arquímedes que dilucidara la cuestión sin dañar la corona.

Con sólo tres experiencias el sabio pudo determinar que al monarca le habían robado casi un kilo de oro. Veamos cómo lo hizo.

En primer lugar, Arquímedes sumergió una barra de medio kilo de oro puro y comprobó que desplazaba 25,9 cm3. Por lo tanto, el peso específico del oro es:

Poro = 500 gr/25.3 cm3 =19.3 gr/cm3 

Si el joyero hubiera hecho las cosas como le habían indicado, el volumen de líquido desplazado por la corona real, que pesaba 2,5 kilogramos, debería haber sido:

Vcorona = 2.500 gr/19.3 gr/cm3=129.5 cm3

A continuación, sumergió la corona real y midió que el volumen de agua desplazado era de 166 cm3, o sea, mayor del esperado. ¡Hierón había sido estafado! ¿En cuánto? Para saber qué cantidad de oro había sido reemplazado por plata, Arquímedes repitió la primera experiencia sumergiendo una barra de un kilo de plata para conocer su peso específico. Como el volumen desplazado resultó 95,2 cm3, se tiene que:

Pplata=1000 gr/95.2 gr/cm3=10.5 gr/cm3

Sabemos que el peso total de la corona es 2.500 gr. (el joyero tuvo la precaución de que así fuera) y su volumen total, de 166 cm3. Entonces:

Vcorona=Voro+Vplata=166 cm3

Vplata=166-Voro

Pcorona=Poro+Pplata=2500 gr.

Si reescribimos la última ecuación en función del peso específico y el volumen, nos queda que:

19.3 gr/cm3 . Voro + 10.5 gr/cm3 . Vplata = 2500 gr

Tenemos dos ecuaciones con dos incógnitas (Voro y Vplata). Sustituyendo una ecuación con la otra, se tiene que:

19,3 gr/cm3. Voro + 10.5 gr/cm3. (166 cm3-Voro) = 2.500 g

de donde se despeja la incógnita:

Voro =86cm3

con lo que se deduce que:

Poro =Poro Voro = 19,3 gr/cm3 .  86 cm3 = 1.660 gr

Pplata=Pcorona – Poro =2.500gr -1.660 gr =840 gr

De esta manera, Arquímedes pudo comprobar que al rey le habían cambiado 840 gr. de oro por plata. Cuenta la leyenda que el joyero no pudo disfrutar del oro mal habido.

 

Pilas y Baterias Acumuladores de energía electrica Funcionamiento

Alessandro Giuseppe Antonio Anastasio Volta, físico italiano, hijo de una madre procedente de la nobleza y de un padre de la alta burguesía, recibió una educación básica y media de características humanista, pero al llegar a la enseñanza superior optó por una formación científica. En el año 1774, es nombrado profesor de física de la Escuela Real de Como. Justamente, un año después Volta realiza su primer invento de un aparato relacionado con la electricidad.

Con dos discos metálicos, separados por un conductor húmedo, pero unidos con un circuito exterior logra, por primera vez, producir corriente eléctrica continua, se inventa el electróforo perpetuo, un dispositivo que una vez que se encuentra cargado puede transferir electricidad a otros objetos.

Entre los años 1776 y 1778 se dedica a la química y descubre y aísla el gas de metano. Un año más tarde, en 1779, es nombrado profesor titular de la cátedra de física experimental en la Universidad de Pavia. Voltio, la unidad de potencia eléctrica, se denomina así en honor a este portentoso –en el buen sentido- de las ciencias. Sus trabajos fueron publicados en cinco volúmenes en el año 1816, en Florencia. Sus últimos años de vida los pasó en su hacienda en Camnago cerca de Como, donde fallece el 5 de marzo de 1827.

El fundamento de las pilas y acumuladores es la transformación de la energía química en eléctrica, mediante reacciones de oxidación-reducción producidas en los electrodos, que generan una corriente de electrones.

Cuando se unen mediante un hilo metálico dos cuerpos entre los cuales existe una diferencia de potencial, se produce un paso de corriente que provoca la disminución gradual de dicha diferencia. Al final, cuando el potencial se iguala, el paso de corriente eléctrica cesa. Para que la corriente siga circulando debe mantenerse constante la diferencia de potencial.

En 1800, Alejandro Volta inventó un aparato generador de corriente. La pila de Volta (que él llamó «aparato electromotor de columna»> estaba constituida por un conjunto de pares de discos, unos de cobre y otros de cinc, con un disco de tela impregnada en agua salada —o en cualquier otro líquido conductor— intercalado entre dos pares sucesivos. Se trataba de un dispositivo muy cómodo y manejable, que funcionaba de modo continuo, y que posibilitó la aparición de nuevos descubrimientos sobre electricidad.

esquema pila de volta

Funcionamiento de una pila electroquímica

El funcionamiento de una pila es sencillo, consiste básicamente en introducir electrones en uno de los extremos de un alambre y extraerlos por el otro. La circulación de los electrones a lo largo del alambre constituye la corriente eléctrica. Para que se produzca, hay que conectar cada extremo del alambre a una placa o varilla metálica sumergida en un electrolito que suele ser una solución química de algún compuesto iónico.

Cuando ese compuesto se disuelve, las moléculas se dividen en iones positivos y negativos, que se mantienen separados entre sí por efecto de las moléculas del líquido. El electrolito que utilizó Volta era ácido sulfúrico; cada una de sus moléculas, al disolverse en agua, se descompone en dos protones H+ (iones positivos) y un ion sulfatoSO4– (ion negativo).

Las varillas metálicas de cobre y cinc constituyen los electrodos, que deben ser sumergidos en el electrolito sin que lleguen a entrar en contacto. La placa de cobre es el electrodo positivo o ánodo y la placa de cinc el electrodo negativo o cátodo.

Al reaccionar el electrolito con las varillas se produce una transmisión de electrones, que han sido extraídos de la placa de cinc, hacia la placa de cobre, con lo que los átomos de cinc son oxidados e incorporados a la disolución, según la reacción:

Zn —> Zn2++ 2e

Esto ocurre así y no al revés, del cobre al cinc, porque los átomos de cinc tienen más tendencia que los de cobre a ceder electrones.

En la varilla de cobre se produce una reducción de los iones hidrógeno H+ de la disolución, ya que los electrones liberados por los átomos de cinc recorren el hilo conductor hacia la placa de cobre y son captados por los H+, que se convierten en átomos de hidrógeno y escapan en forma de gas. Estos electrones en movimiento son los que originan la corriente eléctrica.

Por su parte, los iones SO4 reaccionan con los cationes Zn2+ y se convierten en moléculas de sulfato de cinc.

2 H~+2e —> H2

Zn2+ + SO42– —> ZnSO4

Cuando se corta la conexión exterior entre las placas, los electrones no pueden desplazarse a lo largo del hilo de una placa a la otra, con lo que se interrumpe la reacción.

El dispositivo funciona mientras existan átomos de cinc para formar el sulfato correspondiente. Cuando la placa de cinc se ha desintegrado por completo ya no puede producirse la reacción, por lo que la pila ya no tiene uso. Por este motivo, las pilas de este tipo reciben el nombre de pilas primarias.

Baterías

Las pilas secundarias o acumuladores son aquellas que pueden recargarse, es decir pueden reiniciar el proceso mediante el aporte de energía de una fuente exterior normal mente un generador, que hace que los compuestos químicos se transformen en los compuestos de partida, al hacer pasar corriente a través de ellos en sentido opuesto

Un acumulador es, por tanto, un aparato capaz de retener cierta cantidad de energía en su interior, suministrada externamente, para emplearla cuando la necesite.

Así, una batería está formada por varios acumuladores, y puede ser ácida o calina en función’de la naturaleza del electrolito. Por ejemplo, las baterías de los coches son ácidas, porque contienen un electrolito de ácido sulfúrico en el que se sumergen una placa de plomo metálico y otra de dióxido de plomo. Las reacciones en este caso son las siguientes:

H2SO4 —> 2H+ + SQ42-

Cátodo:……………   Pb + S042 —->  PbSO4 + 2e

Ánodo: …….. PbO2 + S042- +4 H30+ +  2 e- —>  PbSO4 + 6 H20

Cuando se agota el plomo o el dióxido de plomo la batería está gastada y para recargarla se hace pasar una corriente eléctrica de la placa positiva a la negativa mediante un alternador o dinamo, de manera que el sulfato de plomo se vuelve a des componer en plomo en la placa negativa, y en la positiva en dióxido de plomo

En las baterías alcalinas el electrolito suele ser hidróxido potásico, y las placas son habitualmente, de níquel y de hierro.

Pilas de combustible

Para solucionar el problema del agotamiento definitivo de las baterías y acumuladores, Francis Bacon inventó en 1959 la llamada pila de combustible, en la que las sustancias que generan la corriente eléctrica no están contenidas en la propia pila, sino que se van aportando a medida que se necesitan.

La primera pila de combustible, también llamada pila Bacon, era alimentada por hidrógeno y oxígeno gaseosos. Contiene un electrolito de hidróxido potásico disuelto en agua, entre dos placas metálicas porosas que no permiten el paso del electrolito a través de ellas, pero sí su penetración parcial.

Uno de los electrodos es alimentado con el gas hidrógeno y el otro con el oxígeno, a presiones determinadas para que sólo pueda penetrar una parte de la placa. Es a través de los poros de los metales de las placas por donde entran en contacto los gases con el electrolito. En la placa negativa se produce una combinación de las moléculas de hidrógeno con los iones hidroxilo del electrolito, suministrando electrones. En la placa positiva los átomos de oxígeno capturan los electrones y se combinan con moléculas de agua para formar iones hidroxilo, que se disuelven en el electrolito.

Las reacciones continúan y la corriente eléctrica se mantiene mientras los electrodos estén conectados exteriormente y se produzca el aporte de oxígeno e hidrógeno. A veces es necesario utilizar un metal que actúe como catalizador de la reacción. El idóneo es el platino, pero debido a su elevado coste suele emplearse níquel.

Este tipo de pilas son ideales para el suministro de energía en estaciones espaciales o submarinas, por ejemplo, donde no es fácil el montaje de equipos generadores de tipo convencional. Sin embargo, no son válidas para sustituir a la batería de los automóviles, ya que se necesita un equipo auxiliar que caliente la pila y elimine el exceso de agua —en el caso de la pila Bacon— o de dióxido de carbono —en otros tipos similares que emplean carbonatos como electrolitos.

ALGO MAS..

LA CORRIENTE ELÉCTRICA NO ES ALMACENABLE
La electricidad usual nos llega por cables desde la central eléctrica. Pero la corriente no puede almacenarse en “tanques” del mismo modo que el agua, pues no es más que el movimiento de los electrones bajo la influencia de una “presión” o diferencia de tensión, o “voltaje”, o “fuerza electromotriz”. Por eso, cuando necesitamos accionar pequeños aparatos, como linternas o radiorreceptores no conectados con la central eléctrica, empleamos pilas secas y acumuladores. En éstos la electricidad se produce químicamente.

LA PILA DE VOLTA
Si colocamos dos placas de metales diferentes en un recipiente con agua acidulada (puede ser una placa metálica y otra de carbono), el ácido ataca al metal y se produce una serie de complicadas reacciones químicas. El ácido toma átomos de una de las placas metálicas y en cambio libera ios átomos de hidrógeno que ¡o constituían., pero los electrones del hidrógeno quedan en la placa, que por eso se sobrecarga negativamente.

Los átomos de hidrógeno sin electrón (iones hidrógeno) recuperan sus electrones a costa de la segunda placa, que entonces queda cargada positivamente. En conjunto sucede como si los electrones de la segunda placa pasaran a !a primera. Si están unidas a un circuito exterior, circulará una corriente eléctrica de la primera a la segunda.

Hay un inconveniente en este fenómeno. Los átomos de hidrógeno (ya completos) se adhieren a la segunda placa formando una capa aislante y en cuestión de segundos impiden el acercamiento de nuevos iones, deteniéndose completamente la reacción. Para evitarlo, en la práctica se agrega una sustancia química que se combina fácilmente con el hidrógeno y lo elimina dé la placa. También se suele reemplazar el ácido sulfúrico por cloruro de amonio, sustancia de manipulación mucho menos peligrosa.

Existen otras pilas húmedas: la de Weston, de cadmio y mercurio, muy constante y estable a temperatura fija: suele ser de vidrio y se la emplea para comparar voltajes. La pila de Lalande no usa ácido, sino sosa cáustica, zinc y óxido de cobre.   Trabaja bien en frío.   Su densidad es baja.

LA PILA SECA
La pila seca consiste en un receptáculo de zinc (“placa” negativa de la pila) en cuyo interior hay una varilla de carbón rodeada de una mezcla de polvo de carbón, bióxido de manganeso (MnOa), cloruro de amonio y cloruro de zinc en agua. La reacción química entre el cloruro de amonio (CINHJ y el zinc deja a éste con un exceso de electrones mientras la varilla de carbón, que actúa como segunda “placa”, queda con escasez de electrones, es decir, cargada positivamente.

El bióxido de manganeso actúa como despolarizador: elimina el hidrógeno adherido al carbón. La diferencia entre la pila seca y la húmeda consiste en que en la primera el electrólito, absorbido por un medio poroso, no fluye, no se escurre. El uso ha reservado este nombre a las pilas Leclanché, pero existen otras. La varilla de carbón no suele ser de grafito, sino de negro de humo proveniente de la combustión de acetileno. La pasta gelatinosa que contiene el electrólito puede ser de almidón y harina, o una bobina de papel: las pilas modernas usan metilcelulosa  con  mejores resultados.    El  voltaje  obtenido es 1,6; por cada amperio se consume  1,2 gramos de zinc.

ACUMULADORES
La pila voltaica y la pila seca se llaman primarias o irreversibles porque las reacciones químicas no pueden invertirse, ni volver a emplearse los materiales gastados. Una pila secundaria o reversible (por ejemplo, una batería de automóvil) puede cargarse nuevamente y emplearse otra vez haciendo pasar en sentido opuesto una corriente continua. Así se invierten las reacciones químicas que tuvieron lugar durante la generación de electricidad y los materiales vuelven a su estado original.

El acumulador de plomo es un ejemplo de pila secundaria. En lugar de placas se compone de rejillas para aumentar la superficie de contacto con la solución de ácido sulfúrico en agua destilada. Los huecos de una placa están llenas de plomo esponjoso y ios de la otra de bióxido de plomo (PbCW. La placa de plomo metálico (negativa) corresponde al  zinc y  la  de  bióxido de plomo equivale  ai carbón de la pila seca (positiva).

Ambas placas reaccionan con el ácido sulfúrico y se forma sulfato de plomo. El acumulador se agota cuando ambas placas quedan recubiertas con un depósito blanco de sulfato de plomo y paralelamente disminuye la concentración del ácido sulfúrico.

La corriente eléctrica de recarga regenera en una placa el plomo esponjoso, en la otra el bióxido de plomo, y restituye el ácido sulfúrico al agua. La “batería” completa consta de varios acumuladores conectados  entre  sí  para  aumentar  la  tensión  eléctrica   o voltaje del conjunto.

Los acumuladores convienen para descargas breves de alto nivel (estaciones telefónicas, locomotoras, automóviles). Los nuevos plásticos les confieren menor peso. En autos y aviones las placas delgadas permiten reducir peso y espacio y proporcionar mejor rendimiento a bajas temperaturas. Pero las placas gruesas son sinónimo de larga vida, más o menos 1.000.000 de ciclos cortos.

La Gran Ciencia Grandes Proyectos Cientificos del Mundo Teorias

GRAN CIENCIA. Tipo de práctica científica que se inició y desarrolló durante el siglo XX y que requiere de grandes recursos de infraestructura y personal, y, por consiguiente, económicos. Por este motivo, es necesario tomar decisiones políticas de cierta envergadura para iniciar o mantener proyectos de Gran Ciencia. No estaría de más, por consiguiente, que todos —científicos, políticos o simples ciudadanos (no sé muy bien por qué escribo «simples», cuando ser un buen ciudadano es realmente bastante complicado)— deberíamos conocer no sólo la existencia e importancia de este tipo de ciencia, sino sus mecanismos más notorios. Para contribuir a esta labor de educación social, en una era en la que la ciencia es cuestión de Estado, incluyo aquí este concepto.

El nacimiento de la Gran Ciencia tiene que ver especialmente con la física de las partículas elementales (ahora denominada de altas energías>. Buscando instrumentos que fuesen capaces de suministrar cada vez mayor energía a partículas atómicas, para que éstas pudiesen chocar con el núcleo atómico, lo que a su vez debería permitir ahondar en su estructura y en la de los elementos que lo forman —esto es lo que había hecho Ernest Rutherford (1871-1937) en 1911 cuando propuso su modelo atómico: lanzó núcleos de helio sobre láminas delgadas de oro—, físicos británicos primero, y estadounidenses después abrieron la puerta de la Gran Ciencia.

En 1932, John Cockcroft (1897-1967) y Ernest Walton (1903-1995), del Laboratorio Cavendish en Cambridge, utilizaban un multiplicador voltaico que alcanzaba los 125.000 voltios para observar la desintegración de átomos de litio. En realidad no era una gran energía: cuatro años antes Merle Tuve (1901-1982) había utilizado un transformador inventado por Nikola Tesla (1856-1943) para alcanzar, en el Departamento de Magnetismo Terrestre de la Carnegie Institution de Washington, los tres millones de voltios.

En 1937, Robert Van de Graaff (1901-1967) logró construir generadores de cerca de cinco metros de altura, que producían energías de cinco millones de voltios. Fue, sin embargo, Ernest O. Lawrence (1901-1958) el principal promotor de la Gran Ciencia en la física de partículas elementales. A partir de 1932, Lawrence comenzó a construir ciclotrones, máquinas circulares en las que las denominadas partículas elementales iban ganando energía durante cada revolución, lo que les permitía acumular suficiente energía. El primer ciclotrón medía apenas treinta centímetros de diámetro. Pero aquello sólo era el comienzo: en 1939 Berkeley ya contaba con un ciclotrón de metro y medio de diámetro, en el que los electrones podían alcanzar una energía equivalente a dieciséis millones de voltios (16 Mev). Y en septiembre de ese año Lawrence anunciaba planes para construir uno nuevo que llegase a los 100 MeV.

En abril de 1940, la Fundación Rockefeller donaba 1,4 millones de dólares para la construcción de aquella máquina, el último de sus ciclotrones, que iba a tener más de cuatro metros y medio de diámetro. En la actualidad los grandes aceleradores tienen kilómetros de radio, y cuestan miles de millones de dólares. Aquí tenemos una de las características que con mayor frecuencia se encuentra en la Gran Ciencia: mayor tamaño, mayor potencia, mayor costo económico. No sólo es el tamaño de las máquinas implicadas lo que caracteriza a la Gran Ciencia. Alrededor de los ciclotrones de Lawrence se agrupaban físicos, químicos, ingenieros, médicos y técnicos de todo tipo. En varios sentidos el laboratorio de Berkeley se parecía más a una factoría que a los gabinetes y laboratorios de otras épocas, el de Lavoisier (1743-1794) en París, el de Liebig (1803-1873) en Giessen o el de Maxwell (183 1-1879) en Cambridge.

La segunda guerra mundial dio un nuevo impulso a este modo, «gigantesco», de organización de la investigación científica. Para llevar adelante proyectos como el del radar o el Manhattan se necesitaban científicos, por supuesto, pero no bastaba sólo con ellos. Era imprescindible también disponer, además de otros profesionales (ingenieros, muy en particular), de una estructura organizativa compleja, en la que no faltase el modo de producción industrial. Los grandes recursos económicos que requiere la Gran Ciencia no siempre están a disposición de naciones aisladas. En la Europa posterior a la segunda guerra mundial, la construcción de grandes aceleradores de partículas era demasiado costosa como para que cualquier nación pudiese permitirse el lujo de construir uno lo suficientemente potente como para poder aspirar a producir resultados científicos de interés. Así nació el Centre Européen de Recherches Nucléaires (CERN) de Ginebra, fundado en 1952 por doce naciones europeas. La Gran Ciencia fomentaba en este caso la internacionalización.

De hecho, el CERN sirvió de experiencia de asociación política europea; el ambiente político estaba listo para este tipo de experiencias, que culminarían años más tarde en la creación de la Comunidad Económica Europea, que con el tiempo se convertiría en la actual Unión Europea. La Gran Ciencia puede llegar a ser tan grande que incluso naciones del potencial económico e industrial de Estados Unidos se vean obligadas a abrir algunos de sus proyectos científicos a otros países. Esto ha ocurrido, por ejemplo, con el telescopio espacial Hubble construido por la Natiorial Aeronautics and Space Administration (NASA).

El telescopio Hubble fue lanzado el 24 de abril de 1990, utilizando para ello una de las aeronaves Discovery, pero la idea de poner un gran telescopio en órbita alrededor de la Tierra para evitar la pantalla de radiaciones que es la atmósfera terrestre había surgido cuatro décadas antes. En esos cuarenta años hubo que vencer muchas dificultades; algunas de carácter técnico, por supuesto, pero otras de orden financiero y político. En 1974, por ejemplo, la Cámara de Representantes estadounidense eliminó del presupuesto el proyecto del telescopio, a pesar de que ya había sido aprobado en 1972. El motivo es que era demasiado caro. Tras muchas gestiones se llegó al compromiso de que el proyecto saldría adelante únicamente si se internacionalizaba, involucrando a la Agencia Espacial Europea (European Space Agency; ESA).

Por supuesto, no se dio este paso por un repentino ataque de fervor ecuménico de los representantes estadounidenses, sino porque la ESA se debería hacer cargo del quince por ciento del presupuesto, con lo que éste se abarataría sustancialmente para Estados Unidos. Finalmente la agencia europea, formada por un consorcio de naciones entre las que se encuentra España, participó en el proyecto, encargándose en particular de la construcción de una cámara para fotografiar objetos que emiten una radiación débil. En más de un sentido se puede decir que el mundo de las naciones individuales se está quedando demasiado pequeño para la Gran Ciencia. Una muestra más de esa tendencia, la globalización, que parece estar caracterizando al mundo de finales del siglo XX.

Historia del Número Pi Determinacion de su valor a través del tiempo

Historia del Número Pi Determinación de su valor a través del tiempo

Cualquier esfuerzo práctico por dividir el diámetro de un círculo en su propia circunferencia solo puede resultar en fracaso.

Tal procedimiento sólo puede ser teórico en su naturaleza, e intentar obtener su valor “racional” solo conllevará a frustración. La frustración que se retrata a lo largo de la historia en el esfuerzo de la humanidad por medir lo inconmensurable.

Intentar inscribir una línea recta (el diámetro de un círculo) en otra línea curva (el perímetro del mismo) es intentar una alteración a la naturaleza, una alteración imposible que siquiera los ordenadores modernos están en condiciones de realizar.

Ya en la antigüedad, los calculistas advirtieron que todos los círculos conservaban una estrecha relación entre su perímetro y su radio pero… ¿Puede este vínculo ser considerado como un número “racional”? Es decir: ¿Puede conocerse con exactitud esta relación, o debemos limitarnos a dar aproximaciones?.

Sólo desde el siglo XVII la relación se convirtió en un número y fue identificado con el nombre “Pi” (de periphereia, nombre que los griegos daban al perímetro de un círculo), pero largo fue el camino hasta aceptar que Pi era un irracional, como infinita es la posibilidad de encontrarle un nuevo decimal.

A lo largo de la historia, la expresión de Pi ha asumido muchas variaciones. Uno de los mas antiguos textos matemáticos, el papiro de Rhind, (1700 años antes de nuestra era) nos muestra al escriba Ahmés cotejando la evaluación del área de un círculo inscrito en un cuadrado.

La biblia le asigna el valor 3, en Babilonia 3 1/8; los egipcios 4(8/9)²; Siddhantas 3,1416; Brahmagupta 3,162277; y en China 3,1724. Sin embargo, como era de esperarse, fue en Grecia donde la exacta relación entre el diámetro y el perímetro de una circunferencia comenzó a consolidarse como uno de los mas llamativos enigmas a resolver. Un contemporáneo de Sócrates, Antiphon, inscribe en el círculo un cuadrado, luego un octógono e imagina doblar el número de lados hasta el momento en que el polígono obtenido coincida prácticamente con el círculo. Brisón, por la misma época, hizo intervenir los polígonos circunscriptos.

Después de los trabajaos de Hipócrates y de Euxodo, Euclides precisa, en sus Elementos los pasos al límite necesarios y desarrolla el método de exhaución, consistente en doblar, al igual que Antiphon, el número de lados de los polígonos regulares inscritos y circunscritos y en mostrar la convergencia del procedimiento.

Arquímedes reúne y desarrolla estos resultados. Muestra que el área de un círculo es el semiproducto de su radio por su circunferencia y que la relación de la circunferencia al diámetro está comprendida entre 223/71 = 3,14084 y 22/7 = 3,14285.

Obtiene luego para las áreas y los perímetros de los polígonos regulares, inscritos y circunscritos, de n y 2n lados, relaciones de recurrencia de forma notable, que permiten calcular pi con una aproximación dada; este método de cálculo recibió el nombre de “algoritmo de Arquímedes”.

Con el renacimiento, los trabajos de ciclometría se multiplican. Purbach construye una tabla de senos de 10′ en 10′ y adopta para Pi el valor 377/120 = 3,14666…. Los siglos XV y XVI se destacan por el desarrollo de la trigonometría, bajo el impulso de Copérnico y Kepler. Rhaeticus construye una tabla de senos en la que se incluye a Pi con 8 decimales exactos. Adrien Romain (1561-1615) obtiene 15 decimales y Ludolph de Colonia (1539-1610) llega hasta 32. Según su deseo, estos 32 decimales fueron grabados en su tumba, pero en su país la posteridad lo recompensó mucho mejor pues se dio a pi el nombre de “número de Ludolph”.

Pronto la proeza de Ludolph se vió opacada por lo perfeccionamientos logrados por Snell (1580-1626) y Huyghens (1629-1655). El primero halla que el arco x está comprendido entre: 3 sen x /( 2 + cos x) y 1/3.(2 sen x + tg x) mientras que el segundo, cuya obra ha sido calificada como modelo de razonamiento geométrico, da la expresión (sen² x tg x)1/3 Con su método, Snell obtuvo 34 decimales exactos, partiendo del cuadrado y doblando 28 veces el número de los lados. Huyghens, en cambio, calcula Pi con 9 decimales exactos utilizando simplemente el polígono de seis lados.

El cálculo infinitesimal dió fórmulas notables que, al aportar métodos de cálculo nuevos y mucho mas potentes, separó en cierto modo a Pi de sus origenes geométricos y aclaró el papel fundamental que que juega en todo el análisis matemático. El matemático francés Viete obtuvo, a fines del siglo XVI, la primer fórmula de Pi por medio de un producto infinito convergente que no hace figurar mas que a los número 1 y 2. Gregory en 1670 desarrolla la fórmula del Arco tangente que, para x = 1 da la fórmula de Leibniz: PI/4 = 1 – (1/3) + (1/5) -…

Como caso particular, cabe mencional a Euler, a quien le debemos la costumbre de designar por Pi a la relación circunferencia : diámetro y quien en 1775 calculó su valor, con 20 decimales, en una hora por medio de la fórmula:

Pi/4 = 5 arc tg 1/7 + 8 arc tg 3/79. Sin embargo, su mayor descubrimiento es el de un cierto parentesco entre Pi y otros números no menos importantes en la matemática, como lo son el número e, i, como así los lazos que existen entre las funciones circulares seno y coseno, y la función exponencial ex: ésta es periódica y su período imaginario es 2 i Pi.

Estas verdades son el resultado común de varias corrientes de ideas. Los logaritmos inventados por el escocés Neper (1550-1617), no solamente tuvieron gran importancia para los cálculos numéricos; la función, nula para x = 1, que admite como derivada a 1/x ofrece un sistema de logaritmos particularmente interesantes desde el punto de vista teórico: los conocidos logaritmos neperianos.

 El mas constante entre todos aquellos que se abocaron al cómputo de Pi fue el matemático inglés William Shanks, quien luego de un arduo trabajo que le demandó nada menos que veinte años, obtuvo 707 decimales en 1853. Desafortunadamente, Shanks cometió un error en el 528º decimal, y apartir de ése todos los restantes están mal. En 1949 John Von Neumann utilizó la computadora electrónica ENIAC, y luego de setenta horas de trabajo obtuvo 2037 cifras decimales. Tiempo después, otra computadora consiguió 3.000 decimales en sólo 13 minutos. Hacia 1959, una computadora británica y otra gala lograron las primeras 10.000 cifras. En 1986 David H. Bailey extrajo 29.360.000 cifras en un Cray-2 de la Nasa utilizando el algoritmo de Ramanujan de convergencia cuártica. Finalmente, en 1987, Kanada consiguió mas de 100 millones de cifras se podrían conseguir facilmente 2.000 millones de cifras usando en exclusiva un superordenador durante una semana. En resumen, ya es prácticamente posible tantas cifras como se requiera, y el único impedimento aparente es debido al tiempo que un ordenador pueda tardar en conseguirlos.

Lo cierto es que sólo cuatro decimales de Pi con suficiente precisión bastan para las necesidades prácticas. Con 16 decimales se obtiene, con el espesor aproximado de un cabello, la longitud de una circunferencia que tenga por radio la distancia media de la tierra al sol. Si reemplazamos el sol por la nebulosa mas lejana y el cabello por el corpúsculo mas pequeño conocido por los físicos, no harian falta mas que 40 decimales. Entonces ¿Que necesidad existe para buscar tantas cifras? Quizá ninguna necesidad práctica, pero el hombre no se resigna aún a aceptar cosas que no pueda llegar a comprender, como por ejemplo el infinito.

Evolución de Pi a través del tiempo

 Persona/pueblo         Año Valor

Biblia ~ 550 AC 3

Egipto ~ 2000 AC 3.1605

China ~1200 A.C. 3

Arquimedes ~300 AC 3.14163

Ptolomeo ~200 AC. 377/120 = 3.14166…

Chung Huing ~300 AC. raiz cuad.(10)

Wang Fau 263 A.C. 157/50 = 3.14

Tsu Chung-Chi ~500 A.C. 3.1415926<Pi<3.1415929

Aryabhata ~500 3.1416

Brahmagupta ~600 raiz cuad.(10)

Fibonacci 1220 3.141818

Ludolph van Ceulen 1596 35 decimales 

Machin 1706 100 decimales 

Lambert 1766 Nombró a Pi irracional

Richter 1855 500 decimales 

Lindeman 1882 Nombró a Pi trascendente

Ferguson 1947 808 decimales 

Ordenador Pegasus 1597 7.840 decimales 

IBM 7090 1961 100.000 decimales 

CDC 6600 1967 500.000 decimales 

Cray-2 (Kanada) 1987 100.000.000 decimales 

Univ. de Tokio 1995 4.294.960.000 decimales

  Volver Arriba 

Riesgos del Uso de Uranio en la Centrales Atomicas Ventajas Riesgos

Riesgos del Uso de Uranio en la Centrales Atómicas

DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:
La liberación de la energía nuclear:
En un trozo de uranio 235, un neutrón rompe Un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos. La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones. Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

El funcionamiento normal de las centrales nucleares esparce por todo el mundo un repugnante espectro de substancias letales que no podrán nunca ser contenidas de modo seguro y que el ambiente natural no puede absorber de modo seguro. Por fortuna, la energía nuclear es tan innecesaria como injustificada: podemos satisfacer las necesidades de electricidad del mundo sin una sola central nuclear de fisión, si atemperamos de modo razonable nuestra demandas de energía.

Las únicas centrales que existen actualmente utilizan la fisión. La fusión, una tecnología que podría revolucionar la vida sobre la Tierra si se logran superar a un coste competitivo las barreras científicas que lo impiden, no existirá, suponiendo que así sea, hasta finales de siglo.

La energía de la fisión se debe a la liberación de calor que se produce cuando los átomos de uranio, bombardeados por partícula» atómicas llamadas neutrones, absorben un neutrón y se dividen dando elementos más ligeros, como estroncio y yodo. La división de lo» átomos de uranio libera también otros neutrones que repiten el pro ceso, en una reacción en cadena.

Se crean también elementos mas pesados cuando algunos de los átomos de uranio 238 en lugar de dividirse se transforman en plutonio 239, absorbiendo un neutrón. Muchos de los elementos creados a consecuencia de la fisión son inestables, es decir, que pierden energía rápidamente emitiendo partícula», Estas emisiones, llamadas radioactividad, son peligrosas para lo» seres vivos porque pueden desorganizar los genes y los tejidos.

La energía de fisión tiene la característica única entre todos los sistemas de obtención de energía, de añadir a los niveles del fondo natural cantidades de radiación equivalente, lo que no hace ninguna otra tecnología. El calor liberado en la fisión, se utiliza para convertir agua en vapor, que una vez proyectado sobre las paletas de una turbina eléctrica crea electricidad por la rotación de una bobina dentro de un campo magnético.

Este proceso ha fascinado a los científicos, los ingenieros y burócratas, debido principalmente a un hecho asombroso: la fisión de unos 30 gramos de uranio libera la misma energía aproximadamente que la combustión de 100 toneladas de carbón. Muchas personas a la caza de esta milagrosa cornucopia de energía, han cernido los ojos a los problemas y consecuencias que la fisión trae para nuestro ambiente.

Los partidarios de la fisión nuclear aseguran que es asegura, barata y limpia con respecto al medio ambiente», y que sus riesgos son aceptables. Mantienen que la fisión es una tecnología probada, disponible, y «en producción», mientras que otras energías de recambio no producirán energía con la rapidez necesaria para satisfacer nuestras necesidades.

La Energía Nuclear aporta un 33% de la energía consumida en Europa, de manera limpia, sin emisiones de gases de efecto invernadero y causantes de la lluvia ácida y sin perjudicar la capa de ozono. Además las centrales nucleares producen cantidades muy pequeñas de residuos sólidos en proporción a las grandes cantidades de electricidad que producen y el efecto de las emisiones líquidas y gaseosas en el medio ambiente es inapreciable. Otro problema distinto, es donde almacenar los residuos que se producen, residuos con vidas media muy largas.

Por otro lado la Energía Nuclear no está sujeta a cambios en las condiciones climáticas, sino que las centrales nucleares operan 24 horas al día durante los 365 días del año, lo que supone una gran garantía de suministro. Además no sufre fluctuaciones imprevisibles en los costes y no depende de suministros del extranjero, lo que produce precios estables a medio y largo plazo.

Los que defienden energías de recambio están en total desacuerdo y aseguran que si se dispusiera de sólo una pequeña fracción de los fondos dedicados actualmente a la fisión nuclear, se podrían crear en unos pocos años industrias energéticas de recambio seguras, industrias que proporcionarían tanta energía como la que se obtiene de la fisión. Señalan especialmente que el desarrollo de «energías menos duras» ha sido perjudicado por la enorme sangría de recursos que la fisión nuclear ha impuesto a los fondos de investigación energética de los EE.UU.

Los problemas más serios de la fisión se deben a que una sola central nuclear de fisión de gran tamaño produce tanta radioactividad de vida prolongada como la explosión de 1.000 bombas atómicas de Hiroshima. Y se cree que la exposición de las personas a la radiación aumenta el riesgo de cáncer, de daños genéticos, enfermedades del corazón y muchas otras dolencias. Parece ser que en los niños que todavía no han nacido, la radiación aumenta los riesgos de defectos congénitos y retraso mental. Pero a pesar de esto, la Comisión de energía atómica (AEC), ha anunciado planes para autorizar la instalación de 1.000 centrales nucleares en los próximos 25 años.

El contaminante radioactivo más peligroso de los muchos que producen los reactores, es el plutonio. Se trata de una sustancia artificial, que no existe de modo natural en la Tierra, y que es el ingrediente explosivo de las armas nucleares. Es tan mortal, que tres cucharadas de plutonio contienen suficiente radioactividad para inducir el cáncer en más de 500 millones de personas, según el Dr. John W. Gofman, codescubridor del uranio 233.

En su opinión se trata de la sustancia más tóxica de la Tierra, y una mota infinitesimal, más pequeña que un grano de polen, produce cáncer si se respira o se traga con el agua. Y, sin embargo, el funciona-miento de 2.000 reactores producirá 400.000 kilos de este material cada año: un desecho para el cual no existen sistemas de recolección. Hay que guardar el plutonio en depósitos con una vigilancia sin falla por los menos durante 250.000 años, más de 125 veces la duración de toda la era cristiana, a no ser que se dé un gran paso en la tecnología de los deshechos radioactivos.

Hay que guardar también el plutonio para evitar que sea robado con fines terroristas. Se necesitan sólo unos pocos kilos de plutonio para fabricar una bomba que borraría del mapa ciudades como San Francisco, Nueva York o Moscú. Estas destrucciones pueden llevarse a cabo con una facilidad escandalosa. Un estudio secreto de la AEC informó que dos físicos que acababan de finalizar su carrera fueron capaces de diseñar una bomba atómica recurriendo únicamente a las obras accesibles al público.

Vivimos una época en la que casi cualquier país o grupo de presión con unos pocos científicos capacitados, puede convertirse en potencia nuclear, creando un riesgo terrible de guerra o accidente nuclear Si éstos fuesen los únicos peligros que presenta la energía de fisión, constituirían motivo suficiente para abandonarla.

Entre otros problemas están la falta de técnicas seguras de almacenamiento para los deshechos nucleares de alto nivel, la posibilidad de que se produzcan fugas catastróficas de radioactividad de las centrales nucleares, y emisiones normales radioactivas.

— Cuando sus recipientes sufren alteraciones normales escapan al medio ambiente deshechos de alto nivel, y los que critican el sistema aseguran que parte de los deshechos se ha incorporado al agua del suelo. Los deshechos se ven expuestos dentro de sus tanques a la acción de saboteadores, terremotos, guerras o accidentes; una sola de estas causas, bastaría para dejar sueltas de golpe cantidades colosales de radioactividad.

— Las medidas de protección destinadas a proteger al público contra accidentes nucleares serios, no se han puesto nunca a prueba de modo completo y en condiciones reales de funciona miento. La explosión de una central podría causar miles de muertos y daños por valor de 17.000 millones de dólares, según la AEC. (caso de Chernobyl en 1986 y Japón en 2010)

— La fuga de sólo un mínimo por ciento de la radioactividad del núcleo de un reactor, podría convertir en inhabitable una zona del tamaño de California.

— Aparte de los accidentes, las centrales de fisión emiten de modo normal radioactividad por los gases de sus chimeneas y por el agua de deshecho. Según cálculos realizados por eminentes cien tíficos, los límites federales legales para este tipo de radiación son tan altos que si cada persona en el país se viera expuesta a los límites de radiación permitidos, se producirían cada año, 32.000 fallecimientos más por cáncer y leucemia y de 150.000 a 1.500.000 fallecimientos genéticos adicionales. El coste-anual para la seguridad social de las enfermedades inducidas genéticamente ha sido calculado por el especialista en genética, premio Nobel, Joshua Lederberg, en 10.000 millones de dólares.

cuadro central nuclear

Cuadro funcionamiento de una central nuclear

Central Nuclear Atucha I