Células Madres

Historia del Descubrimiento de la Célula Primera Observación

Historia del Descubrimiento de la Célula

Cada organismo se compone de partes infinitamente pequeñas, que pueden ser consideradas como los elementos constitutivos o los ladrillos del edificio de la vida. Pero se trata de partes tan pequeñas que no pueden en ningún caso ser observadas a simple vista; hace falta un microscopio para descubrirlas.

No se sabe con exactitud quién es el inventor del microscopio, si bien un tal Zacarías Janssen de Middelburg está considerado generalmente como el hombre que habría descubierto por casualidad los aumentos de tamaño que se obtienen con una serie de lentes superpuestas.

Por otra parte está perfectamente probado que un tendero de Delft, llamado Antonio Van Leeuwenhoek (1632-1723), talló cientos de lentes que luego reunía de tal manera que objetos muy pequeños se veían considerablemente agrandados.

Sus microscopios, que nunca estuvo dispuesto a ceder o a vender, aumentaban de dos a trescientas veces el tamaño natural y le valieron muy pronto una gran celebridad. Bien merece el título de “padre de la microscopía”.

Antonio Van Leeuwenhoek fue igualmente el primero en descubrir los protozoarios, que él llamó “infusorios”, porque los encontró principalmente en el agua en que había hecho fermentar un poco de heno. Dirigió largas cartas, a menudo muy divertidas, sobre sus descubrimientos a los miembros de la Royal Society de Londres; donde las revelaciones casi increíbles del tendero de Delft provocaron gran estupefacción.

Alrededor de 1590 fue construido un microscopio compuesto. La imagen, captada por una lente (objetivo), era aumentada por otra lente (ocular). Además, sobre el objeto motivo de la observación se proyectaba la luz. que, a través de una bola de vidrio llena de agua, producía la llama de una bujía.

MICROSCOPIO PRIMITIVO

En la ilustración  vemos un microscopio primitivo de este tipo.
Se trata del instrumento que utilizaba el naturalista inglés Roberto Hooke (1635-1703).

Un día cortó una fina lámina del corcho de una botella de vino y la colocó bajo la lente del microscopio. ¡Cuál no sería su sorpresa al ver que esta lámina estaba constituida por una multitud de pequeñas cámaras, que hacían pensar en un panal de miel! Por esa razón Hooke las llamó “células”, sin sospechar siquiera que acababa de hallar un término de importancia mundial cuya significación sería particularmente extraordinaria en biología.

En 1838, el naturalista alemán M. J. Schleiden pudo probar que todas las plantas estaban constituidas por partículas microscópicas: las células. Alrededor de un año más tarde, su compatriota Teodoro Schwann comprobó lo mismo en los cuerpos de los animales.

imagen de una celula vegetal, con sus partes

Cada ser vivo es un edificio de células y el tamaño de las mismas no depende en absoluto de las proporciones del cuerpo del animal o de la planta, del, cual son una ínfima parte. El elefante, a pesar de su tamaño, no está constituido por células más grandes, sino por muchas más células que un ratón.

Las células de una sequoia de California, que yergue su corona a más de 100 metros de altura, no son más voluminosas que las de una pequeña violeta. Sin embargo, no todas las células tienen las mismas dimensiones o la misma forma. El diámetro de una célula redonda varía de un décimo a un centesimo de milímetro. Existen, naturalmente, excepciones que no responden a estas generalidades.

En circunstancias favorables el ojo humano puede distinguir, sin aparatos, células de un décimo de milímetro de diámetro.

El hombre es, igualmente, un edificio de numerosísimas células. Si cada célula de nuestro cuerpo fuera un ladrillo, se podría edificar  la gran muralla de China, la construcción más colosal de todos los tiempos, que tiene 16 m. de altura , 8 de ancho por miles de km.  de largo, también podría, con las células del cuerpo humano —si fueran ladrillos— dar 17 vueltas alrededor de la Tierra.

Ver: La Célula

Fuente Consultada:
Las Maravillas de la Vida Tomo V El Descubrimiento de la Célula Globerama Edit. CODEX

Etapas en la Digestión de los Alimentos Cuerpo Humano

Etapas en la Digestión de los Alimentos

Sahemos que los alimentos realizan en nuestro organismo importantísimas funciones: aportan los elementos necesarios para la formación y desarrollo de los innumerables compuestos orgánicos que lo integran y suministran las calorías necesarias para la vida, en una serie de procesos químicos que se efectúan, muchos de ellos, en la intimidad de las células.

Pero nosotros no ingerimos sustancias simples, capaces de ser asimiladas inmediatamente a nuestros tejidos, sino que, por el contrario, nuestros alimentos son cuerpos compuestos, formados por una serie de elementos agrupados de distinta manera, como sucede con el pan, la carne, etc.

Ahora bien, este pan, esta carne, no se incorporan a nuestro cuerpo según se ven, sino que son desmenuzados, desintegrados paulatinamente hasta sus componentes más simples, que, entonces sí, son absorbidos e incorporados a nuestros propios tejidos, adonde son llevados por la corriente sanguínea.

Todos estos procesos de orden físico-químico, que llevan a la destrucción de la materia constitutiva de los alimentos hasta sus componentes básicos asimilables y su ulterior absorción, constituyen, en resumen, la digestión.

Ésta se lleva a cabo en el aparato digestivo, por medio de un conjunto de compuestos, casi todos ellos fermentos, que forman parte de los jugos digestivos elaborados por una serie de glándulas, que los vuelcan con sus secreciones, a lo largo del citado aparato, desde la boca hasta el intestino. Este proceso es común a los tres principales componentes de los alimentos: grasas, hidratos de carbono y las denominadas proteínas.

¿QUÉ ES  EL ALIMENTO?
Es necesario recordar que los alimentos se componen de tres clases de sustancias fundamentales:
1) hidratos de carbono o glúcidos: azúcares, almidón, celulosa, etc., contenidos sobre todo en los vegetales, en el pan y en las pastas;
2)
grasas o lípidos: contenidos en la manteca, aceites, etc.;
3) proteínas o prótidos: se encuentran en la carne, huevos, quesos, etc. Se hallan, además, sustancias inorgánicas, agua y sales minerales, necesarias a nuestro organismo.

ESQUEMA DEL APARATO DIGESTIVO

Etapas en la Digestión de los Alimentos

ETAPAS DE LA DIGESTIÓN

1) DIGESTIÓN BUCAL. Los dientes trituran los alimentos, mientras las glándulas salivales vuelcan su secreción, la saliva, en la boca. Esta saliva, por medio de un fermento, la tialina, transforma el almidón en un azúcar simple, la maltosa. Además embebe los alimentos y lubrica la mucosa bucal.

2) DE LA BOCA AL ESTÓMAGO. El alimento masticado, que origina la formación del bolo alimenticio, es deglutido y, por medio del esófago, llega hasta el estómago.

3) LA DIGESTIÓN GÁSTRICA. El jugo gástrico segregado por las glándulas de la mucosa del estómago posee dos integrantes fundamentales en la digestión: el ácido clorhídrico y la pepsina.

corte esquematico del estómago

El primero disuelve ciertos elementos (fibras conjuntivas, nucleoproteínas, etc.) y crea un medio cuya acidez favorece la acción de la segunda, que es un poderoso fermento   actuante   sobre   las   proteínas,   desdoblándolas en cuerpos más simples: peptonas y albumosas. La acción de aquéllos resulta favorecida por los movimientos que el estómago imprime a la masa alimenticia permitiendo primero su mezcla y, luego, su progresión hacia el intestino.

 4) DEL ESTÓMAGO AL INTESTINO. Después de un tiempo, que varía entre 1 y 6 horas, según los alimentos, se ha completado la digestión gástrica y el bolo alimenticio ha sido transformado en una papilla blanquecina llamada quimo. El estómago, entonces, contrayéndose, lo envía hacia el intestino, pasando a través de un anillo muscular a modo  de válvula,   llamado píloro   (válvula gastrointestinal).
 5) LA DIGESTIÓN INTESTINAL. Cuando el quimo llega a la primera porción del intestino, el duodeno, se inicia la digestión intestinal, mediante la acción de tres jugos, que son los siguientes:

1) Jugo duodenal o intestinal: es producido por las células de la pared del duodeno y posee varios fermentos: erepsi-na, que actúa sobre las peptonas desdoblándolas en aminoácidos; lipasa, que desdobla las grasas; maltasa, que tranforma la maltosa en glucosa; invertasa, que desdobla la sacarosa en fructosa y glucosa.

2) Jugo pancreático: segregado por el páncreas y llevado al duodeno por los conductos pancreáticos (de Wirsung y de Santorini), este importantísimo jugo digestivo actúa sobre los tres tipos de sustancias que componen los alimentos, por medio de cuatro fermentos que son:
a) tripsina: actúa sobre las peptonas y albumosas, transformándolas en aminoácidos asimilables;
b) lipasa, desdobla las grasas, ayudada por la bilis y las transforma en ácidos grasos y glicerina, fácilmente absorbibles por el intestino;
c) amilasa, completa la acción de la saliva y jugo intestinal, desdoblando el almidón en glucosa;
d) maltasa: desdobla la maltosa en glucosa.

3) Bilis: segregada por el hígado y almacenada en la vesícula biliar, cuando llega al intestino cumple importantes funciones: emulsiona las grasas, favorece la absorción de ciertos ácidos, excita los movimientos del intestino, etcétera.

 6) LA ABSORCIÓN INTESTINAL. Después de ser, como hemos visto, profundamente transformada, el quimo se convierte en una masa muy fluida, a la cual se le da el nombre de quilo. A medida que la digestión se va completando, las sustancias alimenticias, transformadas en otras capaces de ser utilizadas por el organismo, van siendo absorbidas por conducto de las vellosidades intestinales.

En toda la mucosa del intestino delgado, las vellosidades van absorbiendo el quilo, por medio de las células absorbentes que las recubren.

Las grasas pasan en parte a los vasos linfáticos y de éstos al conducto torácico que las conduce al sistema sanguíneo. En cambio, las proteínas, los azúcares y las sales penetran en los capilares; de allí pasan a la vena porta, que los conduce directamente hasta el hígado.

7) LA LABOR DE LAS BACTERIAS. En el intestino grueso es absorbida el agua; por otro lado, millones de bacterias atacan la celulosa de los alimentos vegetales, que no es alterada por los jugos digestivos, y la transforman, aunque en pequeña parte, en glucosa asimilable.
8) LA EXPULSIÓN. Finalmente la masa de sustancia, privada de todos los materiales alimenticios y de buena parte del agua, queda reducida a una pasta formada por desechos no digeribles, moco, sales y productos intestinales no asimilables, que es expulsada formando las materias fecales.

Fuente Consultada:
Enciclopedia Estudiantil Ilustrada de Lujo Tomo VII – La Digestión-


 

Descripcion de como funciona el pulmon Experimento

EXPERIMENTO: CÓMO FUNCIONA EL PULMÓN
La respiración es un proceso muy simple. El tórax constituye una caja en cuyo interior se encuentran los pulmones, sacos de un delicado tejido que presentan una gran superficie y que están en comunicación con el exterior por la nariz y la boca.

pulmón humano

Lo base inferior de la caja torácica se cierra por medio del diafragma, una lámina elástica de tejido muscular. Cuando se inspira, aumenta el volumen de la caja torácica, porque baja el diafragma y suben las costillas, movidas por la contracción de los músculos intercostales.

El aumento de volumen se traduce en una disminución de la presión en el interior de la caja torácica, es decir, de la presión sobre los pulmones; al ser menor la presión exterior de los pulmones que la interna (que es la atmosférica), los sacos se dilatan y entra aire en ellos. Esta dilatación continúa hasta que su incremento de volumen iguala al que experimentó anteriormente la caja torácica; en dicho momento, vuelven a igualarse las presiones en ésta y en el interior de los pulmones, y cesa la dilatación.

Lo espiración es un proceso pasivo; el diafragma y las costillas vuelven a su posición inicial, se presiona sobre los sacos pulmonares y ello determina la expulsión del aire. Se puede realizar un sencillo experimento que demuestra bastante fielmente este mecanismo de la respiración.

Se prepara un recipiente de cristal sin fondo (véase la figura abajo); en la boca se ajusta un tapón perforado por un tubo de vidrio, que termina, por el interior del recipiente, en dos salidos, como una Y invertida; en los extremos de ambas salidps se sujetan dos globos desinflados (los pulmones;, como los que utilizan los niños para sus juegos, y en la base del recipiente se sujeta también una membrana de goma (el diafragma) con una argolla, para poder tirar de ella.

experimento pulmon

Cuando se aumenta el volumen del recipiente al estirar hacia abajo la argolla, los globos se inflan (figura de la derecha, o inspiración); si se la suelta, vuelve a su posición primitiva y los globos se desinflan (figura  de  la   izquierda,  o  espiración).

Fuente Consultada:
Enciclopedia TECNIRAMA De La Ciencia y la Tecnología N°127

Medir la Capacidad Pulmonar Espirómetro Como se Mide?

¿COMO SE MIDE LA CAPACIDAD PULMONAR? – USO DEL ESPIRÓMETRO

LA CAPACIDAD PULMONAR
El aire es vital para nuestro organismo; en esto mezcla de gases, junto con nitrógeno, anhídrido carbónico, vapor de agua y pequeñas cantidades de gases nobles, se encuentra el oxígeno, en una proporción del 21 %, aproximadamente.

El oxígeno es, en realidad, el elemento indispensable para lo vida anima¡l; sin él no se puede verificar la combustión celular y, por tanto, todas las complicadas reacciones orgánicas que constituyen el metabolismo de los seres animados.

El hombre, como la mayoría de los animales terrestres y aéreos, dispone de pulmones para inspirar el aire y ponerlo en contacto con el sistema circulatorio, donde la sangre incorpora a su hemoglobina el oxígeno que el organismo requiere.

medicion capacidad pulmonar espirometro

Las necesidades respiratorias del hombre adulto pueden variar bastante y dependen del tipo de actividad que realice o del estado patológico en que se encuentre. Así, un hombre que realiza un trabajo físico intenso (o un atleta en plena competición) está quemando sus reservas alimen^ ticias masivamente y, por tanto, consumiendo oxígeno en igual   proporción.

Si estos esfuerzos los realiza un hombre normal, que no está acostumbrado a ellos, su respiración se hace jadeante, inspira y espira el aire a un ritmo muy superior al ordinario, porque su capacidad pulmonar no está desarrollada para llevar a cabo tales esfuerzos.

Por otra parte, cuando una persona tiene fiebre, su metabolismo, acelerado por causas patológicas, es intenso; el cuerpo no puede disipar la energía calorífica que produce y, en consecuencia, se eleva su temperatura; en tales condiciones, su respiración tiene que suplir también el incremento del oxígeno que su activo metabolismo requiere y aquélla llega, entonces, a ser jadeante, si no se toman ciertas precauciones —como guardar cama, es decir, permanecer en reposo—, para que el cuerpo tenga las menores exigencias energéticas posibles.

¿Y cuál es la capacidad pulmonar del hombre? Este término es un poco ambiguo y necesitamos aclararlo, porque existen, diversas capacidades pulmonares, que dependen de la forma en que se realice la respiración. Para explicarlo mejor, vamos a referirnos a los valores medios de un hombre  corriente.

La capacidad pulmonar de nuestro organismo se puede determinar, experimentalmente, con un aparato que se denomina espirómetro. En la figura se ha representado un esquema de dicho aparato; consta de un recipiente lleno de agua, que dispone de una campana invertida, como las utilizadas para recoger gases, equilibrada cuidadosamente, a través de una polea, por un peso determinado.

El hombre que quiere averiguar su capacidad pulmonar espira el aire por un tubo de. goma y, de esta forma, lo introduce en el interior de lá campana, provocando su ascensión; un índice, situado en la parte superior de aquélla, recorre una escala graduada y registra directamente el volumen de aire espirado por el individuo. Si el hombre inspira y espira normalmente en el aparato, el íhdice señalará 0,5 litros; es decir, el volumen de aire normal respirado por el hombre es de medio litro.

Si ahora inspira a fondo y espira normalmente, el índice señalará 2 litros; si o estos 2 litros le restamos el medio litro del aire normal, tenemos 1,5 litros, que constituyen el denominado aire complementario, que puede conseguir el hombre forzando la inspiración.

El individuo también puede realizar una inspiración normal y una espiración forzada; en. tal caso, el índice señala también. 2 litros; si de estos 2 litros restamos el medio litro del aire normal, tenemos 1,5 litros del llamado aire de reserva, otro volumen extra, del que puede disponer el hombre forzando la. espiración.

Por último, si se esfuerza tanto la inspiración, como la espiración, el espirómetro señalará 3,5 litros, volumen que constituye la capacidad vital del hombre, que, evidentemente, se compone de los siguientes términos:

Aire   normal   (0,5   l.) + Aire   complementario   (1,5   l.) + Aire   de reserva  (1,5   l.) = 3,5   litros

Pero, a pesar de todos los esfuerzos que el hombre haga, en la espiración, no puede desalojar por completo todo el aire que guarda en sus pulmones.

Quedan, otros 1,5 litros en su interior, que constituyen el volumen dé aire residual. Ere consecuencia, la capacidad total de los pulmones del hombre normal es de 5 litros, sumo de los volúmenes de aire normal, complementario, de reserva y residual. Ahora cabe preguntarse: ¿por qué muchos atletas, aun en plena, competición, están frescos y tienen el ritmo de respiración normal, según se observa?

Ello es consecuencia de la gimnasia y del entrenamiento que realizan sistemáticamente; con ejercicios respiratorios bien dirigidos y practicados, la capacidad vital de sus pulmones puede llegar a incrementarse notablemente y pasar, del valor normal (3,5 litros), a un valor de 7 litros.

Es fácil imaginar que tal capacidad respiratoria puede suministrar adecuadamente el incremento de oxígeno que exige un esfuerzo deportivo. Por ello, un buen deportista (o un hombre que quisiera mantenerse en excelente forma física) no debe abandonar los ejercicios gimnásticos.

Experimento con la Respiracion Anhídrico Carbonico

RESPIRACIÓN HUMANA: DEMOSTRACIÓN DE EXHALACIÓN DE ANHÍDRIDO CARBÓNICO

Es sabido que todos los organismos vivos superiores absorben el oxígeno del aire y expulsan anhídrido carbónico.

Así, en los mamíferos, por ejemplo, el aire entra en los pulmones y allí se verifica un cambio notable; la carboxihemoglobina de la sangre procedente de los diversos tejidos cede anhídrido carbónico (producido en la combustión celular) y capta el oxígeno del aire respirado, transformándose en oxhihemaglobina, con destino a los tejidos. Este hecho se puede poner de manifiesto fácilmente con un sencillo experimento.

Se trata de demostrar con este experimento que en el aire expelido existe anhídrido carbónico.

Se podrá argumentar “a priori” que en el aire normal (el que se aspira) ya existe esta sustancia, y que¿ por tanto, no tiene nada de extraño que se encuentre en el que se expulsa. El experimento permitirá determinar qué cantidad de CO2 tiene el aire normal, y cuál es la que se produce en la respiración.

experiencia de respiracion humana

Para detectar el anhídrido carbónico se utilizará una reacción característica. En efecto, esta sustancia reacciona con el hidróxido calcico (agua de cal), y se produce carbonato cálcico:

C02 + Ca (OH)2 —–>* CO3Ca + H2O

Como el carbonato calcico es insoluble, puede observarse la manera en que precipita de la solución, a medida que se   forma.

Se preparan dos frascos, como se indica en la figura; en cada uno de ellos se pone cierto volumen de una solución límpida de Ca(OH)2 (agua de cal filtrada). Para iniciar el experimento se aspira aire por la embocadura A, presionando con los dedos el empalme flexible 2; con ello, el aire penetra en el aparato por él tubo B, burbujea a través de la solución del primer frasco, y se separa de CO2 al reaccionar con el hidróxido calcico correspondiente; se puede observar cómo precipita el carbonato calcico formado.

Por tanto, este aire que se respira penetra en los pulmones, exento de CO2. A continuación, y presionando previamente el empalme 1, se expulsa el aire de los pulmones, también a través de la embocadura A. De este modo, el aire expulsado burbujea por la solución del segundo frasco, para salir por el tubo C.

La precipitación de carbonato calcico que tiene lugar en el segundo frasco demuestra que el aire procedente de los pulmones va cargado de anhídrido carbónico, y de la abundancia del precipitado se deduce que su concentración en esta sustancia es muy superior a la que tiene el aire atmosférico.

Cifras concretas de estas concentraciones se pueden obtener, tras una serie de aspiraciones, filtrando las soluciones recogidas en cada frasco y pasando el CO3Ca sólido que queda   en   los   filtros.

Por ejemplo, si se conoce la capacidad pulmonar dé la persona que realiza el experimento, se deducirá que, después de las respiraciones necesarias para que pase un volumen determinado de aire por los pulmones, el precipitado recogido en el primer frasco corresponde a una concentración, en anhídrido carbónico, del 0,03 % y en el segundo, de un 4 %.

Por consiguiente, el aire expulsado por los pulmones tiene unas 130 veces más anhídrido carbónico que el aire atmosférico normal.

De hecho, el aire que se respira tiene 21 % de oxigene y 0,03 % de anhídrido carbónico; el aire que se expele tiene   16′ %   de  oxígeno y 4 %   de anhídrido carbónico.

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y La Tecnología Fasc. N°96

Concepto de Biotecnología Aplicaciones en la Salud Insulina Humana

Biotecnología: Historia, Aplicaciones en Medicina y Concepto
La técnica de lafermentación, en la cual microorganismos, como por ejemplo la levadura, convierten materias primas en productos útiles, se conoce desde los tiempos más remotos. A mediados del siglo XIX ya se producía alcohol industrial por fermentación, casi de la misma forma que la cerveza o el vino.

Y en la década de los 70, cuando el precio del petróleo crudo subió, el alcohol producido de esta forma pudo competir en algunas circunstancias con el “oro negro”. En Estados Unidos y Brasil se han construido grandes fábricas de fermentación para convertir en combustible materias vegetales, como el maíz.

La biotecnología moderna tiene sus orígenes desde hace al menos de cuarenta años, aunque tal vez haya comenzado a gestarse en el momento en que Watson y Crick describieron la estructura del ADN y, más audaces aún, arriesgaron hipótesis sobre cómo se duplicarían nuestras células o las de todo organismo vivo. Muchos años después, en 2005, Watson declaró: “En 1953, con F. Crick, creíamos que estábamos contribuyendo a una mejor comprensión de la realidad. No sabíamos que estábamos contribuyendo a su transformación”.

cadena de adn biotecnologia

Esta joven tecnología se basa en “manejar” la información genética (IG), es decir, se puede tomar un fragmento de ADN (gen) de los cromosomas de un organismo, eligiendo el que tiene los datos para fabricar una determinada proteína (por ejemplo, insulina humana), y colocarlo en otra especie (bacterias, levaduras, células vegetales, etc.) para reproducirlo y obtener dicha proteína y, fundamentalmente, producirla de manera industrial. “Manejar” la IG, además, significa controlar que un gen no funcione o que funcione, se “exprese” o no se “exprese”.

Explicación breve: La información genética que poseen los seres vivos está contenida en las moléculas del ácido desoxirribonucleico (ADN) (material de los cromosomas que están en el núcleo de cada célula). Las moléculas de ADN están formadas por una doble cadena de subunidades llamadas nucleótidos. Cada nucleótido consta de un grupo fosfato, un azúcar (deso-xirribosa) y ademas uno de los cuatro grupos químicos denominados bases nitrogenadas: Adenina (A), Guanina (G), Timina (T) y Citosina (C), la secuencia de los cuales siendo la que determina la información. Esta información está organizada en unidades discretas denominadas genes, consistentes en un segmento de ADN que contiene una información concreta, transcrita en una molécula de ácido ribonucleico (ARN) -en la mayoría de los casos de ARN mensajero-, que, posteriormente, se traducirá en una proteína. Cada especie contiene en todas sus células un conjunto de genes, característicos de especie, que se encuentran distribuidos en una, pocas o en algunos casos muchas moléculas de ADN denominadas cromosomas. Desde el año 1953 en que J. Watson y F. Crick describieron la estructura molecular del ADN, los biólogos moleculares han ido, paulatinamente, poniendo a punto técnicas que posibilitan la manipulación de los genes. El objeto de estas manipulaciones era, por un lado, obtener genes purificados por aislamiento bien a partir de los cromosomas, bien por síntesis “in vitro”, y, por otro, introducir estos genes en células receptoras, con lo que se consigue que se expresen, o sea, que funcionen de modo que se transcriban dando lugar al ARN correspondiente, y se sintetice así la proteína codificada por el gen introducido. En definitiva, lo que se pretende es que las células receptoras adquieran propiedades genéticas que antes no poseían. El conjunto de los trabajos destinados a lograr dichos objetivos constituye el campo de la ingeniería genética.

PRIMERAS APLICACIONES: Desde la época de Pasteur y, más cercanamente, a partir de la producción industrial de antibióticos y vacunas, se habla de “producciones biológicas” o “microbiología industrial” (fermentaciones para producir alimentos y bebidas, por ejemplo).

Sus productos y sus tecnologías no son para nada despreciables: pensemos en las vacunas contra el sarampión, la poliomielitis o la meningitis; en todos los antibióticos que usamos; las gamma globulinas en general y las específicas (antiRh, antihepatitis, etc.); los diagnósticos para detectar portadores del virus del sida o de la enfermedad de Chagas u otras enfermedades infecciosas, o los test de embarazo. No sólo son de gran utilidad médica, sino que permitieron crear una muy fuerte industria biológico-farmacéutica.

Mediante la fermentación se puede producir también cierto número de ácidos. El vinagre (ácido acético diluido) es uno de los ejemplos más importantes. El ácido cítrico, muy usado en comidas y bebidas, se producía originariamente a partir de frutas cítricas, hasta que dominó el mercado un proceso de fermentación desarrollado por la compañía estadounidense Pfizer en la década de los 20. Pfizer todavía produce la mitad de las 250.000 toneladas de ácido cítrico que se utilizan anualmente. Otros productos químicos que se pueden fabricar mediante la fermentación son la glicerina, la acetona y el glicol de propileno.

La fermentación ha demostrado también su utilidad en la industria farmacológica. Tras el descubrimiento del antibiótico de la penicilina en 1928 ), durante la década de los 40 se desarrollaron métodos de fermentación a gran escala para producir el fármaco comercialmente. En la actualidad, se fabrica de esta forma un gran número de medicamentos, así como otros productos bioquímicos; por ejemplo, enzimas (catalizadores bioquímicos), alcaloides, péptidos y proteínas.

La técnica de la ingeniería genética ha aumentado de forma considerable la gama de productos posibles. Alterando la estructura genética de un microorganismo se le puede obligar a producir una proteína muy distinta de la que produciría naturalmente. Por ejemplo, si la parte corta del ADN responsable de la producción de la hormona del crecimiento en los humanos, se inserta en células de cierta bacteria, la bacteria producirá la hormona humana mientras crece.

Y entonces estará en condiciones de ser extraída y utilizada para tratar a niños que de otro modo no crecerían correctamente. Los mismos métodos se pueden emplear con objeto de producir insulina para diabéticos. También las ovejas han sido tratadas genéticamente para que produzcan en su leche un agente coagulante para la sangre humana.

El Lic. Alberto Diaz dice en su libro “Biotecnología por todos lados”

“La genética es el estudio de la herencia y sus mecanismos; fue utilizada de manera empírica a lo largo de la historia para obtener mejores “razas” de animales y variedades vegetales para la alimentación humana. Pero desde la década de 1950 las investigaciones en ciencias de la vida fueron muy intensas y llegaron a desentrañar los mecanismos moleculares de replicación o duplicación de macromoléculas, y a determinar estructuras de proteíñas, sus biosíntesis y el código genético, lo que llevó a entender y poder dominar la información genética.

Con estos antecedentes, el nacimiento de la ingeniería genética, a principios de la década de 1970, permitió transferir “genes” (información genética contenida en una secuencia de moléculas químicas perfectamente conocidas) de una especie a otra, sobre lodo a bacterias, pero también a células animales y plantas, para ser usados en la fabricación de nuevos productos para la salud 0 la alimentación, o en nuevos materiales, lo que sentó las bases de una nueva industria.”

La importancia de esta tecnología es que permite modificar : nanismos, células o tejidos insertando o sacando los genes que se desea usar. Como los genes tienen la información para las diversas proteínas que se encuentran en las células, es posible hacer que un organismo seleccionado produzca una determinaba proteína o metabolito (molécula) y que adquiera una característica deseada.

Si se compara la manipulación genética que los criadores de animales y de plantas vienen realizando desde hace miles de años, la diferencia más importante que esa modificación tiene con la ingeniería genética es que esta última permite el pasaje de genes específicos (los que se han seleccionado) en menor tiempo y, también, posibilita la transmisión de información de una especie a otra (inserción de genes de microorganismos en plantas, de humanos en animales, de humanos en bacterias, etc.). Básicamente, esta última característica es la que hace que sea tan apreciada por algunos y muy rechazada por otros.”

El primer biofármaco (es decir un fármaco biológico fabricado por la biotecnología) que llegó a venderse en los mercados internacionales fue la insulina humana.. Las novedades que trajo la tecnología del ADNr para su uso en la industria farmacéutica se pueden ver en el cuadro de abajo que con adaptaciones, se aplica al resto de los sectores productivos.

Logros e importancia industrial y científica de la biotecnología

  • Fabricar proteínas humanas para usar como medicamentos.
  • Fabricar proteínas humanas a escala industrial; para ello, sólo se requiere contar con las estructuras industriales indispensables y con la bacteria (o célula u organismo) que contenga el gen necesario.
  • Fabricar proteínas humanas con medianos o bajos costos de producción.
  • Seguridad y/o bioseguridad en la elaboración, es decir, que esté libre de contaminantes (virus, priones).
  • Recursos humanos: gente educada (no sólo que no Insulte) y formada en estas nuevas tecnología.
  • Facilita la Investigación blomédica con las nuevas moléculas (interleuqulnas, células madre, eritropoyetina, AcMc, receptores celulares, etc.).

“La insulina es utilizada para el tratamiento de la diabetes desde hace unos ochenta años, pero hasta 1982 se la fabricaba a partir del páncreas de los cerdos y de los bovinos (cosa que se sigue haciendo y no está nada mal). Sería maravilloso poder producir insulina humana en cantidades que no dependieran de la existencia de cabezas de ganado con que cuente un país, con la ventaja de que, al ser humana (la misma especie), la resistencia a los tratamientos será muy baja o inexistente, a lo que se agrega que se trata de un producto más seguro, ya que no se introduce el riesgo de un posible virus o partícula infecciosa animal.

Hoy en día cualquier biólogo puede poner un gen heterólogo (de otra especie) en una bacteria o en células animales o vegetales y fabricar un “transgénico” que podrá producir insulina u otra proteína para tratamientos terapéuticos o para estudios e investigaciones.También, obtener proteínas que sirvan para vacunar o para generar enzimas destinadas a fabricar mejores jabones para la limpieza de la ropa o de la vajilla. Pero, en verdad, ¿cualquier biólogo puede hacerlo?

Una cosa es hacer un experimento en el laboratorio de enseñanza o de investigación y otra es hacer un medicamento a escala industrial y venderlo en todo el país. Para que esto fuera exitoso se necesitó una colaboración muy estrecha entre universidades y nuevas empresas de biotecnoloría, las cuales luego tuvieron que negociar con las grandes productoras y comercializadoras de medicamentos, la gran industria irmacéutica internacional. Hoy ese modelo sigue funcionando riendo exitoso también en la Argentina.”

PRINCIPALES BIOFÁRMACOS EN EL MERCADO ACTUAL

Producto Empresa (Laboratorio) Indicación Año Salida a Venta

HEMODERIVADOS Kogenate (rFactorVIll) Genentech-Miles Hemofilia A 1992


TROMBOLÍTICOS Activase (rTPA) Genentech Infarto agudo 1987


HORMONAS EH Lilly Diabetes mellitus 1982
Humulin (rh Insulina)


ERITROPOYETINA (EPO)
Epogen (rh EPO) Amgen-J&J Anemia 1989


INTERFERONES
Roferón A (rh IFN alfa2a) Roche Oncología 1986
(tricoleucemla)
Intrón A (rh IFN alfa2b) Schering Plough Oncología 1986
(tricoleucemia)


VACUNAS
Recombivax HB Merck &Co. Hepatitis B 1986
Gardasil y Cervarix Glaxo SK y Merck Cáncer cervical 2007
por Papilloma virus


FACTORES
Neupogén (rh G-CSF) Amgen Inmunodeficiencia 1991


AcMc OKT3 Ortho Biotech Trasplantes (evita rechazo) 1986
Herceptín Genentech Cáncer de mama 1999
metastásico

CD30 Seattle Genetics inc. Linfoma de Hodgkin 2011


Inmunoglobulina Rare Disease Therap. Picadura de escorpión 2011
Antiveneno


ETICA DE LA MANIPULACIÓN GENÉTICA
Problemas Actuales

En la actualidad, el sector comercial (dedicado a la producciónde aliemntos) se ha convertido en el motor del desarrollo de las ciencias aplicadas. Muchas empresas han aportado grandes sumas de capital para financiar proyectos de investigación cuyos resultados pueden proporcionarles beneficios nada desdeñables.

Nos guste o no, éste es el sistema actual y la agricultura no es ajena a la situación. Algunas compañías especializadas en la comercialización de semillas, abonos y demás productos agrícolas han debido enfrentarse a agresivas campañas contra la introducción de variedades modificadas genéticamente. Una de las más importantes, Monsanto, ha sufrido los ataques de numerosos grupos de activistas que han llegado a destruir campos de cultivo experimentales.

El problema, pese a lo que pueda parecer a simple vista, no es nuevo: hace casi dos siglos, en 1815, un grupo de trabajadores textiles ingleses, capitaneados por un tal Ned Ludd, entraron por la fuerza en una fábrica para destruir los telares mecánicos que acababan de instalarse. El triste suceso dio lugar a una corriente de pensamiento contraria al desarrollo tecnológico que, en homenaje a su primer héroe, se llamó ludismo, por lo que aquellos que se oponen a la aplicaión de la biotecnología, le llama: bioludista. Como puede verse, las nuevas tecnologías no siempre son aceptadas de buen grado.

Manipulación genética
En rigor, ¿qué debe tenerse en cuenta a la hora de hablar de alimentos modificados genéticamente? Para empezar, se debe partir del hecho que, desde el origen de la agricultura, el ser humano a intentado obtener mejores variedades mediante procedimientos de selección y cruce que, sin saberlo, entrañaban importantes cambios en la estructura genética de las especies.

En la actualidad, las técnicas empleadas, por muy artificiales que puedan parecer, son tan naturales como las antiguas -aunque un poco más sofisticadas-, si bien permiten obtener resultados con mayor rapidez y seguridad. Las nuevas técnicas de manipulación genética pueden acelerar el proceso y eliminar en buena parte el azar, lo cual redunda en una selección mucho más cuidadosa de los rasgos que se desean potenciar. Aun así, el producto final -sea fruta, verdura, legumbre o grano- no guardará demasiadas diferencias en comparación con otras variedades obtenidas por procedimientos tradicionales.

A lo largo de varios siglos, granjeros y agricultores han recurrido a la selección y el cruce para mejorar las características de las plan-las. La naturaleza evoluciona con una enorme lentitud: los cambios se desarrollan a lo largo de millones de años y el ser humano no po-día permitirse aguardar tanto tiempo.

La configuración de un fenotipo determinado altera el genoma de una planta, a la que se obliga a evolucionar en una dirección concreta. Una tarea de estas características depende en buena parte de la capacidad del granjero o el agricultor, quien debe escoger los mejores ejemplares y mantenerlos en un entorno favorable para que se reproduzcan de manera satisfactoria. Por desgracia, no siempre se obtienen li is resultados deseados y a menudo, la introducción de nuevas carac-lerísticas en una variedad se convierte en una tarea casi imposible.

I,a ingeniería genética permite llegar a extremos insospechados. Gracias a las modernas técnicas de manipulación, por ejemplo, es posible insertar genes nuevos en un genoma antiguo o completamente ajeno.

En la actualidad, el método principal para introducir genes nuevos en el genoma de plantas se basa en el empleo de bacterias como transmisores.

El Agrobacterium tumefaciens es una bacteria patógena que causa tumefacciones cancerosas en algunas especies vegetales al transferir parte de su ADN al de su anfitrión. Una vez dentro de la célula huésped, el nuevo segmento de ADN se desplaza al núcleo, donde se integra en el genoma.

La expresión de los genes nuevos (en condiciones naturales, los oncogenes que producen cáncer) da lugar a un crecimiento celular descontrolado y el consiguiente tumor. La ingeniería genética se ha valido de este mecanismo natural sustituyendo los genes cancerosos por otros que se consideran más interesantes. De ese modo, la bacteria, al transferir parte de su ADN, los inoculará en el núcleo de la célula.

Una vez insertados, los transgenes pueden dotar a las plantas de nuevas características, como la resistencia a herbicidas o patógenos, o bien la capacidad de producir determinadas sustancias que actúen como fármacos o incrementen las características nutritivas de la planta. Hasta hace relativamente poco, se pensaba que sólo los Agrobacterium eran capaces de desarrollar el proceso que se conoce como transferencia horizontal de genes. En la actualidad, se ha descubierto que existen otras bacterias capaces de hacerlo.

Y eso, más o menos, viene a ser todo: una bacteria que causa tumoraciones en las plantas inyecta sus propios oncogenes en el genoma de la planta receptora. En lugar de ello, los seres humanos hemos encontrado la manera de sustituir esos genes cancerígenos por otros que no sólo mantienen viva a la planta, sino que pueden resultar beneficiosos en un futuro inmediato. ¿Hasta qué punto puede considerarse este método como antinatural? ¿Cabe pues considerar los alimentos modificados genéticamente como un producto artificial?

La ciencia nos ha permitido alejarnos de nuestros antepasados homínidos así como del resto de los primates. Con todo, no cabe duda de que, si alguien quiere comportarse como un mono, nadie se lo prohibe. Algunos de los sectores más radicales del ecologismo predican precisamente la vuelta a la naturaleza. Sin embargo, no estaría de más explicar a algunos de sus representantes que un déficit grave de betacaroteno puede causar una ceguera irreversible a un niño de diez años pero que, gracias a la biotecnología, se ha desarrollado una variedad de arroz que evita el problema.

Fuente Consultada:
Guinness Publish Limited Fascículo N°21 – La Nación
Biotecnología Por Todos Lados Alberto Díaz – Editorial Siglo XXI
Las Mentiras de la Ciencia Dan Agin

Quinua Alimento de los Incas

LAS PATENTES DEL PRIMER MUNDO O LOS DERECHOS DE LOS PUEBLOS

La quinua y la kiwicha son cereales andinos que formaban parte de la dieta de miles de pobladores del Perú, Bolivia y del Noroeste de Argentina, hasta su erradicación por parte de los conquistadores españoles. Se los denomina sustitutos de la can? por su alto contenido en proteínas, y desde la época pre-incaica se cultivaron y domesticaron variedades de quinua adaptadas a las duras condiciones de las montañas.

Debido a su valor nutritivo, actualmente la quinua entró en los mercados estadounidenses y europeos, estimándose las exportaciones bolivianas en un millón de dólares anuales. Pero desde 1994 dos investigadores de la Universidad de Colorado (USA) tramitaron una patente que les da el monopolio exclusivo para la producción de híbridos sobre una variedad de quinua boliviana denominada “Apelawa”.

grano de quinua

¿Qué es una patente? La patente es un monopolio temporario otorgado a aquél que haya introducido una nueva tecnología, y el dueño de la misma tendrá una recompensa económica en relación con la demanda por su invención, Al estar patentado un material se limitan las posibilidades de su uso por el término que dure la patente, bloqueando la investigación científica y la producción, sin tener en cuenta a los investigadores, productores, consumidores, pacientes, y comunidades indígenas.

Si bien solo se pueden patentar ‘invenciones” y no descubrimientos, y hasta los años ‘70 se consideraba que la materia viva no podía patentarse; pero el desarrollo de la ingeniería genética echo por tierra esta concepción, como ya sucede en los Estados Unidos que en 1980 falló a favor del patentamiento de bacterias modificadas genéticamente. Luego, el patentamiento de microorganismos se extendió a plantas y animales: siendo el primero en la lista.., un ratón modificado genéticamente.

En USA todo es patentable es el país que tiene la doctrina más expansiva. Basta que una sustancia natural sea aislada y purificada, para que pueda patentarse; como sucedió con células de codón umbilical. El patentamiento de material biológico, genes y células animales y también humanas, tiene el fin de que nadie pueda hacer uso de ningún producto terapéutico derivado de esos materiales, a menos que pague los derechos correspondientes. Además, cuando la descripción de la investigación se hace de una manera muy amplia, no se puede desarrollar ninguna actividad vinculada con ese material.

As! es que los laboratorios multinacionales hacen espionaje, haciendo averiguaciones entre los indígenas para detectar platas con posibles efectos medicinales con el objetivo final de desarrollar drogas más efectivas. Las patentes son parte de la estrategia de desarrollo de los Estados Unidos, y como cada patente genera un negocio, ninguna de sus universidades difunde sus conocimientos, sin antes pasar por la oficina de patentes.

Afortunadamente, algunos países Sudamericanos están elaborando proyectos de ley para restringir el libre acceso al germoplasma, es decir al conjunto de información genética de todas las especies vegetales de los países en desarrollo o de comunidades indígenas.

La convención sobre diversidad biológica reconoce el derecho soberano de cada país sobre sus recursos genéticos, y todo acceso a ese material tiene que estar sometido al consentimiento previo del gobierno del país, estableciendo que en caso de que hubiere una explotación comercial de esos recursos, habrá que dar participación en los beneficios al país de origen.

Argentina no reconocía patentes para medicamentos, con la previsión de que las patentes se tradujeran en precios muy elevados que hiciera inaccesibles los medicamento para gran parte de la población. Pero en 1994 se aprueba el acuerdo sobre Aspectos Vinculados con el Comercio de los Derechos de Propiedad, que obliga a los países a reconocer patentes en todos los sectores de la tecnología. Este fue un triunfo para las empresas de los países industrializados, y Estados Unidos aplicó sanciones comerciales a Argentina por considerar que nuestra ley no se correspondía con los estándares internacionales.

Por suerte, aún se acepta que los objetos naturales no biológicos como los minerales, el petróleo o el agua pertenecen a los países donde se encuentran sin embargo, casos como el patentamiento de la quinua, obligarla a las poblaciones de La Puna a pagar derechos por un cultivo que vienen realizando desde hace siglos.

¿Qué pasará en el futuro con nuestros propios recursos biológicos? El Estado debería proteger nuestro patrimonio, y valorizar el rol de las universidades y de las investigaciones en Argentina,

Fuente: Bill London  escritor radicado en Idaho

Historia de la higiene personal y de las ciudades en la historia

Historia de la higiene personal y de las ciudades

El escritor Sandor Marai, nacido en 1900 en una familia rica del Imperio Austrohúngaro, cuenta en su libro de memorias Confesiones de un burgués que durante su infancia existía la creencia de que “lavarse o bañarse mucho resultaba dañino, puesto que los niños se volvían blandos”.

Por entonces, la bañera era un objeto más o menos decorativo que se usaba “para guardar trastos y que recobraba su función original un día al año, el de San Silvestre. Los miembros de la burguesía de fines del siglo XIX sólo se bañaban cuando estaban enfermos o iban a contraer matrimonio”.

Esta mentalidad, que hoy resulta impensable, era habitual hasta hace poco. Es más, si viviéramos en el siglo XVIII, nos bañaríamos una sola vez en la vida, nos empolvaríamos los cabellos en lugar de lavarlos con agua y champú, y tendríamos que dar saltos para no pisar los excrementos esparcidos por las calles. 

la higiene humana

  • Del esplendor del Imperio al dominio de los “marranos”

Curiosamente, en la Antigüedad los seres humanos no eran tan “sucios”. Conscientes de la necesidad de cuidar el cuerpo, los romanos pasaban mucho tiempo en las termas colectivas bajo los auspicios de la diosa Higiea, protectora de la salud, de cuyo nombre deriva la palabra higiene.

Esta costumbre se extendió a Oriente, donde los baños turcos se convirtieron en centros de la vida social, y pervivió durante la Edad Media. En las ciudades medievales, los hombres se bañaban con asiduidad y hacían sus necesidades en las letrinas públicas, vestigios de la época romana, o en el orinal, otro invento romano de uso privado; y las mujeres se bañaban y perfumaban, se arreglaban el cabello y frecuentaban las lavanderías. Lo que no estaba tan limpio era la calle, dado que los residuos y las aguas servidas se tiraban por la ventana a la voz de “agua va!”, lo cual obligaba a caminar mirando hacia arriba.

  • Vacas, caballos, bueyes dejaban su “firma” en la calle

Pero para lugares inmundos, pocos como las ciudades europeas de la Edad Moderna antes de que llegara la revolución hidráulica del siglo XIX. Carentes de alcantarillado y canalizaciones, las calles y plazas eran auténticos vertederos por los que con frecuencia corrían riachuelos de aguas servidas. En aumentar la suciedad se  encargaban también los numerosos animales existentes: ovejas, cabras, cerdos y, sobre todo, caballos y bueyes que tiraban de los carros. Como si eso no fuera suficiente, los carniceros y matarifes sacrificaban a los animales en plena vía pública, mientras los barrios de los curtidores y tintoreros eran foco de infecciones y malos olores.

La Roma antigua, o Córdoba y Sevilla en tiempos de los romanos y de los árabes estaban más limpias que Paris o Londres en el siglo XVII, en cuyas casas no había desagües ni baños. ¿Qué hacían entonces las personas? Habitualmente, frente a una necesidad imperiosa el individuo se apartaba discretamente a una esquina. El escritor alemán Goethe contaba que una vez que estuvo alojado en un hostal en Garda, Italia, al preguntar dónde podía hacer sus necesidades, le indicaron tranquilamente que en el patio. La gente utilizaba los callejones traseros de las casas o cualquier cauce cercano. Nombres de los como el del francés Merderon revelan su antiguo uso. Los pocos baños que había vertían sus desechos en fosas o pozos negros, con frecuencia situados junto a los de agua potable, lo que aumentaba el riesgo de enfermedades.

  • Los excrementos humanos se vendían como abono

Todo se reciclaba. Había gente dedicada a recoger los excrementos de los pozos negros para venderlos como estiércol. Los tintoreros guardaban en grandes tinajas la orina, que después usaban para lavar pieles y blanquear telas. Los huesos se trituraban para hacer abono. Lo que no se reciclaba quedaba en la calle, porque los servicios públicos de higiene no existían o eran insuficientes. En las ciudades, las tareas de limpieza se limitaban a las vías principales, como las que recorrían los peregrinos y las carrozas de grandes personajes que iban a ver al Papa en la Roma del siglo XVII, habitualmente muy sucia. Las autoridades contrataban a criadores de cerdos para que sus animales, como buenos omnívoros, hicieran desaparecer los restos de los mercados y plazas públicas, o bien se encomendaban a la lluvia, que de tanto en tanto se encargaba arrastrar los desperdicios.

Tampoco las ciudades españolas destacaban por su limpieza. Cuenta Beatriz Esquivias Blasco su libro ¡Agua va! La higiene urbana en Madrid (1561-1761), que “era costumbre de los vecinos arrojara la calle por puertas y ventanas las aguas inmundas y fecales, así como los desperdicios y basuras”. El continuo aumento de población en la villa después del esblecimiento de la corte de Fernando V a inicios del siglo XVIII gravó los problemas sanitarios, que la suciedad se acumulaba, pidiendo el tránsito de los caos que recogían la basura con dificultad por las calles principales

  • En verano, los residuos se secaban y mezclaban con la arena del pavimento; en invierno, las lluvias levantaban los empedrados, diluían los desperdicios convirtiendo las calles en lodazales y arrastraban los residuos blandos los sumideros que desembocaban en el Manzanares, destino final de todos los desechos humanos y animales. Y si las ciudades estaban sucias, las personas no estaban mucho mejor. La higiene corporal también retrocedió a partir del Renacimiento debido a una percepción más puritana del cuerpo, que se consideraba tabú, y a la aparición de enfermedades como la sífilis o la peste, que se propagaban sin que ningún científico pudiera explicar la causa.

Los médicos del siglo XVI creían que el agua, sobre todo caliente, debilitaba los órganos y dejaba el cuerpo expuesto a los aires malsanos, y que si penetraba a través de los poros podía transmitir todo tipo de males. Incluso empezó a difundirse la idea de que una capa de suciedad protegía contra las enfermedades y que, por lo tanto, el aseo personal debía realizarse “en seco”, sólo con una toalla limpia para frotar las partes visibles del organismo. Un texto difundido en Basilea en el siglo XVII recomendaba que “los niños se limpiaran el rostro y los ojos con un trapo blanco, lo que quita la mugre y deja a la tez y al color toda su naturalidad. Lavarse con agua es perjudicial a la vista, provoca males de dientes y catarros, empalidece el rostro y lo hace más sensible al frío en invierno y a la resecación en verano

  • Un artefacto de alto riesgo llamado bañera

Según el francés Georges Vigarello, autor de Lo limpio y lo sucio, un interesante estudio sobre la higiene del cuerno en Europa, el rechazo al agua llegaba a los más altos estratos sociales. En tiempos de Luis XIV, las damas más entusiastas del aseo se bañaban como mucho dos veces al año, y el propio rey sólo lo hacía por prescripción médica y con las debidas precauciones, como demuestra este relato de uno de sus médicos privados: “Hice preparar el baño, el rey entró en él a las 10 y durante el resto de la jornada se sintió pesado, con un dolor sordo de cabeza, lo que nunca le había ocurrido… No quise insistir en el baño, habiendo observado suficientes circunstancias desfavorables para hacer que el rey lo abandonase”. Con el cuerno prisionero de sus miserias, la higiene se trasladó a la ropa, cuanto más blanca mejor. Los ricos se “lavaban” cambiándose con frecuencia de camisa, que supuestamente absorbía la suciedad corporal.

El dramaturgo francés del siglo XVII Paul Scarron describía en su Roman comique una escena de aseo personal en la cual el protagonista sólo usa el agua para enjuagarse la boca. Eso sí, su criado le trae “la más bella ropa blanca del mundo, perfectamente lavada y perfumada”. Claro que la procesión iba por dentro, porque incluso quienes se cambiaban mucho de camisa sólo se mudaban de ropa interior —si es que la llevaban— una vez al mes.

• Aires ilustrados para terminar con los malos olores

Tanta suciedad no podía durar mucho tiempo más y cuando los desagradables olores amenazaban con arruinar la civilización occidental, llegaron los avances científicos y las ideas ilustradas del siglo XVIII para ventilar la vida de los europeos. Poco a poco volvieron a instalarse letrinas colectivas en las casas y se prohibió desechar los excrementos por la ventana, al tiempo que se aconsejaba a los habitantes de las ciudades que aflojasen la basura en los espacios asignados para eso. En 1774, el sueco Karl Wilhehm Scheele descubrió el cloro, sustancia que combinada con agua blanqueaba los objetos y mezclada con una solución de sodio era un eficaz desinfectante. Así nació la lavandina, en aquel momento un gran paso para la humanidad.

• Tuberías y retretes: la revolución higiénica

En el siglo XIX, el desarrollo del urbanismo permitió la creación de mecanismos para eliminar las aguas residuales en todas las nuevas construcciones. Al tiempo que las tuberías y los retretes ingleses (WC) se extendían por toda Europa, se organizaban las primeras exposiciones y conferencias sobre higiene. A medida que se descubrían nuevas bacterias y su papel clave en las infecciones —peste, cólera, tifus, fiebre amarilla—, se asumía que era posible protegerse de ellas con medidas tan simples como lavarse las manos y practicar el aseo diario con agua y jabón. En 1847, el médico húngaro Ignacio Semmelweis determinó el origen infeccioso de la fiebre puerperal después del parto y comprobó que las medidas de higiene reducían la mortalidad. En 1869, el escocés Joseph Lister, basándose en los trabajos de Pasteur, usó por primera vez la antisepsia en cirugía. Con tantas pruebas en la mano ya ningún médico se atrevió a decir que bañarse era malo para la salud.

Revista Muy Interesante Nro.226- Que Sucio Éramos Luis Otero-
PARA SABER MÁS: Lo limpio y lo sucio. La higiene del cuerpo desde la Edad Media. Georgs Vtgatello. Ed. Altaya. 997.

LA PLACENTA-CORDÓN UMBILICAL-LIQUIDO AMNIOTICO

LOS ANEXOS EMBRIONARIOS: Ya se ha visto que en la formación del embrión interviene sólo una pequeña parte del huevo. El resto constituye los anexos embrionarios, es decir, los órganos destinados a proteger, alimentar y oxigenar al embrión, más tarde feto, durante toda su vida intrauterina. Estos anexos son la placenta, el cordón umbilical, las membranas y el líquido amniótico.

LA PLACENTA: La placenta es el órgano de intercambio entre la madre y el embrión, más tarde feto. Durante la anidación, el huevo se recubre de vellosidades, las vellosidades coriales, parecidas a las pequeñas raicillas de las plantitas. Pronto, el huevo, hundido en la mucosa, comienza a engrosar, a formar una protuberancia en el útero, y las vellosidades desaparecen, salvo en la zona de contacto del huevo con la mucosa.

placenta

Esta zona de contacto, de forma circular, constituirá la placenta. Las vellosidades se hunden en los lagos sanguíneos, los vasos sanguíneos de la madre, que se comunican entre sí y son alimentados por las arterias maternas. Las mismas vellosidades se hallan recorridas por arterias y venas. La sangre de la madre circula por los lagos sanguíneos, la del feto por las vellosidades que lo alimentan.

Entre ambas sangres hay una membrana que hace las veces de filtro. Así, a pesar de la interdependencia íntima entre los elementos maternos y los fetales, las dos circulaciones no se comunican directamente. Ambos sistemas son cerrados. Por esta razón, el hijo podrá tener un grupo sanguíneo diferente de la madre, e incluso antagónico, cuando, por ejemplo, tienen sangres con factores Ah contrarios.

El embrión, que tras ocho semanas de vida intrauterina toma el nombre de feto, recibe sus recursos a través del cordón umbilical que le une a la placenta, que a su vez se halla adherida al útero por las vellosidades. Al principio del embarazo, la placenta desempeña a la vez los papeles de pulmones, riñones, estómago, hígado, intestinos y glándulas hormonales, asegurando así todas las funciones vitales. Pero, a medida que va creciendo, las vísceras del feto van adquiriendo una cierta autonomía, con lo que la función de la placenta disminuye.

Cordón Umbilical, Membranas y Líquido Amniótico El cordón umbilical, que va alargándose progresivamente hasta alcanzar los 50 cm. en el momento del nacimiento, une al feto con la placenta. Es un conducto de alrededor de 1,5 cm. de diámetro, retorcido en espiral, recorrido por dos arterias y una vena que aseguran la circulación del oxígeno, de los alimentos y la evacuación de los desechos.

El feto se encuentra en una bolsa hermética formada por dos membranas de protección transparentes y muy resistentes: por el exterior el cordón, por el interior el amnio, que cubre la cara interna de la placenta, envuelve el cordón y continua en el ombligo. En esta bolsa hay un líquido claro, transparente, rico en sales minerales, el líquido amniótico, cuyo origen es aún mal conocido, que asegura la hidratación del feto, al tiempo que le permite agitarse y le protege contra las infecciones y los traumatismos.

EL FETO Y LAS EMOCIONES MATERNAS : A partir del sexto mes el feto es sensible a los estímulos externos. En este período se han constatado en el feto reflejos condicionados al ruido. Un prematuro de seis a siete meses es capaz de reaccionar de forma diferente ante alimentos salados o dulces y ante ciertos olores. El feto distingue la luz a los siete meses. Percibe también las sensaciones de calor o de frío y es sensible a la presión. Así pues, antes de nacer, el niño ya ha experimentado determinadas sensaciones con la ayuda de sus cinco sentidos. Entre las primeras de estas sensaciones que experimenta se hallan sin duda aquellas de lo que es agradable y desagradable.

Estas primeras actividades psíquicas del feto son, según el profesor Minkowski, “la base indeleble sobre la que se insertan todas las impresiones ulteriores”. La creencia popular dice que las envidias, las esperanzas o los temores de la madre influyen sobre el niño que pronto nacerá. Es cierto que, al alimentar la circulación sanguínea de la madre la del hijo, las modificaciones químicas ocasionadas por el estado psicológico de la madre repercuten de una manera sensible en el feto.

Así, cuando la madre se encuentra en un estado nervioso deficiente, cuando está agotada o cuando experimenta sensaciones demasiado fuertes, su equilibrio hormonal se modifica y, a través de ella, el del feto. Es por esto por lo que es deseable que una mujer encinta lleve, en la medida de lo posible, una vida tranquila y regular, tanto física como psíquicamente. Es difícil medir con exactitud los efectos que pueden producir los estados psicológicos y las emociones de una futura madre sobre el hijo que lleva. Sin embargo, se ha constatado un nexo de unión entre el psiquismo de la madre y las reacciones del feto. Esta vida intrauterina y las impresiones que deja sobre un ser aun virgen apasionan actualmente a los investigadores.

¿SE PUEDE DETECTAR LA PRESENCIA DE GEMELOS? : Teóricamente se puede saber a finales del cuarto mes si es previsible un nacimiento de gemelos, es decir desde que se pueden oír los latidos del corazón. Al final del quinto mes, el ginecólogo puede notar al tacto dos cabezas. Pero este examen es difícil ya que en el caso de gemelos el líquido amniótico es más abundante; el útero es más grueso, está más tenso, y su contenido es difícilmente controlable. Un embarazo de gemelos, desde el momento que se supone o se diagnostica, requiere una vigilancia extremadamente atenta y unos cuidados físicos en la madre para evitar un parto prematuro.

¿GEMELOS VERDADEROS O FALSOS?: En ocasiones, el ovario libera dos óvulos a la vez o. que los dos ovarios actúen simultáneamente. En estos casos, pueden quedar fecundados los dos óvulos, dando lugar a gemelosbivitelinos o falsos gemelos. Estos gemelos son en realidad niños concebidos al mismo tiempo, pero que tienen cada uno un patrimonio hereditario propio; pueden ser, por consiguiente, de sexos diferentes. Los verdaderos gemelos, por el contrario, se originan a partir de un único óvulo fecundado por un solo espermatozoide. siendo la escisión del huevo en dos partes idénticas la que da lugar a dos embriones que tienen el mismo patrimonio hereditario. Los verdaderos gemelos son pues siempre del mismo sexo y se parecen hasta en los más mínimos detalles.

LA DETECCIÓN DE LAS ANOMALÍAS CROMOSÓMICAS Los trabajos realizados por un pediatra de Chicago,Henry Nadler, hechos públicos en el congreso médico de la Haya de 1969, han puesto a punto un método que permite detectar ciertas anomalías hereditarias desde el comienzo del embarazo. Hacia el tercero o cuarto mes del embarazo, se toma una pequeña cantidad de líquido amniótico por simple aspiración a través de la pared abdominal. En este líquido flotan células provenientes del feto, que se ponen en cultivo en un medio adecuado y se multiplican.

Un estudio profundo permite identificar, si las hubiese, ciertas taras cromosómicas o ciertas enfermedades del metabolismo, es decir deficiencias en las transformaciones que se operan en el organismo. En efecto, en el momento de la fecundación puede ocurrir un accidente cromosómico. Un cromosoma de menos o, por el contrario, un cromosoma suplementario, será causa de un desequilibrio que impida el normal desarrollo del embrión. La primera célula estará al principio desvirtuada y todas las otras, nacidas de ella, llevarán la misma anomalía, con lo que el niño nacerá “diferente”. Uno de los ejemplos más típicos de estos accidentes cromosómicos es el del mongolismo o trisomia 21.

En 1959, los profesores Turpin. Lejeune y Gautier descubrieron que los pequeños retrasados mentales, a los que corrientemente se les llama mongólicos, poseían 47 cromosomas en lugar de 46. La medicina se encuentra todavía impotente ante los casos de aberración cromosómica y ciertos médicos son partidarios del aborto terapéutico. En los casos de enfermedades del metabolismo, es a menudo posible prescribir un tratamiento precoz de la madre.

 

Alimentos Transgenicos manipulacion genetica de los alimentos

Se denominan alimentos transgénicos a los obtenidos por manipulación genética que contienen un aditivo derivado de un organismo sometido a ingeniería genética; también se llaman así a aquellos que son resultado de la utilización de un producto auxiliar para el procesamiento, creado gracias a las técnicas de la ingeniería genética.

La biotecnología de alimentos aplica los instrumentos de la genética moderna a la mejora de localidad de los productos derivados de las plantas, animales y microorganismos. Desde tiempos remotos, él hombre ha seleccionado, sembrando y cosechado las semillas que permiten la obtención de los alimentos necesarios para el mantenimiento de su metabolismo . De la misma manera, se ha fabricado pan, cerveza, vino o queso sin conocimiento alguno acerca de la ciencia genética involucrada en estos procesos. Desde muy antiguo, los genes de los alimentos han sufrido una modificación, destinada a aumentar sus cualidades benéficas. La biotecnología moderna permite a los productores de alimentos hacer exactamente lo mismo en la actualidad, pero con mayor nivel de comprensión y capacidad selectiva.

En un principio, el hombre se alimentaba de los animales que podía cazar o de las especies vegetales que crecían en su entorno más inmediato, Posteriormente se idearon técnicas para cultivar ciertas plantas. Cuando los primeros seres humanos decidieron establecerse y cultivar sus alimentos, en lugar de vagar para encontrarlos, nacieron la agricultura y la civilización. Con el tiempo, los métodos se han vuelto más sofística-. dos, pero todos los intentos por mejorar los cultivos de alimentos han dependido, del enfoque popular de la naturaleza hacia la producción. Las aves y abejas aún permiten a los reproductores cruzar cultivos con sus parientes silvestres. La reproducción de híbridos desarrolla características deseables, tales como un sabor más agradable, un color más intenso y mayor resistencia a ciertas enfermedades vegetales.

La era de los denominados «alimentos transgénicos» para el consumo humano ddirecto se inauguró el 18 de mayo de 1994, cuando la Food and Drug Adminístration de los  Estados Unidos autorizó la comercialización del primer alimento con un gen «extraño»  el tomate Flavr-Savr; obtenido por la empresa Calgene. Desde entonces se han elaborado cerca de cien vegetales con genes ajenos insertados. Los productos que resultan de la manipulación genética se pueden clasificar de acuerdo con los siguientes criterios:

• Organismos susceptibles de ser utilizados como alimento y que han sido sometidos a ingeniería genética como, por ejemplo, las plantas manipuladas genéticamente que se cultivan y cosechan.

• Alimentos que contienen un aditivo derivado de un organismo sometido ingeniería genética.

• Alimentos que se han elaborado Utilizando un producto auxiliar para el procesamiento (por ejemplo, enzimas), creado gracias a las técnicas de la ingeniería genética. Este tipo de sustancias suelen denominarse alimentos recombinantes. Para incorporar genes foráneos comestibles en la planta o en el animal, es preciso introducir vectores o «parásitos genéticos», como plásmidos y virus, a menudo inductores de tumores y otras enfermedades —por ejemplo, sarcomas y leucemias…… Estos vectores llevan genes marcadores que determinan la resistencia a antibióticos como la kanamicina o la ampicilina, que se pueden incorporar a las poblaciones bacterianas (de nuestros intestinos, del agua o del suelo). La aparición de más cepas bacterianas patógenas resistentes a antibióticos constituye un peligro para la salud pública.

Existen diferentes alternativas para conseguir la mejora vegetal mediante la utilización de la ingeniería genética. En el caso de los vegetales con genes antisentido, el gen Insertado da lugar a una molécula de mRNA que es complementaria del mRNA de la enzima cuya síntesis se quiere inhibir. Al hibridarse ambos, el mRNA de la enzima no produce su síntesis. En el caso de los tomates Flavr-Savr la enzima cuya síntesis se inhibe es la poligalacturonasa responsable del ablandamiento y senescencia del fruto maduro. Al no ser activo, este proceso es muy lento, y los tomates pueden recolectarse ya maduros y comercializarse directamente Los tomates normales se recogen verdes y se maduran artificialmente antes de su venta, con etileno, por lo que su aroma y sabor son inferiores a los madurados de forma natural. En este caso, el alimento no Contiene ninguna proteína nueva.

La misma técnica se ha utilizado para conseguir soja con un aceite de alto Contenido en ácido oleíco (89% o más, frente al 24% de la soja normal), inhibiendo la síntesis deja enzima oleato desaturasa. La introducción de genes vegetales, animales o bacterianos da lugar a la síntesis de proteínas específicas. La soja resistente al herbicida glifosato, Contiene un en bacteriano que codifica la enzima 5-enolpiruvil-shikimato-3-fosfato sintetasa. Esta enzima participa en la síntesis de los aminoácidos aromáticos y la propia del vegetal es inhibida por el glitosato; de ahí su acción herbicida. La bacteriana no es inhibida.

El maíz resistente al ataque de insectos contiene un gen que codifica una proteína de Bacillus thuringiensis, que tiene acción insecticida al ser capaz de unirse a receptores específicos en el tubo digestivo de determinados insectos, interfiriendo con su proceso de alimentación y causándoles la muerte. La toxina no tiene ningún efecto sobre las personas ni sobre otros animales. La utilización de plantas con genes de resistencia a insectos y herbicidas permite reducir el uso de plaguicidas y conseguir un mayor rendimiento. Además, se ha obtenido una colza con un aceite de elevado contenido en ácido laúrico, mediante la inclusión del gen que determina la síntesis de una tioesterasa de cierta especie de laurel. Los vegetales resistentes a los virus se consiguen haciendo que sinteticen una proteína vírica que interfiere con la propagación normal del agente infeccioso. Estos vegetales contienen proteína vírica, pero en menor proporción que las plantas normales cuando están severamente infectadas.

Los vegetales transgénicos más importantes para la industria alimentaria son, por momento, la soja resistente al herbicida glifosato y el maíz resistente al insecto conocido como taladro. Aunque en algunos casos se emplea la harina, la utilización fundamental del maíz en relación con la alimentación humana es la obtención del almidón, y a partir de éste, de glucosa y de fructosa. La soja está destinada a la producción de aceite, lecitina y proteína.

Beneficios de la biotecnología de alimentos

Estas nuevas técnicas auguran posibilidades reales de optimizar la producción de alimentos. El método mencionado en el caso de los tomates —cosechados para el con-, sumo directo, sin necesidad de que maduren artificialmente en cámaras— se está aplicando al cultivo de melones, duraznos, plátanos y papayas de mejor sabor, y a flores recién cortadas, cuya duración se prolonga. Más concretamente, la biotecnología influirá positivamente en los siguientes aspectos:

• Mejor calidad de los granos en semilla.

• Mayores niveles de proteínas en los cultivos de forrajes.

• Tolerancia a sequías e inundaciones

‘•Tolerancia a sales y metales.

• Tolerancia al frío y al calor.

Los experimentos de manipulación genética aplicados a  producción de maíz han arrojado un balance positivo en la actualidad el maíz y la soja son los vegetales transgénicos más importantes para la industria alimentaria.

Riesgos de la Biotecnología de los alimentos

La introducción de genes nuevos en el genoma de la planta o del animal manipulado provoca transformaciones impredecibles de su funcionamiento genético y de SU metabolismo celular; el proceso puede acarrear la síntesis de proteínas extrañas para el organismo —responsables de la aparición de alergias en los consumidores…..; la producción de sustancias tóxicas que no están presentes en el alimento no manipulado, así como alteraciones de las propiedades nutritivas (proporción de azúcares, grasas, proteínas, vitaminas, etc.).

Hay suficientes peligros reales como para afirmar que estos alimentos no son seguros. Las experiencias pasadas con biocidas como el DDT, aconsejan una prudencia extrema. Junto a los riesgos sanitarios, la amenaza para el medio ambiente es, incluso, más preocupante La extensión de Cultivos transgénicos pone en peligro la biodiversidad del planeta potencia la erosión y la contaminación genética, además del uso de herbicidas (un importante foco de contaminación de las aguas y de los suelos de cultivo). Según un informe de la OCDE, el 66% de las experimentaciones de campo con cultivos transgénicos que se realizaron en años recientes estuvieron encaminadas a la creación de plantas resistentes a herbicidas La Agencia de Medio Ambiente de Estados Unidos advierte de que este herbicida de amplio espectro ha situado al borde de la extinción a una gran variedad de especies vegetales del país; por otro lado, está considerado uno de los más tóxicos para microorganismos del suelo, Como hongos, actinomicetos y levaduras.

Otra de las preocupaciones fundadas es el posible escape de los genes transferidos hacía poblaciones de plantas silvestres, relacionadas con dichos cultivos transgénicos, mediante el flujo de polen: la existencia de numerosas hibridaciones entre si todos los cultivos transgénicos y sus parientes silvestres ha sido bien documentada La introducción de plantas transgénicas resistentes a plaguicidas y herbicidas en los campos de cultivo conlleva un elevado riesgo de que estos genes de resistencia pasen, por Polinización cruzada a malas hierbas silvestres emparentadas creándose así las denominadas «súper malas hierbas», capaces de causar graves daños en plantas y ecosistemas naturales.

A su vez, estas plantas transgénicas con características nuevas pueden desplazar a especies autóctonas de sus nichos ecológicos. La liberación de organismos modificados genéticamente al medio ambiente tiene consecuencias a menudo imprevisibles, pues una vez liberados —el animal o la planta —,se reproducen y se dispersan por su hábitat, imposibilitando cualquier control.

La Terapia Genética Manipulación de Genes Biología Celular

La terapia genética es la técnica que permite la localización exacta los posibles genes defectuosos de los cromosomas y su sustitución por otros correctos, con el fin de curar las llamadas «enfermedades genéticas», entre las que se encuentran muchos tipos de cáncer.

El desarrollo de la terapia genética se ha apoyado en los avances científicos experimentados por determinadas ramas de la biología, como la genética, la biología molecular, la virología o la bioquímica. El resultado es una técnica que permite la curación de casi cualquier patología de carácter genético.

En el desarrollo de dicha terapia hay que tener en cuenta diversos factores. Por un lado, es necesario saber cuál es “tejido diana”, es decir, el que va a recibir la terapia. En segundo lugar, conocer si es posible tratar in situ el tejido afectado. Igualmente importante resulta determinar el que facilita el traspaso de un gen exógeno a la célula, es decir, qué vector se ha elegir para el desarrollo del nuevo material genético que posteriormente se introduce el tejido. Finalmente, es preciso estudiar al máximo la eficacia del gen nuevo y saber que respuesta tendrá el órgano o tejido «hospedador», con la entrada del gen modificado.

La finalidad principal de los estudios sobre terapia génica en el ámbito de la medicina es conseguir los mejores resultados tanto en prevención como en investigación, diagnóstico y terapia de las enfermedades hereditarias; sin embargo, esta manipulación del material genético puede ser utilizada en ingeniería genética, con el fin de mejorar determinadas características de los seres vivos.

Los inicios de la terapia génica

Los primeros trabajos en terapia génica se realizaron con ratones, mediante tecnica del ADN recombinante, que consiste en introducir el ADN extraño en los embriones, de forma que dicho ADN se expresa luego completamente, a medida que desarrolla el organismo. El material genético introducido se denomina transgén; los individuos a los que se les aplica esta técnica reciben el nombre de transgénicos. Con la introducción de estos transgenes se puede lograr la identificación de zonas concretas del material genético para llevar a cabo su cloonación, con el fin de que solo se vean afectadas un tipo específico de células.

Vectores

Los vectores virales agrupan cuatro tipos de virus: retrovírus, adenovirus, virus adnoasociados y herpesvirus; existen también vectores no virales, como el bombardeo con partículas, la inyección directa de ADN, los liposomas catiónicos y la transferencia de genes mediante receptores.

Vectores virales

Los retrovirus comprenden una clase de virus cuyo material genético es una cadena sencilla de ARN; durante su ciclo vital, el virus se transcribe en una molécula bicatenaria de ADN, gracias a la acción de la enzima reverso transcriptasa, que se integra en el genoma de la célula huésped sin aparente daño para ella. La mayor parte de los retrovírus a excepción del HIV, sólo se pueden integrar en células con capacidad para replicarse, lo cual restringe su uso. Sin embargo, se pueden desarrollar en grandes cantidades y su expresión en la célula hospedadora se realiza durante largos periodos de tiempo. Los adenovirus son un conjunto de virus con ADN lineal de cadena doble. Los vectores de adenovirus son más grandes y complejos que los retrovirus, pues en su construcción solamente se elimina una pequeña región del material genético vírico. Su ciclo de infección, que comprende de 32 a 36 horas en un cultivo celular conlleva en primer lugar la síntesis de ADN de la célula y, posteriormente la sintesis y ensamblaje del ADN y las proteínas víricas. Las infecciones de estos virus en seres humanos están asociadas a enfermedades benignas, como la conjuntivitis.

La principal ventaja de su utilización en la terapia génica es que se pueden producir en grandes cantidades y transfieren de forma muy eficaz el material genético a un número elevado de células y tejidos, aunque el hospedador parece limitar la duración de la expresión del nuevo material genético.

Los virus adeno-asociados son muy pequeño no autónomos y con ADN lineal de cadena sencilla. Para la replicación de estos virus es necesaria la confección con adenovirus. La inserción del material genetico de los adenovírus asociados se suele producir en regiones del cromosoma 19. Los vectores que se forman con este tipo de virus son muy simples, no pueden exceder en mucho la longitud del ADN viral, aproximadamente 4.680 nucleótidos, y son capaces de expresarse a largo plazo en las células que no se dividen; sin embargo, la respuesta que producen en la célula hospedadora es menor que la que se ocasiona con el tratamiento con adenovirus y es difícil la producción de este vector en grandes cantidades. Los herpesvirus poseen un material genético compuesto por ADN de doble cadena lineal, con un tamaño aproximado de 100 a 250 Kb.

Presentan variaciones en cuanto al tamaño y organización del genoma, contenido genético o células sobre las que actúan. Pero por regla general, este tipo de  de virus son muy útiles, pues es posible insertar en su genoma grandes cantidades de ADN extraño y llevar a cabo durante largos periodos de tiempo infecciones latentes en la célula hospedadora, sin ningún efecto aparente sobre ésta. En la clase de los gamma-herpesvirus como el virus de Epstein-Barr, se pueden producir infecciones latentes en células en  división, de modo que el material genético que lleva insertado el virus se replica conjuntamente a la división celular y se hereda en toda la nueva progenie de células. El inconveniente que presentan estos virus es que están asociados a daños linfoproliferativos, con lo cual, para su uso como vectores es necesario identificar estos genes y eliminarlos, manteniendo únicamente aquellos que permitan la replicación del virus y el mantenimiento del plásmido viral. Hasta la fecha, el uso fundamental de los herpesvirus en la terapia génica se limita al empleo in vivo del herpes simples (HSV).

Vectores no virales

El bombardeo de partículas constituye una técnica efectiva de transferir genes tanto in vitro como in vivo. En este método físico el plásmido o porción de ADN es recubierto en su superficie por gotas de oro o tungsteno, de 1 a 3 micras de diámetro. Estas partículas, aceleradas por una descarga eléctrica de un aparato o por un pulso de gas son «disparadas» hacia el tejido. El éxito de esta técnica puede estar asegurado en los procesos de vacunación. Otra alternativa es la inyección directa del ADN o ARN puro circular y cerrado covalentemente, dentro del tejido deseado. Este método económico, y un procedimiento no tóxico, si se compara con la entrega mediante virus. Como desventaja fundamental hay que señalar que los niveles y persistencia de la expresión de genes dura un corto periodo de tiempo.

Esta tecnologia puede tener potencial como un procedimiento de vacunación y como e genes a un nivel bajo. Los liposomas catiónicos consisten en la mezcla de un  lipido catiónico de carga positiva y varias moléculas de ADN con carga negativa debido a los fosfatos de la doble hélice.

Este tipo de  vectores se han usado en el tratamiento de la fibrosis sistica y en las enfermedades  vasculares. Se pueden realizar transferencias de estos vía catéter, aunque su uso es limitado, dedido a la baja eficacia de transfección del material genético contenido en este complejo a la célula hospedadora ya su relativa toxicidad.

Un problema que se plantea con las técnicas anteriores es que el vector alcance realmente su objetivo y no quede diseminado por el organismo. Por ello existe un procedimiento que consiste en introducir, junto al material genético que queremos transferir, moléculas que puedan ser reconocidas por los receptores de la célula diana. Estas moléculas pueden ser azucares, péptidos, hormonas, etc. y su ventaja respecto a otros modelos es que se establece una interacción muy específica, como la interacción transportador/célula, y no muy inespecífica como la que se verifica entre las cargas iónicas.

Experimentos en animales

Los experimentos con animales conforman una parte fundamental en el estudio de cualquiera de las aplicaciones de terapia génica; sus dos objetivos principales son el análisis de la seguridad del sistema de vectores y el estudio de la eficacia de la transferencia de genes.

El efecto de la dosis y su duración es comprobado en varias especies, incluyendo primates y otros animales que sean hospedadores para el virus salvaje (por ejemplo, las ratas del algodón se usan para el estudio de adenovirus). Se analiza la difusión de secuencias vitales, especialmente a las gónadas, y cualquier efecto adverso, como la inflamación tras la administración del vector.

El propósito de estos ensayos no es mostrar que el vector no produce efectos adversos —cualquier clase de droga tiene esa capacidad en determinada dosis—, sino precisar el tipo de suceso adverso que podría esperarse si los humanos estuvieran expuestos al vector, y fijar las posibles dosis que pueden acarrear estos sucesos. Para una enfermedad genética, un ratón con un gen eliminado o un animal con el fenotipo apropiado sería válido en este tipo de estudio.

Terapia génica en seres humanos

Esta terapia está destinada al tratamiento de enfermedades infecciosas y auto inmunes, Las estrategias se basan en la eliminación de poblaciones de células infectadas con virus, como el HIV, mediante administración directa de moléculas de ácidos nucleicos o a través del desarrollo de vacunas. En la terapia contra el cáncer, se puede actuar con diferentes objetivos. Si se opera sobre las células del sistema inmunitario, se manipulan ex vivo las células efectoras antitumorales del sistema inmune. Estas células son modificadas genéticamente y reimplantadas con el fin de liberar dentro del tumor el producto de los genes exógenos, como las cítoquinas.

Sobre las células hematopeyéticas o formadoras de sangre se actúa incorporando los llamados genes MDR, que confieren mayor resistencia a las altas aplicaciones de quimioterapia en el paciente. Si se actúa directamente sobre las células tumorales, se introducen factores genéticos que provoquen la muerte o apoptosis de las células tumorales o aumenten la respuesta del sistema inmunitario antitumoral del paciente.

Otro de los campos más promisorios de las terapias génicas es el de las inmunoterapias y la fabricación de vacunas biotecnológicas.

Recordemos que nuestro organismo está sometido a múltiples agresiones de parásitos, bacterias y virus. El sistema inmunitario debe clasificar a esos agresores y armar una respuesta efectora capaz de eliminarlos.

■ En el caso de las bacterias extracelulares y de sus productos tóxicos, la respuesta eficaz consiste en la producción de anticuerpos opsonizantes o neutralizantes.

■ Si se trata de bacterias intracelulares (como los micoplasmas) que se replican en el interior de los fagosomas, la respuesta más contundente corre a cargo de las células T que activan los fagocitos en los procesos de hipersensibilidad retardada.

■ Por último, ante una infección vírica, si bien los anticuerpos específicos podrían limitar la difusión del virus a otras células, sólo una respuesta citotóxica (por los linfocitos T citotóxicos) acabará con las células infectadas y erradicará el virus.

Con la vacuna quedamos expuestos a “un material biológico” que imita al agente infeccioso. Por eso, el sistema inmunitario desencadena la resistencia ante el patógeno y lo memoriza, sin experimentar la infección ni la enfermedad. El proceso se asemejaría a introducir en el organismo un “chip” de memoria con determinadas instrucciones. Para vacunar contra un patógeno, se inocula en el organismo un microorganismo muerto (vacuna muerta), un microorganismo vivo pero incapacitado para desencadenar la enfermedad (vacuna viva atenuada) o una porción purificada del patógeno (vacuna subunitaria).

A partir de la Ingeniería genética y la Biotecnología, se perciben tres áreas prometedoras en el campo de la vacunación: la administración de vacunas a través de las mucosas, las vacunas de ADN y las vacunas terapéuticas.

Éstas nuevas técnicas permitirán curar enfermedades como la hepatitis B, el papilomavirus, el herpes genital e incluso el sida. La Biotecnología está proporcionando, entonces, un potencial ilimitado para el desarrollo de nuevas vacunas y, con ello, se está ampliando el campo de acción de la vacunación, además de presentar vehículos efectivos para el tratamiento de determinados tumores y enfermedades virales, lo que puede cambiar la relación del ser humano con las enfermedades del próximo siglo.

Fuente Consultada: Gran Enciclopedia Universal (Espasa Calpe) – Wikipedia – Enciclopedia de la Vida Tomo I.

Claves Para Cuidar el Cuerpo Mantenerse Sano Cuerpo Joven y Bello

Claves Para Cuidar el Cuerpo y Mantenerse Sano y  Joven


CONSEJOS NATURALES PARA MANTENERSE SANO Y JOVEN

No se trata de jugar a detener el tiempo. Sabemos que eso es imposible. Se trata de cumplir con ciertas rutinas sencillas, que definen un estilo de vida que nos ayudará a vivir mucho mejor y por más tiempo.
naturalmente.

1-Que su dieta sea variada, abunde en vegetales y frutas, no tenga demasiadas calorías ni alimentos producidos industrialmente. Satisfaga a su paladar y al mismo tiempo cuide su figura.

2-Dígale no a los azúcares refinado , a los ritos y al exceso de carne. Mejor aún; vaya a un nutricionista y que le arme una dieta a su medida.

3-Coma en familia, sin mirar la tele, sin discutir, sin apurarse. Piense que cada comida es irrepetible y que es parte esencial de su bienestar.

4-Recuerde, alimentos son el envejecimiento, Los que contienen antioxidantes, como las nueces, el ajo, los cítricos y las uvas.

5-Mantenga su cuerpo en forma, Tanto en su aspecto aeróbico (salga a correr o caminar 3 veces por semana), como en su flexibilidad (pruebe el yoga) y en su tono muscular. Se sentirá más fuerte, se cansará menos. Y lo mirarán más.

6-Elija una actividad o deporte. Seguro hallará alguna que parezca hecha a su medida, No se rinda si la primera que probó le resultó aburrida. Hay que darles tiempo a las endorfinas para que actúen.

7-Cuide su postura: En el trabajo, en casa al mirar la tele, en todo momento. Mírese en el espejo y fíjese cómo se sienta, cómo se para, cómo se acuesta. Con los años, una mala postura pasa facturas carísimas.

8- El y debe ser ejercitado. Aprenda otro idioma, haga meditación, tome un posgrado. Haga crucigramas.

9-Respire El cuerpo lo hace automáticamente, pero cuanta más conciencia tome sobre su propia respiración, más ganará en salud física y mental.

10- Proteja su Piel, Comiendo sano, dejando de fumar, tomando sol en su medida justa, usando productos buenos de belleza. Verse bien también ayuda a sentirse bien. Parece superficial, pero no lo es.

11- Realice los exámenes periódicos de acuerdo  su edad. Vaya al clínico, al cardiólogo, al dentista, al dermatólogo. No sólo para prevenir, sino porque todo lo que sea detectado tempranamente será más fácil de curar.

12- Baje el estrés el Duerma las horas que necesita y merece, hágase problemas sólo por aquello que vale la pena, y concédase gustos. Una vida estresada no es una buena vida.

13-Cuidado con los malos hábitos Ninguno de ellos ayuda a vivir mejor. Ni el  exceso de alcohol, ni el tabaco ni cualquier clase de droga, es la salida a ningún problema. Busque ayuda.

14-Cultive sus Un abrazo y un beso pueden hacer más por su salud que una tonelada de remedios. Sentirse querido es, probablemente, la mejor receta para una vida sana.

15- El sexo es salud. Practicado con los cuidados físicos y emocionales que corresponde, ayuda a la persona a sentirse plena, realizada y acompañada, SI tiene problemas, háblelo con su pareja o con un profesional, pero no tenga vergüenza.


NO AL SEDENTARISMO: Existe una estrecha relación entre el sedentarismo y un sinnúmero de perjuicios para la salud. O dicho de otro modo, un estilo de vida físicamente activo es equivalente y aditivo a otros estilos saludables: no fumar, tener la presión arterial controlada, llevar una dieta equilibrada y controlar el peso. Las actividades aeróbicas poseen efectos beneficiosos sobre diferentes componentes grasos de la sangre: reducen los triglicéridos y aumentan la cantidad de colesterol bueno (HDL), protector de la salud de las arterias. Además, la práctica regular de ejercicio recreativo mejora las relaciones interpersonales, la autoestima y la calidad del sueño y preserva las actividades cognitivas.

Si consideramos a la actividad física como un fármaco, veremos que sus beneficios son proporcionales a la cantidad que se realiza, pero la diferencia con una droga es que todos los sistemas del organismo reciben el beneficio. Usted acaba de hacer un ejercicio para mantener su cerebro activo a través de la lectura: ahora agréguele más salud a todo su cuerpo e inicie, retome o continúe con un plan de ejercicio regular.

Fuente Consultada: Vida Sana #12 Clarín
Nota a cargo de Hernán Delmonte Cardiólogo universitario. Especialista en Medicina del Deporte y profesor nacional de educación física. Miembro titular de la Sociedad Argentina de Cardiología.

Ver: Sugerencias y Tips Para Una Vida Sana y Longeva

Fuente Consultada: Basado un artículo de Selecciones Reader Digest

Vida y Obra de Russell Wallace Teoria de la Seleccion Natural

Alfred Russel Wallace (8 de enero de 1823 – 7 de noviembre de 1913) fue un geógrafo y naturalista inglés. Wallace es conocido sobre todo por haber alcanzado el concepto de selección natural, central en la teoría biológica de la evolución, independientemente de Charles Darwin.

wallace russelEl nombre de Darwin y la evolución están inseparablemente ligados, a pesar de que el primer anuncio público de la teoría de lal selección natural no lo realizó Darwin solo, sino conjuntamente con Alfred Russell Wallace. Aunque hacía muchos años que Darwin había concebido la idea de la evolución por la selección natural, estando ya por hacerla pública recibió una carta de Wallace, en la que le exponía una teoría casi análoga a la suya.

Eran tan semejantes, que Darwin, en una carta dirigida a Lyell, escribió: … “si Wallace hubiera poseído el esbozo del manuscrito que redacté en 1842, no habría podido hacer él un resumen mejor y más corto”. Así que, en julio de 1858, Darwin y Wallace presentaron una comunicación conjunta a la Linnean Society.

A lo largo de su vida, Wallace continuó defendiendo la teoría de la evolución, aunque sus puntos de vista presentaban ligeras diferencias con los de Darwin. Él opinaba que la supervivencia del mejor adaptado era el factor fundamental en la lucha por la vida, con lo que no estaba de acuerdo Darwin. Wallace también afirmaba que la selección natural no podía explicar ciertas características de los seres humanos: su inteligencia, la pérdida del pelo del cuerpo y el desarrollo especializado de las manos.

Wallace nació en Usk, Monmouthshire (Gran Bretaña), en 1823. Aunque estudió arquitectura y topografía, ya a los veinte años se sintió interesado por la historia natural, vocación que mantuvo hasta el fin de su vida. Fue un naturalista autodidacto que viajó mucho por América del Sur y sudeste de Asia, recogiendo ejemplares para su colección. Durante su estancia en Sudamérica, acompañado del naturalista inglés H. W. Bates, se mostró muy interesado por la extraña semejanza en la disposición de los colores,

observada en insectos entre los que no existía ninguna relación, y dedicó muchos de sus escritos a estos casos de semejanza.

Sobra maestra es, sin lugar a dudas, The Geographical Distribution of Animals (La distribución geográfica de los animales), publicada en 1876, que aún está considerad como un trabajo importante en materia d zoogeografía, y, en este campo biológico su nombre se ha perpetuado en la llamad línea Wallace.

Esta línea separa el archipielago Malayo en dos regiones, cada una con sus plantas y animales característicos. Por ejemplo, al este de la línea, los únicos mamíferos nativos encontrados son los marsupiales (mamíferos provistos de bolsa) y los monotremas (mamíferos ovíparos); al oeste sólo se encuentran mamíferos placentario Esto sugirió a Wallace la idea de que h islas del oeste habían estado, en otros tiempos, unidas a Asia, y las del este, a Australia La línea Wallace pasa entre Borneo y las Célebes al norte, y entre las islas de Bali y Lomboc al sur.

Su mente privilegiada le condujo a investigar muchos problemas relacionados con evolución, como la construcción de nidos por los pájaros —es decir, hasta qué punto trata de una cosa instintiva o producto la inteligencia—, el significado de las miradas diferenciaciones de color que se encuentran entre pájaros de ambos sexos de misma especie, y el hombre y su evolución

Al final de su vida, fue un detractor enérgico de la práctica de la vacunación, recien introducida, y se hizo espiritista. Estuvo siempre dispuesto a señalar el papel principal que Darwin había desempeñado en formulación de la teoría de la evolución deducida por ambos, independientemente Wallace falleció en 1913.

La Seleccion Natural Mediante El Uso de un Arma Biologica Natural

Si un parásito matase a todos los huéspedes a los cuales encuentra, entonces también él perecería. Existen al menos dos estrategias que pueden adoptar los parásitos para asegurar su permanencia, y ambas dependen de su propio estilo de vida.

Por un lado, si el parásito es muy rápido para multiplicarse y pasar a otro huésped y si, al mismo tiempo, hay una cantidad infinita de nuevos huéspedes no infectados donde anidar, el parásito puede mantener un estado de alta virulencia generación tras generación. Sin embargo, la realidad es que si este tipo de parásitos tuviera el suficiente éxito, se haría cada vez más difícil encontrar una cantidad ilimitada de nuevos huéspedes no infectados.

Lo lógico en este caso es que la población huésped disminuya, y por lo mismo la “comida” potencial del parásito también disminuirá. Por ello, el mantenimiento de un estado de alta virulencia termina siendo contraproducente para el propio parásito. Así, si cualquiera de los preceptos mencionados no se cumple, al parásito no le queda otro camino que atenuar su virulencia.

En este caso cuenta con la complicación de que el huésped también tendrá tiempo para combatirlo, por lo que los parásitos deberán utilizar este tiempo para cambiar y adaptarse también a las nuevas respuestas del huésped. Por lo mismo, casi todas las relaciones de coevolución, con el tiempo, terminan en la atenuación de las respuestas entre predador y presa. Para ilustrarlo veamos una serie de desventuras ocurridas en Australia.

Los diseñadores de políticas ambientales australianas no les temían a los riesgos y por ello se embarcaron en un proyecto que, para controlar un desbalance grave del equilibrio ecológico, implicó una serie de peligros que no se tuvieron en cuenta y generaron nuevos desequilibrios. No hubo conejos en Australia hasta 1859, cuando un señor inglés importó apenas una docena de estos encantadores animalitos desde Europa, para distraer a su esposa y agraciar su hacienda. Los conejos se reproducen muy rápido, apenas un poco más rápido de lo que tardamos en reconocer el problema que generan. Y ese “apenas” es más que suficiente.

En poco más de un lustro (1865), el mencionado caballero había matado a un total de 20.000 conejos en su propiedad y calculó que quedaban todavía otros 10.000. En 1887, en Nueva Gales del Sur solamente, los australianos mataron 20 millones de conejos. Llegado el siglo XX aparecieron nuevas herramientas de combate contra las plagas. En la década de 1950, la vegetación de Australia estaba siendo consumida por hordas de conejos. En ese año el gobierno trató de hacer algo para detener a los simpáticos animalitos. En Sudamérica, los conejos locales están adaptados a un virus con el que conviven desde hace mucho tiempo. este se transmite cuando los mosquitos que toman la sangre de un conejo infectado lo depositan sobre un conejo sano, ya sea por deposición o por la nueva picadura. Este agente infeccioso, denominado virus de la mixomatosis, provoca sólo una enfermedad leve en los conejos de Sudamérica, que son sus huéspedes normales.

La mixomatosis ha generado una de las mayores catástrofes ecológicas de la historia y el desmantelamiento de las cadenas tróficas en el ámbito mediterráneo, donde el conejo era la base de la alimentación de rapaces y carnívoros. De nuevo el responsable de esta catástrofe fue el ser humano al ser introducida la enfermedad en Francia en 1952, desde donde se extendió por toda Europa. Dicha enfermedad se había llevado a Australia anteriormente para erradicar el conejo allí, que era plaga.

Sin embargo, es mortal para el conejo europeo, que fue el que se implantó en Australia. Así que en Australia se liberaron en el campo una gran cantidad de conejos infectados con el virus de la mixomatosis, esperando que [os mosquitos autóctonos hicieran el trabajo de esparcir el agente infeccioso. En un comienzo, los efectos fueron espectaculares y la población de conejos declinó de manera constante: llegó a ser menos del 10% de la población original, cuando comenzó el tratamiento en gran escala. De esta manera se recuperaron zonas de pastura para los rebaños de ovejas, de los cuales depende en gran medida la economía de Australia.

Sin embargo, en poco tiempo aparecieron evidencias de que algunos conejos eran más resistentes a la enfermedad. Como estos conejos eran los que más se reproducían, sus crías también resultaron resistentes al virus de la mixomatosis. Cuando el fenómeno se estudió en forma global, se observó que no sólo los conejos se volvían más resistentes, sino también que el virus iba atenuando su virulencia generación tras generación. Así, había ocurrido un doble proceso de selección. El virus original había resultado tan rápidamente fatal que el conejo infectado solía morir antes de que tuviese tiempo de ser picado por un mosquito y, por lo tanto, de infectar a otro conejo; la cepa del virus letal, entonces, moría o desaparecía junto con el conejo. Por otra parte, en la preparación original de virus debería de haber algunos más atenuados.

En las condiciones de muy alta mortalidad de los conejos, las cepas virales de efectos más atenuados tenían una mejor probabilidad de sobrevivir, dado que disponían de mejores oportunidades y, fundamentalmente, de más tiempo para encontrar un nuevo huésped. De tal manera, la selección comenzó a operar en favor de una cepa menos virulenta del virus. Por su parte, un conejo que sobrevive a una infección inicial queda “protegido” como si hubiera sido vacunado, por lo que no vuelve a enfermarse fácilmente. Además es probable que los sobrevivientes hayan sido los que más resistencia intrínseca tuvieron al virus original. De esta manera su descendencia también debía ser más resistente, por lo que cuando estos conejos comenzaron a proliferar, todos los conejos australianos fueron adquiriendo resistencia al virus de la mixomatosis. Hace poco tiempo, como resultado de la rápida coevolución, la relación huésped-parásito se estabilizó, por lo que los conejos volvieron a multiplicarse, y regeneraron la población existente antes del comienzo del ataque.

En definitiva, se utilizó un arma biológica tremendamente activa, pero las consecuencias distaron mucho de ser las esperadas. De hecho, no se contuvo la proliferación de los conejos y se mantuvo el riesgo del desequilibrio ambiental comenzado hace 150 años, y; por el contrario, se generó una adaptación de los animales, se los tomó más fuertes para resistir a una plaga como el virus de la mixomatosis A pesar de las enseñanzas que debieron haber quedado después de este tremendo fracaso, hace poco tiempo se intentó nuevamente en Australia repetir la metodología para eliminar Los conejos con un nuevo patógeno cuya dinámica poblacional se desconocía casi por completo. Es obvio que hay gente a la que le encantan los riesgos. El problema es cuando al asumirlos se involucra a demasiadas personas, o, como en este caso, a un ecosistema completo.

satira a darwin
Portada en una revista, publicado con ironía la teoría de Darwin

A lo largo de la evolución, y mediante el proceso de selección natural, los organismos de las distintas especies han ido adquiriendo modificaciones morfológicas, fisiológicas y comportamentales con las cuales han logrado responder y adaptarse a las características Particulares de su medio.

ESTRATEGIA ADAPTATIVA DE PLANTAS Y ANIMALES
FACTOR EFECTOS ADAPTACIONES DE LAS PLANTAS ADAPTACIONES DE LOS ANIMALES
Escasez de Agua Deshidratación.
Estrés hídrico.

Reducción de la superficie foliar, por la que las plantas transpiran: espinas.Esclerofilia (hojas duras, coriáceas o revestidas con ceras o quitina, que las protegen de la radiación intensa y de la desecación)

Plantas con metabolismoCAM (los estomas de las hojas sólo se abren de noche para captar el CO2, con lo que se evita la pérdida de agua que se produciría si los estomas se abrieran durante las horas de mayor radiación solar).

• Piel estratificada, con varias capas de células (por ejemplo, en los vertebrados).• Productos de excreción concentrados, como el ácido úrico o le urea en lugar del amoníaco.

• Elevada reabsorción intestinal de agua en las heces.

• Obtención de agua metabólica a partir de la oxidación del hidrógeno de los alimentos.

Temperatura Temperaturas altas: deshidratación desnaturalización de las enzimas.
Temperaturas bajas: cristalización del agua en los tejidos, retardo del metabolismo.
Las mismas que para la escasez de agua. Al calor y al frío: cambios comportamentales (mayor actividad diurna durante el invierno y mayor actividad nocturna o crepuscular durante períodos cálidos); regulación social de la temperatura: vida en grupos, sobre las ramas de los árboles o en cuevas; vida subterránea.
Escasez de Alimentos, baja disponibilidad de nutrientes Crecimiento y desarrollo deficientes.Inanición. Plantas carnívoras, como respuesta a la escasez de nitrógeno en pantanos, bosques con suelos empobrecidos, etcétera.Asociación con bacterias fijadoras ; de nitrógeno en leguminosas: nódulos radiculares. Asociación con hongos (micorrizas) en distintas plantas. Almacenamiento en cuevas y guaridas, como en las hormigas y otros insectos sociales.Acumulación de reservas en la grasa corporal.
Salinidad •  Efecto osmótico: tendencia de los tejidos a perder agua en ambientes muy salinos (medio hipertónico), y a ganar agua e hincharse en ambientes poco salinos (medio hipotónico).•  Efecto iónico: toxicidad en plantas (especialmente por Cl y Na4). Secreción de iones a través de glándulas especializadas.Suculencia: planta de aspecto globoso; incorporan agua para diluir la concentración de sales. Vida marina (medio hipertónico): beben agua de mar y luego secretan el exceso de sales a través de las branquias y las glándulas de la sal; producen una orina concentrada.Agua dulce (medio hipotónico): no beben agua y absorben sales a través de la piel y las branquias; producen una orina diluida.

Fuente Consultada:
Ahí viene la plaga Colección: “Ciencia que ladra….” Mario Lozano

LA SELECCION ARTIFICIAL: LA ACCIÓN DEL HOMBRE EN LA SELECCIÓN DE LAS MEJORES ESPECIES

En su célebre obra, Darwin hace una serie de consideraciones acerca de las variaciones que aparecen en muchas especies de plantas y animales domésticos. Llegó a la conclusión de que, evidentemente, todas las especies de plantas y animales domésticos proceden de especies silvestres. La explicación era sencilla el hombre no ha sido siempre agricultor y ganadero, ya que sabemos que en tiempos remotos vivía exclusivamente de la caza y de la pesca, o de la recolección de frutos (etapa de cazador-recolector), forma de vida que conservan actualmente algunas tribus remotas de Nueva Guinea o de la Amazonia.

En algún momento en la historia, el ser humano eligió determinadas especies de animales que le eran particularmente útiles como alimento y comenzó a criarlas en cautiverio. Estos primeros intentos constituyeron el comienzo de la ganadería, que más tarde se iría perfeccionando hasta llegar a nuestros días.

Al observar las actuales especies de animales domésticos, inmediatamente se advertirá que la variación que se presenta entre los individuos es mucho mayor que la que aparece en el mismo animal en estado silvestre. Darwin fue un profundo conocedor de muchas especies de animales domésticos, y él mismo, durante una larga etapa de su vida, se dedicó en el campo a la cría de palomas.

En el caso de la paloma, Darwin llegó a la conclusión de que todas las razas domésticas procedían de la paloma de las rocas, Cotumba livia.

Si bien ésta presenta características muy constantes en cuanto al tamaño, el color, la forma de las alas, el pico y la cola, etc., el número de variaciones observado en las razas domésticas es sumamente elevado.

Otro ejemplo examinado por Darwin es el caballo, un animal de gran utilidad para el hombre, que ha sido sometido a un largo proceso de selección artificial desde hace miles de años. Así, mediante cruzas controladas se han obtenido muchísimas razas de caballos que son diferentes tanto por su aspecto como por su capacidad.

Dos ejemplos son los pura sangre y los percherones. Los caballos de pura sangre son altos, de cascos pequeños y patas delgadas y musculosas. Son notablemente veloces y, por eso, son los típicos caballos de carrera. Por otro lado, los percherones son caballos de poca alzada, grandes cascos y patas cortas y fuertes. No pueden tener gran velocidad, pero son caballos muy fuertes y resistentes, lo que los hace muy aptos como animales de tiro.

Las variaciones que se dan en los cereales, las frutas y las hortalizas cultivadas son incluso más notables que las de los animales, si se comparan con las correspondientes especies silvestres.

A pesar de la posible influencia de las condiciones ambientales y de las costumbres, Darwin asignó a la acción humana el papel fundamental en la variabilidad de las especies domésticas de plantas y animales.

Desde la época de los faraones egipcios, el ser humano eligió las semillas de plantas más robustas y los animales mejor dotados para utilizarlos como reproductores en la agricultura y en la ganadería. De esta forma, consiguió mejorar las razas.

Lo que hace el hombre es “seleccionar” aquellos individuos que presentan espontáneamente variaciones interesantes que pueden transmitirse a la descendencia. En los cereales, por ejemplo, elegirá las semillas de mayor tamaño o más robustas, ya que sabe que di-chas semillas normalmente darán origen a plantas jóvenes mejores que las semillas de plantas raquíticas o que han dado menos frutos. Estos mismos ejemplos podrían ampliarse a todos los animales y plantas domésticos.

Evidencias aportadas por la selección artificial
La cruza de animales de cría o de plantas cultivadas para obtener individuos con ciertas características deseables fue una práctica implementada por el hombre desde la época en que abandonó la caza y la recolección como principal forma de subsistencia y se estableció en un sitio por un período más prolongado.

En esta práctica, llamada selección artificial, el criador de animales tales como perros, gatos, vacas, ovejas, caballos, palomas, u otras especies selecciona entre los progenitores a los individuos cuyas características se ajustan a lo que busca, y aparta a los otros posibles progenitores. Como la descendencia puede presentar características no deseadas, el criador vuelve a seleccionar en cada generación los individuos que se ajustan a sus preferencias. De este modo, resulta que las características de los descendientes aparecen fuertemente diferenciadas de las de los ancestros.

Este proceso le ha permitido al hombre obtener una gran variedad de razas de perros, tan diferentes en tamaño y aspecto como un gran danés, un ovejero alemán o un chiguagua. Asimismo, es notable la diversidad de razas de los diferentes tipos de ganados vacuno, ovino, lanar, en muchos casos muy distintos de sus parientes ancestrales que podrían encontrarse en estado salvaje.

De la misma forma, se han obtenido muchas plantas cultivadas, tanto alimenticias como ornamentales, con notables diferencias con respecto a sus estados originales.
Esta práctica llamó poderosamente la atención de Darwin y le aportó una de las evidencias más importantes para sustentar sus hipótesis.

La selección artificial continua era lo suficientemente poderosa como para provocar cambios observables en tiempos relativamente cortos. Dados los largos períodos de la historia evolutiva, la selección natural parecía una explicación adecuada para la aparición de nuevas especies.

Fuente Consultada:
Biología y Ciencias de la Tierra La Selección Natural Capitulo: 15

Accion del Medio Ambiente en la Vida del Hombre Adaptacion Humana

Adaptación del Hombre Al Medio Ambiente
Acción del Medio Ambiente

LA VIDA DEL HOMBRE SEGÚN SU MEDIO AMBIENTE: Si analizamos el tipo de vida de los habitantes de una región cualquiera podemos advertir fácilmente la estrecha relación que mantiene con el medio geográfico. Muchas regiones poseen actualmente una población económicamente poco desarrollada , debido a las condiciones desfavorables del medio. Esto es lo que ocurre en las selva, en la tundra , y en los desiertos, regiones donde el paisaje natural apenas ha sido afectado por la actividad de la población, que vive bajo la influencia aplastante de una naturaleza hostil.

En las regiones donde el medio se ha mostrado más acogedor se ha desarrollado notablemente la civilización y el hombre parece haber logrado un ajuste favorable con la naturaleza. Este ajuste, sin embargo, no ha sido fácil, porque para alcanzarlo ha debido el hombre trabajar intensamente. Pero ni aun el trabajo humano hubiera sido suficiente para libertar totalmente al hombre de su medio.

medio ambiente y el hombre

El hombre civilizado necesita de todo el rendimiento de su inteligencia en forma de invenciones, descubrimientos, avances en el conocimiento de las leyes de la naturaleza y el mejoramiento de su organización social, para multiplicar la efectividad de su esfuerzo. Todo este progreso tecnológico, propio de nuestra civilización industrial, ha permitido al hombre moderno utilizar las ventajas que la naturaleza le ofrece y sortear los obstáculos que le presenta.

El hombre civilizado ha podido crear el paisaje cultural de muchas regiones derribando los bosques, exterminando los animales dañinos y domesticando los útiles, irrigando las tierras secas, drenando ciénagas, construyendo puentes y embalses, fabricando redes de ferrocarril y carreteras y tendiendo instalaciones telefónicas y eléctricas. Ha construido ciudades, puertos y fábricas, creado instituciones sociales, dictado leyes y desarrollado las industrias, pero el hombre no ha dominado todavía, ni dominará nunca, el medio geográfico.

Las grandes características de la superficie terrestre y los procesos de la naturaleza que constituyen los elementos fundamentales del paisaje natural, permanecen invariables después de más de un millón de años de haber aparecido sobre la tierra los primeros seres semejantes al nombre.

El progreso de la humanidad es, pues, el resultado no de la conquista de la naturaleza por el hombre, sino de que el hombre ha ido comprendiendo mejor la naturaleza y ha colaborado inteligentemente con ella. Al basar su economía sobre las leyes naturales, de acuerdo con las características geográficas de cada región, el hombre ha logrado una mayor producción y, por lo tanto, un nivel de vida más alto.

La habitación humana. Además de alimentación y vestido, el hombre necesita descansar diariamente, entregándose al sueño. Desde su aparición sobre la tierra el hombre necesitó un refugio para estas horas en que podía estar a merced de los animales o de otros hombres. Las ramas más altas de los árboles y las cavernas debieron ser sus primeras habitaciones. Más tarde el hombre comenzaría a construir su vivienda de acuerdo con los recursos que el medio le ofrecía.

La adaptación de la habitación a las condiciones del medio es uno de los hechos geográficos más evidentes, pues el tipo de vivienda está estrechamente influenciado, entre otros factores, por el clima y la vegetación, así como por el tipo de ocupación de nivel de civilización de los habitantes de cada región.

En las regiones de clima frío las paredes de las casas son gruesas, presentan muchas ventanas para dar paso a la luz y los techos son muy inclinados para que no retengan la nieve. En las latitudes medias las casas poseen menos ventanas y los techos son menos inclinados; en las regiones de clima mediterráneo las casas son relativamente pequeñas, pintadas de blanco o de colores claros y los techos son casi siempre horizontales En las bajas latitudes hay la tendencia a construir grandes corredores en torno a las casas, y patios centrales para aliviar el fuerte calor.

Las casas difieren tanto por su forma como por sus materiales, ya que el hombre debe adaptar su construcción a los recursos disponibles en la región. Esta variedad incluye casas de madera, de piedra, cavernas excavadas en las rocas, casas de adobe, tiendas de pieles, chozas de techo de paja, iglús de hielo y rascacielos de acero y concreto.

La casa de madera predomina en las regiones de bosques. En algunos casos, como en los templos del Japón, las construcciones de madera alcanzan enorme tamaño. En Suecia y Noruega, en el norte de Rusia y de Canadá, y en Alaska, los bosques de coníferas suministran madera para la construcción de las casas. En el sur de Estados Unidos, predominan todavía las casas de madera.

En las zonas que bordean el Mediterráneo, en cambio, donde el bosque es de poco rendimiento  y hay abundancia de rocas como la arenisca y la arcilla, predominan las casas de piedra; y en algunas zonas del sur de Europa se encuentran muchas casas construidas perforando las rocas, en forma de cavernas artificiales.

En las regiones áridas, donde la madera y la piedra escasean, es costumbre construir las casas con ladrillos de arcilla secada al sol. En la antigua Mesopotamia se construía ya en esta forma y el método se mantiene en el Oriente Próximo, en el norte de África y aun en China. Las casas de adobe de los indios pueblos del Suroeste de Estados Unidos, son excelentes ejemplos de este tipo de habitación.

En las estepas, donde todavía los pastores nacen la vida nómada, se encuentran las tiendas de pieles o fieltro. Las yurtas o tiendas redondas de los mongoles pertenecen a este tipo de habitación, fácil de armar y desarmar y de transportar.

En las bajas latitudes, en regiones cálidas y lluviosas, es común la casa construida de maderas y cubierta de hojas secas de palma. Este tipo de construcción se encuentra en América, África, en el sureste de Asia y en las islas del Pacífico.

Los pueblos pescadores primitivos que vivían en las márgenes de los lagos fabricaban sus casas sobre pilotes, encima del agua. Estos palafitos se encuentran aún entre los pueblo aborígenes de distintas regiones.

Los esquimales construyen sus casas permanentes de piedra y tierra para el invierno, pero pueden construir en pocos minutos refugios temporales de hielo (iglús). En los cortos veranos árticos viven en tiendas de pieles.

El desarrollo de la civilización ha estimulado el crecimiento de las ciudades. Al aumentar el valor de la tierra la tendencia actual en las grandes ciudades, es a fabricar casas más altas, para ahorrar espacio. El ejemplo más característico de este crecimiento vertical de la habitación humana lo ofrece la ciudad de New York con sus numerosos rascacielos.

Condiciones Para La Vida en el Planeta Factores Ambientales Basicos

la vida en el planeta

TEMA RELACIONADOS

La Aparición De La Vida
La Teoría De La Evolución De Charles Darwin
La Terapia Genética
La Eutanasia o Muerte Digna
El Origen Del Hombre En El Planeta
El Proyecto Genoma Humano

La Clonación Humana y Animal
La Eugenesia o Reproducción de las Mejores Especies 

LA VIDA EN EL PLANETA TIERRA: Separar el mundo inerte del mundo organizado parecía, hasta nace pocos lustros, una tarea muy sencilla: un elefante es un ser vivo y una roca no. Mas al profundizar en el conocimiento de los seres infinitamente pequeños, se llega a dudar y se ve como algo sumamente confuso la línea divisoria entre los dos mundos. Hay cuerpos que no es posible determinar de un modo claro si son seres vivos o moléculas inorgánicas muy complicadas. Pertenecen al mundo de las proteínas.

Los virus, por ejemplo, son microbios sumamente pequeños. El productor de la poliomielitis, que tantos quebraderos de cabeza ha proporcionado a médicos y biólogos, mide una centésima de miera. Son necesarios, por tanto, 100.000 de ellos puestos en fila para formar un milímetro. Se comprende que sólo el microscopio electrónico haya sido capaz de hacerlos visibles.

Las nucleoproleínas, sustancias químicas formadas por moléculas sumamente complicadas, en algunos casos se comportan exactamente igual que los virus y se ha llegado a dudar si son seres vivos o sólo compuestos químicos. Los doctores Fraenkel y Williams, de los Estados Unidos, afirmaron que hablan obtenido en sus laboratorios nucleoproteínas vivas por síntesis, es decir, hablan creado vida, pero en una forma tan rudimentaria., que sólo podían existir sobre otras materias vivas. Se trataba, por tanto, de algo que está en la borrosa línea que separa lo vivo de lo inerte.

Pero esta imitación o creación de vida simplicísima en el laboratorio se halla a gran distancia de la complejidad de un ser vivo tan sencillo como puede ser una ameba o un hongo.
Se conocen las manifestaciones de la vida y se señalan sus notas características, pero los científicos están acordes en no saber qué cosa es en sí la vida.

Porque ésta presupone, además de una cierta organización de los elementos que forman el cuerpo vivo, la unidad de intención, es decir, la tendencia por la que todas las partes contribuyen a una finalidad. En un huevo, por ejemplo, se encuentran uña serie de sustancias (azúcares, grasas, proteínas y agua) que son los compuestos orgánicos indispensables para que exista la vida.

Éstos tienden a transformarse en un polluelo, que es un microcosmos complicadísimo en el que billones de células trabajan ordenadamente para cumplir ese fin o tendencia que da por resultado un pollo adulto. ¿Por qué no se descomponen dichas sustancias y dan lugar a carbono, hidrógeno, oxígeno, nitrógeno y pequeños rastros de fósforo, azufre, calcio, etc.? ¿Por qué tienden a complicarse en lugar de descomponerse?

En esta tendencia, que supone organización, se encuentra oculto el gran secreto de la vida.

Los cuatro grandes elementos del mundo viviente son el Carbono, el Oxígeno, el Hidrógeno, y el Nitrógeno. Sin ellos no puede existir vida alguna y es tan importante el papel que juegan en la Biología, que el 99 % de todo ser vivo está formado por estos cuatro cuerpos simples.

En el mundo impera una ley implacable de cambio, de evolución, que somete a todas las cosas y resulta imposible de evitar y menos prever en cuanto a su duración y término. En los seres inertes, la erosión, los elementos atmosféricos, la gravedad, etc., determinan este desgaste continuo que se da en las montañas, en los monumentos y en cualquier obra humana o de la naturaleza.

Los seres inertes no pueden luchar contra este desmoronamiento constante y fatal, pero los seres vivos sí, y para evitarlo se nutren y asimilan sustancias que les son necesarias. Durante su infancia y juventud, esta asimilación les proporciona energía suficiente no sólo para vivir, sino para crecer. Es en la vejez cuando la nutrición no es suficiente para detener la caída del ser vivo hacia la muerte, donde se precipita por un proceso natural, de desasimilación, pérdida y decadencia.

Los seres vivos necesitan, pues, extraer del ambiente los cuatro elementos antes citados y que permitirán al laboratorio de su cuerpo transformarlos en sustancia propia.

La asimilación del Oxígeno y del Hidrógeno por entrar estos elementos en la formación del agua, no constituyen problema, pero ni el Carbono, ni el Nitrógeno pueden captarse directamente del mundo natural. Los procesos por los cuales los seres vivos se ingenian para apropiarse estos elementos y el ciclo de cambios constantes por los que pasan de unos vivientes a otros, constituye uno de los hechos más admirables de la Biología.

La biosfera es la región de la Tierra que alberga a los seres vivos. En sentido estricto, es la zona comprendida entre los fondos marinos abisales, situados a unos 11.000 m de profundidad y la altura máxima terrestre, que es de casi 9.000 m de altura sobre la superficie del mar. En realidad estos 20 Km. de espesor máximo se reducen enormemente si consideramos, por un lado, que la gran mayoría de los mares y océanos no son tan profundos y por otro, que los seres vivos que habitan el medio terrestre no lo hacen más allá de unos 200 m por encima del suelo.

En cualquier caso la biosfera constituye una capa muy delgada si la comparamos con el resto de capas que forman nuestro planeta y está formada por gran cantidad de ambientes distintos donde los seres vivos desarrollan sus actividades de maneras muy diversas.

La biosfera no es una capa homogénea, debido a que los organismos tienden a acumularse en determinados lugares donde las condiciones para la vida son más adecuadas. Estas condiciones vienen determinadas básicamente por los denominados factores ambientales, de los cuales los más importantes son: la temperatura, la luz, el agua y la presión.

La temperatura
La Tierra posee unas condiciones únicas para el desarrollo de la vida sobre su superficie si la comparamos con otros planetas del sistema solar. Esto se debe entre atrás cosas a que, por su distancia del sol f por la existencia de las capas atmosféricas, disfruta de un régimen de temperaturas adecuado.

El desarrollo y mantenimiento de la vida requiere que la temperatura se mantenga centro del intervalo comprendido entre a temperatura extrema mínima de O °C f la temperatura extrema máxima de 50 °C aproximadamente.

A temperaturas inferiores a los O °C, el agua, cuya proporción es mayoritaria en los organismos, se congela, mientras que por encima de los 50 :C, las estructuras biológicas más importantes que forman la materia viva, como las proteínas, que veremos en caratillos posteriores, sufren un proceso denominado desnaturalización, por el cual pierden tanto su estructura física como las propiedades. Existe una temperatura óptima entre los 5 y los 30 °C, en la que la mayoría de los seres vivos desarrollan sus funciones a la perfección.

Hay que tener en cuenta además que el proceso vital en cualquier organismo se compone de una gran cantidad de reacciones químicas que, como tales, dependen muy directamente de la temperatura a la que se realicen. De esta manera y siempre dentro del intervalo de temperaturas óptimas, a mayor temperatura, mayor velocidad de reacción y viceversa.

la vida en el planeta tierra

Los mamíferos pueden conservar el calor de sus cuerpos con independencia de la temperatura ambiental, pudiendo vivir en lugares muy fríos, como es el caso de los osos polares.

No obstante, es fácil encontrar en el seno de la biosfera zonas donde se sobrepasen, no sólo el rango de temperaturas óptimas, sino también el de temperaturas extremas, por lo que la gran mayoría de los organismos han desarrollado diferentes estrategias para mantener sus funciones vitales de manera adecuada bajo dichas condiciones.

Entre los seres vivos, son los animales por la variedad y complejidad de sus funciones, los que han tenido que desarrollar mecanismos más eficaces para el control de su temperatura interna. Dependiendo de cómo realizan este control, podemos distinguir entre animales poiquilotermos, como los reptiles, y homeotermos, como los mamíferos. A los primeros se les conoce vulgarmente como animales de sangre fría y a los segundos como animales de sangre caliente.

Los poiquilotermos se caracterizan por carecer de mecanismos eficientes para el control de su temperatura interna por lo que su metabolismo depende mucho de la del exterior, viéndose obligados, muchas veces, a pasar períodos de inactividad cuando las condiciones son extremas. En cambio, los homeotermos, consiguen mantener una temperatura interna siempre constante en torno a los 37 °C, lo cual les permite realizar sus funciones con bastante independencia de las condiciones ambientales.

reptil, la vida en el planeta

A Los reptiles, como el yacaré de la fotografía, no pueden mantener su temperatura interna de manera independiente a la del medio, por lo que únicamente pueden vivir en sitios cálidos.

Los vegetales generalmente combaten las temperaturas poco favorables perdiendo, de manera temporal, sus partes más sensibles (hojas, partes aéreas, etc.) y desarrollando estructuras especiales de resistencia (semillas, yemas, zonas leñosas, etc.).

La luz: La luz constituye un factor ambiental muy importante, ya que es la fuente de energía primaria a partir de la cual las plantas pueden desarrollar el complejo proceso de la fotosíntesis. Mediante este proceso se convierte la energía lumínica en energía química, la cual puede ser utilizada posteriormente en otros importantes ciclos metabólicos, bien por la misma planta o bien por otros organismos. La importancia de la fotosíntesis es tan grande que podemos afirmar sin duda alguna que el mantenimiento de la vida sobre la Tierra depende de este proceso.

La luz también influye en el desarrollo de la morfología de las plantas, determinando la dirección en la que deben crecer los tejidos y brotes permitiendo así una disposición óptima para la captación de energía.

Para los organismos no fotosintéticos, la luz es un factor que posibilita la visión y por tanto la facultad de relacionarse con el medio en el que viven. También interpone en los procesos de regulación de la actividad estacional. La distinta duración de los períodos de iluminación diurna a lo largo del año constituye un fenómeno denominado foto período que actúa como reloj biológico y sirve para desencadenar  importantes fases en la vida del organismo como por ejemplo la reproducen, la muda, la migración, la floración, etc.

En el medio acuático la penetración de a luz es menor que en el medio terrestre, le tal manera que a partir de los 200 m le profundidad reina una oscuridad absoluta. La zona comprendida entre la superficie del agua y la profundidad hasta donde llega la luz se denomina zona fótica, y es donde se acumula la mayor parte de los organismos acuáticos distribuyéndose en estratos o capas según las necesidades de luz que tienen.

La presión: El medio que rodea a los seres vivos ejerce una presión sobre ellos que también influye en la estructura y fisiología de los mismos.

En el medio terrestre, en el que los organismos están rodeados de aire, la presión se denomina presión atmosférica. Su valor varía ligeramente con la altura v la temperatura, de tal modo que al nivel del mar y 0°C, es de 760 mm. de Hg ( 1atmósfera), pero disminuye progresivamente a medida que ascendemos y también a medida que la temperatura aumenta. La  presión que se registra en el medio acuático se denomina presión hidrostática y su valor depende sólo de la altura de la capa de agua que hay por encima del organismo. S

u valor aumenta de manera lineal una atmósfera cada 10 m.  profundidad, de tal manera que a unos 10 m. la presión llega a ser de una tonelada por cada cm;. lo cual no impide que puedan vivir algunos organismos especialmente adaptados.

Esta variación de presión, si la comparamos con la que se produce en el medio terrestre, es muy grande, lo que provoca que la mayoría de los organismos acuáticos desarrollen sus actividades únicamente a la profundidad que están preparados para soportar, pudiendo perecer si la abandonan accidentalmente. Esta situación se hace drástica en los organismos que poseen cavidades internas rellenas de aire, como es el caso de muchos peces, mamíferos cetáceos y aves buceadoras. Estos organismos pueden morir aplastados o sufrir trastornos fisiológicos desastrosos si se sumergen a una profundidad excesiva.

El agua: El agua es la sustancia que se encuentra en mayor proporción formando parte de la materia de todos los seres vivos. En algunos casos puede llegar a constituir más del 90% del volumen total del organismo. Su importancia queda patente si consideramos la gran cantidad de funciones que realiza: sirve de disolvente en las reacciones bioquímicas que se producen en el interior de la célula; es el medio de transporte de los nutrientes y desechos en muchos organismos; interviene en la transpiración y fotosíntesis de las plantas; sirve de esqueleto hidrostático en muchos invertebrados; constituye el medio en el que viven los organismos acuáticos y, por último, sirve de controlador de la temperatura ambiental y corporal dada su elevada capacidad calorífica.

Todo organismo mantiene un equilibrio por el que se pierde y se incorpora agua continuamente durante el desarrollo de sus actividades vitales y que recibe el nombre de equilibrio hídrico. Todos los seres vivos, desde los protozoos unicelulares hasta los mamíferos más grandes poseen mecanismos para controlar eficazmente dicho equilibrio. Su mantenimiento es más fácil en los organismos marinos que en los que viven en agua dulce.

En los organismos terrestres es donde se dan los mecanismos de regulación más sofisticados, porque son los que más fácilmente pueden perder el agua que contienen (por transpiración, respiración, etc.) sufriendo, además, mayores dificultades para incorporarla. Es por ello que la disponibilidad de agua constituye un importante factor que condiciona enormemente la distribución de los organismos terrestres.

Fuente Consultada: DIDÁCTICA Enciclopedia Temática Ilustrada Editorial Oriente

La vejez o tercera edad: problemas que sufrimos al envejecer Vivir

La vejez o tercera edad: los problemas que sufrimos al envejecer

A pesar de tratarse de una disciplina relativamente joven y de que todavía lucha porencontrar un lugar definitivo en las políticas sanitarias de muchos países, la gerontología ha conseguido reunir una gran cantidad de logros en favor de las personas de mayor edad. De hecho, puede decirse que, aunque la vejez es un territorio muy diverso que afecta de modo distinto a cada individuo, la ciencia pudo definir 10 grandes líneas de actuación en las que ya se puede, y se debe, trabajar.

la vejez

La prestigiosa revista Journal of Gerontology publicó hace unos meses una monografía sobre la medicina y la edad que se convirtió en referencia mundial de esta disciplina. De su lectura se desprenden esos 10 caminos a seguir en geriatría y gerontología que, más recientemente, fueron resumidos por el doctor John Morley de la Universidad de Saint Louis. La definición de estos objetivos cumple un papel fundamental en el desarrollo futuro de la ciencia gerontológica.

Objetivos claros
A medida que la geriatría y la gerontología van cobrando prestigio en la comunidad médica y ganando puestos en la infraestructura clínica, se hace necesario establecer protocolos y objetivos claros sobre el objeto de investigación y de actuación de estas especialidades. Detectar los problema básicos de la población mayo puede ayudar en la tarea.

Este es el top 10 contra la vejez:

1. Deterioro cognitivo. “No ha’ duda —dice Morley— de que combatir el deterioro de las funciones cognitivas del anciano y los problemas de comportamiento que de él se derivan es una prioridad en geriatría.’ En la actualidad, el conocimiento sobre el desarrollo del Alzheimer está creciendo exponencialmente Fundamentalmente se ha avanzado en el diagnóstico de la enferme dad. La posibilidad de estudiar h presencia de beta-amioide en el tejido epitelial de un paciente abre grandes esperanzas para la detección precoz del mal. Es sabido que este péptido, que cumple funciones neurotransmisoras, es también responsable de la formación de depósitos (placas amiloides) que producen deterioro neuronal grave.

Por otro lado, también mejoraron las técnicas de detección de síntomas prematuros. Por ejemplo, se sabe que algunas funciones motoras empiezan a deteriorarse mucho antes de la aparición de la enfermedad. Estar atento a estas señales mejora considerablemente la capacidad de diagnóstico.

En cuanto al tratamiento, se tI baja intensamente en el uso de inhibidores de la colinesterasa y moduladores del sistema glutamato/NMDA. Además, se descubre que el gingkobiloba, una plan con varias propiedades curativa ofrece potenciales beneficios para los que sufren el mal.

2. Depresión. Uno de los grandes caballos de batalla de la gerontología es que se reconozca la d presión entre los males que debe seguirse de manera sistemática e la población anciana. Este trastorno suele obviarse en los reconomientos iniciales, sobre todo en atención primaria, y es causante no solo de gran sufrimiento, sino de enfermedades subsidiarias como infarto.

3. Movilidad. La geriatría empieza a observar la movilidad cono una herramienta de diagnóstico que debe tenerse en cuenta. E deterioro en la velocidad de desplazamientos y reacciones del paciente es una señal de alarma de que si está produciendo un declive general. Por otro lado, si se logra mantener más tiempo la capacidad de caminar habitualmente, se experimenta una mejora considerable en otras funciones.

4. Nutrición. Entre los adultos mayores se producen cambios en los patrones nutricionales que, en algunas ocasiones, producen graves deterioros del estado físico. El descenso en la cantidad de comida ingerida y, sobre todo, la pérdida del hábito de “picar entre horas” generan una merma considerable en la cantidad de nutrientes. Algunas personas mayores terminan experimentando episodios de anorexia. En este sentido, se ha propuesto la llamada “hormona del apetito”, ghrelín, como una candidata a ser herramienta terapéutica habitual en los protocolos geriátricos occidentales.

5. Hormonas. Una de las consecuencias mejor conocidas del paso del tiempo, sobre todo en las mujeres, es el cambio en el patrón hormonal. En teoría, el aporte extra de determinadas hormonas podría ser una buena estrategia para combatir la vejez. Pero se sabe que algunas terapias sustitutivas producen severos efectos secundarios Los efectos de la inyección de moléculas como la progesterona o la testosterona siguen debatiéndose y su función en gerontología es una de las líneas de investigación más prometedoras.

6. Fragilidad. En los últimos años, la geriatría ha comenzado a fijarse en la fragilidad como un síndrome que se debe tener en cuenta, ya que es un importante precursor de la incapacidad funcional. E1 problema es que las causas de la fragilidad son demasiado numerosas incluyen desde deterioros cognitivos hasta diabetes o problemas vasculares. La intervención ante este mal s centra en dos frentes: prevenir mediante el ejercicio físico y detectar síntomas precoces, como el aumento de los episodios de caídas.

7. Corazón. Es el rey de la geriatría. Casi el 50 por ciento de las personas de avanzada edad muestran algún tipo de deterioro en sus funciones cardíacas por lo que la vigilancia del corazón y de la presion arterial es una rutina asimila en esta disciplina. La hipertensión geriátrica poco tiene que ver Don la de los adultos o jóvenes. El cuidado de los valores de presión arterial en personas mayores requiere de cálculos más sutiles y seguimientos más complejos. En esos pacientes es muy habitual la presencia de irregularidades en la presión (hiper o hipotensiones) características de este grupo.

8. Sistema inmune. El deterioro del sistema inmune con la edad e bien conocido. Una de las causa de este mal es la disminución de aporte proteínico de la dieta. Por eso, la actuación en este sentido mediante complementos nutricionales es eficaz. Pero, además, las personas mayores son más vulnera bies a la aparición de nuevas enfermedades infecciosas como el SARS o la fiebre del Nilo. Por eso, es necesario que existan unidades especializadas en geriatría en los programas de tratamiento de estos males

9. Vida a los años. Afortunada mente la frase “no se trata d agregar años a la vida, sino vida a los años” se ha convertido en un lema. Eso quiere decir que ha calado en la opinión pública una de las máximas de la geriatría: la medicina no busca la longevidad banal, sino la mejora de la calidad de vida de los adultos mayores.

10. Sistema sanitario. El último gran desafío de la geriatría consiste en dotarse de una infraestructura que permita alcanzar en todos los casos el sueño de los médicos que decidieron formarse en la especialidad: convertirse en parte fundamental del sistema sanitario y lograr generar programas de seguimiento de pacientes a largo plazo; igual que el pediatra y médico de familia acompañan al paciente durante muchos años de su vida.

LA NUEVA TERCERA EDAD EUROPEA

LA NUEVA TERCERA EDAD EUROPEA

Las personas mayores ya son un grupo demográfico suficientemente importante para que sociólogos, políticos y empresarios lo tengan muy en cuenta.

Nadie lo duda: el aumento de la longevidad ha sido una de las mejores noticias del siglo XX. Pero, en los países desarrollados, esta agradable nueva lleva consigo un efecto indeseado: junto con el aumento de la esperanza de vida se experimenta un creciente descenso de la natalidad. Como consecuencia de eso, la sociedad envejece. En el año 1950 en el mundo había 200 millones de personas mayores de 60 años. En 1970 se alcanzó la cifra de 307 millones yen 2000 se superaron los 580 millones. El número de miembros de la llamada “tercera edad” aumenta veinte puntos porcentuales más que el crecimiento de la población. Nos encontramos, así, en la generación de la historia con mayor proporción de personas mayores. ¿Es también la que más respeto les concede?

Un enredo burocrático

Lamentablemente, todo parece indicar que no. Según el especialista en bioética español José García Férez, “la pérdida de importancia y relevancia social de los mayores ha propiciado lo que en la actualidad se denomina técnicamente etaísmo”. Se trata de un conjunto de valores o actitudes que vienen a marginar en todos los órdenes de la vida al anciano y a producir un deterioro de la estima social. El culto a la juventud, a la velocidad, la actualidad, el descrédito de la

madurez, la pérdida de valores tradicionales, los cambios de hábitos culturales, la desintegración de la familia, la obsesión por la salud y la forma física… son fenómenos que, directa o indirectamente, vienen a relegar la función de los ancianos a un segundo término. Es por eso por lo que García Pérez reclama que se constituya una “ética gerontológica adaptada al momento presente”.

Cuando vivimos en la flor de nuestra juventud o disfrutamos de las mieles de una adultez serena y madura no reparamos en la cantidad de problemas técnicos, administrativos y sociales a los que se enfrenta una persona mayor. El ingreso voluntario o involuntario en una residencia geriátrica, la realización de un testamento vital, la organización de las directrices anticipadas sobre el patrimonio o la familia, la designación de un tutor legal en caso de incapacidad, la subrogación de decisiones, la pérdida de la intimidad, la exclusión laboral, el uso del sistema sanitario, la pensión…, envejecer puede convertirse en una pesada carga burocrática y casi ninguna sociedad está preparada para facilitar la tarea a los millones de ciudadanos que deben realizarla.

Pero, por otro lado, el triunfo de la vejez sobre la enfermedad gracias a los últimos avances médicos ha favorecido el florecimiento de una nueva masa social compuesta por personas mayores sanas, vigorosas, deseosas de participar en la actividad social, conscientes de su peso político, consumidoras y reivindicativas.

Nuevo grupo de presión

Según la mayoría de los expertos, los agentes sociales no terminaron de reaccionar correctamente ante el surgimiento de este nuevo grupo de población. Los políticos intuyen que en él existe un interesante depósito de votos, pero no saben cómo explotarlo. La nueva tercera edad ha empezado a organizarse de manera espontánea a la espera de que alguien repare en su importancia.

Como consumidores, los ciudadanos maduros han encontrado un lugar, por lo menos en los países más desarrollados. Revistas, productos cosméticos, viajes, ocio, inmobiliarias.., no pocos sectores han decidido dedicarse a cautivar a los mayores de 65 años. Con eso, según los expertos en marketing, se ha producido una curiosa competencia entre el culto a la figura joven y el deseo de no incomodar a la madura. ¿Será esta competencia el motor de un nuevo cambio social que estimule un mayor respeto hacia el papel de los abuelos en la sociedad?

No es posible saberlo. Lo que se pueden hacer los especialistas en detectar si se han producido cambios en la percepción de la vejez a lo largo de los últimos años. En este sentido resulta revelador el informe elaborado por el profesor de la Universidad de Sheffield Alan Walker bajo el título Actitudes hacia el envejecimiento de la población en Europa. Se trataba de una comparación de los euro-barómetros sucesivos entre 1992 y 2000, sobre todo en las preguntas que se refieren al futuro y presente de las personas mayores.

En dicho informe se detectan importantes diferencias de criterio entre los europeos de hoy y los de hace 12 años respecto a la ancianidad. Por ejemplo, se ha experimentado un creciente pesimismo ante la posibilidad de que no se mantenga el sistema actual de pensiones. Si en 1992 sólo los griegos y los portugueses consideraban que las pensiones futuras serían más bajas que las actuales, en 1999 ya no quedaba ningún país optimista al respecto. Por otro lado, en casi todos los países aumentó el número de personas que consideran que sería bueno retrasar la edad mínima de jubilación. De estos datos se desprende que ha habido un aumento de la incertidumbre sobre el futuro del sistema social de apoyo al jubilado, aunque muchos consideran más que nunca que una persona de 70 años está perfectamente capacitada para seguir manteniéndose con su propio trabajo sin necesidad de jubilarse.

Contra la discriminación

En este mismo período, los europeos también tomaron conciencia sobre otro tema que afecta a los adultos mayores: la discriminación por cuestión de edad, un asunto que no es exclusivo de Europa. En 1992 dos de cada tres europeos pensaban que era necesaria una legislación específica para luchar contra esta forma de discriminación, sobre todo en el ambiente laboral. En 1999 la proporción subió a tres de cada cuatro.

A pesar de eso, los datos demuestran que los problemas sociales derivados de la edad no están demasiado presentes en la mente de los ciudadanos de Europa. Un porcentaje muy elevado de encuestados tanto en 1992 como en los años posteriores reconoció <‘no haberse planteado todavía” qué iba a sentir cuando se jubilara. La jubilación no es un tema prioritario para los jóvenes y adultos maduros. Aún así, la mayoría de los europeos es partidaria de una jubilación flexible y de que se impulsen medidas de envejecimiento activo, como empleos de asesoría para personas mayores o trabajos de voluntariado para jubilados.

En cuanto a la atención de los mayores, los datos demuestran que el ingreso en una residencia geriátrica es considerada la “peor” opción en la mayoría de los países. En los países nórdicos, la atención residencial cuenta con más apoyo que en los países del sur. En toda Europa, sin embargo, parece existir consenso a la hora de declarar quién debe hacerse solidario de la atención de los mayores: sin duda, la familia. Aunque, como es sabido, una cosa es la intención y otra que realmente se predique con el ejemplo.

EJERCICIOS PARA ESTIMULAR EL CEREBRO:

De la misma manera que la actividad física nos ayuda a mantener un cuerpo joven y atlético, la actividad cerebral se puede mejorar haciendo diariamente determinados ejercicios, obteniéndose muy buenos resultados. Hay muchos software online en internet para practicar y agilizar nuestra concentración y memoria.

Se hizo un estudio con personas de 65 años y mas, donde luego de 10 sesiones un 26% de los experimentados mejoraron su rendimiento cerebral, según una serie de exámenes realizados, un 87% pudo procesar más rápidamente la información, y un 74% mostró mayor habilidad para resolver determinados problemas.

Algunos programas promueven los rompecabezas y los juegos que ponen a prueba las capacidades verbales, matemáticas, visuales o espaciales. Otros, como los ejercicios “neuróbicos” creados por Lawrence Katz, escritor y científico que enseña en Duke University, ofrecen nuevas formas de hacer actividades rutinarias, como escribir con la mano que no domina a fin de estimular el cerebro.

Respecto al riesgo de contraer el Mal de Alzheimer, un estudio con 800 personas (religiosos) de más de 65 años demostró que realizando actividades estimulantes como leer, jugar, pasear, visitar muestras y museos, reducía tal riesgo. En mayores de 75 años toda actividad de las antes mencionadas, mas algunas como la música, el baile, juegos de mesa, disminuyen el riegos de caer en la demencia.

En resumen podemos decir hoy que cualquier actividad intelectual adicional es sumamente beneficiosa para el cerebro, todo cambio en su rutina es buena, trate por ejemplo de hacer los paseos y mandados diarios por distintos caminos, relacionece con gente que no conoce , comparta actividades, lea a diario, propóngase metas u objetivos a corto plazo y por supuesto no deje de la lado la actividad física.

Fuente Consultada: La Ciencia de la Longevidad – Serie Documentos – Revista Muy Interesante

Artistas Vegetarianos Famosos Solo Comen Verduras Modo de Vida Vegetariano

Artistas Vegetarianos

Vegetarianos famosos: El vegetarianismo es aparentemente antiguo como el hombre. Los griegos le llamaban antipreofagia, que significa que no come carne. Mientras en Occidente personalidades tan notables como Platón, Diógenes y Pitágoras abogaban por el vegetarianismo, en la India, Buda predicaba la doctrina de Ahimsa, no hacer daño a ningún ser viviente. Desde entonces muchas religiones y otras sectas espirituales han abogado por el régimen vegetariano, ya sea oficialmente o de modo extraoficial.

Entre ellas están la doctrina de los Seventh-Day Adventists (Adventistas del Séptimo Día), la secta de los Esenios, el hinduismo, el budismo, el zoroastrismo, el taoísmo y el jainismo, así como las órdenes trapista, benedictina y cartuja de la Iglesia Católica Romana y otros grupos Cristianos .

El término «vegetarianismo» que viene de la palabra latina vegetus que significa «vivo, dispuesto, agudo, vigoroso, robusto», fue acuñado en 1842. La primera sociedad de vegetarianos se fundó en Inglaterra en 1847.

En los EE.UU. el movimiento vegetariano estuvo muy influido por hombres tales como el doctor Reuben D. Mussey, cuarto presidente de la American Medical Association, y el Rev. Sylvester Graham, famoso por sus galletas de trigo sin cerner. J. H. Kellog, que desarrolló los copos de avena como alimento preparado para el desayuno, era también un entusiasta vegetariano.

vegetarianos famosos

Sylvester Graham. 1794-1851. Americano.

Introdujo el pan de harina de trigo sin cerner (filtrar o tamizar) . Viajó por EE.UU. dando conferencias sobre la reforma dietética. Tuvo que enfrentarse ;t una oposición muy fuerte por parte de los panaderos que llegaron a celebrar una manifestación de protesta en contra suya, en 1847. Propuso una estricta dieta vegetariana para prevenir todas las formas de intemperancia.

Basaba sus creencias vegetarianas en lo que él llamaba hechos científicos: «… una sola libra de arroz contiene más sustancias nutri-livas que dos libras y media de la mejor carne; tres libras de un buen pan de trigo contienen más sustancias nutritivas que seis libras de carne y tres libras de patatas más que dos de carne…»

Sir Isaac Pitman. 1813-1897. Inglés.
Fue despedido de una fábrica textil por ser un seguidor de Swedenborg. Fundó una escuela y enseñó en Bath. Se interesó por la fonografía un sistema ortográfico basado en la fonética o sonido de las palabras. Inventó un sistema de escritura abreviada o taquigráfica (por sugerencia de un editor) y a los 24 años publicó su obraStenographic Soundhand. Fundó un instituto de fonética y editó una revista de fonética.

Fue muy aplaudido por el mundo de la prensa y de los negocios a partir del momento en que se demostró que su escritura taquigráfica era eficaz y significaba un gran ahorro de tiempo para periodistas y secretarias. Consiguió el reconocimiento internacional ya que sus manuales de taquigrafía se tradujeron muy pronto a docenas de idiomas, incluidos el gales, el bengalí y el japonés. En 1853, envió a su hermano a los EE.UU. para que fundara un Instituto taquigráfico en Cincinnati. Se casó dos veces. Le fue otorgado el título de Sir dos años y medio antes de su muerte.

Seguía un «régimen puramente vegetariano» porque le conservaba en buena forma física y espiritual. Hacía tres comidas moderadas al día, principalmente frutas, y ni siquiera bebió té hasta que no llegó a una edad avanzada. Estaba en contra de las bebidas alcohólicas y del tabaco. Fue vicepresidente de la London Vegetarían Society (Sociedad Vegetariana de Londres) y cuando sus miembros le felicitaron por su título de Sir, les respondió por escrito y en taquigrafía que debía «su prolongada salud y fuerza a los principios dietéticos de nuestra sociedad».

En cierta ocasión escribió al periódico The Times de Londres, siempre en el mismo sistema de escritura fonética, que la dispepsia le estaba llevando a la tumba. Los médicos le aconsejaron que comiera carne tres veces al día en lugar de una solamente, pero esta dieta le hizo ponerse peor. Volvió de nuevo al vegetarianismo y gradualmente fue recuperando su poder digestivo y nunca más, según decía, se enteró de que tenía estómago.

Conde León Nikplaevich Tolstoi. 1828-1910. Ruso:
Nació en una familia acomodada pero eligió defender la causa de los pobres. Luchó contra la guerra y la intolerancia religiosa. Predicó un sencillo credo religioso basado en la fraternidad, en la igualdad y en la humildad. Escribió entre otras obras, Guerra y Paz Anna Karenina y La muerte de Ivan Ilych.

No comía ni carne ni pescado y vivía sobre todo de verduras, frutas, porridge y pan. Rechazaba los huevos, la mantequilla y la manteca de cerdo. No fumaba y bebía agua antes que cualquier bebida alcohólica. Decía que«el vegetarianismo sirve como principio por el cual sabemos que la búsqueda de la perfección moral, por parte del hombre, es genuina y sincera…»

George Bernard Shaw. 1856-1950. Británico:
Se hizo escritor de teatro después de haber triunfado como crítico de música y teatro y de haber fracasado como novelista. Se hizo socialista a los 26 años y fue uno de los fundadores de la Fabián Society de Inglaterra(1884). Fue muy elogiado por su crítica social y política como la que se encuentra en obras suyas comoCandida, Man and Superman, Heartbreak. House, Pygmalion y Majar Barbara.

Resumió sus hábitos dietéticos diciendo: «Hago tres comidas diarias y estoy convencido de que con dos aún estaría mejor. Como quesos, mantequilla y huevos, pero no como ni carne, ni pescado.» Bebía zumo de manzana, hordiate y chocolate deshecho (con agua y no con leche). Cultivaba verduras y frutas en su propio jardín y tenía especial predilección por los tomates y las patatas. Rechazaba la carne por razones humanitarias: «Mi testamento contiene las instrucciones para mi funeral, el cual irá seguido, no por personas de luto, sino por rebaños de bueyes, ovejas, cerdos, bandadas de gallinas y un pequeño acuario ambulante con peces vivos, y todos ellos llevarán distintivos blancos en honor del hombre que murió antes que comer a sus prójimos los animales.» Perteneció a la London Vegetarían Society (Sociedad vegetariana de Londres) y fue severamente criticado cuando, a raíz de un ataque de anemia maligna, tuvo que ponerse inyecciones de extracto de hígado; a lo que respondió entonces a sus detractores: «Las extracciones de glándulas están tan fuera de la dieta vegetariana como la leche y los quesos».

La dieta vegetariana es una dieta vital, la dieta de vegetales es un asunto completamente diferente.» Una vez le preguntaron si atribuía su longevidad al hecho de no comer carne y al de abstenerse de los estimulantes a lo que respondió muís familiares más próximos, que no practicaron ninguna de estas abstinencias, llegaron a vivir tanto como yo. Aquel médico italiano que dejó de testamento un enorme libro no escribió en él más que:«mantén los pies calientes y la cabeza fría».

Fuente: Almanaque Insólito Tomo 4

Hombres famosos que fueron vegetarianos No comian carne vacuna

Vegetarianos famosos El vegetarianismo es aparentemente antiguo como el hombre. Los griegos le llamaban antipreofagia, que significa que no come carne. Mientras en Occidente personalidades tan notables como Platón, Diógenes y Pitágoras abogaban por el vegetarianismo, en la India, Buda predicaba la doctrina de Ahimsa, no hacer daño a ningún ser viviente. Desde entonces muchas religiones y otras sectas espirituales han abogado por el régimen vegetariano, ya sea oficialmente o de modo extraoficial.

Entre ellas están la doctrina de los Seventh-Day Adventists (Adventistas del Séptimo Día), la secta de los Esenios, el hinduismo, el budismo, el zoroastrismo, el taoísmo y el jainismo, así como las órdenes trapista, benedictina y cartuja de la Iglesia Católica Romana y otros grupos Cristianos .

El término «vegetarianismo» que viene de la palabra latina vegetus que significa «vivo, dispuesto, agudo, vigoroso, robusto», fue acuñado en 1842. La primera sociedad de vegetarianos se fundó en Inglaterra en 1847.

En los EE.UU. el movimiento vegetariano estuvo muy influido por hombres tales como el doctor Reuben D. Mussey, cuarto presidente de la American Medical Association, y el Rev. Sylvester Graham, famoso por sus galletas de trigo sin cerner. J. H. Kellog, que desarrolló los copos de avena como alimento preparado para el desayuno, era también un entusiasta vegetariano.

famosos vegetarianos de la historia

Percy Byssie Shelley. 1792-1822. Inglés.

Fue expulsado de Oxford a los 19 años. Se casó con Harriet Westbrook y huyó de Inglaterra con Mary Godwin, hija del escritor radical, librero y editor William Godwin. Legalizó su unión con Mary después del suicidio de su primera esposa. Fue y es famoso por poemas como The Cenci y Prometbeus Unbound, por sus ideas sobre el amor libre, la revolución y el ateísmo, por su amistad y su rivalidad con Lord Byron, y por su vida como expatriado en Suiza y en Italia. Murió ahogado frente a Viareggio, Italia, al zozobrar su barco durante una tormenta o quizás al ser abordado por barcas de pescadores piratas italianas.

Se convirtió al vegetarianismo a los 21 años, a raíz de su amistad con John Frank Newton de 46 años, defensor de la vida bohemia y del nudismo para los niños y anfitrión de comidas a base de deliciosos platos de verduras, frutas, pasteles (sin mantequilla) y agua destilada aunque en alguna ocasión transigió en el uso moderado de la mantequilla y los huevos para cocinar. Atacó el comer carne en su famoso poema «Queen Mab», al escribir: «Ahora ya no asesina el cordero que le mira cara a cara y horriblemente devora su carne mutilada.»

En 1813 publicó el panfleto A Vindication of Natural Diel (Una vindicación de la dieta natural), del que sólo han sobrevivido ocho copias, en el cual indicaba que dado que el hombre tiene la suprema habilidad de comunicar el dolor, y que los animales no poseen, el hombre debería abstenerse de la perniciosa búsqueda del alimento animal. Sugirió que las personas que comen carne deberían «despellejar un cordero vivo con los dientes, y hundir la cabeza cu las partes vitales, y apagar la sed con la sangre fresca», y entonces todos los hombres serían vegetarianos.

Aconsejaba a todo el mundo, «nunca te metas nada en el estómago que haya tenido vida». Escribió que la carne de animal es, no solamente la causa de las enfermedades del hombre, sino también la de los vicios del hombre». Prometió que con una dieta vegetariana incluso «las enfermedades hereditarias como la tisis, la gota, el asma y el cáncer desaparecerán».

Con el té no comía nunca «ni galletas, ni bollos porque podían tomarse con mantequilla», aunque le importaba poco lo que su mujer les sirviera a sus amigos. Una vez le sirvió cordero a un amigo suyo, Hogg, mientras que a otro invitado le invitó a disfrutar de «un delicioso pollo asesinado». No tenía interés real alguno en la comida y comía distraídamente. En más de una ocasión Hogg le había visto distraído comiéndose tranquilamente durante algún viaje un plato de rosbif frío.

Fuente: Almanaque Insólito Tomo 4