Como Funciona un Cohete

Disputa Newton y Hooke Las Orbitas Elípticas de los Planetas

HISTORIA DE LA PUBLICACIÓN DE LOS “PRINCIPIAS” – CONFLICTO NEWTON-HOOKE

ANTECEDENTES DE LA ÉPOCA. El incipiente desarrollo científico que se inició en el siglo XVII,  comenzó cuestionando el primitivo y anacrónico aristotelismo (Conjunto de las doctrinas del filósofo griego Aristóteles que explicaban los fenómenos naturales ), como teoría sintetizadora general que da cuenta del conjunto del cosmos, es decir,  fue vulnerado seriamente por los nuevos descubrimientos científicos, pero éstos no bastaron, hasta Newton, para dar ocasión a una teoría que ordenara y diera sentido a la acumulación de descubrimientos parciales. Ello explica que en los más altos científicos de la época, las nociones matemáticas y astronómicas de la mayor exactitud se dieran junto a ideas místicas y religiosas tradicionales, tal como en el caso de Kepler.

En el campo de la astronomía se continuó la labor de Copérnico, especialmente por obra de Kepler, y los perfeccionamientos del telescopio que llevó a cabo Galileo permitieron comprender mejor la estructura del sistema solar.

La. investigación de la realidad física ensayó con éxito una metodología y una conceptuación nuevas cuando Galileo formuló las leyes del movimiento de los cuerpos, en 1638. El descubrimiento de la circulación de la sangre por William Harvey (1578-1657), significó un extraordinario avance para la fisiología.

En la segunda mitad del siglo, el mundo científico, tal como aconteciera con el mundo filosófico, estaba dominado por la polémica en torno del cartesianismo. La explicación dada por Harvey a los movimientos del corazón se impuso a la observación empírica, pese a la oposición de Descartes. Leibniz refutó las ideas cartesianas acerca del movimiento, y Pascal estableció la teoría de la probabilidad de las hipótesis.

Pero la culminación científica del siglo XVII fue la obra de Isaac Newton (1642-1727), quien había de resumir en sí y superar todas las tendencias intelectuales de la época. Descubrió el cálculo infinitesimal y formuló la ley de la gravitación universal, que pasó a ser la nueva concepción totalizadora del universo y desplazó definitivamente al aristotelismo.

Newton y Hooke

Robert Hooke (1635-1703), científico inglés, conocido por su estudio de la elasticidad. Hooke aportó también otros conocimientos en varios campos de la ciencia.Nació en la isla de Wight y estudió en la Universidad de Oxford. Fue ayudante del físico británico Robert Boyle, a quien ayudó en la construcción de la bomba de aire. En 1662 fue nombrado director de experimentación en la Real Sociedad de Londres, cargo que desempeñó hasta su muerte. Fue elegido miembro de la Real Sociedad en 1663 y recibió la cátedra Gresham de geometría en la Universidad de Oxford en 1665.

LA HISTORIA Y DESCRIPCIÓN DE LOS “PRINCIPIA”: Hacia 1680 el problema del sistema planetario, en el sentido de dar una explicación racional a las leyes, que Kepler había dado empíricamente, estaba, por así decir, en el aire entre los astrónomos ingleses. Se sabía, en virtud de las leyes de la fuerza centrífuga, que en un movimiento circular uniforme de un punto, que obedeciera a la tercera ley de Kepler, la fuerza era inversamente proporcional al cuadrado del radio.

¿Sería válida esta ley en el movimiento de los planetas, cuya órbita no era circular sino elíptica, y los cuerpos en cuestión no siempre podían asimilarse a puntos? Es a esta pregunta que Newton contesta afirmativamente en su célebre libro, en latín, Principios matemáticos de la filosofía natural (es decir de la física), conocido, abreviadamente como los Principia.

La obra se compone de tres libros, el Libro I de los cuales expone los fundamentos de la mecánica a la manera euclideana con definiciones, axiomas, teoremas y corolarios, introduciendo en los sistemas, además de la ley de inercia, el concepto de masa y el principio de acción y reacción. Este libro se ocupa del movimiento en el vacío, comprobándose las leyes de Kepler en el caso de un movimiento central en el cual la fuerza que actúa sobre el punto móvil es inversámente proporcional al cuadrado de ia distancia al centro fijo, foco de la órbita elíptica del móvil.

El Libro II se ocupa, en cambio, del movimiento en un medio resistente, y entre las distintas cuestiones que trata aparece la primera fórmula teórica que expresa la velocidad del  sonido.

Los dos primeros libros sientan los principios matemáticos, es decir teóricos, de la ciencia del movimiento; el Libro III estudiará el movimiento “filosóficamente”, es decir físicamente, tomando como ejemplo el “sistema del mundo”. Antepone para ello las “Reglas del razonamiento en filosofía”, es decir las normas que desde entonces constituyen las bases del método científico en la investigación de los fenómenos naturales; pasando luego al enunciado del grupo de fenómenos celestes que debe explicar, demostrando que la ley: “Dos cuerpos gravitan mutuamente en proporción directa de sus masas y en proporción inversa del cuadrado de sus distancias”, es de validez universal, dando así por primera vez una demostración matemática que elimina la milenaria distinción entre el mundo celeste y el mundo sublunar.

A continuación comprueba las leyes de Kepler y de la caída libre, demuestra el achatamiento de la Tierra, explica por vez primera las mareas y la precisión de los equinoccios, incluye los cometas en el sistema planetario…

En las ediciones sucesivas de los Principia que Newton publicó en vida, introdujo modificaciones y agregados entre los cuales el célebre “Escolio general”, en el cual el científico da paso al metafísico o, mejor, al creyente, expresando que “Este muy hermoso sistema del Sol, los planetas y cometas sólo puede proceder del consejo y dominio de un Ser inteligente y poderoso… discurrir de Él a partir de las apariencias de las cosas, eso pertenece, sin duda, a la filosofía natural”.

EL ORIGEN DEL CONFLICTO: LA LEY DE LA INVERSA DEL CUADRADO
EL ODIO ENTRE NEWTON Y HOOKE

A principios del siglo XVIII, el matemático y astrónomo alemán Johannes Kepplee había propuesto tres leyes del movimiento planetario, que describían con precisión como se mueven los planetas respecto al Sol, pero no conseguía explicar por qué los planetas  se movían como se movían, es decir en órbitas elípticas.

orbita elpitica de un planeta

1° Ley de Kepler: Los planetas recorren órbitas elípticas y el Sol ocupa uno de sus focos

Newton se propuso descubrir la causa de que las órbitas de los planetas fueran elípticas. Aplicando su propia ley de la fuerza centrífuga a la tercera ley de Kepler del movimiento planetario (la ley de las armonías) dedujo la ley del inverso de los cuadrados, que  establece que la fuerza de la gravedad entre dos objetos cualesquiera es inversamente proporcional al cuadrado de la distancia entre los centros de los objetos. Newton reconocía así que la gravitación es universal que una sola fuerza, la misma fuerza, hace que  una manzana caiga al suelo y que la Luna gire alrededor de la Tierra. Entonces se propuso contrastar la relación del inverso de los cuadrados con los datos conocidos.

Aceptó la estimación de Galileo de que la Luna dista de la Tierra unos sesenta radios terrestres,  pero la imprecisión de su propia estimación del diámetro de la Tierra le impidió completar esta prueba satisfactoriamente. Irónicamente, fue un intercambio epistolar en 1679  con su antiguo adversario Hooke lo que renovó su interés en este problema. Esta vez dedicó su atención a la segunda ley de Kepler, la ley de la igualdad de las áreas, Newton pudo demostrar a partir de la fuerza centrífuga.

Hooke, sin embargo, desde 1674 estaba intentando explicar las órbitas planetarias, y había logrado dar con el problema del movimiento orbital. En un tratado que se publicó aquel mismo año, descartó la idea de un equilibrio entre las fuerzas que empujaban hacia dentro las que empujaban hacia afuera para mantener a un objeto como la Luna en su órbita. Constató que el movimiento orbital resultaba de suma: por una parte, la tendencia de la Luna a moverse en línea recta y, por otra, una fuerza «única» que la atraía hacia la Tierra.

Mientras tanto el propio Newton, Huygens y todos los demás seguían hablando de «una tendencia a alejarse del centro», y Newton había llegado al extremo de aceptar vórtices cartesianos (una vieja teoría de Descartes) como responsables de empujar a los objetos para que volvieran a situarse en sus órbitas, a pesar de su tendencia desplazarse hacia el exterior.

También se sabe que  algunas de las cartas enviadas a Newton sobre este tema resultaron de particular interés para el científico, pues había despertado una gran idea para aplicar como teoría en sus investigaciones.  En una de sus cartas Hooke escribió a Newton para pedirle su opinión sobre estas teorías (que ya se habían publicado). Le habló de la ley del cuadrado inverso, que Newton ya tenía, de la acción a distancia, y de la idea a la que había llegado: no había fuerza centrífuga ninguna, sino solamente una fuerza centrípeta que apartaba a los planetas de una trayectoria rectilínea y la curvaba mediante la gravedad.

En el gran libro sobre la historia del pensmaiento científico, de Moledo y Olszevicki, conocido como:”Historia de las ideas científicas”, nos relata al respecto:

“Probablemente fue esta carta la que liberó a Newton del asunto de la fuerza centrífuga (que es una fuerza artificial, simplemente la reacción a la fuerza centrípeta —esta última sí real—) y lo estimuló para demostrar, en 1680, que una ley de la gravedad con cuadrados inversos a las distancias exige que los planetas se muevan recorriendo órbitas elípticae implica que los cometas deben seguir trayectorias elípticas o parabólicas alrededor del Sol. Ésta es la razón por la que ya tenía la respuesta preparada cuando, en 1684, Halley se apareció en la puerta de su casa.

Porque fue así: aprovechando un viaje, Halley, en agosto de 1684. visitó a Newton en Cambridge, donde debatieron sobre las órbitas de los planetas y la ley del cuadrado inverso. Según contó Newton después, cuando llevaban cierto tiempo reunidos, Halley le preguntó qué tipo de curva creía él que describirían los planetas, suponiendo que la fuerza de atracción hacia el Sol fuera inversa al cuadrado de las distancias respectivas de los planetas a dicho astro.

Newton dijo inmediatamente «una elipse», ante lo cual Halley le preguntó cómo lo sabía. «Porque la he calculado», respondió Newton de inmediato. Tras esto, Halley le pidió que le dejara ver los cálculos, pero Newton buscó entre sus papeles y no pudo encontrarlos. Se comprometió entonces a volver a hacerlos v a enviárselos apenas los tuviera listos.

Ese encuentro entre Halley y Newton y los cálculos que nunca encontro se convertirían en el puntapié inicial para que nuestro protagonis:: se pusiera a escribir los Principia.”

A petición de Halley, Newton pasó tres meses rehaciendo y mejorando la demostración. Entonces, en una explosión de energía sostenida durante dieciocho meses, durante los cuales se absorbía tanto en su trabajo que a menudo se olvidaba de comer, fue desarrollando estas ideas hasta que su presentación llenó tres volúmenes. Newton decidió titular su obra Philosophiae Naturalis Principia Mathemañca, en deliberado contraste con los Principia Philosophiae de Descartes.

Ya en 1684 Newton publicó un trabajo en el que explicaba la ley de cuadrado inverso, pero recién en 1687 vio la luz su gran obra épica.

Los tres libros de los Principia de Newton proporcionaron el nexo entre las leyes de Kepler y el mundo físico. Halley reaccionó con «estupefacción y entusiasmo» ante los descubrimientos de Newton. Para Halley, el profesor Lucasiano había triunfado donde todos los demás habían fracasado, y financió personalmente la publicación de la voluminosa obra como una obra maestra y un regalo a la humanidad.

“Los Principia fueron celebrados con moderación al ser publicados, en 1687, la primera edición sólo constó de unos quinientos ejemplares. Sin embargo, la némesis de  Newton, Robert Hooke, había amenazado con aguar la fiesta que Newton hubiera podido disfrutar.

Cuando apareció el libro segundo, Hooke afirmó públicamente que las cartas que había escrito en 1679 habían proporcionado las ideas científicas vitales para los descubrimientos de Newton. Sus pretensiones, aunque dignas de atención, parecieron abominables a Newton, que juró retrasar o incluso abandonar la publicación del tercero. Al final, cedió y publicó el último libro de los Principia, no sin antes eliminar cuidadosamente cualquier mención al nombre de Hooke.

El odio que Newton sentía por Hooke le consumió durante años. En 1693 todavía  sufrió otra crisis nerviosa y abandonó la investigación. Dejó de asistir a la Royal Society hasta la muerte de Hooke en 1703, y entonces fue elegido presidente y reelegido cacada año hasta su propia muerte en 1727.”

Fuente: “A Hombres de Gigantes”

Fuente Consultadas:
El Saber de la Historia de José Babini Edit. Biblioteca Fundamental del Hombre Moderno
Grandes Figuras de la Humanidad Edit. Cadyc Enciclopedia Temática Familiar
A Hombres de Gigantes Edit. CRÍTICA
Historia de las Ideas Científicas Leonardo Moledo y Nicolás Olszevicki Edit. PLANETA

Trabajo Enviado Por Colaboradores del Sitio

El Titanio Características Propiedades y Usos Aplicaciones

EL TITANIO:

Aunque el metal titanio ocupa el cuarto lugar entre los elementos más abundantes en la corteza terrestre, no suscitó mucho interés hasta que la industria aeronáutica comenzó a utilizarlo. Cuando fue descubierto, hace unos 150 años, era un elemento problemático, que defraudó y confundió a los metalúrgicos, quienes se esforzaron para extraerlo económicamente y hacer algo útil con él.

De hecho, era tan difícil separar el metal de sus minerales que hasta 1949 no se encontró un método económico para hacerlo. Existen dos principales minerales de titanio: el rutilo, una forma impura de bióxido de titanio, y la ümenita (ferrotitanato), mezcla de óxidos de titanio y hierro. Mientras que del rutilo se obtiene todo el titanio metálico, los compuestos se fabrican de la ilmenita.

El método para la obtención del titanio metálico expuesto por el estadounidense W. J. Kroll, en el año 1949, consiste en convertir el titanio del mineral en tetracloruro de titanio, Cl4 Ti. A continuación, se reduce éste a metal, haciéndolo reaccionar con magnesio. El metal así producido tiene el aspecto de coque esponjoso.

titanio

El procedimiento Kroll todavía se usa mucho en América y Japón, pero un método químico distinto, que exige el empleo de grandes cantidades de sodio, se practica actualmente en Inglaterra. Mediante él se obtiene el titanio en forma de gránulos grises y pesados. Tanto en su forma esponjosa como granular, el metal es poco útil; para utilizarlo en sus distintas aplicaciones es necesario consolidarlo y extraerle las burbujas de aire.

Desgraciadamente, ello no se-consigue fundiéndolo e introduciéndolo en un molde. El titanio funde alrededor de los 1.700°C, 200° por encima del punto de fusión del acero. A tales temperaturas, el titanio reacciona con el recubrimiento del horno y absorbe gases del aire, que inutilizan su estructura.

A veces, los gránulos de titanio metálico crudo se mezclan con otros metales en polvo para hacer aleaciones y, después de homogeneizados completamente, se introducen en una prensa de 2.500 toneladas, para convertirlos en bloques, que se sueldan, y formar un electrodo de unos 4 metros de longitud y casi una tonelada de peso. Este electrodo se suspende de la parte superior de un horno y en la base se sitúa un crisol refrigerado por agua.

Se extrae el aire y se hace saltar un arco eléctrico entre el electrodo y una pequeña cantidad de polvo de titanio, que se dispone en el crisol. El electrodo se funde lentamente, para formar un lingote. Se repite la fusión, controlando todo el proceso a control remoto. Las grietas se descubren con ondas sonoras de alta frecuencia (ultrasonidos). Se trata de una técnica de ecos. Las grietas internas del metal actúan como espejos, reflejando las ondas y evitando que lo atraviesen. Cuando la señal no llega al otro lado de la pieza significa que hay una grieta.

INGENIERÍA AERONÁUTICA

La industria aeronáutica necesita aleaciones ligeras, que puedan soportar las tensiones producidas en los vuelos a grandes velocidades. El titanio proporciona la solución. Su densidad es sólo el 60 % de la del acero, y, por otra parte, conserva su resistencia a temperaturas superiores a, las que se consideran de seguridad para las aleaciones de aluminio y otras ligeras.

Esta industria utiliza el titanio para los alabes de las turbinas, y para recubrir los escapes, las conducciones de aire caliente y los bordes de las alas, expuestos a la erosión del aire. Debido a su alta resistencia a la corrosión por ácidos, etc., este metal se usa también en la fabricación de recipientes y tubos anticorrosivos para la industria química.

En mucha menor escala, aunque por la misma razón, el titanio está sustituyendo gradualmente al acero inoxidable en la fabricación de instrumentos quirúrgicos, tales como los implementos, pinzas, clavos y tornillos usados para fijar las partes rotas de un hueso.

PROTECCIÓN DE LAS RADIACIONES

Las centrales nucleares usan titanio en muchos de sus componentes internos, porque este metal y sus aleaciones tienen la capacidad de impedir el paso de la radiación. El metal irradiado pierde rápidamente toda la radiactividad, permitiendo que las piezas sean fácilmente manejables, lo que simplifica el mantenimiento del reactor.

uso del titanio en la aeronautica

Por su dureza, resistencia a la corrosión y ligera de peso, el Titanio se usa en la industria aeronáutica. En las paredes internas de los motores  a reacción se utiliza titanio puro. También se usa en impulsores, turbocarburadores y blisk de titanio y aluminio

PIGMENTO BLANCO

Muchas pinturas y tintas blancas deben su color al pigmento bióxido de titanio, O2Ti, único compuesto de titanio de alguna importancia real. Los pisos plásticos y los productos industrializados con cauchos blancos llevan incorporado este compuesto. Se rocía sobre las telas, para evitar el brillo innecesario, y se utiliza también para tratar los esmaltes y las tejas vidriadas, regulando color, opacidad y brillo.

La industria del papel utiliza el óxido de titanio de dos modos distintos. Puede incorporarse durante la fabricación —de modo que sus partículas queden completamente integradas en el cuerpo de la lámina, para reflejar la luz y que el papel aparezca blanco— o se puede extender sobre su superficie. Es frecuente cubrir los papeles gruesos con óxido1, pero en los que se usan para expedir cartas por avión, que deben ser ligeros y no trasparentes, el óxido se mezcla con la pulpa durante la fabricación. El “papel encerado” para envolver es blanco porque se le añade óxido de titanio.

La extracción del titanio metálico y la fabricación de su pigmento son dos procesos completamente independientes. El pigmento no se hace con el metal, pues su punto de partida es también el mineral ilmenita, del que se obtiene triturándolo y disolviendo el titanio con ácido sulfúrico concentrado. Cuando la solución se enfría después de hervir, el hierro, que también fue disuelto, cristaliza y puede separarse. Concentrando aún más el líquido, nos queda el titanio en forma de cristales de sulfato de titanio hidratado.

Estos cristales se filtran y lavan antes de introducirlos en un horno rotatorio, en el que se extraen los gases sulfurosos, quedando partículas de bióxido de titanio impuro. Después de purificadas y reducidas al tamaño apropiado, están listas para ser mezcladas con la pulpa de papel o con la pintura.

EL TITANIO COMO METAL DE TRANSICIÓN

A medida que recorremos la tabla periódica de izquierda a derecha, cada elemento aumenta en un electrón el número de los que tiene en la órbita externa, para llegar a una capa estable con ocho electrones. Pero, a veces, se añade algún electrón a una de las órbitas internas, que pueden tener hasta 18 y 32 electrones. El titanio es un metal que pertenece al llamado “grupo de transición”. Todos estos metales tienen dos electrones en la órbita externa, aunque en la interna inmediata pueden tener entre 9 y 18 electrones.

Fuente Consultada: Revista TECNIRAMA N°12 Enciclopedia de la Ciencia y la Tecnología

 

Cuadro sinoptico del Universo, Sistema Solar, Planetas y Galaxias

SINTESIS EN UN CUADRO SOBRE EL SISTEMA SOLAR

Nuestro sistema solar que está contenido en la galaxia llamada Vía Láctea, está conformado por el Sol y ocho planetas que gravitan a su alrededor. Los planetas siguen órbitas que, casi en su totalidad, están situadas en el mismo plano; y todos se desplazan en torno al Sol en el mismo sentido.

El tiempo que tardan en dar una vuelta constituye el año de cada planeta: Mercurio, el más cercano, demora tres meses terrestres. Además de los planetas, entre Marte y Júpiter circulan cuerpos pequeños, bloques de rocas cuyo diámetro no suele pasar los pocos kilómetros. Se cree que estos asteroides son los restos de un planeta que, o bien se fragmentó, o no llegó a formarse jamás.

Ampliar Sobre la Evolución del Universo

cuadro sinoptico universo

Diferentes clases de astros
Los astros se pueden dividir en cuatro tipos: a) ios que poseen luz propia, como el Sol, las estrellas, las nebulosas de emisión y algunos cometas: b) los que brillan con luz reflejada, como la Luna, los planetas, satélites, asteroides, ciertos cometas y ciertas nebulosas: c) los que no emiten luz alguna, como las nebulosas obscuras, cuya existencia se conoce en virtud de que impiden pasar la luz de los astros situados detrás de ellas; y d) las estrellas fugaces y bólidos, que lucen porque al entrar velozmente en nuestra atmósfera se tornan incandescentes al rozar con los gases de ésta.

Los movimientos aparentes de los astros difieren según los casos.

Las estrellas, los conglomerados, las nebulosas y las galaxias, describen un círculo completo alrededor de la Tierra en 24 ñoras menos cuatro minutos.

Los planetas tienen un movimiento aparente complejo. Se clasifican eñ interiores o exteriores según sea que su órbita esté, respectivamente, dentro o fuera de la que sigue la Tierra. Los planetas interiores, Mercurio y Venus, siguen una ruta cercana al astro mayor y sólo son visibles antes de orto o salida de éste, y después de su ocaso o puesta. Vistos a través del telescopio los planetas interiores presentan fases porque,estando sus órbitas dentro de la terrestre, su disco se ve más o menos iluminado por el Sol. Cuando se hallan a la mayor distancia aparente del Sol -máxima elongación- tienen la mitad del disco iluminado.

La elongación puede ser oriental u occidental, de acuerdo a cómo están situados respecto del Sol. Los planetas exteriores se ven de noche y, por lo común, viajan aparentemente de O a E a través de las estrellas, pero, según los movimientos combinados de cada planeta y la Tierra, hay un momento en que parece que se detienen: están esfa-cionarios; acto seguido cambian de rumbo y se dirigen de E a O, hasta llegar a otro punto donde permanecen de nuevo estacionarios, para continuar posteriormente con su marcha normal. Entre dos posiciones estacionarias llegan a la oposición, en que se sitúan en la línea Sol, Tierra y planeta. Si la disposición es planeta, Sol y Tierra, se dice que el planeta está en conjunción (con el Sol interpuesto). Los planetas se mueven dentro del Zodíaco, que es una faja de 8o de anchura a cada lado de la eclíptica.

Musica en el Voyager Violin Stradivarius Gaitas Escocesas Violines

LOS SONIDOS DEL PLANETA TIERRA:

¿CÓMO HACER comprender a un habitante de un planeta lejano lo que son y cómo viven los seres humanos en la Tierra? Ésta fue la pregunta que se  planteó a un comité de expertos en 1977, cuando las naves espaciales de EUA Voyager 1 y 2 iban a ser lanzadas en un viaje al espacio con un saludo para cualquier forma de vida inteligente con que se toparan.

Para sorpresa de muchos, los expertos coincidieron en que uno de los mejores modos de comunicarse con extraterrestres sería no con palabras o imágenes, sino con música. Dedicaron los 87 minutos del videodisco de los Voyager a una selección de los “grandes éxitos musicales de la Tierra”. ¿Por qué la música?.

Disco de oro The Sounds of Earth (arriba), protegido por un estuche de aluminio con chapa de oro, es instalado en el Voyager 2. Con éste se envió al espacio exterior, donde los científicos esperan que lo reciba alguna forma de vida inteligente no humana.

En primer lugar,  porque su estructura —desde un blues de ocho compases hasta una compleja fuga de Bach— se basa en números, y la armonía es de fácil análisis matemático. Las matemáticas son el lenguaje más universal, por lo que era más probable que los extraterrestres comprendieran la estructura matemática de nuestra música más que cualquier otra cosa sobre nosotros.

Además, expresa los sentimientos humanos mejor que otros medios y podría representar la variedad de culturas. No ha habido sociedades sin su música típica para expresar tristeza y dolor, alegría y tranquilidad. Al seleccionar la música que representaría a la humanidad en el universo, la clave fue la variedad.  Se eligieron canciones aborígenes de Australia, el Night Chant de los navajos y una canción de boda peruana; música de gamelán de Java, de zampoñas de las islas Salomón y de Perú, un raga de la India y música ch’in de China; piezas para gaitas de Azerbaiyán, flautas de bambú de Japón y percusiones del Senegal. También se incluyeron canciones de Georgia, Zaire, México, Nueva Guinea y Bulgaria; el blues Dark Was the Night con Blind Willie Johnson, Melancholy Blues con el trompetista de jazz Louis Armstrong y Johnny B. Goode con el cantante de rock Chuck Berry. De la tradición culta occidental se seleccionó música para flauta renacentista, tres obras de Bach y dos de Beethoven, un aria de La flauta mágica de Mozart y La consagración de la primavera de Stravinsky.

¿Son éstos los éxitos musicales de la Tierra? Al menos son hoy los que más podrían persistir. El videodisco, de cobre con chapa de oro, fue fabricado para que dure 1.000 millones de años.

INSTRUMENTOS DE GUERRA:

EL SONIDO estridente de las gaitas ha acompañado a los escoceses de laS Tierras Altas en las batallas cuandc menos durante los últimos 400 años, dando nuevos ánimos a los ardientes guerreros de las montañas y provocando miedo en el corazón de sus enemigos. Según registros, en la Batalla de Pinkie (1549), “los violentos escoceses se incitaban a la guerra con el sonido de las gaitas”. Y éstas se escucharon también en 1942, cuando tropas de las Tierras Altas escocesas avanzaron por campos minados del desierto contra el Afrika Korps de Rommel, en la batalla de El Alamein.

Desde Suecia hasta Túnez

Las gaitas simbolizan a Escocia tanto como el haggis y el whisky. Pero los escoceses no pretenden ser los inventores de la gaita. Es casi seguro que haya surgido en el Imperio Romano durante el siglo 1. Se cree que el emperador Nerón la tocaba, y es más probable que estuviera practicando este instrumento, no el violín, mientras Roma ardía.

Hacia 1300, gaitas de un tipo u otro zumbaban y chillaban desde Inglaterra hasta la India, y de Suecia a Túnez casi en cualquier parte, menos en Escocia. Fue un siglo después, cuando ya el resto del mundo había empezado a cansarse del instrumento, que los escoceses lo adoptaron.

Llamado a la gloria En 1915, el gaitero Laídlaw (foto izquierda) incitó a las tropas británicas para que continuaran el avance a través de una nube de gas mostaza en el frente occidental. Su valentía lo hizo merecedor de la Cruz de Victoria.

Las gaitas fueron populares en parte porque podían fabricarse con materiales que se conseguían en la sociedad rural. Sólo se requería la piel de una oveja o el estómago de una vaca para hacer el odre, y unas pocas cañas perforadas para los canutos. El principio del instrumento es ingenioso, pero sencillo. El gaitero sopla en el odre, que actúa como depósito para mantener la circulación constante de aire a los canutos. Estos son de dos tipos, caramillo y roncón. En una versión sencilla de dos canutos, el gaitero ejecuta la melodía en el caramillo, mientras el roncón produce el bajo continuo característico del sonido de la gaita. En algunas variantes, el aire para el odre proviene de un fuelle.

Las gaitas aún se emplean en la música folklórica de muchos países. Por ejemplo, acompañan las danzas tradicionales de los bretones, en el noroeste de Francia. Muchas personas relacionan con regimientos escoceses el sonido de las gaitas entremezclado con el estruendo de una batalla. Pero los escoceses no tienen exclusividad al respecto: durante siglos los irlandeses también las han usado para llamar a las armas.

EL VIOLIN STRADIVARIUS:

Los violines Stradivarius son los más preciados instrumentos musicales del mundo. Entre los cerca de 600 ejemplares que aun se conservan hay algunos valorados en más de un millón y medio de euros, es decir, más de cien veces de lo que costaría el más perfecto ejemplar artesano moderno y más de diez mil veces que los procedentes de fabricaciones industrializadas.

Un violín hecho en el siglo XVIII por Antonio Stradivarius, de Cremona, Italia, puede costar hasta un millón de dólares. Los stradivarius se cotizan a tan altos precios porque todavía se los cataloga como los violines más finos que se hayan producido.

Stradivarius fue un genio tranquilo, un artesano asentado en Cremona, donde residió toda su vida en una modesta casa taller del barrio antiguo. A crear esta aureola de misterio ha contribuido el hecho de no conocer apenas datos biográficos de su vida, a lo que hay que sumar las extrañas circunstancias en las que se perdió su cadáver.

No se sabe con certeza en que año nació ni en que ciudad exactamente, pues no queda registro del hecho. Se piensa por otras fechas posteriores que pudo nacer en torno a los años 1640-1645. Se conoce mejor su estancia en la ciudad Italiana de Cremona donde desarrolló toda su carrera como constructor de violines. En total construyó más de mil violines, de los que se conservan cerca de la mitad.

Stradivarius enseñó a sus dos hijos el arte de hacer instrumentos de cuerda y, aunque ellos no lograron alcanzar la misma calidad mágica del padre, su trabajo fue notable. Ha sido un misterio qué confiere a un stradivarius su calidad única; las conjeturas se han centrado en el barniz empleado en estos instrumentos. Stradivarius escribió su fórmula del barniz en la guarda de la Biblia familiar; mas, por desgracia, uno de sus descendientes la destruyó.

El italiano Antonius Stradivarius (1644-1737) introdujo una geometría y un diseño que se convirtieron en los modelos a seguir por todos los fabricantes de violines. De los 1.100 instrumentos que construyó, aún sobreviven unos 650. El extremadamente alto valor de estos instrumentos quedó demostrado en una subasta realizada en el mes de abril en Londres. El violín Stradivarius ‘Lady Tennant’ vendido en esa oportunidad, batió un récord en el mundo de las subastas de instrumentos musicales, con un precio astronómico de un millón y medio de euros.

Madera veneciana:

Pese a lo anterior, Joseph Nagyvary, profesor de bioquímica y biofísica en la Universidad de Agricultura y Mecánica de Texas, cree haber descubierto el secreto de Stradivarius: la madera de abeto que éste usó procedía de Venecia, donde se guardaba junto al mar. Esto producía diminutos agujeros en la madera, sólo visibles con un microscopio electrónico de 2 000 amplificaciones. La madera curada en seco de los violines modernos no tiene estos orificios. Según Nagyvary, esto confiere riqueza y resonancia especiales al sonido.

Nagyvary también descubrió, al examinar el barniz, que incluía diminutos cristales de mineral. Infirió que procedían de piedras preciosas molidas, que añadían los alquimistas al preparar el barniz en la creencia de que las piedras tenían propiedades mágicas. En un violín, estos cristales filtran los armónicos agudos y producen un sonido más puro y terso.

Nagyvary puso a prueba su teoría al fabricar un violín con madera curada en la humedad y recubierta de un barniz que contenía polvo de piedras preciosas. Un experto calificó el resultado como “el mejor violín nuevo que jamás he escuchado”. La famosa violinista Zina Schiff quedó tan impresionada que tocó el instrumento en conciertos públicos.

¿Se percataban Stradivarius u otros famosos violeros de Cremona —como los Amati y los Guarnen— de la singular calidad de los materiales que utilizaban? Al respecto, Nagyvary dice: “Sinceramente pienso que los antiguos violeros no sabían, acerca de la fabricación de violines, más de lo que saben los actuales artesanos… Solamente fueron los afortunados beneficiarios de una feliz coincidencia histórica.”

Silos violeros actuales usaran los descubrimientos de Nagyvary, ¿disminuiría el valor de un stradivarius? Es casi indudable que no, pues no parece haber nadie capaz de revivir su ingrediente mágico: su genialidad.

Fuente Consultada: Sabia ud. que….? Editorial Reader Digest

El planeta sedna, Características y datos, Distancia y medidas

OPINION CIENTIFICA –1

Sedna: el décimo planeta en el Sistema Solar

Aunque es más pequeño que Plutón, es el cuerpo más grande en órbita alrededor del Sol identificado desde el descubrimiento de Plutón, en 1930. Existe discusión entre los astrónomos si, por su pequeño tamaño, tendrá o no status de planeta…o será solamente un planetoide.

planeta sedna

Planeta Sedna, N°:10 del sistema solar

Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano, Neptuno, Plutón… ¡y Sedna!… Sí, porque entre los astrónomos ya se hizo oficial el descubrimiento del décimo planeta del Sistema Solar, el cuerpo celeste más lejano al Sol y de un tamaño muy similar a Plutón.

Está tan lejos del Sol que es el más frío del Sistema Solar. De hecho, su temperatura nunca sobrepasa los -240º C. Pero es el cuerpo celeste más importante y más grande en órbita alrededor del Sol identificado desde el descubrimiento de Plutón, en 1930.

¿Cómo se hizo posible la confirmación de este nuevo planeta?… El equipo encabezado por el investigador Mike Browne, del California Institute of Technology (Caltech) lo detectó por primera vez el 14 de noviembre del 2003, con la ayuda del telescopio Samuel Oschin, en el Observatorio Palomar de Caltech, cerca de San Diego, en California. Con el correr de los días, los telescopios de Chile, España, Arizona y Hawai confirmaron la existencia de Sedna. También lo hizo el nuevo telescopio infrarrojo espacial Spitzer, de la NASA.

Michael Brown dijo que era tanta la distancia de Sedna con respecto al sol, que desde el nuevo planeta se podría tapar el sol con la cabeza de un alfiler.

Más acerca de Sedna

Este nuevo planeta fue bautizado como Sedna en honor a la diosa del mar entre los pueblos inuit, habitantes esquimales del Norte de Canadá y Groenlandia, dama de las profundidades del mar y de las emociones humanas.

Según el pueblo inuit, la diosa Sedna dio origen a las criaturas marinas desde una cueva congelada que ocupa en el fondo del océano.

Sedna se encuentra aproximadamente a 12.800 millones de kilómetros de la Tierra y su tamaño parece ser tres cuartas partes el de Plutón. Es seis veces más pequeño que la Tierra.

Posee un diámetro de unos 2.000 kilómetros y una superficie recubierta de hielo y roca, y debido a su dimensión pequeña, algunos científicos expresaron sus dudas a que pueda ser considerado un planeta más. Y es que – dicen – tal vez sería más correcto hablar de un “planetoide”.

Sedna es más rojo que cualquier otro cuerpo del Sistema Solar, con la excepción de Marte, y sigue una órbita muy elíptica, que en su punto más alejado lo sitúa a unos 135.000 millones de kilómetros del Sol, una distancia equivalente a 900 veces la existente entre el Sol y nuestro planeta, por lo cual tarda 10.500 años terrestres! en completar una sola órbita.

Para tener una idea, Plutón, el noveno planeta del Sistema Solar, y hasta ahora el último, tiene un diámetro de dos mil kilómetros y se encuentra a 6 mil millones de kilómetros de la Tierra.

Los primeros cálculos sugieren que Sedna se encuentra ubicado exactamente en una región del espacio llamada Cinturón de Kuiper. Éste posee cientos de objetos conocidos y los astrónomos creen que aún existen muchos otros esperando ser encontrados.

La mayoría son pequeños mundos de roca y hielo, aunque algunos también podrían ser tanto o más grandes que Plutón. La importancia de Sedna radica específicamente en que es el primero de este tipo de mundos que mantiene una órbita regular, ya que otros objetos similares son menos estables.

¿Qué viene ahora?…Intentar determinar si Sedna posee algún grado de atmósfera. Además, los científicos usarán el Hubble para descubrir por qué posee el tono rojizo más brillante después de Marte.

OPINION CIENTIFICA -2-

Sedna no es el décimo planeta del sistema solar. Numerosos medios de comunicación han cometido varios errores a la hora de describir el último descubrimiento de la NASA.

Entre otras cosas Sedna, un planetoide descubierto por astrónomos del Instituto Tecnológico de California ( Caltech) en cooperación con la NASA, no es un planeta ni tampoco, como se ha dicho, forma parte del cinturón de Kuiper.

El mismo equipo descubrió hace unos días otro planetoide, denominado 2004DW , y este si que forma parte del cinturón de Kuiper. De hecho, por su tamaño de 1600 km de diámetro, su descubrimiento habría sido una gran noticia sino fuera porque Sedna, a pesar de ser de un tamaño similar , tiene la particularidad de ser el primer planetoide situado más allá del cinturón de Kuiper, en una zona que hasta ahora era sólo intuida por la teoría y que se conoce como Nube de Oort.

Sedna está a más del doble de distancia que los objetos más lejanos de nuestro sistema conocidos hasta ahora y tres veces más lejos que Plutón. Por eso es noticia.

En nuestro sistema conocemos el cinturón de asteroides que se encuentra entre Marte y Júpiter, y un cinturón similar llamado Cinturón de Kuiper que se encuentra más allá de Plutón. De echo muchos astrónomos consideran que Plutón no es en realidad un planeta sino uno de los objetos que forman el Cinturón de Kuiper, ya que su tamaño es relativamente pequeño, su órbita es demasiado inclinada y a diferencia de los demás planetas sigue una trayectoría que hace que en ocasiones no sea el más alejado de la Tierra. Sedna es aún más pequeño que Plutón, su órbita también es muy inclinada, y su trayectoria es tan parabólica que sólo lo hemos detectado por casualidad, ya que dentro de unos 70 años volverá a alejarse de nuevo para no regresar y ser visible en las mismas condiciones en los próximos 10,500 años.

Ningún astrónomo calificaría a Sedna como planeta, y muchos dudan que Plutón lo sea, así que difícilmente se puede afirmar que Sedna es el décimo planeta de nuestro sistema. Se trata sólo de una exageración periodística.

Algunos Datos Sobre el Sistema Solar…

– El Sistema Solar está formado por una estrella central, el Sol, los cuerpos que le acompañan y el espacio que queda entre ellos.

– El Sol contiene el 99.85% de toda la materia en el Sistema Solar. Los planetas, los cuales están condensados del mismo material del que está formado el Sol, contienen sólo el 0.135% de la masa del sistema solar.

– Júpiter contiene más de dos veces la materia de todos los otros planetas juntos. Los satélites de los planetas, cometas, asteroides, meteoroides y el medio interplanetario constituyen el restante 0.015%.

– Los planetas terrestres son los cuatro más internos en el Sistema Solar: Mercurio, Venus, Tierra y Marte. Éstos son llamados terrestres porque tienen una superficie rocosa compacta, como la de la Tierra.

– Los planetas Venus, Tierra y Marte tienen atmósferas significantes, mientras que Mercurio casi no tiene.

– A Júpiter, Saturno, Urano y Neptuno se les conoce como los planetas Jovianos (relativos a Júpiter), puesto que son gigantescos comparados con la Tierra, y tienen naturaleza gaseosa como la de Júpiter. También son llamados los gigantes de gas, sin embargo, algunos de ellos tienen el centro sólido.

– Los asteroides son rocas más pequeñas que también giran, la mayoría entre Marte y Júpiter. Además, están los cometas que se acercan y se alejan mucho del Sol. Por su parte, los meteoritos son fragmentos de tierra extraterrestre que se encienden y se desintegran cuando entran a la atmósfera.

El Movimiento de los Satelites y Planetas-Calculos físicos Principios

LOS VIAJES ESPACIALES:

Los viajes espaciales difieren de los habituales desplazamientos sobre la superficie terrestre por un detalle fundamental: estos últimos se efectúan bajo la acción de la fuerza de gravedad  terrestre cuyo valor es siempre el mismo.

Este concepto se aclara recordando que los movimientos de un tren, un auto, una bicicleta o un avión se realizan siempre a idéntica distancia del centro de la Tierra, salvo muy pequeñas variaciones que carecen de importancia. Son desplazamientos cuya dirección forma ángulo recto con el radio del planeta y, por consiguiente, la fuerza de atracción gravitacional que sufren es permanentemente idéntica.

En un viaje espacial, la dirección del movimiento forma con el radio de la Tierra un ángulo distinto del recto. Si se asciende verticalmente para alcanzar grandes alturas (varios cientos de kilómetros) el valor del ángulo será cero, puesto que el vehículo se aleja en la dirección de uno de los radios.

Claro está que para que esto sea posible se debe vencer la fuerza de atracción terrestre. Véase, por ejemplo, lo que ocurre con los cuerpos que llegan a la Tierra desde el espacio:cuando chocan con la superficie, la velocidad que traen es similar a la que tendrían si provinieran de una distancia infinita. Esa misma velocidad adquirida por el objeto que se precipita, pero aplicada en sentido contrario, es la que necesita un cuerpo para vencer la fuerza de gravedad, escapar de la atracción del planeta y desplazarse hasta una distancia teóricamente infinita. Esta velocidad se denomina velocidad de escape o velocidad parabólica.

 Viajes a la Luna y a los planetas

Un vehículo espacial que desde la Tierra se dirige a la Luna, o mejor dicho, hacia el punto del cielo donde la hallará, no necesita mantener su velocidad de escape de 11,2 km/s durante todo el trayecto. Mientras más se aleja del lugar del lanzamiento, la atracción gravitacional terrestre se debilita, de manera tal que la velocidad necesaria para vencerla va disminuyendo a medida que prosigue el viaje y, consecuentemente, la atracción de la Luna aumenta cuando el vehículo se le aproxima. Por este doble proceso —debilitamiento de la atracción terrestre por una parte, y aumento del campo de atracción gravitacional de la Luna, por la otra— se alcanza un punto en que ambas fuerzas se igualan, punto que se encuentra a unos 38 000 kilómetros de la Luna. Si el vehículo lo sobrepasa, cae dentro de la atracción lunar.

Para lograr que el impacto con la superficie de la Luna sea más suave, a nave debe cruzar la línea de separación entre las dos fuerzas gravitacionales a la mínima velocidad posible, porque de no ser así el choque resultará más violento. El impacto en la Luna, en una caída libre, se produciría a la velocidad de escape —que en la misma es de 2,4 km/s— más la velocidad de la Luna en su órbita.

El proyecto de un viaje a la Luna con un vehículo espacial y su regreso posterior a la Tierra, contempla, como mínimo, cuatro maniobras principales:

  1. salida de la Tierra;
  2. disminución de la velocidad al cruzar la línea de equilibrio;
  3. salida de la Luna;
  4. disminución de la velocidad cuando, de regreso a la Tierra, cruza la línea de equilibrio.

    Una vez lanzado desde la Tierra, el vehículo espacial se mueve a lo largo de una órbita determinada, que es el resultado de todas las fuerzas exteriores que actúan sobre él. Intervienen la fuerza de atracción de la Tierra, de la Luna y del Sol, pero influyen también otros efectos, como la resistencia de la atmósfera terrestre al moverse la nave cerca de la Tierra, la presión de la radiación originada en el Sol, etcétera.

    De esta manera, y para comprender el desarrollo de las investigacio­nes espaciales, es necesario estudiar cómo se realiza el movimiento orbital de una nave espacial. Para ello, y con el objeto de simplificar el problema, se analiza a continuación el movimiento de una de ellas bajo la influencia de un cuerpo celeste.

Movimiento en una órbita (Ver También: Movimiento de los Planetas)
Consideraciones Físicas

Sea un cuerpo de masa m que se traslada alrededor de otro de masa M, y tales que m es considerablemente menor que M. Si el cuerpo M ocupa uno de los focos de la elipse descripta por m, y a es el semieje mayor de la órbita de éste, su velocidad de traslación V está dada por:

V2= G. (M + m).(2/r – 1/a) [1]

donde G es la constante de gravitación 6,67 x 10-8 cm3/g s2. La fórmula [1] se conoce como ecuación de la energía.

La distancia r entre ambas masas se denomina radio vector y toma un valor distinto en cada punto de la elipse. En estas circunstancias, el cuerpo de masa m es un satélite del cuerpo de masa M, como es el caso de la Luna respecto de la Tierra, o de un planeta como la Tierra en relación con el Sol.

Orbita elipitica descripta por un satelite de masa m y velocidad v

Para una órbita cerrada (un círculo o una elipse), el semieje mayor a debe ser positivo y finito. Para una órbita parabólica resulta a =oo (infinito) para una órbita hiperbólica a es negativo.Si la órbita es parabólica, los cuerpos se alejan uno del otro, y reemplazando en [1] 1/a , resulta:

V2p=G . (M+m).2/r                             [2]                                                  

que se denomina, también, velocidad de escape.

Para la velocidad en una órbita circular donde:  a=r

V2c=G . (M+m).1/r                                             [3]

Dividiendo miembro a miembro las ecuaciones (2) y (3) se tiene:

V2p=G . (M+m).2/r
——-=——————
V2c=G . (M+m).1/r 

 Se tiene  

V2p
————- =
2
V2c 

Osea:

V2p=2. V2c

Si se conoce el valor de la velocidad circular y0 para una determinada órbita, se puede obtener fácilmente la velocidad parabólica o de escape, Vp, para la misma órbita.

Velocidad en una órbita elíptica.

Si un cuerpo, como es por ejemplo cualquiera de los satélites artificiales que giran alrededor de la Tie­rra, se mueve sobre una órbita elíptica de acuerdo con la fórmula [11, alcanza su máxima velocidad en el perigeo, y la mínima, en el apogeo.

Si la masa m del satélite es muy pequeña con respecto a la masa M del planeta, que es el caso más común, se puede despreciar m, de donde (véase fórmula [1]):

V2= G. M (2/r – 1/a)                        [4] 

donde G.  M es el producto de dos constantes, o sea otra constante k que para el caso de la Tierra vale:

K=G.MT=4,OX 1020 cm3/s2

pues G = 6,67 x 10-8 cm3/ g s2 y MT= 6 x 1027 g. 

Cuando el satélite se desplaza desde el perigeo hacia el apogeo, el radio vector r aumenta de valor y, de acuerdo con a fórmula [4], la velocidad orbital V disminuye. En cambio, Cuando se traslada desde el apogeo hacia el perigeo, la distancia r disminuye y, entonces, la velocidad V aumenta. Luego, conocido el valor del radio vector r en un punto cualquiera de una órbita de semieje mayor a, se puede deter­minar fácilmente su velocidad en esa posición de la órbita.

Un caso particular de la elipse es la circunferencia, pues en ésta el radio vector r es siempre igual al semieje mayor a, y resulta r = a = R siendo R el radio de la circunferencia. En este caso:

V2c =K/R

 En la parábola, en cambio, el semieje mayor es infinito, o sea 1/a=0 ;  y como además r = R, distancia al centro de la Tierra, se tiene:

V2P = 2. K / R

Velocidad parabólica o de escape.
Como ya señalamos, para alejarse de la Tierra cumpliendo una travesía espacial, un vehículo debe vencer la fuerza de atracción de la Tierra, y ello se puede lograr acelerándolo hasta una determinada velocidad. Según la ley de atracción universal, la fuerza gravitacional de la Tierra varía con la distancia, y por lo tanto también varía la velocidad de alejamiento necesaria. Esa velocidad depende de la masa del cuerpo de donde parte el vehículo y de la distancia al centro del mismo (planeta o satélite). El cálculo de la velocidad de escape o velocidad parabólica desde un cuerpo de masa M se efectúa por medio de: 

V2P= G. M. 2/R 

donde R es la distancia desde la superficie al centro del planeta o saté­lite. Para el caso de la Tierra, donde Rradio de la Tierra 6,3 x  108 cm, resulta:

V2P = 2.K /R=   2 x 4 X 1020cm31s2 = 1.27 x 1012cm2/s2 R 6,3×108cm

           VP = (raíz cuadrada de 1.27 x 1012 cm2/s2)

VP = 1.12 x 106 cm/s

VP = 11.2 km/s=40.320 km/hora

A 5000 km. de altura sobre la superficie de la Tierra la velocidad de escape disminuye a:

V2P =  8x 1020cm3/s2 /11,3 x 106cm =  7,1 x 1011 cm2/s2

de donde:            Vp= 8,4 km/s = 30.240 km/hora

En este caso se considera R = 6300 km + 5000 km.

En la tabla siguiente se presentan las velocidades de escape para la Luna, los planetas y el Sol.

     VELOCIDAD DE ESCAPE PARA ASTROS DEL SISTEMA SOLAR

                          Velocidad                                    Velocidad
CUERPO      de escape              CUERPO      de escape
(km/s)                                   (km/s)

   Luna                     2,4                 Saturno              35,4

   Mercurio               4,3                 Urano                  21,6

   Venus                 10,3                 Neptuno             22,8

   Tierra                 11,2                 Plutón                ¿?

   Marte                5,0                  Sol                     620,0

   Júpiter                59,5    

En resumen: la velocidad de escape es la necesaria para que la órbita del vehículo resulte una parábola y por lo tanto, el tiempo necesario para regresar al punto de partida resulte infinito. 

Órbitas de los satélites terrestres artificiales

La colocación de un satélite en órbita consiste en elevarlo a una cierta altura sobre la superficie de la Tierra (mayor de 100 km) y luego darle una dirección y velocidad determinadas. En esas condiciones si se establece el perigeo de la órbita a esa altura, las dimensiones de la órbita y su excentricidad dependerán de la velocidad que adquiera el satélite, todo lo cual resulta de:

                                                   V2Per = K(2/rp – 1/a) 

Como el foco de la elipse estará en el centro de la Tierra, la introducción de un satélite en órbita significa querp es un valor constante (distancia del perigeo al centro de la Tierra). De esa manera, un aumento de Vper determina el correlativo aumento del semieje mayor a de la órbita (ver fórmula [5]).

Órbitas de los vehículos espaciales enviados a Marte y a Venus

Para que un vehículo espacial lanzado desde la Tierra pueda llegar a Marte, debe describir una trayectoria elíptica cuyo perihelio se hallará en un punto próximo a la posición que ocupa la Tierra en el momento del lanzamiento. La velocidad del vehículo deberá ser algo mayor que la velocidad de traslación de la Tierra.

Trayectoria descripta por un vehiculo espacial lanzado desde la Tierra hacia Marte

El semieje mayor de la órbita elíptica descripta por ese vehículo se calcula así:

(ar + am)/2 

fórmula donde ar es el semieje mayor de la órbita de la Tierra, e igual a 1 UA; y am es el semieje de la órbita de Marte, e igual a 1,52 UA. En consecuencia, el semieje de la órbita del vehículo espacial tendrá este valor:

a= (1 + 1.52)/2=1.26 UA

Consecuentemente, el afelio de la órbita se encontrará en las cercanías de Marte. La velocidad que se debe imprimir al vehículo puede ser calculada con la fórmula [1], pues se conoce el semieje mayor de su órbita y la longitud del radio vector r, igual a 1 UA. Como la masa del Sol M = 2 x 1033 g, y la constante de gravitación G = 6,67 x 10B cm3/g s2, resulta:

 V2 = 1,34 x 1020 m3/s2  (2/r – 1/a)= 1/ 1.5 x 10 11 m/UA

donde se ha despreciado la masa m del vehículo espacial por su pequeñez con respecto al Sol. En esta fórmula se divide por el número de metros que hay en una unidad astronómica.

Efectuando el cálculo resulta:

V2 = 1.34 x 1020 / 1.5 x 1011  (2-1/1.26)=10.7 x 108

 V=3.27 x 104 m/s= 32.7 km/s

Por comparación, la velocidad de la Tierra en su órbita es de:

V2= 8.9x 108 (2— 1) = 8.9×108  m2/s2

V=2.96X 104m/s=29,6 km/S

 menor que la velocidad necesaria para llegar a Marte.

El tiempo que emplea el vehículo espacial en su viaje a Marte, es decir para llegar desde el perihelio al afelio, se calcula de acuerdo cor la tercera ley de Kepler, pues:

P a3/2 =(1.26)3/2=1.41 años

Éste es el tiempo que emplea para recorrer toda la órbita. Para ir del perihelio al afelio invierte la mitad de ese tiempo, o sea 0,70 años=8½ meses. Por supuesto, el viaje debe ser planeado de tal manera que cuando el vehículo alcance su afelio, Marte debe encontrarse también en ese punto.

Trayectoria descripta por un vehiculo espacial lanzado desde la Tierra hacia Venus

El viaje de regreso desde Marte hacia la Tierra es similar a la trayectoria que cumplirá un vehículo espacial enviado desde la Tierra hacia un planeta interior, como por ejemplo hacia Venus. En este caso será el afelio el que estará muy próximo a la Tierra y el perihelio coincidirá con Venus. Luego el semieje mayor de la órbita del navío espacial será:

a= (aT + aY)2=(1+0.72)/2=0.86 UA

Fuente consultada: Astronomía Elemental de A.Feinstein

Biografia de John Nash:Una Mente Brillante

John Forbes Nash: Matemático, Premio NobelLa verdadera vida de John Forbes Nash, Jr.

 “Una mente maravillosa”, “A beautiful Mind” es un magnífico producto de Hollywood inspirado en la vida de John Nash pero que no pretende ser su biografía. En realidad son muy pocos los hechos o situaciones de la vida real de Nash que son contados en la película.

El padre se llamaba también John Forbes Nash por lo que distinguiremos al padre del hijo al estilo americano, añadiéndoles el calificativo “Senior” o “Junior” (Jr.).  Nash Senior nació en Texas en 1892 y estudió ingeniería eléctrica. Después de luchar en Francia en la primera guerra mundial, fue durante un año profesor de ingeniería eléctrica en la Universidad de Texas tras lo que se incorporó a la empresa Appalachian Power Company en Bluefield, West Virginia.

La madre de Nash Jr., Margaret Virginia Martin, estudió idiomas en las universidades Martha Washington College y West Virginia University. Fue profesora durante diez años antes de casarse con Nash Senior, el 6 de septiembre de 1924.

Johnny Nash, así le llamaba su familia, nació en Bluefield Sanatorium el 13 de junio de 1928 y fue bautizado en la iglesia Episcopaliana. Sus biógrafos dicen que fue un niño solitario e introvertido aunque estaba rodeado de una familia cariñosa y atenta. Parece que le gustaban mucho los libros y muy poco jugar con otros niños. Su madre le estimuló en los estudios enseñándole directamente

y llevándole a buenos colegios.

Sin embargo, no destacó por su brillantez en el colegio. Por el contrario, debido a su torpeza en las relaciones sociales, era considerado como un poco atrasado. Sin embargo, a los doce años dedicaba mucho tiempo en su casa a hacer experimentos científicos en su habitación.

Su hermana Martha, dos años más joven que él, era una chica muy normal. Dice de su hermano:

“Johnny era siempre diferente. Mis padres sabían que era diferente y también sabían que era brillante. Él siempre quería hacer las cosas a su manera. Mamá insistía en que yo le ayudase, que lo introdujera entre mis amistades… pero a mí no me entusiasmaba lucir a un hermano tan raro”.

A los catorce años Nash empezó a mostrar interés por las matemáticas. Parece ser que influyó la lectura del libro de Eric Temple Bell,  “Men of Mathematics” (1937). Entró en el Bluefield College en 1941. Comenzó a mostrarse hábil en matemáticas, pero su interés principal era la química. Se suponía que iba a seguir la misma carrera de su padre,  ingeniería eléctrica, pero continuaba con sus experimentos químicos. Parece ser que tuvo alguna relación con la fabricación de unos explosivos que produjeron la muerte a uno de sus compañeros de colegio.

Nash ganó una beca en el concurso George Westinghouse y entró en junio de 1945 en el Carnegie Institute of Technology (hoy llamado Carnegie-Mellon University) para estudiar ingeniería química. Sin embargo empezó a destacar en matemáticas cuyo departamento estaba dirigido entonces por John Synge, que reconoció el especial talento de Nash y le convenció para que se especializara en matemáticas.

Se licenció en matemáticas en 1948. Lo aceptaron para estudios de postgrado en las universidades de Harvard, Princeton, Chicago y Michigan. Nash consideraba que la mejor era Harvard, pero Princeton le ofreció una beca mejor por lo que decidió estudiar allí, donde entró en septiembre de 1948.

En 1949, mientras se preparaba para el doctorado, escribió el artículo por el que sería premiado cinco décadas después con el Premio Nobel. En 1950 obtiene el grado de doctor con una tesis llamada “Juegos No-Cooperativos”. Obsérvese que el libro inicial de la teoría de juegos, “Theory of Games and Economic Behavior” de von Neumann y Oskar Morgenstern,  había sido publicado muy poco antes, en 1944.

En 1950 empieza a trabajar para la RAND Corporation, una institución que canalizaba fondos del gobierno de los Estados Unidos para estudios científicos relacionados con la guerra fría y en la que se estaba intentando aplicar los recientes avances en la teoría de juegos para el análisis de estrategias diplomáticas y militares. Simultáneamente seguía trabajando en Princeton. En 1952 entró como profesor en el Massachusetts Institute of Technology. Parece que sus clases eran muy poco ortodoxas y no fue un profesor popular entre los alumnos, que también se quejaban de sus métodos de examen.

En este tiempo empezó a tener problemas personales graves que añadidos a las dificultades que seguía experimentando en sus relaciones sociales. Conoció a Eleanor Stier con la que tuvo un hijo, John David Stier, nacido el 19 de junio de 1953. A pesar de que ella trató de convencerlo, Nash no quiso casarse con ella. Sus padres solo se enteraron de este asunto en 1956. Nash Senior murió poco después de enterarse del escándalo y parece que John Nash, Jr. se sintió culpable de ello.

En el verano de 1954, John Nash fue arrestado en una redada de  la policía para cazar homosexuales. Como consecuencia de ello fue expulsado de la RAND Corporation.

Una de las alumnas de Nash en el MIT, Alicia Larde, entabló una fuerte amistad con él. Había nacido en El Salvador, pero su familia había emigrado a USA cuando ella era pequeña y habían obtenido la nacionalidad hacía tiempo. El padre de Alicia era médico en un hopital federal en Maryland. En el verano de 1955 John Nash y Alicia salían juntos. En febrero de 1957 se casaron. En el otoño de 1958 Alicia quedó embarazada, pero antes de que naciera su hijo, la grave enfermedad de Nash ya era muy manifiesta y había sido detectada. Alicia se divorció de él más adelante, pero siempre le ayudó mucho. En el discurso de aceptación del Nobel, en 1994, John Nash tuvo palabras de agradecimiento para ella.

En 1959, tras estar internado durante 50 días en el McLean Hospital, viaja a Europa donde intentó conseguir el estatus de refugiado político. Creía que era perseguido por criptocomunistas. En los años siguientes estaría hospitalizado en varias ocasiones por períodos de cinco a ocho meses en centros psiquiátricos de New Jersey. Unos años después, Nash escribió un artículo para una revista de psiquiatría en el que describió sus pensamientos de aquella época:

“.. el personal de mi universidad, el Massachusetts Institute of Technology, y más tarde todo Boston, se comportaba conmigo de una forma muy extraña.  (…) Empecé a ver criptocomunistas por todas partes (…) Empecé a pensar que yo era una persona de gran importancia religiosa y a oir voces continuamente. Empecé a oir algo así como llamadas telefónicas que sonaban en mi cerebro, de gente opuesta a mis ideas.  (…) El delirio era como un sueño del que parecía que no me despertaba.”

A finales de los sesenta tuvo una nueva recaída, de la que finalmente comenzó a recuperarse. En su discurso de aceptación del Premio Nobel describe su recuperación así:

“Pasó más tiempo. Después, gradualmente, comencé a rechazar intelectualmente algunas de las delirantes líneas de pensamiento que habían sido características de mi orientación. Esto comenzó, de forma más clara, con el rechazo del pensamiento orientado políticamente como una pérdida inútil de esfuerzo intelectual”.

En la actualidad sigue trabajando en el Departamento de Matemáticas de la Universidad de Princeton.

Su página web oficial es: http://www.math.princeton.edu/jfnj/

Su dirección electrónica: [email protected]  (hasta el 05-10-2002)

Propergoles Combustibles para cohetes Tipos y Componentes

Las aeronaves que operan dentro de la atmósfera utilizan considerablemente el aire, puesto que lo necesitan como sustentación para sus alas, queman el combustible con su oxígeno y, si poseen hélices, requieren aire a cierta presión para que éstas puedan “aferrarse”.

Como por encima de la atmósfera terrestre hay tan pocas moléculas de gas, los métodos convencionales de propulsión resultan insuficientes, al par que la falta de oxígeno obliga a que las aeronaves lleven consigo su provisión de él, ya sea en forma del elemento propiamente dicho, en estado líquido, o en la forma de algún compuesto oxidante.

Se han inventado varios tipos de combustibles y de fuentes de oxígeno para la propulsión de cohetes y otros vehículos espaciales, pero el principio fundamental de toda propulsión de cohete es el mismo en todos los casos, o sea, el principio de acción y reacción de la dinámica.

Al quemarse el combustible, ya sea sólido o líquido, crea enormes cantidades de gases calientes, que se encuentran a gran presión, debido al reducido tamaño de la cámara de combustión. Los gases que escapan por la parte de atrás del motor proveen el empuje necesario para impulsarlo hacia adelante. Los estadounidenses parecen preferir los propergoles líquidos. Entre las combinaciones que han utilizado con buen éxito está la de hidrógeno y oxígeno líquido, que al combinarse producen vapor. También emplearon el oxígeno líquido como oxidante de-combustibles tales como el queroseno y el amoníaco.

La combustión del queroseno produce vapor y bióxido de carbono. Como alternativa, en lugar de oxigeno han usado a veces el peróxido de hidrógeno (agua oxigenada), que se descompone en oxígeno y vapor. En otros cohetes, la combinación era dimetil-hidrazina, oxidada mediante ácido nítrico.

Cuando se emplean propergoles líquidos, el combustible y el oxidante deben ser mantenidos en recipientes separados. Los propergoles sólidos, por el contrario, deben ser mezclados antes de formar las “tortas” de combustible compacto. Los ingredientes típicos de una de esas tortas pueden .ser: perclorato de aluminio (agente oxidante), el ácido acrílico polibutadieno y polvo de aluminio (combustible), más un agente que tiene la función de endurecer la torta luego que ésta ha sido formada en el molde.

Las proporciones de agente oxidante y combustible se disponen de manera que siempre haya un ligero exceso de agente oxidante. Para esto hay dos razones: si la cantidad de agente oxidante es apenas la justa para la combustión completa, existe un serio riesgo de explosión, y, además, el aumento de presión que sufre el agente oxidante excedente, debido al calor de la combustión, se añade al aumento total de presión dentro de la cámara de combustión del motor cohete.

DISTINTAS FUENTES DE ENERGÍA PROPULSORA
Se obtiene el máximo aprovechamiento de la energía disponible por el combustible de un cohete, cuando la velocidad de salida de los gases de la combustión iguala a la velocidad con que el cohete se mueve hacia adelante. Por ello resulta conveniente comunicarle la energía inicial mediante algún medio exterior, tal como podría ser un poderoso motor, que le proporciona la energía de movimiento, o cinética, requerida para que su velocidad alcance un valor aproximado al de salida de los gases de combustión.

El principio de acción y reacción, en el cual se fundamenta la propulsión de cohetes, puede aplicarse no sólo con combustibles sólidos o líquidos convencionales, sino que podríanlos pensar en energía obtenible de distintos modos. En efecto, sabemos que cargas eléctricas, colocadas en un punto del espacio donde exista un campo eléctrico, experimentan fuerzas de naturaleza eléctrica. En los aceleradores modernos de partículas cargadas se obtienen valores elevados de la velocidad de las mismas. Éste sería un método apropiado para obtener la energía necesaria para la impulsión del cohete.

Las partículas podrían ser aceleradas mediante poderosos campos eléctricos. Dado que la materia es una dura concentración de energía, tal como surge de la teoría de la relatividad de la física moderna, fácil es ver que un combustible como éste ocuparía poco espacio, pero en cambio serían indispensables complejos aparatos construidos por la tecnología más avanzada.

Los cohetes de propergol sólido fueron conocidos desde hace mucho tiempo, pero sólo se volvieron a emplear hace muy pocos años. Ello se debió a la simplicidad del sistema y a la facilidad de almacenamiento. Los trabajos de investigación con combustibles sólidos son, en la actualidad, constantes.

cohete propergoles En los Estados Unidos se ha desarrollado, en la década de los 70, un combustible sólido que tiene la consistencia del caucho. Es el thiokol, que se fabrica en base a un derivado del caucho sintético líquido, mezclado con un oxidante sólido. El rendimiento potencial de un combustible depende de la eficacia de la oxidación.

Una idea de la bondad del combustible la da el impulso específico. Utilizando ácido nítrico como oxidante y anilina como combustible, se obtiene un empuje específico de 221, mientras que empleando oxígeno como oxidante y alcohol etílico como combustible, se obtiene un empuje específico de 242.

La fluorina como oxidante y el amoníaco como combustible dan una mezcla combustible de empuje específico igual a 288. El ozono y el hidrógeno, como oxidante y combustible respectivamente, dan una mezcla de empuje específico igual a 369.

La fluorina es uno de los agentes oxidantes más eficaces que se conocen. Es muy probable, con todo, que se mantenga, secreto el conocimiento de algún oxidante de rendimiento superior del tipo del ozono. La fluorina da un buen rendimiento oxidante, sobre todo con fluorita, pero el costo de esta mezcla es actualmente muy elevado. El ozono tiene un mayor poder oxidante que la fluorina, pero ofrece el inconveniente de que en estado puro manifiesta una marcada tendencia a descomponerse explosivamente.

El trimetilo es un compuesto de aluminio, fluido y de poder inflamable sumamente elevado. Su combustión es espontánea al ponerse en contacto con el aire. Su aplicación a la propulsión de cohetes no se halla desarrollada; mas puede constituir un elemento útil para el futuro.

Una fuente de energía hasta ahora prácticamente desconocida está en los radicales libres, que no son más que fragmentos moleculares libres de carga eléctrica, que se forman durante una reacción exotérmica. Las regiones superiores de la atmósfera terrestre son una fuente prácticamente inagotable de estos radicales libres, los cuales son originados por la radiación solar. Los radicales libres son el resultado de un proceso en que absorben energía. Luego pueden suministrar esa energía para la propulsión.

Recientemente se han realizado varios trabajos de experimentación e investigación. La tendencia de esos trabajos es la de aislar, los radicales libres para aprovecharlos como combustibles. Han sido aislados los radicales libres del vapor de agua, del amoníaco, del hidrógeno y del nitrógeno.

El empuje específico de los combustibles basados en los radicales libres resulta muy superior al de los elementos normales. Así, por ejemplo, en el caso del hidrógeno, si se fabrica un combustible con hidrógeno bajo la forma de radical libre, se obtiene un combustible cuyo empuje específico es cinco a seis veces superior al de los convencionales. De este modo, un cohete, propulsado con combustibles basados en los radicales libres, tendrá un alcance de unas treinta veces el del tipo común. No obstante estas ventajas de los radicales libres, en cuanto a concentración de energía, no han salido del campo teórico, debido a que es necesaria la solución de otros problemas muy complicados, tales como producción grande y barata, almacenamiento, control y estabilidad.

Empleando el radical de amoníaco con el hidrógeno líquido, se eleva a 7 u 8 veces el alcance de los cohetes comunes. La propulsión iónica es sin duda el medio más adecuado para impulsar las naves espaciales. En este procedimiento, la fuente de iones apropiados es el cesio.

Los iones de este elemento, acelerados en una superficie incandescente de tungsteno, y colocados bajo la acción de un potencial de unos 30.000 voltios, pueden alcanzar una velocidad de unos 220.000 m/seg., que es la requerida para que el impulso específico resulte elevado.

El berilio es un elemento que posee un elevado poder calorífico por unidad de peso, pero es muy tóxico, y se lo encuentra en la naturaleza en cantidades relativamente pequeñas. Por otro lado, el litio, que es un metal alcalino, y el boro, metaloide, permiten combinaciones con el hidrógeno, llamadas híbridos; estos son las bases esenciales de una gran parte de los supercombustibles empleados en la cohetería moderna. El boro no quema a temperaturas inferiores a los 700° C.

Los hídridos, tales como el de caborano, el pentaborano y el diborano, están destinados a reemplazar al carbono en sus combinaciones con el hidrógeno. El diborano es un gas tóxico, muy inestable en presencia de humedad o del aire. Los procesos tecnológicos requeridos para obtener combustibles basados en boro son en general complicados. En la práctica, se logra estabilizar los hídridos y eliminar su toxicidad, alcalinizándolos.

En Estados Unidos, el pentaborano alcalinizado es conocido bajo el nombre de Hi-Cal2 y Hef2, y el de caborano por Hi-Cal3 y Hef3. Estos combustibles son empleados en el desarrollo del avión cohete X-15.

Los combustibles que emplean borano en su composición química poseen un gran impulso específico, pero tienen una limitación. En efecto, sólo pueden usarse en los casos en que se dispone de aire.

Fuente Consultada: Historia de la Astronáutica – Ediciones Riego S.A.

Historia de la astronautica: vuelos tripulados y no tripulados

VUELOS NO TRIPULADOS

Vostok I, Primer Vuelo Ruso

VOSTOK 1     URSS 12-4-1961 Yury A. Gagarin. Primer hombre en el espacio dando una vuelta alrededor de la Tierra.

VOSTOK 2     URSS 6-8-1961 Gherman 5. Titov. Segundo astronauta ruso que estuvo en órbita durante 25 horas.

FRIENDSHIP 7 EE.UU. 20-2-1962 John H. Glenn Jr. Primer astronauta americano en órbita alrededor de la Tierra.

VOSTOK 3     URSS 11-8-1962 Andrian G. Nikolayev. En órbita simultáneamente con el Vostok 4.

VOSTOK 4     URSS 12-8- 1962 Pavel R. Popovich. En órbita simultáneamente con el Vostok 3.

VOSTOK 6     URSS 16-6- 1963 Valentina V. Tereshkova. Primera mujer en el espacio.

VOSKHOD 1     URSS 12-10-1964 Vladimir M. Komarov, Konstantin P. Feoktistov y Boris B. Yegorov. Primera cápsula espacial con más de un astronauta a bordo.

GEMINI 4     URSS 18-3- 1965 Pavel Belyayev y Aleksey Leonov que realizó el primer paseo espacial.

VOSKHOD 2 EE.UU. 3-6- 1965 James A. McDivitt y Edward H. Whíte II. Primer paseo espacial realizado por los norteamericanos.

GEMINI 7     EE.UU. 4-12- 1965 Frank Borman y James A. Lowell Jr. Establecen un nuevo record de permanencia en el espacio al efectuar 206 vueltas alrededor de nuestro Planeta.

SOYUZ 1     URSS 23- 4-1967 Vladimir M. Komarov, sufre el primer accidente mortal en la carrera del espacio.

APOLLO 8     EE.UU. 21-12- 1968 Frank Borman, James Lowell Jr. y William Anders. Primer vuelo de una nave tripulada alrededor de la Luna.

APOLLO 11 EE.UU. 16-7-1969 Neil A. Armstrong, Edwin E. Aldrin Jr. y Michael Collins. Llegada del hombre a la Luna.

APOLLO 13 EE.UU. 11-4-1970 James A. Lowell Jr., Fred W. Haise Jr. y John L. Swigert Jr. Una explosión en el módulo de mando obliga a suspender el alunizaje y el regreso a la Tierra se hace en precarias condiciones.

APOLLO 15 EE.UU. 26-7-1971 David R. Scott, Alfred M. Worden y James B. Irwin. Los astronautas utilizan por segunda vez el vehículo todo terreno, permitiéndoles de este modo hacer una experiencia lunar más extensiva.

SKYLAB 1 EE.UU. 25-5-1973 Charles P. Conrad, Joseph P. Kerwin y Paul J. Weitz son la primera tripulación que habita en el laboratorio espacial.

SKYLAB 3 EE.UU. 16-11- 1973 Gerald Carr, Gibson y Pogue. 84 días de permanencia en el espacio.

APOLLO– EE.UU. 15-7-1975 Stafford, Slayton, Brand, Leonov y Kubasov.

SOYUZ     URSS Primer vueló conjunto soviético- norteamericano y primera cita espacial.

SOYUZ 29 URSS 15-6-1978 Vladimir Kovalyonok y Aleksandr Ivanchenkov permanecen más de 4 meses en el espacio (139 días).

La Gran Ciencia Grandes Proyectos Cientificos del Mundo Teorias

GRAN CIENCIA. Tipo de práctica científica que se inició y desarrolló durante el siglo XX y que requiere de grandes recursos de infraestructura y personal, y, por consiguiente, económicos. Por este motivo, es necesario tomar decisiones políticas de cierta envergadura para iniciar o mantener proyectos de Gran Ciencia. No estaría de más, por consiguiente, que todos —científicos, políticos o simples ciudadanos (no sé muy bien por qué escribo «simples», cuando ser un buen ciudadano es realmente bastante complicado)— deberíamos conocer no sólo la existencia e importancia de este tipo de ciencia, sino sus mecanismos más notorios. Para contribuir a esta labor de educación social, en una era en la que la ciencia es cuestión de Estado, incluyo aquí este concepto.

El nacimiento de la Gran Ciencia tiene que ver especialmente con la física de las partículas elementales (ahora denominada de altas energías>. Buscando instrumentos que fuesen capaces de suministrar cada vez mayor energía a partículas atómicas, para que éstas pudiesen chocar con el núcleo atómico, lo que a su vez debería permitir ahondar en su estructura y en la de los elementos que lo forman —esto es lo que había hecho Ernest Rutherford (1871-1937) en 1911 cuando propuso su modelo atómico: lanzó núcleos de helio sobre láminas delgadas de oro—, físicos británicos primero, y estadounidenses después abrieron la puerta de la Gran Ciencia.

En 1932, John Cockcroft (1897-1967) y Ernest Walton (1903-1995), del Laboratorio Cavendish en Cambridge, utilizaban un multiplicador voltaico que alcanzaba los 125.000 voltios para observar la desintegración de átomos de litio. En realidad no era una gran energía: cuatro años antes Merle Tuve (1901-1982) había utilizado un transformador inventado por Nikola Tesla (1856-1943) para alcanzar, en el Departamento de Magnetismo Terrestre de la Carnegie Institution de Washington, los tres millones de voltios.

En 1937, Robert Van de Graaff (1901-1967) logró construir generadores de cerca de cinco metros de altura, que producían energías de cinco millones de voltios. Fue, sin embargo, Ernest O. Lawrence (1901-1958) el principal promotor de la Gran Ciencia en la física de partículas elementales. A partir de 1932, Lawrence comenzó a construir ciclotrones, máquinas circulares en las que las denominadas partículas elementales iban ganando energía durante cada revolución, lo que les permitía acumular suficiente energía. El primer ciclotrón medía apenas treinta centímetros de diámetro. Pero aquello sólo era el comienzo: en 1939 Berkeley ya contaba con un ciclotrón de metro y medio de diámetro, en el que los electrones podían alcanzar una energía equivalente a dieciséis millones de voltios (16 Mev). Y en septiembre de ese año Lawrence anunciaba planes para construir uno nuevo que llegase a los 100 MeV.

En abril de 1940, la Fundación Rockefeller donaba 1,4 millones de dólares para la construcción de aquella máquina, el último de sus ciclotrones, que iba a tener más de cuatro metros y medio de diámetro. En la actualidad los grandes aceleradores tienen kilómetros de radio, y cuestan miles de millones de dólares. Aquí tenemos una de las características que con mayor frecuencia se encuentra en la Gran Ciencia: mayor tamaño, mayor potencia, mayor costo económico. No sólo es el tamaño de las máquinas implicadas lo que caracteriza a la Gran Ciencia. Alrededor de los ciclotrones de Lawrence se agrupaban físicos, químicos, ingenieros, médicos y técnicos de todo tipo. En varios sentidos el laboratorio de Berkeley se parecía más a una factoría que a los gabinetes y laboratorios de otras épocas, el de Lavoisier (1743-1794) en París, el de Liebig (1803-1873) en Giessen o el de Maxwell (183 1-1879) en Cambridge.

La segunda guerra mundial dio un nuevo impulso a este modo, «gigantesco», de organización de la investigación científica. Para llevar adelante proyectos como el del radar o el Manhattan se necesitaban científicos, por supuesto, pero no bastaba sólo con ellos. Era imprescindible también disponer, además de otros profesionales (ingenieros, muy en particular), de una estructura organizativa compleja, en la que no faltase el modo de producción industrial. Los grandes recursos económicos que requiere la Gran Ciencia no siempre están a disposición de naciones aisladas. En la Europa posterior a la segunda guerra mundial, la construcción de grandes aceleradores de partículas era demasiado costosa como para que cualquier nación pudiese permitirse el lujo de construir uno lo suficientemente potente como para poder aspirar a producir resultados científicos de interés. Así nació el Centre Européen de Recherches Nucléaires (CERN) de Ginebra, fundado en 1952 por doce naciones europeas. La Gran Ciencia fomentaba en este caso la internacionalización.

De hecho, el CERN sirvió de experiencia de asociación política europea; el ambiente político estaba listo para este tipo de experiencias, que culminarían años más tarde en la creación de la Comunidad Económica Europea, que con el tiempo se convertiría en la actual Unión Europea. La Gran Ciencia puede llegar a ser tan grande que incluso naciones del potencial económico e industrial de Estados Unidos se vean obligadas a abrir algunos de sus proyectos científicos a otros países. Esto ha ocurrido, por ejemplo, con el telescopio espacial Hubble construido por la Natiorial Aeronautics and Space Administration (NASA).

El telescopio Hubble fue lanzado el 24 de abril de 1990, utilizando para ello una de las aeronaves Discovery, pero la idea de poner un gran telescopio en órbita alrededor de la Tierra para evitar la pantalla de radiaciones que es la atmósfera terrestre había surgido cuatro décadas antes. En esos cuarenta años hubo que vencer muchas dificultades; algunas de carácter técnico, por supuesto, pero otras de orden financiero y político. En 1974, por ejemplo, la Cámara de Representantes estadounidense eliminó del presupuesto el proyecto del telescopio, a pesar de que ya había sido aprobado en 1972. El motivo es que era demasiado caro. Tras muchas gestiones se llegó al compromiso de que el proyecto saldría adelante únicamente si se internacionalizaba, involucrando a la Agencia Espacial Europea (European Space Agency; ESA).

Por supuesto, no se dio este paso por un repentino ataque de fervor ecuménico de los representantes estadounidenses, sino porque la ESA se debería hacer cargo del quince por ciento del presupuesto, con lo que éste se abarataría sustancialmente para Estados Unidos. Finalmente la agencia europea, formada por un consorcio de naciones entre las que se encuentra España, participó en el proyecto, encargándose en particular de la construcción de una cámara para fotografiar objetos que emiten una radiación débil. En más de un sentido se puede decir que el mundo de las naciones individuales se está quedando demasiado pequeño para la Gran Ciencia. Una muestra más de esa tendencia, la globalización, que parece estar caracterizando al mundo de finales del siglo XX.

Openheimer Robert Oppenheimer Resumen Proyecto Manhattan Bomba Nuclear

Openheimer Robert
Resumen Proyecto Manhattan Bomba Nuclear

ROpenheimer Robert Oppenheimer obert Oppenheimer y el Proyecto Manhattan: Cuando recibió la inquietante carta de su amigo Haakon Chevalier, hacía apenas meses que el doctor J. Robert Oppenheimer había comenzado a recuperarse. Llevaba casi una década expulsado del poder, convertido en una víctima emblemática de la histeria macartista. Por fin el gobierno de los Estados Unidos lo labia reivindicado al premiarlo con la Medalla Enrico Ferrni.

Y entonces, apenas meses después, Oppenheimer recibió la escueta página deChevalier. Con fecha del 23 de julio de 1964, el escritor y ex profesor le literatura en Berkeley le contaba que sentía la urgencia le publicar la verdad sobre la relación que los había unido:

“El motivo por el cual te escribo es que una parte importante de la historia concierne a nuestra participación en la misma unidad del PC desde 1938 a 1942. Me gustaría tratar el tema en la perspectiva correcta, contando los hechos tal como los recuerdo. Dado que se trata de una de las cosas de tu vida que, en mi opinión, te hacen sentir como mínimo avergonzado; y dado que tu compromiso, testimoniado entre otros elementos por tus Informes para nuestros colegas, cuya lectura impresiona incluso hoy, fue profundo ¿y genuino, considero que sería una grave omisión negarle su debida prominencia”.

La furia y el miedo paralizaron a Oppenheimer. En 1954, sacándole al sol su red de afectos de izquierda —esposa, hermano, cuñada, discípulos, amigos y hasta ex novia—, había reconocido sus mentiras en un interrogatorio por supuesto espionaje. Lo había hecho para proteger a Chevalier.

“Querido Haakon —le contestó el 7 de agosto—: Me alegra que me hayas escrito. Me preguntas si tengo alguna objeción. Claro que sí. Me sorprende lo que dices acerca de ti.Y lo que dices acerca de mí no es cierto en un punto. Nunca fui miembro del Partido Comunista y en consecuencia nunca integré una unidad del Partido Comunista. Yo, por cierto, siempre lo supe. Creí que tú también lo sabías.”

Oppenheimer había perdido el acceso al trabajo en proyectos oficiales —lo cual implicó alejarlo de las investigaciones atómicas—, pero nadie le había probado que pasara secretos a los científicos rusos, o que perteneciera al Partido Comunista (PC). Su temor a otra persecución no terminó sino con su muerte, de cáncer de garganta, en 1967. Chevalier nunca dio a conocer el asunto de la célula comunista y en su libro sobre los buenos viejos tiempos en Berkeley (Oppenheimer: la historia de una amistad) hizo apenas una elíptica referencia a un grupo de discusión política.

Gregg Herken, historiador de The Smithonian Jnstítution, exhumó la carta y publicó en los Estados Unidos Brotherhoodof the Bomb (La hermandad de la bomba), donde afirma que Oppenheimer perteneció al PC en un grupo secreto que funcionaba en la Universidad de California, destinado a fijar políticas de acción y escribir panfletos.

Según Herken, Oppenheimer fue leal a su país y nunca espió para la Unión Soviética, pero ocultó sus simpatías políticas por ambición —la suya y sobre todo la de su mujer, Kitty, quien impulsó su carrera con más fuerza que él mismo—, ya que un pasado rojo podría haberle vetado la dirección del laboratorio de Los Alamos, Nuevo México, donde se desarrolló el proyecto Manhattan que terminó la Segunda Guerra Mundial con las bombas de Hiroshima y Nagasaki.

El objetivo era el Puente Aioi —“el mejor blanco que vi en esta maldita guerra”, según Paul Tibbets, comandante del avión B29 Enola Gay, por su forma de T—, pero la bomba atómica de uranio llamada Little Boy explotó a 250 metros de allí, evaporando el hospital Shima, sus enfermos y sus profesionales para iniciar una cuenta que llegaría a los 75.000 muertos y los 163.000 heridos.

Era el 6 de agosto de 1945 y el presidente norteamericano Harry  Trumancomía a bordo del Augusta cuando le llegó el mensaje cifrado con la noticia.

“Capitán, esto es lo más grande de la historia”, le dijo a Franklin H. Graham, uno de los oficiales de la Casa Blanca que lo acompañaban, cuando el teniente George M. Elsey le alcanzó un segundo cable: “Evito completo en todos los aspectos”.

Cuenta John Hersey en su crónica Hiroshima los días siguientes a la tragedia lanzada desde el avión de Tibbets:

“Los científicos pululaban en la ciudad. Algunos de ellos midieron la fuerza que había sido necesaria para quebrar las lápidas de mármol de los cementerios, para destruir 22 de los 47 vagones de ferrocarril en los depósitos de la estación de Hiroshima, para elevar y mover el piso de concreto de uno de los puentes, y para llevar a cabo otros notables actos de fuerza; concluyeron que la presión ejercida por la explosión variaba de las 5,3 a las 8 toneladas por metro cuadrado. Otros descubrieron que la mica, cuyo punto de fusión es de 9000C, se había derretido en las lápidas de granito a 380 metros del centro; que los polos telefónicos, cuya temperatura de carbonización son los

2400 °C, se habían quemado a 4.000 metros del centro; y que la superficie de las tejas grises de tipo usado en Hiroshima, cuyo punto de fusión es de 1.3000C, se habían derretido a 600 metros. Después de examinar otras cenizas y objetos fundidos significativos, decidieron que el calor de la bomba sobre la tierra, en el centro, debía de haber sido de 6.000 °C”.

El 9 de agosto, otra bomba atómica, llamada Fat Man y hecha con plutonio, destruyó el 44 por ciento de la ciudad de Nagasaki. Luego de varios días de censura a la prensa, el mismísimo emperador Hirohito —quien por primera vez en su vida habló a sus “buenos y fieles súbditos” en un mensaje emitido por radio— contó: “El enemigo ha comenzado a emplear una bomba nueva y muy cruel, cuyo poder para producir daño es incalculable, que ha cobrado demasiadas vidas inocentes”. Anunció, también, que Japón se rendía.

Tiempo después Oppenheimer declaró palabras instantáneamente famosas: “Los físicos hemos conocido el pecado”. En 1983, luego de aplaudir el anuncio de la Iniciativa de Defensa Estratégica (la Guerra de las Galaxias de Ronald Reagan), su colega Edward Teller le mejoró la frase: “Los físicos hemos conocido el poder”.

Desde que los alemanes observaron la fisión por primera vez, en 1938, los físicos de las grandes naciones se lanzaron a la búsqueda del poder que podía residir en la energía que liberaba ese proceso. Un poder sobre la naturaleza pero también un poder político, en particular ante la inminente guerra. El escenario principal fue la Universidad de California en Berkeley, donde trabajaba Ernest Lawrence, inventor de una máquina capaz de generar la energía necesaria para romper el átomo, el ciclotrón. Oppenheimer llegó a Berkeley convocado por este Premio Nobel y al tiempo le arrebató la dirección científica del proyecto atómico.

La insistencia del ingeniero Vannevar Bush, del Instituto Tecnológico de Massachusetts, convenció a Roosevelt sobre la necesidad de formar un Comité de Investigación para la Defensa Nacional. Por supuesto, Bush presidió esa institución. A él entregó Roosevelt en 1942 el informe de la Academia Nacional de Ciencias que abrió la puerta a la financiación de la bomba.

Bush buscó en el ejército al hombre que coordinaría el proyecto: un graduado de West Point, de 46 años, por entonces coronel. Leslie Groves había supervisado la construcción del edificio del Pentágono y ostentaba —escribe Adrian Weale en Hiroshima según testigos— “el ego más impresionante después del de Napoleón”. Su primer gesto fue comprar los carísimos minerales que se necesitaban para investigar reacciones nucleares controladas en cadena. Como no era un científico, eligió a Oppenheimer para coordinar los diferentes trabajos dispersos en numerosas universidades. No sólo era un brillante asesor del gobierno sobre la bomba: también el físico teórico más impresionante de Berkeley.

Oppenheimer llevó adelante el laboratorio secreto de Los Alamos hasta que pudo gritar “Funcionó!” cuando el 16 de julio de 1945 tuvo éxito la prueba Trinity y estalló la primera bomba atómica. En el medio, superó la difícil conducción de los equipos que separaban los componentes fisionables de uranio y plutonio mientras otros pensaban qué clase de arma sería capaz de hacerlos eficazmente destructivos; también las grandes dudas sobre cuánta de esa materia prima haría falta (cien kilos, calculaban algunos; otros, dos y medio) y si acaso no sería mejor la bomba de hidrógeno que teorizaba Teller.

Del otro lado, los nazis desarrollaron un programa nuclear, donde trabajaron el químico que descubrió la fisión, Otto Hahn, y otro Premio Nobel, Werner Heisenberg. En su novela sobre la fallida bomba de Hitler, En busca de Klingsor, el mexicano Jorge Volpi recreó el momento en que Hahn, detenido junto a sus colegas en la casa de campo de Farm Hall, Inglaterra, recibió la noticia de la explosión en Hiroshima. “Si los norteamericanos tienen una bomba de uranio, todos ustedes son científicos de segunda categoría”, murmuró. No resultó mucho mejor el esfuerzo de los japoneses en el Laboratorio de Investigación Nuclear, que Yoshio Nishina fundó en 1935 dentro del Instituto Riken. Amigo de Lawrence y discípulo del célebre Niels Bohr en Copenhague, Nishina aceptó, un año después del ataque a Pearl Harbor, la imposible tarea de investigar el uranio en un país sin uranio bajo la presión del ejército japonés.

También los aliados corrían la carrera con-a los norteamericanos: la Unión Soviética buscaba su propia bomba. Su principal fuente e información fue el espionaje del físico Klaus Fuchs, un comunista que abandonó Alemania apenas después de que una patota nazi lo golpeara y arrojara a un río.

En 1941 comenzó a investigar bajo la protección de Rudolf Peierls, profesor de la Universidad de Kirmingham. Para la señora Peierls, quien le ponía los botones y se preocupaba por la escasa vida social del muchacho, fue una sorpresa saber que conocía mucha gente en la Agregaduría Militar Soviética en Londres. Fiel a sus convicciones, Fuchs se encontró cuatro veces con el titular de esa dependencia, Simon Davidovich Kremer, para entregarle informes detallados sobre los avances del proyecto atómico del Reino Unido.

En noviembre de 1943 Fuchs partió a los Estados Unidos, donde continuó su trabajo de investigador y espía hasta que desapareció de los lugares que solía frecuentar. En 1945 hizo saber a la embajada de Stalin que estaba en Los Alamos. Según la documentación del FBI, hubo tres espías en el laboratorio: Fuchs, Ted Hall y un tercero que, hasta hoy, no fue identificado. Por eso sonaron las alarmas cuando Oppenheimer miente en un interrogatorio sobre el tema.

Con una larga carta en la que le reprochaba el Incidente Chevalier, entre otras cosas, el responsable de la Comisión de Energía Atómica, K.D. Nichols, le arruinó a Oppenheimer la Navidad de 1953 al anunciarle el 23 de diciembre que suspendía su acreditación de seguridad. Dos meses más tarde, en una larga respuesta donde solicitaba una audiencia ante la Comisión de Energía Atómica para limpiar su nombre, el físico le escribió a Nichols: “Mi amigo Haakon Chevalier y su esposa vinieron a mi casa de Eagle Hill, probablemente a comienzos de 1943. Durante la visita, él entró a la cocina y me dijo que George Eltenton le había hablado sobre la posibilidad de transmitir información técnica a los científicos soviéticos. Con una observación enfática, le señalé que eso me sonaba terriblemente mal. Allí terminó la discusión”.

No fue eso lo que contó al día siguiente de la conversación, en 1943. Oppenheimer dijo al teniente Lyall Johnson, contrainteligencia del proyecto Manhattan, que si la seguridad  era su tema debía prestarle atención a George Eltenton. Nacido en Inglaterra, el químico Eltenton había pasado una temporada en la Unión Soviética trabajando con los físicos Yuri Khariton y Nicholai Semenov. Llegó a California convertido en un ferviente comunista y participó en el sindicato de docentes de Berkeley, donde Oppenheimer lo conoció. Johnson llamó al teniente coronel Boris Pash —el mismo que detendría a los científicos de la bomba nazi—, quien citó al físico para entrevistarlo. Y fue en ese encuentro del 26 de agosto de 1943 donde Oppenheimer mintió al FBI y selló su caída en la era macartista.

En su relato ante Pash no hubo esposas que charlaban en el living mientras su amigo lo miraba preparar en la cocina su famoso martini ultra seco de vodka helada. No hubo Chevalier, ni nombre alguno salvo el de Eltenton, ya manchado. Herken reconstruyó:

“Algunos meses atrás, dijo Oppenheimer, había sido contactado por ‘intermediarios’ vinculados con un oficial no identificado del Consulado Soviético. Uno de esos individuos le había hablado de pasar información sobre el proyecto de Berkeley. Su respuesta había sido que no tenía objeciones a que el presidente comentara la bomba con los soviéticos, pero creía inadecuado hacerlo ‘por la puerta trasera’. Oppie admitió que conocía otros acercamientos posteriores, los cuales ‘fueron siempre a otras personas, para quienes resultó incómodo’. Como creía que los contactados habían sido elegidos al azar, no quería dar nombres. Dos de los tres hombres que él sabía que habían sido contactados estaban en Los Alamos, dijo Oppie, y un tercero llegaría en breve a Oak Ridge”. En su mentira, Eltenton había sido uno de los intermediarios.

No sólo amigos rojos tuvo el hombre que definió la Segunda Guerra Mundial a favor de los Estados Unidos. “Una novia comunista, Jean Tadock, con la que estuvo a punto de casarse, lo introdujo al marxismo”, sostiene Weale en Hiroshima según testigos. La conoció en la primavera de 1936 en una fiesta a beneficio de los españoles republicanos en la Guerra Civil. Estudiaba psicología en la Universidad de Stanford y sus actividades políticas la condujeron al PC. En una relación intermitente, compartió con Qppenheimer la pasión por la poesía de John Donne y un círculo de amistades de izquierda entre los que estaban Chevalier y Thomas Addis, un médico de Stanford que se dedicaba al reclutamiento de camaradas. La vio por última vez en junio de 1943, cuando la visitó respondiendo a sus ruegos desesperados. Diez años más tarde lamentaría el uso que el macartismo daría a esa noche.

Kitty Oppenheimer, nacida Kathryn Puening, no interesó menos al FBI. Viuda de Joe Dallet —un comunista de Youngstown, Ohio, quien cayó combatiendo en la Brigada Abraham Lincoln por la República Española—, se afilió al PC en 1934 por iniciativa de su marido. Veinte años más tarde, durante las audiencias por la acreditación de seguridad de Oppenheimer, explicó su militancia: “Mimeografiaba panfletos y cartas”. Aportaba diez centavos semanales a la estructura partidaria (no poca cosa para su bolsillo: pagaba cinco dólares mensuales de alquiler) hasta que comenzó a perder interés en las tareas políticas. De regreso en los Estados Unidos, retomó sus estudios de biología en la Universidad de Pennsylvania, de donde partió, recibida, hacia una Junto beca de investigación en California. Allí, casada nuevamente con un físico inglés, Richard Harrison, conoció a Oppenheimer en 1939, se enamoró como loca, dejó a su segundo marido y volvió a casarse, embarazada del primero de sus dos hijos, en 1940.

El cuadro de los íntimos lo completan el hermano Frank Oppenheimer, también físico, y su esposa Jackie, ambos afiliados al PC. De niños creían que iba a ser flautista, pero la influencia de su hermano ocho años mayor fue demasiado fuerte. Hasta que apareció Jacquenette Quann, graduada de economía en Berkeley, muy activa en la Liga de Jóvenes Comunistas, y comenzó a retrasarse en su doctorado por su militancia. “Robert apremió a su hermano para que rompiera el compromiso. Frank, desafiante, se casó con Jackie a fines de 1936”, se lee en La hermandad de la bomba. “La pareja se inscribió en el PC a comienzos de 1937, desafiando una vez más los deseos de Oppie.”

Frank perdió su empleo en la Universidad de Stanford, primer despido de una serie que terminó con su vida académica y lo convirtió en ganadero. Entre el comienzo y el fin, su hermano pidió a Lawrence que lo empleara —cometiendo el grave error de ocultar el pasado comunista de Frank— en el Laboratorio de Radiación, con el que llegaría a Los Alamos y del que seria echado en 1948.

Casi al mismo tiempo que La hermandad de la bomba aparece la primera reimpresión, luego de treinta años agotada, de las audiencias por la acreditación de seguridad que hundieron a Oppenheimer. Menos atrapante que la narrada investigación de I-Ierren, el texto tiene el ritmo monótono y los grandes destellos de los interrogatorios. Richard Polenberg, editor de El caso de Rabert Oppenheimer, reunió la cuarta parte de las mil páginas originales. El resultado es un compilado con lo mejor del macartismo.

Abre Polenberg su introducción: “El 6 de mayo de 1954, harto y desalentado tras un mes de dura audiencia para probar su ‘lealtad’ y, en consecuencia, merecer su acreditación de seguridad, el doctor J. Robert Oppenheimer dejó Washington DC y regresó a su casa en Princeton, New Jersey. Aunque Oppenheimer había dirigido el programa para construir la bomba atómica durante la Segunda Guerra Mundial y había estado a cargo del Comité Asesor General de la Comisión de Energía Atómica entre 1947 y 1952, ni su servicio pasado ni su eminencia lo habían protegido de las sospechas o del fisgoneo que con tanta frecuencia lo acompañaron. Mientras su caso estuvo ante la comisión, su teléfono fue intervenido, su correo revisado y sus paraderos registrados por el FBI”. En realidad, nada nuevo: el organismo había pinchado sus teléfonos, violado su correspondencia y espiado hasta su vida privada desde marzo de 1941. Pero esta vez, además, registraba las estrategias que Oppenheimer discutía con su abogado y se las anticipaba a la comisión.

En cierto modo, Oppenheimer solicitó su crucifixión por confiar en que la audiencia sería preferible a un interrogatorio del senador Joseph McCarthy, quien lo había acusado de trabar la investigación de la bomba de hidrógeno que creó Teller para no aventajar tanto a la Unión Soviética. Teller, por supuesto, lo aplastó con su testimonio —“Oppenheimer se opuso a la bomba termonuclear o a su desarrollo”—, pero no fue el único que le marcó cuánto se había equivocado al ofrecer la cabeza al verdugo.

Primero lo pusieron contra las cuerdas hasta que reconoció que había mentido a Pash en el interrogatorio sobre el Incidente Chevalier:

Pregunta: ¿Le dijo la verdad a Pash?

Oppenheimer: No.

P.: ¿Le mintió?

O.: Si

P: ¿Qué le dijo a Pash que no era cierto?

O.: Que Eltento había intentado contactar a tres miembros del proyecto a través de intermediarios.

P: ¿Por qué lo hizo, doctor?

O.: Porque fui un idiota.

Luego de hacerlo confesar “un tejido de mentiras”, sacaron a relucir sus aportes de dinero a la causa española—“a través de canales comunistas”—, su descuido al emplear a un izquierdista como su hermano —“Qué examen le tomó para establecer su confiabilidad?”—, su falta de apoyo a Teller y, por último, la infidelidad con su ex novia Jean. Delante de su mujer le preguntaron por aquella noche de junio de 1943:

P.: ¿Por qué fue a verla?

O.: Ella había expresado un gran deseo de verme.

P.: ¿Averiguó por qué?

O.: Porque seguía enamorada de mi

P.: ¿Ella era comunista en ese momento?

O.: Ni siquiera hablamos de eso. No lo creo.

P.: Pero no tiene razones para pensar que no era comunista, ¿verdad?

O.: No.

P: Pasó la noche con ella, ¿no es cierto?

O.: Sí

P: ¿Cuando estaba trabajando en un proyecto secreto de guerra?

O.: Sí

P.: ¿Le parece consistente con una buena seguridad?

Las humillaciones duraron cuatro semanas. A fin de junio la comisión confirmó que, por sus asociaciones y sobre todo, por “defectos fundamentales en su carácter”, Oppenheimer no recuperaría su acreditación de seguridad. Mientras esperaba ese dictamen, el físico le dijo por teléfono a un amigo (y al FBI, que también oía): “La comisión decidirá qué hacer en unas semanas. Pero este asunto nunca va a terminar para mí. No creo que las aguas se aquieten. Pienso que todo el mal de estos tiempos está contenido en esta situación”.

Openheimer Robert Oppenheimer

Sólo cuatro años antes de morir de cáncer en la garganta, Oppenheimer fue reivindicado de su desgracia: el 22 de noviembre de 1963, el mismo día en que fue asesinado, el presidente John F. Kennedy anunció que otorgaría el premio Fermi a Oppenheimer; finalmente le fue entregado por el sucesor de Kennedy, Lyndon B. Johnson.

Fuente Consultada: Revista Veintitrés

Resumen de la Vida de las Estrellas Evolucion Estelar Vida y Muerte Estrella

Resumen de la Vida de las Estrellas y Su Evolución Estelar

LA VIDA DE UNA ESTRELLA

Las estrellas tienen una fuente interna de energía. Pero, al igual que todo tipo de combustible, sus reservas son limitadas. A medida que consumen su suministro de energía las estrellas van cambiando y cuando se les acaba, mueren. El tiempo de vida de las estrellas, aunque muy largo comparado con las escalas de tiempo humanas, es, por lo tanto, finito.

A medida que envejecen sufren profundos cambios en sus tamaños, colores y luminosidades, siempre como consecuencia de la disminución de sus reservas. Para aumentar su expectativa de vida, la estrella lucha continuamente contra la fuerza gravitatoria que intenta contraerla. Las distintas etapas evolutivas son sucesiones de contracciones que terminan cuando la estrella comienza a quemar otros combustibles que mantenía en reserva y logra establecer una nueva situación de equilibrio.

Galaxias y estrellas del universo

El factor más importante en el desarrollo de una estrella es su masa inicial. Las estrellas más masivas tienen mayores temperaturas centrales y, en consecuencia, producen energía y consumen combustible a un ritmo creciente. Este hecho fue determinado observacionalmente y se llama relación masa-luminosidad. Podría parecer que las estrellas más masivas, las que tienen más combustible, deberían tener vidas más largas. Pero en realidad sucede exactamente lo contrario. Al igual que con el dinero o la comida, la duración del combustible estelar depende tanto de la cantidad disponible como del ritmo de consumo. Por ejemplo, la vida del Sol será de 10 mil millones de años. Una estrella de masa 10 veces mayor tiene 10 veces más combustible, pero lo quema a un ritmo tan grande (de acuerdo a la relación masa-luminosidad) que termina de consumirlo en 30 millones de años. En el otro extremo, una estrella de 0,1 M0 brillará durante 3 billones de años antes de morir.

¿Cómo se mide la masa, esa propiedad fundamental que determina completamente la estructura y evolución de una estrella?

El único método de determinación directa de masas es el estudio del movimiento de estrellas binarias. Las estrellas dobles o binarias están muy próximas entre sí y cada estrella gira alrededor del centro de gravedad del par. Aplicando a estos sistemas las leyes de Newton es posible deducir su masa. Sin embargo, la masa de cada estrella del sistema se puede determinar sólo en el caso de que el sistema binario sea ecipsante (es decir cuando una de las estrellas eclipsa a la otra). Estas mediciones, aunque pocas en número, son interesantes porque a partir de ellas se han podido establecer algunos resultados que dieron la clave para comprender la evolución estelar.

Una manera indirecta de determinar la masa estelar es usando la relación masa-luminosidad que pudo ser establecida cuando se desarrolló una de las herramientas más poderosas con que cuentan los astrofísicos, el diagrama R-R que consideraremos a continuación.

Se han observado estrellas muy masivas, hasta 120 M0, pero ¿hay una masa mínima para las estrellas? La respuesta a esta pregunta está todavía en estudio. Las estrellas de menor masa observadas son Ross 614B, de 0,08 M0 y Luyten 726-8B con 0,04 M0, pero la mayoría de las estrellas tienen masas de entre 0,3 y3 M0.

EL DIAGRAMA H-R  

En el año 1911 el astrónomo danés E. Hertzsprung comparó la magnitud absoluta y la luminosidad de estrellas pertenecientes a varios cúmulos. Trazó la curva de variación de uno de estos parámetros en función del otro y observó que los puntos no estaban esparcidos al azar en el diagrama, sino que se distribuían a lo largo de una línea bien definida. En 1913, el astrónomo norteamericano H. Russell llegó a la misma conclusión con datos de otras estrellas. Mostró empíricamente la existencia de una relación entre la luminosidad y temperatura estelares. El diagranta resultante se llama diagrama Hertzprung-Russell (H-R), y está representado en la figura.

La posición de unaa estrella en el diagrama H-R depende de su estado de evolución, y por eso la estructura y la historia de nuestra galaxia se pueden estudiar con este instrumento básico. Así como los botánicos pueden estimar la edad de un árbol a partir de la cantidad de anillos de su tronco, los astrónomos encuentran en el H-R la herramienta que les permite estimar la edad de una estrella.

Diagrama estelar E. Hertzsprung

El diagrama Herzprung-Russell. Cada estrella se representa según su magnitud absoluta, que mide su brillo intrínseco, y su tipo espectral, que refleja su color y su temperatura. Esta última aumenta hacia la izquierda

Un examen en el diagrama H-R de las estrellas con distancias conocidas muestra que no están distribuidas al azar, sino que muchas (entre ellas el Sol) están agrupadas en una banda angosta sobre la diagonal, llamada secuencia principal. Otro grupo de estrellas, la rama de las gigantes, se extiende horizontalmente sobre la secuencia principal. Las estrellas con luminosidades mayores que las gigantes se llaman supergigantes, mientras las estrellas sobre la secuencia principal se llaman enanas.

Estudiando los sistemas binarios se pudo establecer que la luminosidad de una estrella de secuencia principal es proporcional a su masa elevada a la potencia 3,5. Es decir que una estrella 2 veces más masiva que el Sol será 11 veces más 1 luminosa. Esta relación masa-luminosidad es una forma de estimar la masa de una estrella que no pertenece a un sistema binario a partir de su luminosidad, con la condición de que pertenezca a la secuencia principal, lo que se puede determinar, como veremos, con criterios espectroscópicos.

Las cantidades fundamentales que definen este diagrama se pueden medir con distintos parámetros, dándole así distintas formas. El H-R clásico usa dos cantidades: el tipo espectral (que es una determinación cualitativa de la temperatura) y la magnitud absoluta.

El tipo espectral

La única fuente de información sobre la naturaleza de las atmósferas estelares es el análisis de su espectro, del que se pueden hacer dos tipos de aproximaciones: cuantitativas y cualitativas.

Como hemos visto en el capítulo anterior, el análisis cuantitativo pernúte determinar los parámetros físicos que describen la atmósfera estelar. El análisis cualitativo descansa en la simple observación de que los espectros pueden agruparse en familias: esta clasificación espectral considera sólo la apariencia del espectro en el visible. Según ella, las estrellas se ordenan en 7 clases principales (de acuerdo a su temperatura) a las que se designa con las letras O, B, A, F, G, K y M. Para tener en cuenta las diferencias de apariencia entre espectros de la misma clase fue necesario establecer una subdivisión decimal, y entonces el tipo espectral se representa por BO, B1, B2, …, B9, AO, A1…

La clasificación espectral se basa en la presencia o ausencia de líneas de ciertos elementos, lo que no refleja una composición química diferente de las atmósferas sino sólo las diferencias de temperatura atmosférica.

Así el H, que es el elemento más abundante del universo y del que todas las estrellas tienen casi la misma abundancia, predomina en las líneas espectrales de estrellas con temperaturas cercanas a lO.0000K, porque la excitación del átomo de H es máxima a esta temperatura. En las atmósferas de las estrellas más calientes, de tipo espectral o, el H está casi todo ionizado y entonces no produce un espectro significativo de líneas de absorción.

En las atmósferas de estrellas frías (por ejemplo de tipo espectral K) los átomos de H son neutros (no ionizados) y prácticamente todos están en el estado fundamental, no excitado. El espectro de líneas así producido pertenece principalmente al rango ultravioleta, no observable desde la Tierra, mientras que las líneas de H observadas en el visible son muy débiles.

Las estrellas de tipo o que son las más calientes, muestran en sus espectros líneas de He ionizado, pero no líneas de H. Yendo a tipo BO hasta AO la intensidad de las líneas de He también decrece cuando las condiciones de temperatura no son favorables y la de los metales (elementos más pesados que el He) crece para tipos espectrales correspondientes a temperaturas más bajas. En las estrellas más frías, las líneas de metales neutros se hacen más y más intensas y aparecen bandas características de moléculas.

Las clasificación en “gigantes” y “enanas”, tiene sentido sólo para un dado tipo espectral. Si se consideran dos estrellas del mismo tipo espectral, una de la secuencia principal y la otra de la rama de las gigantes, las dos muestran gran diferencia en luminosidad. Como son del mismo tipo espectral, tienen la misma temperatura.

La diferencia de luminosidad se origina entonces en la diferencia de tamaño. Comparemos, por ejemplo, dos estrellas de clase M. La luminosidad de la gigante es 10.000 veces mayor que la de la enana (o de secuencia principal). Por lo tanto su área superficial debe ser 10.000 veces mayor y entonces el radio de la gigante será 100 veces mayor que el de la enana. (La ley de Stefan-Boltzmann dice que:  L es proporcional a R2.T4).

Las estrellas que aparecen por debajo de la secuencia principal son las enanas blancas, cuyos radios son muy pequeños.

NACE UNA ESTRELLA

Como ya hemos dicho la vida estelar es una sucesión de contracciones. La primera gran contracción es la de la nube interestelar que crea la estrella. La cuna de las nuevas generaciones de estrellas en nuestra galaxia parece estar en las nubes interestelares de átomos y moléculas. La densidad promedio del medio interestelar en la galaxia es de cerca de un átomo por cm3. La formación de una estrella requiere una densidad 1024 veces mayor. El único mecanismo capaz de actuar a grandes distancias y de originar tal factor de compresión es la fuerza de la gravedad, que juega aquí un papel esencial. Por otro lado el movimiento térmico de las moléculas y el movimiento turbulento del gas interestelar producen una presión que impide una contracción abrupta impuesta por el campo gravitatorio.

Cuando la gravedad rompe este equilibrio se puede formar una estrella o un grupo de estrellas. En términos muy generales, esto sucede cuando la masa de la nube sobrepasa una cierta masa crítica. Una nube colapsará si, por ejemplo, su masa aumenta por colisiones con nubes más pequeñas, pero su temperatura promedio sólo aumenta ligeramente, o si la masa de una nube permanece constante, pero su temperatura disminuye, de manera que la presión no puede frenar el colapso. Estas dos situaciones podrían ocurrir simultáneamente. Los cálculos indican que en nubes con masas mayores que unas 2.000 M0 la gravedad gana sobre las fuerzas de presión. La nube se hace gravitatoriamente inestable y se contrae más y más rápido. Como la masa de una estrella típica es unas 1.000 veces menor, hay que concluir que la nube se fragmenta.

Los complejos moleculares gigantes muy fríos, con temperaturas de unos 10 a 90 0K, son los lugares reconocidos de formación estelar. Sus masas son muy grandes; alcanzan hasta 1.000.000 M0. El polvo de la nube oculta las nuevas estrellas al astrónomo óptico, pero éstas se pueden detectar en el infrarrojo.

Hay un tipo de nubes moleculares pequeñas, llamadas “glóbulos de Bok”, algunos de los cuales se han observado en contracción gravitatoria. Su velocidad de colapso es de aproximadamente medio km/seg, y su radio es del orden de 2 años luz. Si nada frena su colapso, estos glóbulos se condensaran en estrellas dentro de 1.000.000 años, lo cual, en términos de la vida total de la estrella, es un período muy breve.

Estos objetos aislados (que se ven como zonas negras contra el fondo de la Vía Láctea) ilustran los modelos teóricos de formación estelar. La región central, altamente comprimida y mucho más densa que la periferia, atrae a la materia que la rodea. La temperatura aumenta progresivamente y la presión se hace suficientemente alta como para parar momentáneamente el colapso del núcleo.

Poco a poco toda la materia en la envoltura cae hacia la protoestrella. Cuando su temperatura pasa los 10 millones de °K, comienzan las reacciones termonucleares, es decir el autoabastecimiento de energía. En este momento la estrella entra en la secuencia principal y comienza su vida normal. En las galaxias espirales, como la nuestra, las estrellas se forman en los brazos espirales, donde se encuentran el polvo y el gas interestelares.

La observación de estrellas en formación o estrellas muy jóvenes junto con su ambiente provee importantes contribuciones a la teoría de formación estelar. En el esquema presentado la formación de estrellas está directamente relacionada a la evolución de las nubes moleculares, pero aunque es el caso más estudiado, no es el único. Una forma de aprender más sobre formación estelar es investigar galaxias vecinas.

La formación estelar en la Gran Nube de Magallanes presenta algunos problemas para este esquema: en una región llamada 30 Dorado se observan unas 50 estrellas O y B asociadas con una nube de 50 millones de M0 de hidrógeno neutro. No hay polvo en esta región ni se ha detectado ninguna nube molecular. Esto muestra claramente que la teoría de formación estelar basada en nubes moleculares no explica todos los nacimientos estelares. Este es un tema de gran actualidad en astrofísica que todavía no está resuelto.

La protoestrella entra al diagrama H-R por la derecha (la parte roja o fría), en el momento en que la temperatura central se hace suficientemente alta (recordemos que bajo compresión la temperatura de un gas aumenta) y la estrella comienza a convertir H en He. La posición inicial de la estrella en el H-R define la llamada secuencia principal de edad cero (ZAMs). Cuanto más masiva nace una estrella más arriba comienza su vida de secuencia principal y más luminosa es.

La posición de la ZAMS sobre el diagrama H-R depende de las composiciones químicas de las estrellas que se forman. La abundancia de metales (elementos más pesados que el He) aumenta de generación a generación, a medida que las estrellas más viejas evolucionan y enriquecen el medio interestelar con elementos pesados. En consecuencia la ZAMS se desplaza cada vez más hacia la derecha sobre el H-R a medida que la galaxia envejece, y este corrimiento permite estimar la edad de la galaxia.

La secuencia principal representa la primera pausa y la más larga en la inexorable contracción de la estrella. Durante este intervalo las estrellas son hornos nucleares estables y a esta estabilidad debemos nuestras propias vidas, ya que el Sol se encuentra en esta etapa. A medida que la estrella envejece se hace un poco más brillante, se expande y se calienta. Se mueve lentamente hacia arriba y a la izquierda de su posición inicial ZAMS.

Evolución de las Estrellas

Para una persona, incluso para una toda generación de seres humanos resultaimposible observar una única estrella para descubrir todo lo que le sucede en el transcurso de su existencia, ya que la vida estelar media es del orden de los miles de millones de años. Identificar y ordenar las distintas etapas en la vida de las estrellas, puede compararse con obtener una fotografía en conjunto de todos los habitantes de una ciudad; en la foto se tendría una visión de las posibles fases o estadios de la vida humana: habrían recién nacidos, niños, adultos, ancianos, etc.

Al analizar la imagen obtenida de cada persona y clasificándola de acuerdo a cierto carácter, podría establecerse el ciclo de la vida humana con bastante precisión; se podría estimar el ciclo completo, captado en un único instante de tiempo en la fotografía de conjunto.

Debido a la cantidad y a la gran variedad de estrellas existentes, se logra tener una idea de su evolución observando estrellas en las diversas fases (o etapas) de su existencia: desde su formación hasta su desaparición. Al respecto se debe tener en cuenta que, efectivamente, se han visto desaparecer estrellas (por ejemplo, la supernova de 1987) como también se han hallado evidencias de la formación de otras nuevas (como en el profundo interior de la Nebulosa de Orión, por ejemplo).

Ya mencionamos que en el estudio de las estrellas, se utilizan parámetros físicos como la temperatura o la masa, entre otros. Pero debe señalarse también otra de las técnicas usuales en Astronomía, denominada Espectroscopía.

La luz estelar se descompone en su gama intrínseca de colores, llamándose “espectro” al resultado de esa descomposición cromática (la palabra espectro que significa “aparición”, fue introducida por I. Newton, quien fue el primero es descubrir el fenómeno). En el espectro de las estrellas, además de los colores, aparecen ciertas líneas o rayas bien nítidas. Esas líneas o mejor dicho, cada una de las series de líneas, se corresponde, según su posición en el espectro, por una parte con la T de la superficie estelar y por otra, con los elementos químicos presentes en la atmósfera de la estrella.

Diferentes elementos químicos absorben o emiten luz según la temperatura a que se encuentren; de esta manera la presencia (o ausencia) de ciertos elementos en la atmósfera de la estrella, indica su temperatura.

Los astrónomos han diseñado un sistema de clasificación de estrellas, de acuerdo a las características que presentan sus respectivos espectros. En ese esquema, las estrella s se ordenan desde las más calientes a las más frías, en tipos espectrales que se identifican según el siguiente patrón de letras: O B A F G K M

Las estrellas más calientes (O) tienen temperaturas de unos 40.000 ºC; en el otro extremo, las más frías (M), alcanzan sólo 2.500 ºC; en este esquema, el Sol, con una temperatura superficial de 6.000 ºC, resulta una estrella de tipo espectral intermedio entre las más calientes y las más frías: es una estrella tipo G.

Este sistema de clasificación se corresponde además con los colores de las estrellas: las de tipo (O) son azules-violáceas y las de tipo M, rojas; el Sol (tipo G) es amarillo. Los colores observados también se relacionan con la temperatura, ya que las estrellas más calientes emiten la mayor parte de su luz en la zona azul del espectro electromagnético, mientras que las más frías lo hacen en la zona roja.

En las estrellas más calientes, las distintas capas interiores deben vencer mayor atracción gravitacional que las capas más externas, y por lo tanto la presión del gas debe ser mayor para mantener el equilibrio; como consecuencia, mayor es la temperatura interna. Implica que la estrella debe “quemar” combustible a gran velocidad, lo que produce una ingente cantidad de energía. Esta clase de estrellas sólo puede tener una vida limitada: unos pocos millones de años.

Las estrellas frías (generalmente pequeñas y con una fuerza de gravedad débil) sólo producen una modesta cantidad de energía; en consecuencia aparecen brillando tenuemente. Así, estas estrellas pueden existir como tales sólo algunas decenas de miles de millones de años.

En la siguiente Tabla se indican la temperatura característica (en grados centígrados, ºC) de cada tipo espectral (T.E.).

Tipo Espectral Temperatura (ºC)
O 40.000
B 25.000
A 11.000
F 7.600
G 6.000
K 5.100
M 2.500

Ahora bien, la temperatura y consecuentemente, la cantidad de energía que emite una estrella, depende de su masa: cuanto mayor es su masa, mayor es la temperatura y por consiguiente mayor es la cantidad de energía que irradia. Pero hasta que en su núcleola temperatura no alcance un valor de algunos millones de grados, no se producirán transformaciones nucleares (del tipo de transmutación de hidrógeno en helio) y, por lo tanto, mientras eso no ocurra, la cantidad de energía que emiten será bastante pequeña (objetos de esta clase son denominados protoestrellas). Cuando se inicia la vida de una estrella, el calor de su interior procede de la energía gravitacional, es decir, de la nube de gas que se comprime sobre sí misma (colapso).

La etapa de protoestrella se corresponde con grandes inestabilidades en su estructura interna, las que acaban cuando la temperatura de su núcleo alcanza los 10 millones de grados, iniciándose entonces la transmutación del hidrógeno en helio y, por lo tanto, la generación de energía desde su núcleo: en esa etapa el astro se considera ya una estrella.

Las estrellas contienen suficiente hidrógeno como para que la fusión en su núcleo dure un largo tiempo, aunque no para siempre. La velocidad de combustión del hidrógeno depende de la masa, o sea de la cantidad de materia que compone la estrella.

Llegará un momento en que se acabará todo el hidrógeno disponible y sólo quede helio. En esas condiciones la estrella sufrirá diversos tipos de transformaciones: aumentará de tamaño y el helio acumulado se transmutará en elementos más pesados como el carbono, el nitrógeno, el oxígeno, etc, mediante otras reacciones nucleares. Entonces la estrella dejará de ser estable: sufrirá cambios de volumen y expulsará al espacio parte de su material. Las capas mas externas serán las primeras en alejarse.

Después de cinco a diez mil millones de años, una estrella como el Sol evoluciona a un estado denominado de gigante roja: un objeto de gran tamaño (de dimensiones mayores que las originales), mucho más fría y de una coloración rojiza. Su temperatura superficial disminuye y por lo tanto toma color rojizo. La gigante roja brillará hasta que su núcleo genere cada vez menos energía y calor. En esas condiciones la estrella empieza a contraerse: disminuye su diámetro y al mismo tiempo aumenta su temperatura superficial.

Si la estrella, al formarse, tiene una masa cuarenta veces mayor que la masa del Sol, pasará al estado de gigante roja en sólo unas pocas decenas de millones de años. Luego irá disminuyendo de tamaño y perderá rápidamente una cantidad significativa de su masa expulsando materia hacia el espacio.

Otra modo de expulsar materia es lentamente, a través de fuertes vientos estelares; de esta forma los astrónomos han observado que se forma una envoltura gaseosa que circunda la estrella y que puede llegar a ser bastante densa; si ese proceso continúa puede dar lugar a un objeto denominado nebulosa planetaria.

Con el nombre de nebulosas planetarias, se define a una estrella muy caliente y pequeña, rodeada por una esfera de gas fluorescente en lenta expansión; algunas fotografiadas con potentes telescopios, muestran que esas nebulosas tienen forma de anillo, razón por la cual se le ha dado ese nombre, ya que su aspecto observada en el telescopio es similar al disco de un planeta.

Finalmente, hacia el término de su existencia, esas estrellas se convierten en objetos de pequeñas dimensiones (del tamaño de la Tierra o aún menor), calientes y de color blanco: son las enanas blancas. La materia de estos objetos se halla extremadamente comprimida: 1 centímetro cúbico de la misma puede pesar varias toneladas. En otras palabras, en un volumen similar al de nuestro planeta se halla condensada la misma cantidad de materia que hay en un volumen comparable al del Sol.

Pero no todas las estrellas acaban como enanas blancas. Cada estrella termina su vida de un modo que depende mucho de su masa inicial, aquella que tuvo cuando comenzó su existencia. Una estrella de gran masa (varias veces la del Sol) y que no pierde mucha materia durante su evolución termina su vida en una explosión muy violenta que se denomina supernova; cuando esto ocurre la estrella brillará tanto como toda la galaxia en la cual se encuentra, aunque su brillo será efímero: la estrella ya está condenada a extinguirse como tal.

En el siguiente cuadro se muestran los distintos estados evolutivos finales para estrellas de diferente masa inicial (M). La masa está expresada en masas solares (Msol = 1).

Masa Inicial Estado evolutivo final
M < 0,01 Planeta
0,01 < M < 0,08 Enana marrón
0,08 < M < 12 Enana blanca
12 < M < 40 Supernova + estrella de neutrones
40 < M Supernova + agujero negro

Distintos estados evolutivos finales para estrellas de diferente masa inicial <M>. La masa está expresada en masas solares (Msol = 1).

Los restos gaseosos de una supernova (que se denominan remanentes) se esparcen cubriendo una extensa zona del espacio, formando una nube en permanente expansión que se aleja a varios miles de kilómetros por segundo y cuyas características son bastante peculiares (por ejemplo, aparecen campos magnéticos sumamente intensos).

El gas que compone un remanente de supernova es bastante diferente al gas de la nube que formó a la estrella. La nube de origen estuvo compuesta casi exclusivamente por helio y helio, mientras que en el remanente existe una gran variedad de elementos químicos, restos de la fusión nuclear que ocurriera en la estrella desaparecida y también otros formados durante la explosión que se produce en la fase de supernova.

En el siguiente cuadro se muestran algunas estrellas con sus características físicas más importantes.

Estrella Magnitud
aparente (m)
Magnitud
Absoluta
Temperatura
(en ºC)
Radio
(en radios solares)
Características
Centauri 0,6 -5,0 21.000 11 gigante
Aurigae 0,1 -0,1 5.500 12 gigante
Orion 0,4 -5,9 3.100 290 supergigante
Scorpi 0,9 -4,7 3.100 480 supergigante
Sirio B 8,7 11,5 7.500 0,054 enana blanca

 De este modo se recicla el material estelar: las estrellas que se formen con el gas expulsado en una explosión de supernova, serán menos ricas en hidrógeno y helio, pero más ricas en los elementos químicos más pesados, que las estrellas de su generación anterior.

Pero sucede que luego de la explosión de una supernova, lo que queda del astro, además de sus remanentes, es un cuerpo de apenas algunos kilómetros de diámetro, conformado por él núcleo de la estrella original.

En la explosión de supernova se produce un catastrófico colapso de la estrella; debido a su gran masa, la enorme fuerza de gravedad comprime la materia con mucha más intensidad que en el proceso que genera a una enana blanca . En estas condiciones toda la masa de una estrella ordinaria (como el Sol) se comprime en una pequeña esfera de apenas 15 Km. de diámetro; a estos diminutos astros se los ha bautizado estrellas de neutrones (su denominación se debe a que se trata de objetos compuestos básicamente de neutrones). La materia en estos objetos se ha comprimido a tal extremo y su densidad alcanza a valores tan grandes, que los electrones se combinan con los protones dando lugar a la formación de nuevos neutrones.

Fuente Consultada: Astronomía Elemental de Alejandro Feinstein y Notas Celestes de Carmen Nuñez

SÍNTESIS DEL TEMA…

Ningún astrónomo ha podido contemplar, hasta ahora, el interior de las estrellas, pero todos los científicos conocen ya los fenómenos que se producen en el centro de éstas y en los estratos que lo cubren hasta llegar a la superficie visible.

Las estrellas son enormes esferas de gas, de un diámetro medio, equivalente a cien veces el de la Tierra. El gas que las compone contiene, aproximadamente, un 80 % de hidrógeno y un 18 % de helio. La mayor parte de los elementos se hallan presentes en ellas, aunque en cantidades insignificantes.

La superficie de las estrellas está incandescente: su temperatura oscila, según el tipo de estrella, entre miles y decenas de millares de grados centígrados. Pero, a medida que se penetra en su interior, esa temperatura va haciéndose cada vez más alta, hasta alcanzar, en el centro, decenas de millones de grados, lo cual pone a los átomos en un estado de “agitación” tan violenta, que los lleva a chocar entre sí, perdiendo electrones y formando iones (átomos que han perdido, por lo menos, uno de sus electrones). El gas de los iones y electrones se ve sometido a presiones tan altas, que en ocasiones alcanza una densidad miles de veces superior a la del agua.

¿Qué es lo que comprime el gas en el interior de las estrellas? El peso de los estratos superiores. Todo el mundo ha oído hablar de las elevadas presiones existentes en el fondo del mar o en el centro de la Tierra (éstas, particularmente, alcanzan cifras asombrosas). Pero, en el centro de una estrella, a una profundidad cien veces mayor, las presiones son tan enormes, que bastan para comprimir toda la materia estelar en un reducidísimo espacio. Los átomos, chocando entre sí, perdiendo y, a veces, adquiriendo electrones, emiten una gran cantidad de luz, comparada con la cual la superficie del Sol parecería oscura.

Llegados a este punto, conviene explicar que la luz ejerce presión sobre los cuerpos que ilumina: poca presión, cuando su intensidad es débil, y mucha, cuando es fuerte. Esta propiedad de la luz se encuentra, naturalmente, fuera de los límites de nuestra experiencia, ya que la Tierra, por fortuna, nunca se ve expuesta a radiaciones luminosas de tanta intensidad. Pero éstas son lo suficientemente intensas, en el interior de las estrellas, como para ejercer, sobre los estratos superficiales, presiones que llegan al millón de toneladas por centímetro cuadrado. Es decir: equilibran, en parte, la presión hacia el interior de estos estratos y evitan que la estrella se convierta en un pequeño y densísimo núcleo.

A las temperaturas descritas, los átomos chocan en forma tan violenta que, cuando los núcleos de hidrógeno entran en colisión entre si, o con núcleos de otros elementos (carbono y nitrógeno), se funden y originan núcleos de helio. Este proceso de fusión de núcleos se llama “-reacción termonuclear”, lo que significa “reacción nuclear provocada por la temperatura”. Cada vez que se forma un nuevo gramo de helio, se libera una energía equivalente a la que se obtendría quemando media tonelada de carbón. ¡Y se forman millones de toneladas de helio por segundo!

La fusión del hidrógeno es, pues, la reacción que mantiene el calor de las estrellas. Como la mayor parte de éstas contiene casi exclusivamente hidrógeno, y basta consumir un poco para obtener una gran cantidad de energía, se comprende que las estrellas puedan brillar ininterrumpidamente durante miles de millones de años.

La zona del interior de las estrellas en las que se produce ,La energía termonuclear es pequeña: muy inferior a una décima parte del volumen total de la estrella. Lo cual dificulta notablemente la llegada del calor a la superficie.

Una parte de éste se transmite por radiación (es decir: la energía térmica producida en el núcleo central es enviada, bajo forma de radiaciones electromagnéticas, a los átomos exteriores, que la absorben y la envían, a su vez, hacia átomos más exteriores, hasta que así, de átomo en átomo, la energía llega a la superficie de la estrella, irradiándose en el espacio). Pero la mayor parte de la energía térmica es transportada a la superficie por la circulación de la materia estelar, que se halla en continuo movimiento: sube caliente del centro, se enfría en la superficie, por cesión de calor, y vuelve fría al centro, en busca de más calor. Esta forma de transporte se llama transporte por “convección”.

Los movimientos convectivos de la materia estelar provocan importantes fenómenos magnéticos, que repercuten en la superficie, produciendo maravillosas y fantasmagóricas manifestaciones: fuentes de gas incandescente, gigantescas protuberancias de gas luminoso coloreado, y manchas oscuras de materia fría, rodeadas por campos magnéticos, de extensión .e intensidad enormes. De esta naturaleza son las famosas manchas solares descubiertas por Galileo, que siempre han despertado gran interés entre los investigadores, por su influencia sobre la meteorología de nuestro planeta, sobre las transmisiones electromagnéticas, e incluso, al parecer, sobre algunos fenómenos biológicos.

La existencia de una estrella depende, por tanto, del perfecto equilibrio entre los mecanismos que producen la energía en su interior y los encargados de transportarla a la superficie. Cuando este equilibrio es inestable, las estrellas experimentan variaciones (estrellas variables); cuando, en cambio, se altera completamente, puede producirse uno de los más grandiosos fenómenos cósmicos: la explosión de una estrella, de lo cual nos ocuparemos en otro artículo.

Agujeros Negros Origen, Formación y Características Breve y Fácil

Origen y Características de los Agujeros Negros
Muerte de Estrellas

Desde hace mucho tiempo uno de los temas predilectos de la ciencia-ficción han sido los agujeros negros, y en estrecha relación con ellos, el viaje a través del tiempo. El concepto de agujero negro fue popularizado por el físico británico Stephen Hawking, de la Universidad de Cambridge, quien describe con ese nombre a una región del Universo de la que no puede salir ningún objeto una vez que entró allí. Con esto en mente, sería interesante preguntarse qué le sucedería a alguien en el hipotético caso de encontrarse en las cercanías de una de estas regiones, qué sensaciones tendría y si la realidad que lo rodea sería igual a la que nos es familiar.

Hawking Físico astronomo

Para el físico Stephen Hawking y para la mayoría de los científicos un agujero negro es una región del Universo de la que no puede salir ningún objeto una vez que entró allí.

Agujeros negros: Como hemos visto en el nacimiento de las estrellas, una vez que el H y el He, el combustible termonuclear se han consumido en el núcleo de la estrella, sobreviene un colapso gravitatorio.

La evolución estelar culmina con la formación de objetos extremad mente compactos como enanas blancas o estrellas de neutrones cuando masa de la estrella no excede las 3 Mo (masa del Sol).

Si la masa es mayor, la compresión gravitatoria ya no se puede compensar con las fuerzas de repulsión de 1 electrones o neutrones degenerados y continúa tirando materia sobre la estrella: se forman los agujeros negros. En efecto, cuando los neutrones entre en colapso no existe ningún mecanismo conocido que  permita detener contracción.

Esta continúa indefinidamente hasta que la estrella desaparce, su volumen se anula y la densidad de materia se hace infinita. ¿Cómo entender una “estrella” más pequeña que un punto y con semejante densidad de materia en su interior?

Si una estrella se contrae, el campo gravitatorio en su superficie aumenta, aunque su masa permanezca constante, porque la superficie está más cerca del centro. Entonces, para una estrella de neutrones de la misma masa que el Sol la velocidad de escape será de unos 200.000 km/seg. Cuanto mayor es la velocidad de escape de un cuerpo más difícil es que algo pueda escapa de él.

En cierto momento la velocidad de escape llega al limite de 300.000 km/se Esta es la velocidad de las ondas electromagnéticas en particular de la luz que será entonces lo único que puede escapar de estos objetos. Ya hemos mencionado que no es posible superar esta velocidad y por lo tanto cuando la velocidad de escape de una estrella sobrepasa este limite, nada podrá escapar de ella. Los objetos con esta propiedad se llaman agujero negros.

Desde 1915, con la teoría de la relatividad general de Einstein se sabía que la gravedad generada por un cuerpo masivo deforma el espacio, creando una especie de barrera; cuanto más masivo es el cuerpo, mayor es la deformación que provoca. Los agujeros negros se caracterizan por una barrera  profunda que nada puede escapar de ellos, ni materia ni radiación; así t da la materia que cae dentro de esta barrera desaparece del universo observable.

Las propiedades físicas de estos objetos son tan impresionantes que por mucho tiempo quitaron credibilidad a la teoría.

Esta predice la existencia de agujeros negros de todos los tamaños y masas: los miniagujeros negros tendrían la masa de una montaña concentrada en el tamaño de una partícula; un agujero negro de 1cm. de radio sería tan masivo como la Tierra; los agujeros negros estelares tendrían masas comparables a las de las estrellas dentro de un radio de pocos kilómetros; finalmente, los agujeros negros gigantes tendrían una masa equivalente a varios cientos de millones de estrellas dentro de un radio comparable al del sistema solar.

Una forma de detectar agujeros negros sería a través de ondas gravitatorias. Estas ondas son para la gravedad lo que la luz es para el campo electromagnético. Sin embargo la tecnología actual no permite todavía esta posibilidad. El colapso de una estrella o la caída de un cuerpo masivo sobre un agujero negro originarían la emisión de ondas gravitatorias que podrían ser detectables desde la Tierra con antenas suficientemente sensibles.

 Aunque estas tremendas concentraciones de materia no se han observado todavía directamente hay fuerte evidencia de la existencia de estos objetos. Los astrofísicos comenzaron a interesarse activamente en los agujeros negros en la década del 60, cuando se descubrieron fenómenos sumamente energéticos.

Las galaxias superactivas, como las Seyferts, cuásares y objetos BL Lacertae emiten una cantidad de energía mucho mayor que una galaxia normal, en todas las longitudes de onda. Todos estos violentos fenómenos parecen asociados con cuerpos compactos muy masivos: estrellas de neutrones o agujeros negros estelares en el caso de binarias X, estrellas supermasivas o agujeros negros gigantes en los núcleos galácticos activos.

Las aplicaciones más importantes de los agujeros negros a la astrofísica conciernen a los núcleos activos de galaxias y cuásares. Los efectos de las enormes energías involucradas allí podrían ser sumamente interesantes y podrían permitir explicar fenómenos que todavía no se comprenden.

Fuente Consultada:Notas Celestes de Carmen Nuñez

GRANDES HITOS EN LA HISTORIA DE LOS AGUJEROS NEGROS
1783 El astrónomo británico John Michell señala que una estrella suficientemente masiva y compacta tendría un campo gravitatorio tan grande que la luz no podría escapar.

1915 Albert Einstein dio a conocer su teoría de la gravitación, conocida como Teoría General de la Relatividad.

1919 Arthur Eddington comprobó la deflexión de la luz de las estrellas al pasar cerca del Sol.

1928 S. Chandrasekhar calculó el tamaño de una estrella que fuera capaz de soportar su propia gravedad, una vez  consumido todo si combustible nuclear. El resultado fue que una estrella de masa aproximadamente una vez y media la del Sol nc podría soportar su propia gravedad. Se le otorgó el Premio Nobel 1983.

1939 R. Opphenheimer explice qué le sucede a una estrella qué colapsa, de acuerdo con la Teoría de la Relatividad General.

1963 M. Schmidt identifica un quasar desde el observatorio de Monte Palomar.

1965 – 1970 R. Penrose y S, Hawking demuestran que debe haber una singularidad, de densidad y curvatura del espacio-tiempo infinitas, dentro de un agujero negro.

agujero negro

En el interior de un agujero negro, el retorcimiento del tiempo y el espacio aumentan hasta el infinito.
A esto los físicos llaman singularidad.

■ Un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Si el rayo pasa sucesivamente por varios cuerpos su trayectoria se curvará hasta que el rayo quede girando en círculo, del que no puede escapar. Este es el efecto gravitatorio de los agujeros negros.

■ Un agujero negro es una zona del universo con una gravedad tan enorme que ni el tiempo puede salir de él.

■ Los pulsares y los quasars proporcionan información complementaria sobre la ubicación de los agujeros negros.

■ Detectar un agujero negro no es fácil. Se los descubre por la poderosa emisión de rayos X que los caracteriza.
Si un astronauta penetrara en un agujero negro no tendría forma de vivir. Debido a la intensísima fuerza gravitoria nos estiraríamos como un fideo hasta despedazarnos.

■ En el interior de un agujero negro el espacio y el tiempo aumentan hasta lo, infinito.

■ Se estima que el número de agujeros negros en el Universo es muy superior al número de estrellas visibles y son de mayores dimensiones que el Sol.

■ Existen varios agujeros negros identificados, uno se halla en nuestra Via Láctea: el Cygnus X-1.

AMPLIACIÓN DEL TEMA:
Fuente: Magazine Enciclopedia Popular: Los Agujeros Negros

Hagamos un ejercicio mental e imaginemos por un momento que somos intrépidos astronautas viajando al interior de un agujero negro…

Repasemos algunas ideas importantes. Los físicos saben desde hace mucho que un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Pero ¿qué sucede si este rayo pasa sucesivamente cerca de varios cuerpos?.

Cada vez su trayectoria se curvará un poco más hasta que finalmente el rayo estará girando en círculo, del que no podrá escapar. Este efecto gravitatorio se manifiesta en los agujeros negros, donde la atracción es tan fuerte que nada, ni siquiera la luz, puede escapar de él una vez que entró.

La gravitación distorsiona además del espacio, el tiempo. Veamos qué sucede en la superficie de un agujero negro, el horizonte de sucesos, que coincide con los caminos de los rayos luminosos que están justo a punto de escapar, pero no lo consiguen.

DONDE EL TIEMPO SE DETUVO
Según la Teoría de la Relatividad, el tiempo para alguien que esté en una estrella será distinto al de otra persona lejana, debido al campo gravitatorio de esa estrella. Supongamos que nosotros, astronautas, estamos situados en la superficie de una estrella que colapsa, y enviamos una señal por segundo a la nave espacial que está orbitando a nuestro alrededor.

Son las 11:00 según nuestro reloj y la estrella empieza a reducirse hasta adquirir untamaño tal que el campo gravitatorio es tan intenso que nada puede escapar y nuestras señales ya no alcanzan la nave.

Desde ella, al acercarse las 11:00, nuestros compañeros astronautas medirían intervalos entre las señales sucesivas cada vez mayores, pero este efecto sería muy pequeño antes de las 10:59:59. Sin embargo, tendrían que esperar eternamente la señal de las 11:00. La distorsión del tiempo es aquí tan tremenda que el intervalo entre la llegada de ondas sucesivas a la nave se hace infinito y por eso la luz de la estrella llegaría cada vez más roja y más débil.

El tiempo, desde nuestro punto de vista como astronautas sobre la superficie de la estrella, se ha detenido. Llegaría un punto en que la estrella sería tan oscura que ya no podría verse desde la nave, quedando sólo un agujero negro en el espacio.

Pero como astronautas, tenemos un problema más angustiante.

La gravedad se hace más débil cuanto más nos alejamos de la estrella, es decir, varía rápidamente con la distancia. Por lo tanto, la fuerza gravitatoria sobre nuestros pies es siempre mayor que sobre nuestra cabeza. Esto significa que debido a la diferencia de fuerzas, nos estiraríamos como un fideo o, peor aún, nos despedazaríamos antes de la formación del horizonte de sucesos (a diferencia de lo que sucede en la Tierra, donde la gravedad para nosotros prácticamente no varía con la altura). Este experimento no es, por ahora, recomendable.

¿Qué ocurre con la materia dentro del agujero negro? Las teorías de Stephen Hawking y Roger Penrose, de la Universidad de Oxford aseguran que en el interior el retorcimiento del espacio y del tiempo aumentan hasta el infinito, lo que los físicos llaman una singularidad. Si una estrella esférica se encogiera hasta alcanzar el radio cero, ya no tendría diámetro, y toda su masa se concentraría en un punto sin extensión. ¿Qué sucede si la materia no puede salir del agujero?.

Sólo caben dos respuestas: o deja de existir o viaja a otra parte. Esta última posibilidad dio pie a la teoría del agujero de gusano: al caer en el agujero podríamos salir en otra región de Universo. Para desgracia de los novelistas de ciencia-ficción, esta posibilidad no posee gran aceptación científica hasta ahora.

¿ALGUIEN HA VISTO UN AGUJERO NEGRO?
Dado que se conoce muy poco acerca de estos huecos en el espacio, su estudio comenzó a desarrollarse mediante modelos matemáticos, aun antes de que hubiese evidencia de su existencia a través de observaciones. Pero, ¿cómo podemos creer en objetos cuya existencia se basa sólo en cálculos?.

La lista de evidencias comienza en 1963, cuando desde el observatorio de Monte Palomar en California, se midió el corrimiento al rojo de un objeto parecido a una estrella en dirección a una fuente de ondas de radio. Este corrimiento era muy grande, por lo que se pensó que se debía a la expansión del Universo y, por lo tanto, el objeto estaba muy lejos. Para ser visible, este objeto debería ser muy brillante y emitir una enorme cantidad de energía. A ellos se los llamó quasars (quasi-strange objects), y podrían proporcionar evidencia acerca de la existencia de los agujeros negros.

Otros candidatos para darnos información sobre los agujeros negros son los pulsares, que emiten ondas de radio en forma de pulso debido a la compleja interacción entre sus campos magnéticos y el material intergaláctico. También las estrellas de neutrones, objetos muy densos, podrían colapsar para convertirse en agujeros negros.

Detectar un agujero negro no es tarea fácil. La forma más utilizada está basada en el hecho de que estos objetos son fuentes emisoras de rayos X. Esto se relaciona con los sistemas binarios, formados por una estrella y un agujero negro. La explicación para este hecho es que de alguna forma se está perdiendo materia de la superficie de la estrella visible.

Como en una pareja de baile en una habitación pintada de negro donde la chica está vestida de blanco y el chico de negro, muchas veces se han observado sistemas en los que sólo hay una estrella visible girando alrededor de algún compañero invisible. Vemos girar a la chica, aunque no podamos distinguir a su pareja. Cuando la materia va cayendo en este compañero comienza a girar como una espiral y adquiere gran temperatura, emitiendo rayos X. Además, el agujero negro debe ser pequeño.

Actualmente se han identificado varios agujeros negros: uno de ellos es el caso de Cygnus X-l en nuestra galaxia, y otros en dos galaxias llamadas Nubes de Magallanes. Sin embargo, el número de agujeros negros se estima que es muy superior, pudiendo ser incluso mayor al de estrellas visibles y de mayores dimensiones que el Sol.

Estrella de Neutrones Muerte Estelar Agujeros Negros Causas Vida

En 1934 los teóricos usaron la mecánica cuántica para predecir la existencia de las estrellas de neutrones: cuando la gravedad se hace demasiado fuerte como para que una enana blanca resista el colapso, los electrones son empujados al interior de los núcleos atómicos convirtiendo a los protones en neutrones.

Pero al igual que los electrones, los neutrones obedecen un principio de exclusión, de acuerdo al cual cada neutrón puede ocupar un determinado nivel de energía que no puede compartir con otro. Cuando todos estos niveles son ocupados, los neutrones están completa.. mente degenerados y ejercen una presión capaz de frenar el colapso gravitatorio.

Así, una estrella de neutrones es en muchos aspectos una versión extrema de una enana blanca: para la misma masa (aproximadamente 1 M0) una estrella de neutrones tiene un radio mucho menor (unos 15 km) y una densidad fantástica (un millón de toneladas por cm3).

La temperatura es de unos 10 millones de grados, pero debido a su tamaño pequeño, estos objetos son en general imposibles de detectar ópticamente. La masa de una estrella de neutrones no puede exceder 3 M0: por encima de este valor la gravedad le gana a la presión de los neutrones degenerados y el único estado final posible es un agujero negro.

La rápida rotación y los fuertes campos magnéticos son dos características importantes de estas estrellas ultradensas. Sabemos que todas las estrellas rotan. Al colapsar, la velocidad de rotación aumenta de manera de conservar el momento angular (así como un patinador baja los brazos para girar más rápidamente) La velocidad de rotación de las estrellas de neutrones es de varias vueltas por segundo También todas las estrellas tienen campos magnéticos pero cuando colapsan, éste aumenta. Los campos magnéticos de las estrellas de neutrones son un billón de veces más intensos que el terrestre. Estas dos propiedades son las que permiten detectar a las estrellas de neutrones en forma de púlsares.

La primera detección de un púlsar se produjo en 1986 en Inglaterra, 34 años después de haber sido predichos teóricamente. Aparece como un objeto que emite pulsos de radio de intensidad variable, pero espaciados a intervalos de tiempo regulares: el período, increíblemente preciso, es de 1,33730113 segundos. El fenómeno fue interpretado como una estrella de neutrones cuyas líneas de campo magnético aceleran los electrones a lo largo del eje magnético, causando la emisión de un rayo de ondas de radio que rotan con la estrella y producen un pulso cuando el rayo intercepta la línea de Visión del observador.

Desde entonces se han descubierto otros varios púlsares y se ha encontrado que algunos de ellos no sólo emiten en radio, sino también en frecuencias más altas como rayos x y y. Se conocen actualmente más de 300 púlsares, situados mayormente en el plano galáctico, a unos pocos kpc del Sol. Los lugares con más posibilidades para encontrar púlsares son los remanentes de supernova.

La famosa Nebulosa del Cangrejo es el remanente de la supernova de 1054 y contiene efectivamente el púlsar del Cangrejo. Debido a su reciente formación es uno de los que rotan más rápido: da 33 vueltas por segundo. Podemos predecir con facilidad, que la velocidad de rotación de un púlsar disminuirá lentamente con el tiempo, de acuerdo a la velocidad con que disipa energía. Por eso los púlsares más jóvenes rotan más rápido que los viejos. Sus períodos van de 0,006 a 0,03 segundos hasta 4,3 segundos. Cuando la velocidad de rotación se hace pequeña, el mecanismo del púlsar no sirve: su vida promedio es de unos pocos millones de años.

Hay otro efecto que contribuye a la modificación de la velocidad de rotación pero de manera más abrupta: son los “glitches”, que disminuyen el período de rotación una parte en un millón en pocos días. Se interpreta como sismos estelares debido a inestabilidades en la corteza o el núcleo de la estrella de neutrones. Estos fenómenos son muy útiles para estudiar la estructura interna de los púlsares, pero sólo aparecen durante unos pocos pulsos.

El púlsar de la supernova de 1987 trajo muchas sorpresas. Apareció antes de lo esperado y su rotación era extremadamente veloz, su período de 0,5 milisegundos era de lejos el más corto que se conocía. Todavía los científicos encuentran entretenimiento en este objeto.

 Aunque la detección de púlsares en los remanentes de supernovas se ha hecho difícil y rara, hay un fenómeno más extendido que permite descubrir muchos de estos objetos: las fuentes compactas de rayos x. En 1971, a partir del lanzamiento del satélite astronómico Uhuru, se descubrieron fuentes galácticas emisoras de un fuerte flujo de rayos x. La fuente llamada Centauro x-3, por ejemplo, tiene una luminosidad en rayos x 10 veces mayor que la luminosidad total del Sol.

Se eclipsa cada 2,087 días, lo que demuestra que la fuente de rayos X está en movimiento orbital alrededor de un objeto más masivo. Esta fuente es parte de un sistema binario formado por la estrella de neutrones y una estrella gigante. La primera atrae el viento estelar de la segunda y convierte la energía gravitatoria del gas en rayos x.

Este tipo de púlsares binarios proveen una de las pruebas de la teoría de la relatividad que predice que un cuerpo masivo acelerado radiará energía en forma de ondas gravitatorias. La disipación de energía de esta forma causa el temblor de la órbita y en consecuencia una lenta disminución del período orbital del púlsar a lo largo del tiempo. Las predicciones teóricas de Einstein concuerdan muy bien con las observaciones del periodo orbital de PSR 1913+16, que está disminuyendo unos 76 milisegundo por año.

Fuente Consultada:Notas Celestes de Carmen Nuñez

Estrellas Explosivas Novas y Supernovas Muerte Estelar Evolucion

Estrellas explosivas: novas y supernovas

Cuenta la leyenda que Hiparco se decidió a confeccionar su catálogo cuan do apareció una estrella nueva en la constelación zodiacal de Escorpio. Su objetivo era construir un sistema de movimientos planetarios y es probable que la observación de los planetas noche tras noche lo llevara a memo rizar las posiciones de las estrellas más brillantes, especialmente las que se encontraban cercanas a la franja del zodíaco.

La filosofía aristotélica vigente en ese momento suponía al cielo perfecto e inalterable. Entonces es posible imaginarse el asombro del astrónomo griego ante la sorprendente aparición.  Algunos historiadores consideran que Hiparco observó en realidad un cometa y no una estrella nueva. Pero dado que en la actualidad se observan algunas decenas de novas por año por galaxia es llamativo que no se hubieran observado con anterioridad y que incluso con posterioridad a Hiparco (hasta 20 siglos después!) no se observara ninguna en occidente.

La siguiente observación de una nova en Europa fue realizada por Tycho Brahe en 1572. A él se debe el término nova (del latín, nova stella ) e indica la idea original sobre estos objetos: de repente aparecía una estrella donde previamente no se había observado. Para descubrir una nueva estrella hay que ser un experto observador del cielo, como hemos mencionado, durante siglos se les prestó muy poca atención a los componentes del paisaje celeste que no fueran los planetas, por lo tanto si la nova aparecía en una constelación lejana al zodíaco muy probablemente pasara inadvertida.

También hay que considerar la fuerza de la teoría aristotélica: cualquier cambio en los cielos inmutables era imposible. La información sobre cualquier cambio celeste podía convertirse en tm sacrilegio y es muy probable que quien lo observara no lo hiciera público para no arriesgarse a ser tratado de loco, ciego o mentiroso. Pero afortunadamente, durante el período que va de la época de Hiparco hasta el año 1500 los chinos observaron cuidadosamente el cielo y registraron todos los cambios detectados. En la época antigua y medieval reportaron la aparición de cinco estrellas brillantes (en los años 185, 393, 1006, 1054 y 1181). La de 1006 fue por lo menos 200 veces más brillante que Venus, de manera que ni siquiera los desinteresados europeos pudieron ignorarla

Luego de Tycho, el siguiente en observar una nova fue un astrónomo alemán, F. Fabricio en 1596, y en 1604 lo hizo Kepler. Todas estas observaciones coincidían en que aparecía una estrella muy brillante donde previamente no se había observado nada y este brillo disminuía lentamente hasta desaparecer.

En la actualidad sabemos que lo que antiguamente se llamaba nova corresponde en realidad a dos tipos de objetos: novas y supernovas. Al igual que las novas, las supernovas son estrellas eruptivas o explosivas, pero se distinguen de aquéllas en que la cantidad de energía liberada es mucho mayor y además, en el caso de las novas, sólo aparecen afectadas por la explosión las capas exteriores, mientras que la explosión de una supernova afecta toda la estrella. Aún las más luminosas como Nova Cygni 1975, brillan 1.000 veces menos que las supernovas.

Novas: Estas estrellas se clasifican en novas, que ganan más de 10 magnitudes en la explosión, y novas enanas, que sólo aumentan su brillo unas pocas magnitudes. Algunas han explotado sólo una vez desde que fueron observadas, pero se cree que son recurrentes cada 10.000 o 100.000 años. Las novas recurrentes, menos energéticas, experimentan explosiones cada 10 a 100 años.

La observación de varias post-novas a mediados de este siglo demostró que muchas de ellas son miembros de sistemas binarios super próximos en los que una de las estrellas es una enana blanca y la otra una estrella fría (por ejemplo una gigante roja). Cuando la estrella ínicialmente menos masiva comienza a expandirse para formar una gigante roja, etapa que se acelera al aumentar su masa con la que se desprende de su compañera, sus capas exteriores se acercan tanto a la enana blanca que parte de su envoltura queda atrapada en el campo gravitatorio de ésta, formando lo que se llama un disco de acreción.

Tal nombre se debe a que, debido a colisiones entre las partículas del disco, éste pierde energía y algunas partes caen sobre la enana blanca, que gana así cierta masa en un proceso llamado acreción. La gran gravedad superficial de la enana blanca comprime esta masa formada esencialmente de hidrógeno, y la calienta. La temperatura se hace tan alta que comienza la fusión de este hidrógeno, lo que calienta aún más la superficie y se inicia la fusión en el disco de acreción, produciéndose un enorme destello de luz, y las capas superiores del disco son arrojadas lejos de la influencia gravitatoria de la enana blanca. Este destello de luz es lo que vemos desde la Tierra en forma de nova y la parte del disco de acreción impulsada hacia el exterior es la nube de gas y polvo que se observa alrededor de la post-nova.

El proceso de fusión disminuye gradualmente, pero el ciclo recomienza porque la compañera de la enana blanca sigue perdiendo masa y esto reconstruye el disco de acreción. De esta forma el fenómeno de nova puede repetirse muchas veces antes de que la supergigante finalice su expansión y se transforme ella misma en enana blanca.

Por lo visto, las condiciones necesarias para la formación de una nova son entonces bastante especiales, y muy pocas estrellas de nuestra galaxia las satisfarán. El Sol, como hemos visto, se transformará en enana blanca. Pero como no tiene compañera no será una nova.

Supernovas:El fenómeno de supernova es una explosión fenomenal que involucra la mayor parte del material de una estrella y determina el fin de la evolución de ciertos objetos estelares. Se supone que la mayoría de las supernovas de nuestra galaxia son indetectables debido a la extinción causada por el polvo interestelar. Actualmente se cree que las observaciones chinas de 1054 y las de Tycho y Kepler se trataban de supernovas. La de Kepler, en 1604, fue la última detectada en nuestra galaxia.

Hay esencialmente dos tipos de supernovas: a) las tipo I resultan de la explosión de estrellas viejas, de masa relativamente pequeña y pobres en hidrógeno pero ricas en elementos pesados, tal como corresponde a una fase avanzada de evolución; su composición indica que se trata de enanas blancas. b) Las tipo II son explosiones de estrellas masivas, también al final de su evolución, pero en una fase menos terminal que las de tipo 1; son ricas en hidrógeno y presumiblemente están en la etapa de supergigante roja.

En su máximo de luz, el brillo producido por las supernovas aumenta unas 15 magnitudes; las tipo 1 son casi tres veces más luminosas que las tipo II. Luego el brillo disminuye unas 304 magnitudes durante los primeros días y durante varios meses decrece casi exponencialmente.

La energía liberada durante el corto tiempo de la explosión es equivalente a la que irradiará el Sol durante 9 mil millones de años (recordemos que la edad actual del Sol es de unos 4,5 mil millones de años) o a la explosión simultánea de 1028 bombas de hidrógeno de 10 metagones cada una y la materia expulsada, alrededor de 5 M0,puede alcanzar velocidades de 36 x 106 km/h. Las supernovas de tipo 1 pueden alcanzar una magnitud absoluta de -18,6, es decir 2.500 millones de veces la luminosidad del Sol o unas 100 veces más brillantes que la luz integrada de toda la galaxia. Según el tipo, la masa eyectada puede ser de 1 a 10 M0, lo que en algunos casos es la masa total de la estrella y, por lo tanto, no queda nada después de la explosión. A partir del descubrimiento de los púlsares (estrellas de neutrones de muy rápida rotación) en 1968, se sabe que después de la explosión puede quedar un objeto extremadamente denso. Este objeto, que es el núcleo de la estrella, está formado exclusivamente por neutrones.

Los mecanismos responsables de estas explosiones no se conocen todavía con certeza. La mayoría de las teorías consideran que la energía liberada por la explosión es principalmente de origen nuclear, en particular la fotodesintegración del Fe. Esta es la etapa final en la cadena de reacciones nucleares que ocurren durante la vida de las estrellas de unas 10 M0. Las estrellas con masas necesarias para terminar como supernovas de tipo 1 son por lo menos 10 veces más numerosas que las estrellas más masivas que dan origen a las supernovas tipo II. Por lo tanto sería razonable suponer que se observarán 10 veces más supernovas de tipo 1 que de tipo II. Sin embargo no es así: los dos tipos se observan con la misma frecuencia. Por lo tanto hay que concluir que no todas las estrellas de poca masa terminan como supernovas y en consecuencia, que se necesitan ciertas condiciones especiales para que este fenómeno ocurra.

La pre-supernova de tipo II tiene una estructura de cáscara como una cebolla. A medida que descendemos de la capa superficial de H se encuentran capas de elementos de mayor masa atómica. Estas capas son producto de las distintas fases de la nucleosíntesis que han ocurrido durante la vida de la estrella. Las reacciones que originan los elementos más pesados se ordenan de acuerdo a la temperatura. Los aumentos de temperatura ocurrieron alternándose con contracciones gravitatorias. El centro de la supergigante que explotará como supernova está compuesto por una mezcla de núcleos de Fe y otros núcleos con números atómicos entre 50 y 60. Estos son los elementos con mayor energía de ligadura. Por lo tanto no se puede extraer más energía de ellos. Cualquier cambio nuclear ulterior con estos elementos, tanto si es fusión para dar elementos más complicados como si es fisión para dar núcleos menos complicados, no liberará energía sino que la absorberá.

El núcleo estelar de hierro crece, luchando contra la contracción gravitatoria gracias a la presión de los electrones degenerados. Pero al describir las enanas blancas vimos que hay un limite para esto: cuando la masa del núcleo ha alcanzado el límite de Chandrasekhar (1,4 M0), la presión de los electrones no alcanza para evitar la contracción y la estrella colapsa. En ese momento, todos los productos del proceso de nucleosíntesis se han aniquilado, el gas está formado ahora por neutrones, protones y electrones libres.

Pero éstos últimos experimentan un gran aumento de energía al comprimirse, su energía se hace mayor que la necesaria para transformar un protón en neutrón y así son absorbidos por los protones. Privado de la componente más significativa de presión, el núcleo estelar colapsa a un ritmo acelerado. La distancia entre neutrones es ahora muy pequeña (del tamaño del núcleo atómico, -fermi) y la estrella se ha transformado en una estrella de neutrones. Desde el inicio del colapso se requieren sólo unos pocos minutos para alcanza este estado.

Al comenzar el colapso del núcleo, las capas exteriores de la estrella, donde están ocurriendo algunas reacciones nucleares, caen arrastra das por él. Los gases se comprimen rápidamente y aumentan su temperatura. La velocidad de las reacciones nucleares aumenta notablemente, la gran cantidad de energía producida origina inestabilidades y, finalmente, la explosión de las capas exteriores.

Las supernovas de tipo 1 son parte de un sistema binario formado por una supergigante roja y una enana blanca, como el que da origen a las no vas. Sin embargo en este caso la masa de alguna de las componentes o d ambas es mayor que en el caso de la nova. En esta situación, la enana blanca puede ganar más masa y superar el límite de Chandrasekhar. Entonces sufre un colapso y comprime muy fuertemente los núcleos de carbono y oxígeno en su interior, creando las condiciones para una fusión con tal liberación de energía que su resultado es una explosión de supernova. Probablemente éste fue el caso de las supernovas de Tycho y Kepler ya que en ninguno de los dos casos se ha detectado estrellas de neutrones en las posiciones correspondientes.

Incluso mucho tiempo después de la explosión las supernovas se revelar por sus efectos sobre el medio interestelar. El remanente joven de la supernova aparece como una gran burbuja que emite radiación en todo el espectro y se expande a una velocidad de 10.000 km/seg. A medida que lo hace empuja al gas interestelar y se va frenando. Después de unos cientos de años la cáscara se enfría y el remanente se desintegra en el medio circundante Los remanentes son antigüedades astronómicas muy valiosas, capaces d revelar información sobre la explosión, la evolución posterior y la estructura y composición del medio interestelar.

Las supernovas son uno de los contribuyentes más importantes a la evolución de la materia galáctica. No sólo transmiten al medio interestelar energía térmica y cinética sino que también la enriquecen con elementos pesados de la nucleosíntesis estelar. El interés por las supernovas de los astrónomos interesados en la evolución estelar y el medio interestelar ha aumentado notablemente, dado que se piensa que podrían ser el detonante del proceso de formación de nuevas estrellas.

La última observación de una explosión de supernova ocurrió en 1987 en la Gran Nube de Magallanes. Miles de investigadores renovaron su interés y en los últimos años se han realizado importantísimos avances en nuestra comprensión de estos fenómenos. Esta supernova ha proporcionado la posibilidad de realizar la medición de distancia más precisa que se haya hecho para un objeto fuera de nuestra galaxia. El remanente de SN 1987A (como se denomina) está a 1,60 x 105 años luz, con una certeza de ±5%. Un anillo hecho del material eyectado por el progenitor de la supernova en su fase de supergigante, ya rodeaba a la estrella unos 5.000 años antes de la explosión, pero sólo se hizo visible cuando se calentó hasta unos 20.000 0K como consecuencia de la misma. Si ese anillo fuera perpendicular a la línea de la visión, se hubiera iluminado todo a la vez. Sin embargo, como está inclinado unos 450 respecto de esta posición, distintas partes se encuentran a distancias diferentes de nosotros.

La parte más cercana pareció encenderse tres meses después de la explosión, mientras que la más lejana permaneció oscura cerca de un año más. Esta diferencia indica que el diámetro del anillo es de 1,3 x 1013 km. La medición del diámetro angular fue realizada por la estación orbital Hubble y es de 1,66 segundos de arco.

Esencialmente, toda la energía cinética del núcleo que colapsa se convierte en una onda de choque que, al encontrar las capas exteriores que están colapsando, las hace rebotar y cambiar de dirección. Este proceso se ve favorecido por la gran cantidad de neutrinos emitidos por la estrella de neutrones que se está creando.

La luz puede ser emitida sólo cuando la onda llega a la capa más externa. En SN 1987A, la onda de choque demoró dos horas en atravesar toda la estrella. Los pocos (pero muy preciados) neutrinos detectados poseían características acordes con las predicciones teóricas —sus cantidades, energías y el intervalo de tiempo en que llegaron a la Tierra—, lo cual aumenta la credibilidad en los modelos.

El 99% de la energía liberada llega de esta forma, en los neutrinos que pueden escapar de la estrella mucho más rápido que los fotones de luz. Estas observaciones permiten abrigar esperanzas de observar más eventos de supernova en la medida en que mejoren los detectores de neutrinos. Se estima que los mismos ocurren cada 10 o 100 años, especialmente en las regiones centrales de nuestra galaxia, pero permanecen ocultos por el material interestelar que opaca la luz.

Si las predicciones teóricas respecto de los neutrinos de supernovas son tan precisas, ¿por qué hay una discrepancia tan grande entre las observaciones y las predicciones respecto de los neutrinos solares? Tal vez, más observaciones de supernovas ayuden a resolver este problema.

FORMACIÓN DE LOS ELEMENTOS QUÍMICOS: El aumento de presión y temperatura, después de producirse los primeros colapsos de la estrella, posibilita la fusión de núcleos de helio para formar uno de carbono. La persistencia de estas condiciones hará que los átomos de carbono se fusionen con otros para constituir otros más complejos. Así, el carbono, al fusionarse con un núcleo de deuterio, forma uno de nitrógeno, y al hacerlo con un núcleo de helio, constituye uno de oxígeno. A través de reacciones similares se forma el resto de los elementos químicos, siendo necesarias condiciones más extremas: en general, cuanto mayor es el número atómico (Z), mayor presión y temperatura se requieren para la formación.

Ciertas características de la estructura interna de los núcleos de los elementos alteran la proporción que sería previsible: más abundantes los de menor número atómico. No obstante, en muchos casos, los átomos de los elementos químicos muy pesados se descomponen espontáneamente, modificando las proporciones que podrían calcularse.

¿Sabían que el átomo de carbono, debido a su mayor estabilidad, es el más abundante del Universo después del hidrógeno, el helio y el neón? La abundancia del carbono y su característica de generar otros elementos biogénicos son datos de gran importancia para entender la formación de moléculas orgánicas en el Universo y la aparición de vida sobre la Tierra. Es interesante, además, conocer que la abundancia relativa de hidrógeno, nitrógeno, oxígeno, carbono, fósforo y azufre es casi idéntica a la que se encuentra en la materia viva.

SUPERNOVAS INQUIETANTES
Al igual que los seres vivos, las estrellas nacen, viven y murieron Se forman a partir de una nube de gas, encienden sus hornos nucleares, irradian su luz durante millones de milenios y después se apagan colapsan y desaparecen. Una de las formas que tiene de morir es la supernova. Pero para llegar a ese final explosivo el astro tiene que tener por lo menos una masa equivalente a la de tres soles.

La supernova también ocurre cuando la estrella ha consumido casi todas sus fuentes de energía. Entonces dos fuerzas entran en una lucha crítica. La declinante fusión nuclear no puede ya compensar la fuerza de gravitación y esta hace que el astro comience a hundirse sobre sí mismo. Las capas exteriores se precipitan hacia el núcleo en un cataclismo gigantesco que origina un rápido sobrecalentamiento de la materia, proceso que culmina con la explosión que ya hemos descrito.

supernova

La supernova de la Galaxia del Cigarro, que se encuentra a alrededor de 12 millones de años luz de la Tierra

Las supernovas no son fenómenos frecuentes. En grandes sistemas estelares, como la Vía Láctea, se produce una cada siglo. Por esta razón, no son muchas las que el hombre ha podido presenciar en su brevísima existencia como especie.

En el año 1006 apareció una supernova en los cielos del hemisferio sur. En su apogeo brillaba tanto como el cuarto de luna y su luz proyectaba sombras sobre la Tierra. Fue visible durante dos semanas en pleno día, y durante dos años por la noche.

El 4 de julio de 1054, los astrónomos chinos registraron la aparición de una “estrella intrusa”. Su brillo era de tal magnitud que también resultaba visible de día. Pronto se transformó en uno de los objetos más notorios del firmamento, al que únicamente el sol y la luna superaban en brillo. Se dejó ver durante dos meses y después comenzó a apagarse paulatinamente hasta desaparecer por completo.

Cuando los astrónomos contemporáneos dirigieron sus telescopios hacia la región del cielo donde hace 900 años había aparecido la “estrella intrusa”, encontraron un extraño objeto al que se dio el nombre de Nebulosa del Cangrejo. Es una nube de gas en rápida expansión que sólo pudo originarse a partir de un estallido titánico. Los cálculos indican que nueve siglos atrás toda esa masa de gas debió haber estado comprimida en un volumen pequeño.

Se comprobó, de esa forma, que la mencionada nebulosa no era sino la supernova observada por los astrónomos chinos a comienzos de este milenio, que continúa explotando. El estallido ocurrió, en realidad 6 mil años antes de que su luz llegara a la Tierra y fuera percibida por los hombres.

La última supernova observada en la Vía Láctea fue registrada por el célebre astrónomo y matemático Johannes Kepler,en 1604, antes de la invención del telescopio. Desde entonces el hombre no había tenido ocasión de usar sus modernos instrumentos astronómicos para estudiar una supernova cercana.

Pero a comienzos de 1987, un científico canadiense descubrió desde el Observatorio de Las Campanas, en el norte de Chile, una supernova muy próxima a la Tierra, situada en la Gran Nube de Magallanes, que es una galaxia satélite de la nuestra.

Esta espectacular supernova, bautizada como Shelton 1987 A se hizo visible a simple vista. Ocurrió en realidad hace 170 mil años, es decir, antes de que en la Tierra se irguiera el hombre de Neandertal.

Así, por primera vez los astrónomos han podido seguir el curso evolutivo de una supernova con telescopios poderosos y modernos La supernova es desde luego un fenómeno inquietante. Es posible que el hombre llegue a auscultar las estrellas cercanas para determinar cuales de ellas amenazan con incurrir en esos estallidos catastróficos.

La teoría predice que a las elevadas temperaturas que alcanza el núcleo del astro que está por explotar, se producen, entre otras partículas, los fantasmales y casi inasibles neutrinos. Estos carecen de masa, se mueven a la velocidad de la luz, atraviesan la Tierra con la misma facilidad con que el agua pasa a través de un colador, y rara vez se detienen para interactuar con otras partículas.

El descubrimiento de Shelton 1987 A, ha ayudado a comprobar la teoría. Como resultado de esta supernova, la Tierra está recibiendo una lluvia de  neutrinos que se han captado en detectores especiales instalados en minas subterráneas, en los Estados Unido, Europa Japón y la Unión Soviética.

Cuando se perfeccionen estos detectores y se construyan incluso telescopios de neutrinos, el hombre estará en condiciones de escudriñar  en los núcleos de las estrellas que presenten gigantismo rojo I H acuerdo con las cantidades de neutrinos que éstas emitan será posible predecir con bastante exactitud y antelación cualquiera amenaza cercana de supernova que pudiera sumergir a la Tierra en un peligroso baño de radiación.

Fuente Consultada: Notas Celestes de Carmen Nuñez

Muerte de las Estrella Enanas Blancas Gigantes Rojas Vida y Evolucion

ESTRELLAS MORIBUNDAS: Enanas blancas

Cuando la estrella agota su combustible no tiene con qué luchar contra la contracción gravitatoria, por lo que entra en colapso y se convierte en enana blanca. Sin embargo, la compresión que puede sufrir la materia tiene un limite dado por el llamado principio de exclusión de Pauli.

Las altas densidades observadas en las enanas blancas son difíciles de encontrar en otros cuerpos celestes o en la Tierra. En verdad, la posibilidad de existencia de materia más densa que la observada en el sistema solar no fue considerada hasta que se desarrolló la mecánica cuántica. La comprensión de la naturaleza atómica de la materia permitió considerar la existencia de materia degenerada, mucho más concentrada que la materia ordinaria.

El Sol tiene una densidad promedio semejante a la del agua: cerca de 1 gr/cm3 y se comporta como un gas, con sus partículas moviéndose libremente. El H en su interior, a una temperatura de 15 millones de grados, está en su mayoría ionizado. Los electrones se han separado de sus núcleos y la alta temperatura reinante les impide acercarse a ellos.

Como consecuencia, 1 cm3 de materia solar ordinaria es esencialmente vacío. Los protones y electrones pueden moverse libremente casi sin chocar entre sí.

En una enana blanca en cambio, una masa como la del Sol puede estar comprimida en un volumen no mayor que el de la Tierra. La densidad asciende a 1.000 kg/cm3. Aun cuando la temperatura ha disminuido por debajo de la temperatura de ionización, los átomos permanecen disociados por la enorme presión de la gravedad.

Las fuerzas gravitatorias actuantes en un cuerpo celeste masivo pueden comprimir su materia hasta un estado de degeneración electrónica y no más, ya que el principio de exclusión impide a dos electrones ocupar el mismo nivel de energía. Este efecto cuántico se llama presión de degeneración electrónica y es el limite que impone la mecánica cuántica a la compresión de un gas de electrones. Esto es lo que ha sucedido en las enanas blancas. Su interior es “frío” (aunque la

 temperatura puede alcanzar hasta un millón de grados) en el sentido de que para mantener a la estrella en equilibrio, las fuerzas autogravítantes no están compensadas por movimientos térmicos como sucede en las estrellas de secuencia principal, sino por la presión ejercida por los electrones degenerados que llegan al limite de compresión. El interior de una enana blanca no está en estado gaseoso sino que es como mi cristal gigante que se enfría lentamente. Las partículas están superpuestas y ya casi no hay espacios vacíos entre ellas. Por lo tanto, su posición y velocidad están determinadas cuánticamente. El principio de exclusión impide que dos partículas ocupen el mismo estado de energía y mientras en un gas ordinario quedan niveles de energía libre (no ocupados por ninguna partícula), los electrones de un gas degenerado ocupan todas las posiciones cuánticamente admisibles.

Las enanas blancas se descubrieron en 1910, aunque entonces no se entendían. Su temperatura superficial es muy alta y su luminosidad anormalmente baja. Esto sólo podía explicarse si su radio era muy pequeño, comparable al radio de la Tierra (recordemos la ley de Stefan: L oc R2T4).

S. Chandrasekhar (nacido en 1910) fue quien elaboró la teoría de una esfera de gas degenerado y este trabajo le valió el Premio Nobel de Física de 1983. Contrariamente a lo que podría suponerse, cuanto más grande es la masa de una enana blanca, menor es su radio. Esto resulta de la necesidad de una presión del gas suficiente para balancear la presión gravitatoria. La masa y el tamaño de una enana blanca están fijos por la composición de la estrella. Los cálculos teóricos indican que si está compuesta esencialmente de H tendrá una masa máxima posible de 5,5 M0. Pero si contiene elementos más pesados llegará sólo a 1,4 M0. Estos valores se conocen como limites de Chartdrasekhar. Una estrella más masiva perdería masa o sufriría una catástrofe antes de transformarse en enana blanca.

Actualmente sólo se han identificado algunos cientos de enanas blancas. Como tienen baja luminosidad intrínseca, sólo pueden observarse aquellas cercanas al sistema solar. Los modelos indican que son la fase evolutiva final de las estrellas de poca masa y, en ese caso, el 10% de las estrellas de nuestra galaxia deberían ser enanas blancas.

Aunque la temperatura central de una enana blanca es menor al millón de grados (compárese con los 15 millones de grados del Sol) su atmósfera es, por lo general, más caliente que la de una estrella de secuencia principal. Los electrones degenerados juegan también un rol muy importante en la determinación de la estructura térmica de la estrella. Esta función es semejante a la de los electrones exteriores de los átomos en los metales ordinarios:

SU capacidad para moverse libremente es responsable de la capacidad de los metales para conducir calor eficientemente. De la misma forma, los electrones degenerados son excelentes conductores de calor en las enanas blancas. En consecuencia, estas estrellas tienen casi la misma temperatura en todo su volumen, son casi isotérmicas. Cerca de la superficie la presión es suficientemente baja y los electrones no están degenerados, entonces las propiedades de la materia son más normales. La temperatura superficial es de unos 10.000°K.

Los espectros de las enanas blancas presentan la sorprendente característica de tener líneas correspondientes a un único elemento. Cerca de 80% de las enanas blancas observadas muestran en sus espectros sólo líneas de absorción de hidrógeno; la mayoría de las restantes tiene sólo líneas de He. El ciclo de contracciones gravitatorias impuestas por su propia evolución, ha purificado las capas exteriores de las enanas blancas más allá de la estratificación observada en las estrellas normales. De la misma forma en que los espectros de las estrellas ordinarias se clasifican en B, A, E y G de acuerdo a su temperatura superficial, los de las enanas blancas se dividen en DB, DA, DF Y DG (D indica dwarf :en inglés enana), correspondientes a temperaturas de 100.000 a 4.000 0K. Las más calientes consumen energía a velocidades tan grandes y evolucionan tan rápidamente que esto nos da la posibilidad de observar a estas estrellas envejecer en el transcurso de unos pocos años.

La evolución de las enanas blancas se ha estudiado intensamente en los últimos años y el modelo aceptado actualmente postula que cerca de 10 millones de años después de su formación, la luminosidad de una enana blanca se ha debilitado hasta un décimo de la solar y su temperatura superficial ha disminuido hasta los 30.000 °K.

La teoría sugiere que a una enana blanca le lleva cerca de mil millones de años enfriarse hasta transformarse en una tibia esfera de gas degenerado. Los cálculos indican que en esta etapa la estrella sufre un último cambio importante: comienza a cristalizarse. A través de su evolución hasta este punto permaneció en estado gaseoso.

A medida que se enfría cada ion del gas comienza a sentir fuerzas eléctricas con sus vecinos, produciendo una fase líquida en la materia. Mientras estas fuerzas comienzan a dominar a mayores distancias, más y más núcleos se unen y forman un cristal. Dicho proceso se debe a la disminución de la temperatura, pero es ayudado por la alta presión que comprime a los núcleos.

Este cambio de estado tiene un efecto importante en las etapas finales de evolución de la estrella. Primero el cambio de liquido a sólido libera energía, pero una vez que se ha cristalizado una fracción importante de su interior, la enana blanca se enfría rápidamente. Como el tiempo necesario para que una enana blanca llegue a la etapa de cristalización se calcula semejante a la edad de nuestra galaxia, se puede estimar la época inicial de formación de estrellas en la Vía Láctea observando las enanas blancas más frías.

Fuente Consultada:Notas Celestes de Carmen Nuñez

Historia de la Estacion Espacial Internacional Objetivos Megaproyecto

UN POCO DE HISTORIA…
Las estaciones espaciales
El hombre ha tenido ya bastantes éxitos en el espacio: ha logrado dar vueltas en torno de la Tierra, ha conquistado la Luna y las sondas con que I legó a Marte y a Venus hablan de su inalterable empeño por proseguirlos. El gran instrumento con que cuenta es su taller en el espacio: las estaciones planetarias.

La construcción de estaciones espaciales habitadas por el hombre, importante etapa en los futuros viajes interplanetario, fue puesta en órbita. Tanto podía funcionar automáticamente como con dotación a bordo. El 23 del mismo mes, el Soyuz y así permaneció durante 5 horas 30 minutos, tiempo durante el cual se cumplió un programa completo de experimentos ecológicos y médico-biológicos que incluía también la producción del propio alimento. Transcurrido ese lapso, retornó a la Tierra.

El 30 de junio del mismo año, el Soyuz 11, tripulado por los cosmonautas Dobrolvski, Volkov y Patsaiev, acoplaron su nave al Salyut y pasaron a su interior, donde permanecieron durante más de tres semanas. Ya en la Tierra, el drama: al abrirse la cápsula, los tres cosmonautas estaban muertos.

El 14 de mayo de 1973, por medio de un impulsor Saturno V, los Estados Unidos pusieron en órbita el laboratorio espacial Skylab 1 no tripulado de 85 toneladas de peso. Averiado al minuto de su lanzamiento, al aumentar peligrosamente la temperatura inicial de la astronave los técnicos de la NASA se abocaron a la tarea de repararlo.

El día 25 del mismo mes y año, los astronautas Conrad, Kerwin y Wwitz, lanzados en una cápsula tipo Apolo, abordaron el Skylab 1 y sobre la parte averiada desplegaron una especie de parasol para hacer descender la temperatura del laboratorio.

Durante 28días los cosmonautas realizaron la mayoría de los experimentos previstos, referidos casi todos ellos a observaciones de la Tierra, el Sol y el espacio sidéreo. Cumplida la misión, retornaron a la Tierra en la cápsula Apolo, Los laboratorios orbitales son plataformas con capacidad para dar albergue a varios tripulantes durante un lapso relativamente largo, y están provistos de los elementos necesarios para el transporte de cosmonautas en viajes de ida y vuelta.

La segunda misión del programa se cumplió en la estación Skylab 3, en condiciones similares a la anterior, el 28 de julio de 1973. Los cosmonautas fueron Bean, Garriott y Lousma, quienes tras instalar un parasol adicional, recargar las cámaras de los telescopios y descubrir un detector de meteoritos junto a la pared de la estación, durante 59 días estudiaron la Tierra y la Luna, en especial las reacciones del organismo durante casi dos meses en un ambiente falto de gravedad. Después de una caminata espacial de 6 hs. 31′, que constituyó un nuevo récord, retornaron a la Tierra el 25 dé septiembre. Su estado físico era excelente.

LA ESTACIÓN ESPACIAL INTERNACIONAL: La exploración y la conquista del espacio es uno de los desafíos más grandes y excitantes emprendidos por el hombre, y la aventura más audaz en la historia de la exploración espacial es, sin duda alguna, la construcción de la Estación Espacial Internacional (ISS).

astronautaEn 1984, el gobierno estadounidense lanzó un programa para la construcción de una es espacial. Los enormes costes que suponían las de estudio y de planificación retrasaron la propia marcha del proyecto, que no adquirió forma hasta que finalizó la Guerra Fría. En 1993, Rusia decidió a aportar la experiencia que había  en la construcción —iniciada en el año 1986— de la estación espacial soviética MIR (paz).

En 1998 se inició  la construcción de la ISS. En primer lugar debían crearse las condiciones técnicas para asegurar una colaboración estrecha. En este sentido, la lanzadera estadounidense emprendió varios viajes a la  MIR y efectuó entre otras cosas, maniobras de acoplamiento. 

El 20 de noviembre de 1998 se instaló el primer componente de la ISS, un módulo de carga y de que se colocó a 350 Km. de distancia de la Tierra. Le siguió ese mismo año una pieza de empalme, que el 12 de julio de 2000 atracó el módulo ruso.

Desde noviembre de aquel mismo año hasta el abril de 2003, la ISS acogió varias tripulaciones internacionales formadas por tres astronautas.

Estos permanecen de cinco a siete meses en el espacio, transcurrido este tiempo, son relevados por nuevas dotaciones. Después de la catástrofe del Columbia ocurrida en 1º de febrero de 2003, la tripulación fija debió reducirse a dos personas por problemas de suministro.

Los estudios que se realizaran en la estación son los siguiente:
1-BIOLOGÍA:
– Respuesta fisiológica al vuelo espacial.
– Salud humana y rendimiento.
– Desarrollo de contramedidas a la microgravedad.
– Investigación general en Biología.

2-CONOCIMIENTO SOBRE LA TIERRA

3-MICROGRAVEDAD
– Ciencia de los Materiales.
– Física de Fluidos
– Ciencia de la Combustión
– Biotecnología
– Física fundamental.

4-CIENCIA ESPACIAL
– La estructura y la evolución del Universo
– Exploración del Sistema Solar
– Conexión Tierra-Sol
– Búsqueda de otros sistemas planetarios.

5-INGENIERÍA Y TECNOLOGÍA
– Sistemas de comunicación espaciales de uso comercial, con énfasis en la mejora de la tecnología de satélites para telefonía personal, y comunicación de vídeo y datos.
– Eficiencia en el uso de la energía, y calidad de agua y aire.
– Técnicas de construcción y funciones de mantenimiento automatizadas.

6-ESTUDIO DE NUEVOS PRODUCTOS

 INFORMACIÓN GENERAL DEL MEGA PROYECTO:

1. La Estación Espacial es la mayor dotación objeto jamás enviado al espacio. Se trata de un centro de investigación que mide 108 m. de largo y 80 m. de ancho. Su peso es de más de 450.000 kg.

2. Orbita a 400 km. sobre la tierra y se puede ver en el cielo nocturno a simple vista. Los científicos pueden estudiar la tierra y su entorno. Pueden ver los cambios que están ocurriendo en la tierra, en el mar, y con nuestro clima.

3. La ISS puede ser visto por la gente en la Tierra. Cuando se haya completado, la ISS será visible a más deL 90 por ciento de la población mundial y dará una vuelta a la Tierra cada 90 minutos.

4. Está siendo alimentada por energía solar. Esta energía es necesaria para alimentar los seis laboratorios y todo el espacio de vida a bordo.

5. La Estación Espacial Internacional fue diseñada y construido con la colaboración de 100.000 personas de 16 naciones desde 1998, y cientos de empresas. El proyecto se inició en 1998.

6. El costo de construir la Estación Espacial Internacional es correcto alrededor de 96 mil millones de dólares.

7. Los primeros miembros de la tripulación permanente, incluidos el astronauta estadounidense Bill Shepherd (que era también el comandante de la ISS) y los cosmonautas rusos Sergei Krikalev, como ingeniero de vuelo y Gidaenko Youri como comandante de la Soyuz. Esta expedición duró 140 días, 23 horas y 30 minutos en órbita.

8. Los vehículos espaciales viajan a la estación para traer y llevar científicos y suministros.

9. Los científicos están estudiando cómo los diferentes fluidos, metales y otros materiales  responden en el espacio sin el efecto de la gravedad. Estos estudios podrían ayudar a comprender mejor los virus, las proteínas y enzimas. Se espera que estos nuevos estudios guiarán algún día a los posibles nuevos tratamientos para muchas enfermedades, incluyendo cáncer. Los científicos también están tratando de lograr una medición más precisa que lo posible en la tierra, las formas más eficientes de producción de materiales, y una comprensión más completa del universo.

10. Alrededor de 160 paseos espaciales fueron necesarios para el montaje y mantenimiento de la Estación Espacial Internacional.

DATOS TÉCNICOS: 

* Inicio de las obras: 1998

* Envergadura: 108,6 m.

* Longitud: 79,9 m.

* Profundidad: 88 m.

*Volumen: 1.140m3

* Masa: 450 toneladas. aprox.

* Altitud de la órbita: Alrededor de 350-450 Km. sobre el nivel del mar.

* Inclinación de la órbita: 51,60 º

* Vuelta a la Tierra: Una cada 90 minutos.

* Velocidad relativa: 29.000 Km./h

* Potencia eléctrica: 110 Kw.

* Superficie de las placas solares: 4.500 m2

* Tripulación fija: 3 personas (2000-2003). 2 personas (desde abril 2003).

* Vuelos a la ISS: 28 (hasta julio de 2006).


Fuente Consultada:
MUNDORAMA – Astronáutica
Maravillas del Siglo XX
El Universo Enciclopedia de la Astronomía y el Espacio Tomo V

Ver: Historia de la Astronáutica

Galaxias Grupo Local Grupo de galaxias mas cercanas Estrellas Via Lactea

Galaxias: Grupo Local – Grupo de Galaxias

MÁS ALLÁ DE LA VÍA LÁCTEA Como ya hemos visto, nuestro sistema estelar presenta un diámetro de 100.000 años-luz y un espesor de 20.000 años-luz en su densa parte central. ¿Contiene la Galaxia la totalidad del universo, de las estrellas, gas y polvo que podemos observar?. La respuesta es “no”, puesto que los astrónomos han descubierto que nuestra Galaxia es sólo una entre muchos millones le galaxias.

Estas otras galaxias se extienden por el espacio en todas direcciones, hasta donde alcanza nuestra vista aun con la ayuda de los más potentes telescopios. Como la Galaxia, todas ellas contienen estrellas y, posiblemente, planetas, así como gas y polvo. No obstante, los únicos planetas que hasta ahora hemos observado han sido sólo los del sistema solar, pero esto no significa que el Sol sea la única estrella del universo que tenga MI sistema planetario.

Significa, exclusivamente, que nuestros telescopios no son aún lo suficiente potentes para detectar otros planetas, si es que en realidad existen. Las incontables galaxias que podemos observar están a tal distancia de nosotros, que aun el diámetro de 100.000 años luz de nuestra propia Galaxia empieza a palidecer por su insignificancia.

Las galaxias más cercanas son visibles sólo desde el hemisferio sur. Se conocen con el nombre de Nubes de Magallanes, así denominadas en recuerdo del gran navegante Fernando de Magallanes, que fue el primero en tomar nota de su existencia durante su viaje alrededor del mundo, hace más de 400 años. Las Nubes de Magallanes parecen trozos desgajados de la Vía Láctea; no obstante, se trata de dos galaxias independientes , a más de 150.000 años-luz de la nuestra. Y, sin embargo, las Nubes de Magallanes son vecinas muy próximas con respecto a la totalidad del universo.

Pertenecen al mismo cúmulo de galaxias que nuestro sistema estelar, al denominado “grupo local”. Este cúmulo contiene por lo menos 35 galaxias, o mas. La Galaxia parece estar situada a un extremo del cúmulo, y cerca del centro se encuentra la galaxia —aparte las Nubes de Magallanes— que puede verse sin telescopio.

GRUPO LOCAL
Grupo Local

“La Vía Láctea es parte de un barrio cósmico más grande –un grupo de más de 35 galaxias conocido como el Grupo Local. Estas galaxias se mueven por el espacio como una sola unidad, unidas por su mutua atracción gravitatoria. El número de galaxias que pertenecen al Grupo Local es incierto, debido a que los astrónomos siguen encontrando nuevos residentes de este barrio galáctico. Por ejemplo, una de las galaxias del Grupo Local fue descubierta en 1997, a unos tres millones de años luz de la Tierra. Esta nueva galaxia es diminuta: sólo contiene un millón de estrellas aproximadamente, comparado con los cientos de miles de millones de la Vía Láctea.”

Dicha galaxia aparece a simple vista una mancha luminosa, tenue y nebulosa, en la constelación de Andrómeda; pero al ser fotografiada mediante un gran telescopio aparece tan nítida, que pueden verse hasta algunas de sus estrellas individuales. Esta galaxia de Andrómeda está a casi dos millones de años-luz de nosotros. La luz que esta noche veremos proveniente de allí empezó su recorrido mucho antes de. que el hombre apareciera sobre la Tierra.

La totalidad del grupo local, que tiene una configuración muy ovalada, ocupa un volumen tan grande, que es difícil encontrar alguna comparación que nos permita imaginar su tamaño. No conocemos sus dimensiones con mucha exactitud, pero parece ser que se extiende sobre una superficie de por lo menos 4,5 millones de años-luz en longitud y la mitad en anchura. Su espesor es del orden de unos 600.000 años-luz.


Al utilizar telescopios para explorar aún más lejos en el espacio, más allá de nuestro grupo local, las distancias llegan a ser inimaginables. Otras galaxias y cúmulos de galaxias, alejados 50 millones y hasta 100 millones de años-luz, son bastante frecuentes. Los astrónomos saben ahora que las galaxias pueden observarse tan lejos como sus telescopios pueden profundizar. Con los más grandes y modernos, equipados con cámaras fotográficas, podemos estudiar galaxias situadas hasta 3.500 millones de años-luz de distancia.


Durante los últimos veinte años se ha introducido un nuevo método para “ver” aún más lejos en el espacio: el radiotelescopio. Estos instrumentos sólo son radiorreceptores muy sensibles con antenas especiales. Su objeto es el de recibir, no la luz, sino las ondas de radio emitidas por las estrellas y por el gas interestelar de nuestra propia Galaxia y de las demás galaxias.

Con los radiotelescopios los astrónomos pueden sondear en el espacio con mucha mayor profundidad que mediante los telescopios ópticos. Estos nuevos instrumentos ayudan al astrónomo a formarse una idea de la totalidad del universo, un universo al que no podemos encontrar límites en la actualidad.

Distancias a las estrellas Mas cercanas Tamaños y Medidas Estrellas

DISTANCIA A LAS ESTRELLAS Y SU TÉCNICA DE MEDICIÓN

LAS DISTANCIAS DE LAS ESTRELLAS En comparación con la inmensidad del espacio, el sistema solar es un pequeñísimo y compacto conjunto de cuerpos celestes. Pero acostumbrados a considerar las distancias de nuestro propio planeta, creemos que el sistema solar es enorme.

Ya no nos sorprende cuando nos damos cuenta de que la distancia de la Tierra al Sol es casi 4.000 veces mayor que la longitud del ecuador terrestre, y que la distancia desde el Sol hasta Plutón equivale a unas 150.000 vueltas alrededor de nuestro planeta. Tales distancias son tan grandes y desproporcionadas con relación a nuestra experiencia diaria, que sólo consiguen confundirnos cuando intentamos expresarlas en kilómetros. Y cuando hablamos de distancias aun mayores, los números en sí resultan demasiado grandes para comprenderlos con facilidad.

Galaxias y estrellas del universo

Por esta razón los astrónomos han tenido que buscar otra unidad de longitud para utilizarla en lugar del kilómetro. Y la más útil que se ha encontrado hasta el momento ha sido la velocidad de la luz, que se desplaza a 300.000 Km./seg, y recorre la distancia del Sol a la Tierra en poco menos de ocho minutos y medio, y del Sol a Plutón en cinco horas y media. Por ello decimos que el Sol está a ocho y medio minutos-luz de la Tierra, y que Plutón se encuentra a cinco y media horas-luz del Sol.

Puesto que la distancia del Sol a Plutón es sólo el radio de la circunferencia del sistema solar, debemos doblar dicha distancia para expresar su diámetro —11 horas-luz—. Pero como muchos cometas se alejan todavía más que la propia órbita de Plutón, podemos decir que la totalidad del sistema solar ocupa por lo menos un espacio de unas 12 horas-luz.

Puesto que un viaje alrededor de la Tierra sólo equivale a un octavo de segundo-luz, podemos darnos cuenta de la inmensidad del sistema solar según nuestros patrones terrestres.

Y, sin embargo, sólo se trata de un pequeño punto en el espacio sideral. La estrella más próxima al Sol está situada no a segundos, minutos y horas-luz del mismo, sino a una distancia de cuatro y medio años-luz. Cuando recordamos que en un año hay casi 9.000 horas, nos damos cuenta de que el diámetro del sistema solar es muy pequeño en comparación con la distancia que nos separa de la estrella más próxima. Si expresamos ambas distancias en kilómetros, obtendremos 12.000 millones de kilómetros para el sistema solar y 40 billones de kilómetros para la estrella más próxima (que es precisamente la alfa de la constelación del Centauro, o a Centauri, visible sólo para los habitantes del hemisferio sur).

Al considerar las distancias de otras estrellas vemos que cuatro y medio años-luz están sólo “a la vuelta de la esquina”. Por ejemplo, de entre las estrellas más brillantes que observamos en el cielo, Sirio está a 9 años-luz y Vega a 26, años-luz; y aun éstas son vecinas próximas. Arturo se encuentra a 36 años-luz, Capella 345 años-luz y Aldebarán a 68 años-luz y todavía no podemos considerarlas lejanas.

Sólo cuando hablamos de estrellas como la Espiga y Antares, a 220 y 520 años-luz, respectivamente, estamos tratando de estrellas realmente lejanas. Sin embargo, no hemos empezado siquiera a agotar la lista de las estrellas brillantes.

Rigel, de la constelación de Orion, se encuentra a 900 años-luz. Esto quiere decir que la luz que de ella nos llegó anoche empezó su viaje hace 900 años. El universo estelar es, por lo tanto, mucho mayor de lo que podemos imaginar cuando casualmente dirigimos nuestra mirada hacia el cielo nocturno. Hemos visto que los planetas constituyen un compacto grupo que sistemáticamente se mueve alrededor del Sol. ¿ Y qué ocurre con las estrellas? ¿Es posible encontrar cierto sistema u organización dentro de ellas? ¿Cómo se mueven, exactamente? ¿Hasta dónde se extienden en el espacio?

Preguntas de este género, que han intrigado a los astrónomos durante miles de años, sólo han podido contestarse a partir del siglo pasado. Desde luego, los hombres que vivían en cavernas se dieron cuenta de que las estrellas parecen conservar sus posiciones relativas. Este hecho permitió a los hombres primitivos agrupar las estrellas según configuraciones que les recordaban vagamente a los legendarios héroes y heroínas o a los animales salvajes que conocían.

Pero estos grupos, o constelaciones, sólo presentan tales aspectos al ser vistos por un observador terrestre. No se trata de grupos de estrellas que estén realmente cerca unas de otras en el espacio; tan sólo parecen estarlo. Cuando los astrónomos descubrieron que las estrellas también se mueven y aprendieron a medir las distancias estelares, empezaron a reconocer cierta organización en el sistema de las estrellas.

LAS DIEZ ESTRELLAS MAS CERCANAS

Próxima Centauri Distancia: 4,2 AL
Rigel Kentaurus Distancia: 4,3 AL
Estrella de Barnard Distancia: 5,9 AL
Wolf 359 Distancia: 7,7 AL
Lalande 21185 Distancia: 8,26 AL
Luyten 726-8A y B Distancia: 8,73 AL
Sirio A y B Distancia: 8,6 AL
Ross 154 Distancia: 9,693 AL
Ross 248 Distancia: 10,32 AL
Epsilon Eridani Distancia: 10,5 AL

LA MEDICIÓN DE LAS DISTANCIAS:

Cuando las estrellas cuyas distancias queremos medir son las más próximas, se emplea un recurso de la Trigonometría que se llama paralaje. Pongamos un ejemplo práctico. Si nos encontramos en un campo y vemos a mediana distancia un poste de telégrafo, al balancear nuestra cabeza podremos ver cómo el poste “se mueve” contra el fondo del horizonte, que está mucho más lejos. Desde luego que nos resultaría más fácil medir la distancia que nos separa utilizando una cinta de medición, pero ¿y si entre nosotros y el poste hubiese un río caudaloso?

En ese caso podríamos aplicar un artificio que consiste en medir el segmento aparente que se forma en el horizonte cuando, al movernos, el palo se traslada sobre él, medir la distancia real entre los dos puntos que marcan los extremos de nuestro movimiento y, finalmente, tomar los ángulos que quedan determinados ente el poste y nuestras dos posiciones sucesivas.

Esto es precisamente lo que hacen los astrónomos. Para ellos, con mover un poco el cuerpo, como hacíamos nosotros en el campo, no es suficiente, porque no hay punto de comparación entre las magnitudes de uno y otro ejemplo. Se pensó primero en trasladarse a dos puntos alejados de la Tierra y, desde allí, efectuar observaciones sincronizadas, es decir, en el mismo momento, pero también estas dimensiones resultaron escasas.

Finalmente, se pensó que lo ideal sería aprovechar que nuestro planeta se mueve en torno al Sol. De esta forma, se podría realizar una observación en enero, por ejemplo, y otra en julio (medio año después) con lo que el “balanceo” de nuestra prueba inicial pasaría a ser de unos 304 millones.de kilómetros (304.000.000.000 metros). ¡Ahora las cosas cambian! Bueno … no tanto. A pesar de esta “trampa”, la lejanía de las estrellas es tal que el ángulo determinado por las dos posiciones extremas de la Tierra y la más próxima de ellas es de 1 segundo y medio (o sea el ángulo que se forma entre los extremos de una llave de valija y un punto distante a seis kilómetros de ella).

De todos modos, podemos quedarnos tranquilos, porque este valor, por pequeño que sea, puede ser perfectamente captado con los instrumentos de precisión con que cuenta nuestra sociedad actual. Se han efectuado inclusive paralajes de estrellas cuyo ángulo es inferior a la décima de segundo. La distancia de las estrellas más lejanas es mucho más difícil de determinar, ya que en ellas no se puede aplicar el método de paralajes trigonométricos.

Pero, todo tiene solución. Partamos de la base que la luminosidad de los cuerpos celestes disminuye en la medida que se encuentren más lejos. Estoes fácilmente demostrable: mayor luz dará un farol que está al lado nuestro, que otro igual ubicado a una cuadra de distancia.

Lo que nos resta hacer ahora es ver cómo podemos aplicar esto en el espacio sideral. Empecemos por aclarar que las estrellas no son “faroles iguales”, lo que nos complica unpoco las cosas, ya que debemos averiguar no sólo su luminosidad absoluta, sino también la aparente.

Entendemos por absoluta, toda la luz que da; y aparente, sólo la que llega a nosotros.

La aparente se mide con facilidad por intermedio de placas fotosensibles. Para la absoluta, en cambio, las cosas se hacen un poco más complicadas. Es necesario que descompongamos la luz que nos mandan por medio de un prisma. Obtendremos así un espectro, que no es otra cosa que la luz distribuida de acuerdo con sus colores componentes en una escala que va de! ultravioleta al infrarrojo. De este gráfico se puede inferir la luminosidad absoluta de un cuerpo a partir de su temperatura intrínseca.

Después -ya obtenidos los datos de luminosidad absoluta y relativa- no queda otra cosa que aplicar fórmulas constantes que nos dan la distancia desde la Tierra hasta la estrella.

 

esquema del paralaje de una estrella

esquema del paralaje de una estrella

Fuente Consultada:
Secretos del Cosmos Tomo 2 (Salvat)
Enciclopedia Ciencia Joven -Distancia a las Estrellas  – Fasc. N°12 Editorial Cuántica

La Maquina de Dios Acelerador de Particulas Mas Grande del Mundo

La Máquina de Dios Acelerador de
Partículas Mas Grande del Mundo

ACELERADOR DE PARTÍCULAS: Los aceleradores de partículas son máquinas de grandes proporciones que aceleran partículas subatómicas a altísimas velocidades. Luego de movilizarse a gran velocidad las partículas abandonan la máquina para chocar contra el blanco. Dichas partículas o bien fragmentan los átomos del blanco, o bien resultan incorporadas por esos átomos, dando lugar a la formación de átomos más grandes.

Los aceleradores de partículas son las principales herramientas que los físicos nucleares usan para el estudio de la estructura del núcleo del átomo. Normalmente el núcleo contiene varios tipos de partículas, y muchas otras pueden producirse bombardeando los blancos con partículas aceleradas.

El estudio de las partículas elementales o partículas fundamentales, es decir de las partes más simples de la materia, se denomina física de la partículas o física de alta energía. Las partículas alcanzan una energía elevadísima cuando se las acelera en estos aparatos. Los físicos esperan alcanzar una comprensión integral de la naturaleza de la materia ,fisionando el núcleo de los átomos o creando de este modo núcleos nuevos. La mayoría de los aceleradores de partículas son enormes máquinas.

El conducto donde las partículas se aceleran puede ser recto o circular. El acelerador lineal de la Universidad de Stanford, en California, tiene un tubo central recto de 3,2 kilómetros (2 millas) de largo. En los laboratorios de la CERN (European Organization for Nuclear Research), en las afueras de Ginebra, Suiza, se proyecta un acelerador circular de 2,2 kilómetros de diámetro (1,4 millas). A su término quedará a horcajadas sobre el límite con Francia.

El poder de los aceleradores se mide en ELECTRON-VOLTIOS (eV) que es la cantidad de energía infundida a las partículas para acelerarías. Pero las grandes máquinas son tan poderosas que su energía se mide en GeV (gigaelectronvoltio). Un GeV es igual a 1000 millones de eV. Más tarde, se aumentará la potencia de la máquina del CERN y con el tiempo podrá alcanzar los 1000 GeV. Cada máquina puede consumir tanta electricidad como una ciudad entera!

El acelerador de partículas más poderoso jamás construido podría hacer algunos descubrimientos notables, como confirmar la existencia de la materia invisible o de las dimensiones espaciales adicionales, una vez que empiece a funcionar en agosto.

La “Máquina de Dios”, como se ha dado en llamar al Gran Colisionador de Hadrones (LHC), tiene por también por finalidad la de desentrañar los enigmas del origen del Universo, es decir, cómo fue que se creó la materia y qué pasó con la antimateria en el momento del Big Bang. Considerado el experimento científico más ambicioso de la historia, el LHC intentará identificar con total certeza los ladrillos fundamentales con que se construyeron las estrellas, los planetas y hasta los seres humanos.

QUE ES UN ACELERADOR DE PARTÍCULAS? Estas enormes máquinas aceleran partículas cargadas (iones) mediante campos electromagnéticos en un tubo hueco en el que se ha hecho el vacío, y finalmente hacen colisionar cada ion con un blanco estacionario u otra partícula en movimiento. Los científicos analizan los resultados de las colisiones e intentan determinar las interacciones que rigen el mundo subatómico. (Generalmente, el punto de colisión está situado en una cámara de burbujas, un dispositivo que permite observar las trayectorias de partículas ionizantes como líneas de minúsculas burbujas en una cámara llena de líquido.)

Las trayectorias de las partículas aceleradas pueden ser rectas, espirales o circulares. Tanto el ciclotrón como el sincrotrón utilizan un campo magnético para controlar las trayectorias de las partículas. Aunque hacer colisionar las partículas unas contra otras puede parecer inicialmente un método un tanto extraño para estudiarlas, los aceleradores de partículas han permitido a los científicos aprender más sobre el mundo subatómico que ningún otro dispositivo.

El primer acelerador circular se llamó: ciclotrón. El físico estadounidense Ernest O. Lawrence fue galardonado con el Premio Nobel de Física en 1939 por el invento y desarrollo del ciclotrón, un dispositivo para acelerar partículas subatómicas. Lawrence desarrolló el ciclotrón, el primer acelerador circular. Es una especie de acelerador lineal arrollado en una espiral. En vez de tener muchos tubos, la máquina sólo tiene dos cámaras de vacío huecas, llamadasdes, cuya forma es la de dos D mayúsculas opuestas entre sí.

Un campo magnético producido por un potente electroimán hace que las partículas se muevan en una trayectoria curva. Las partículas cargadas se aceleran cada vez que atraviesan el hueco entre las des. A medida que las partículas acumulan energía, se mueven en espiral hacia el borde externo del acelerador, por donde acaban saliendo.

Según la fórmula de Einstein E = mc² la masa es un tipo de energía. Esto significa que la energía puede transformarse en masa y viceversa. En los aceleradores de partículas ésto es utilizado para transformar energía cinética en masa, en una colisión de partículas. De este modo, nuevas partículas pueden ser creadas en las colisiones de partículas con altas velocidades relativas.  En la búsqueda de nuevas partículas pesadas es importante ser capaz de acelerar partículas a altas energías. A mayor energía de las partículas originales, partículas más pesadas pueden ser creadas en las colisiones de partículas.

HISTORIA:
PRIMEROS PASOS Y AVANCES CON LA APLICACIÓN DE ESTA MAQUINA…

Organización Europea para la Investigación Nuclear, institución europea de investigación cuya sede se encuentra en la ciudad suiza de Meyrin (situada en las proximidades de Ginebra, en la frontera entre Francia y Suiza). Es más conocida por las siglas CERN, correspondientes al nombre con que fue fundada en 1954: Conseil Européen pour la Recherche Nucléaire (Consejo Europeo para la Investigación Nuclear).

En el CERN se han construido aceleradores desde los 1950. Hoy existe un gran sistema de aceleradores lineales y circulares. Algunos de los aceleradores más antiguos se usan aún para iniciar la aceleración de partículas antes de ser enviadas a los aceleradores más largos. El sistema de aceleradores del CERN puede acelerar electrones, positrones, protones y diferentes tipos de iones.

Vista Area del CERN

Imagen de Abajo: El LEP (Large Electrón-Positrón Collider), en servicio desde 1989 en la frontera francosuiza, cerca de Ginebra, es el mayor acelerador del mundo y lo seguirá siendo por lo mucho tiempo. Está destinado a estudiar las partículas   de   muy   altaenergía producidas en el transcurso de colisiones entre un haz de electrones y otro de positrones que circulan en sentidos opuestos. Situado en un túnel circular (de 26,7 km. de longitud y 3,8 m. de diámetro interior), el anillo de sección rectangular (5 cm x 20 cm) está enterrado a una profundidad comprendida entre 50 y 175 m. Lo rodean 3.368 imanes de curvatura, 1 300 imanes de focalización y 128 cavidades aceleradoras de alta frecuencia que suministran 400 millones de voltios de tensión aceleradora por vuelta.

En cuatro puntos, el túnel se ensancha en salas de 27 m. de diámetro y 70 m. de longitud donde se encuentran los dispositivos experimentales destinados a detectar las partículas producidas y a determinar sus características. Loselectrones y los positrones sufren la acción de tres aceleradores sucesivos y penetran en el LEP con una energía de 22 GeV. Cada haz es acelerado hasta 50 GeV, por lo que en cada colisión se ponen en juego 100 GeV. Las partículas, inyectadaspor paquetes de 5 billones, giran durante horas y recorren miles de millones de kilómetros; en cada vuelta, se producen sólo unas pocas colisiones entre los dos haces de 1 mm3 de sección.

LEP en suiza

El 14 de julio de 1989, aniversario de la toma de la Bastilla toda Francia celebró el bicentenario del comienzo de la Revolución. A las 16.30 del mismo día, los físicos del CERN, centro internacional de investigación sobre física de las partículas situado en Ginebra, celebraban la entrada en funcionamiento del LEP (Large Electron Positron Collider), la mayor máquina científica construida hasta entonces.

Alojado en un túnel circular de unos 27 km de diámetro (casi todo bajo territorio francés), el LEP es un acelerador que provoca colisiones de partículas a muy alta velocidad, para conseguir elevadísimas energías. Es capaz de crear las condiciones que reinaban una fracción de segundo después de la gran explosión que supuestamente dio origen al universo, así como de provocar la formación de partículas y determinar efectos que no se han producido desde entonces.

En especial, los físicos esperaban crear partículas Z, cuya existencia había sido predicha en los años 60, en el marco de la teoría que unifica el electromagnetismo con la fuerza nuclear débil. Las partículas Z, portadoras de esta fuerza débil, se observaron por primera vez a mediados de agosto de aquel año y la evaluación de los primeros resultados estaba lista para fines de octubre.

El LEP fue la culminación de casi diez años de planificación y construcción, a un coste situado en torno a los 80.000 millones de pesetas. En el momento en que el LEP entraba en funcionamiento, Estados Unidos proyectaba construir en Texas una máquina todavía más gigantesca, el Superconducting Supercollider (SSC), con una circunferencia de 84 Km. y un coste estimado de más de 100.000 millones de pesetas. Sin embargo, si llegara a hacerse realidad, este proyecto podría constituir fácilmente el fin del recorrido en este sentido, ya que los físicos están dirigiendo actualmente su atención a nuevas tecnicas con máquinas lineales en lugar de circulares.

El CERN, fundado en 1953, fue desde el comienzo una empresa cooperativa con la participación de 14 países europeos. Físicos de otros paises, entre ellos la Union Soviética, Japón y Estados Unidos, han participado posteriormente en sus programas de investigación. Fue uno de los indicios de un nuevo movimiento paneuropeo, reflejado también en las esferas económica y política. Europa no carecía de talentos científicos, como lo demuestra el éxito continuado en la obtención del premio Nobel, pero en muchos campos los países individuales no podían en modo alguno competir con Estados Unidos.

No era sólo un problema financiero sino de disponibilidad de personal científico cualificado. Ante la falta de oportunidades en sus países, los científicos europeos. Y En el Fermillab, (imagen abajo) en Illinois (EE UU), una carretera marca los 6km de circunferencia del anillo subterráneo del acelerador de partículas del laboratorio. En 1913, el Fermllab perfeccionó sus instalaciones Instalando Imanes superconductores yen 1990 producía todavía los rayes de protones mas energéticos del mundo.

Cedían a la atracción de Estados Unidos, que les ofrecía mayores salarios y mejores instalaciones. Esta tendencia era particularmente notable en el campo de las ciencias físicas, el ámbito de los proyectos de la “gran ciencia”,. La cooperación científica en Europa adquirió un nuevo impulso en 1973 con el ingreso de Gran Bretaña, Irlanda y Dinamarca en la Comunidad Económica Europea. Entre las nuevas iniciativas figuraban la Agencia Espacial Europea (fundada en 1975) y el centro multidisciplinario de investigación de la CE (15-FRA), con sede en Italia.

Pero en la ciencia, como en otras actividades humanas, las tendencias y las necesidades cambian, y las estrategias deben modificarse en consecuencia. En Gran Bretaña, por ejemplo, el gran laboratorio de investigación sobre energía atómica de Harwell (motivo de orgullo nacional durante la euforia de la posguerra e importante factor de negociación en el intercambio de información con Estados Unidos) tuvo que ser reorganizado y, en cierto modo, ganarse el sustento mediante contratos con la industria.

Por el contrario, el proyecto experimental IET (Ioint European Toros), destinado a producir energía mediante la fusión de núcleos ligeros, como en el interior del Sol, comenzó a funcionar en 1983, en la cercana localidad de Culham. Pero incluso este proyecto fue perdiendo el favor de la opinión pública cuando los movimientos ecologistas (opuestos a toda forma de energía nuclear) ganaron fuerza e influencia, sobre todo teniendo en cuenta que los resultados del programa se podrían medir más en décadas que en años.

El primer gran acontecimiento científico de los años 90 fue la puesta en órbita del telescopio espacial Hubble, en abril de 1990, después de veinte años de planificación. Pero su supuesta capacidad de «ver el universo con una profundidad diez veces mayor que la empleada anteriormente» no impresionó a quienes se oponían a una inversión de 1.300 millones de dólares para un proyecto de investigación pura, entre los que se encontraban muchos científicos con presupuestos escasos. Al mismo tiempo, comenzó la reevaluación del programa del Supercollider.

Si bien la exploración de las partículas más recónditas del átomo y de las regiones más remotas del universo ha seguido cautivando la imaginación popular, también ha sido intensa la actividad en otros campos de las ciencias físicas. De hecho, el progreso en estos dos campos habría sido imposible sin los avances logrados en muchos otros terrenos. Incluso las disciplinas clásicas de la física han demostrado ser capaces de proporcionar nuevas sorpresas.

En el campo del magnetismo, conocido desde la antigüedad, el descubrimiento de imanes líquidos ha abierto nuevas perspectivas. Estos imanes consisten en diminutas partículas de materiales magnéticos como, por ejemplo, ciertos óxidos de hierro, dispersos en un líquido como en los coloides corrientes, las partículas no se separan del líquido. Cada una actúa como un pequeño imán permanente y puede también conferir notables propiedades al líquido, denominado normalmente ferro fluido.

EL LHC: El acelerador LEP estuvo operativo entre 1989 y 1195. Entonces fue desmantelado para dar espacio para un nuevo acelerador en el mismo túnel. El nombre del nuevo acelerador es Gran Colisionador Hadrónico,LHC. LHC, al contrario de LEP, colisionará haces consistentes en protones. Las colisiones, mucho más energéticas,14 TeV, serán posibles reemplazando los electrones y positrones de LEP por protones.

Cientificos Argentinos Colaboradores

DATOS DEL “GRAN COLISIONADOR DE HADRONES”
Inicio de la construcción 1994
Construido por: CERN
Ubicación: Frontera Suiza-Francesa
Costo 6200 millones de euros
Científicos Comprometidos 10.000 científicos de 500 Universidades
Científicos Argentinos Ocho
Países Que Intervienen Cuarenta
Dimensiones 27 Km. de Diámetro
Profundidad Entre 50 y 125 metros
Temperatura de Trabajo 272 Bajo Cero °C
Aceleración Conseguida 99,9999999 de la Velocidad de la luz
Campo Magnético Logrado 100.000 veces el de la Tierra

OBJETIVOS DEL EXPERIMENTO:

  •     Descubrir qué es realmente la masa.
  •     Descubrir qué es la materia oscura (que ocupa más del 95% de la masa del Universo)
  •     Descubrir cuántas son las partículas totales del átomo.
  •     Descubrir la existencia o no de las partículas supersimétricas
  •     Descubrir por qué no hay más antimateria.
  •     Descubrir cómo era la materia durante los primeros segundos que siguieron al Big Bang.

EL BOSON DE HIGG: A una velocidad muy cercana a la de la luz, dos conjuntos de protones circulan en sentido inverso: cuando chocan, se generan, brevemente, partículas enormes. La última que así se descubrió, en el Fermi, en 1995, llamada quark top, tiene 174 veces la masa de un protón. Esas partículas, que ya no existen en la Tierra, existieron en el Universo, en las milésimas de segundo posteriores al Big Bang; las altísimas energías de aquellos instantes son reproducidas por el Colisionador. Así, investigar estas partículas fugaces equivale a investigar los primeros instantes del Universo.

Pero el propósito no es tanto saber qué pasó entonces, sino saber qué pasa ahora: poner a prueba las teorías básicas de la física. Entre aquellas partículas, interesa especialmente una, llamada bosón de Higgs, que tendría entre 130 y 200 veces la masa de un protón: su existencia es requerida por el “modelo estándar”, que, de las cuatro fuerzas consideradas fundamentales en la naturaleza –el electromagnetismo, la gravedad y, en el interior de los átomos, las fuerzas “fuerte” y “débil”–, explica todas menos la gravedad. (ampliar sobre el tema)

Naturaleza de la Materia