Concepto de Energía

Combustibles Que Se Extraen de la Tierra: carbón, petroleo, uranio

MATERIALES COMBUSTIBLES NATURALES: CARBÓN, PETRÓLEO Y URANIO

Aún antes que la civilización organizara el mundo del hombre, éste, en algunas partes de la Tierra, había hecho sus primeras tentativas de usar no sólo el suelo, sino también las sustancias enterradas profundamente en él. En el transcurso de su larga carrera como fabricante de utensilios, aprendió que ciertas clases de piedras se moldean más fácilmente y dan un filo más cortante que otras. Así, durante el período neolítico, hizo tal uso del pedernal, que éste comenzó a escasear en las capas superficiales de la tierra, y el hombre se vio obligado, entonces, a cavar minas, no muy profundas, para abastecerse de esta piedra.

Cuando hablamos de la Edad del Bronce y de la Edad del Hierro, imaginamos al hombre ya como minero experimentado. Las minas de cobre y las de estaño y hierro se encuentran raramente cerca de la superficie; estos minerales deben ser extraídos de las entrañas de la Tierra.

No es posible decir exactamente cuándo los hombres comenzaron a extraer carbón. A fines del siglo XVIII, Marco Polo trajo noticias de que los chinos conocían una “piedra que se enciende”, pero por entonces, el carbón era usado ya, probablemente, en unos pocos lugares de Europa.

En aquella época, la mayor parte de Europa tenía todavía grandes bosques y había pocas ciudades muy pobladas. La mayoría de la gente podía obtener tanta leña como necesitara, de una manera simple y a bajo costo. De modo que el carbón, al principio, fue empleado para unas pocas tareas, por ejemplo, en la forja del hierro. Las pequeñas cantidades que se necesitaban para estos fines se obtenían fácilmente haciendo un corte en la ladera de una elevación y abriendo un túnel por ese lado.

Desde fines de la Edad Media, en adelante, con el crecimiento de las poblaciones, y a medida que los bosques eran talados y que nuevas industrias aparecían, el carbón se convirtió en un elemento importante. Por primera vez, las casas se construían con ventanas de vidrios y los ingredientes para la fabricación de éstos tenían que llegar a altas temperaturas. Se comenzaba a usar cañones y los largos tubos de hierro eran mejor forjados al calor intenso de un horno de carbón.

A principios del siglo XIX, se hallaron aún más usos para el carbón. Las fábricas que comenzaban a surgir en Gran Bretaña usaban la fuerza del vapor; así, más y más hierro fue fundido para hacer maquinarias y, por primera vez, las calles comenzaron a ser iluminadas con gas de carbón.

Con el tiempo, no fue suficiente el mineral que se extraía simplemente por cortes en las laderas de las montañas; de manera que se comenzaron a cavar minas cada vez más profundas con el objeto de hallar estratos, y así surgió un nuevo problema: el de drenar el agua de las capas interiores y el de mantener ventilados los lugares de trabajo en las minas.

Nuestra lámina muestra un corte longitudinal de una mina moderna, con elevadores, columnas de ventilación, sistemas de transporte y poderosas bombas para drenaje. Abajo, hay tres láminas que muestran aspectos del trabajo subterráneo y arriba vemos algunas de las muchas formas en que el carbón ayuda a la comodidad de la vida moderna. Las posibilidades de su uso son enormes. Cuando utilizamos una cocina de gas y cuando encendemos un aparato de televisión, estamos usando gas y electricidad producidos, probablemente, por el carbón.

corte de una mina de carbon

El carbón varía desde el lignito, el más blando y más recientemente formado (hace alrededor de 50 ó 60 millones de años), hasta la antracita, el más duro y más viejo (formado quizás hace 300 millones de años).

Los estratos carboníferos varían en espesor desde unos pocos centímetros, como en la mayoría de las minas de Gran Bretaña, hasta varios metros, como en muchas minas de América y de la Unión Soviética. Se estima que un poco menos de la mitad de las reservas mundiales de carbón están en Estados Unidos.

Ampliar Información sobre el Carbón

COMBUSTIBLE LÍQUIDO: Al igual que el carbón, el petróleo o aceite mineral se formó hace muchos millones de años. Durante los grandes levantamientos sufridos por la corteza terrestre, densas capas de restos marinos y de vegetales en descomposición, que descansaban en el lecho oceánico, fueron elevados hasta la superficie de las aguas y luego enterrados por nuevos movimientos sísmicos. Por la elevada presión de muchas formaciones sedimentarias acumuladas encima de los restos, éstos se convirtieron poco a poco en petróleo.

petroleo en el mundo

En algunas partes de la Tierra, los hombres parecen haber conocido el petróleo desde tempranas épocas. Ciertamente, el asfalto, una sustancia similar al petróleo, fue conocido en la antigua Mesopotamia. Herodoto cuenta que el asfalto fue utilizado para levantar las grandes murallas de Babilonia, y sabemos, también, que los romanos lo han usado alguna vez. Marco Polo relata que el petróleo se usaba para la iluminación en la parte sur de Rusia alrededor del año 1300, y que el comercio de este producto llegaba hasta Bagdad. Se cree también que los incas del Perú y los aztecas de México lo usaban, aunque limitadamente, mucho antes de que el hombre blanco llegara a América.

Sea mucha o poca la verdad que encierran estos relatos, lo cierto es que el petróleo, hasta hace pocos años, se usó únicamente allí donde salía solo a la superficie y se lo consideró un combustible común, de la categoría de los aceites vegetales y de la grasa animal.

En 1859 el estadounidense Drake inició, con sus perforaciones en Titusville (Pensilvania), la era comercial del petróleo. Entonces el hecho se consideró menos importante de lo que hoy parece, pues en 1859 el petróleo era simplemente un combustible; su única ventaja considerable sobre otros aceites era su alta tensión superficial, lo que hace que una mecha se impregne más fácilmente; por esto se logró fabricar mejores lámparas de aceite con mechas regulables.

El petróleo fue realmente valorado cuando se inventó la máquina de combustión interna, a fines del siglo XIX. A principios de nuestro siglo, los automóviles y motocicletas se volvieron elementos comunes de los caminos; en el término de unos pocos años, los primeros grandes barcos que funcionaban con petróleo cruzaban los mares y, a fines de la Primera Guerra Mundial, los aviones dejaron de ser una novedad.

Hoy, los caminos de todas las grandes ciudades del mundo están cruzados por vehículos motorizados; enormes aviones supersónicos consumen unos 70.000 litros de combustible en un vuelo regular, a lo largo de las rutas aéreas del mundo, y miles de fábricas queman en sus hornos petróleo en lugar de carbón.

corte terreno capas de petroleo

La lámina se muestra  cómo el petróleo está contenido bajo muchos estratos sedimentarios;grandes pozos que hoy existen en zonas desérticas.

El petróleo no sólo ha revolucionado el transporte, sino que ha hecho posible el uso de más maquinarias en la agricultura. Ha dado también lugar a industrias totalmente nuevas, que utilizan sus subproductos, como la de la goma sintética y una amplia línea de materiales plásticos.

Las principales zonas petroleras, en el presente, están en Estados Unidos, el Cercano Oriente, Venezuela, Unión Soviética, Kuwait, cerca de la costa norte del golfo Pérsico, e Irak. Juntas alcanzan los siete octavos de la producción total del mundo.

Los geólogos e ingenieros de minas están constantemente a la búsqueda de nuevas fuentes de abastecimiento y la producción, en varias partes del mundo, puede por esto cambiar drásticamente en unos pocos años.

MATERIAL COMO COMBUSTIBLE ATÓMICO:  Ciertos metales sólo adquirieron importancia cuando los hombres de ciencia estuvieron en los umbrales de la era atómica. Uno de los más importantes, el uranio, fue descubierto ya en 1789, el año de la Revolución Francesa, pero ese descubrimiento, al principio, atrajo muy poca atención. Más de un siglo después, cuando Rontgen ya había descubierto los rayos X, un francés, llamado Becquerel, notó que las sales de uranio, y también las de torio, emiten rayos que producen precisamente los mismos efectos que los primeros en una placa fotográfica bien protegida. De hecho, descubrió que estos metales son radiactivos. Hoy, un isótopo del uranio llamado uranio 235, tiene gran demanda para las plantas de energía atómica y también, desgraciadamente, para producir armas atómicas.

El uranio se extrae principalmente de un mineral llamado pechblenda, que se encuentra de preferencia en rocas graníticas o cerca de ellas. Antes de 1939 cualquiera que quisiese molestarse podía enterarse de cuánto uranio se producía y dónde se extraía; pero actualmente muchos países guardan celosamente el secreto de sus fuentes de uranio.

Sólo podemos decir con certeza que el uranio se extrae, entre otras regiones, en Checoslovaquia, en el Congo, y cerca del Gran Lago del Oso, en Canadá. También se extrae, junto con oro, en ciertas partes de Sudáfrica. Otros depósitos han sido encontrados en Groenlandia, Australia, Polonia, Francia, Hungría y en dos regiones de la U.R.S.S.

Otro metal radiactivo muy importante, aun más radiactivo que el uranio, es el radio, que María y Pedro Curie aislaron por primera vez de la pechblenda en 1898. De una tonelada de pechblenda, obsequio del emperador de Austria, extrajeron sólo unos nueve miligramos de radio.

Durante largo tiempo, Bélgica tuvo casi el monopolio mundial de la obtención de radio; sin embargo, su producción anual rara vez excedió de los 40 gramos.

Hoy, los cirujanos usan las penetrantes radiaciones del radio para destruir las células cancerosas en el cuerpo humano; pero se toman extremadas precauciones para no dañar las células normales, que rodean el cáncer. Las radiaciones de otro metal radiactivo, el cobalto 60, se usan de modo similar. Las del radio también se emplean en la industria, para descubrir diminutas rajaduras o fallas de las máquinas, que de otro modo no podrían encontrarse sin desmantelarlas.

Siempre que se usan el radio y otros metales altamente radiactivos, se tiene gran cuidado en impedir que la gente sea accidentalmente expuesta a la radiación. Esos metales generalmente se guardan en recipientes y lugares protegidos por gruesas planchas de plomo, a través de las cuales los rayos no pueden pasar.

Ver: Usos de la Energía Atómica

Historia de la Evolución del Uso De Energía Desde el Fuego

HISTORIA DEL DESCUBRIMIENTO Y  EVOLUCIÓN DEL USO DE LA ENERGÍA
DESDE EL FUEGO A LA ENERGÍA ATÓMICA

LAS ENERGIA PRIMARIAS: Una fuente de energía primaria es toda forma de energía disponible en la naturaleza antes de ser convertida o transformada, y ellas son: el petróleo, gas natural, el carbón, la madera o leña, caída de agua, la del sol o solar, la eólica, mareomotriz y nuclear.

Observa el siguiente cuadro, donde se indica la clasificación de las fuentes de energía:

cuadro clasificacion de las fuentes  de energía

PRIMEROS USOS DEL FUEGO: Una fuente de energía —el combustible al arder—- tiene un lugar muy especial en la historia del hombre. Efectivamente, muchos antiguos pueblos consideraron que el fuego era sagrado, y algunos, como los griegos, tenían leyendas que contaban cómo los hombres habían arrancado a los dioses el secreto del fuego. Según la leyenda griega, Prometeo robó fuego de la forja del dios Hefestos (Vulcano) y lo escondió en un tallo hueco de heno.

uso del fuego por el hombre

Si nos detenemos a pensar por un momento acerca de las otras fuentes de energía que usaron los hombres primitivos, podremos comprender por qué se consideró el fuego de este modo. Los hombres de la Edad de Piedra podían advertir la energía muscular de los animales en acción cada vez que iban de caza; no podían menos de observar la energía del viento, que lo mismo meneaba las hojas de los árboles que desgajaba sus ramas, y ellos deben haberse dado cuenta muchas veces de la energía del agua en movimiento al arremolinar pesados troncos corriente abajo. Pero la energía dejada en libertad cuando el fuego arde es mucho más difícil de notar.

Los primeros hombres que vieron en un bosque un incendio causado por el rayo, probablemente pensaron en el fuego sólo como un elemento destructor y deben haber pasado muchas generaciones hasta que el hombre se diera cuenta de que el fuego podía usarse para realizar trabajo útil. Además, la energía del viento y la del agua estaban allí a disposición del hombre para que las usara. Pero antes de que él pudiera usar el fuego tuvo que aprender a producirlo.

Durante miles de años la única manera de hacer fuego era golpeando dos piedras o pedernales para producir una chispa. Ése es el método que aún emplean ciertas tribus primitivas de Australia y de Sudamérica, y es muy parecido al que usaba la gente cuando se valía de cajas de yesca, hasta que se inventaron los fósforos, hace poco más de un siglo.   Efectivamente, aún utilizamos pedernales para encender cigarrillos o picos de gas. Con el tiempo la gente aprendió a producir fuego haciendo girar dos palitos juntos encima de algún combustible seco, en polvo, hasta hacer saltar una chispa.

Una vez que el hombre tuvo el fuego, pronto descubrió que le podía prestar dos servicios para los que era insustituible. Sobre todo, le suministró calor y luz, y aún hoy el fuego es nuestra mayor fuente de calor y de iluminación. Aun teniendo casas donde todo está electrificado, casi seguramente la electricidad que nos proporciona luz y calor proviene de generadores movidos por el vapor que produce la combustión del carbón. También el fuego podía realizar cosas que el viento, la energía muscular y el agua no eran capaces de hacer.

Podía producir cambios físicos y químicos en muchas clases de substancias. Aunque el hombre primitivo no se diese cuenta, el fuego en el cual él cocía su pan contribuía a transformar varias substancias químicas en la masa del almidón y a producir el anhídrido carbónico que hacía fermentar el pan.

El fuego con que cocía sus vasijas cambiaba las propiedades físicas de la arcilla y la hacía dura y frágil, en vez de blanda y moldeable. Aún hoy usamos el fuego para cambiar las propiedades físicas de las materias primas: al extraer el metal de sus minerales, en la fabricación del vidrio y del ladrillo y en otras muchas. También lo usamos para provocar cambios químicos: en la cocina, en la destilería, en el horneado y en infinito número de procesos industriales.

También hemos aprendido a hacer uso del poder devastador del fuego. Empleamos su tremendo calor destructivo, concentrado en un rayo del grosor de un lápiz, para perforar duros metales. Usamos la fuerza de poderosos explosivos, encendidos por una pequeña chispa, para despejar montañas de escombros, que de otro modo llevaría semanas de trabajo el acarj-ear, y frecuentemente utilizamos el fuego para destruir residuos que deben ser eliminados si queremos mantener sanos nuestros pueblos y ciudades.

HISTORIA DEL CALOR COMO ENERGÍA: El hombre dejó, al fin, de considerar el fuego como objeto sagrado, mas durante cientos de años siguió mirándolo como a cosa muy misteriosa.

La mayoría creía que el fuego quitaba algo de toda materia que quemaba. Veían que las llamas reducían sólidos troncos a un puñado de blandas cenizas y unas volutas de humo. Llenaban una lámpara de aceite, la encendían y descubrían que el aceite también se consumía.

Encendían una larga vela y en pocas horas apenas quedaba un cabo.

Solamente hace 200 años un gran francés, Lavoisier, demostró que el fuego, en realidad, agrega algo a aquello que quema. Hay un experimento muy simple para demostrar que esto es así. Tomamos una balanza sensible y colocamos una vela en un platillo, con un tubo de vidrio repleto de lana de vidrio, puesto justamente encima de aquélla para recoger el humo. En el otro platillo colocamos suficiente peso para equilibrar exactamente la vela, el tubo y la lana de vidrio. Si ahora prendemos la vela y la dejamos arder, descubrimos que el platillo de la balanza sobre la cual se apoya desciende gradualmente. Esto significa que lo que queda de vela y los gases que ha producido durante su combustión pesan más que la vela íntegra.

Lavoisier pudo ir más allá y demostrar qué es lo que se añade a las substancias cuando arden. Descubrió que es oxígeno del aire. Efectivamente, si colocamos un recipiente boca abajo sobre una vela prendida, la llama se apaga tan pronto como el oxígeno del recipiente ha sido consumido. Del mismo modo, el carbón no puede arder en una estufa, ni el petróleo dentro de un cilindro del motor de un auto, sin una provisión de oxígeno del aire.

calor como energia

Al calentar agua, el vapor puede generar trabajo, es decir movimiento

Pero muchas substancias se combinan muy lentamente con el oxígeno y sin producir ninguna llama. Una es el hierro. Si se expone el hierro al aire húmedo, aunque sólo sea por un día o dos, una fina capa de óxido se forma sobre su superficie, y es que el hierro se ha combinado con el oxígeno. En algunas partes del mundo, también los compuestos de hierro se combinan con el oxígeno, bajo el suelo, produciendo depósitos de color castaño rojizo.

Cuando las substancias se combinan con el oxígeno no siempre producen fuego, pero casi siempre originan calor. Y es el calor producido de este modo el que da a los hombres y animales toda su energía física, toda su fuerza muscular. En nuestros pulmones el oxígeno del aire pasa al torrente sanguíneo y es llevado por la sangre a las células de todas las partes del cuerpo, donde se combina con las partículas alimenticias para originar calor y energía. También produce anhídrido carbónico que expelemos al aire.

El peso del alimento que tomamos en un día no es muy grande ciertamente, y, por lo tanto, la cantidad de calor que producimos en un día tampoco lo es. Y no todo este calor lo convertimos en energía para el trabajo, porque parte de él lo consumimos en el propio cuerpo, para mantener nuestra temperatura y en otros procesos fisiológicos.

Cuando pensamos cuánto trabajo puede realizar un hombre en un día, pronto nos damos cuenta de que una pequeña cantidad de calor puede transformarse en una gran cantidad de trabajo. Así podríamos elevar un peso de 1 tonelada a 30 metros de altura, si transformáramos en trabajo todo el calor necesario para poner en ebullición 1 litro de agua. A grandes alturas, los aviadores no pueden obtener suficiente oxígeno del aire que los rodea, para que sus cuerpos produzcan el calor y la energía que necesitan.

Entonces se colocan una máscara de oxígeno y el ritmo de producción de calor y energía se acelera inmediatamente. De manera similar, en la soldadura, que requiere intenso calor, a menudo se mezcla oxígeno puro con el combustible, en lugar de utilizar el aire común.

LA ENERGIA EÓLICA:  Energía eólica, energía producida por el viento. La primera utilización de la capacidad energética del viento la constituye la navegación a vela . En ella, la fuerza del viento se utiliza para impulsar un barco.

La utilización de la energía eólica no es una tecnología nueva, se basa en el redescubrimiento de una larga tradición de sistemas eólicos empíricos. No es posible establecer con toda claridad el desarrollo histórico de los “sistemas de conversión de energía eólica”, sólo es posible identificar los importantes papeles que desempeña la energía eólica en el pasado.

La utilización de la energía del viento resulta muy antigua. La historia se remonta al año 3 500 a.C, cuando los sumerios armaron las primeras embarcaciones de vela, los egipcios construyeron barcos hace al menos cinco mil años para navegar por ei Nilo y más tarde por el Mediterráneo.

Después, los griegos construyeron máquinas que funcionaban con el viento. Así, desde la antigüedad éste ha sido el motor de las embarcaciones. Algunos historiadores sugieren que hace más de 3,000 años la fuerza del viento se empleaba en Egipto cerca de Alejandría para la molienda de granos. Sin embargo, la información más fehaciente de la utilización de la energía eólica en la molienda apunta a Persia en la frontera Afgana en el año 640 D.C.

balsa a vela energia eolica

Barcos con velas aparecían ya en los grabados egipcios más antiguos (3000 a.C.). Los egipcios, los fenicios y más tarde los romanos tenían que utilizar también los remos para contrarrestar una característica esencial de la energía eólica, su discontinuidad.

molino de viento

Uno de los grandes inventos a finale de la Edad Media, el molino de viento, muy usado en el campo argentino para extraer agua de la napa freática y darle de beber  a los animales.

parque eolico

Actualidad: Parque Eólico: Los generadores de turbina de los parques eólicos aprovechan la fuerza del viento para producir electricidad. Estos generadores dañan menos el medio ambiente que otras fuentes, aunque no siempre son prácticos, porque requieren al menos 21 km/h de velocidad media del viento.

ENERGÍA GAS NATURAL: Como gas natural se define la mezcla de hidrocarburos livianos en estado gaseoso, donde la mayor proporción corresponde al metano (CH4) en un valor que oscila entre el 80 al 95 %.

El porcentaje restante está constituido por etano (C2H6), propano, butano y superiores, pudiendo contener asimismo en proporciones mínimas, vapor de agua, anhídrido carbónico, nitrógeno, hidrógeno sulfurado, etc.
El gas natural proviene de yacimientos subterráneos que pueden ser de gas propiamente dicho o de petróleo y gas, según que en su origen se encuentre o no asociado al petróleo.

El gas natural procede generalmente de las perforaciones que se realizan en los yacimientos petrolíferos, de la descomposición de la materia orgánica con el tiempo.

En dichos yacimientos, el petróleo más liviano que el agua, suele flotar sobre lagos subterráneos de agua salada. En la parte superior se encuentra el gas, que ejerce enormes presiones, con lo cual hace fluir el petróleo hacia la superficie.

Ampliar: Gas Natural

LA ENERGÍA ELÉCTRICA: El fuego fue muy importante para el hombre primitivo, porque le capacitó para hacer cosas que con la energía del viento, del agua o del músculo no podía realizar. La humanidad no logró descubrir otra forma de energía capaz de realizar cosas completamente nuevas hasta hace 200 años, cuando comenzó a dominar la electricidad, la fuerza poderosa escondida en el rayo.

energia electrica

Hoy, con la radio, podemos oír a una persona que habla desde comarcas remotas; con la televisión podemos ver sucesos que ocurren a muchas millas de distancia; con cerebros electrónicos o computadoras podemos encontrar en pocos segundos las respuestas a complicadísimos problemas matemáticos. El viento, los músculos, el agua y el fuego no nos podrían ayudar a hacer ninguna de estas cosas; sólo la electricidad.

Varios siglos antes de Cristo, los griegos sabían que el ámbar, al cual llamaban elektron, atraía el polvo y trocitos de plumas después de frotarlo con lana seca, piel o paño. En tiempos de Shakespeare, muchos hombres de ciencia europeos sé interesaron en ésta extraña fuerza de atracción, y un inglés, Guillermo Gilbert, la llamó electricidad.

Alrededor de un siglo más tarde, otro investigador, llamado Guericke, descubrió que la electricidad originada rotando una bola de azufre contra la palma de su mano hacía saltar una chispita con un ruido marcado de chisporroteo. En realidad él había producido un relámpago y un trueno en miniatura.

La electricidad que parece estar contenida, en reposo, en una substancia y es súbitamente liberada, por contacto con otra substancia, se llama electricidad estática. Antes de que los hombres pudieran hacer uso de la electricidad, necesitaban que ésta fluyera de un modo constante y que se lograse controlar, es decir, obtener lo que hoy llamamos una corriente eléctrica.

El primer paso para descubrirla se dio por casualidad.   Más o menos a mediados del siglo xvin, un anatomista italiano, Luis Galvani, dejó las patas de unas ranas recién muertas en contacto con dos alambres, uno de bronce y otro de hierro. Notó que las patas de las ranas comenzaban a estremecerse y pensó que cierta energía animal quedaba en ellas todavía. Pero otro científico italiano, Volta, demostró que el estremecimiento se debía a que estos dos diferentes metales tomaban parte en la producción de electricidad.

volta cientifico creador de la pila

Volta, inventor de la pila eléctrica

Pronto Volta hizo la primera batería, apilando planchas de cobre y de cinc alternadamente una sobre la otra, y separadas sólo por paños empapados en una mezcla débil de ácido y agua. Dos alambres, uno conectado a la plancha de cobre de un extremo y el otro a la plancha de cinc del otro extremo, daban paso a una continua corriente de electricidad.

Las baterías generan electricidad por medio de cambios químicos y aun las más poderosas no producen corrientes lo bastante grandes para muchas necesidades actuales. Los modernos generadores en gran escala producen electricidad por medio de imanes que rotan rápidamente.

Oersted, un danés, y Ampére, un francés, hicieron la mayor parte del trabajo que llevó a descubrir las relaciones entre la electricidad y el magnetismo; pero fue un inglés, Miguel Faraday, quien primero usó un imán en movimiento para producir una corriente eléctrica. Esto ocurrió hace más de un siglo.

Pronto nuevos inventos dé un físico belga, llamado Gramme, y un hombre de ciencia nacido en Alemania, sir Guillermo Siemens, abrieron la nueva era de la energía eléctrica en abundancia. Tomás Edison, un inventor norteamericano, fabricó las primeras bombillas eléctricas y así dio difusión a los beneficios de la electricidad en la vida diaria.

Medimos la fuerza de un generador —la fuerza que pone a una corriente en movimiento— en unidades llamadas voltios, en honor de Volta. Medimos la intensidad de la corriente en amperios, en honor de Ampére. Los voltios, multiplicados por los amperios, nos indican cuánto trabajo puede realizar una corriente, y medimos éste en vatios, en honor de Jacobo Watt, famoso por su invento de la máquina de vapor.

Ampliar Sobre el Descubrimiento de la Electricidad

LA ENERGÍA ATÓMICA: Miles de años transcurrieron desde que se dominó el fuego hasta que se empezó a utilizar la electricidad. Sin embargo, solamente se necesitaron tres generaciones para que surgiese el uso de la energía atómica. Los más grandes hombres de ciencia tardaron más de un siglo en descubrir los secretos del átomo, y no podemos pretender abarcar esa historia completa en una página. Pero podemos dar una rápida ojeada y ver cómo algunos de ellos se lanzaron a esa labor.

Ya en la antigua Grecia había ciertos filósofos que creían que toda la materia está constituida por partículas tan pequeñas que no se pueden dividir. Dieron a estas partículas el nombre de átomos, de dos palabras griegas que significan “no susceptible de ser dividido”. Pero hasta hace poco más de 150 años había pocas pruebas, o ninguna, que apoyasen esta creencia.

Antes de 1800 los químicos conocían pocas substancias simples y puras, de la clase que ahora se llaman elementos, y no sabían mucho acerca de cómo combinar los elementos para formar compuestos. Pero en ese año, dos químicos ingleses, Carlisle y Nicholson, usaron una corriente eléctrica para descomponer el agua en dos elementos: hidrógeno y oxígeno. Con la electricidad pronto consiguieron los químicos una cantidad de otros elementos y pronto aprendieron que los elementos se combinan invariablemente en proporciones fijas según el peso.

centrales atomicas

Esto hizo que un químico inglés, Dalton, reviviera la teoría de los átomos. Él creía que cada elemento diferente está constituido por átomos distintos, y que cada uno de éstos tiene un peso especial. Pero poco después de que la gente comenzara a creer en la existencia de los átomos, o partículas indivisibles de materia, los hechos demostraron que los átomos pueden en realidad dividirse en partículas aún más pequeñas.

Primero Róntgen, un científico alemán, advirtió que ciertas substancias químicas pueden obscurecer una placa fotográfica aun cuando esté bien protegida. Había descubierto los rayos X, rayos hechos de partículas que no son átomos enteros. Más tarde, Madame Curie analizó un mineral llamado pechblenda, que emite rayos similares, y descubrió el elemento altamente radiactivo llamado radio. Las sales de radio emiten rayos sin desintegrarse aparentemente.

Marie Curie

Varios científicos, incluyendo a Rutherford y Soddy, estudiaron estos rayos y lograron descomponerlos en tres partes: rayos alfa, que poseen carga eléctrica positiva; rayos beta, o rayos de electrones, que conducen una carga negativa, y rayos gamma, o rayos X.

Más tarde, Rutherford bombardeó una lámina de oro con partículas alfa. Casi todas ellas atravesaron el oro, pero algunas rebotaron.

Esto le hizo suponer que los átomos de la lámina de oro no estaban contiguos, sino muy espaciados, como las estrellas en el cielo. También advirtió que hay gran espacio vacío dentro de cada átomo.

Madame Curie en el Laboratorio

Un danés llamado Niels Bohr encontró que en el centro de cada átomo hay partículas cargadas positivamente (protones) y partículas no cargadas (neutrones), apretadas para formar el centro o núcleo. A distancia del núcleo hay partículas mucho más pequeñas todavía, llamadas electrones, que poseen una carga de electricidad negativa. Estos electrones giran alrededor del núcleo, como los planetas alrededor del Sol.

Otón Hahn, un físico alemán, fue uno de los primeros en descubrir cómo liberar energía de los átomos por reacción en cadena, en la cual los neutrones de un átomo chocan con el núcleo de otro átomo y lo destruyen, liberando así más neutrones, que golpean a su vez los núcleos de otros átomos. Otro alemán, Max Planck, ya había descubierto cómo calcular la cantidad de energía liberada cuando se fisiona un átomo.

Planck y Borh

Los Físicos Planck y Ruthenford

Actualmente obtenemos energía no sólo dividiendo átomos pesados (fisión nuclear), sino también combinando átomos livianos (fusión nuclear).

CUADRO EVOLUCIÓN DEL CONSUMO A LO LARGO DE LA HISTORIA:

cuadro consumo de energia en la historia

Se observa que el consumo de energía va vinculado directamente con el desarrollo de las sociedades, y se pueden diferenciar dos fases: 1) preindustrial donde la energía utilizada era la propia muscular, mas la generada por el carbón, desechos orgánicos. hidraúlica y eólica y 2) la actual a partir de la energía del vapor de agua, la electricidad y el petróleo.

Ampliar: La Energía Atómica

Ampliar: Energía Mareomotriz

Ampliar: Energía Geotérmica

Fuente Consultada:
La Técnica en el Mundo Tomo I CODEX – Globerama – Editorial Cuántica

El Cobalto Propiedades, Características y Aplicaciones

Algunos compuestos de cobalto constituyen pigmentos azules fijos, de gran calidad, que han sido empleados durante 4.000 años por diversas civilizaciones. Los asirio-babilonios usaron pinturas de cobalto en sus pequeñas estatuas talladas en madera, y, en tiempos más recientes, los compuestos de cobalto se han utilizado para decorar en azul la porcelana china de Delft, y para teñir de azul oscuro algunos vidrios.

Mineral de Cobalto

A pesar de que el cobalto es todavía valioso como pigmento, su valor en este sentido se ha visto eclipsado, durante los últimos años, por las propiedades del metal en sí, ya que el cobalto es ferromagnéticó, no tan intensamente magnético como el hierro, pero mucho más que la mayoría del resto de los metales.

Este hecho no es sorprendente, puesto que la estructura de los átomos de hierro y cobalto es muy similar. Los imanes fabricados de hierro dulce pierden rápidamente el magnetismo, pero si el hierro se alea con cobalto, la aleación resultante conserva esta propiedad durante un prolongado período de tiempo.

Ciertos imanes permanentes contienen hasta un 50 % de cobalto, empleándose en muchas piezas de aparatos eléctricos. Las aleaciones de cobalto tienen otra importante aplicación comercial basada en que conservan su dureza y filo (poder de corte), incluso a temperaturas elevadas.

De hecho, la mayoría de las herramientas de corte para trabajos a altas temperaturas contienen cobalto. Todavía más resistentes al efecto de ablandamiento de las temperaturas elevadas son las aleaciones de cobalto-cromo-volfranio-carbono, que se emplean también para fabricar herramientas de corte. La mayoría de la producción mundial de cobalto se destina a imanes o a aleaciones de “alta velocidad” (aceros rápidos).

A pesar de que menos de la quinta parte del cobalto producido se emplea bajo la forma de sus compuestos, éstos tienen demasiada importancia para no considerarlos. Los únicos compuestos de cobalto estables son los cobaltosos, en los que el metal presenta valencia 2. Las sales cobálticas (valencia 3) tienden a ser inestables.

La vitamina B12, de gran importancia, es una gran molécula, muy compleja, formada por 183 átomos, de los cuales sólo uno es de cobalto; pero, si falta este átomo resulta imposible que se produzca la vitamina Bu. La deficiencia de vitamina BJ2 en el ganado puede deberse a la ausencia de cobalto, y se corrige tratando el terreno, o los alimentos, con compuestos de aquél.

El óxido de cobalto se emplea en la industria cerámica no sólo como pigmento, sino también como agente de blanqueo. Los productos de alfarería fabricados con arcilla tienen con frecuencia impurezas de hiem , que les comunican un aspecto amarillento por lo que se les da un ligero tinte azul con óxido de cobalto, que oculta el color amarillo, de la misma forma que el añil agregado al lavado de ropa confiere a ésta un aspecto más blanco.

Las sales orgánicas de cobalto se emplean con profusión en pinturas, barnices y tintas para imprimir, a fin de que sequen con rapidez. Dichas sales absorben el oxígeno atmosférico para formar peróxidos, que polimerizan en una estructura de tipo celular, la cual actúa como el papel secante, absorbiendo el aceite remanente y transformando la masa total en un gel.

Los compuestos de cobalto son excelentes catalizadores de numerosas reacciones, hecho que se descubrió, por primera vez, al emplear este tipo de catalizador para obtener metano (CH4) a partir de monóxido de carbono e hidrógeno. En la actualidad, se emplean ampliamente en la industria del petróleo, para transformar moléculas inservibles en otras adecuadas para combustibles.

Debido a que el cobalto se presenta en una gran variedad de minerales y está, en general, mezclado con cobre, plata o níquel, existen diversos procesos para extraerlos, que dependen del tipo de mineral de partida. Los mayores productores de cobalto son Ka-tanga y Rhodesia, donde éste se encuentra asociado al cobre.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°41 El Cobalto y sus propiedades

Gay Lussac Vida y Obra Cientifica Ley de los Volúmenes

Gay Lussac Vida y Obra Científica

ÁTOMOS Y MOLÉCULAS: Hasta la aparición de los trabajos de Antoine Lavoisier, la química estaba totalmente dominada por la teoría del flogisto. Los experimentos de Lavoisier transformaron la alquimia en química: una ciencia cuantitativa. John Dalton, en  su   “Nuevo sistema de   la   filosofía  química”   (1808), estableció la “Ley de las proporciones definidas” y la “Ley de las proporciones múltiples“.

Dalton pensó que los átomos de cada elemento tenían un peso atómico característico y que los átomos formaban las unidades que entraban a tomar parte en las reacciones químicas. Pero Dalton no disponía de un método inequívoco de asignar pesos atómicos, y supuso erróneamente que los compuestos más sencillos que pueden formar dos elementos estaban constituidos de dos átomos, uno de cada elemento.

En este sistema, la fórmula del agua se escribirá HO y la del amoníaco NH. En esa época, Gay-Lussac enunció su ley, en la que se estableció que los volúmenes de las sustancias que forman parte de una reacción y la de los productos resultantes, siempre que todos ellos sean gaseosos, están en la relación de los números enteros y sencillos. Hasta 1860 sin embargo, no se aclararon totalmente los conceptos de átomo y molécula, a pesar de que la ley que condujo a ello había sido anunciada por Avogadro en 1811.

Esta ley, que decía que a igualdad de temperatura y presión, un mismo Volumen de cualquier gas contenía el mismo número de moléculas, deshizo los errores aceptados hasta esa época, al establecer que una molécula podía estar formada por átomos iguales. Los trabajos de Avogadro fueron injustamente olvidados hasta la conferencia de Karlsruhe en 1860.

La razón de este desprecio fue la creencia, profundamente enraizada en las mentes más significativas de la época, de que las combinaciones químicas ocurrían en virtud de una cierta afinidad entre elementos distintos. Con los descubrimientos de Volta y Galvani, esta afinidad fue asignada a atracciones de tipo eléctrico. La idea de que dos átomos de hidrógeno pudieran combinarse para formar una molécula H2 repugnaba   a   los   químicos   de   principios   del   siglo   XIX.

OBRA CIENTÍFICA DE GAY LUSSAC:

José Luís Gay-Lussac es conocido, sobre todo, por haber establecido la ley de los volúmenes gaseosos. Probablemente, esto se debe a que esa ley aún lleva su nombre: Ley de Gay-Lussac.

Este célebre científico dijo que cuando los gases se combinan, sus volúmenes mantienen entre sí una relación simple, si sus temperaturas y presiones son constantes.

Estos volúmenes también mantienen una relación simple con los volúmenes de los productos formados, si estos productos son gases. Si los productos formados son sólidos o líquidos, esto último no es aplicable. Por ejemplo: 2 cm3 de hidrógeno se combinan explosivamente con 1 cm3 de oxígeno para formar 2 cm3 de vapor de agua. Estas relaciones entre volúmenes son sencillas.

experimento de Gay Lussac

No ha quedado nada de hidrógeno ni de oxígeno. Pero, cuando el vapor se condensa para formar agua, ocupa un volumen menor Esto fue sólo una pequeña parte del trabajo de Gay-Lussac, pues tuvo una mente muy activa  y, junto a sus descubrimientos en el campo de la física, contribuyó a otros, en la química y en la industria química.

Cientifico Gay LussacGay-Lussac nació en St. Leonard, un pueblo pequeño situado al sur de Francia, y a la edad de 19 años ingresó en la Escuela Politécnica de París. Al salir de ésta, en 1801, comenzó a trabajar en el Departamento de Caminos y Puentes. Inició sus investigaciones cuando fue elegido por Berthollet para trabajar como asistente suyo en los establecimientos químicos del gobierno, en Arceuil.

En 1802, como resultado de sus experimentos con gases, expuso la idea de que todos los gases se dilatan al mismo volumen si se eleva su temperatura en la misma cantidad. Esta idea fue simultáneamente expresada por J. Charles, que trabajaba independientemente. Gay-Lussac también efectuó experimentos para encontrar el coeficiente de dilatación de los gases. Este coeficiente es el volumen hasta el que se dilataría un centímetro cúbico de gas, si su temperatura aumentara un grado centígrado.

El valor que encontró es algo mayor que el valor que ahora se acepta. Después se interesó en el estudio de los vapores, y realizó experimentos para hallar las densidades de algunos de ellos.

Al efectuar estos trabajos, se dio cuenta de que el diseño de termómetros y barómetros distaba de ser perfecto, y consagró parte de su tiempo a introducir mejoras en ellos. Gay-Lussac se preguntaba cómo cambiaría la composición de’la atmósfera con la distancia a la Tierra. ¿Cómo serían afectadas  las  temperaturas?   ¿Cómo   se  comportaría los imanes?.

Tales preguntas lo indujeron a hacer dos ascensiones en globo, para investigar estos problemas. La segunda de estas ascensiones la realizó solo. Junto con Humboldt, analizó una muestra de aire bajada desde 7.500 metros. Gay-Lussac y Humboldt, conjuntamente, descubrieron que dos volúmenes de hidrógeno se combinan con uno de oxígeno para formar agua.

Este resultado hizo que Gay-Lussac se preguntase si otros gases reaccionarían de un modo análogo. En 1808 había reunido suficiente evidencia para demostrar que efectivamente era así. Los gases se combinaban en relaciones de volúmenes sencillas; si los productos de reacción eran gases, sus volúmenes también se encontraban en una relación sencilla con los de los productos reaccionantes.

Un centímetro cúbico de nitrógeno se combinaría exactamente con 3 cm3 de hidrógeno para formar 2 cm3 de gas de amoníaco. Gay-Lussac anunció su ley en 1808. En 1809 fue nombrado profesor de química de la Escuela Politécnica de París (donde él había sido estudiante) y, además, profesor de química del Jardín Botánico.

Desde entonces realizó la mayor parte de sus trabajos de investigación en el campo de la química. Estos trabajos cubrieron muchísimos temas. Probablemente, su contribución más importante fue la que hizo a la industria. Los óxidos de nitrógeno se usan como catalizadores en la fabricación de ácido sulfúrico por el procedimiento de la cámara de plomo. Estos óxidos aceleran la reacción de conversión del bióxido de azufre en trióxido de azufre, el cual se disuelve en agua formando ácido sulfúrico.

Los óxidos de nitrógeno se pueden usar de nuevo, pero en aquel entonces no existía ningún método efectivo para recuperarlos. La primera torre de Gay-Lussac, para su recuperación, fue empleada en 1842. Aún hoy se usan torres análogas para la misma finalidad.

Gay Lussac murió en Paris, el 9 de Mayo de 1850, a la edad de 72 años.

Fuente Consultada:
150 Grandes Científicos Norman J. Bridge (TEXIDO)
Enciclopedia TECNIRAMA De la Ciencia y la Tecnología N°44 Gay Lussac

Primera Máquina de Calcular de Pascal o Pascalina

FUNCIONAMIENTO DE LA MAQUINA DE SUMAR MECÁNICA DE PASCAL

Durante mucho tiempo se lian usado los abacos (tableros contadores) como auxiliares del cálculo. Ahora la mecánica ayuda al cálculo con sus máquinas. La primera máquina de calcular (es decir, una en la que el resultado se lee directamente) fue construida por Pascal en 1642, que la diseñó para ayudar a su padre en sus cálculos monetarios. Siguiendo el mismo principio, se construyeron otras máquinas del mismo tipo. La que vamos a describir data de 1652.

Blas Pascal

El original se conserva en el Conservatoire des Arts et Metiers de París, y una copia en el Science Museum de Londres. La máquina de Pascal usa principios que aún se utilizan hoy en las modernas calculadoras.

Pascalina

Consiste en una caja que contiene seis equipos de cilindros y ruedas dentadas (ver ilustración). Cada cilindro lleva los números del 0 al 9 alrededor de su eje, dispuestos de tal forma que solamente uno de ellos es visible a través de un agujero de la caja.

Las ruedas dentadas están conectadas a seis mandos horizontales (algo así como un disco de un teléfono) y cuando se gira el mando, el cilindro gira con él. Para explicar el manejo de la calculadora, vamos a suponer que queremos sumar los números 2, 5 y 3. Giramos el disco de la derecha en sentido contrario al de las agujas de un reloj, desde donde está marcado el 2 hasta el cero.

El disco se mueve de modo inverso al del teléfono y no vuelve a la posición de partida, aunque se suelte. Gira la rueda dentada en el interior y, simultáneamente, el cilindro gira 2/10 de vuelta. Ahora repetimos la operación con el número 5. La rueda hace que el cilindro avance 5/10 de revolución, de forma que el total registrado es 7.

A continuación repetimos el proceso con el número 3, y el cilindro gira en el interior 3/10. Como quiera que el cilindro está marcado en décimas, y hemos añadido 10 unidades (2, 3, 5), el dial vuelve de nuevo a cero.

Un mecanismo dispuesto en el interior de la calculadora lleva el número 1 al cilindro inmediato de la izquierda, es decir, hace girar el cilindro contiguo 1/10 de revolución, de cero a uno. En total, hay en la caja seis cilindros, que representan (de derecha a izquierda) unidades, decenas, centenas, millares, decenas de millar y centenas de millar, respectivamente.

La suma de 2, 5 y 3 produce un cero en el cilindro de las unidades y un uno en las decenas, dando el total de 10. Con los seis cilindros se puede realizar una suma cuyo total sea de 999.999. En realidad, el modelo descrito tiene dos equipos de números en los diales, de forma que el segundo equipo gira en la dirección opuesta (es decir, de 9 a 0, en vez de hacerlo de 0 a 9). Este último puede usarse para la sustracción, y está cubierto por una tira Hp metal cuando no se usa.

Algunas de las máquinas de Pascal fueron diseñadas para sumar libras, céntimos y de-narios (monedas francesas), y pueden ser consideradas como las antecesoras de las máquinas registradoras.

Aunque el invento de las calculadoras es muy importante, Pascal no sólo es conocido como su inventor, sino que su obra comprende, además, física, matemáticas y filosofía. Pascal nació en Clermont-Ferrand en 1623 y desde temprana edad se interesó por las matemáticas.

Se dice que a la edad de doce años descubrió él mismo algunas ideas geométricas de Euclides. Construyó la primera máquina de calcular antes de tener 20 años. Unos años más tarde fue capaz de demostrar que la presión atmosférica decrece con la altura.

Hoy día, 300 años después de su muerte, se recuerda a Pascal por su ley de la presión en los fluidos y por su triángulo. La ley sobre la presión en los fluidos resultó de sus trabajos en hidrostática, y es en la que se basa la acción de prensas hidráulicas, gatos hidráulicos y máquinas semejantes. El triángulo de Pascal es una figura de números que se usa en los estudios de probabilidades.

La extensión de la obra de Pascal es aún más sorprendente si se tiene en cuenta que no gozó de buena salud durante su vida y que murió a la edad de 39 años, en 1662.

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología Fasc. N°49 – Pascal y su máquina de calcular

El Disco de Newton Descoposicion de la Luz

Kepler describió la armonía de los movimientos de los planetas. Newton, que probablemente nunca leyó sus obras, creó la mecánica celeste, es decir, que explicó el movimiento de los astros y, simultáneamente, las mareas, la caída, etc.

El gran matemático Lagrange dijo: “Hay sólo una ley del universo, y fue Newton quien la descubrió.” En la obra de Newton, jamás igualada por sabio alguno, culminan milenios de esfuerzos de las mentes más ilustres. Su publicación constituye uno de los acontecimientos más notables, no sólo de la historia de la ciencia, sino de toda la historia humana.

Seguimos encarando como Newton la mecánica celeste (las modificaciones introducidas por Einstein sólo se refieren a factores mínimos, dentro de los márgenes de error previstos). Al mismo tiempo que Leibniz, pero independientemente de él, Newton inventó el cálculo diferencial e integral y desarrolló diversas teorías matemáticas. Fue también él quien construyó el primer telescopio a reflexión e inició el estudio experimental de la composición de la luz, fuente de toda la espectroscopia moderna, rama absolutamente indispensable de los estudios físicos y químicos actuales.

En esta nota veremos solamente cómo Newton explicó que la luz que consideramos blanca es, en realidad, una luz compuesta de varios colores. En primer lugar, descompuso la luz solar: alrededor de 1666, mediante un prisma triangular de cristal atravesado por un haz luminoso, obtuvo lo que hoy llamamos un espectro, debido al diferente índice de refracción o desviación de cada uno de los colores que componen la luz blanca.

disco de newton

Es éste el experimento que se representa, en forma simplificada, en la ilustración superior. La división de un rayo de luz en sus componentes, debido a su diferente refracción, se denomina dispersión de la luz. El arco iris se basa en ella; las diminutas gotas de agua actúan como prismas, pero, a veces, el fenómeno natural es bastante más complicado que la experiencia que explicamos, porque intervienen además una o dos reflexiones.

Faltaba luego recomponer la luz blanca mediante la suma de los colores. Esto se consigue mediante un aparato denominado disco de Newton, que se ve en la ilustración inferior. Este disco, pintado con los mismos colores que componen el espectro de la luz blanca, adquiere, si gira muy rápidamente y recibe una iluminación intensa, un color uniformemente blanco.

El disco se hace girar y los colores forman la luz blanca

A medida que aumenta la velocidad del disco se van “sumando” los colores, el matiz general se hace grisáceo y, por último, sólo se observa un circulo uniforme de color blancuzco.

Estos dos experimentos completan, así, la descomposición y la recomposición de la luz blanca, en sus colores fundamentales.

Fuente Consultada:
Enciclopedia TECNIRAMA De La Ciencia y la Tecnología N°10

Tabla de Radiaciones Electromagneticas Ejemplos

Todas las emisión de radiaciones están presentes en los aspectos más variados de nuestra realidad, desde la función clorofílica de las plantas hasta las comunicaciones intercontinentales. Tal variedad de fenómenos determina, con frecuencia, una confusión sobre las particularidades y características de cada tipo de radiación; porque, aun cuando en conjunto sean todas emisiones de ondas sinusoidales, sus frecuencias y longitudes de onda peculiares les permiten desarrollar efectos  determinados.   Así,  los  rayos X,  que tienen  frecuencias muy altas pero cortas longitudes de onda, pueden atravesar perfectamente los tejidos animales y otros diversos materiales.

La radiación electromagnética se propaga en forma de ondas creadas por la oscilación en el espacio de campos eléctricos y magnéticos perpendiculares entre sí y a la dirección de propagación. Todas las ondas electromagnéticas viajan a la misma velocidad en el vacío, la velocidad de la luz c (300.000 Km/seg.), pero los distintos tipos de ondas tienen diferente longitud de onda y diferente frecuencia.

Estas dos magnitudes están relacionadas por la ecuación λ.f=c, de modo que a cada frecuencia le corresponde una única longitud de onda. El espectro completo de radiaciones electromagnéticas comprende una amplia variedad en longitudes de onda, desde las enormes ondas de baja frecuencia tan grandes como la Tierra, hasta los penetrantes rayos gamma, con longitudes más pequeñas que el núcleo de los átomos. Estos distintos tipos de radiación, si bien son producidos y detectados de maneras que les son propias, responden todos a la misma descripción ondulatoria de campos electromagnéticos.

Según la teoría electromagnética, las partículas cargadas aceleradas, como los electrones en una corriente variable dentro de un cable, irradian energía en forma de ondas. Las ondas de radio, de menos de 1010 Hz y longitudes mayores que 1 cm, pueden producirse y detectarse por circuitos eléctricos capaces de producir corrientes variables.

Este tipo de ondas es el que se ha utilizado para transmitir información “sin hilos”, es decir, sin un cable que se extienda entre el transmisor y el receptor de información, desde los famosos experimentos de Hein-rich Hertz en el siglo pasado.

Al igual que la luz visible, las ondas de radio pueden ser reflejadas, refractadas y absorvidas.

En el cuadro siguiente se han reunido, por orden decreciente de frecuencias y creciente de longitudes de onda, los principales tipos de radiaciones que existen; los procesos de emisión, sus causas y medios de detección permitirán catalogar, de modo simple y rápido, las diversas clases de radiaciones, cuya serie, en conjunto, se denomina espectro electromagnético.

Es interesante observar que los receptores sensoriales del hombre sólo perciben las radiaciones de una pequeña zona del espectro (luz visible  y rayos  infrarrojos).

LA RADIACIÓN SE PRODUCE EN POR FRECUENCIA
(CICLOS/SEG.)
TIPO DE LA RADIACIÓN LONGITUD DE ONDA (METROS) PUEDE SER
DETECTADA POR
Explosión atómica Núcleo atómico en oscilación 1020 Rayos gamma lO-ia Contador Geiger
Tubo de rayos X Trayectoria espiral de un electrón interno 1018 Rayos X Pantalla de rayos X
Lámpara Trayectoria espiral de un electrón externo 1016 Rayos ultravioleta
Luz visible
Cámara fotográficaOjo
Estufa Trayectoria espiral de un electrón externo 1012
1014
Rayos infrarrojos 10-* Receptores corporales
Sol Trayectoria espiral de un electrón 1010 Micro-ondas 10-2 10» Pantalla de radar
Circuito oscilanteAntena Oscilación de la Carga En Un Conductor

106

104

Ondasde radio 102
104
TelevisiónReceptor de radio

Concepto de Calor Latente Investigación de Black Joseph

PRIMERAS INVESTIGACIONES EN CALORIMETRÍA

Una de las formas de energía más familiar para nosotros es el calor. Diariamente hacemos uso de él para calentar nuestra casa, para preparar la comida, etc. La energía calorífica es debida al movimiento de las moléculas y de los átomos. La experiencia nos enseña que la energía de un cuerpo puede transformarse en calor, siendo también posible que la energía térmica se convierta en trabajo, como sucede en los motores de explosión o en las máquinas térmicas. Por todo ello decimos que el calor es una forma de energía.

DIFERENCIA ENTRE CALOR Y TEMPERATURA: Actualmente, está muy bien determinada la diferencia entre calor y temperatura, a pesar de que algunos estudiantes puedan confundir estos dos conceptos. Calor es la energia necesaria para calentar un cuerpo y temperatura es una medida de su grado de calor. Cuanto mas energía entreguemos mas temperatura tendrá el cuerpo.

Para pensar este tema, imaginemos que debemos calentar 1 litro de agua de 10°C a 20°C, es decir , elevarla 10°C mas. Para lograrlo debemos entregar energía a esa masa de agua, por ejemplo colocarla sobre la hornalla de una cocina. Observaremos que a medida que pasa el tiempo el agua se pone mas caliente, por lo que podemos concluir que a medida que entregamos energía el agua aumenta su temperatura. Vemos que hay dos conceptos definidos por un lado la cantidad de energía o calor entregado y por otro la medida de su temperatura.

Si por ejemplo ahora tenemos que calentar 2 litros de agua de 10°C a 20°C, entonces necesitaremos el doble de energia entregada, para lograr la misma temperatura.

Para medir la energia entregada en forma de calor, se define la caloría que es la cantidad de calor necesaria para calentar de 14°C a 15 °C un gramo de agua. La unidad así definida corresponde a una cantidad de calor muy pequeña, por lo que, generalmente, en la práctica se utiliza la kilocaloría, que corresponde a 1.000 calorías.

Se usa por definción de  14 a 15°C solo como una medida de referencia, en realidad lo que
objetivamente se quiere indicar, es que el aumento sea de 1°C.

Para medir temperaturas utilizamos un termómetro con diversas escalas, pero la mas popular es grados centígrados o Celsius, creador de esta escala, que comienza a O° cuando el hielo se congela y finaliza en 100°C cuando el agua entra en ebullición.

La temperatura (la intensidad de calor) puede medirse fácilmente usando un termómetro.  Por el contrario, para la medida del calor (cantidad de energía entregada para calentar la materia) se usa la caloría.

HISTORIA: Hace unos 200 años, Joseph Black llevó a cabo una serie de experimentos muy importantes sobre la medida del calor y las relaciones entre el calor y la temperatura.

Joseph Black fisico

Demostró que el hielo en fusión y el agua hirviendo, que produce vapor, absorben grandes cantidades de calor, a pesar de que no hay cambios de temperatura. Introdujo el concepto de calor latente, con el que designó el calor necesario para producir esos cambios de estado.

grafica calor latente

Observe por ejemplo que cuando la temperatura llega a B, por mas que se sigua agregando calor, la temperatura
permanece constante hasta que no haya mas sustancia sólida. Lo mismo ocurre para que la sustancia
cambie de líquida a gaseosa.

La energía necesaria para que una sustancia cambie de estado es: Q = m. L
Donde m es la masa de la sustancia considerada y L es una propiedad característica de cada sustancia, llamada calor latente. El calor latente se mide en Joule/kg en unidades del SI.

Black también descubrió que se necesitan distintas cantidades de calor para producir las mismas elevaciones de temperatura en masas iguales de sustancias diferentes. Por ejemplo, para aumentar la temperatura del agua de 15° a 25° hace falta aplicar 1,7 veces más calor que para producir el mismo cambio de temperatura en una masa igual de alcohol.

Para explicar esta variación entre las diferentes sustancias, Black introdujo la idea de calor específico. Al realizar este trabajo, sentó las bases de la medida del calor —la calorimetría—, que sigue teniendo vigencia aún. Durante los 100 años anteriores, o más, los avances de la química habían estado obstaculizados por la teoría del flogisto. Sin embargo, como Black no aceptaba las teorías que no estuviesen apoyadas por pruebas experimentales, hizo varias aportaciones valiosas a la ciencia química.

calor latente

Black definió el “calor latente” como la cantidad de calor para cambiar de estado una sustancia

Hasta mediados del siglo XVIII, se sabía muy poco acerca de los gases y, de hecho, muchas personas aseguraban que sólo existía un gas (el aire). Un siglo antes (en 1640, para precisar más), van Helmont había descubierto el gas que hoy llamamos anhídrido carbónico; pero, a causa del incremento de la teoría del flogisto, no se llegó a comprender la importancia de este hallazgo.

Black redescubrió el anhídrido carbónico en 1754, haciendo experimentos con dos álcalis débiles: los carbonatas de magnesio y de calcio. Comprobó que cuando estas sustancias se calientan, cada una de ellas produce un álcali más fuerte, liberando, al mismo tiempo, aire fijo (o sea, el anhídrido carbónico). El peso del álcali fuerte es menor que el del álcali débil del que procede.

Joseph Black nació en 1728, en Burdeos (Francia), de padres que descendían de escoceses. Después de pasar seis años en la escuela en Belfast, en 1746, ingresó a la Universidad de Glasgow, para estudiar química y medicina. En 1756, llegó a ser profesor de anatomía y de química en Glasgow.

Al cabo de 10 años pasó a la cátedra de medicina y química de la Universidad de Edimburgo. Black era muy popular entre los estudiantes porque preparaba concienzudamente los cursos y sus clases estaban ilustradas con muchos experimentos.

Al mismo tiempo que hacía notables aportaciones a la química y a la física, encontró tiempo suficiente para ejercer la medicina. Murió apaciblemente, todavía ocupando su cátedra, a la edad de 71 años.

Calor especifico

También definió el calor especifico, para tener en cuenta las diferentes cantidades de calor necesarias para producir un mismo aumento de temperatura en masas iguales de distintas sustancias.

No todos los materiales cambian su temperatura con la misma facilidad, ya que las partículas que los forman y las uniones entre ellas son diferentes. El calor específico Informa sobre la mayor o menor facilidad de las sustancias para aumentar su temperatura. El calor específico de una sustancia, ce, es la cantidad de calor necesaria para elevar un grado la temperatura de un kilogramo de dicha sustancia.

Algunos valores de calor específico expresado en: (Joule/Kg. °K)

Agua    4.180
Alcohol etílico    2.400
Hielo    2.090
Vapor de agua    1.920
Aire    1.000
Aceite    1.670
Aluminio    878
Vidrio    812
Arena    800
Hierro    460
Cobre    375
Mercurio    140
Plomo    125

Fuente Consultada:
Enciclopedia TECNIRAMA de la Ciencia y la Tecnología Fasc. N°112 Sabio Ilustre Joseph Black
Enciclopedia del Estudiante Tomo N°7 Física y Química

Biografia de Galileo Galilei Descubrimientos e Historia de la Astronomia

Si para ser un buen físico bastara ser un buen observador, la física sería una ciencia muy banal. Sin adoptar una postura falsa contra los preceptos de la experiencia, los contemporáneos y sucesores de Bacon van a ingeniárselas para introducir la razón pura en el análisis de los hechos físicos; ya decía Galileo:  “Nadie podrá entender el gran libro del universo si ignora su lenguaje que es el lenguaje matemático”.

(Pisa, actual Italia, 1564-Arcetri, id., 1642) Físico y astrónomo italiano. Fue el primogénito del florentino Vincenzo Galilei, músico por vocación aunque obligado a dedicarse al comercio para sobrevivir. En 1574 la familia se trasladó a Florencia, y Galileo fue enviado un tiempo –quizá como novicio– al monasterio deGALILEO galilei Santa Maria di Vallombrosa, hasta que, en 1581, su padre lo matriculó como estudiante de medicina en la Universidad de Pisa.

Pero en 1585, tras haberse iniciado en las matemáticas fuera de las aulas, abandonó los estudios universitarios sin obtener ningún título, aunque sí había adquirido gusto por la filosofía y la literatura. En 1589 consiguió una plaza, mal remunerada, en el Estudio de Pisa.

Allí escribió un texto sobre el movimiento, que mantuvo inédito, en el cual criticaba los puntos de vista de Aristóteles acerca de la caída libre de los graves y el movimiento de los proyectiles; una tradición apócrifa, pero muy divulgada, le atribuye haber ilustrado sus críticas con una serie de experimentos públicos realizados desde lo alto del Campanile de Pisa.

En 1592 pasó a ocupar una cátedra de matemáticas en Padua e inició un fructífero período de su vida científica: se ocupó de arquitectura militar y de topografía, realizó diversas invenciones mecánicas, reemprendió sus estudios sobre el movimiento y descubrió el isocronismo del péndulo.

En 1599 se unió a la joven veneciana Marina Gamba, de quien se separó en 1610 tras haber tenido con ella dos hijas y un hijo. En julio de 1609 visitó Venecia y tuvo noticia de la fabricación del anteojo, a cuyo perfeccionamiento se dedicó, y con el cual realizó las primeras observaciones de la Luna; descubrió también cuatro satélites de Júpiter y observó las fases de Venus, fenómeno que sólo podía explicarse si se aceptaba la hipótesis heliocéntrica de Copérnico. Galileo publicó sus descubrimientos en un breve texto, El mensajero sideral, que le dio fama en toda Europa y le valió la concesión de una cátedra honoraria en Pisa. En 1611 viajó a Roma, donde el príncipe Federico Cesi lo hizo primer miembro de la Accademia dei Lincei, fundada por él, y luego patrocinó la publicación (1612) de las observaciones de Galileo sobre las manchas solares.

Pero la profesión de copernicanismo contenida en el texto provocó una denuncia ante el Santo Oficio; en 1616, tras la inclusión en el Índice de libros prohibidos de la obra de Copérnico, Galileo fue advertido de que no debía exponer públicamente las tesis condenadas. Su silencio no se rompió hasta que, en 1623, alentado a raíz de la elección del nuevo papa Urbano VIII, publicó El ensayador, donde expuso sus criterios metodológicos y, en particular, su concepción de las matemáticas como lenguaje de la naturaleza. La benévola acogida del libro por parte del pontífice lo animó a completar la gran obra con la que pretendía poner punto final a la controversia sobre los sistemas astronómicos, y en 1632 apareció, finalmente, su Diálogo sobre los dos máximos sistemas del mundo; la crítica a la distinción aristotélica entre física terrestre y física celeste, la enunciación del principio de la relatividad del movimiento, así como el argumento del flujo y el reflujo del mar presentado (erróneamente) como prueba del movimiento de la Tierra, hicieron del texto un verdadero manifiesto copernicano.

El Santo Oficio abrió un proceso a Galileo que terminó con su condena a prisión perpetua, pena suavizada al permitírsele que la cumpliera en su villa de Arcetri. Allí transcurrieron los últimos años de su vida, ensombrecidos por la muerte de su hija Virginia, por la ceguera y por una salud cada vez más quebrantada.

Consiguió, con todo, acabar la última de sus obras, los Discursos y demostraciones matemáticas en torno a dos nuevas ciencias, donde, a partir de la discusión sobre la estructura y la resistencia de los materiales, demostró las leyes de caída de los cuerpos en el vacío y elaboró una teoría completa sobre el movimiento de los proyectiles. El análisis galileano del movimiento sentó las bases físicas y matemáticas sobre las que los científicos de la siguiente generación edificaron la mecánica física.

EL MÉTODO EXPERIMENTAL
En la Universidad de Pisa, el joven profesor practicaba un método de enseñanza entonces completamente nuevo: al margen de lo acostumbrado, procuraba que sus alumnos se dieran cuenta personalmente de la verdad de las leyes físicas que iba enunciando. Por tal motivo, no vaciló, en algunas oportunidades, en salir de las aulas para acompañarlos hasta un lugar donde fuera posible llevar a efecto los experimentos y las pruebas demostrativas necesarias para la comprensión de la lección impartida.

Así, para comprobar la veracidad de las leyes que rigen la caída de los cuerpos, Galileo realizó reiteradas experiencias desde lo alto del campanario de la catedral de Pisa. En efecto, la ley física relativa a la caída de los cuerpos, que había enunciado Aristóteles, expresaba que los cuerpos caen con una velocidad proporcional a su peso. Galileo, por lo que se presume ahora, habría descubierto que el enunciado aristotélico era absolutamente erróneo y decidió “comprobarlo” ante los alumnos y los profesores reunidos.

Subido a la torre, hizo repetidas experiencias de arrojar, simultáneamente, objetos de distinto peso, los que, de acuerdo con aquel enunciado, debían llegar al suelo con diferencia de tiempo (primero los más pesados); el hecho fue que los diversos objetos llegaban siempre al mismo tiempo. Los profesores que basaban su enseñanza en la enunciación simple y sin análisis de las leyes de Aristóteles se retiraron abrumados por la evidencia. Sin ningún respeto por Aristóteles, Galileo enunció entonces el nuevo principio de física, a saber: que en el vacío, sea cual fuere su peso, los cuerpos caen a la misma velocidad. Lo más importante, sin embargo, consistió en que, con esas pruebas prácticas, dio nacimiento a la ciencia experimental, basada, no en principios abstractos, sino en la comprobación y demostración práctica de cada ley enunciada.

En sus variadas investigaciones, Galileo no pudo dejar de poner en descubierto la incompetencia de muchos de sus colegas y el carácter anticientífico de algunas de sus enseñanzas. Ello le valió que, así como conquistaba la admiración de los alumnos y profesores estudiosos, se ganaba también el odio inextinguible de muchos otros que no podían tolerar que de tal modo los humillara.

Algunos, de tales “docentes” deseaban que el joven Galileo fuera expulsado de su cátedra. Galileo debió convencerse, finalmente, de que Pisa no era el lugar más apropiado para dedicarse con serenidad a los estudios, y de que debía procurar alejarse de ella. Así, en 1591, aprovechó la oportunidad que le brindaba una invitación para dictar una cátedra en la Universidad de Padua, y se alejó de Pisa. Padua le dio la acogida a que se había hecho acreedor, y Galileo reanudó con intenso entusiasmo sus investigaciones.

Su mayor preocupación consistía en buscar la solución al problema presentado por los dos contrapuestos “sistemas del mundo”, el de Tolomeo y el de Copérnico, ilustre sabio polaco del siglo xv. La tesis predominante era la de Tolomeo (geocéntrica), que suponía que la Tierra era el centro del sistema planetario; en cambio, la tesis enunciada por Copérnico (heliocéntrica), afirma que el Sol constituye el centro del sistema; o sea que en torno del Sol giran la Tierra y los restantes planetas. Galileo consideraba que los cálculos matemáticos no podrían ser suficientes para comprobar cuál de ambas tesis era la acertada, y que en este caso, como en otras ramas del conocimiento, se hacía indispensable la observación directa. Consideró que no había más que un solo procedimiento: escrutar la inmensidad del cielo. Pero, ¿con qué medios?

EL TELESCOPIO
El año 1609 no es solamente uno de los más importantes en la vida de Galileo, sino también una fecha memorable en la historia de la astronomía. En ese año Galileo construyó un telescopio (del griego “tele”, lejos, y “scopeo”, observo), instrumento’ mediante el cual se hizo posible la exploración ocular del cielo. Los descubrimientos que poco a poco fue realizando con ese instrumento óptico suscitaron admiración y desconcierto. La Vía Láctea, hasta entonces considerada una ligera neblina en la oscuridad del cielo, apareció, en cambio, compuesta por miríadas de. estrellas; la Luna, considerada un cuerpo resplandeciente y cristalino, no era tal: las manchas lunares eran verdaderas montañas con cráteres volcánicos. Y hubo algo más: por medio de este instrumento extraordinario, Galileo pudo demostrar la exactitud de la teoría de Copérnico.

Como fruto de tantos y señalados estudios y experimentaciones, Galileo publicó dos grandes obras: en 1610 el “Sidereus Nuntius” (“El mensajero de las estrellas”) y en 1632 el “Diálogo de los máximos sistemas, tolomeico y copernicano”. En el período transcurrido, además, se asegura que algunos estudios relacionados con el microscopio formaron parte de sus trabajos.

DESCUBRIMIENTOS Y CONFLICTOS CON LA IGLESIA DE GALILEO GALILEI

“DISPONES, MI QUERIDO GALILEO, DE PRUEBAS IRREFUTABLES. . .”
En el jardín de su casa, trató de instalar el telescopio en un trípode y apuntar hacia lo alto, observando los  navíos enemigos, que poco le interesaban, sino a la bóveda celeste, en esta noche especialmente estrellada. Fascinado con la visión aumentada de la Luna, Galileo mandó llamar a Viviani y Torricelli, sus más fieles discípulos: “¡Esta es la prueba!, yo sabía que Aristóteles estaba errado; la Luna no es una esfera lisa o perfecta, y tampoco tiene luz propia.

Esas pequeñas manchas oscuras son sombras de las montañas que existen en la Luna como en cualquier otro astro. Eso demuestra que la Luna recibe su luz de otro astro, y por el tamaño de la sombra podemos también calcular la altura de las montañas”. Después de nuevas observaciones y cálculos, Galileo saca en conclusión que, de la misma forma en que la Tierra gira en torno del Sol, la Luna gira en torno de la Tierra mostrando sólo una de sus caras. Ávido por un intercambio de ideas, Galileo escribe a Kepler relatando los descubrimientos que había hecho.

La respuesta no tarda: “Dispones, mi querido Galileo, de pruebas definitivas de la veracidad de las tesis de Copérnico, y de las lagunas profundas del sistema aristotélico. En cuanto a mí, llegué a las mismas conclusiones por otros caminos. Observé que los planetas no se mueven en círculos, «movimiento perfecto», según Aristóteles, sino que siguen una trayectoria elíptica. En el foco de esa elipse está localizado el Sol. En lo que se refiere a tus observaciones, aconsejo que las publiques rápidamente en forma de un libro.

Creo que nuestro deber es difundir la ciencia para su mejor desarrollo”. Galileo duda. Prefiere investigar un tiempo más antes de exponerse a las críticas. Si surgiese alguna dificultad, ya al menos habría conseguido terminar un trabajo importante. Su nuevo objetivo —el planeta Júpiter— le trae una sorpresa. Repara que tiene cuatro astros a su lado, que cada noche se disponen de forma diferente, una vez de un lado, otra vez de otro, desapareciendo otras veces detrás del planeta.

Son los cuatro satélites de Júpiter girando en torno de él como la Luna alrededor de la Tierra. Los bautiza con el nombre de Mediceos (homenaje a los poderosos Médicis), previendo las enormes implicaciones de sus descubrimientos: el insospechado número de astros invisibles antes del perfeccionamiento del telescopio revela lo absurdo de la concepción de Aristóteles, según la cual los cuerpos celestes fueron creados para deleite de la criatura humana; y los satélites de Júpiter eran un ejemplo de sistema solar en miniatura, como fueron pensados por Copérnico.

ADIVINE QUIEN PUEDA Después de otras exploraciones, cuando verificó inclusive la existencia de manchas irregulares en la superficie del Sol, el maestro publica, en diciembre de 1610, el siguiente texto: Smaisrmil mepoetalevmibnenvgttaviras. “Quien descifre este enigma”, explica el astrónomo, “conocerá cuál es el verdadero sistema del mundo”. Como nadie adivinase, restablece el orden correcto de las letras: “Altissimum planetam tergeminum observavi“, o sea “Observé que el planeta más alto es triple”.

Galileo acababa de descubrir, sin saberlo, los anillos de Saturno. Por su telescopio rudimentario veía confusamente una mancha circular alrededor del planeta, y creía que éste era el más distante de la Tierra, concluyendo que el astro estaba compuesto por tres estrellas diferentes. Los medios técnicos no le permitían ir más lejos en sus conclusiones. De cualquier modo no estaba lejos de la verdad, ya que los anillos de Saturno están compuestos por una infinidad de pequeños cuerpos celestes tan próximos unos a otros que parecen confundirse en el telescopio. ¿Y por qué aquel acudir a un enigma? ¿Intentaba encubrir un hecho científico?

Parece más probable que pretendiera, por el contrario, atraer la atención del público, pues la solución de enigmas era una vieja moda. Para estimular la curiosidad general, Galileo preparaba diplomáticamente el momento de dar al mundo sus descubrimientos científicos revolucionarios.

“CREO EN LA RAZÓN” Aunque se sintiese protegido en Venecia, la obstinación y espíritu polémico lo llevaron hasta Roma, a fin de intentar convencer a los doctores de la Iglesia. “El papa no podrá aceptar tesis que contrarían todo lo que enseñaron hasta hoy”, le previene un discípulo. “Vea el caso de Giordano Bruno”, recuerda otro de sus alumnos. “Yo creo en la razón”, replica Galileo. “Si no quieren creer en mis palabras, bastará con que miren a través del telescopio …” En Roma, aguardando durante varios meses la decisión papal, Galileo cree más en su propia habilidad que en el espíritu científico de los cardenales. Nada de importante había sido publicado hasta ese instante; para Galileo todo dependía de la manera de presentar convincentemente sus tesis a los padres de la Iglesia.

“Las Sagradas Escrituras son guías indiscutibles de los hombres en el camino de la salvación”, decía a los sacerdotes. “Pero, en lo que se refiere a astronomía, es preciso reconocer que los antiguos no disponían de eficientes instrumentos como el telescopio”. Sus argumentos son recibidos con sonrisas de duda. Galileo mismo comienza a inquietarse. Pero, finalmente, el Colegio Romano lo designa miembro de la Academia del Lincei, el consejo de científicos mejor visto por la Iglesia. No había un pronunciamiento claro sobre sus tesis. Pero, si lo nombran para un lugar tan honroso, es porque tienen de él, ciertamente, un concepto favorable. Galileo no pensó en otra hipótesis: que los jueces de la Inquisición querían mantenerlo cerca para poder vigilarlo mejor.

LA INQUISICIÓN PONE LAS CARTAS SOBRE LA MESA Juzgándose apoyado por la Iglesia, Galileo comienza a publicar alguno de sus trabajos. Escribe en italiano, lengua del pueblo, y no en latín, habitualmente empleado entre los cultos. Este detalle parece haber irritado sobremanera a la Inquisición: que él haga complicados estudios destinados a los sabios todavía puede aceptarse, pero hacerlos accesibles a todos será una amenaza a la autoridad religiosa.

En 1613, estimulado por el silencio de la Iglesia, Galileo reconoce públicamente la veracidad de las tesis de Copérnico y declara: “¡Estoy totalmente convencido de que el Sol es el centro del Universo, y la Tierra gira a su alrededor!” Dos años pasan todavía sin que nada grave suceda.

Sólo algunos jesuitas lo acusan de interpretar erradamente el Evangelio. Por las dudas, va nuevamente a Roma, en 1615. Encuentra allí al Cardenal Barberini, estudioso de las matemáticas, que, a pesar de no estar de acuerdo con sus tesis, sostiene el derecho de Galileo a defenderlas.

El cardenal se hace amigo y protector de Galileo. Cuando parecía que todo marchaba bien, en 1616, Galileo es tomado por sorpresa por una decisión del Santo Oficio: “Severa investigación efectuada por la Sagrada Congregación revela que la doctrina del dicho Nicolás Copérnico, sosteniendo la inmovilidad, del Sol, es totalmente falsa y contraria a las Santas Escrituras”. Las obras de Copérnico están incluidas en el Index, lista de libros prohibidos por la Iglesia, y la difusión de sus ideas quedaba sujeta a severo castigo.

Aunque no había sido nombrado durante el proceso, Galileo sentía que era el principal destinatario de la sentencia. “No se atreven a atacarme directamente, a causa de mi prestigio”, piensa él. Comprende que una vasta intriga había sido montada en secreto por la Inquisición. Algunos días más tarde, las cosas se esclarecen por completo. Convocado a presencia del Inquisidor, Cardenal Belarmi-no, Galileo es invitado a no divulgar nunca más las teorías de Copérnico, bajo pena de prisión. Parece que aceptó, jurando obediencia a la Iglesia. No se tiene certeza de lo ocurrido, mas es probablemente verídico, ya que en los años siguientes Galileo no se manifiesta públicamente más sobre astronomía. Al margen de las polémicas, el científico aguarda una nueva oportunidad para volver a la carga.

 “MI VIEJO AMIGO BARBERINI. . .” En Florencia, adonde se traslada, permanece relativamente callado, desde 1617 a 1623. Pero entonces ocurre un hecho prometedor: el cardenal Barberini es elegido papa, con el nombre de Urbano VIII. “¡Un matemático en el trono pontificio!”, exclama entusiasmado Galileo. “¡Y, además de eso, mi viejo amigo y protector!” Muchos años habían pasado desde que se iniciara como profesor.

Todo indicaba que Galileo, ahora con casi sesenta años y mal visto por la Iglesia, tendría un deslucido fin en su carrera. La elección de un “Papa científico”, sin embargo, podría invertir le; términos del problema. Galileo comienza febrilmente a escribir un libro, Diálogo sobre los do: principales sistemas del mundo. Por boca de tres personajes: Simplicio, e’. respetuoso de las tradiciones; Salviat: el reformador mordaz, y Sagredo, el hombre culto y moderador, Galileo enfrenta en un lenguaje accesible —y a veces cómico—, las concepciones de”. Universo según Aristóteles y Copérnico.

Cercado por los argumentos de sus opositores, Simplicio es llevado a defender posiciones absurdas y ridículas “Es sólo un relato imaginario”, declara su autor, cuando lleva los originales a Roma, en 1630, buscando la aprobación de su amigo Barberini.

“‘Es preciso eliminar de una vez por :odas los malentendidos entre la fe y la ciencia”, afirma Galileo. El papa lo recibe con grandes honras y demostraciones de amistad, dejando incluso entender que no se opondrá a la publicación del Diálogo. La Inquisición, entre tanto, comienza a inquietarse por el problema. Los editores que se habían ofrecido para imprimir la obra reciben la visita de misteriosos jesuitas. Sintiéndose amenazados, prefieren retrasar la publicación del trabajo de Galileo.

Finalmente, en 1632, el Diálogo es editado y aparece en venta en las librerías de Florencia. Al tener noticia de ello, los cardenales comienzan a presionar al papa para lograr la prohibición del libro. Habían conseguido convencer al pontífice de que el personaje Simplicio, ridiculizado por Galileo en la obra, no era otro que él mismo, Maffeo Barberini…

El poderoso Cardenal Gaspar Borgia, embajador de España, ataca por otro flanco: “En caso de que Vuestra Santidad no condene claramente el libro, se podría decir que el papa es un protector de herejías . ..”. Una vez convencido, Urbano VIII resuelve abandonar sus veleidades científicas y colocar los intereses de la Iglesia por encima de todo. En febrero de ese mismo año, Galileo Galilei es llamado a Roma por la Congregación del Santo Oficio. Ahora comprendía todo. El viejo amigo Barberini ya no le prestaba más apoyo, y el sabio caería poco más tarde en manos de la Inquisición.

LA CIENCIA, EN EL BANQUILLO DE LOS ACUSADOS Galileo pretexta que su avanzada edad le hace difícil viajar a Roma. Es intimado entonces a presentarse delante del Santo Oficio, bajo pena de ser llevado a la fuerza. En una carta que escribe a su amigo Renieri, Galileo relata: “Fui recluido a prisión en el delicioso Palacio de la Trinitá del Monti (…). El sacerdote comisario Lancio vino a buscarme al día siguiente, llevándome en un carruaje. Durante el trayecto, me hizo varias preguntas, mostrando gran deseo de que yo reparase el escándalo que provocara en toda Italia mi opinión de que la Tierra se mueve. A todas las sólidas razones y pruebas matemáticas que yo le presentaba, no respondía nada, a no ser estas palabras: ‘Terra autem in aeternum stabit’ (La Tierra, sin embargo, permanecerá para siempre fija) “.

Ante el tribunal de la Inquisición se inician los interrogatorios:

—¿Es exacto aquello que escribieron los antiguos y las Santas Escrituras? —repiten los inquisidores—.

—Los antiguos no tenían aparatos para observar el cielo —responde Galileo—. Imaginaban movimientos complicados que no corresponden a la verdad de los hechos.

—La Biblia confirma las tesis de Aristóteles —insisten ellos—.

—Sólo puede tratarse de un error de interpretación —replica el acusado—. Mas si la Biblia afirmara realmente que la Tierra no se mueve y el firmamento gira en torno de ella, entonces debería sacar en conclusión que la Biblia está errada …

— ¡Herejía! —gritan los inquisidores—. ¡Galileo Galilei reniega de las Santas Escrituras! “Comencé entonces a presentar mis pruebas”, relata Galileo, “pero, para desdicha mía, no fueron escuchadas. Por más esfuerzo que yo hiciese, no conseguía que entendiesen: me interrumpían indignados, queriendo convencerme del escándalo. Y el mismo pasaje de las Escrituras era presentado siempre como la prueba definitiva de mi delito.”

La acusación era grave: “Decir que la Tierra no es inmóvil ni es el centro del mundo, y decir que ella tiene un movimiento diario, constituye una proposición absurda y falsa en filosofía; desde el punto de vista de la teología, ella es invalidada por la fe”. Galileo es “convidado” a abjurar públicamente de sus teorías. El acusado resiste en nombre de la ciencia, mas consta que, ante la amenaza de torturarlo, después de algún tiempo decide retractarse.

El 22 de julio de 1633, en presencia de los cardenales inquisidores, Galileo se arrodilla para oír el texto de la sentencia: “Invocando el Sagrado Nombre de Nuestro Señor Jesucristo y de su Gloriosa Madre la Virgen María, pronunciamos esta sentencia final. .. Decimos, pronunciamos, juzgamos y declaramos que tú, Galileo, debido a los hechos que fueran detallados en el curso de este proceso y que tú mismo confesaste, te hiciste vehementemente sospechoso de herejía ante el Santo Oficio, por haber creído y mantenido la doctrina, falsa y contraria a las Sagradas y Divinas Escrituras, de que el Sol es el centro del mundo, de que él no se mueve, sino que la Tierra se mueve y no es el centro del mundo.”

“Para que tu lastimoso y pernicioso error y tu transgresión no queden del todo sin castigo, y para que seas más prudente en el futuro y sirvas de ejemplo para que los demás se abstengan de delitos semejantes, decretamos que el libro Diálogo de Galileo Galilei sea prohibido por edicto público y te condenamos a prisión formal de este Santo Oficio por un período determinable según nuestra voluntad; a modo de saludable penitencia, ordenamos que durante los próximos tres años recites, una vez por semana, los siete salmos penitenciales, reservándonos el derecho de moderar, conmutar o suprimir la totalidad o parte de los mencionados castigos y penitencias.”

Galileo Galilei y La Iglesia

Sociedades Secretas de la Iglesia

Cardenal Belarino

Como superior de la Compañía de Jesús, el Cardenal Belarmino ya había llevado a la hoguera a un científico, Giordano Bruno. Con Galileo, sin embargo, necesitaba actuar con más cautela: a pesar de “herético”, el astrónomo tenía influyentes amigos.

Su entorno

Política y sociedad

Ciencia y pensamiento

Arte y Letras

1564 Galileo Galilei nace en Pisa el 15 de febrero

Juramento del Clero al Concilio de Trento. Pío IV crea el Index librorum prohibitorum. Maxilmiliano II, emperador

Muere en Ginebra Juan Calvino. Muere Andrés Vesalio, médico de Carlos V. <<El Apóstol>>, primera imprenta en Rusia.

Muere Miguel Ángel. Nace William Shakespeare.

1581 Galileo observa el movimiento ondulatorio de una lámpara en la catedral de Pisa

Manifiesto de La Haya. Primera misión jesuita en China.

Francisco Sánchez (el Brocense): La Ciencia de la que nada sabe. Guillermo de Orange: Apología. Construcción de mecanos automáticos en forma de ser vivo.

A.Colin: Sepulcro de Philippine Weslser. Baltasar de Beaujoyeux: Ballet Cómico de la reina.

1586 Galileo inventa la balanza hidrostática.

Fábrica de tabacos en Virginia (USA). Abbas II, Sha de Persia

Anchieta: Historia brasileña de la Compañía de Jesús.

El Greco: El entierro del Conde Orgaz. Osiander: 50 canciones espirituales

1588 Galileo escribe un tratado sobre el centro de gravedad de los cuerpos sólidos.

Destrucción de la Armada Invencible. Asesinato del duque de Guisa.

Nace Thomas Hobbes. Luis de Molina: Concordia liberi arbitri cum gratiae donis.

Tintoretto: Paraíso. Marlowe: El doctor Fausto

1590 Realiza un experimento inspirado en la torre de Pisa y escribe Del movimiento en latín

Comienza la extracción de carbón en el Rhur. Los turcos consiguen territorios en el Cáucaso.

Zacharias Jansen inventa el microscopio. Acosta: Historia natural y moral de las Indias. Theodor de Bry: Grandes viajes

M. Caravaggio: Baco adolescente. Guarino: El pastor Fido.

1594 Establece la <<Regla de Oro>> de la mecánica con el principio de conservación de la energía

Los franceses llegan al Canadá. La guarnición española se retira de París.

Muere Gerhard Mercator.

Jacopo Peris: Dafnis, primera ópera auténtica, según texto de Octavio Rinuccini

Teoría Geocéntrica de Tolomeo

Síntesis Copérnico

Tycho Brahe

Galielo Galilei

Johannes Kepler

Filosofía de las ciencias

Revolución Científica

Biografia Nicolas Copernico Historia y Resumen de su Vida

BIOGRAFÍA DE COPÉRNICO
Bibliografía: Astronomía Para Curiosos
Por Nancy Hayhaway
Prácticamente a partir del momento de su muerte Nicolás Copérnico (1473-1543) revolucionó la astronomía con su libro De revolutionibus orbium coelestium (Sobre las revoluciones de los orbes celestes), que afirmaba que el Sol, no la Tierra, es el centro del universo. Pero fue un profeta refluente, pues era una hombre reservado e introvertido, esencialmente conservador, que durante la mayor parte de su vida ocupó un puesto de canónigo.

Copernico, astronomo

Hijo de un comerciante en cobre que murió cuando Nicolás tenía diez ¡años, Copérnico fue adoptado por su tío Lucas Waczenrode, quien se aseguró de que el tímido chico y su disoluto hermano mayor hicieran estudios. Copérnico (su nombre original era Niklas Koppernigk y él lo latinizo, como estaba de moda) estudió matemáticas y arte en la Universidad de Cracovia, astronomía en Bolonia, medicina en la Universidad de Padua (unos estudios de tres cursos) y derecho canónico en Ferrara.

En la época en que acabó los estudios, en 1506, su tío —un hombre con fama de no reírse nunca— era obispo de Ermeland, una región políticamente volátil de la Prusia oriental.

Copérnico, que ya había sido nombrado canónico de la Iglesia católica, pasó a ser el ayudante al tiempo que médi­co personal de su tío. Se dedicó a la reforma de la moneda y se esforzó en mantener Ermeland independiente de sus poderosos vecinos, Polonia y los caballeros de la Orden Teutónica, pero tuvo pocos amigos y no se casó. Más tarde se supo que tenía una relación sentimental con su ama de llaves, Anna; las autoridades eclesiásticas le pidieron que le pusiera fin y él obedeció. Pero si su vida personal y pública estuvo dedicada a mantener el orden social, su vida intelectual estuvo orientada a derrumbarlo.

Al inicio de su carrera como canónigo pasó muchas horas pensando en el sis­tema geocéntrico de Ptolomeo, que le parecía inadecuado porque precisaba de complicadas explicaciones para dar cuenta de fenómenos ordinarios como el movimiento retrógrado o la constante proximidad de Mercurio y Venus al Sol. Se le ocurrió a Copérnico que si la Tierra fuera en realidad el centro del sistema ningún planeta debería hacer retrocesos. Del mismo modo, si Venus y Mercurio giraban alrededor de la Tierra, deberían situarse a veces lejos del Sol, lo cual nunca ocurría.

Por otra parte, si se utiliza el sistema cuyo centro es el Sol que propuso Aristarco de Samos, estas dificultades intrínsecas se superan fácil­mente. Venus y Mercurio se verían cerca del Sol porque en realidad se hallan más cerca del Sol. Los planetas darían en ocasiones la sensación de moverse hacia atrás porque a veces la Tierra los adelanta en su interminable dar vueltas alrededor del Sol. Todo esto era evidente para Copérnico, pero se lo callaba.

Luego, en 1512, después de haber asistido junto con su tío a la recepción con motivo de la boda del rey de Polonia en Cracovia, Waczenrode sufrió una grave intoxicación alimentaria y murió. (La muerte fue tan repentina que se pensó en un posible asesinato.) Copérnico se trasladó a Frauenburg, donde se hizo cargo de las obligaciones de canónigo de la catedral y se instaló para el resto de su vida en una torre rectangular al­menada que dominaba un lago cuyas aguas fluían hacia el mar Báltico. Allí escribió un breve resumen de sus ideas, explicando que el Sol es el centro del universo, que la Tierra rota sobre su eje y orbita alrededor del Sol, y que este movimiento es el que explica los retrocesos de los planetas.

Aunque este revolucionario tratado sólo circuló de forma privada, las nuevas ideas se extendieron. Durante las tres décadas siguientes a la aparición de su teoría, Copérnico ni publicó ni enseñó, pero su sistema era comentado allí donde se reunían varios astrónomos.

Copérnico no participó en estas conversaciones. No obstante. redefinó  su teoría. En los márgenes de los libros que iba leyendo, a menudo tomaba notas astronómicas, junto con apuntes que se referían a curas para   el dolor de muelas, las piedras de riñón, los callos y la rabia, enfermedades cuyos medicamentos contenían ingredientes tales como canela, díctamo, herrumbre, perlas, hueso del corazón de venado y cuerno de unicornio. Elaboró unas nuevas tablas sobre el movimiento de los planetas y escribió extensamente. Pero, como otros muchos autores, guardaba los manuscritos en su cajón. Su inclinación —debido a su carácter retraído, a su conciencia de que su teoría podría desencadenar una controver­sia eclesiástica y quizás a su gusto por el culto pitagórico al secreto— era no publicarlos nunca.

Probablemente no lo habría hecho, además, de no ser porque al final de su vida, fortuita e inesperadamente, ganó un discípulo, un joven profesor de matemáticas y astronomía que llegó a Frauenburg a estudiar con el gran hombre. Georg Joachim Iserin, conocido por Rheticus (adoptó el nombre latino para eludir ser vinculado a su padre, un médico decapitado por brujería), inmediatamente instó a Copérnico a publicar.

Esto sumió a Copérnico en un mar de nervios y dudas. Preocupado porque su teoría iba contra el saber aceptado de la época, Copérnico quiso no obstante publicar sus tablas de los movimientos de los planetas: lo que no quiso fue mencionar la teoría que las respaldaba. Cuando llevó a Rheticus, luterano, a casa de su único verdadero amigo, Tiedemann Giese, obispo de una diócesis vecina, su amigo y su discípulo trataron de convencerlo de la im­portancia de que publicara tanto sus tablas como sus opiniones. Por último se alcanzó un compromiso; Rheticus escribiría un libro explicando las ideas de Copérnico, a quien sólo lo mencionaría por su nombre de pila y su lugar de nacimiento.

Rheticus escribió así una «carta» a uno de sus maestros en la que describía la teoría del «reverendo padre Dr. Nicolás de Torun, canónigo de Ermeland». Hizo que se imprimiera la carta, que incluía comentarios astrológicos y bíblicos, y la envió a unas cuantas personas. Ahora que había expuesto la teoría, aumentaron las presiones sobre Copérnico para que publicase todos sus descubrimientos. Al final cedió.

Rheticus se ocupó del trabajo, copiando meticulosamente (y haciendo correcciones de menor importancia) el voluminoso manuscrito de Copérnico. Cuando hubo acabado, se inició el proceso de imprimir el libro, pero, como llevaba ya dos años fuera de su universidad, lo dejó para volver a hacerse cargo de sus obligaciones docentes. Regresó a la Universidad de Wittenberg y fue elegido en seguida decano. Cuando concluyó su mandato, en mayo de 1542, se trasladó a Nuremberg, con el manuscrito en las manos, a concluir la tarea.

Poco después Rheticus consiguió un nuevo puesto en la Universidad de Leipzig y abandonó el proyecto. Tal vez se sintiera alejado de Copérnico, pues en los agradecimientos del libro, que sin duda Rheticus vio, Copérnico omitía mencionar al hombre que más le había ayudado. De modo que Rheticus traspasó la responsabilidad de imprimirlo a otra persona.

De todas las anomalías astronómicas que confundían a los observadores precopernicanos, la más desconcertante era cómo los planetas, que por regla general avanzaban por el firmamento de oeste a este, en ocasiones daban la sensación de invertir la dirección. Los primeros astrónomos creyeron que estos aparentes retrocesos, o retrogradación, eran reales e inventaron complicados sistemas para explicarlos.

Copérnico demostró que el movimiento hacia atrás de los planetas es una ilusión. Ocurre porque los planetas giran alrededor del Sol a distintas distancias. Como consecuencia, a menudo la Tierra adelanta a un planeta más alejado, que entonces da la sensación de retroceder, exactamente igual que el tren de cercanías que traquetea dirigiéndose hacia el campo parece, sin embargo, estar regresando a la ciudad cuando el tren expreso en que va uno avanza más deprisa por las vías de al lado.

retroceso de los planetas

Del mismo modo, un planeta interior que se mueva más deprisa, como Mercurio, que recorre una órbita más corta, puede dar la impresión de mo­verse hacia atrás porque da varias vueltas alrededor del Sol durante el año terrestre. De modo que da la impresión de cambiar de dirección repetidas ve­ces cuando adelanta a la Tierra y luego se aleja de nosotros. En realidad lleva en todo momento la misma dirección.

Entra en escena Andreas Osiander. Sacerdote luterano, había propuesto dos años atrás que, si Copérnico se decidía a publicar el libro, se­ría prudente decir que las hipótesis que contenía no eran «artículos de fe» sino meramente artificios para calcular. Al hacer esta rectificación, pensó Osiander, Copérnico esquivaría las críticas de «los aristotélicos y los teólogos a cuyas contradicciones teméis». Teniendo esta idea aún presente, Osiander se la aplicó a sí mismo, para proteger a Copérnico, y agregó un prefacio equívoco, famoso en la historia de la astronomía, que rebajaba la importancia del libro. «Estas hipótesis no necesitan ser ciertas, ni siquiera probables; si aportan un cálculo coherente con las obser­vaciones, con eso basta —escribió Osiander—.

Por lo que se refiere a las hipótesis, que nadie espere nada cierto de la astronomía, que no puede proporcionarlo, a no ser que se acepten por verdades ideas concebidas con otros propósitos y se aleje uno de estos estudios estando más loco que cuando los inició. Adiós.» El prefacio sin firmar, que todo el mundo atribuyó a Copérnico, arrojaba dudas sobre las ideas del libro al dar a en­ tender que ni siquiera el autor las creía.

Se tardó un año en acabar la impresión del volumen, tiempo durante el que Copérnico tuvo un ataque de apoplejía y quedó parcialmente paralizado. El primer ejemplar impreso del libro, que estaba dedicado al papa, llegó al castillo de Frauenburg el 24 de mayo de 1543.

Aquel mismo día, más tarde, murió Copérnico.

Su sistema prevaleció. No era el modelo elegante que imaginamos nosotros, porque Copérnico, lo mismo que Aristóteles, estaba encadenado a la idea de la perfecta órbita circular. (Sólo después de que Johannes Kepler anunciara que las órbitas eran elípticas fue posible un sistema verdaderamente exacto.) En consecuencia, hubo que ajustar algunos detalles. Copérnico hizo lo que hubiera hecho cualquier otro: agregó epiciclos, ruedas dentro de las ruedas en las que daban vueltas los distintos astros. Por ejemplo, nueve ruedas diferentes explicaban los distintos movimientos de la Tierra. Además, las ruedas, como en el caso de Filolao, no giraban alrededor del Sol sino alrededor de un punto próximo al Sol. Y de acuerdo con Kepler, quien puso al descubierto que el autor del infame prefacio era Osiander, Copérnico ni siquiera descartó la noción de que los cuerpos celestes pudieran estar incrustados en cristal sólido. En resumen, el sistema copernicano era un galimatías.

Eso no tuvo importancia, como tampoco tuvo importancia que el entero mundo cristiano rechazara oficialmente la tesis. Martín Lutero calificó a Copérnico de «astrólogo advenedizo» y se quejó de que «Este loco quiere invertir toda la ciencia astronómica». Lutero tenía razón. Durante la vida de Galileo el papa puso a Copérnico en el Índice de libros prohibidos (donde siguió hasta 1835, el año que Charles Darwin  zarpó hacia las islas Galápagos a bordo del Beagle-Sin embargo el sistema copernicano, a diferencia del ptolomeico, estaba basado en la realidad. La Tierra había sido zarandeada para siempre. El sol era el rey.

SOBRE LA PUBLICACIÓN DE: DE REVOLUTIONIBUS

Copérnico se resistió a publicar su gran obra, De revolutionibus y a mostrar al mundo definitivamente su visión heliocéntrica y su teoría de la gravitación universal. El tiempo transcurría y, sea como fuere, el solitario y prudente científico seguía dedicándose a sus labores administrativas con disciplina y eficiencia; en 1537, el rey polaco aprobó su candidatura, junto con otros tres candidatos más, al obispado de Warmia, aunque al final no fue elegido, y luego sufrió uno de los pocos incidentes íntimos que se le conocen: entre 1538 y 1539,fue acusado de concubinato con su criada, una muchacha llamada Ana Schilling, que acabaría siendo despedida.

Rheticus. Es entonces cuando apareció en la vida de Copérnico un hombre que fue fundamental para que la obra llegara a ver la luz: Georg Joachim von Lauchen, conocido como Rheticus, un joven profesor de matemáticas y astronomía de la Universidad de Wittenbergque, en mayo de 1539, llegó a Frauenburg para conocer al famoso astrónomo, como relató años después:

«Oí el nombre del maestro Nicolás Copérnico en las tierras del norte, y aunque la Universidad de Wittenberg me había hecho profesor público en esas artes, sin embargo, no creí que estaría contento hasta que hubiera aprendido algo más mediante la instrucción de ese hombre.Ytambién digo que no me arrepiento de los gastos financieros ni del largo viaje ni de las dificultades posteriores. A pesar de ello, me parece que tuve una gran recompensa por esos problemas, particularmente el que yo, un osado jovenzuelo, obligara a este venerable hombre a compartir sus ideas en esta disciplina antes que con el resto del mundo».

La visita de Rheticus, además, conllevaba cierto riesgo, pues profesaba el protestantismo, lo que en la década de 1540 era algo muy mal visto en el ámbito católico. De hecho, y pese al inicial apoyo de la Iglesia a las ¡deas copernicanas, a partir de este año una serie de religiosos conservadores empezaron a manifestarse en contra de Copérnico, pues no entendían cómo éste sustituía un cosmos cerrado y jerarquizado, con el hombre como centro, por un universo infinito, situado alrededor del Sol.

Pero Rheticus estaba convencido de que la obra de su maestro había de ser divulgada, e hizo todo lo posible para conseguirlo: en septiembre de 1539, el joven matemático visitó al alcalde de Danzig, quien le proporcionó dinero para que publicara la Narratio Prima, o Primer informe a Johann Schóner sobre los Libros de las Revoluciones del sabio caballero y distinguido matemático, el Reverendo Doctor Nicolás Copérnico de Torun, Canónigo de Warmia, por un cierto joven dedicado a las matemáticas. En este trabajo, publicado en Gdansk en 1540, Rheticus resumió los seis libros en los que se divide el pensamiento astronómico de su maestro y, dos años después, publicó un tratado de trigonometría escrito por e maestro que se incluiría en el segundo libro de De revolutionibus.

Publicación de su Obra magna. El caso es que Copérnico, sintiéndose muy presionado por Rheticus, al tiempo que veía la manera positiva en que el público recibía sus investigaciones, decidió por fin entregar el libro para su publicación. De este modo, su pupilo salió en agosto de 1541 rumbo a Nuremberg para darlo a un impresor especializado en obras astronómicas, Johannes Petreius; sin embargo, había ciertas dificultades, pues dicha imprenta era luterana, por lo que se requería la intervención de un amigo de Copérnico, el obispo Tiedemann Giese, y del duque de Prus¡a, que recomendó la obra a la Universidad de Wittenbergy al elector de Sajonia.

Andreas Osiandery la «advertencia al lector». NO obstante, dado que Rheticus tuvo que volver a sus labores como profesor en Wittenberg,y además sería nombrado profesor de la Universidad de Leipzig, confió la supervisión de la obra al teólogo luterano Andreas Osiander, quien escribió una carta anónima para los lectores, que insertó en el lugar del prefacio original de Copérnico, en laque pedía que las conclusiones del libro no fueran consideradas como una certidumbre, sino una manera sencilla de calcular las posiciones de los cuerpos celestes. Curiosamente, hasta que otro insigne astrónomo, Johannes Kepler, no lo descubra cincuenta años después, el nombre del autor de ese texto «intruso» no acabaría desvelándose.

Copérnico no pudo ver publicado su De revolutionibus orbium coelestium, que aparecía con una larga introducción dedicada al papa Pablo III, en la que el astrónomo señalaba que su investigación iba a facilitar las predicciones astronómicas y, por consiguiente, la elaboración de un calendario más exacto, algo realmente importante en la época. Algún historiador cree que el autor recibió una copia del libro impreso, unas doscientas páginas escritas en latín,ya en su lecho de muerte, aunque ello no está demostrado. Al parecer el obispo Giese, tal como le contaba por carta a Rhetícus, habló del enfado de Copérníco al ver cómo su obra había sido manipulada; Giese se había encargado de enviar una solicitud al consejo de la ciudad de Nuremberg para que se extrajera la «advertencia al lector» escrita por Osiander, al tiempo que pedía a Rheticustoda su colaboración para restituir la esencia de la obra copernicana.

Muerte y posteridad. Lo cierto es que a Copérnico le sobrevino una hemorragia cerebral a finales de 1542, lo que deterioró gravemente su salud y le acabó llevando a la muerte en mayo del año siguiente. Por su parte, el que fuera su mejor discípulo no hizo nada de lo que le pidió Giese, e incluso olvidó la idea de publicar la biografía que ya tenía preparada sobre Copérnico. El porqué de tal conducta aún es un misterio, aunque algunos aducen que, al leer el texto de la dedicatoria a Pablo III que Copérnico le había enviado en la primavera de 1542 para saber su opinión al respecto, Rheticus vio agradecimientos a varias personas, «varones eminentes y doctos», entre los que él no salía citado.

Así, el que será considerado el fundador de la astronomía moderna, el inspirador de Isaac Newton, el defensor de un universo heliocéntrico, muere sin disfrutar del resultado de cuarenta años de observaciones y reflexiones astronómicas. A partir de su visión del cosmos, el hombre y la Tierra ya no son el centro del universo; es el inicio del racionalismo, de la idea de que el hombre puede gobernar, o al menos conocer, su entorno inmediato y también lejano, que no sólo está en manos de Dios.

Este tipo de ideas, tan transgresoras para su época, no serían un problema para la Iglesia hasta setenta años después del fallecimiento de Copérnico, cuando sí hizo expresa la condena de su obra (1616), momento en que las ¡deas del astrónomo eran ya sobradamente conocidas en toda Europa. Dos años después de la muerte del astrónomo, en 1545, iba a iniciarse el Concilio de Trento, en el que después de tres sesiones, en 1563,se expuso la necesidad de una reforma radical de la Iglesia y se propugnó un plan de recuperación y defensa de los dogmas frente al mundo reformista. Los papas Pío V y Gregorio XI11, entre los años 1566 y 1585, llevarán a cabo lo estipulado en Trento, además de declararse enemigos de la teoría heliocéntrica y extremar su persecución a los herejes mediante la orden de la Inquisición.

Pero el paso del tiempo y el progreso de las investigaciones científicas irán dando la razón a las pioneras observaciones de Copérnico, cuyos restos se hallaron en 2005 debajo de un altar de la catedral de Frombork. El milagro de la tecnología hizo posible que se reconstruyera la forma de la cabeza del astrónomo; tras analizar su cráneo, se dedujo que entre el séptimo y décimo año de su vida, Copérnico padeció un accidente y se rompió la nariz. Justo a la edad en que miraría hacia el cielo y concebiría la ilusión de desenmascarar sus secretos algún día.

Una Curiosidad: En 1512 Nicolás Copérnico, el padre de la astronomía moderna, llegó a la catedral medieval de Frombork (Polonia) donde ejerció de canónigo durante décadas y murió entre sus muros en el año 1543. Varios arqueólogos han intentado desvelar el secreto mejor guardado de este monumental edificio de piedra: dónde se encontraba enterrado el cuerpo del padre de la teoría heliocéntrica, pues todo indicaba que, según la tradición, a éste se le tenía que haber dado sepultura en algún lugar de la catedral. El hallazgo se produjo debajo de un altar, pero que se encontraba en mal estado por lo que no se pudo recuperar la totalidad de los resto.

Un grupo de investigadores polacos anunció «con una seguridad del 97%» que había encontrado el cráneo y algunos restos de Copérnico, el científico que descubrió que la Tierra y los demás planetas giran alrededor del Sol. «Con una prueba de ADN confirmaremos si estamos o no ante Copérnico», declaró el profesor Jezry Gassowski, jefe del equipo de expertos que llevaban más de un año explorando a fondo la colosal iglesia.

Teoría Geocéntrica de Tolomeo

Síntesis Copérnico

Tycho Brahe

Galielo Galilei

Johannes Kepler

Filosofía de las ciencias

Biografia Johannes Kepler Grandes Astronomos de la Edad Moderna

Biografía Johannes Kepler – Grandes Astrónomos

Nacido en Alemania en 1571, tuvo una juventud miserable. Su padre, Heinrich, a quien Johannes describe en un revelador horóscopo familiar como «vicioso, inflexible, pendenciero y destinado a acabar mal», ejerció de mercader y de tabernero, estuvo a punto de ser ahorcado en 1577 (por razones que desconocemos nosotros) y desertó de su familia para siempre en 1588.

Kepler Johannes

La madre de Kepler, herbolaria, era «murmuradora y pendenciera, y de mal carácter». Durante los años de su crecimiento, Johannes padeció malas digestiones, forúnculos, miopía, doble visión, manos deformadas (como consecuencia de unas casi fatales viruelas) y un extravagante surtido de enfermedades de la piel, entre ellas sarna y «heridas podridas crónicas en los pies . . .». La Nochevieja de sus veintiún años tuvo relaciones sexuales «con la mayor dificultad concebible, experimentando un agudísimo dolor en la vejiga».

Probablemente resultará redundante añadir que estaba mal visto entre sus compañeros de clase. Tampoco era su autoestima exactamente muy alta. En una vivaz narración escrita en tercera persona, se describió a sí mismo con «una naturaleza en toaos los sentidos muy perruna . . .». Por suerte, también era brillante.

Johannes Kepler ingresó en la Universidad de Tubinga siendo adolescente, se licenció a los veinte años y siguió allí en pos de una titulación en teología protestante. En Tubinga oyó una conferencia en la que se defendía el universo geocéntrico de Ptolomeo. Kepler adoptó el punto de vista contrario y pasó a ser un decidido defensor del sistema heliocéntrico de Copérnico. Esto no le procuró amigos, y menos entre los luteranos, a cuyas manos padeció en todo momento. No obstante, cuando se le ofreció un puesto de profesor de matemáticas y astronomía en la ciudad austríaca de Graz, se mostró indeciso, porque eso interrumpía sus planes de ser pastor luterano. A pesar de las dudas, aceptó el puesto.

Como profesor era efusivo y quizás entusiasta en exceso. (Sus largas cartas ponen de relieve las mismas cualidades.) Sus disertaciones, escribió, eran «cansinas, o por lo menos desconcertantes y no muy comprensibles». El 9 de julio de 1595, precisamente durante una disertación, experimento lo que él —y no sólo él— consideraría la mayor intuición de su vida. Mientras estaba dibujando en la pizarra, sopesaba el hecho de que aunque hubiese cinco sólidos platónicos (cuerpos que, como el cubo, tienen iguales todas las caras), hay seis planetas. Era indudable que debía haber el mismo número de planetas que de sólidos platónicos. Entonces, en un instante exultante, comprendió. Los planetas, se dio cuenta, orbitaban en los intersticios de los sólidos platónicos, que se alojaban unos dentro de otros como un gran juguete cósmico. Describió esta revelación como sigue:

La órbita de la Tierra es la medida de todas las cosas; circunscríbase a su alrededor un dodecaedro, y el círculo que contiene a éste debe ser Marte; circunscríbase alrededor de Marte un tetraedro, y el círculo que contiene a éste será Júpiter; circunscríbase alrededor de Júpiter un cubo y el círculo que contiene a éste será Saturno. Ahora bien, inscríbase dentro de la Tierra un icosaedro y el círculo que contiene éste será Venus; inscríbase dentro de Venus un octaedro y el círculo que contiene éste será Mercurio… Y tan intenso fue el placer causado por este descubrimiento que nunca podrá expresarse en palabras.

Aunque este esquema carece de la menor validez, Kepler nunca lo repudió, tanto porque parecía ofrecer una mayor aproximación a las órbitas planetarias como porque exhalaba un tufillo a la creencia pitagórica en la divina geometría.

En 1597 se casó con una viuda que él describe como «simple de entendimiento y gorda de cuerpo». También se vio involucrado en largas negociaciones con el duque de Württemberg sobre el proyecto y la construcción de una copa de beber increíblemente complicada que sería un modelo del universo basado en los sólidos platónicos. Especie de bar celestial, serviría, mediante cañerías ocultas procedentes de las distintas esferas planetarias, siete bebidas: aqua vitae la del Sol, agua la de la Luna, aguardiente la de Mercurio aguamiel la de Venus, vermut la de Marte, vino blanco la de Júpiter y «vino tinto añejo o cerveza» la de Saturno, un planeta que a menudo ha pugnado en los círculos astrológicos por conseguir alabanzas («El severo señor Saturno», le llamó el poeta isabelino Edmund Spenser). El proyecto nunca se terminó. (Entre los posteriores proyectos hubo un periódico sobre meteorología, una cronología de la Biblia y una tentativa de explicar el universo mediante la música pitagórica de las esferas. Kepler decidió que las notas de la Tierra eran «mi» y «fa», por miseria y hambre [en latín fames].)

Durante estos últimos años del siglo XVI también escribió. Cuando estuvo en condiciones de publicar su libro Mysterium cosmographicum, el claustro de la Universidad de Tubinga trató de impedir la edición. Kepler lo publicó con ayuda de su querido profesor Michael Maestlin. Envió ejemplares a Galileo, quien sin duda no lo leyó, y al gran observador Tycho Brahe, matemático imperial del emperador Rodolfo II en Praga. Tycho quedó tan impresionado que pocos años después contrataría a Kepler como ayudante suyo.

La oferta llegó justo a tiempo, puesKepler perdió su puesto en Graz al negarse a convertirse al catolicismo romano. Kepler partió hacia Praga el 1 de enero de 1600. Tycho y Kepler no podían ser más distintos. El pelirrojo Tycho era descarado, seguro de sí mismo, excesivo en todos los aspectos; literalmente le tiraba las sobras de la comida a un enano que tenía bajo la mesa y llevaba una nariz metálica a resultas de haber perdido la mayor parte de la propia en un duelo de juventud. También fue el observador a simple vista más preciso que ha habido en la historia de la astronomía. Tycho tenía algo que Kepler necesitaba muchísimo: cantidad de datos exactos. Kepler tenía mala vista, pero poseía algo de lo que carecía el maduro Tycho: una gran inteligencia geométrica. Eran perfectos el uno para el otro.
Innecesario es decir que no hicieron buenas migas. Los otros ayudantes de Tycho se sintieron amenazados por el joven Kepler, cuya reputación era ya inmensa. Tampoco mejoró su situación Kepler cuando se empeñó en calcular en ocho días la órbita de Marte, tarea en la que había fracasado el primer ayudante de Tycho tomándose mucho tiempo. (En realidad Kepler tardó años.)

El problema principal consistía en que Tycho ocultaba información. «Tycho no me dio la menor oportunidad de compartir sus experiencias», se quejaba Kepler. «Sólo en el curso de una comida, y en medio de conversaciones sobre otros asuntos, menciona hoy como de pasada la cifra del apogeo de un planeta, mañana los nodos de otro.» Por último Kepler presentó a Tycho una airada lista de peticiones. Tycho las aceptó, Kepler se disculpó por haber perdido la calma y a partir de este momento Tycho compartió de buena gana sus datos. Muy poco antes de morir, se oyó a Tycho suspirar una y otra vez: «Que no parezca que he vivido en vano», y nombró a Kepler su sucesor.

Kepler fue oficialmente designado matemático imperial pocos días después de la muerte de Tycho. Durante los once años siguientes, pese a las injerencias de los herederos de Tycho, trabajó con los datos observados que almacenaba su antecesor. Dos tareas lo consumieron: la creación de una serie de tablas astronómicas que presentaran los datos de Tycho de forma estructurada y la constante pugna con la órbita de Marte. Como todos los astrónomos que lo precedieron, Kepler asumía que las órbitas planetarias eran circulares. Y no lo son; no importa cuántos círculos se agreguen a los anteriores círculos, las órbitas calculadas seguían difiriendo de las órbitas observadas. Durante más de una década, a falta de instrumentos para hacer los cálculos —ni regla de cálculo ni logaritmos ni geometría analítica, ni siquiera se había inventado el cálculo aún—, Kepler hizo números. Sumando y multiplicando, trató de hallar la órbita. De mala gana, abandonó el círculo. Tal vez la órbita tuviese forma de huevo. Cuando no le funcionó, volvió al círculo. Consideró el óvalo.

Una y otra vez le pasaba por las mientes la idea de la elipse pero la rechazaba. Por último encontró una fórmula que, correctamente calculada, daba lugar a una elipse. Pero Kepler no hizo correctamente los cálculos. Frustrado, dejó de lado la ecuación y, lleno de tenacidad, decidió volver a probar, empezando por la misma forma que tantas veces había rechazado. Esta, creía él, «era una hipótesis bastante distinta». Para su sorpresa, descubrió que la elipse volvía a conducir a la ecuación y que la ecuación daba lugar a una elipse. «Las dos … son lo mismo —escribió— ¡ay!, qué papanatas he sido.»

Y así es cómo Kepler descubrió la primera de sus tres grandes leyes. Las dos primeras se publicaron en 1609, en Astronomía nova (La nueva astronomía). Este libro llamó poco la atención al publicarse. Galileo, entre otros, lo ignoró. (El mal trato que Galileo dispensó a Kepler, su único defensor y el único astrónomo que era su igual, constituye un triste capítulo de la historia de la astronomía.) Entretanto Kepler escribía también sobre óptica, sobre astrología, sobre los copos de nieve y sobre la fecha correcta en que nació Cristo.

En 1611 murieron un hijo de Kepler y su esposa de treinta y siete años, y abdicó el emperador Rodolfo, su protector. Kepler dejó Praga por Linz, y volvió a casarse después de una exhaustiva búsqueda en la que comparó los méritos de once candidatas distintas. También participó en la defensa de su madre, Katherine, que estaba siendo acusada de brujería por quien fuera su mejor amiga. Al mismo tiempo, trabajaba en firme en otro libro, Harmonice mundi (La armonía del mundo), que contenía, además de información astrológica y más palabrería sobre los sólidos platónicos, su tercera ley del movimiento.

El año siguiente de publicarse la obra, Katherine Kepler se vio amenazada de tortura. Fue puesta en libertad, en parte porque su famoso hijo defendió su vida, pero murió al cabo de unos meses. Kepler vivió otros nueve años. Completó las tablas que había prometido a Tycho, trabajó en una fantasía de ciencia ficción e hizo horóscopos; aunque a veces lo desesperaba la importancia que la gente daba a la astrología, no discutía sus supuestos básicos y hacía predicciones a largo plazo a sus clientes. En 1630 viajó a caballo a Ratisbona, en una desafortunada tentativa de cobrar el dinero que le debía el emperador. Murió dos semanas después de haber llegado.

Johannes Kepler fue una figura extravagante en muchos sentidos, una combinación de las antiguas creencias medievales y de las matemáticas modernas. Apegado como estaba a los sólidos platónicos, no se daba cuenta de la importancia de sus aportaciones. Pero sin él nunca hubiera creado Isaac Newton la teoría de la gravedad, ni existiría la ciencia tal como nosotros la conocemos. Los progresos astronómicos que hizo Kepler estuvieron a la altura de sus desafíos personales.

En su libro Los sonámbulos, una historia de los inicios de la cosmología, Arthur Koestler se ocupa del triunfo de Kepler: «En el universo freudiano, la juventud de Kepler es la historia de una feliz cura de la neurosis mediante la sublimación; en el de Adler, de un complejo de inferioridad felizmente compensado; en el de Marx, la respuesta de la Historia a la necesidad de mejorar las tablas de navegación; en el de los genetistas, de una estrafalaria combinación de genes. Pero si toda la historia consistiera en eso, cualquier tartamudo podría convertirse en un Demóstenes y se debería premiar a los padres sádicos. Tal vez Mercurio en conjunción con Marte, junto con unos cuantos granos de sal cósmica, sea una explicación tan buena como cualquier otra». Kepler habría estado muy probablemente de acuerdo.

Ver en este sitio: La Leyes de Kepler

PARA SABER MAS…

El Ordenado universo Copernicano. Copérnico estaba convencido de que finalmente había descubierto la estructura del universo a partir de los principios matemáticos unánimemente aceptados. La exigencia de explicar los movimientos de los cuerpos celestes mediante movimientos circulares y uniformes en torno a sus centros geométricos le había llevado a aceptar la posición central del Sol y el movimiento de la Tierra como un planeta más.

Por contraria que pareciera al sentido común, esta cosmología heliocentrista explicaba de modo natural e inmediato toda una serie de fenómenos que hasta entonces parecían arbitrarios o no tenían explicación, como la elongación limitada de los planetas inferiores, la retrogradación de los planetas superiores en su oposición con el Sol y los tamaños de sus retrogradaciones.

Además esta cosmología no sólo mostraba de modo bello, simple y elegante el carácter aparente de dichas retrogradaciones, sino que además satisfacía por primera vez de modo natural y consecuente el principio unánimemente aceptado de la relación entre la distancia y los períodos de los planetas, ¡lustrando así el carácter armonioso, simétrico, coherente y unitario de la estructura de la «máquina del mundo». Es decir, Copérnico había mostrado que el universo creado por Dios era efectivamente un todo ordenado y bello, ur. «cosmos». El nuevo planteamiento de Kepler. Pero Kepler fue mucho más allá.

Quede fascinado desde un principio por el orden del universo heliocéntrico y por eso se hizo copernicano, pero a él no le era suficiente saber cómo está ordenado el universo, Kepler quería saber porqué había sido creado por Dios con ese orden concreto y llegó a la conclusión de que si quería crear el mundo más ordenado y armónico posible, tuvo que crearlo del modo en que lo hizo. Y eso le llevó a plantearse otros porqués, a plantear preguntas que nadie se había hecho jamás. Los planetas se movían, en efecto, tanto más lentamente cuanto más alejados estaban de su centro, el Sol, pero ¿por qué sucedía así? ¿Cuál era la causa de que sucediera así?.

En la cosmología geocentrista esta pregunta no tenía sentido porque los planetas no se movían por sí solos, sino que eran arrastrados en su movimiento por las esferas en las que estaban incrustados.’Y en Copérnico este punto no había cambiado en absoluto, también en su cosmología heliocentrista las responsables del movimiento de los planetas eran las esferas en las que estaban contenidos. Pero en tiempos de Kepler la creencia en la existencia de tales esferas ya había entrado en crisis y el Sol tomaría un protagonismo que ya se barruntaba en Copérnico y en Rheticus. En todo caso, Kepler planteó el tema en términos radicalmente nuevos y eso llevaría a una transformación radical de la astronomía.

Por otra parte, el estilo intelectual de Kepler era también muy peculiar, como su compleja personalidad. Nadie combinó la teología cristiana con el matematismo platónico como él lo haría y, además, nadie sometió el más desaforado misticismo pitagórico a la máxima exigencia en la precisión cuantitativa de los fenómenos astronómicos, como lo hizo Kepler. Esto lo hace tan apasionante como difícil.

La opinión de Galileoes elocuente: «Siempre le he considerado como un ingenio libre (quizás incluso demasiado) y sutil, pero mi filosofar es diversísimo del suyo»

LAS INVESTIGACIONES DE KEPLER:
Los estudios de Kepler, que siempre realizó con becas gracias a su precoz inteligencia, se encaminaban a la teología. También amaba las matemáticas, según él mismo nos dice. y en la Universidad de Tubinga, su profesor Michael Maestlin, le ayudó a descubrir lo que sería el objetivo de su vida. Maestlin era un competente astrónomo.

En las clases no podía enseñar el sistema copernicano, considerado en la Facultad de Teología contrario a las Escrituras, pero en privado iniciaba a unos pocos alumnos escogidos en la cosmología de Copérnico. El joven Kepler se entusiasmó desde el primer momento y, más osado, proclamaba públicamente su copernicanismo. Él mismo nos lo cuenta:

«Ya en Tubinga, cuando yo seguía atentamente las enseñanzas del famoso maestro Michael Maestlin, me di cuenta de cuan farragosa era en muchos aspectos la noción común hasta ahora de la estructura del universo. Por ello me quedé tan entusiasmado con Copérnico, que mi maestro exponía muchas veces en sus clases, que no sólo abogué repetidamente en favor de sus tesis en las disputas de los candidatos [estudiantes], sino que también hice una cuidadosa exposición defendiendo la tesis de que el primer movimiento [la rotación diurna de las estrellas fijas] es resultado de la rotación de la Tierra. También preparé un trabajo para adscribir a la Tierra las causas del movimiento del Sol sobre bases físicas o, si se quiere, metafísicas, como Copérnico lo hace sobre bases matemáticas».

Es significativo que, desde un primer momento, Kepler señala un punto que será crucial: Copérnico argumentaba con razones «matemáticas», mientras que Kepler pretendía defenderlo con argumentos «físicos» o «metafísicos». En realidad, en estos momentos el joven Kepler todavía no había leído el De revolutionibus, ni siquiera conocía la Narratio Prima de Rheticus.y sus intereses todavía no estaban definidos.

El azar, un elemento protagonista en la vida de Kepler, tuvo un papel decisivo. Acabados sus estudios de teología, le ofrecieron un puesto de profesor de matemáticas en la escuela de Graz. Siempre autocrítico, pensaba que no estaba preparado para ello, pero aceptó y eso determinó su futuro profesional. Sin embargo, aunque su interés por las matemáticas acabó imponiéndose, sus preguntas básicas seguían enraizadas en la teología natural.

El Mysterium cosmographicum (El secreto del universo, 1596) «Tres cosas había en concreto sobre las cuales yo insistentemente quería saber por qué eran así y no de otra manera: el número, la magnitud y el movimiento de los orbes (Numeras, Ouantítas et Motus Orbium). Lo que me enardeció para esto fue la maravillosa armonía de las cosas inmóviles, el Sol, las estrellas fijas y el espacio intermedio con Dios Padre, Hijo y Espíritu Santo, semejanza que seguiré aún Investigando en la Cosmographia“.

 Con su cosmología heliocéntrica, Copérnico había desentrañado la relación entre el orden de los orbes planetarios y sus períodos de revolución. Era un elemento central de la maravillosa armonía de su sistema que tanto había impresionado a Kepler. Pero éste va más allá. La armonía del universo, tal como la concibe Kepler, no sólo explicaría las relaciones entre las distancias y los períodos de los planetas, también explicaría su «número»; «las causas de porqué los orbes móviles son seis y no veinte o ciento».* Conocemos la génesis de esta ¡dea estructural, que Kepler nos contó en el prefacio de su Mysterium.

El Universo de Un Dios geómetra. Durante su estancia como profesor en la escuela de Graz, el trabajo personal de Kepler se centraba en las cuestiones mencionadas. Buscaba las leyes del movimiento planetario y la estructura del universo, elaborando primero hipótesis sobre las relaciones numéricas de sus órbitas: si una era el doble, el triple o el cuádruple de otra, pero fracasó reiteradamente.

El 9 de julio de 1595, durante una de las clases, a las que asistían escasísimos alumnos, estaba dibujando en la pizarra una figura determinada por la pauta de conjunciones entre Júpiter y Saturno, cuando se le ocurrió repentinamente que tenía la llave del secreto del mundo. La figura resultante era un círculo inscrito en un triángulo, inscrito a su vez en un círculo, y entonces tuvo la revelación: la proporción de los radios de los dos círculos, inscritos y circunscritos por un triángulo, era la misma que la de las distancias de Saturno y Júpiter.

 Quizá la clave de la estructura del universo no estaba en las relaciones numéricas, tal como había ensayado incansablemente, sino en las relaciones geométricas.5 Podía, tenía que suceder que otros polígonos regulares inscritos en los sucesivos círculos de los planetas, centrados en el Sol, dieran la clave de las distancias de los planetas respecto al Sol, centro del universo. Pero tras un breve intento, pronto se puso de manifiesto que éste tampoco era el camino.

La premisa era buena, las figuras geométricas eran las adecuadas para desentrañar la estructura del universo, pero hay muchos polígonos regulares.

«Y sin embargo, las figuras resultaban satisfactorias en tanto que son cantidades y portante anteriores a los cielos. La cantidad, efectivamente, fue creada al principio, junto con la materia y el cielo, el segundo día. Pero (pensaba yo), si según la cantidad y proporción de los seis cielos establecidos por Copérnico tan sólo se pudieran hallar cinco figuras, de entre las infinitas otras posibles, que tuviesen propiedades peculiares sobre las demás, el asunto quedaría resuelto a satisfacción. Y de nuevo me preguntaba, ¿porqué habrían de ser planas las figuras entre los orbes? Añadamos mejor cuerpos sólidos. Hete aquí, lector, todo el hallazgo y materia de todo este opúsculo.»

misterio cosmografico de kepler

Cosmología de Kepler Reconstrucción gráfica de la cosmología de Kepler, aparecida en el Mysterium cosmographicum, regida por los cinco sólidos regulares y las esferas planetarias inscritas y circunscritas en éstos, que establecen las distancias entre los planetas. En la imagen no se incluyen las esferas.

LA LEYENDA QUE ACOMPAÑABA A LA FIGURA decía así:  «De Kepler admiras, espectador, la obra en esta figura quejamos habías visto. Pues lo que muestran los cinco sólidos de Euclides es la distancia existente entre los orbes de los planetas. Lo bien que se acomoda a la enseñanza que antaño formuló Copérnico es lo que te enseña la obra del Autor». El orden es el siguiente: esfera de Saturno /Cubo/ esfera de Júpiter / Tetraedro / esfera de Marte/ Dodecaedro / esfera de la Tierra / Icosaedro / esfera de Venus / Octaedro / esfera de Mercurio. Los distintos poliedros determinan las distancias entre los correspondientes, planetas: el cubo entre Saturno y Júpiter, el tetraedro entre Júpiter y Marte, etcétera. Las respectivas esferas u orbes tienen el suficiente grosor para explicar la variación de distancias de cada planeta. En el afelio, su punto más alejado del Sol, tocan su esfera más externa y en el perihelio, su punto más próximo al Sol, tocan su esfera más interna. O

CARTA DE KEPLER: COMENTA SU ÉXTASIS AL HACER SUS PROPIAS OBSERVACIONES CON SU TELESCOPIO

Praga
Septiembre de 1610
Profesor Gio. A. Magini: en Bolonia

Noticias extraordinarias, mi querido señor: Ernst, elector de Colonia y mi mecenas, que pasó el verano en el Consejo de príncipes, regresó la semana pasada de una rápida visita a Viena y trajo un telescopio, el mismo con que Galileo obsequió al archiduque de Baviera. De esta forma, el mezquino paduano queda frustrado en sus celos por la generosidad de mis amigos y mecenas. Es posible que, después de todo, en el mundo haya justicia.

He tenido graves dificultades con este Galilei (creo que su padre poseía una mente más sutil: ¿ha leído sus obras?). Con su autoritarismo consuetudinario, envía mensajes a través de sus compatriotas en la corte, exige que lo apoye en sus afirmaciones sobre Júpiter porque al parecer no está satisfecho con mi Dissertatio y quiere que me reitere en las afirmaciones cada vez más contundentes de su genialidad… pero, pese a mis infinitas súplicas, no me envía el instrumento que me permita comprobar sus afirmaciones a plena satisfacción. Dice que los gastos y la dificultad de fabricación se lo impiden, pero sé que ha repartido telescopios a todos sin excepción. ¿Qué es lo que le produce tanto miedo como para excluirme? Confieso que llego a pensar que sus enemigos tienen algo de razón cuando lo tildan de fanfarrón y charlatán. Lo conminé a que me enviara los nombres de los testigos dispuestos a declarar que habían visto aquello que él defiende en Sidereus nuntius. Replicó que el gran duque de Toscana y cualquiera de los numerosos Medici respondía por él. Y yo me pregunto, ¿de qué sirven? No me cabe la menor duda de que el gran duque de Toscana defendería la santidad del demonio si le conviniera. ¿Dónde están los científicos dispuestos a corroborar los descubrimientos? Galileo dice que los considera incapaces de identificar Júpiter, Marte o incluso la luna y que no podemos esperar que reconozcan un nuevo planeta nada más verlo.

Empero, ahora todo se ha resuelto gracias al elector Ernst. Desde el 30 de agosto, fecha en que regresó de Viena, con ayuda del telescopio he podido contemplar con mis propios ojos esos fenómenos nuevos y maravillosos. A diferencia del paduano, quise contar con el apoyo de testigos dignos de confianza e invité a mi casa al joven matemático Ursinus y a otros notables para que, individualmente y mediante registro bajo juramento, proporcionáramos pruebas irrefutables de las afirmaciones de Galileo.

Para evitar errores e imposibilitar toda acusación de complicidad, insistí en que cada uno dibujara con tiza en una tablilla lo que había visto a través del telescopio para comparar posteriormente las observaciones. Fue realmente satisfactorio. Compartimos un buen vino y una cesta con alimentos -pasteles de carne de caza y unas excelentes salchichas- y pasamos una velada muy animada, si bien debo reconocer que el vino, sumado a mi mala vista, provocó en mí una visión extraña y peculiarmente coloreada del fenómeno. Sin embargo, a grandes rasgos los resultados coincidieron y durante los días siguientes pude contratarlos en repetidas ocasiones. ¡Galilei tenía razón!

¡Ah, con cuánta agitación apoyé mi rostro en el magnífico instrumento! ¿Qué ocurriría si los nuevos descubrimientos sólo sirvieran para demostrar que me equivoqué en mis caras pretensiones sobre la verdadera naturaleza de las cosas? El pavor era infundado. Sí, Júpiter tiene lunas; sí, en el firmamento hay muchas más estrellas que las que el ojo percibe con la ayuda de instrumentos; sí, sí, la luna está hecha de materia parecida a la de la tierra: de todos modos, la forma de la realidad sigue siendo tal como siempre me pareció. La tierra ocupa el lugar más distinguido en el universo porque rodea el sol en el espacio intermedio entre los planetas y, a su vez, el sol representa el sitio intermedio de reposo en un espacio esférico rodeado de estrellas fijas. Todo está regulado según las leyes eternas de la geometría, que es única y eterna, imagen de la mente de Dios. He visto todo esto y me siento en paz… pero no tengo nada que agradecerle a Galileo.

Vivimos tiempos extraños y maravillosos porque estas transformaciones se forjan en nuestra perspectiva de la naturaleza de las cosas. Pero debemos ceñirnos al hecho de que sólo se trata de una visión que se expande y se altera, sin ser la cosa misma. Es curiosa la facilidad con que nosotros, pequeñas criaturas, confundimos la apertura de nuestros ojos con la aparición de una nueva creación: semejamos niños que cada mañana, al despertar, imaginan que el mundo se rehace.

Su amigo, señor, Johannes Kepler

Fuente Consultada:
Cosmos de Carl Sagan y
Vida, Pensamiento y Obra de Copérnico y Kepler – Colección Grandes Pensadores de la Historia

Teoría Geocéntrica de Tolomeo

Síntesis Copérnico

Tycho Brahe

Galielo Galilei

Johannes Kepler

Filosofía de las ciencias

Tres principios basicos de la física Pascal Arquimides Bernoullie

principios basicos de la física principios basicos de la física principios basicos de la física
Blais Pascal Arquímedes Daniel Bernoullie

EL MODELO CIENTÍFICO: El hombre, desde tiempos remotos, observa los cambios que se producen en todas las cosas que le rodean. Tuvo conocimiento de que el Sol y la Luna se movían en el espacio, pero durante muchos años no pudo dar una explicación a este fenómeno. El camino para descifrar los secretos de la naturaleza es lento.

Los hombres han ido avanzando en la interpretación de estos y otros fenómenos de la naturaleza y, aunque desconocemos aún muchas cosas, el Universo físico del que formamos parte es objeto de estudio. Todas estas ramas del saber se llaman ciencias porque presentan un conocimiento sistemático de algún aspecto del mundo material, basado en la observación y en el razonamiento. Como la ciencia es demasiado amplia para ser estudiada y conocida desde una sola perspectiva se ha dividido en ramas relacionadas entre sí: la geología, la biología, la física, la química son las que llamamos ciencias de la naturaleza.

La geología estudia la Tierra y los fenómenos que ocurren en ella; la biología estudia los seres vivos; la física estudia las modificaciones experimentadas por los cuerpos que no afectan a su naturaleza o a su composición y la química estudia las modificaciones que varían la naturaleza de los cuerpos.

Una característica común a todas las ciencias de la naturaleza es que son ciencias experimentales, es decir, los conocimientos que se han ido acumulando han sido obtenidos mediante la experimentación sistemática. Este procedimiento se denomina método científico experimental. Las fases de este método de investigación en forma esquemática son las siguientes:
observación -s> experimentación -»ley científica -> teoría científica.

La observación. Es el examen atento de los fenómenos naturales. Ante ellos, el científico elabora una hipótesis, palabra que significa en realidad una idea que ha de ser comprobada. La experimentación. Consiste en la repetición sistemática del fenómeno observado en distintas circunstancias, analizando y estudiando los factores que influyen en él. La ley científica. Si el científico ha comprobado que existen regularidades de comportamiento, puede elaborar el enunciado de una ley científica que tenga un carácter general.

Cuando es posible se busca una expresión matemática que enuncie la ley. La teoría científica. Cuando sobre una determinada área concurren diversas leyes aparentemente independientes, se elabora una teoría científica que puede servir de guía para el descubrimiento de nuevas leyes. Todas las teorías tratan de explicar fenómenos observados y las causas que los provocan. Esto no quiere decir que no puedan ser modificadas, puede suceder que se tengan que corregir o ampliar, o en algunos casos rechazar teorías ya enunciadas.

Los métodos de investigación chocan a veces con la imposibilidad de acceder a los objetos que se pretende estudiar bien porque están demasiado alejados o porque son demasiado pequeños (astros, átomos, moléculas).

En estos casos los científicos tienen que encontrar un camino de investigación indirecto que les lleve, si es posible, al mismo fin. Para conseguirlo se han ideado modelos con los cuales puedan describir y explicar determinados fenómenos de forma Intuitiva. De la misma manera que una maqueta de un barco nos puede servir como modelo para compro- bar o experimentar determinados fenómenos sin tener que utilizar un barco real.

Los modelos creados por los científicos tienen que sufren cambios a medida que la ciencia avanza, incluso algunos  se han abandonado definitivamente. Ptolomeo. creó un modelo del Universo en el que la Tierra era el punto central y el Sol giraba a su alrededor. Este modelo era capaz de explicar muchas observaciones, pero se tuvo que abandonar cuando se conoció que los hechos no estaban de acuerdo con el modelo.

De forma análoga, la óptica es capaz de explicar diversos fenómenos de la luz, como la reflexión y la refracción, si adopta como modelo el que representa a la luz como un conjunto de rayos. Sin embargo tiene que adoptar un modelo diferente si quiere explicar otro tipo de fenómenos.

Esto nos indica que un modelo sólo es válido dentro de un campo de trabajo delimitado, y permite, dentro de este campo. hacer pronósticos de fenómenos que la experimentación tiene que confirmar después.

UN POCO DE HISTORIA SOBRE LAS INVESTIGACIONES

ARQUÍMEDES: La física de Aristóteles perjudicó a la ciencia en el curso de la Edad Media cuando sus conceptos fueron asimilados e impuestos a todo el mundo cristiano por Santo Tomás de Aquino. Durante los doscientos cincuenta años que siguieron a su muerte, Aristóteles fue ignorado por los grandes físicos del mundo antiguo: Arquímedes. Ctesibios y Herón de Alejandría. En efecto, estos tres genios fueron más hombres prácticos que soñadores, y puede decirse que el primero y mayor de todos ellos ha consagrado definitivamente la ruptura entre la metafísica y la física. Todo el mundo ha oído hablar del principio de Arquímedes: “Todo cuerpo sumergido en agua recibe de parte de este líquido un impulso de abajo a arriba igual al peso del volumen de agua que desaloja.” Aquí radica el fundamento de la hidrostática y sus aplicaciones han sido innumerables. Al salir Arquímedes del baño portador de las dos coronas de oro y plata que le habían servido para su experimento, muy bien podía recorrer las calles de Siracusa gritando “¡Eureka!”. Aquel día había efectuado realmente un gran descubrimiento.

Arquímedes no sólo redactó su famoso Tratado de los cuerpos flotantes, sino que también inventó el tornillo sinfín y los engranajes multiplicadores y de multiplicadores, y generalizó la teoría de la palanca. Nadie ignora esta famosa frase: “¡Dadme un punto de apoyo y levantaré el mundo!” Arquímedes fue igualmente un gran ingeniero. Cuando el ataque a Siracusa por la flota romana, hizo construir múltiples ingenios destinados a defender la ciudad: ballestas y catapultas que lanzaban flechas y piedras, grúas gigantescas que. lanzando un garfio por entre los aparejos de las trirremes, atraían a éstas hacia las rocas contra las que se estrellaban.

El resto de la flota romana fue incendiado por inmensos espejos parabólicos de bronce, prolijamente pulidos, que concentraban a distancia los rayos del sol siciliano sobre las galeras enemigas.

A pesar que el uso de la palanca como elemento de ayuda para mover pesos, se usa desde tiempos  prehistóricos, atribuimos a Arquímedes el mérito de haber enunciado el principio de la palanca, sin tomar en cuenta el tiempo que este mecanismo llevaba utilizándose antes de su época.

A Arquímedes también se le debe el principio de la flotabilidad, según el cual todo objeto sumergido en un fluido desaloja un volumen de fluido igual a su propio volumen. Esto abrió un camino a la medición del volumen, a la explicación de por qué unos cuerpos flotan y otros no, etcétera. Arquímedes captó de repente el principio cuando él mismo se sumergió en un baño público y se percató de que el nivel del agua ascendía.

La leyenda pretende que brincó fuera del baño y, desnudo como estaba, se fue corriendo a su casa gritando: «¡Eurekal ¡Eureka!» («¡Lo encontré! ¡Lo encontré!»). Le había sido propuesto el problema de averiguar si una corona de oro estaba adulterada con algún metal menos denso, pero se le impuso la condición de no dañar la corona. Para ello debía conocer el volumen, y el efecto de flotabilidad se lo revelaría. (Los antiguos griegos, por cierto, no se preocupaban por la desnudez, de modo que la conducta de Arquímedes no fue tan insólita como cabría imaginar.)

LAS EXPERIENCIAS DEL FÍSICO ALCALDE Y DE BLAS PASCAL
En 1654, Otto de Guericke, alcalde de Magdeburgo (Alemania), inventor de la primera bomba para hacer el vacío, realizó en presencia del emperador un experimento que causó enorme sensación en su época. Utilizó dos semiesferas (por eso se llama experiencia de los hemisferios de Magdeburgo) de metal, huecas, que podían unirse perfectamente. Su diámetro era de 55 cm. Estando llenas de aire, no había ninguna dificultad en separarlas. Luego hacía el vacío y enganchaba caballos que tiraban de cada hemisferio. Se necesitaron dieciséis caballos, ocho de cada lado, para poder separarlas.

Las experiencias de Torricelli llegaron a oídos de Blas Pascal, que en la misma época vivía en la ciudad de Rúan. Entusiasmado con las ideas del físico italiano, repitió las experiencias y se convenció de que aquél tenía razón. Además, aprovechando que en su villa se construían excelentes tubos de vidrio, hizo .construir uno de alrededor de once metros de largo, y realizó la experiencia de Torricelli, pero con agua, comprobando que alcanzaba una altura de 10,33 metros.

Debido a una disputa con físicos que sostenían todavía la vieja doctrina del horror al vacío, Pascal hizo esta experiencia hasta con vino, aplastando los argumentos de los adversarios.

Si la teoría de Torricelli es correcta, pensó Pascal, ¿qué debe ocurrir cuando se hace la experiencia de Torricelli a distintas alturas, subiendo una montaña, por ejemplo? La presión atmosférica debe ir disminuyendo, y por lo tanto la columna de mercurio, que al nivel del suelo tiene una altura de unos 76 cm, debe ir disminuyendo también.

Pascal decidió realizar el experimento, pero por su salud no pudo hacerlo personalmente. Envió a unos amigos, quienes ascendieron al Puy-de-Dome, en la Auvernia, en 1649. Con gran emoción, los expedicionarios comprobaron que, a medida que ascendían por la montaña, el nivel del mercurio bajaba. El descenso alcanzó unos 8 cm al llegar a la cima.

1738: Teoría cinética de los gases
Boyle había supuesto que los gases consistían en átomos ampliamente espaciados, pues esta particularidad explicaba el hecho de que los gases pudieran comprimirse. La noción fue ampliada por el matemático suizo Daniel Bernouilli (1700-1782). Consideró que los átomos que constituyen los gases estaban siempre en rápido y aleatorio movimiento, colisionando unos con otros y con las paredes del recipiente. (Esto se llama teoría cinética de los gases; cinético viene de la palabra griega que significa «movimiento».)

Si la temperatura se eleva, los átomos se desplazan con mayor rapidez y colisionan con más fuerza, y así se separan un poco más el uno del otro. Por esta razón el volumen se incrementa si se eleva la temperatura, y decrece si la temperatura baja, con tal de que la presión siga siendo la misma. Si se impide que el volumen varíe, la presión (la fuerza con que los átomos golpean las paredes) se incrementa al ascender la temperatura y desciende si la temperatura baja. Esta descripción resultó ser correcta, pero un tratamiento matemático adecuado del tema sólo se llevó a cabo 125 años más tarde.

Teorías Físicas Que Fracasaron

Segunda Etapa de la Revolucion Industrial: El Hierro y el ferrocarril

La segunda etapa de la revolución industrial: la siderurgia y el ferrocarril

Cuando la industria algodonera parecía estar agotando sus posibilidades de engendrar nuevas transformaciones en el seno de la economía británica, la siderurgia vino a iniciar una segunda y más importante etapa de transformación, que tendría como con secuencia el que se formase una gran industria de bienes de producción.

Hemos dicho anteriormente que la siderurgia se presentaba ya en el siglo XVII en factorías relativamente grandes y avanzadas, en contraste con la pequeña industria textil artesanal.

Pero una serie de graves dificultades obstaculizaban su crecimiento; en contra de la opinión común, la historia de la siderurgia británica es un ejemplo de cómo unas condiciones naturales adversas pueden ser superadas por una industria dinámica, estimulada por la demanda de un mercado en expansión.

En primer lugar tenemos la carencia de combustible: el carbón vegetal escaseaba en Gran Bretaña y el carbón mineral no podía usarse en la siderurgia, ya que los gases sulfurosos desprendidos en la combustión dañaban la calidad del metal. Durante buena parte del siglo XVII la producción de hierro siguió efectuándose en hornos de carbón vegetal, lo que obligaba a establecerlos en zonas de bosques (general mente alejadas de los centros de consumo) y a cambiarlos de emplazamiento cuando el combustible se agotaba en un lugar.

A esto hay que añadir la baja calidad de los minerales de hierro británicos, que no podían, en modo alguno, competir con los suecos. Una y otra dificultad fueron superadas con la introducción del coque en la siderurgia, pero esta introducción no fue el resultado de un hallazgo técnico afortunado, sino de dos siglos de lucha, culminados en el siglo XVII en una serie de etapas que significaron sucesivas victorias parciales: los esfuerzos de la familia Darby (imagen izq.) por hallar el tipo de coque adecuado, la introducción de los procedimientos de pudelaje y laminado patentados por Core (1783-1784), y, sobre todo, la aplicación de la máquina de vapor de Watt, que solucionó no sólo los problemas de forja, sino el más vital de asegurar la inyección de aire necesaria para la combustión regular del coque.

El resultado final de toda esta serie de perfeccionamiento» fue de importancia trascendental, ya que permitió asentar establemente los hornos siderúrgicos junto a las minas de carbón (que solían coincidir con los yacimientos de mineral de hierro) y realizar todas las operaciones en un mismo lugar, desde la extracción del mineral hasta la elaboración final de las mercancías construidas en metal.

Esta concentración hizo nacer grandes imperios industriales, integrados por minas, hornos, fábricas y almacenes, como el de John Wilkinson, quien llegó a acuñar su propia moneda. Consecuencia mucho más importante fue, sin embargo, la de haber reducido extraordinariamente los costes de producción del hierro británico: sus precios bajaron espectacularmente, y a comienzos del siglo XIX eran ya mucho más bajos que los del hierro sueco.

Este conjunto de circunstancias favoreció el rápido crecimiento de la producción siderúrgica, que entre 1788 y 1806 llegó casi a cuadruplicarse. Inicialmente, esta expansión estaba ligada a la demanda derivada de las necesidades militares (aunque el abaratamiento del hierro estaba extendiendo paralelamente su uso a la construcción de máquinas y de utillaje agrícola) y el término de las guerras napoleónicas amenazó con yugular su crecimiento. Para remediar la crisis, se intentó emplear el hierro en las más diversas aplicaciones: construcción de puentes, edificación de viviendas, etc.

Se llegó incluso a experimentar la pavimentación de calles con hierro. Pero el gran estímulo que permitiría superar la crisis y abriría una nueva y mayor etapa de expansión hubo de venir de una actividad que inicialmente se había desarrollado para atender a las necesidades de la minería y de la siderurgia: el ferrocarril. El ferrocarril era conocido desde mucho antes, si bien reducido a la tracción animal o a trayectos en que fuese posible depender de la fuerza de un motor fijo, aplicada por medio de un cable, a la manera de los funiculares. Se habían establecido incluso líneas de pasajeros con vehículos de tracción animal.

La gran revolución se produjo con el perfeccionamiento de la locomotora de vapor: el éxito obtenido por la línea Liverpool-Manchester  (sus acciones doblaron de valor en menos de tres años) provocó una sucesión de «manías ferroviarias» entre 1830 y 1850, atrayendo a esta clase de empresas los capitales de multitud de pequeños inversores, absolutamente ajenos hasta entonces a cualquier actividad industrial.

En otro lugar hablaremos de la influencia que el ferrocarril ejerció en la integración de los mercados nacionales; lo que ahora nos interesa es que la construcción de líneas férreas motivó un gran aumento en la demanda de hierro, acero y carbón, y significó un nuevo y revolucionario estímulo para la expansión de la minería y de la siderurgia: entre 1830 y 1850, la gran etapa de la construcción ferroviaria en Gran Bretaña, la producción británica de hierro y de carbón se triplicó.

Cuando la red ferroviaria estuvo construida, nuevas actividades, suscitadas en su mayor parte por la propia revolución industrial, vinieron a absorber la producción siderúrgica, e incluso a inducir nuevas etapas de expansión en la misma.

También la industrialización de otros países (y la construcción de sus redes ferroviarias) presionó sobre la siderurgia británica,- ya fuese directamente, ya a través de las adquisiciones de maquinaria. Hacía 1850, el proceso de la revolución industrial británica había llegado a su culminación y el crecimiento económico podía considerarse asegurado.

Los setenta años transcurridos desde 1780 habían visto producirse una serie de reacciones en cadena que dieron lugar al nacimiento de una industria de tipo nuevo, surgió como parte integrante de un sistema económico cuyo crecimiento tenía su punto de partida en fuerzas engendradas en su mismo interior.

Fuente Consultada:
Enciclopedias Consultora Tomo 7
Enciclopedia del Estudiante Tomo 2 Historia Universal
Enciclopedia Encarta
La Aventura del Hombre en la Historia Tomo I “El Ateneo”
Historia Universal Gomez Navarro y Otros 5° Edición
Atlas de la Historia del Mundo Parragon

La Gran Ciencia Grandes Proyectos Cientificos del Mundo Teorias

GRAN CIENCIA. Tipo de práctica científica que se inició y desarrolló durante el siglo XX y que requiere de grandes recursos de infraestructura y personal, y, por consiguiente, económicos. Por este motivo, es necesario tomar decisiones políticas de cierta envergadura para iniciar o mantener proyectos de Gran Ciencia. No estaría de más, por consiguiente, que todos —científicos, políticos o simples ciudadanos (no sé muy bien por qué escribo «simples», cuando ser un buen ciudadano es realmente bastante complicado)— deberíamos conocer no sólo la existencia e importancia de este tipo de ciencia, sino sus mecanismos más notorios. Para contribuir a esta labor de educación social, en una era en la que la ciencia es cuestión de Estado, incluyo aquí este concepto.

El nacimiento de la Gran Ciencia tiene que ver especialmente con la física de las partículas elementales (ahora denominada de altas energías>. Buscando instrumentos que fuesen capaces de suministrar cada vez mayor energía a partículas atómicas, para que éstas pudiesen chocar con el núcleo atómico, lo que a su vez debería permitir ahondar en su estructura y en la de los elementos que lo forman —esto es lo que había hecho Ernest Rutherford (1871-1937) en 1911 cuando propuso su modelo atómico: lanzó núcleos de helio sobre láminas delgadas de oro—, físicos británicos primero, y estadounidenses después abrieron la puerta de la Gran Ciencia.

En 1932, John Cockcroft (1897-1967) y Ernest Walton (1903-1995), del Laboratorio Cavendish en Cambridge, utilizaban un multiplicador voltaico que alcanzaba los 125.000 voltios para observar la desintegración de átomos de litio. En realidad no era una gran energía: cuatro años antes Merle Tuve (1901-1982) había utilizado un transformador inventado por Nikola Tesla (1856-1943) para alcanzar, en el Departamento de Magnetismo Terrestre de la Carnegie Institution de Washington, los tres millones de voltios.

En 1937, Robert Van de Graaff (1901-1967) logró construir generadores de cerca de cinco metros de altura, que producían energías de cinco millones de voltios. Fue, sin embargo, Ernest O. Lawrence (1901-1958) el principal promotor de la Gran Ciencia en la física de partículas elementales. A partir de 1932, Lawrence comenzó a construir ciclotrones, máquinas circulares en las que las denominadas partículas elementales iban ganando energía durante cada revolución, lo que les permitía acumular suficiente energía. El primer ciclotrón medía apenas treinta centímetros de diámetro. Pero aquello sólo era el comienzo: en 1939 Berkeley ya contaba con un ciclotrón de metro y medio de diámetro, en el que los electrones podían alcanzar una energía equivalente a dieciséis millones de voltios (16 Mev). Y en septiembre de ese año Lawrence anunciaba planes para construir uno nuevo que llegase a los 100 MeV.

En abril de 1940, la Fundación Rockefeller donaba 1,4 millones de dólares para la construcción de aquella máquina, el último de sus ciclotrones, que iba a tener más de cuatro metros y medio de diámetro. En la actualidad los grandes aceleradores tienen kilómetros de radio, y cuestan miles de millones de dólares. Aquí tenemos una de las características que con mayor frecuencia se encuentra en la Gran Ciencia: mayor tamaño, mayor potencia, mayor costo económico. No sólo es el tamaño de las máquinas implicadas lo que caracteriza a la Gran Ciencia. Alrededor de los ciclotrones de Lawrence se agrupaban físicos, químicos, ingenieros, médicos y técnicos de todo tipo. En varios sentidos el laboratorio de Berkeley se parecía más a una factoría que a los gabinetes y laboratorios de otras épocas, el de Lavoisier (1743-1794) en París, el de Liebig (1803-1873) en Giessen o el de Maxwell (183 1-1879) en Cambridge.

La segunda guerra mundial dio un nuevo impulso a este modo, «gigantesco», de organización de la investigación científica. Para llevar adelante proyectos como el del radar o el Manhattan se necesitaban científicos, por supuesto, pero no bastaba sólo con ellos. Era imprescindible también disponer, además de otros profesionales (ingenieros, muy en particular), de una estructura organizativa compleja, en la que no faltase el modo de producción industrial. Los grandes recursos económicos que requiere la Gran Ciencia no siempre están a disposición de naciones aisladas. En la Europa posterior a la segunda guerra mundial, la construcción de grandes aceleradores de partículas era demasiado costosa como para que cualquier nación pudiese permitirse el lujo de construir uno lo suficientemente potente como para poder aspirar a producir resultados científicos de interés. Así nació el Centre Européen de Recherches Nucléaires (CERN) de Ginebra, fundado en 1952 por doce naciones europeas. La Gran Ciencia fomentaba en este caso la internacionalización.

De hecho, el CERN sirvió de experiencia de asociación política europea; el ambiente político estaba listo para este tipo de experiencias, que culminarían años más tarde en la creación de la Comunidad Económica Europea, que con el tiempo se convertiría en la actual Unión Europea. La Gran Ciencia puede llegar a ser tan grande que incluso naciones del potencial económico e industrial de Estados Unidos se vean obligadas a abrir algunos de sus proyectos científicos a otros países. Esto ha ocurrido, por ejemplo, con el telescopio espacial Hubble construido por la Natiorial Aeronautics and Space Administration (NASA).

El telescopio Hubble fue lanzado el 24 de abril de 1990, utilizando para ello una de las aeronaves Discovery, pero la idea de poner un gran telescopio en órbita alrededor de la Tierra para evitar la pantalla de radiaciones que es la atmósfera terrestre había surgido cuatro décadas antes. En esos cuarenta años hubo que vencer muchas dificultades; algunas de carácter técnico, por supuesto, pero otras de orden financiero y político. En 1974, por ejemplo, la Cámara de Representantes estadounidense eliminó del presupuesto el proyecto del telescopio, a pesar de que ya había sido aprobado en 1972. El motivo es que era demasiado caro. Tras muchas gestiones se llegó al compromiso de que el proyecto saldría adelante únicamente si se internacionalizaba, involucrando a la Agencia Espacial Europea (European Space Agency; ESA).

Por supuesto, no se dio este paso por un repentino ataque de fervor ecuménico de los representantes estadounidenses, sino porque la ESA se debería hacer cargo del quince por ciento del presupuesto, con lo que éste se abarataría sustancialmente para Estados Unidos. Finalmente la agencia europea, formada por un consorcio de naciones entre las que se encuentra España, participó en el proyecto, encargándose en particular de la construcción de una cámara para fotografiar objetos que emiten una radiación débil. En más de un sentido se puede decir que el mundo de las naciones individuales se está quedando demasiado pequeño para la Gran Ciencia. Una muestra más de esa tendencia, la globalización, que parece estar caracterizando al mundo de finales del siglo XX.

Concepto de Momento Flector o Cupla Generos de Palancas Ejemplos

CONCEPTO DE MOMENTO FLECTOR – LAS PALANCAS –

Para abrir una puerta le “aplicamos” una fuerza y la puerta gira sobre sus bisagras. El efecto de giro de la fuerza que “aplicamos” es su momento. El lugar alrededor del cual se produce la rotación, en este caso las bisagras, es el eje. Si empujamos la puerta apoyándonos en el borde la podremos abrir muy fácilmente; si en cambio empujamos en algún lugar cercano a las bisagras, el esfuerzo tendrá que ser mayor.

Esto se debe a que una fuerza pequeña, actuando a gran distancia del eje, puede tener el mismo momento que una fuerza de gran intensidad que actúe cerca del eje. Definimos el momento de una fuerza como el producto de la misma por la distancia entre la línea de acción de la fuerza y el eje (Momento = fuerza X distancia). Las unidades de momento son las correspondientes a longitud y fuerza, ya sea kilogramo-metro o centímetro-gramo, por ejemplo.

Observando las ilustraciones, para el caso de los niños en el “sube y baja” la distancia entre la línea de acción de las fuerzas (los pesos de cada uno) y el eje de rotación es la distancia entre el niño y el eje o apoyo; pero en el caso del pedal de bicicleta, la distancia no es la longitud de la palanca del pedal. Esto lo decimos para recordar que el concepto físico de momento requiere considerar siempre la distancia a la recta de acción de la fuerza.

Cuando el efecto de giro de una fuerza tiende a mover un objeto en sentido opuesto al de las agujas de un reloj, solemos decir, convencionalmente, que se trata de un momento positivo. El contrario, negativo.

1° Género 2° Género 3° Género

E¡ pie del ciclista ejerce una fuerza de 20 Kg. La distancia entre el eje y la línea dé acción de la fuerza, en éste caso vertical, es 8 cm. y no 16 cm., distancia entre el eje y el pedal. El momento de la fuerza es 20 Kg. x 0,08 m. = 2,4 Kgm.

El “sube y baja” está en equilibrio y perfectamente horizontal. Comprobemos el equilibrio. El momento positivo es 20 Kg. x 0,50 m. = 10 Kgm. El momento negativo es 10 Kg. x 1 m=10 Kgm.

El mango del rastrillo se mueve en sentido opuesto al de las agujas del reloj, porque el hombre le ha aplicado un momento positivo. Para detener el rastrillo habría que aplicarle Un momento negativo de igual intensidad.

Un objeto sometido a varias fuerzas estará en equilibrio cuando los momentos positivos y negativos se anulen entre sí, es decir, que la suma de los momentos positivos debe ser igual a la suma de los momentos negativos.

viga con varias fuerzas

LAS PALANCAS

Las palancas son máquinas simples, aparatos que permiten emplear las fuerzas disponibles del modo más conveniente. La palanca más simple es una barra rígida que puede girar libremente alrededor dé un punto fijo, el apoyo, y es sorprendente lo que un dispositivo tan sencillo puede conseguir.

Si dispusiera de los elementos adecuados un hombre podría levantar por sí solo un automóvil, por ejemplo, cosa totalmente imposible sin esa herramienta. Cuando hablamos de palancas debemos definir tres términos: el peso o carga que es levantado o movido se denomina resistencia; la fuerza utilizada para moverlo es la potencia —ambas son fuerzas y “se miden en Kg.— y la ventaja mecánica la relación entre la resistencia y la potencia.

resistencia

Ventaja mecánica = —————
potencia Por ejemplo, si para levantar una carga de 100 Kg. debemos aplicar una potencia de 25 Kg. la ventaja mecánica o brazo de palanca de esa palanca sería 4. Cuanto mayor sea la ventaja mecánica tanto mayores resistencias podrán moverse con la misma potencia. Debemos insistir, sin embargo, en que la palanca no crea energía, como no la crea ninguna máquina (en realidad la consumen, por razones que explicaremos más adelante), simplemente permiten que se use la disponible de la mejor manera.

Por conveniencia, las palancas a menudo son divididas en tres géneros: primera, segunda y tercera. En realidad no hay ninguna diferencia en el principio en que se basan y a todas ellas se aplican los mismos cálculos. La división considera simplemente las posiciones relativas de la potencia, la resistencia y el apoyo.

Las palancas no crean energía. ¿Cómo, consiguen entonces mover cargas que de otro modo sería imposible mover? La respuesta es sencilla: si bien mueven cargas más grandes, no las trasladan tanto como esas cargas se trasladarían si el esfuerzo se hubiera aplicado directamente.

En otras palabras: la persona que aplica una potencia de 25 Kg. para mover una resistencia de 100 Kg. deberá mover la potencia 4 cm. por cada centímetro ..r consiga mover la resistencia. En el caso de palancas en las cuales la potencia debe ser mayor que la resistencia, la potencia debe moverse menos que la resistencia.

ejemplo de palanca

Momento positivo = momento negativo
30 cm. x 100 Kg. =120 cm. x potencia
3.000 Kg. = 120 x potencia       ====> potencia=25 Kg.
resistencia
ventaja mecánica = —————– = 100/25= 4
potencia
Al usar esta palanca, la potencia requerida se reduce a lacuarta parte de la que se necesitaría para levantar la piedra directamente del suelo.

Géneros de palanca: En la palanca de primer género el apoyo está situado entre la potencia y la resistencia. Un ejemplo sencillo es el “sube y baja”. Empleando este tipo de palanca podemos mover objetos que de otro modo sería totalmente imposible mover. Como se ve en el dibujo, la potencia y la resistencia se mueven en sentidos opuestos, uno hacia abajo y el otro hacia arriba. Ahora bien, si el apoyo estuviera situado exactamente a igual distancia de la potencia que de la resistencia, la ventaja mecánica sería igual a uno (la potencia tendría que ser igual a la resistencia a mover).

Si en cambio el apoyo estuviera más cerca de la resistencia que de la potencia la ventaja mecánica aumentaría. De esto puede deducirse que un factor vital en el proyecto de una palanca es la distancia del apoyo tanto a la potencia como a la resistencia. La ecuación que gobierna este factor es: Resistencia x distancia al apoyo = potencia x distancia al apoyo.

Si la resistencia es grande, entonces el apoyo debe estar más cerca de ella que de la potencia. Esta ecuación se aplica a “toda” clase de palancas.

Si la resistencia tiende a mover a la palanca en el sentido de las agujas del reloj, entonces la potencia tendrá que tirar en sentido opuesto. Las dos fuerzas ejercerán “momentos” opuestos. (El momento es igual al producto de la fuerza por la distancia desde su recta de acción al apoyo).Para que ambos momentos se equilibren el momento de la potencia debe ser igual al de la resistencia. Ésta es otra forma de expresar la ecuación planteada más arriba. Para que la potencia “mueva” la resistencia, en realidad será necesaria una tuerza ligeramente mayor.

En el segundo género de palancas el apoyo está en un extreme y la potencia en el otro, la resistencia entre ambos. Un ejemplo cotidiano lo constituye lo carretilla (ligeramente complicado por la adición de una rueda en el apoyo). La carga puede ser levantada, alzando las varas de la carretilla. Aquí también la ventaja mecánica es mayor cuanto mayor sea la distancia del apoyo a la potencia y cuanto menor sea la del apoyo a la resistencia. En el tercer género de palancas se presenta e! caso de que la potencia debe ser mayor que la resistencia; su ventaja mecánica es menor que uno. Aquí el apoyo se encuentra en un extremo y la resistencia en el otro, estando la potencia en el medio.

El brazo humano usa este tipo de palanca actuando el codo como apoyo; la resistencia será la carga que sostiene la mano y la potencia, él esfuerzo realizado por la contracción del músculo bíceps. Obsérvese que en el estudio de la palanca no se debe atender a la magnitud de las fuerzas, sino a la de sus momentos.

Por esto pudo decir Arquímedes: “Dadme una palanca y un punto de apoyo y moveré el mundo”. Con lo cual quería indicar que prolongando suficientemente el brazo de la palanca podía disminuir en igual proporción la correspondiente fuerza. Aunque de ordinario se emplean brazos de potencia mayores que los de resistencia, con el objeto de favorecer el esfuerzo (palancas de presión), no dejan de usarse brazos de potencia cortos y de resistencia largos, para obtener velocidades mayores que las de !o potencia (palancas de velocidad). Compárense las tijeras de cortar planchas metálicas con las de cortar papel, y obsérvese su diferente construcción y manera de actuar.

Descubrimiento de Nuevos Metales: Fosforo Cobalto y Niquel

NUEVOS METALES EN EL SIGLO XVII

A pesar de todas estas trampas, la «era del flogisto» produjo algunos muy importantes descubrimientos. Un alquimista de aquel tiempo descubrió un nuevo elemento: el primer (y último) alquimista que, de una forma definida, identificó un elemento y explicó exactamente cuándo y cómo lo había encontrado. El hombre fue un alemán llamado Hennig Brand.

Algunas veces se le ha llamado el «último de los alquimistas», pero en realidad hubo muchos alquimistas después de él. Brand, al buscar la piedra filosofal para fabricar oro, de alguna forma se le ocurrió la extraña idea de que debía buscarla en la orina humana.

Recogió cierta cantidad de orina y la dejó reposar durante dos semanas. Luego la calentó hasta el punto de ebullición y quitó el agua, reduciéndolo todo a un residuo sólido. Mezcló tampoco de este sólido con arena, calentó la combinación fuertemente y recogió el vapor que salió de allí.

Cuando el vapor se enfrió, formó un sólido blanco y cerúleo. Y, asómbrense, aquella sustancia brillaba en la oscuridad. Lo que Brand había aislado era el fósforo, llamado así según una voz griega que significa «portador de luz».

Relumbra a causa de que se combina, espontáneamente, con el aire en una combustión muy lenta. Brand no comprendió sus propiedades, naturalmente, pero el aislamiento de un elemento (en 1669) resultó un descubrimiento espectacular y causó sensación. Otros se apresuraron a preparar aquella sustancia reluciente. El propio Boyle preparó un poco de fósforo sin conocer el precedente trabajo de Brand. El siguiente elemento

no fue descubierto hasta casi setenta años después. Los mineros del cobre en Alemania, de vez en cuando encontraban cierto mineral azul que no contenía cobre, como les ocurría, por lo general, a la mena azul del cobre.

Los mineros descubrieron que este mineral en particular les hacía enfermar a veces (pues contenía arsénico, según los químicos descubrieron más tarde). Los mineros, por tanto, le llamaron “cobalto”, según el nombre de un malévolo espíritu de la tierra de las leyendas alemanas. Los fabricantes de cristal encontraron un empleo para aquel mineral: confería al cristal un hermoso color azul y una industria bastante importante creció con aquel cristal azul. En la década de 1730, un médico sueco llamado Jorge Brandt empezó a interesarse por la química del mineral.

Lo calentó con carbón vegetal, de la forma comente que se usaba para extraer un metal de un mineral, y, finalmente, lo condujo a un metal que se comportaba como el hierro. Era atraído por un imán: la primera sustancia diferente al hierro que se había encontrado que poseyera esta propiedad. Quedaba claro que no se trataba de hierro, puesto que no formaba  oxidación de tono pardo rojizo, como lo hacía el hierro.

Brandt decidió que debía de tratarse de un nuevo metal, que no se parecía a ninguno de los ya conocidos. Lo llamó cobalto y ha sido denominado así a partir de entonces. Por tanto, Brand había descubierto el fósforo y Brandt encontrado el cobalto (el parecido de los apellidos de los dos primeros descubridores de elementos es una pura coincidencia). A diferencia de Brand, Brandt no era alquimista. En realidad, ayudó a destruir la Alquimia al disolver el oro con ácidos fuertes y luego recuperando el oro de la solución. Esto explicaba algunos de los, trucos que los falsos alquimistas habían empleado. Fue un discípulo de Brandt el que realizó el siguiente descubrimiento.

Axel Fredrik Cronstedt se hizo químico y también fue el primer mineralógolo moderno, puesto que fue el primero en clasificar minerales de acuerdo con los elementos que contenían. En 1751, Cronstedt examinó un mineral verde al que los mineros llamaban kupfernickel («el diablo del cobre»). Calentó los residuos de este mineral junto con carbón vegetal, y también él consiguió un metal que era atraído por un imán, al igual que el hierro y el cobalto. Pero mientras el hierro formaba compuestos, pardos y el cobalto azules, este metal producía compuestos que eran verdes. Cronstedt decidió que se trataba de un nuevo metal y lo llamó níquel, para abreviar lo de kupfernickel.

Se produjeron algunas discusiones respecto de si el níquel y el cobalto eran elementos, o únicamente compuestos de hierro y arsénico. Pero este asunto quedó zanjado, en 1780, también por otro químico sueco, Torbern Olof Bergman. Preparó níquel en una forma más pura que lo que había hecho Cronstedt, y adujo mi buen argumento para mostrar que el níquel y el cobalto no contenían arsénico y que eran, por lo contrario, unos nuevos elementos. Bergman constituyó una palanca poderosa en la nueva química y varios de sus alumnos continuaron el descubrimiento de nuevos elementos.

Uno de éstos fue Johan Gottlieb Gahn, que trabajó como minero en su juventud y que siguió interesado por los minerales durante toda su vida. Los químicos habían estado trabajando con un mineral llamado «manganeso», que convertía en violeta al cristal. («Manganeso» era una mala pronunciación de «magnesio», otro mineral con el que lo habían confundido algunos alquimistas.) Los químicos estaban seguros que el mineral violeta debía contener un nuevo metal, pero no fueron capaces de separarlo calentando el mineral con carbón vegetal.

Finalmente, Gahn encontró el truco, pulverizando el mineral con carbón de leña y calentándolo con aceite. Como es natural, este metal fue llamado manganeso. Otros discípulo de Bergman, Pedro Jacobo Hjelm, realizó mucho mejor este mismo truco con una mena a la que llamaron «molibdena». Este nombre deriva de una voz griega que significa «plomo», porque los primeros químicos confundieron este material con mena de plomo. Hjelm extrajo del mismo un metal blanco argentado, el cual, ciertamente, no era plomo.

Este nuevo metal recibió el nombre de «molibdeno». El tercero de los discípulos de Bergman descubridores de elementos no fue sueco. Se trataba del español don Fausto de Elhúyar. Junto con su hermano mayor, José, estudió una mena pesada llamada «tungsteno» (palabra sueca que significa «piedra pesada»), o «volframio». Calentando la mena con carbón vegetal, los hermanos, en 1783, aislaron un nuevo elemento al que, en la actualidad, según los países, se denomina tungsteno o volframio. Bergman tuvo todavía una conexión indirecta con otro nuevo metal.

En 1782, un mineralógolo austríaco, Franz Jo.ef Müller, separó de una mena de oro un nuevo metal que tenía algún parecido con el antimonio. Envió una muestra a Bergman, como hacían los más importantes mineralógolos de su época. Bergman le aseguró que no era antimonio. En su momento, el nuevo metal recibió el nombre de telurio, de una voz latina que significaba “tierra”. Mientras todos estos elementos hablan sido descubiertos en Europa, también iba a ser descubierto uno en el Nuevo Mundo.

En 1748, un oficial de Marina español llamado Antonio de Ulloa, cuando viajaba de Colombia a Perú en una expedición científica, encontró unas minas que producían unas pepitas de un metal blanquecino. Se parecía algo a la plata, pero era mucho más pesado. El parecido con la plata (y tomando como base esta palabra española) hizo que se diese a este nuevo metal el nombre de platino. Al regresar a España, Ulloa se convirtió en un destacado científico y fundó el primer laboratorio en España dedicado a la Mineralogía.

También se hallaba interesado por la Historia Natural y por la Medicina. Además, acudió a Nueva Orleáns como representante del rey español, Carlos III, cuando España adquirió la Luisiana, que antes pertenecía a Francia, tras la Guerra India, en Estados Unidos. Incluso los antiguos metales conocidos por los alquimistas tuvieron una nueva trayectoria en aquellos primeros tiempos de la Química moderna. En 1746, un químico alemán, Andreas Sigismund Marggraff, preparó cinc puro y describió cuidadosamente sus propiedades por primera vez; por tanto, se le ha atribuido el descubrimiento de este metal.

Probablemente, Marggraff es más conocido, sin embargo, por encontrar azúcar en la remolacha. Con un microscopio detectó pequeños cristales de azúcar en aquel vegetal, y, al mismo tiempo, proporcionó al mundo una nueva fuente de azúcar. Marggraff fue el primero en emplear el microscopio en la investigación química. Lo que Marggraff había hecho con el cinc, lo realizó un químico francés, Claude-François Geoffrey, con el antiguo metal del bismuto. En 1753, aisló el metal y describió cuidadosamente su comportamiento, por lo que, algunas veces, se le ha atribuido el descubrimiento de este elemento.

LISTA DE ELEMENTOS QUÍMICOS DESCUBIERTOS EN EL SIGLO XVII: (Era del Flogisto)

Fósforo                             1669 Brand
Cobalto                             1735 Brandt
Platino                              1748 Ulloa
Níquel                               1751 Cronstedt
Hidrogeno                          1766 Cavendish
Nitrógeno                           1772 Rutherford
Oxígeno                             1774 Priestley
Cloro                                 1774 Scheele
Manganeso                         1774 Gahn
Molibdeno                           1781 Hjelm
Telurio                               1782 MüIIer Juan José de
Tungsteno                          1783 Elhúyar Fausto de Elhúyar

Fuente Consultada: En Busca de los Elementos de Isaac Asimov

USO DE LOS METALES EN LA INDUSTRIA

Aluminio Se usa desde hace pocas décadas y ocupa el tercer tugar detrás del hierro y el cobre. Utensilios, aleaciones livianas para aviación, cables eléctricos de alta tensión.
Antimonio: Endurece el plomo de los tipos de imprenta, productos medicinales. Ignífugos. Se dilata al enfriar.
Arsénico Insecticidas, productos medicinales, industria química.
Berilio Pigmentos, cristales, fuegos artificiales. Berilio Único metal liviano con alto punto de fusión, ventana para rayos X, industrias atómicas, aleaciones con cobre, resistentes a vibraciones externas.
Bismuto Aleaciones de muy bajo punto de fusión (37°C); productos farmacéuticos.
Boro Ácido bórico. Endurecimiento del acero.
Cadmio Endurecimiento de los conductores de cobre. Aleaciones de bajo punto de fusión. Galvanoplastia.
Calcio Materiales de1 construcción, sales diversas.
Cesio Materiales refractarios livianos, semiconductores, aleaciones duras y refractarias. Cesio Células fotoeléctricas.
Cinc Galvanoplastia,- pilas.
Circonio Usos atómicos, aceros, lámparas-flash.
Cobalto Piezas de cohetes y satélites, herramientas para altas temperaturas, radioisótopos.
Cobre Conductores eléctricos, bronces diversos.
Columbio Sólo en laboratorio. Duro y pesado.
Cromo Acero inoxidable, galvanoplastia. Estaño Envoltorios, soldaduras, bronces.
Estroncio Fuegos artificiales, refinerías de azúcar.
Galio Termómetros para alta temperatura (funde antes de los 35° y hierve a más de 1.900°C.
Germanio Transistores, válvulas termoiónicas.
Hafnio Filamentos de tungsteno.
Hierro Acero, construcción. El metal por excelencia.
Indio Galvanoplastia, aleaciones resistentes a los esfuerzos y la corrosión. –
Litio Aleaciones ligeras, pilas atómicas, síntesis orgánica.
Magnesio Aleaciones ligeras, productos medicinales, síntesis orgánicas.
Manganeso Aceros especiales (extrae el oxígeno y el azufre de la mezcla, dando un metal limpio y sólido). Usos químicos y eléctricos.
Mercurio Termómetros, barómetros, aleaciones dentarias (amalgamas).
Molibdeno Aceros especiales.
Níquel Bronces blancos, monedas, revestimientos de metales.
Oro Alhajas, monedas, espejos telescópicos.
Osmio Metal pesado para aleaciones de la familia del platino.
Paladio Aleaciones con el platino, aceros, catálisis química.
Plata Espejos, alhajas, bronces.
Platino Catálisis, contactos eléctricos, alhajas.
Plomo Aleaciones para soldaduras, cañerías, pinturas.
Plutonio Radiactivo, bomba atómica.
Polonia Radiactivo, compuestos luminosos.
Potasio Metal alcalino, fertilizantes.
Radio Radiactivo, medicina, pinturas luminosas.
Renio Pares termoeléctricos, sustituto del cromo en los aceros.
Rodio Aleaciones, cátodos, pares termoeléctricos.
Rubidio Productos medicinales.
Selenio Células fotoeléctricas, baterías solares.
Silicio Vidrio, aleaciones duras y refractarias.
Sodio Jabones, sal de mesa, bicarbonato de sodio.
Talio Compuestos químicos venenosos, insecticidas, raticidas
Tántalo Filamentos para lámparas, aleaciones refractarias.
Tecnecio Primer elemento producido por él hombre.
Teluro Semiconductores, fotopilas, aleaciones diversas.
Titanio Pigmentos, compuestos muy refractarios, aceros especiales.
Torio Radiactivo, aleaciones.
Tungsteno Filamentos para lámparas, herramientas duras.
Uranio Radiactivo, pilas atómicas.
Vanadio: Aceros Especiales

AMPLIACIÓN DEL TEMA
ALGUNAS GENERALIDADES SOBRE EL FÓSFORO:

Fue descubierto por Brandt en 1669 mientras buscaba la piedra filosofal cuyo objeto era transformar cualquier sustancia en oro. Obtuvo fosfato a partir de la orina, luego de un proceso laborioso. Pero el primer trabajo publicado con cierto fundamento científico pertenece a D. Krafft. El fósforo, como elemento, fue reconocido por Lavoisier en 1777.

El fósforo no se encuentra libre en la naturaleza, pero sí combinado en forma de compuestos inorgánicos como la fosforita (fosfato de calcio) y la fluorapatíta (fluofosfato de calcio).

El fósforo es el principal constituyente de los huesos y dientes; además se encuentra formando parte de los tejidos animales y vegetales y constituye parte de las fosfoproteínas y otros compuestos orgánicos.

La sangre, la yema de huevo, la leche, los nervios y el cerebro contienen fósforo en forma de lecitinas. Por esta razón, los animales y las plantas necesitan fósforo para desarrollarse.
Una parte del fósforo contenido en el organismo se elimina diariamente por la orina y los excrementos, en la proporción de 2 gramos cada 24 horas.

El uso más común del fósforo consiste en la fabricación de cerillas, las cuales son de dos tipos: comunes y de seguridad. Las primeras encienden por frotamiento sobre cualquier superficie áspera y se componen de un pabilo de algodón, madera o cartón, cuya extremidad está recubierta por una sustancia combustible compuesta con fósforo o sulfuro de fósforo, como sustancia inflamable, bióxido de plomo o clorato de potasio, como materia oxidante, dextrina y una sustancia colorante.

Los fósforos de seguridad, llamados también cerillas suecas, sólo contienen una mezcla oxidante, sin fósforo. Este último elemento se coloca sobre la superficie del raspador de la caja, de modo que para producir la llama es imprescindible que ambas partes se pongan en contacto. La mezcla con que se recubre el palillo contiene clorato de potasio como sustancia oxidante, trisulfuro de antimonio, cofa y algo de creta para aumentar la masa. La superficie del raspador contiene fósforo rojo, trisulfuro de diantimonio y vidrio para aumentar la aspereza.

Los abonos fosfatados son muy útiles en la agricultura. Se trata de una serie de sustancias naturales o artificiales que se agregan a las tierras agotadas para reponer en ellas las sustancias desaparecidas. Generalmente esas tierras han perdido (por excesivo cultivo o por acarreos), algunos de los elementos químicos indispensables, como el nitrógeno, fósforo, potasio o calcio, lo que las imposibilita para la plantación o la siembra.

Uno de los abonos más importantes por su riqueza en fósforo y calcio, es el fosfato neutro de calcio. Lamentablemente el fosfato tricoideo (como los huesos) no puede utilizarse porque es prácticamente insolubfe y entonces las plantas no pueden asimilarlo. Debe por lo tanto tratarse con ácido sulfúrico para convertirlo en difosfato monocálcico soluble.

Los huesos molidos (fosfato tricálcico), tratados con ácido sulfúrico, se tornan en sustancias solubles, es decir en fosfatos y sulfatos. Mezclados constituyen el abono denominado superfosfato de calcio.

En los laboratorios de las cátedras de química, durante las lecciones acerca del fósforo, se realizan importantes experimentos. El profesor muestra un trozo de fósforo rojo y otro blanco y hace notar sus diferencias de color, consistencia, solubilidad en sulfuro de carbono, fusibilidad, etc. Para esta última propiedad, se corta debajo del agua con un cortaplumas, un pedazo de fósforo blanco y otro de fósforo rojo. Sometidos ambos a la temperatura de 55°C, el fósforo blanco funde, en tanto que el rojo permanece inalterable.

Para demostrar la oxidación del fósforo en presencia del aire, se disuelve un trozo de fósforo blanco en sulfuro de carbono, se impregnan papeles con esta solución y se dejan secar sobre un trípode; evaporado el solvente, el fósforo se inflamará y con él, los papeles.

La oxidación en presencia del oxígeno: se echa un trozo dé fósforo en agua y se funde al baño de María; se hace circular una corriente de aire y se comprobará la inflamación.

La fosforescencia del fósforo se comprueba de la siguiente manera: se toma un matraz de un litro, se llena con agua hasta la mitad, y se coloca en su interior un trozo de fósforo blanco. Se lleva el agua a ebullición, se oscurece el cuarto y se observará, especialmente en el cuello del matraz, el fenómeno de la fosforescencia.

La diferencia de inflamabilidad entre el fósforo blanco y el rojo se comprueba como sigue: sobre una chapa de cobre de 30 centímetros de largo, dispuesta sobre un trípode, se coloca en cada extremo un trocito de fósforo blanco y rojo, respectivamente; se calienta el centro de la chapa con llama baja de un mechero Bunsen y se podrá observar la inflamación casi espontánea del primero y tardía en el segundo. Para comprobar la acción del cloro sobre el fósforo, se introduce en un frasco lleno de cloro una capsulita que contenga un trozo de fósforo blanco; se observa la inflamación espontánea del fósforo.

Los envenenamientos por el fósforo blanco, constituyen un riesgo para los obreros que trabajan en las fábricas que preparan el producto y de los que lo manejan y transforman.

Las fábricas de cerillas deben estar .muy bien ventiladas, pues las emanaciones fosforadas que, sin esa precaución, podrían aspirarse, intoxicarían más o menos a los operarios. Éstos deben cuidar mucho de la higiene, no comer sin lavarse bien las manos y cambiarse las ropas de trabajo. Será preciso que no dejen su comida dentro del local de la fábrica y a la hora del almuerzo buscarán en el exterior un lugar aireado.
Una dolencia muy común en los que trabajan con el fósforo, es la denominada necrosis fosfórica, que ataca al hueso dé la mandíbula y que suele necesitar operación quirúrgica.

Cuando sobrevienen envenenamientos por ingestión de fósforo, mientras llega el médico, puede administrarse una solución de 2 gramos de sulfato de cobre en un litro de agua, con frecuencia y abundancia, pues el cobre se depositará sobre las partículas de fósforo haciéndolo inofensivo o debilitando considerablemente su acción. Suprímase en absoluto la leche, los aceites y las grasas.

La fosfamina, que es un fósforo gaseoso, se prepara como sigue: en un baloncito de unos 300 ce. se ponen 20 ce. de potasa cáustica en solución acuosa concentrada y seis u ocho blobuliílos de fósforo; se cierra el baloncito con un tapón bihoradado que trae dos tubos acodados, uno estrecho que se sumerge en la potasa y otro ancho y largo (de desprendimiento), cuyo extremo anterior está doblado en U y el interior termina junto al tapón. Se hace pasar una corriente de hidrógeno y el tubo ancho se sumerge en un recipiente con agua caliente. Se calienta el baloncito hasta una ebullición moderada. Se desprende fosfamina.

Grande es la importancia que tiene en todo el universo la fabricación del fósforo, no tan sólo aplicable a la preparación de cerillas, abonos, etc., sino también como agente reductor.

Nanociencia Nanotecnologia Que es la Nanociencia? Aplicaciones de la

Uno de los avances mas espectaculares llevados a cabo en Física e Ingeniería en años recientes es el experimentado por la nanotecnología: la habilidad de diseñar, controlar y modificar materiales a nivel cuasi-microscópico ó “mesoscópico”. La nanotecnología nos promete la posibilidad —largamente soñada— de influir en las propiedades de los materiales con el fin de producir materiales “inteligentes” para todo tipo de aplicaciones.

Es ahora frecuente ver en las más prestigiosas revistas científicas reportes sobre avances en diseño de microcircuitos, microestructuras artificiales y máquinas microscópicas. Ahora es posible el crecimiento sistemático y controlado de pequeñas estructuras artificiales compuestas de varia capas delgadas de materiales diferentes, algunas de unos pocos átomos de ancho mediante técnicas, tales como los “haces moleculares epitaxiales”.

A escala comercial, quizás la aplicación mas espectacular a la fecha es el uso de la magnetoresistencia gigante, descubierta en 1998, en las cabezas lectoras de la mayoría de los discos duros de los computadores actuales.

Estos y otros avances relacionados, han provocado un explosivo interés en el tema y el término nanotecnología se ha convertido en palabra clave de muchas propuestas de investigación en ciencia de materiales e ingeniería.

ORÍGENES: E 29 de diciembre de 1959, por ejemplo, el físico Richard Feynman -uno de los científicos más importantes del siglo XX- miró con determinación a si audiencia en una conferencia en el Instituto de Tecnología de California EE.UU., se aclaró la garganta y dijo: “Hay mucho lugar allá abajo” y lanzó no uno, sino dos desafíos a los presentes en el auditorio: le daría 1.000 dólares a aquel capaz de hacer un motor más pequeño que 8 mm3 y a quien lograra escribir los 24 volúmenes de la Enciclopedia Británica en la cabeza de un alfiler, es decir, reducir unas 25.000 veces un texto.

Casi sin querer  (o saberlo), este premio Nobel de física había abierto las puertas de lo desconocido. Había dado a luz un nuevo campo científico, de dominio íntimos, liliputienses, vírgenes: habían nacido las nanociencias.

Richard Feynman

La electrónica había encontrado su camino en la miniaturización.

Y Feynman, todo un provocador, estaba seguro de que se podía bajar incluso unos pisos más: en teoría, nada impedía manipular conjuntos de átomos, reordenarlos con suma precisión como si fueran ladrillos 1.000 millones de veces más pequeños que un metro, un “nanómetro”, o sea, el tamaño de un virus.

Y hacerlo, pese a que, como muchos comprobaron más tarde, el comportamiento de la materia cambia por debajo de un cierto tamaño.

Las leyes que rigen son distintas. El tamaño importa: en este mundo ínfimo donde las cosas no pesan casi nada, la gravedad mucho no importa. (Fuente: Todo lo que necesitas saber sobre ciencias, Federico Kukso)

La opinión pública y la dirigencia política desconocen casi por completo el desafío de las nanotecnologias, portadoras de muchas más esperanzas y peligros que todas las tecnologías hasta hoy conocidas.

Su difusión potencial preocupa a los ciudadanos, mientras las industrias prometen el advenimiento de materiales milagrosos. Como ya ocurrió con los organismos genéticamente modificados (OGM), el ritmo de desarrollo de sus aplicaciones es más rápido que el control de los peligros que encierran.

Qué tienen en común un neumático inteligente y una crema sol milagrosa? ¿O una prenda de vestir isotérmica, cuyo color cambia con nuestro humor, y una pintura resistente a las manchas? ¿O un “acero” tan liviano como el plástico y un interruptor sin cable? ¿O las medias que no toman olor y la destrucción selectiva de una célula cancerosa? En todos los casos, se trata de aplicaciones de la nanotecnología.

Hoy se sabe cómo producir esos objetos cuyo tamaño está en el orden del millonésimo de milímetro (0,000001mm). Constituidos por una pequeña cantidad de átomos o de moléculas, están dotados de extraordinarias características físicas, químicas o biológicas que les otorgan resistencia, flexibilidad, liviandad o capacidad de almacenamiento de información. Esta confluencia de la materia, la electrónica y la biología se presta a aplicaciones informáticas, industriales, ambientales y médicas.

El significado de la “nano” es una dimensión: 10 elevado a -9.

Esto es: 1 manómetro = 0,000000001 metros. Es decir, un manómetro es la mil millonésima parte de un metro, o millonésima parte de un milímetro. También: 1 milímetro = 1.000.000 manómetros. Una definición de nanociencia es aquella que se ocupa del estudio de los objetos cuyo tamaño es desde cientos a décimas de manómetros.

Hay varias razones por las que la Nanociencia se ha convertido en un importante campo científico con entidad propia. Una es la disponibilidad de nuevos instrumentos capaces de “ver” y “tocar” a esta escala dimensional. A principios de los ochenta fue inventado en Suiza (IBM-Zurich) uno de los microscopios capaz de “ver” átomos. Unos pocos años más tarde el Atomic Force Microscope fue inventado incrementando las capacidades y tipos de materiales que podían ser investigados…

En respuesta a estas nuevas posibilidades los científicos han tomado conciencia de potencial futuro de la actividad investigadora en estos campos. La mayor parte de los países han institucionalizado iniciativas para promover la nanociencia y la nanotecnología, en sus universidades y laboratorios.

Así, la más extendida revolución tecnológica que haya conocido la humanidad está tal vez en vías de nacer en laboratorios de Tokio, Berkeley o Grenoble. Revolución, porque las nanotecnologias permiten eliminar la barrera entre lo real y lo virtual, entre lo vivo y lo material. Extendida, porque la posibilidad de poner inteligencia en todas las partes de nuestro cuerpo y en nuestro medio ambiente abre perspectivas económicas infinitas, estimadas en un billón de dólares a partir de 2015.

La palabra “nanotecnología” es usada extensivamente para definir las ciencias y técnicas que se aplican al un nivel de nanoescala, esto es unas medidas extremadamente pequeñas “nanos” que permiten trabajar y manipular las estructuras moleculares y sus átomos. En síntesis nos llevaría a la posibilidad de fabricar materiales y máquinas a partir del reordenamiento de átomos y moléculas. El desarrollo de esta disciplina se produce a partir de las propuestas de Richard Feynman

nanotecnologia

RIESGO SANITARIO
Pero esta revolución plantea una cantidad infinita de preguntas. Los industriales, tras el escándalo del amianto y el rechazo a los OGM, tratan de desactivar las objeciones críticas mediante una concertación con algunos grupos ciudadanos. Pero el argumento que plantea que ya vivimos en medio de nanopartículas errantes a las que se supone inofensivas—producidas por la naturaleza, la industria y los motores de vehículos— no basta para cerrar el debate sobre el peligro sanitario y, menos aun, sobre los riesgos para la libertad.

A mediados de 2006 ya se contaban 700 productos que contenían componentes nanométricos y 1.400 clases de nano partículas vendidas por unos SO productores. A pesar de la creación de grupos de trabajo y de la organización de debates públicos en todo el mundo, el control de los riesgos —por la vía de normas, leyes y una obligación de transparencia— parece muy retrasado con respecto al ritmo de desarrollo de las aplicaciones que, por otra parte, son muchas veces desconocidas por razones de secreto industrial y, sobre todo, militar.

Se sabe, sin embargo, que su tamaño les permite a esas partículas no sólo alojarse en las vías respiratorias, sino también atravesar la piel, penetrar las células basta su núcleo, vencer membranas consideradas infranqueables o alojarse en el sistema nervioso central. Millones de trabajadores corren el riesgo de resultar expuestos a las nanopartículas. Ya se puede prever una acumulación en la naturaleza de “migajas” nanométricas capaces de perturbar los ecosistemas y de intoxicar al ser humano. ¿Podrá argüirse, cómo con el amianto, que no sabíamos?

LA TENTACIÓN DE FAUSTO
El riesgo para la libertad parece mucho mayor que el de la toxicidad, porque con la generalización de losnanochips se corre el riesgo de relanzar la tentación de Fausto, de crear el ser perfecto, de buen desempeño y alta resistencia. A través del sistema de Radio Frequency Identification (RIFID) se abre la vía para vigiar a los individuos y su comportamiento. La difusión de partículas inteligentes también puede servir para la vigilancia del medio ambiente, para la marcación antirrobo, para los sistemas de información militar o para la acción de los terroristas, de sectas y de “Estados canallas”.

Como con los OGM, que se imponen a pesar de las dudas y de las moratorias locales, las nanociencias llaman a la construcción de un sistema de responsabilidades entre quien toma las decisiones políticas, el científico, el industrial y el ciudadano. Confirman que un Estado no puede —suponiendo que quiera hacerlo— adoptar por sí solo el principio de la protección máxima, sin correr el riesgo de ver que los demás acaparen patentes y mercados. Se plantea así la cuestión del crecimiento de las desigualdades ente quienes dominan esta arma económica suprema y quienes no pueden hacerlo.

A CORTO PLAZO:

Nanotecnología purificadera: El 73 por ciento del agua que hay en el mundo es salada, y el 2,7 por ciento del agua dulce que puede servir para consumo humano está contaminado por fuentes industriales. Una solución podría llegar de parte de un proyecto que llevan a cabo el Instituto Politécnico Nacional de México, la Pontificia Universidad Javeriana de Colombia, e instituciones de Francia y España, que comenzaron a usar una tecnología que combina biotecnología y nanotecnología, para purificar aguas, incluyendo a las industriales. El sistema se basa en nanopartículas de óxido de titanio que se colocan sobre superficies de vidrio o de cristal y después se someten a altas temperaturas para que se adhieran.

Es en presencia de luz solar o ultravioleta que se producen especies oxidantes que degradan el material orgánico en el agua contaminada. Una prueba indica que, aplicada a un lote de 800 mililitros de agua con 1,5 gramo de nanopartículas de óxido de titanio, se removió la totalidad de los compuestos tóxicos.»

Detección Rápida del Cáncer: Pruebas de cáncer más rápidas Científicos estadounidenses han usado con éxitonanosensores para detectar exitosamente cáncer en la sangre de los pacientes. La prueba más reciente puede detectar concentraciones
mínimas de marcadores biológicos, en el orden de una millonésima parte de gramo por mililitro, el equivalente a ser capaz de detectar un grano de sal disuelto en una piscina grande. En vez de tener que esperar varios días los resultados del laboratorio, la prueba ofrece una lectura en minutos.

LA ESTRELLA DEL SIGLO XXI: EL GRAFENO: Un nuevo material de ficción (un nanomaterial), 200 veces mas resistente que el acero, pero flexible, impermeable y conductor de la electricidad.

En este material los átomos están dispuestos en hojas tridimensionales: el grafeno es ultrafino -sus átomos de carbono se agrupan siguiendo un modelo parecido a un panal de abejas-, transparente, flexible, impermeable, presenta una elevada conductividad eléctrica y, encima, es doscientas veces más resistente que el acero. “Con solo apretar un botón en un paquete de galletitas, sabremos sus ingredientes y calorías”, asegura el belga Jan Genoe del Instituto Imec de Nanoelectrónica de Lovaina. “En unos años, veremos pantallas de este material en todas partes.”

Con el grafeno, los celulares podrían volverse casi tan delgados y flexibles como el papel y prácticamente indestructibles. También podría abrir el camino a las placas solares flexibles: los metales convencionales absorben la luz. Por el contrario, el grafeno, incorporado en un panel solar, facilitará el aporte de energía a numerosos dispositivos. Y hay más: “el papel electrónico enrollable -asegura uno de los descubridores del grafeno, Kostya Novoselov- podría estar disponible en 2015”.

LOS FULLERENOS, Historia
Hasta 1985 se pensó que el elemento más estudiado por el hombre, el carbono, sólo podía existir, en estado puro, en forma de diamante -sustancia de gran dureza que no conduce la electricidad- y de grafito -material bastante blando y buen conductor de la electricidad- Ese año, motivados por el descubrimiento de nuevos compuestos del carbono realizado en el espacio exterior, el químico británico Harold W. Kroto (1939- ) y los estadounidenses Robert F. Curl (1933-) y Richard E. Smalley (1943-) estudiaron el agregado de pequeños grupos de átomos de carbono llamados clusters.

Robert F. Curl                           Richard E. Smalley

Estos científicos observaron que se producía un agregado con un número máximo de 60 átomos de carbono y trataron de determinar su estructura espacial. Luego de varios intentos para encontrar una estructura formada sólo por hexágonos la forma más común que adopta el carbono), se convencieron de que la única disposición posible era la de una pelota de fútbol, constituida por 20 hexágonos y 12 pentágonos. Esta nueva forma natural del carbono se conoce con el nombre de futboleno, o también buckminsterfullereno debido a la similitud estructural con las formas geométricas de las cúpulas geodésicas inventadas por el arquitecto estadounidense Richard Buckminster Fuller 1895-1983).

El trabajo de estos científicos fue arduo: durante cinco años buscaron un método que permitiera crear cantidades visibles de futboleno. Sabían que la sustancia se producía en forma natural durante la combustión del carbón, pero cuando juntaban hollín en benceno, éste se depositaba en el fondo y no se obtenía el compuesto amarillo tan buscado. En mayo de 1990, mientras estudiaba el polvo interestelar, el físico Wolfgang Krátschmer y sus colaboradores evaporaron una barra de grafito calentándola con una corriente de helio y observaron que en el hollín había una sustancia diferente.

Años más tarde y luego de varios estudios, Krátschmer mezcló unas gotas de benceno con este hollín, y el solvente incoloro se volvió rojo. Varios estudios posteriores permitieron concluir que se trataba de una solución concentrada de fullerenos. ¡El futboleno es amarillo cuando forma una película, y rojo, cuando está en solución!

Curl y Smalley continuaron con el estudio de estas sustancias, hasta que en 1996 recibieron el premio Nobel de Química. Tal como es común en la historia de las ciencias, a partir de este descubrimiento se abrieron nuevos campos para la investigación en terrenos muy alejados de los objetivos iniciales de los científicos.

Se han descubierto nuevos fullerenos de 60 y 70 átomos de carbono, y algunos de ellos tienen utilidad como superconductores a bajas temperaturas cuando se incorporan otros elementos a su estructura. Finalmente, se comprobó que el futboleno es biológicamente activo y podría llegar a emplearse en la lucha contra el cáncer.
Fuente: Investigación y Ciencia, N° 183, diciembre de 1991.

LA NANOCIENCIA SE INSPIRA EN LA NATURALEZA: Los científicos se inspiran en la naturaleza, tratando de imitar propiedades a nanoescalas que tienen algunas plantas y animales y que podrían utilizarse para fabricar nuevos materiales utilizando esas misma propiedades, por ejemplo las que siguen abajo:

nanociencia, cuadro de aplicaciones

CRONOLOGÍA:

1959 El físico Richard Feynman advirtió en una conferencia en el Instituto Tecnológico de California: “A mi modo de ver, los principios de la física no se pronuncian en contra de la posibilidad de maniobrar las cosas átomo por átomo”.

1980 Se estrenó la película Viaje fantástico, basada en el libro de Isaac Asimov, con Raquel Welch. Cuenta la travesía de un grupo de científicos que reducen su tamaño al de una partícula y se introducen en el interior del cuerpo de un investigador para destrozar el tumor que lo está matando.

1970 Se diseñó la primera nanoestructura: un liposoma.

1974 El japonés Norio Taniguchi utilizó por primera vez la palabra “nanotecnología” en un paper.

1981 El físico suizo Heinrich Rohrer y el alemán Gerd Binnig desarrollaron el microscopio de efecto túnel, que permite manipular átomos.

1985 El químico inglés Harold Kroto descubrió los fulerenos, macromoléculas de carbono individuales utilizadas para hacer nanotubos.

1989 Investigadores del Almadén Research Center de IBM manipularon con precisión 35 átomos de xenón para formar el logo de la empresa de informática. 1999 Aparecieron en el mercado los primeros productos con nanotecnología. 2002 Michael Crichton publicó Presa, un tecnothriiler en el que unos nanobots inteligentes escapan al control humano y se convierten en entes autónomos, autorreplicantes y peligrosos.

2010 Se creó un nanobot capaz de mover átomos y moléculas.

2012 Se desarrolló un método en impresoras 3D para la fabricación de es culturas con estructuras tan pequeñas como un grano de arena.

Naturaleza de la Materia

MAS EN INTERNET:
> Centro Nacional de Investigación Científica (CNRS): www.cnrs.fr

> Portal creado por iniciativa del Ministerio Delegado para la Investigación y las Nuevas Tecnologías: www.nanomicro.recherche.gouv.fr

> Action Group on Erosion, Technology and Concentration: www.etcgroup.org/en

> VivAgora, plataforma de protección, información y diálogo por una participación ciudadana en las decisiones científicas y técnicas:www.vivagora.org

Explicacion de las leyes de la termodinamica Descripciòn Sin Formulas

BREVE EXPLICACIÓN SIN FORMULAS DE LAS LEYES DE LA TERMODINÁMICA

Una de las leyes fundamentales de la física es que no se puede obtener algo de la nada. Por ejemplo, el motor de un coche no funciona ni el depósito del combustible está vacío. Antes de que el motor pueda suministrar energía mecánica al coche, es preciso que le demos, como mínimo, la misma cantidad de energía en forma diferente, por ejemplo, la energía química del combustible.

Pero la ley también afirma lo contrario: no se puede transformar algo en nada. Si la mezcla de gas combustible y aire se quema en los cilindros del motor, es imposible que no salga ningún tipo de energía del motor. No toda la energía que sale de éste es de la oíase que nosotros deseamos, es decir, energía mecánica para mover el coche, sino que la mayor parte se transforma en calor, con lo que se desperdicia. Pero, ya sea energía perdida en forma de calor o energía mecánica útil, la cantidad total de energía es exactamente la misma que la liberada por el combustible. En ningún caso se puede perder algo de energía.

Esta ley se conoce como ley de la conservación de la energía, y afirma que la energía no se puede crear ni destruir. Asimismo, es parte intrínseca de la primera ley de la termodinámica. La termodinámica es una rama de la física que trata, entre otras cosas, del transporte del calor de un lugar a otro, y de la conversión de la energía calorífica en otras formas de ella.

Además de afirmar que la energía se conserva, la primera ley define la energía calorífica y la energía mecánica. Parece obvio afirmar que la energía mecánica es la clase de energía ligada al movimiento que posee cualquier objeto que se mueve, mientras que la energía calorífica es algo que hace que los cuerpos estén más calientes.

Sin embargo, a menudo, la distinción entre estos dos tipos de energía no es tan clara y terminante. En el cilindro de un motor de combustión interna, por ejemplo, la mezcla de los gases se comprime o expande, según los pistones suban o bajen en el interior del cilindro. La mezcla gaseosa entra en ignición cuando su volumen es mínimo, es decir, en el instante en que se completa su compresión. En ese momento, la energía calorífica procedente de la reacción química se comunica al gas.

Un gas calentado se expande siempre que tenga oportunidad para ello. Debido a que su energía ha aumentado, las moléculas empujan contra todas partes, tratando de separarse, y, al hacerlo, actúan sobre el pistón forzándolo a moverse. Se dice que el gas trabaja contra el pistón y, a medida qué ello ocurre, parte de su energía calorífica primitiva se transforma en energía mecánica, que llega a las ruedas por intermedio de un complejo mecanismo.

La energía que resulta de la expansión y el trabajo realizado es la energía mecánica. Pero los gases están siempre más calientes que antes de la explosión, esto es, retienen siempre cierta cantidad de energía.

Este otro tipo de energía se denomina energía calorífica interna. La primera ley de la termodinámica afirma que la energía interna, junto con la energía mecánica, es igual a la energía calorífica suministrada a los gases inicialmente.

La termodinámica nunca trata el movimiento de las partículas aisladas que forman la materia considerada (en nuestro caso, las moléculas del gas). Esta ciencia trata sólo del comportamiento del gas en conjunto. Es fácil para la termodinámica manejar cantidades tales como la presión, temperatura y volumen de un número relativamente grande de moléculas, cuando todas ellas se comportan, más o menos, del mismo modo. Pero, aunque la termodinámica nunca se preocupa de las moléculas aisladas, la energía interna y la energía mecánica tienen su significado cuando se aplican a las propias moléculas.

La vibración de las moléculas se debe a la energía interna y, cuanto más caliente está una molécula, más vibra. La energía que aumenta la velocidad de las moléculas y hace que el gas, en conjunto, se expanda es la forma de energía que se puede convertir en energía mecánica.

LA SEGUNDA LEY DE LA TERMODINÁMICA

Si se ponen en contacto un recipiente de agua hirviendo y un plato con hielo, el agua se enfría y el hielo se calienta. Hay un intercambio de calor entre el agua hirviendo y el hielo, y pasa más calor del agua al hielo que del hielo al agua.

Es decir: el calor siempre va “cuesta abajo”, desde el objeto más caliente al objeto más frío. No es posible que el calor vaya “cuesta arriba” por sí mismo; por ejemplo, de un objeto frío a otro caliente. Esta afirmación es una de las muchas maneras de enunciar el segundo principio de la termodinámica.

La termodinámica es una rama de la física, que se ocupa de las cantidades de calor que van de un lugar a otro, y de la transformación de la energía calorífica en otras formas de energía. El principio (ley) cero de la termodinámica define la significación de la temperatura. El primer principio establece que si tenemos una cierta cantidad de calor, podemos convertirla en otra forma de energía; pero, hagamos lo .que hagamos, no podemos conseguir que desaparezca. Cuando en dos objetos a distinta temperatura existe una cierta cantidad de energía, el segundo principio rige la dirección del flujo de energía calorífica de un objeto a otro.

La termodinámica abarca, fundamentalmente, una serie de desarrollos matemáticos, y existen muchas otras maneras matemáticas de definir el segundo principio de la termodinámica. Sin embargo, todas ellas se resumen, diciendo, simplemente, que es imposible que el calor, por sí solo, vaya “cuesta arriba”.

En un refrigerador doméstico se hace que el calor vaya “cuesta arriba”. Para ello, debe absorberse calor del congelador, que es el lugar más frío del refrigerador. Se extrae de un lugar frío y se cede a un lugar más caliente: el aire que rodea al refrigerador. Pero el calor no puede hacer esto por sí solo.

En muchos de ellos (los de compresor), el movimiento “cuesta arriba” del calor, del objeto frío al caliente, es ayudado por un motor eléctrico, mientras que el calor en sí es transportado por el vapor, en tubos. Por lo tanto, se usa energía (por el motor) para transferir el calor. Se hace que el vapor se condense, y entonces se lo expansiona bruscamente.

Al expansionarse, se enfría hasta que su temperatura queda por debajo de la parte más helada del congelador. Solamente así se puede extraer calor de éste, pues, de acuerdo con el segundo principio, el calor sólo puede pasar a un objeto más frío. Después, el motor comprime el gas, su temperatura sube nuevamente, y de esta forma puede ceder su calor al aire exterior. Luego, el gas se expansiona, se enfría, y todo el ciclo se repite continuamente.

Sería mucho más fácil fabricar refrigeradores, si el segundo principio de la termodinámica fuese falso. Si, por ejemplo, el calor pudiese ir, por sí solo, desde el plato con hielo al recipiente de agua hirviendo, el hielo se enfriaría más y el agua herviría con mayor intensidad. El calor extraído al hielo podría aprovecharse para hervir el agua. Los refrigeradores no necesitarían motores ni circulación de líquidos. Desgraciadamente, esto no ocurre, y esa imposibilidad es la mejor prueba en apoyo del segundo principio de la termodinámica.

LA TERCERA LEY DE LA TERMODINÁMICA

A Fahrenheit no le gustaba la idea de tener que operar con temperaturas negativas. Por eso, al idear su escala de temperaturas, quiso asegurarse de que nunca encontraría una temperatura negativa. Fijó como punto cero de la escala, 0°F, la temperatura de la sustancia más fría entonces conocida, una mezcla frigorífica de hielo y sal. Sin embargo, hace tiempo que esta ventaja en la escala Fahrenheit ha desaparecido. Se han desarrollado métodos que permiten alcanzar temperaturas mucho más bajas, que son temperaturas negativas en la escala Fahrenheit.

El método principal consiste en enfriar un gas, comprimirlo y luego dejarlo expandir de repente. En estas condiciones, muchos gases se enfrían considerablemente. Por medio de algunos sólidos, todavía pueden alcanzarse temperaturas más bajas, enfriándolos mientras se encuentran en un fuerte campo magnético. Cuando se suprime el campo, la temperatura del sólido desciende aún más.

Hay, sin embargo, un límite perfectamente definido para el enfriamiento alcanzado en estos procesos. Existe un cero natural de temperatura, el cero absoluto, que es definitivamente la temperatura más baja posible. Mientras que la “temperatura más fría posible” de Fahrenheit no duró mucho tiempo como tal, en cambio no hay probabilidad alguna de alcanzar nada más frío que el cero absoluto.

Parecía evidente a los científicos, al observar el comportamiento de los gases sometidos a enfriamiento, que debía existir un cero absoluto. En efecto, comprimieron los gases enfriados. Se midió la velocidad de compresión y se llegó a la conclusión de que, si pudiera continuarse el enfriamiento por debajo de —460°F (—273° en la escala centígrada), el volumen del gas habría quedado reducido a nada. ¡Evidentemente, sería imposible lograr un gas más frío que el cero absoluto, donde ocuparía un espacio negativo!

Si bien se reconoció como cosa imposible alcanzar una temperatura más baja que el cero absoluto, persistía todavía el problema: ¿Era incluso posible alcanzar el cero absoluto mismo? Y aunque actualmente los científicos están a unas cuantas millonésimas de grado de alcanzarlo, es bien sabido que, realmente, jamás lograrán conseguirlo. Esta afirmación es una de las maneras de enunciar la tercera ley de la termodinámica: “Por mucho que tratemos de enfriar una cosa, es imposible enfriarla por debajo del cero absoluto.”

Los científicos han constatado que cuanto más fría está una sustancia, tanto más difícil es conseguir nuevos enfriamientos. Aislar la sustancia y protegerla del calor del laboratorio es prácticamente imposible. Las sustancias a bajas temperaturas, invariablemente, se guardan en recipientes de vacío especialmente diseñados. Pero no es ésta la razón principal de que no pueda alcanzarse la mínima temperatura posible.

El único método de enfriamiento adecuado es, por consiguiente, aquél en que se enfría una clase especial de cristal hasta pocos grados del cero absoluto, con helio líquido. Al mismo tiempo, el cristal se mantiene en el campo magnético de un grande y potente electroimán. El helio líquido se quita, el cristal se aísla por completo y el campo magnético se desconecta lentamente. Tienen lugar cambios en la manera en que los átomos están dispuestos en el cristal, y el resultado es un descenso de la temperatura. Teóricamente, entonces sería posible usar este cristal enfriado para, a su vez, enfriar otro cristal, y repetir el proceso de magnetización y desmagnetización sucesivamente, llegando cada vez más cerca del cero absoluto.

Desgraciadamente, sucede que, al bajar la temperatura, este descenso se vuelve cada vez más pequeño, de forma que para un cristal de temperatura muy cercana al cero absoluto, el descenso de ésta llega a ser infinitamente pequeño. Por muchas veces que los cristales sean sucesivamente enfriados, los descensos de temperatura son tan minúsculos, que el cristal nunca alcanzará el cero absoluto.

Fuente Consultada: Revista TECNIRAMA Nª 78.

Leyes de la Mecanica Clasica Principios de inercia y masa Ley Newton

Leyes de la Mecánica Clasica Las Leyes de Newton

1) PRIMER PRINCIPIO: LA INERCIA

Los cuerpos quietos permanecen quietos a menos que se les aplique alguna fuerza para que comiencen a moverse. Los cuerpos en movimiento permanecen en movimiento a menos que se les aplique alguna fuerza para detenerlos.

El principio de inercia es tan simple como decir que para cambiar la velocidad de un cuerpo es necesario aplicarle una fuerza, hacerle algo, interactuar con él. De este modo, si un cuerpo se está moviendo con cierta rapidez en determinada dirección, seguirá en esa dirección y con la misma rapidez a menos que lo perturbemos. Los cuerpos no cambian su velocidad (dirección y rapidez) si no reciben alguna fuerza.

En la física aristotélica entre los movimientos naturales se encontraba el de caída libre de una piedra. La caída se debía a que la piedra tenía su lugar natural en el centro del universo que, según los aristotélicos, coincidía con el centro de la Tierra. No hacía falta que una fuerza se ejerciera sobre la piedra, porque ella misma iría hacia su lugar natural.

Newton logró explicar la caída de la piedra de un modo totalmente diferente gracias a su descubrimiento de la ley de atracción gravitatoria. La piedra cae porque es atraída gravitatoriamente por la Tierra. Si esta atracción no existiera, la piedra quedaría suspendida en el lugar en donde la abandonáramos.

Leyes de la Mecanica Clasica Principios de inercia y masaPor este mismo principio de inercia Newton describe el movimiento de una carreta en términos que difieren de los aristotélicos. Antiguamente se creía que si los bueyes que tiran de una carreta se sueltan de ella, la carreta dejará de moverse porque ha cesado la fuerza que hacían los bueyes y “naturalmente” la carreta se detendrá, ya que el estado “natural” de la carreta es el reposo y no el movimiento.

Pero Newton sostiene que la carreta que está en movimiento no se detendrá a menos que se le aplique una fuerza, tal como lo describe el principio de inercia. Entonces la carreta se detiene por la acción de una fuerza, ya que lo “natural” en la mecánica de Newton es la conservación del estado de movimiento. Deberá haber alguna causa para la detención de la carreta.

Estas mismas diferencias se notan en cuanto al movimiento de los planetas. Para Aristóteles, el movimiento circular alrededor del centro del universo no necesita una causa, es un movimiento natural. Para Newton, además de que no cree que haya un centro del universo, el movimiento de los planetas alrededor del Sol necesita una fuerza que mantenga al planeta ligado al Sol, ya que si ninguna fuerza actuara sobre el planeta, éste se movería sin cambiar su velocidad tanto en rapidez como en dirección. Es decir que si no existiera tal fuerza, el planeta se movería con rapidez constante en una línea recta. Newton propuso que esa fuerza era la atracción gravitatoria entre el Sol y el planeta.

Vemos que la idea de que los movimientos requieren alguna causa es muy antigua y se opone al pensamiento newtoniano de que los cambios en la velocidad son los que deben tener alguna causa. En la visión newtoniana un movimiento de rapidez constante y en línea recta (conocido como movimiento rectilíneo uniforme) no necesita una causa. Una modificación de este estado de movimiento, sí la necesita.

La Inercia en la Vida Diaria:

Por mas que no pensemos diariamente sobre la inercia, esta como la atracción gravitatoria y otras tantas características que estudiamos en física, te acompañan adonde tú vayas. Por ejemplo, no puedes arrancar tan rápidamente como quisieras al comenzar a correr; tampoco puedes detenerte de golpe. Tu cuerpo tiene inercia!. Es necesario aplicarle una fuerza para que comience a moverse desde un estado de reposo. También tienes que aplicar una fuerza para detenerte, ya que si no, tu cuerpo seguiría con la misma rapidez y en la misma dirección . Si vienes corriendo alrededor de la manzana te costará bastante dar la vuelta a la esquina a gran velocidad puesto que la inercia de tu cuerpo hace que tengas que hacer un esfuerzo importante para cambiar la dirección de tu movimiento.

Cuando estás en un colectivo y arranca, si no te agarras fuertemente de algún pasamanos verás que tu cuerpo se queda en reposo mientras el colectivo gana velocidad. Esto es muy divertido, siempre que no termines sentado arriba del pasajero del asiento del fondo,

Cuando el colectivo frena, algo similar te ocurre. Tu cuerpo sigue andando hacia adelante y deberás agarrarte fuertemente para no terminar en la cabeza del chofer ni asomándote por el parabrisas (cosa nada recomendable aunque seas cabeza dura).

Los cinturones de seguridad nos protegen en caso de un impacto frontal. Los cinturones de seguridad comunes te los ajustas a tu medida y luego el largo queda fijo. En cambio los cinturones de seguridad ; inerciales se diseñaron para que puedas moverte sin que el cinturón te tironee mientras que tus movimientos son suaves. Solamente se traban en caso de que tu cuerpo siga andando hacia adelante por inercia cuando el automóvil se detuvo bruscamente. Si el automóvil no se detiene bruscamente o tú te has atajado con las manos para no seguir andando por inercia, el cinturón no accionará su traba. Para probar si el cinturón inercial está en buen funcionamiento, tira fuertemente de él como lo haría tu cuerpo durante la frenada o choque al seguir andando por inercia a la velocidad que traía el auto anteriormente. Si el cinturón inercial se traba con un tiròn rápido, funciona correctamente; si no se traba, debe cambiarlo, ya que en esas condiciones no es un cinturón seguridad inercial sino una banda de adorno.

Los lavarropas con centrifugado han mejorado notablemente la calidad de vida. Especialmente no necesitamos que el sea muy soleado para que la ropa se seque, ya que la centrifuga dejándola casi seca (según las propagandas). La centrifugación la forma en que usamos la inercia de las gotas de agua para secar la ropa. El tambor (batea) del lavarropas hacer dar vuelta la ropa a gran velocidad. Si no fuera por la fuerza que la batea hace sobre la ropa, ésta seguiría andando en línea recta según el principio de inercia. Pues bien, a alguien se le ocurrió hacer agujeritos en la batea para permitir que las gotas de agua frente agujerito pudieran seguir de largo. De este modo usamos la inercia de las gotas para desprenderlas de la ropa (o bien desprender la ropa del agua).

El juego del tejo sobre una mesa es apasionante y muestra algo de nuestro interés en este momento. La mesa tiene agujeritos por donde sale aire , de modo que el tejo que suspendido sobre la mesa y así se evita el rozamiento entre la superficie de la mesa y el tejo. Verás que si golpeas suavemente al tejo, se deslizará sobre la mesa a velocidad constante hasta que choque contra una de las paredes, o que tu contrincante le imprima un golpe o termine entrando por el arco marcando gol (preferiblemente en el arco contrario). El principio inercia te sirve para explicar por qué el tejo se mueve con velocidad constante cuando nadie está tirando de él o empujándolo.

Por definiciòn se dice: “Que la inercia es la tendencia a mantener el estado de movimiento reposo que posee un cuerpo”

LA INERCIA: La primera ley de Newton dice que “un objeto en reposo tiende a seguir en reposo y todo cuerpo en movimiento tiende a permanecer en movimiento con la misma velocidad, dirección y sentido a menos que el cuerpo interactúe con otros cuerpos”. Es decir que los objetos “tienden a seguir haciendo lo que estaban haciendo”.

Hay una resistencia natural de los cuerpos que se oponen a cambiar su estado de movimiento. Esta resistencia al cambio de estado de movimiento se llama inercia.

inercia = resistencia de un objeto a cambiar su estado de movimiento

Esta idea de Newton fue muy novedosa en su época, ya que se oponía a las concepciones que estaban de moda. Como decíamos mas arriba, antes de Newton se pensaba que todos los cuerpos tenían una tendencia natural al estado de reposo. Se creía que los objetos que se movían iban a detener su movimiento y que era necesario “hacerles algo” para mantenerlos en movimiento, pero que si se los dejaba libres de cualquier tipo de interacción, llegaban al reposo. Se creía, entonces, que había una tendencia natural de los cuerpos a alcanzar su estado de reposo.

Galileo Galilei (antes que Newton) desarrolló el concepto de inercia. Razonó que los cuerpos detenían su movimiento por una interacción de los cuerpos con su entorno, lo cual llamó fricción.

Para establecer y demostrar sus razonamientos, realizó experiencias usando dos planos inclinados enfrentados y dejando caer una pelota desde uno de ellos. Galileo observó que sí una pelota rodaba hacia abajo desde una determinada altura, alcanzaba en el otro plano una altura similar a la inicial, y que cuanto más pulidos eran los planos, más cercana era la altura alcanzada con respecto a la inicial. Galileo dedujo que la diferencia de altura observada se debía a la interacción de fricción de los cuerpos con la superficie del plano y que si esta no existiera, alcanzarían la misma altura.

Más adelante, concluyó que, independientemente de las orientaciones de los planos, los objetos alcanzaban la misma altura.

Resumiendo: si no hay fricción

alcanza la misma altura y el ángulo se reduce, recorrerá más distancia hasta alcanzar la misma altura

¿Qué sucede si el segundo plano no está inclinado?

Galileo concluyó diciendo que si el segundo plano no está inclinado, la pelota seguirá rodando sin cesar, buscando alcanzar la misma altura. si no hay fricción

aquí la pelota no se detiene nunca, sigue rodando y rodando…

Newton construyo sus ideas con los pensamientos de Galileo acerca del movimiento. La primera ley de Newton establece que no es necesaria ninguna interacción para mantener un cuerpo en movimiento. Si deslizamos un libro sobre la mesa, vemos que después de un tiempo este se detiene, pero se detiene porque existe una interacción (que es la de la fricción entre el libro y la mesa) que se opone al movimiento, y no es la ausencia de la interacción lo que lo lleva al reposo.

Todos los objetos resisten al cambio del estado de movimiento. Todos los objetos tienen esa tendencia, todos tienen inercia. Pero aquí cabe una pregunta: ¿Tienen todos los objetos la misma tendencia a resistir el cambio? La respuesta es, obviamente, ¡No! Todos tienen inercia, pero la inercia de un cuerpo depende de la masa, es decir, de la cantidad de materia que posee un cuerpo. A mayor cantidad de masa, mayor inercia y mayor resistencia al cambio del estado de movimiento.

2) SEGUNDO PRINCIPIO: DE MASA

Recién vimos que para que un cuerpo quieto comience a moverse es necesario aplicar una fuerza sobre él. Además nos damos cuenta de que cuanto mayor es la fuerza que aplicamos tanto más se acelera.

También sabemos que para acelerar a algunos cuerpos es necesario aplicarles más fuerza que a otros para lograr el mismo efecto. Para lograr la misma aceleración a unos cuerpos hay que aplicarles más fuerza y a otros menos. Esto se debe a que algunos cuerpos tienen más inercia y otros menos inercia. No es lo mismo acelerar un tren que una bicicleta.

La inercia del cuerpo es una de sus propiedades y, para determinarla, podríamos preguntarnos cuánta fuerza es necesario aplicarle al cuerpo para obtener una determinada aceleración. Entonces la cantidad de fuerza para obtener cierta aceleración es una medida de la inercia. Si un cuerpo tiene mucha inercia, entonces hace falta mucha fuerza para acelerarlo con cierto valor. Si un cuerpo tiene poca inercia, entonces hace falta poca fuerza para acelerarlo con ese mismo valor.

Un problema adicional que tenemos cuando queremos medir la inercia de un cuerpo es que puede haber varias fuerzas actuando sobre el cuerpo y darnos una falsa impresión de lo difícil que resulta acelerarlo. Por ejemplo, el automóvil de Pedro se ha quedado sin nafta y su hermano y yo queremos darle una mano para que llegue a la estación de servicio de la esquina.

Mientras los tres empujamos, el hermano de Pedro piensa: “Este automóvil tiene poca inercia porque yo hago poca fuerza y se acelera bastante”. Al llegar a la estación Pedro y yo tratamos de detenerlo, pero el hermano de Pedro sigue haciendo fuerza para empujarlo sin que nos demos cuenta de ello. A nosotros nos parecerá que el automóvil tiene mucha inercia porque es difícil detenerlo.

La manera de resolver el problema es hacer la cuenta del total de fuerzas que están actuando; determinar cuál es el valor de la fuerza neta aplicada (a la que se suele llamar “resultante’). Para eso recordemos que las fuerzas son vectores y que debemos sumarias y restarlas como vimos en el capítulo 2. En el ejemplo del auto de Pedro es muy sencillo, ya que las fuerzas están aplicadas en la misma dirección (longitudinalmente al automóvil), aunque algunas con sentido hacia adelante y otras con sentido hacia atrás.

La medida de la inercia se podrá obtener comparando la fuerza neta aplicada, o resultante y la aceleración obtenida.

Equilibrio, reposo y movimiento

Cuando vemos el libro de física sobre la mesa entendemos que para empezar a moverlo hace falta una fuerza que lo acelere. También sabemos que el libro tiene la fuerza de su peso aplicada sobre él (en dirección vertical y hacia abajo). Entonces sobre el libro ya están actuando fuerzas. ¿Por qué entonces no se acelera en la dirección de esa fuerza? La respuesta la encontramos fácilmente si tenemos en cuenta que lo que modifica la velocidad de un cuerpo es la fuerza neta o fuerza total aplicada, tal como lo vimos en la sección anterior.

Como el libro sigue en reposo, la fuerza total debe ser nula. Debe haber otra fuerza que lo está sosteniendo. Una fuerza que se opone al peso y que es de la misma intensidad, de modo que la suma sea cero.

Pregunta: ¿Qué cuerpo ejerce una fuerza sobre el libro de modo de impedir su caída?

Si saco la mesa, el libro se acelerará en caída libre hacia el piso. De este modo vemos que existen dos fuerzas que actúan sobre el libro: la fuerza peso ejercida por la Tierra sobre el libro (por la atracción gravitatoria mutua) y la fuerza que impide la caída del libro,

Decimos que el libro está en equilibrio cuando permanece en reposo durante un lapso. Vemos que cuando esto ocurre la suma de fuerzas aplicadas sobre él es cero.

Podríamos reinterpretar el principio de inercia diciendo que todo cuerpo que está en equilibrio no se acelera.

Pero, ¿qué pasa con los cuerpos que están en movimiento? ¿Están en equilibrio o no?. Es fácil responder a estas preguntas si pensamos en el principio de inercia. Por ejemplo, aunque el avión vaya a gran velocidad, si la azafata nos convida con una gaseosa, el vaso, la gaseosa y nosotros estamos en equilibrio; ya que la suma de las fuerzas es cero y no nos estamos acelerando. Si en cambio la suma de las fuerzas no es cero (el avión está despegando o hay “pozos de aire”), sí hay aceleración.

Resumiendo, el que veamos algo en movimiento no indica que la fuerza total o resultante sea distinta de cero. Todos los movimientos en los que no cambia la velocidad son casos en donde la suma de fuerzas es cero. No hace falta que haya una fuerza neta aplicada para que algo se esté moviendo (con velocidad constante). En cambio, sí hace falta alguna fuerza neta aplicada para que empiece a moverse, para que deje de moverse o para que cambie su velocidad en dirección o rapidez.

Cuando decimos que algo está en equilibrio indicamos que la suma de fuerzas es cero, pero no damos información de si el cuerpo está en reposo o en movimiento con velocidad constante.

No se de que se trata, pero me opongo al rozamiento: Cuando por ejemplo, queremos empujar un sillón notamos que hay que hacer cierto esfuerzo para que se ponga en movimiento. Esto es razonable si recordamos el principio de inercia, Según este principio, una vez en movimiento el sillón seguiría andando aunque no lo empujáramos (como en el caso de la carreta a la que se le soltaron los bueyes). Sin embargo, observamos que si no seguimos aplicando una fuerza el sillón se detiene. Entonces, cuando el sillón está en movimiento alguna fuerza está actuando en contra de su movimiento. Esa fuerza es la de rozamiento entre el sillón y el piso.

Por eso tenemos que mantener cierta fuerza aplicada para lograr que el sillón siga andando con velocidad constante. La fuerza que debemos aplicar es la misma cantidad que la fuerza de rozamiento y de esa manera la fuerza total es cero y el sillón no se detendrá:

Fuerza para empujar el sillón-fuerza de rozamiento=0

Se puede así obtener un movimiento de velocidad constante aun cuando estemos aplicando fuerza sobre el sillón, ya que la que aplicamos nosotros más la de rozamiento se anulan y el sillón no se acelera.

Si queremos acercar el sillón hacia la ventana, el rozamiento es una fuerza que parece estar en contra de ese movimiento. Si queremos alejar el sillón de la ventana, también el rozamiento se opone. No importa en qué dirección intentemos mover un cuerpo, las fuerzas de rozamiento tienen sentido contrario a ese movimiento.

Cuando el piso es de baldosas es más fácil desplazar el sillón; cuando el piso es de goma es muy difícil desplazarlo. La fuerza de rozamiento depende de las superficies que están en contacto (el piso y el sillón) y de cuánto está comprimida una superficie contra otra, Un análisis detallado de las fuerzas de rozamiento nos llevaría a estudiar las fuerzas entre las moléculas de las superficies en contacto, pero podemos entender las fuerzas de rozamiento como algo parecido a cuando una superficie está poco pulida y entonces es más difícil deslizarse sobre ella.

Además del rozamiento entre dos superficies en contacto existe el rozamiento de los fluidos. Cuando queremos desplazarnos en medio del agua, sentimos que es mas costoso. Distintos fluidos oponen distinta fuerzas de rozamiento. El rozamiento con el agua es menor que con el dulce de leche. El aire también es un fluido y opone rozamiento a desplazarse a través de él.

Si movemos la mano lentamente en el agua, no parece haber mucha fuerza que se oponga al movimiento, Pero si intentamos moverla rápidamente1 veremos que la fuerza es bastante notoria. Con el aire y los demás fluidos pasa lo mismo. El rozamiento de los fluidos crece con a rapidez y esto será interesante para analizar los saltos de paracaidismo.

Por fin el principio de masa

Supongamos que a un carrito le aplicamos cierta fuerza neta y el carrito se mueve con determinada aceleración. Veremos que si en una segunda prueba la fuerza que le aplicamos al carrito es el doble que en a primera prueba, entonces la aceleración con la que se moverá en este caso será el doble de la aceleración anterior. Este experimento sencillo nos muestra que para cada cuerpo la fuerza aplicada y la aceleración obtenida son proporcionales. O bien, que el cociente entre la fuerza y a aceleración es un valor constante y que sólo depende del cuerpo con el que estemos experimentando.

F/a = cte

Newton descubrió esta proporcionalidad entre la fuerza y la aceleración, y a la constante de proporcionalidad la llamó “masa” del cuerpo. Así, pues, la masa del cuerpo mide la cantidad de inercia que tiene ese cuerpo.

El segundo principio de Newton dice que la fuerza que se le aplica a un cuerpo y la aceleración que éste adquiere debido a esa fuerza son magnitudes proporcionales y que la constante de proporcionalidad es la masa del cuerpo.

Lo podríamos entender de otro modo diciendo que la fuerza total aplicada sobre un cuerpo produce una aceleración y que los valores de la fuerza aplicada, a aceleración y la masa del cuerpo cumplen con la ecuación: F=m.a 

Recordemos que tanto F como a son vectores y que el cuerpo se acelera en la dirección y sentido en que actúa la fuerza neta aplicada. En cambio la masa es una magnitud escalar (no tiene dirección ni sentido) y puede medirse con un número en las unidades que se elijan para ello. En general se utiliza como unidad de masa el kilogramo o el gramo.

Volumen, peso y masa

No cabe duda de que un elefante es más grande que un raes más pesado y tiene más inercia. Sin embargo, estas tres magnitudes se pueden distinguir con un poco de atención. Estamos acostumbrados a estimar el peso de las bolsas por el tamaño pero más de una vez nos llevamos una sorpresa. Alguna bolsas de gran tamaño tienen menos peso que otras bolsas pequeñas. Es fácil de entender por ejemplo si han cargado la bolsa más pequeña con tornillos y la más grande con plumas. Así distinguimos fácilmente el volumen del peso. El volumen asociado a las dimensiones, es el espacio que ocupa el cuerpoo. El peso es la fuerza con la que el cuerpo es atraído por la Tierra.

También sabemos que los astronautas en la Luna dan grande saltos porque en la Luna pesan menos. Más aún, en el espacio exterior los cuerpos no tienen peso porque no están cerca según planeta o luna como para que se note que los atrae gravitatoriamente. Así, el peso es una fuerza que aparece sólo en las cercanías de la Tierra, la Luna o algún otro astro. Lo que pesa una persona depende de la persona y de dónde se suba a la balanza, en la Tierra, la Luna, en el espacio…). El valor del peso depende dos cuerpos: la persona y el planeta en donde se está pesando

La masa, en cambio, es la inercia que tiene un cuerpo. Es su propiedad por la cual es necesaria cierta cantidad de fuerza para arlo. Y esto no desaparece en ninguna parte del espacio, pende de que esté cerca o lejos de algún planeta. Es una propiedad del cuerpo. Para que un astronauta acelere una lata de gaseosa en el espacio, necesitará aplicarle la misma fuerza que para acelerarla aquí en la Tierra. Recuerda que la masa (la inercia) mpaña adonde tú vayas.

Velocidad Terminal

Vimos que, cuando el rozamiento con el aire es muy pequeño, los cuerpos caen con una aceleración g(9,8 m/seg2). Esta es a aceleración de la gravedad y se debe a la atracción gravitatoria de a Tierra sobre el cuerpo que cae.

Pero la fuerza de atracción gravitatoria aplicada sobre el cuerpo es su peso, y entonces podemos decir que el cuerpo se acelera debido a a fuerza de su peso. Así, la expresión del principio de masa para el caso de un cuerpo en caída libre se transforma en:

P= m.g

El peso es un vector que apunta para abajo (hacia centro de la Tierra) y la aceleración g también. En esta expresión  del segundo principio se ve la relación entre peso, masa y aceleración de la gravedad.

Pero ¿qué pasa si el rozamiento con el aire no es despreciable? En ese caso no podremos asegurar que el cuerpo con la aceleración g ya que no sólo el peso es el que actuando sino también la fricción con el aire. Como la friccion con el aire (FR) es una fuerza contraria (opuesta) al sentido del movimiento, el segundo principio toma la forma: P-FR =m.a en donde la fuerza neta que actúa sobre el cuerpo en caída es la diferencia entre el peso y la fricción. Como esta fuerza neta es un poco menor que el peso, la aceleración a será menor que g.

Habrás notado que al sacar una mano por la ventanilla de un auto se puede sentir la fuerza de fricción del aire. También te habrás dado cuenta de que cuanto más rápido va el auto mayor es la fuerza de fricción. Entonces, cuando un paracaidista salta desde un avión, a medida que va más rápido debido a su aceleración de caída, cada vez tiene mayor rozamiento con el aire. Llegará un momento en que el rozamiento sea tan intenso como la fuerza peso del paracaidista, y en ese caso la fuerza neta sobre él será cero:

P=FR  o bien:  P-FR  =0

La velocidad a la que esto ocurre es la velocidad límite o velocidad terminal.

A partir de allí, como la fuerza neta aplicada es cero (mientras que no se abra el paracaídas), el paracaidista no se acelera más. Su aceleración es también cero (de la ecuación) y se mantiene una caída a velocidad constante (por lo cual se la llama “velocidad límite”).

Que masa tiene una pesa – Cuánto pesa una masa

Las pesas que se usaban en las balanzas antiguas funcionaban como medida de comparación para saber cuántas manzanas o bizcochos se compraban. Un cuerpo que tenga una masa de un kilogramo debe pesar una cierta cantidad que se puede calcular según la fórmula: P=m.g

Reemplazando:  1kg. . 9.8 m/seg2 =9.8 Kg.m/seg2

Como es muy habitual medir la distancia en metros, la masa en kilogramos y el tiempo en segundos, a esta elección de unidades de medida se la llama “Sistema MKS’. En este sistema al producto: kg . m/seg2 se lo llama newton (N), por lo cual queda

P = 9,8 N

Así, un kilogramo de masa pesa 9,8 N.

También podemos preguntarnos qué masa tiene un cascote que pesa 1 Ñ.. En -ese caso haremos la cuenta despejando la masa: m = P/g

Obtenemos que el cascote tiene una masa de 102 gramos.

En el Sistema Técnico, en cambio, se utiliza una unidad de fuerza que facilita los cálculos entre masa y peso. Esta unidad se llama «kilogramo fuerza”(kgf). Se propone esta unidad de modo que un kilogramo de masa pese un kilogramo fuerza. Entonces, si el peso de un kilogramo de masa es 9,8 N y en el otro sistema es 1 kgf, tenemos la equivalencia:  9,8 N= 1 kgf

El kilogramo fuerza es muy útil porque para asegurarse de que se cuenta con una masa de 3 kilogramos basta con asegurarse de que pese 3 kgf y no hace falta hacer la cuenta de cuántos newtons pesan 3 kg. Pero por otra parte produce cierta confusión, si no se recuerda bien que el kgf es una unidad de fuerza y un kg es una unidad de masa.

3)TERCER PRINCIPIO: ACCION Y REACCION

Cierto día estaba en mi automóvil detenido frente a la luz roja del semáforo esperando mi turno, cuando de pronto: CRASH!! Un conductor distraído achicó mi baúl y me dejó sin luces traseras. Ambos descendimos para contabilizar los daños y el distraído me mostraba cómo mi baúl le había abollado la trompa de su último modelo. Yo me quejaba de que mi baúl había desaparecido como si fuera plegable, pero él insistía en que mi auto le había roto sus nuevos faros de gran alcance, ¿qué otra cosa podía haber actuado sobre su auto? Seguro que mi auto era el causante de su abolladura. Por otra parte su auto era el que había hecho fuerza sobre mi baúl para plegarlo de esa manera. Los dos automóviles habían interactuado. El auto del distraído hizo fuerza sobre el mío y el mío hizo fuerza sobre el suyo. Nunca había pensado1que el principio de interacción se encargaría de los accidentes de tránsito.

Cada vez que un cuerpo ejerce una acción sobre otro empujándolo tirando de él, atrayéndolo gravitatoriamente o magnéticamente, chocándolo o acariciándolo, se produce una interacción éntre ambos. Un cuerpo aplica una fuerza sobre otro y a su vez recibe del otro una fuerza de igual intensidad pero de sentido contrario. Por cada par de cuerpos que están interactuando aparece un par de fuerzas. La Tierra atrae gravitatoriamente a la Luna y es atraída por la Luna con una fuerza de igual intensidad.

El martillo ejerce una fuerza sobre el clavo y así logramos que el clavo se hunda en la madera, pero a su vez el clavo ejerce sobre el martillo una fuerza igual en intensidad pero de sentido contrario. Esta fuerza sobre el martillo es la que detiene el martillo e incluso lo hace «rebotar» hacia arriba.

Cuando nuestro automóvil lleva un remolque (de casa rodante o de lancha o moto), el remolque recibe una fuerza de nuestro auto. Esta es la fuerza hacia adelante que acelera al remolque. Pero sobre nuestro auto actúa una fuerza hacia atrás de igual intensidad. Esta fuerza hacia atrás sobre nuestro auto nos obliga a gastar más nafta que si no tuviéramos remolque para lograr la misma aceleración.

Las fuerzas del par de interacción son vectores como todas las fuerzas, pero tienen ciertas características:

1) Son de la misma intensidad.

2) Tienen sentidos opuestos.

3) Están en la misma recta de acción (tienen la misma dirección).

4) Una de ellas está aplicada en uno de los dos cuerpos que interactúan, y la otra, en el otro cuerpo.    

A las dos fuerzas del par se las suele llamar “acción» y “reacción”. Alguien podría pensar que el auto tira del remolque con una acción y que entonces el remolque reacciona tirando del auto en sentido contrario. Pero nosotros simplemente hablaremos de pares de interacción sin hacer esta diferencia. Por ejemplo, la Tierra y la Luna se atraen gravitatoriamente. Esta atracción es mutua. No parece útil decir que la atracción que la Luna ejerce sobre la Tierra es la reacción y que la atracción que la Tierra ejerce sobre la Luna es la acción. Podríamos clasificarlas al revés y también sonaría raro. Preferiremos hablar de pares de fuerzas que aparecen en la interacción.

Definición: ” A toda acción hay una reacción de igual magnitud, pero de sentido contrario”

Leyes de Kepler Movimiento de los Planetas Sus Orbitas Elipticas

Leyes de Kepler – Movimiento de los Planetas

Resolución del problema de los movimientos planetarios: El tema de los movimientos planetarios es inseparable de un nombre: Johannes Kepler. La obsesión de Kepler por la geometría y la supuesta armonía del universo le permitió, luego de varios frustrados intentos, enunciar las tres leyes que describen con extraordinaria precisión, el movimiento de los planetas alrededor del Sol.

Desde una posición cosmológica copernicana, que como hemos visto en esa época era más una creencia filosófica que una teoría científica, Kepler logró esta magnífica empresa de manera totalmente empírica, sin más teoría que su propio convencimiento sobre el carácter fundamental (divino) de la geometría, y utilizando la gran cantidad de datos experimentales obtenidos por Tycho Brahe.

La primera ley establece, a pesar de su autor, que los planetas describen órbitas elípticas alrededor del Sol, que ocupa uno de sus focos. En la escala de valores geométricos de Kepler, el círculo ocupaba un lugar privilegiado y de ahí su decepción, luego de múltiples intentos por compatibilizar las observaciones con órbitas circulares.

Primera Ley: “La orbita que describe cada planeta es una elipse con el Sol en uno de sus focos”

orbita eliptica de un planeta

Las elipses de las trayectorias sonde  muy poca excentricidad, de tal manera que difieren muy poco de la circunferencia. Asì por ejemplo , la excentricidad de la órbita de la Tierra es e=0,017, y como la distancia Tierra-Sol es aproximadamente 150.000.000 de Km. la distancia del Sol (foco) al centro de la elipse es de ae=2.500.000 Km.

La segunda ley se refiere a las áreas barridas por la línea imaginaria que une cada planeta al Sol, llamada radio vector. Kepler observó que los planetas se mueven más rápido cuando se hallan más cerca del Sol, pero el radio vector encierra superficies iguales en tiempos iguales. (Si el planeta tarda el mismo tiempo en ir de A a B en la figura , que de c a D, las áreas en blanco son iguales).

Segunda Ley: “Cada planeta se mueve de tal manera que el radio vector (recta que une el centro del Sol con el planeta) barre area iguales en tiempos iguales”.

El radio vector r, o sea la distancia entre el planeta y el foco (Sol) es variable, pues es mínima en el perihelio y máxima en el afelio. Como la velocidad areal (área barrida en la unidad de tiempo) es constante, la velocidad del planeta en su órbita debe ser variable. En virtud de esta ley, si las áreas PFM y AFN son iguales, el arco PM será menor que el AN, lo que indica que el planeta se desplaza más ligero en el perihelio. Es decir, su velocidad es máxima a la mínima distancia al Sol y mínima a la máxima distancia.

Finalmente, la tercera ley relaciona el semieje mayor de la órbita, llamado a, al período orbital del planeta p, de la siguiente manera: a3/P2 = constante. De acuerdo a esta ley, la duración de la trayectoria orbital de un planeta aumenta con la distancia al Sol y así sabemos que el “año” (definido como el tiempo empleado por el planeta en volver al mismo punto de su órbita) en Mercurio tiene 88 días (terrestres), en Venus 224, en la Tierra 365 y sigue aumentando a medida que nos alejamos del Sol. Estas leyes permiten también deducir las distancias relativas de los objetos del sistema solar, si conocemos sus movimientos. Determinando independientemente alguna de ellas es posible conocer sus valores absolutos.

Tercera Ley: “El cuadrado de los períodos de revolución de dos planetas es proporcional a los cubos de sus distancias medias al Sol.” (ver una animación de Liventicus)

Si a1, y a2 son las distancias medias al Sol de dos planetas, por ejemplo Marte y la Tierra, y p1 y p2 son los respectivos tiempos de revolución alrededor del Sol, de acuerdo con esta ley resulta que:

donde el tiempo està dado en años y la distancia en unidades astronómicas (UA=150.000.000 Km.)

Dados el periodo P y la distancia a de un planeta al Sol; y el período o la distancia de otro, se puede determinar el dato incógnita. Por ejemplo, para la Tierra P1 1 año; a1 = 1 UA; y para Venus a2 = 0,72 UA, se puede calcular el período P2 de Venus:

Si dado el período de revolución de un planeta se desea conocer la distancia, se aplica la expresión:

que para el caso del planeta más lejano del sistema solar, Plutón, donde P2 = 248 años, resulta:

Posteriormente al enunciado de esta ley hecho por Kepler, Newton probó que en la misma deben aparecer las masas de los cuerpos considerados, y de esta manera obtuvo la siguiente fórmula:

donde M es la masa del Sol (el cuerpo situado en el foco de la Órbita), igual a 330 000 veces la masa de la Tierra, y m1 y m2 son las masas de los de cuerpos considerados que se mueven a su alrededor en orbitas elípticas. Esta expresión permite calcular la masa de un planeta o satélite, si se conoce su periodo de traslación P y su distancia media a al Sol. (ver Ley de Bode).

En general para los planetas del sistema solar solo las masas de Júpiter y Saturno no son despreciables respecto a la del Sol. De esta manera , en la mayoría de los casos se considera (M+m) igual a: 1 masa solar y se obtiene así la expresión dada originalmente por Kepler.

Por primera vez una única curva geométrica, sin agregados ni componentes, y una única ley de velocidad resultan suficientes para predecir las posiciones planetarias, y por primera vez también, las predicciones son tan precisas como las observaciones.

Estas leyes empíricas recién encontraron su sustento físico y matemático en la teoría de la gravitación universal de Newton, quien estableció el principio físico que explica los movimientos planetarios. La construcción de este cuerpo de ideas que comienza con Copérnico y culmina en la mecánica de Newton es un ejemplo por excelencia de lo que se considera un procedimiento científico, al que se puede describir muy esquemáticamente de la siguiente forma: se observa un hecho, se mide y se confecciona una tabla de datos; luego se trata de encontrar leyes que relacionen estos datos y, finalmente, se busca un principio que sustente o explique las leyes.

Una vez encontrado, este principio físico permite en general conectar hechos considerados previamente independientes y explicar más fenómenos además de aquellos que motivaron su formulación. Newton fue así capaz de establecer que el movimiento de los planetas alrededor del Sol y la caída de los cuerpos sobre la superficie terrestre son dos manifestaciones del mismo fenómeno: la gravedad.

En general es difícil separar estos pasos claramente. El salto del sistema tolemaico al copemicario se realizó en mayor medida debido a la reinterpretación de ciertas observaciones que a la obtención de nuevos datos. Incluso Kepler formuló sus leyes escudriñando más en detalle esencialmente las mismas observaciones Ptolomeo había mencionado que los movimientos aparentes de los astros podían explicarse suponiendo que la Tierra estaba en movimiento. Pero tal suposición no proporcionaba más que un mecanismo conveniente para los cálculos, y dado que la cosmología aristotélica requería una Tierra inmóvil en el centro del universo, prefirió adoptar la suposición que resultaba verdadera en el marco de la física aceptada en ese momento.

En realidad la escuela de Pitágoras había establecido mucho tiempo antes, en el siglo VI a.C., que tanto la Tierra como el Sol se movían alrededor del “fuego central”. Aristarco de Samos (siglo nI a.C.) —mejor conocido por sus mediciones de las distancias al Sol y a la Luna, lo que configuró una tarea extraordinaria considerando las herramientas matemáticas de la época— sostenía que la Tierra rotaba sobre su eje y describía una órbita alrededor del Sol. También algunos filósofos del Renacimiento habían asignado movimiento a la Tierra. Pero ninguno de ellos usó esa suposición como punto de partida para dar una descripción detallada y sistemática de los movimientos aparentes de los cuerpos celestes.

En la labor científica no es sencillo decidir qué elementos o datos deben ser relacionados por las leyes. Kepler nos brinda un ejemplo de selección de “pistas útiles”.

En 1609 el científico italiano Galileo Galilei (1564-1642) fue el primero en dirigir un telescopio al cielo y como resultado, proporcionó a la astronomía el primer conjunto de datos cualitativamente nuevos, desde la antigüedad. El telescopio permitió descubrir nuevas pruebas en favor del modelo heliocéntrico. La Vía Láctea, hasta entonces un objeto nebuloso considerado más cercano a la esfera de la Tierra que a la de las estrellas, pudo resolverse por primera vez en una enorme cantidad de estrellas, demasiado débiles y pequeñas para ser separadas individualmente por el ojo desnudo. El telescopio permite efectivamente separar dos estrellas que a simple vista parecen como una sola. Esta propiedad se llama poder de resolución y se define con la mínima separación angular de dos estrellas que puede observarse.

El astrónomo italiano Galileo Galilei (1564-1642). Cuando Galileo defendió la hipótesis heliocéntrica -la afirmación de que la Tierra gira alrededor del Sol-, se enfrentó con la opinión dominante de la Iglesia católica. Sin embargo, su hipótesis era coherente con los conocimientos disponibles en la época.

Cuanto mayor es la apertura (o el diámetro del objetivo) mayor es el poder de resolución. Esta innumerable cantidad de nuevos objetos volvió a dar credibilidad a la idea de un universo mucho más grande de lo supuesto por los antiguos astrónomos, tal como había sugerido Copérnico.

El telescopio también permitió resolver una paradoja usada por Tycho contra el modelo copenicano: si el universo es tan grande como requiere la ausencia de paralaje, entonces las estrellas deben ser extremadamente grandes. Hasta entonces los tamaños estimados de las estrellas no eran superiores al del Sol y estas estimaciones se hacían suponiendo un valor para la distancia a las estrellas . En base al mismo, el tamaño angular observado podía transformarse en una estimación de sus dimensiones lineales.

Pero si esta distancia aumentaba tanto, también aumentaba el tamaño de las estrellas. Las estrellas más brillantes tendrían diámetros más grandes que la órbita de la Tierra y esto parecía imposible. El telescopio permitió descubrir que tal argumento era falso. Aunque aumentó notablemente el número de estrellas visibles no hizo lo mismo con su tamaño. A diferencia del Sol, la Luna y los planetas que se agrandan sustancialmente cuando se observan a través del telescopio, las estrellas mantienen su tamaño. El diámetro angular de las estrellas se había sobrestimado y actualmente sabemos que esto es una consecuencia de la turbulencia atmosférica, el mismo fenómeno que hace parecer que las estrellas titilan.

El nuevo instrumento permitió también descubrir “imperfecciones” en las superficies lunar (cráteres, montañas, zonas claras y oscuras) y solar, lo que sembró dudas sobre la “naturalidad” de la distinción tradicional (aristotélica) entre las regiones terrestre (repleta de imperfecciones) y celeste (perfecta). El movimiento de las manchas observadas en la superficie solar sugirió que el Sol rota y así la rotación de la Tierra dejó de ser una idea descabellada. El descubrimiento de las “lunas” de Júpiter y su movimiento alrededor del planeta terminaron por destruir la idea de que todos los objetos celestes deberían moverse alrededor del centro del universo.

Pero la pregunta obligada es ahora: ¿Qué es lo que hace mover los planetas?

La explicación física del movimiento planetario en la antigüedad era que los planetas y las esferas que los contenían estaban hechos de un elemento celeste perfecto que rotaba eternamente alrededor del centro del universo. El movimiento circular uniforme se consideraba natural. Pero un planeta moviéndose de acuerdo a las leyes de Kepler, cambiando su velocidad, dirección y curvatura en cada punto de su órbita, parecía requerir algún tipo de fuerza responsable de estos cambios. Kepler introdujo la noción de fuerzas originadas en el Sol y los planetas que proporcionaban la causa del movimiento planetario y de sus satélites.

Las mismas estaban relacionadas con el magnetismo, cuyas propiedades habían sido recientemente descubiertas: la Tierra y los planetas eran para Kepler grandes imanes y las atracciones y repulsiones de los polos determinaban las trayectorias planetarias. Si bien estas ideas no prosperaron, la concepción kepleriana del sistema solar como un sistema autocontenido, tanto de sus componentes como de las causas de los movimientos de las mismas, resultó muy importante en los desarrollos sucesivos de las ideas cosmológicas.

PARA SABER MAS…
MAS ALLÁ DE LAS LEYES DE KEPLER

No obstante , la gravitación universal va mas allá de las leyes de Kepler, pues permite  establecer la forma más general que puede tener la órbita de un objeto sometido a la fuerza gravitatoria de otro cuerpo. Puede ocurrir, en efecto, que el primero no esté ligado establemente al segundo, sino que el encuentro entre los dos sea sólo temporal, como sucede, por ejemplo, con algunos cometas destinados a pasar una sola vez por las cercanías del Sol y luego a perderse por el espacio interestelar.

La forma de las órbitas celestes puede ser cerrada, si el objeto que órbita está destinado a moverse por las proximidades del cuerpo atractor, o abierta, si el primero viene de remotas regiones siderales y está destinado a regresar a ellas. En el primer caso, la órbita será elíptica o circular; en el segundo será hiperbólica o parabólica, según que la trayectoria sea una hipérbola o una parábola.

En realidad, las órbitas de los cuerpos celestes se ven continuamente modificadas por una serie de fenómenos secundarios, entre los cuales figuran la presencia de otros objetos masivos, que en el caso del sistema solar son los demás planetas, así como efectos de marea o también la presencia, como en los cometas, de chorros que actúan como cohetes propulsores.

El ulterior desarrollo de las leyes de la gravitación por Albert Einstein en su teoría de la relatividad general ha puesto de manifiesto que los movimientos keplerianos son sólo aproximaciones a los movimientos reales de los objetos celestes, incluso en ausencia de fenómenos más complicados.

Sin embargo, las leyes de Kepler permiten describir con suficiente precisión las órbitas de los planetas del sistema solar. Además, tienen una importancia histórica notable, pues fueron el elemento de ruptura con la descripción del universo debida a Tolomeo que estuvo en vigor durante siglos.

UN POCO DE HISTORIA

Kepler vió cumplido el sueño de su vida. Consideró que había descubierto las leyes con las que Dios había creado el universo y regían su funciona miento. Se consideró el afortunado mortal que había desentrañado el secreto de un cosmos que reflejaba la trinidad divina. Un cosmos limitado por la esfera de las estrellas fijas y centrado en el Sol, en cuyo interior los planetas cantaban la gloria de Dios. Pero, efectivamente, su obra apenas tuvo impacto alguno entre sus contemporáneos. Nadie dudaba de su autoridad en el campo de la astronomía, que se vio ratificada con la publicación de las Tablas rudolfinas (1627), pero nadie aceptó sus especulaciones cosmológicas. Sus ideas sobre los sólidos regulares y las armonías celestes, apenas tuvieron un solo seguidor.

La Astronomía nova, su gran obra astronómica, fue un fracaso editorial absoluto, que reflejaba claramente el rechazo que su «física celeste» recibió desde un principio. La comunidad científica, incluso más allá del conservador mundo académico, no aceptó su tratamiento y explicación física de los fenómenos astronómicos. El copernicanismo seguía siendo aceptado mayoritariamente como mero instrumento de cálculo. E incluso Galileo, que defendía el heliocentrismo y el movimiento terrestre como verdaderos, siguió apegado al dogma de la circularidad e ignoró totalmente, como Descartes, la obra cosmológica de Kepler, que consideraba totalmente fantasiosa.

La física galileana, que coronó en Newton, rompía radicalmente con la física celeste de Kepler, que aún compartía elementos esenciales de la física aristotélica. No obstante, las leyes de movimiento planetario descubiertas por Kepler y cubiertas por la fronda de su desaforada especulación, debidamente cribadas, fueron el punto de partida de la gran síntesis que Newton sifué capaz de llevara cabo entre la física celeste y terrestre. Pero, aun siendo generosos, es difícil considerar a Newton el lector que Kepler esperaba.

Fuente Consultada: Astronomía Elemental de Alejandro Feinstein y Notas Celestes de Carmen Nuñez.