Cuando La Tierra se Rebela

Consumo de Agua en el Mundo Huella Hídrica, Tablas y Mapa

CONCEPTO DE HUELLA HÍDRICA – HISTORIA DEL CONSUMO DEL AGUA POTABLE

HISTORIA: Cualquiera sea la actividad del hombre que consideremos, siempre el agua ocupará una parte esencial en ella. Si observamos su búsqueda de energía comprobamos que la primera fuente natural de energía que dominó fue la de las corrientes y caídas de agua. Cuando pensamos en el hombre como agricultor vemos que una de sus tareas más importantes es asegurar que sus tierras estén bien irrigadas y desaguadas. Aun en el transporte vemos que los barcos que navegan en mares y ríos tienen un papel dominante.

Todo esto no es extraño, pues más de siete décimos (70%) de toda la superficie del globo está cubierta de agua hasta una profundidad media de unos 4 kilómetros. Si multiplicamos el número de kilómetros cuadrados que forman las siete décimas partes del globo terrestre por 4, comprobamos que nuestro planeta contiene más de 1.000 millones de kilómetros cúbicos de agua.

Sin embargo, excepto como ruta para los barcos y ambiente vital para los peces, la gran abundancia de agua en mares y océanos es de poca utilidad directa para el hombre. No la puede usar para calmar su sed y la de sus animales domésticos o para irrigar sus campos. Para todos estos propósitos debe conformarse con la cantidad mucho menor que pasa de la superficie de los océanos al aire como vapor de agua, luego corre por los aires en forma de nubes y cae como lluvia o nieve. Y aún de esta cantidad, relativamente pequeña, la mayor parte, y con mucho, busca su camino en los ríos y vuelve al mar antes que el hombre la haya usado.

Así, aunque en un sentido el agua es extraordinariamente abundante, en otro aspecto es excepcionalmente escasa. En muchas regiones cálidas y secas, incluyendo partes de España, ex Yugoslavia y África del Norte, la poca lluvia que cae sobre la tierra se cuela rápidamente a través de una capa muy gruesa de suelo poroso antes de ser detenida por otra impermeable, de roca, profundamente situada por debajo de la superficie.

En tales regiones es necesario perforar profundos pozos hasta la roca, y los aguateros que transportan la valiosa agua de estos pozos a aldeas distantes la pueden vender tan fácilmente como se venden helados, en otras partes, en un caluroso día de verano. Aun en clima como el nuestro, no es extraño para la gente que vive en distritos con pobre provisión de agua el recoger el agua de lluvia de los techos en barriles y usarla para cualquier fin en el que la absoluta pureza no sea realmente indispensable.

Pero en regiones donde las lluvias no son demasiado escasas y especialmente en las que tienen un subsuelo calcáreo, generalmente es posible asegurarse una provisión de agua constante cavando un pozo no muy profundo.

El agua se puede elevar del pozo en baldes o, siempre que el nivel del agua (la napa) no esté a más de unos 10 metros bajo tierra, por medio de una simple bomba aspirante.  En regiones muy secas, donde el nivel del agua puede estar mucho más profundo, o en cualquier parte donde un pozo tenga que proveer grandes cantidades de agua, se pueden usar bombas más poderosas.

A veces ocurre que el agua queda apresada profundamente bajo tierra entre dos capas de roca impermeable de forma de casquete. Perforando a través de la capa superior, cerca de su punto más bajo, donde hay gran presión de agua, es posible producir un pozo artesiano.  La presión causa un constante fluir de agua, que sube a la superficie.

Para proveer las vastas cantidades de agua que consumen grandes pueblos y ciudades, los pozos y fuentes no son suficientes. Los romanos fueron los primeros en dar una excelente solución al problema, cuando derivaron el agua abundante de los ríos y arroyos de montaña y la transportaron a pueblos distantes por medio de acueductos.

CONCEPTO DE HUELLA HÍDRICA: La huella hídrica es un indicador que define el volumen total de agua dulce usado para producir los bienes y servicios producidos por una empresa, o consumidos por un individuo o comunidad. Mide en el volumen de agua consumida, evaporada o contaminada a lo largo de la cadena de suministro, ya sea por unidad de tiempo para individuos y comunidades, o por unidad producida para una empresa. Se puede calcular para cualquier grupo definido de consumidores (por ejemplo, individuos, familias, pueblos, ciudades, departamentos o naciones) o productores (por ejemplo, organismos públicos, empresas privadas o el sector económico).

concepto de huella hidrica

La tarea de suministrar agua potable a las poblaciones fue muy ardua ya en tiempos de los romanos, pero no lo era entonces casi nada si la comparamos con la de la actualidad. Primeramente, hay ahora muchos más pueblos y ciudades y, además de esto, no pocos de ellos son más grandes que las mayores ciudades de la antigüedad, porque los modernos métodos de transporte han capacitado a las zonas urbanas para crecer en una extensión antes imposible.

Lo que hace que el problema resulte aún más formidable es el hecho de que cada persona usa mucha más agua hoy, diariamente, que en tiempos pasados. Cuando la gente tenía que molestarse en obtener agua levantándola de los pozos, en baldes, cuidaba naturalmente mucho más de no derrocharla que nosotros que conseguimos toda la que deseamos con tan sólo abrir un grifo. Pero no son solamente el descuido y derroche los que han aumentado el consumo del agua. Otra causa importante es el continuo progreso del nivel medio de higiene.

Hace 400 años no se habían inventado los inodoros y hace ciento existían exclusivamente en las casas de los ricos; hoy cada casa usa probablemente más de 50 litros diarios de agua en el lavatorio. Hace poco más de 400 años ni siquiera los palacios poseían cuarto de baño; sin embargo, actualmente, la gran mayoría de las familias de la clase trabajadora, en los países más adelantados, tiene cuarto de baño en su hogar, y cada una de ellas seguramente consume centenares de litros de agua por semana. Además, la industria moderna gasta agua en abundancia.

De manera que no es de extrañar que los 5 ó 10 litros de agua por persona que bastaban para las necesidades diarias de nuestros antecesores ya no sean suficientes hoy para nosotros. En la moderna Bruselas, cada persona usa un promediode 160 litros de agua diariamente.

En Londres, la cantidad es de alrededor de 210 litros, en Estocolmo 245, en París 265 y en Nueva York llega a 440 litros. Aun la más pequeña de estas ciudades —Estocolmo— tiene una población de casi mas de un millón de almas, lo cual significa que necesita unos 250 millones de litros diarios. Nueva York, con su enorme población y su elevado consumo de agua por persona, necesita algo más de 4.400 millones de litros. ¿De dónde proceden tan vastas cantidades de agua?.

Pocas veces están al alcance mismo del sitio en que se las necesita y muy frecuentemente deben ser obtenidas de ríos, lagos o fuentes distantes y transportadas por gigantescas cañerías a plantas de potabilización cercanas a la ciudad que las consume.

Allí el agua ha de ser purificada y pasada a través de filtros. Éstos consisten en tanques enormes, que contienen, generalmente, primero una capa de pedregullo y arena gruesa, y luego, encima de ésta, una de arena fina. La arena filtra la mayor parte de las impurezas sólidas, pero no deja el agua libre de bacterias. De modo que ésta pasa a continuación a depósitos donde la acción de la luz del sol y el aire contribuyen a destruir los microorganismos. Generalmente se agrega también cierta cantidad de cloro, que actúa como germicida.

Cuando el agua está completamente purificada se la bombea a torres de agua, de modo que finalmente llegue a todas las casas de la ciudad con una presión uniforme. Sólo a partir del siglo XX el hombre ha tenido tan colosales exigencias de provisión de agua, y éstas nunca se hubieran satisfecho de no haberse tomado medidas para impedir que los ríos llevaran todo su caudal de agua al mar, como siempre.

Hoy, a lo largo de los cursos superiores y medios de muchos grandes ríos, los ingenieros han construido vertederos para controlar la corriente del agua. De modo que, excepto en épocas de muy prolongada sequía, las autoridades encargadas del suministro de agua pueden casi siempre conservar la cantidad suficiente como para satisfacer las necesidades de las poblaciones.

La Organización Mundial de la Salud (OMS) recomienda utilizar 50 litros de agua por día y por persona, pero en la Argentina se calcula un consumo de entre 500 a 613 litros diarios.   Así, el consumo de agua limpia es diez veces mayor a lo sugerido por la OMS y las causas más habituales de este derroche son “pérdidas en las canillas, dispendio en la higiene personal o limpieza de ropas y lavado de vehículos, vajillas, frutas y verduras, regado de plantas y jardines y el uso de desagües como vertederos”.

MAPA DEL CONSUMO DE AGUA EN EL MUNDO – m³/año/persona –

mapa de consumo de agua en el mundo

TABLA DE CONSUMO FAMILIAR APROXIMADOS:

1 Lavado de Auto 500 l.
2 Ducha de 10 minutos 70-150l.
3 Descarga Inodoro 20-25 l.
4 Lavado de Manos 3 l.
5 Lavarropa 100 l.
6 Consumo Familiar 4 Personas 1200 l.

TABLA DE CONSUMO INDUSTRIAL APROXIMADOS:

1 Cemento por Kg. 30 l.
2 Harina por Kg. 0,5 l.
3 Azúcar por Kg. 2 l.
4 Lana por Kg. 0,7 l.
5 Papel por Kg. 0,5 l.
6 Cerveza por litro 10 l.
7 Gaseosa por litro 5 l.
8 Pescado por Kg. 6 l.
9 Acero por Kg. 500 l.
10 Un automóvil 35.000 l.

Nuevas estadísticas sobre la  disponibilidad y la utilización de los recursos hídricos informan que que sector agrícola consume el 92% del agua.  Analizar el consumo globalmente, aseguran, ayudará a los gobiernos a establecer medidas para elaborar sus planes hídricos nacionales y gestionar mejor los limitados recursos hídricos. EEUU, India y China son los países que más agua gastan. Entre los tres consumen el 38% de los recursos hídricos del planeta

8 CONSEJOS PARA EL AHORRO DE AGUA

tabla con consejos para el ahorro de agua potable

LA DEPURACIÓN DEL AGUA: Quizás uno de los elementos más importantes para el desarrollo de la civilización actual sea algo tan simple como el agua. Ella es la base de las operaciones industriales; es requerida, también, como bebida fundamental. Y resulta indispensable para lograr una adecuada higiene, tanto en lo que hace al aseo personal como a la limpieza de habitaciones, veredas y edificios.

Constituye la base de los servicios sanitarios. De acuerdo con las más actualizadas tablas de valores, cada ser humano utiliza, en promedio, unos 125 litros diarios de agua. Esta cifra aumenta considerablemente si nos referimos a las ciudades, especialmente las europeas. En Los Ángeles, por ejemplo, se consume individualmente un promedio de 350 litros por día.

Veamos cuál es el método empleado para purificar este líquido. Baste calcular que sólo París necesita por día más de 2.500 millones de litros de agua potable. Todo el sistema sanitario de una ciudad se basa en obras de ingeniería, consistentes en tuberías y canalizaciones de distintos diámetros.

Desde ríos, a veces muy distantes, se hace llegar el agua a plantas de potabilización que, generalmente, se instalan cerca del núcleo urbano.

Allí el agua pasa por varias piletas, en las que las impurezas mayores se depositan en el fondo por un proceso mecánico de sedimentación. Luego el agua pasa a otras piletas que actúan como filtros gracias a la acción depuradora de la arena fina y el pedregullo que hay en su fondo.

En otras piletas el agua se somete a un nuevo proceso, ahora de orden químico, que consiste en el agregado de agentes germicidas como el cloro, el ozono, etc., que eliminan todo vestigio de parásitos y otros microorganismos nocivos. Ya en este momento el agua, transparente como un cristal, está preparada para ser bombeada a presión en las tuberías que lallevarán porlaciudad. En algunos casos se envía a torres elevadas para que su distribución se produzca sin inconvenientes.

Luego de la acción germicida, de los filtros y de las piletas de decantación, el agua está lista para ser sometida a todos los usos imaginables. Ya servidas, las aguas tienen que ser eliminadas de algún modo. Una de las formas más comunes es restituirlas a los ríos de donde se extrajeron -aunque aguas abajo-, o en el océano, si es que éste se encuentra próximo. Para poder cumplir esta tarea sin contaminar las cuencas hidrográficas o marinas, debe volver a someterse al agua a un nuevo proceso de purificación.

tratamiento de agua potable

A: Planta Potabilizadora
B: Planta Potabilizadora Por Ósmosis Invertida

Ampliar Este Tema

RETENER EL AGUA PARA PRODUCIR ENERGÍA: Hay todavía una razón más en la actualidad para construir diques y represas en los ríos: contener el agua de manera que se la pueda usar en un fluir constante y uniforme para producir energía hidroeléctrica.

Antiguamente, los habitantes de la Mesopotamia usaban ruedas de agua primitivas, accionadas por los ríos o arroyos, para obtener agua para la irrigación. Durante la Edad Media, en muchas partes de Europa se empezaron a usar ruedas mucho mejor ideadas para impulsar diversas clases de máquinas simples en los molinos.

Cerca de las caídas de agua de poco caudal, en lugares montañosos, construyeron molinos equipados de ruedas con cangilones. Éstas eran ruedas con paletas bastante livianas, que la fuerza del agua, al caer, hacía girar a considerable velocidad. Por medio de una serie de engranajes, cada uno con ún número diferente de dientes, este veloz movimiento podía disminuirse a una velocidad apropiada para la lenta y pesada maquinaria colocada adentro del molino. Cerca de ríos anchos, en regiones llanas, construyeron molinos con ruedas y paletas de distinta disposición, movidas lentamente por la corriente. Por medio de una serie de engranajes, este lento movimiento podía acelerarse a la velocidad requerida.

Todo esto representaba un gran adelanto en la conquista de la energía hidráulica, pero conservaba aún dos enormes inconvenientes. Primero, se podía sólo hacer uso de la energía mecánica del agua eii movimiento construyendo molinos en el lugar en que se encontraba y no donde era más conveniente hacerlo. Segundo, el natural fluir del agua variaba con las épocas y la cantidad de energía disponible variaba con ella. Después de lluvias prolongadas, en las caídas de agua y los ríos el caudal de agua llegaba al máximo y movía las ruedas a una velocidad excesiva, que amenazaba con destruirlas. Después de una sequía prolongada, las ruedas apenas giraban.

No hubo indicación alguna de cómo se podría subsanar el primer inconveniente, hasta comenzado el siglo XIX. Fue cuando el científico inglés Faraday descubrió que un imán que se movía rápidamente podía provocar el fluir de una corriente eléctrica a través de un cable. Aquí, entonces, había un medio de transformar energía mecánica —la clase de energía necesaria para mover el imán con rapidez— en energía eléctrica.

En ese tiempo, cuando la era de la máquina de vapor llegaba a su punto más alto, la obvia manera de poner el imán en movimiento era usar un motor de vapor. De modo que los imanes de los generadores de las primitivas usinas que surgieron años más tarde se accionaban con vapor y así es como funcionan hoy la mayoría de los generadores.

Pero no hay nada que impida que los imanes de los generadores funcionen por las caídas de agua, y en efecto así es como se mueven en las modernas usinas hidroeléctricas. De este modo la energía mecánica del agua en movimiento se transforma en energía eléctrica, la cual puede ser transportada en cables hacia donde haga falta. En los hogares y fábricas de cualquier sitio esta energía eléctrica puede convertirse nuevamente en energía mecánica por medio de motores, en los cuales la corriente eléctrica pone en movimiento un imán.

El otro problema era cómo asegurarse que el agua diera una producción de energía constante. Aquí surgió, precisamente, la necesidad de construir diques y represas. Cuando se construye un dique a través de un río, las aguas del curso superior son contenidas para formar un lago artificial. Éste sirve como enorme depósito desde el cual se puede dejar correr el agua hacia los generadores, a través de cañerías o túneles, a una velocidad constante durante todo el año.

En terrenos montañosos, el agua que cae de grandes alturas hace girar veloces ruedas Pelton, no muy diferentes de las ruedas de antaño, para impulsar a los generadores. En terreno llano, un volumen mayor de agua que cae de una altura menor hace girar las ruedas de turbina, que se parecen también mucho a las de la Edad Media.

Fuente Consultada:
El Triunfo de la Ciencia El Agua en el Mundo Globerama Tomo III Edit. CODEX

Tifon en Filipinas

Filipinas es una nación insular formada por 7.107 islas e islotes, de los cuales unos 730 están habitados y 462 tienen una extensión superior a los 2,5 km. Está situada entre el mar de China meridional y el océano Pacífico.

Forma parte del cinturón de fuego del Pacífico. Luzón y Mindanao, las dos islas principales, concentran dos terceras partes de la población.

Numerosas cadenas montañosas de tipo volcánico corren de norte a sur hasta Borneo y las Célebes. En Mindanao se encuentra el monte Apo (2.954 m), que constituye la máxima altura del país. Los terremotos y las inundaciones son frecuentes en la región.

Los ríos principales son el Cagayan, el Grande de Mindanao y el Pasig, que corre por Manila. Hay lagos y lagunas repartidas, como la laguna de Bay, al sur de Manila. Clima: tropical en la mayor parte de la región; se presentan vientos monzones en el noreste, desde noviembre hasta abril; y en el suroeste, de mayo a octubre.

INFORMACIÓN SOBRE EL PAÍS

NOMBRE OFICIAL: República de las Filipinas
CAPITAL: Manila
ÁREA (Km2): 300.000
POBLACIÓN (HAB.): 101.833.938 (jul. de 2011)
PUERTOS: Batangas, Cagayan de Oro, Cebú, Davao, Dagupan, lligan, Manila
DIVISIÓN POLÍTICA: 80 provincias y 120 ciudades menores
UNIDAD MONETARIA: peso filipino
FIESTA NACIONAL:12 de junio, Día de la Independencia
 
ECONOMÍA:
Tasa de inflación (%):3,8 (2010)
Crecimiento del PIB (%): 7,3(2010)
Desempleo (%): 7,3(2010)
Industria: ensamblaje de productos electrónicos, productos farmacéuticos, químicos y de madera y pesca
Agricultura: azúcar, coco, arroz, maíz, plátano y pina.
Ganadería: porcinos y caprinos.
 
SOCIEDAD:
Ciudades principales (hab.): Manila, 11’248.470; Davao, 1’626.977; Cebú, 830.962; Bacolod, 486.541 (2010)
Religión (%): católicos romanos, 81; musulmanes, 5; evangélicos
Crecimiento demográfico (tasa media) (%): 1,90 (2011)»
Densidad (hab./km2) 339,44(2011)
Fecundidad (número de hijos por mujer): 3,19 (2011)
Esperanza de vida (años): hombres, 68,72; mujeres, 74,74 (2011)
Tasa de natalidad: 25,34 nacimientos por 1.000 hab. (2011)
Mortalidad infantil: 19,34 muertes por 1.000 nacimientos (2011)
Índice de Desarrollo Humano (entre O y 1): 0,638 (2010)
Acceso a fuentes de agua potable (%): 93 (2010)

HISTORIA POLÍTICA DE FILIPINAS: HISTORIA
El archipiélago de Filipinas fue conquistado por España un 1564, país que introdujo el catolicismo y lo convirtió en la religión predominante. España vende en 1898 Filipinas a EE.UU por 20 millones de dólares. A partir de 1935 comienza su etapa de autonomía, siendo el primer presidente Manuel Quezón.

Filipinas estuvo ocupada por Japón durante la Segunda Guerra Mundial. La nación obtuvo su independencia en 1946, pero EE. UU. mantuvo sus bases militares en este territorio. Por su parte, los comunistas, que ya habían combatido a los japoneses, mantuvieron la lucha contra el Gobierno hasta 1953, cuando finalmente se rindieron.

En 1965, Ferdinand Marcos ganó la Presidencia. Durante su gestión mejoró la economía, pero en 1972 declaró la ley marcial, que es un estado de excepción en el que prevalece el mandato de los militares. Varios senadores, movidos por Benigno Aquino, miembro destacado del Partido Liberal de Filipinas, organizaron la oposición, en tanto que los comunistas promovieron una revolución desde las islas del sur.

En 1983, Aquino, quien había sido condenado a muerte por el dictador Marcos, regresó del exilio, pero fue asesinado al llegar al aeropuerto de Manila. El Ejército Popular Nuevo (EPN) se tomó el país en 1985.

El movimiento popular se unió tras la figura de la viuda de Aquino, Corazón Aquino, quien prometió concretar el sueño de su esposo de llegar al poder. Luego del asesinato de Aquino, EE. UU. retiró el apoyo a Marcos y se lo brindó a la viuda de aquel. En 1986, el dictador Marcos y su esposa huyeron a Hawai. Corazón Aquino asumió la Presidencia y proclamó una Constitución provisional, que rige hasta estos días, con algunas modificaciones.

FENÓMENO METEOROLÓGICO CATASTRÓFICO:

Los ciclones más peligrosos y destructivos son los huracanes, llamados tifones en Asia. Se trata de grandes tormentas, que afectan a toda la troposfera, con bandas de nubes que provocan lluvias, organizadas en espiral. Los vientos en su parte baja se mueven en el sentido contrario de las agujas del reloj, mientras que en la parte alta se desplazan al revés, en sentido horario.

Los huracanes y tifones se forman a partir de perturbaciones preexistentes, en los trópicos, y siempre sobre los océanos. Evolucionan a partir de perturbaciones mucho más leves que aparecen cada tres o cuatro días sobre las aguas cercanas al ecuador, y necesitan que la temperatura a nivel de! mar sea elevada y que en los niveles altos de la atmósfera soplen vientos suaves, que no cambien bruscamente de velocidad ni dirección.

Cuando se dan estas condiciones, los meteorólogos saben que es posible que se produzca un ciclón tropical que podría evolucionar hasta un huracán.


Otros fenómenos que pueden ser muy destructivos son los tornados, ciclones pequeños y de vida muy corta (unas horas). En ellos se producen torbellinos de aire con vientos que pueden superar los 500 Km./h.

El tifón ‘Haiyan’, uno de los más fuertes de la historia de Filipinas, ha cambiado radicalmente el paisaje de la costa de algunas islas del archipiélago, donde se calcula que ha causado más de 10.000 muertes y ha dejado un paisaje de destrucción total y en completa desesperación a los afectados.

La ciudad de Tacloban, hasta la fecha la más afectada del país, en la provincia oriental de Leyte, fue de las primeras que golpeó ‘Haiyan’, denominado Yolanda en Filipinas, con ráfagas de viento de hasta 315 kilómetros por hora en la mañana del pasado viernes.

Antes de la llegada del tifón, varias ONG se desplazaron a la zona, puesto que los expertos preveían que Leyte sería muy afectada por el tifón, pero poco pudieron hacer para ayudar a los 218.000 habitantes de Tacloban durante las más de seis horas que la tormenta azotó la ciudad.

Además de enfrentarse a vientos sostenidos de más de 250 kilómetros por hora y una incesante tromba de agua, Tacloban tuvo que soportar una subida del nivel de la marea de más de dos metros.

Ver: Terremotos Históricos

Terremotos Mas Importantes de Argentina

Vaca Muerta Explotacion del Yacimiento de Hidrocarburos Shale en Neuquen

Vaca Muerta Explotación del Yacimiento de Hidrocarburos

cigueña petroleoVaca Muerta es un yacimiento de hidrocarburos no convencionales, también conocidos como “shale oil” –cuando se extrae petróleo- y “shale gas” –cuando se extrae gas-.

Se denomina No Convencional porque  para la extracción se recurre a un método especial, totalmente diferente al clásico sistema que conocemos de las torres de perforación que solemos ver el costado de las rutas en el sur argentino, o también las famosas “cigüeñas” que trabajan incasablemente desparramadas por grandes áreas desiertas. (imagen izq.)

Este hidrocarburo, una especie de “maná del suelo” se encuentra a unos 3000 m. de profundidad, distribuido en una superficie de aproximadamente 30.000 Km2.

Como se decía antes, para poder extraerlos se debe aplicar otro método, no standar, llamando extracción  standard al sistema en donde se introduce una tubería vertical hasta el depósito de hidrocarburo y por diferencia de presión (natural o provocada) el petróleo crudo asciende hasta la superficie como ocurre normalmente en los países de medio oriente donde esta riqueza emana casi sin esfuerzo. Pero ese petróleo almacenado no era generado en ese lugar, sino más abajo, en la denominada roca madre.

Dadas ciertas condiciones de presión y de calor que haya tenido la formación rocosa, puede darse el caso de que haya quedado petróleo o gas entre las rocas y que nunca haya llegado a los almacenes. En este caso el método de extracción cambia, lo cual lo hace sumamente costoso y complejo, ya que la técnica de considerablemente distinta.

Hay que aclarar que Vaca Muerta no es un descubrimiento actual, sino que desde cuando se hicieron las primeras perforaciones convencional la tubería ha pasado por esa zona, para llegar a otras profundidades mayores conocida como Sierras Blancas. Inclusive se presentaba cierta dificultad, por que cuando pasaban por esa zona debía sellar con lodo esa parte de la perforación, para poder seguir avanzando hacia abajo.mapa vaca muerta

Por es bueno aclarar que “vaca muerta” no se refiere a la zona geográfica sino que  es una formación rocosa muy profunda que recorre el subsuelo de la mayoría de los yacimientos de la cuenca neuquina. En esa formación rocosa está atrapado el petróleo y por eso se ha convertido en un tesoro oculto del que todos los petroleros hablan.

Se cree que Vaca Muerta podría cambiar el panorama energético argentino para los próximos años y convertir al país en un gran potencial de hidrocarburos. Se llama Vaca Muerta porque en realidad, hay una sierra homónima cerca de Zapala, que fue la que le dio al científico que la descubrió hace ya varias décadas la idea de copiar la denominación.

La   formación geológica tiene un espesor entre 590 y 300m. según la zona que se considere, pues abarca una superficie de 70 mil kilómetros cuadrados, ocupando casi toda la provincia de Neuquén y pedacitos de Mendoza, La Pampa y Río Negro.

muestra roca madre
Cuando se observa una pedazo de muestra se parece es una especie de pizarra negra, que se deshace en finas capas cuando se la manipula con los dedos, como una masa de hojaldre de panadería.
Algunos pedazos de esa roca  guardan aún la forma de los amonites y un dejo de olor a hidrocarburo. (Los amonites, son animales comomoluscos con compartimentos en su concha, comunes durante el jurásico, hace unos 195 millones de años.)

Desde hace unos 20 años, sobre todo en Estados Unidos, se empezó a experimentar con perforaciones horizontales (ver figura) que permiten llegar a formaciones rocosas antes inaccesibles.

Respecto a la reservas shale en gas , se sabe que la primera gran cuenca de hidrocarburos shale está en China, con 38 billones de m3. Y la segunda en EE.UU. con 26 billones de m3 y la tercera en Argentina con 23,5 billones de m3. (en igual orden están las reservas de oil shale). Actualmente  las reservas actuales de gas convencional de Argentina son apenas de 0,5 billones de m3. La reservas convencionales están decayendo y se están haciendo exploraciones costa afuera de algunos países como puede ser Brasil, quien ha encontrado ciertos yacimientos importantes.

En Argentina se están haciendo estudio sobre la factibilidad, debido a los altos costos que implica la extracción, pero en caso que resulte un proyecto positivo podría lograr el autoabastecimiento energético, grave inconveniente hoy, que obliga a importar por una cifra de 15.000 millones de dólares anuales, cifra que tiende a incrementarse de no conseguir nuevas extracciones.

La magnitud de la inversión oscila en los 10.000 millones de dólares. Actualmente hay cerca de 100 pozos no convencionales y la mitad son de YPF, hay planificados unos 100 pozos mas a corto plazo, pero para conseguir el autoabastecimiento se necesitaran mas de 2.500 pozos nuevos, y lógicamente si no se consiguen inversiones externas es imposible afrontar tal desafío, que en tiempo sería de unos 10 años.


El petróleo que se ha acumulado en un yacimiento común ha migrado desde algún otro lugar en las profundidades, donde se ha “producido”. En cambio, los hidrocarburos tipo “shale” se encuentran en su propia cocina. Por algo, VacaMuertaes “la roca madre”. El problema es que esta roca tan prolífica  no tiene porosidad y, por lo tanto, hay que creársela para poder hacer que fluya el hidrocarburo y emerja a la superficie.

El proceso de extracción consiste en realizar una perforación vertical de 15 cm. de diámetro hasta la roca madre (unos 3000 m.) y luego entrar en forma horizontal por la misma roca. Luego se genera un “punzado” con una carga explosiva que produce fundamentalmente una muy alta temperatura que perfora la tubería y funde la roca como una suerte de soplete.

Luego en un primer paso se inyectan a altísima presión entre 500 y 600 metros cúbicos de agua con agentes que reducen la fricción para hacer fracturar la roca. Ese golpe de presión hace que la roca se fracture. Como segundo paso se le vuelve a inyectar agua pero con una arena especial, una especie de bolitas negras, perfectamente esféricas, que se importa de China, Brasil o EE. UU. La finalidad de estas partículas es la evitar que se cierren las fisuras y por ese lugar circulará el hidrocarburo hacia el exterior. Un pozo puede tener entre 3 y 15 fracturas.

En las primeras experiencias hechas en EE.UU. la cantidad de agua utilizada se enviaba nuevamente al río, pero ha creado ciertos problemas ambientales, debido a la contaminación de agua subterránea,  por lo que en Argentina estaría previsto un tratamiento de ese agua, para volver a reutilizarla en nuevos pozos. Se utiliza agua del río Limay (no se usará agua subterránea) y a pesar que se utiliza mucho volumen de agua, se sabe que la industria y la agricultura consume mucho mas.

La experiencia petrolera en esa zona es sumamente importante y de larga data, pero este tipo de extracción no convencional no deja de ser un desafío día a día porque aparecen diversos problemas de orden técnico que  deben solucionarse en el momento y lógicamente va sumando nuevas experiencias a todos los operarios y capataces de la planta. Para muchos es una especie de “escuela” permanente, pues hay variables de presión , temperatura y profundidades que según el día se las debe controlar y regular con las “canillas” de las tuberías.

Por otro lado, hay una polémica respecto a los problemas ambientales y de salud que podría generan en el futuro dicha planta y las opiniones de la gente de la zona se han dividido, generándose por momentos conflictos internos, pues también se sabe que podría traer muchos puestos de trabajo para el área del yacimiento.

La polémica en Europa y en los EE.UU. La explotación de gas y petróleo shale ha sido prohibida en Francia y en Bulgaria. En Estados Unidos, donde la industria realmente estalló desde el 2000 (se hicieron miles y miles de pozos en todo el país), hay una enorme polémica respecto del impacto de la actividad en las fuentes de agua y la salud de las personas. Ha habido casos probados de contaminación en los estados de Wyoming y Colorado, y resistencia popular en Ohio, Pensilvania y Nueva York.  Los pozos de hidrocarburos no convencionales se encuentran en áreas pobladas y rurales. En los hospitales se han denunciado casos de padecimientos infrecuentes, como fuertes dolores de cabeza, tumores, reacciones en la piel. También se han notado malformaciones en fetos de animales de granja.

proceso petroleo

 

CARACTERÍSTICAS
Vaca Muerta tiene 4 propiedades geológicas que la distinguen como una formación de shale única en el mundo: importante cantidad de Carbón Orgánico Total (TOC), alta presión, buena permeabilidad y gran espesor.
A su vez, a diferencia de lo que ocurre con otras formaciones de shale, se encuentra alejada de centros urbanos, lo que facilita notablemente las operaciones.
Otra ventaja es que se encuentra a una profundidad mayor a los 2.500 metros, muy por debajo de los acuíferos de agua dulce, lo cual hace más segura su extracción y disminuye los riesgos ambientales.
Además, en esta región existe una importante actividad de producción de gas y petróleo convencional, por lo que se cuenta con la infraestructura necesaria para el desarrollo del shale.

Fuentes Consultadas: Revista VIVA Mayo de 2012

 

Uselo y Tirelo Frases Mentirosas de la Ecología

PRIMEROS PASOS DE LA ECOLOGÍA
CUANDO LA ECOLOGÍA SE PUSO DE MODA

La moda ecológica

Los temas sobre ecología y la preocupación por la contaminación se puso de moda en los últimos años. Como toda moda siguió los mecanismos propios de ésta en la actual sociedad de consumo. Fue impuesta desde arriba y alentada a nivel mundial por medio de la radio, cine, televisión, revistas, periódicos y todo tipo de escritos. Aunque el centro por excelencia es Estados Unidos; sobre todo después de la campaña iniciada en 1970 desde la misma Casa Blanca a través del presidente Nixon.

El recurso de la moda es una de las tantas maneras de neutralizar un tema crucial como el del deterioro del ambiente humano. Se desplaza de ese modo el eje del problema: la contaminación aparece como una cuestión que no tiene nada que ver con la contaminación de la sociedad. Los medios de difusión masivos son los encargados de lanzar esa imagen. Por otra parte, como moda pronto tiene un efecto saturador, se hace algo cotidiano, cumple su ciclo y muere.

Un perfecto círculo para modelar la opinión colectiva, convertirla en inofensiva y sepultar una realidad que de ser abordada correctamente pone al desnudo todas las imperfecciones del sistema. Tomás Maldonado sostiene, no obstante, que cuando la moda haya entrado en la etapa final, dejará un saldo positivo pues habrá “contribuido a formar una conciencia ecológica“, aunque por el momento inconsistente. Pasada la moda será posible reanudar los esfuerzos que llevarán a una conciencia ecológica esencialmente crítica, respecto de la crisis de la sociedad. Ilustraremos estos conceptos con algunas facetas de la moda ecológica en los Estados Unidos.

En este país es donde se puede observar con mayor magnitud el fenómeno de la moda ecológica. Preocupación que, sin embargo, desde muchos años atrás existía ya en algunos científicos y estudiosos. Unas 360 organizaciones defensoras del ambiente humano existen solamente en la zona de Nueva York y más de miles en todo el país norteamericano. De esta profusa actividad en pos de la protección del medio han resultado términos nuevos como el de ecotáctica y ecoactivista.

Comúnmente se llama ecoactivista a los integrantes de estas organizaciones. La mayoría de ellas pertenecen a núcleos estudiantiles: el tema se ha convertido en una gran preocupación de la juventud. Algunos nombres de las agrupaciones de ecoactivistas son rimbombantes y elegidos con un criterio publicitario. Así encontramos a los “Enemigos de la Contaminación”, “Conspiración de la naturaleza” (Universidad de Oregón), “Supervivencia” (Nueva York), “Amigos de la tierra”, etcétera. Otros conservan nombres más serios como “Comité estudiantil de la Crisis Ambiental”, “Estudiantes en Defensa del Ambiente” (Universidad de Minnesota), “Comité de Acción Ambiental para la Supervivencia” (ENACT, Universidad de Michigan), “ECOS” (Universidad de Carolina del Norte), etc.

Casi todas estas instituciones realizan investigaciones sobre la materia, publican algún periódico, tienen distintivos, venden insignias. Por ejemplo el ENACT, ha vendido miles de calcomanías con la inscripción: “Déle una Oportunidad a la Tierra“. Realizan también conferencias, cursos y movilizaciones públicas. Este vasto movimiento protagonizado generalmente por los jóvenes ha sido usado por el establishment como una manera de distraer la atención sobre otros problemas fundamentales de los norteamericanos.

Se impulsa el estudio de la contaminación, su investigación a través de las universidades que tratan de imponer la conciencia de que la lucha es contra una cuestión que afecta a todos, asunto de vida o muerte, por encima de factores políticos, económicos que consideran secundarios. Muchas veces el problema ha servido para desplazar otros conflictos en universidades donde las causas estudiantiles radicales eran la característica predominante. Sin embargo, hay quienes ven en la lucha contra la contaminación una forma de atacar al sistema económico y social.

Una observación importante es la que aporta el poeta californiano Gary Snyder. “Los estudiantes han adoptado —expresa— la causa del ambiente , por una serie de eventos simultáneos. Hay interés en el pensamiento oriental, en el budismo, en la vida tribal, en la vida en pequeñas comunidades”. Empero—agrega— las universidades que estimulan el activismo ambiental van a tener un tigre sujeto por la cola: “Porque no se puede tomar en serio el ambiente sin ser revolucionario. Hay que estar dispuesto a reestructurar la sociedad”.3 Algunas de las acciones de los ecoactivistas trascienden también fuera del ámbito de las casas de estudio. Un grupo de activistas de la Universidad Minnesota organizaron un simbólico entierro de un motor de combustión interna para protestar contra la contaminación de aire provocada por éstos. Muchos de los integrantes del cortejo fúnebre llevaban pancartas con la leyenda: Entierren el motor, antes de que él nos entierre. Acciones como estas son las que han llevado a caracterizar a sus protagonistas como eco-extravagantes. A veces el humor es también un buen vehículo para la protesta.

Los miembros de Acción Ecológica de Boston organizaron una manifestación para entregar a la empresa Boston Edison una cinta azul como El Contaminador del Año. Algunos grupos más radicalizados han expresado su descontento contra la guerra del Vietnam, realizando investigaciones sobre los efectos de la contaminación provocada por los herbicidas arrojados en el suelo vietnamita.

Un ecoactivista de fama mundial es el joven abogado Ralph Nader. Su último libro en español titulado “El Festín Envenenado”, es el resultado de encuestas realizadas por él y su equipo. La importancia del texto radica en cuanto documento político: critica las bases estructurales del sistema capitalista desarrollado y aporta datos concretos de la gravedad de la polución en su país. Nader contribuyó, entre otras cosas, a descubrir los efectos cancerógenos de los ciclamatos en los cobayos.

A raíz de ese hecho se tuvo que prohibir su venta en los Estados Unidos provocando un serio golpe a la industria del mismo cuyo mercado representaba un millón de dólares por año. Sus críticas apuntan doblemente: a las empresas responsables por un lado, y al poder político, por el otro. Los organismos oficiales creados para combatir la contaminación ambiental (por ejemplo, el National Air Pollution control administratio – NAPCA) están para Nader en el mismo complot con las empresas. De allí que entienda y plantee el problema como una guerra entre el público y los contaminadores (las empresas).

La codicia capitalista de estas últimas confunde además —para Nader— hasta los que adhieren al sistema. Señala también en este libro importantes ejemplos que ilustran sobre el poder monopólico de las empresas estadounidenses: la industria alimentaria representa 125 millones de dólares. Cuatro empresas controlan el 35 por ciento de los desayunos. En fabricación y venta de sopas, “Campbel” controla el 95 por ciento del mercado. Los contaminadores, afirma el ecoactivista, se sostienen entre sí.

Fuente Consultada: Transformaciones N°98 Enciclopedia de los Grandes Fenómenos de Nuestro Tiempo

Uselo y Tirelo Eduardo Galeano Frases Mentirosas de la Ecologia

Úselo y Tirelo de Eduardo Galeano
Frases Mentirosas de la Ecología

Un Poco de Historia por los años 70, primeras preocupaciones y
primeras organzaciones
La moda ecológica:

Los temas sobre ecología y la preocupación por la contaminación se puso de moda en los últimos años. Como toda moda siguió los mecanismos propios de ésta en la actual sociedad de consumo. Fue impuesta desde arriba y alentada a nivel mundial por medio de la radio, cine, televisión, revistas, periódicos y todo tipo de escritos. Aunque el centro por excelencia es Estados Unidos; sobre todo después de la campaña iniciada en 1970 desde la misma Casa Blanca a través del presidente Nixon.

El recurso de la moda es una de las tantas maneras de neutralizar un tema crucial como el del deterioro del ambiente humano. Se desplaza de ese modo el eje del problema: la contaminación aparece como una cuestión que no tiene nada que ver con la contaminación de la sociedad. Los medios de difusión masivos son los encargados de lanzar esa imagen. Por otra parte, como moda pronto tiene un efecto saturador, se hace algo cotidiano, cumple su ciclo y muere.

Un perfecto círculo para modelar la opinión colectiva, convertirla en inofensiva y sepultar una realidad que de ser abordada correctamente pone al desnudo todas las imperfecciones del sistema. Tomás Maldonado sostiene, no obstante, que cuando la moda haya entrado en la etapa final, dejará un saldo positivo pues habrá “contribuido a formar una conciencia ecológica”, aunque por el momento inconsistente. Pasada la moda será posible reanudar los esfuerzos que llevarán a una conciencia ecológica esencialmente crítica, respecto de la crisis de la sociedad. Ilustraremos estos conceptos con algunas facetas de la moda ecológica en los Estados Unidos.

En este país es donde se puede observar con mayor magnitud el fenómeno de la moda ecológica. Preocupación que, sin embargo, desde muchos años atrás existía ya en algunos científicos y estudiosos. Unas 360 organizaciones defensoras del ambiente humano existen solamente en la zona de Nueva York y más de miles en todo el país norteamericano. De esta profusa actividad en pos de la protección del medio han resultado términos nuevos como el de ecotáctica y ecoactivista.

Comúnmente se llama ecoactivista a los integrantes de estas organizaciones. La mayoría de ellas pertenecen a núcleos estudiantiles: el tema se ha convertido en una gran preocupación de la juventud. Algunos nombres de las agrupaciones de ecoactivistas son rimbombantes y elegidos con un criterio publicitario. Así encontramos a los “Enemigos de la Contaminación”, “Conspiración de la naturaleza” (Universidad de Oregón), “Supervivencia” (Nueva York), “Amigos de la tierra”, etcétera. Otros conservan nombres más serios como “Comité estudiantil de la Crisis Ambiental”, “Estudiantes en Defensa del Ambiente” (Universidad de Minnesota), “Comité de Acción Ambiental para la Supervivencia” (ENACT, Universidad de Michigan), “ECOS” (Universidad de Carolina del Norte), etc.

Casi todas estas instituciones realizan investigaciones sobre la materia, publican algún periódico, tienen distintivos, venden insignias. Por ejemplo el ENACT, ha vendido miles de calcomanías con la inscripción: “Déle una Oportunidad a la Tierra”. Realizan también conferencias, cursos y movilizaciones públicas. Este vasto movimiento protagonizado generalmente por los jóvenes ha sido usado por el establishment como una manera de distraer la atención sobre otros problemas fundamentales de los norteamericanos. Se impulsa el estudio de la contaminación, su investigación a través de las universidades que tratan de imponer la conciencia de que la lucha es contra una cuestión que afecta a todos, asunto de vida o muerte, por encima de factores políticos, económicos que consideran secundarios.

Muchas veces el problema ha servido para desplazar otros conflictos en universidades donde las causas estudiantiles radicales eran la característica predominante. Sin embargo, hay quienes ven en la lucha contra la contaminación una forma de atacar al sistema económico y social. Una observación importante es la que aporta el poeta californiano Gary Snyder. “Los estudiantes han adoptado —expresa— la causa del ambiente por una serie de eventos simultáneos.

Hay interés en el pensamiento oriental, en el budismo, en la vida tribal, en la vida en pequeñas comunidades”. Empero—agrega— las universidades que estimulan el activismo ambiental van a tener un tigre sujeto por la cola: “Porque no se puede tomar en serio el ambiente sin ser revolucionario. Hay que estar dispuesto a reestructurar la sociedad”.

Algunas de las acciones de los ecoactivistas trascienden también fuera del ámbito de las casas de estudio. Un grupo de activistas de la Universidad Minnesota organizaron un simbólico entierro de un motor de combustión interna para protestar contra la contaminación de aire provocada por éstos.

Muchos de los integrantes del cortejo fúnebre llevaban pancartas con la leyenda: Entierren el motor, antes de que él nos entierre. Acciones como estas son las que han llevado a caracterizar a sus protagonistas como eco-extravagantes. A veces el humor es también un buen vehículo para la protesta. Los miembros de Acción Ecológica de Boston organizaron una manifestación para entregar a la empresa Boston Edison una cinta azul como El Contaminador del Año.

Algunos grupos más radicalizados han expresado su descontento contra la guerra del Vietnam, realizando investigaciones sobre los efectos de la contaminación provocada por los herbicidas arrojados en el suelo vietnamita.

Un ecoactivista de fama mundial es el joven abogado Ralph Nader. Su último libro en español titulado “El Festín Envenenado”, es el resultado de encuestas realizadas por él y su equipo. La importancia del texto radica en cuanto documento político: critica las bases estructurales del sistema capitalista desarrollado y aporta datos concretos de la gravedad de la polución en su país.

Nader contribuyó, entre otras cosas, a descubrir los efectos cancerógenos de los ciclamatos en los cobayos. A raíz de ese hecho se tuvo que prohibir su venta en los Estados Unidos provocando un serio golpe a la industria del mismo cuyo mercado representaba un millón de dólares por año. Sus críticas apuntan doblemente: a las empresas responsables por un lado, y al poder político, por el otro.

Los organismos oficiales creados para combatir la contaminación ambiental (por ejemplo, el National Air Pollution control administration NAPCA) están para Nader en el mismo complot con las empresas. De allí que entienda y plantee el problema como una guerra entre e! público y los contaminadores (las empresas). La codicia capitalista de estas últimas confunde además —para Nader— hasta los que adhieren al sistema. Señala también en este libro importantes ejemplos que ilustran sobre el poder monopólico de las empresas estadounidenses: la industria alimentaria representa 125 millones de dólares.

Cuatro empresas controlan el 35 por ciento de los desayunos. En fabricación y venta de sopas, “Campbel” controla el 95 por ciento del mercado. Los contaminadores, afirma el ecoactivista, se sostienen entre sí.

Erupcion Volcanica del Nevado Ruiz Tragedia del Nevado Ruiz en Colombia

Erupción Volcánica: La Tragedia  del Nevado Ruiz

En ocasiones, los distintos procesos naturales pueden producirse de manera violenta. Las fuerzas naturales se desatan, afectan a los asentamientos humanos y las actividades económicas, produciendo una catástrofe o desastre natural. Se denomina riesgo natural a la posibilidad que tiene un espacio geográfico de sufrir las consecuencias violentas de un proceso natural; por ejemplo, San Juan y Mendoza tienen alto riesgo sísmico. En América, los complejos procesos de la naturaleza generan diversas catástrofes naturales: Erupciones volcánicas, en particular en el llamado cinturón de fuego del Pacífico, que coincide con las altas cordilleras del oeste.

La erupción volcánica del Nevado del Ruiz

El caso de Nevado del Ruiz debe ser una lección para todos los gobiernos. Los estados tienen que desarrollar tecnologías que permitan enfrentar los riesgos: estudios científicos sobre los fenómenos naturales, mapas de riesgos, instrumental para medir las fuerzas de la naturaleza. También, tienen la obligación de preparar a la población que vive en áreas de riesgos naturales para enfrentar esos desastres, brindándole información que le permita saber cómo actuar en tales casos, y así disminuir la pérdida de vidas humanas. Las escuelas pueden colaborar con la función informativa en estas situaciones.

ciudad de armero erupción del nevado ruiz

Casi un año antes de la tragedia, la cumbre del volcán había empezado a inquietar a los científicos, a las autoridades y a los habitantes de la zona de influencia. A las emanaciones de gases, vapores de agua y algunos flujos de magma siguieron trepidaciones más frecuentes de la montaña nevada que finalmente rugieron tras una fuerte emisión de cenizas y arenas.

Pero una evacuación era muy costosa. Hubo largos debates teóricos y, algunas horas antes del drama, una interminable reunión de las autoridades regionales, donde al final no fue tomada ninguna decisión. La comunidad de Armero no estaba preparada. Apenas visible cuando el tiempo es claro, el Nevado no era considerado como una amenaza y las destructivas avalanchas de lodo de los siglos pasados habían sido olvidadas.

El 13 de noviembre de 1985 el cráter Arenas de la cadena volcánica Nevado del Ruiz, entró en erupción sepultando a 25.000 pobladores de Armero, un pueblo agrícola de los Andes colombianos. En esa noche  se generó la mayor tragedia natural en toda la historia del país: Armero desapareció y el 90% de sus 25.000 habitantes murieron sepultados 200 kilómetros al oeste de Bogotá.

El volcán se hallaba apagado desde 1845, y su última actividad volcánica de magnitud se había producido cuatro siglos atrás. En los días anteriores, los geólogos habían anunciado que el deshielo que se produciría al entrar en erupción el volcán, podría tener graves consecuencias. En efecto, el calentamiento provocado por las emanaciones de gases y cenizas del volcán originaron el deshielo de los glaciares que coronaban el cráter del Nevado. Las cenizas del volcán fundidas con el hielo, conformaron torrentes de lodo y rocas que aplastaron al asentamiento ubicado en el valle, por donde se encauzó la corriente. El lodo se solidificó sepultando a los sorprendidos pobladores.

Como una tromba apocalíptica, más de 350.000 metros cúbicos de lodo, rocas, árboles y animales aumentaron paulatinamente el caudal de esa masa que se inició a 5.400 metros de altura sobre el nivel del mar, descendió por la cordillera andina, arrastró todo a su paso y llegó a los llanos del departamento del Tolima.

El gobierno colombiano no pudo rescatar los cadáveres y declaró al área campo santo, es decir, un cementerio común. El problema se agravó cuando los médicos anunciaron la existencia de un alto riesgo de epidemias, por la ausencia de agua potable.
La ciudad blanca, como se conocía a Armero, por estar ubicada en un área de plantaciones de algodón, fue borrada del mapa por el efecto devastador de la catástrofe. La destrucción también alcanzó a las fincas rurales vecinas donde se cultivaba café, maíz y sorgo, y se criaba ganado.

Las cadenas de TV retransmitieron durante tres días la agonía de la pequeña Omayra Sánchez, de 13 años, sumergida hasta el mentón en lodo, atrapada entre los escombros de su casa. Hablaba con los socorristas.
No se quejaba. Agonizó 60 horas en el fango y murió finalmente víctima de la gangrena gaseosa.

FUE INESPERADA LA ERUPCIÓN DEL NEVADO RUIZ?: La amenaza natural representada por la posibilidad de erupción del Nevado del Ruiz (y su efecto secundario, el lahar) no eran desconocidos en Colombia: Armero ya había sido sepultada por otro flujo de lodo en el año 1845,y el 70 % de su población había perecido. Sin embargo, Armero volvió a ser construida sobre el lodo sólido.

Por otra parte, la erupción que destruyó Armero en 1985 tampoco fue imprevista e inesperada. Científicos colombianos y expertos internacionales habían identificado actividad sísmica y anomalías en el volcán desde al menos un año antes de la catástrofe. Más aun, se habían detectado erupciones de mayor intensidad, sin consecuencias para las poblaciones de las laderas.

Esto demuestra el conocimiento que se tenía de la actividad del volcán y el aprendizaje de experiencias previas, inclusive de erupciones ocurridas en otros volcanes cubiertos con nieve (como, el Monte Santa Helena, en EE.UU., que entró en erupción en 1982). La erupción que desencadenó los torrentes de lodo en el Ruiz fue relativamente pequeña: solamente arrojó cerca de 5.000.000 m3 de magma. Sin embargo, esta cantidad de magma generó unos 60.000.000 m3 de lahares, que contenían unos 20.000.000 m3 de agua. Estas cifras señalan el especial cuidado que requiere, para el futuro manejo de esta amenaza, la consideración de erupciones de pequeña y mediana intensidad en volcanes cubiertos de nieve.

El desastre de Armero no fue provocado por una erupción sin precedentes del Nevado del Ruiz, ni por el desconocimiento de la amenaza; tampoco puede atribuirse sencillamente a la fatalidad. En esa oportunidad, se conjugaron factores relacionados con el estado de la sociedad expuesta, sobre todo con la lentitud, la excesiva burocracia y la indecisión de las autoridades; basta decir que se dio la orden de evacuación cuando el lahar ya estaba sobre Armero.

No es posible atribuir la catástrofe a la fatalidad: el Nevado del Ruiz registra actividad volcánica de distinto tipo desde que se tiene noticia. Luego de la erupción de noviembre de 1985, nuevos episodios sucedieron sin que hayan sido afectados bienes o personas. Sin embargo, esto no implica que no sea necesario monitorear constantemente la actividad del volcán, a fin de conocer la amenaza con la mayor precisión posible.

La lluvia Ácida Causas y Consecuencias Efecto Como se produce la LLuvia?

La Lluvia Ácida Causas y Consecuencias

El hombre, a través de sus actividades, perturba el medio ambiente e interfiere en la precipitación de dos maneras fundamentales: con la construcción de ciudades y con el vertido de contaminantes a la atmósfera. Respecto a la contaminación atmosférica, uno de sus efectos más destructivos es la lluvia ácida, así denominada por la elevada acidez del agua precipitada.

La lluvia acida es un problema ecológico que no respeta fronteras. La contaminación atmosférica que la causa es arrastrada por los vientos dominantes, desde las zonas industriales hasta montañas, lagos y bosques. Ni siquiera el Ártico está libre de tal contaminación.

¿De dónde proviene el ácido? Ya no hay duda de que la mayor parte se origina en automóviles, hogares, fábricas y plantas de energía. Siempre ha existido un poco de ácido en la lluvia alimentada por volcanes, pantanos y el plancton de los océanos; pero los científicos saben que ha aumentado abruptamente en los últimos 200 años. El hielo formado antes de la Revolución Industrial y atrapado en los glaciares resultó tener una acidez moderada, de origen natural.

La lluvia se vuelve acida principalmente por la presencia de dos elementos químicos: azufre y nitrógeno. El azufre se encuentra en la hulla y el petróleo. Al quemarse forma bióxido de azufre, que se mezcla con las gotas de agua en las nubes y se convierte en ácido sulfúrico. Como resultado de la combustión, el nitrógeno forma óxidos que se transforman en ácido nítrico al reaccionar con las moléculas de agua. Una parte de ambos ácidos cae donde se originan, mientras que el resto puede recorrer cientos de kilómetros.

La lluvia Ácida Causas y Consecuencias

La acidez de las precipitaciones está determinada por la concentración de iones de hidrógeno presentes en el agua; se expresa en términos de valor del pH, según una escala de O a 14, donde el valor 7 indica solución neutra (el agua destilada, por ejemplo), los valores inferiores, soluciones ácidas (manzanas, vinagre, zumo de limón), y los superiores, soluciones básicas (lejía, cal, amoniaco). Cada descenso del. pH en una unidad supone un aumento diez veces mayor en la acidez.

La lluvia ya es de por sí ligeramente ácida, pues contiene dióxido de carbono (también lo son la nieve, la niebla y las formaciones de hielo). Se considera lluvia ácida aquella que tiene un pH inferior a 5,6.

Existen diversas fuentes naturales de lluvia ácida: entre otras, los compuestos de azufre que resultan de las erupciones volcánicas, los manantiales termales y las fumarolas, y una cantidad considerable de óxidos de nitrógeno y azufre, producto final del metabolismo de diversos grupos bacterianos. A pesar de estos contaminantes naturales del aire, el pH del hielo glacial llega a casi 5,0, lo que significa que las emisiones naturales de los compuestos ácidos no son el origen principal de la lluvia ácida, sino las actividades de las sociedades humanas, .especialmente las más desarrolladas. 

La combustión de carburantes fósiles

La combustión de carburantes fósiles (petróleo, gas y carbón) por fábricas, centrales eléctricas, hogares y vehículos libera dióxido de azufre y óxidos de nitrógeno. Estos’ gases no sólo ejercen un efecto nocivo sobre las cosechas, los árboles y los edificios del entorno más inmediato, sino que atraviesan largos recorridos transportados por el viento. Durante el trayecto, los rayos solares los transforman en sulfatos y nitratos. Una vez secos, estos contaminantes se resisten a caer al suelo, y tan sólo la lluvia y la nieve logran extraerlos de la atmósfera. Así, son absorbidos por las nubes y convertidos en ácido sulfúrico y nítrico, ambos solubles en agua, que se depositan a continuación, disueltos en la lluvia, la nieve o la niebla, sobre las plantas, los árboles, los lagos y los ríos, los mares y los suelos. 

Efectos de la lluvia ácida sobre el terreno, las aguas dulces y el medio urbano

El fenómeno de la lluvia ácida (incluida también la nieve, las nieblas y los rocíos ácidos) tiene consecuencias negativas sobre el medio ambiente, porque no sólo afecta a la calidad del agua, sino también a los suelos, a los ecosistemas y, de modo particular a la vegetación: bastan 0,01-0,02 ppm de ácido (que corresponden a 10-20 mm./m3 en la atmósfera) para matar los líquenes; por su parte, las coníferas no sobreviven a concentraciones mayores de 0,07-0,08 ppm.

Los efectos de la lluvia ácida sobre el terreno dependen en gran medida del tipo de suelo sobre el que se deposita. Si el terreno es una formación de origen calcáreo, los ácidos serán rápidamente absorbidos por el carbonato cálcico que compone esta clase de suelos. Por el contrario, si la superficie de depósito es de composición arcillosa o granítica, las consecuencias son más graves, dado el enorme poder de disolución que tiene este tipo de agua de lluvia, que acaba alterando el pH medio del terreno1 originando una acidificación general. Al filtrarse en la tierra, los ácidos destruyen los nutrientes esenciales del suelo, tales como el magnesio, el calcio y el potasio, que alimentan a las plantas y los árboles. estos se vuelven ralos y descoloridos, y mueren.

Las regiones montañosas sometidas a precipitaciones de lluvia o nieve ácidas están, a menudo, compuestas por granito y otras rocas ígneas, que producen suelos delgados carentes de los agentes químicos capaces de neutralizar los ácidos presentes en esta clase de precipitaciones. 

Otro efecto de la lluvia ácida es el aumento de la acidez en las aguas dulces, como consecuencia del incremento de metales pesados muy tóxicos (plomo, aluminio, mercurio, cinc y manganeso), que provocan la ruptura de las cadenas tróficas y del proceso reproductivo de los peces, condenando a los ríos y lagos a una lenta pero implacable disminución de su fauna. Los lagos tienen un pH casi neutro, debido a que minerales como el calcio, liberados en sus aguas a través del suelo, neutralizan la lluvia natural. Sin embargo, este mecanismo amortiguador puede no ser suficiente para absorber el incremento de acidez de aquélla.

Los efectos de la lluvia ácida sobre el medio urbano son, por una parte, la corrosión de edificios, la degradación de las piedras de las catedrales y otros monumentos históricos y, por otra, las afecciones del aparato respiratorio en los seres humanos.                       

Las regiones del mundo que más sufren los efectos de la lluvia ácida son aquellas       dotadas de suelos sensibles, esto es, que carecen del porcentaje necesario de neutralizantes, sobre todo en áreas situadas dentro o cerca de grandes agentes contaminantes. También en ámbitos no industrializados, como áreas remotas de China, donde el carbón se utiliza para calefacción, cocina y depuración de agua, o en zonas de África donde se queman arbustos para propiciar el crecimiento de los pastos, se producen los   mismos efectos. Los contaminantes atraviesan largos recorridos  transportados por  el viento 

En virtud de los desplazamientos de las masas de aire, los contaminantes alcanzan zonas alejadas cientos de kilómetros del lugar donde han sido emitidos. Por esta razón, surge la necesidad de saber hacia dónde se dirigen las nubes contaminantes originadas en un país. Se han elaborado con este fin programas modelo, aplicados a distancias variables, que contemplan: ciclos convectivos, lluvias, nubes y el efecto del suelo. Pronostican variables de vientos, temperatura del aire, humedad relativa, superficie del mar, diferencias de presiones, etc.

Los métodos normalizados más empleados en el análisis de SO2 son los siguientes: método del peróxido de hidrógeno, método del yodo, método gravimétrico, método yodo-tiosulfato, métodos espectrofotométricos, métodos calorimétricos, etc. Se ha podido constatar, por un lado, que Gran Bretaña y Alemania son los grandes exportadores de SO2, al provocar lluvias ácidas en otros países de la UE. Por otro lado, se sabe que la acidez de las lluvias, en general, es mayor en los meses de primavera y verano, y no coinciden estas épocas con los meses en los cuales las cantidades emitidas de contaminantes son mayores (meses de invierno). Por último, también se ha comprobado que el transporte de contaminantes por las corrientes de aire es muy importante, ya que los efectos de lluvia ácida que sufre un país se deben, en su mayor parte, a las emisiones provocadas por otros países.

La lucha contra la lluvia ácida

Desde los años ochenta, se ha producido una toma de conciencia sobre la necesidad de controlar y paliar, en la medida de lo posible, los efectos perniciosos que sobre el medio natural ejercen las sociedades humanas. Las inversiones se han concentrado en impulsar el desarrollo de las llamadas energías limpias (solar y eólica, fundamentalmente), y la implantación de controles más rigurosos para limitar la liberación a la atmósfera de agentes contaminantes.

Los países industrializados han movilizado gran cantidad de recursos económicos para reducir las emisiones ácidas. En 1993, la UE acordó reducir las emisiones de óxidos de azufre en un 40% para el año 1998 y en un 60% para el 2003, y las de óxidos nitrosos, en un 30% para 1998. Otra de las medidas acordadas a partir del año 1993 fue la de instalar catalizadores en los coches de nueva fabricación, para conseguir la reducción de las emisiones de los mencionados gases. Uno de los progresos más significativos ha tenido lugar en las cámaras de producción de las centrales termoeléctricas, un causante esencial de las emisiones de ácidos a la atmósfera: se han incorporado técnicas que reducen e incluso eliminan la emisión de los óxidos de nitrógeno y azufre, que son recuperados y reutilizados como abono.

¿CÓMO SE MIDE LA ACIDEZ?

Los ácidos destruyen casi todo lo que alcanzan; son solubles en agua y su fuerza se mide por el pH (potencial de nitrógeno). La escala del pH abarca valores desde 1 hasta 14. El 1 indica acidez extrema y el 7 neutralidad; el 14 se da en líquidos de gran alcalinidad (lo opuesto a la acidez). El pH se determina con un medidor especial o papel indicador. Un ácido fuerte como el sulfúrico hace que el papel se coloree de rojo, uno neutro lo pone verde, y los líquidos muy alcalinas le dan una coloración púrpura.

LIQUIDO COLOR DEL INDICADOR PH
Acido Sulfúrico Concentrado Rojo 1.0
Jugo de Limón Rojo 2.3
Vinagre Rosa 3.3
Lluvia Zonas Industriales Rosa 4.3
Lluvia Normal Naranja 5.5
Lluvia Destilada Verde 7.0

 

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23).

Las Erupciones Volcanicas Mas Fuertes de la Historia Mas Famosas y Grandes

Grandes Erupciones Volcánicas

La lava cae y se desplaza llevando consigo todo lo que encuentra a su paso. Esto sucede en forma pausada e ininterrumpida, arrasando ciudades enteras, poblaciones, bosques y miles de vidas humanas. Uno de los ejemplos más famosos fue la erupción del monte Vesubio en el año 79 a: C.; que eliminó del planeta a dos ciudades y dos culturas, las de Pompeya y Herculano. Ya en el siglo XX, la erupción del monte Pelee destruyó en pocos minutos la ciudad de Saint Pierré en Martinica y mató al instante a casi toda su población. Detalles de algunas de las erupciones más relevantes

Erupciones Volcánicas

Erupciones Volcánicas

Vesubio año 79 d. C.
El año 79 d. C., el volcán Vesubio entró en erupción violenta y repentinamente, arrasando con nubes de cenizas calientes el romano centro comercial de Pompeya y enterrando bajo lodos volcánicos la pequeña ciudad residencial de Herculano, Hasta esta erupción los romanos habían considerado al Vesubio como un volcán extinguido: .no se tenía constancia de erupciones, y su cono, que había sufrido una fuerte erosión, estaba densamente poblado de vegetación, que incluía extensos viñedos en la parte inferior de sus laderas. El año 63 tuvo lugar un violento terremoto local, que produjo diversos daños en las ciudades que rodeaban al Vesubio. Los terremotos continuaron sucediéndose durante varios años; hoy esos fenómenos serían interpretados como indudables avisos de una próxima actividad volcánica.

La población local de aquella época no cayó en la cuenta de esta relación, quizá porque consideraban como absolutamente cierto que el volcán estaba extinguido. De esta forma la gran nube que surgió de la montaña alrededor del medio día del 24 de agosto constituyó para ellos un «shock» que los dejó estupefactos. La erupción es descrita con gráficos detalles por Punió el Joven en su carta a Tácito, que es probablemente el primer informe de una erupción volcánica realizado por un testigo ocular. Los detalles de este relato se han visto confirmados por el análisis de las rocas producto de la erupción, y de acuerdo con ellos parece que durante esta erupción tuvieron lugar muchos fenómenos que han podido ser observados en erupciones posteriores.

Se ha dicho con frecuencia que Pompeya quedó sepultada por depósitos de cenizas aéreas, mientras Herculano lo fue por una avalancha de lodo. Sin embargo, investigaciones recientes sugieren que los depósitos de coladas de lodo en Herculano pudieran ser de ignimbrita, y es probable que otras ciudades cercanas al Vesubio fueran también destruidas por nubes ardientes. Algunos pasajes de las cartas de Punió son asombrosamente similares a descripciones de nubes ardientes hechas por testigos modernos. Las extensas excavaciones llevadas a cabo en Pompeya  nos dan una clara idea de la belleza y prosperidad de esta zona antes de la erupción.

Las excavaciones en Herculano  se ven muy retrasadas por el hecho de haberse construido la ciudad de Resina exactamente encima de los restos de la ciudad romana. Una parte del borde exterior de una gigantesca caldera sobrevive en la parte norte del Vesubio recibiendo el nombre de Monte Somma; su formación se atribuye comúnmente a esta erupción del año 79. En el lado sur un nuevo cono volcánico, conocido como Gran Copo, se ha formado en épocas posteriores a la formación de la caldera.

¿La Atlántida?
Una enorme erupción, que tuvo lugar alrededor del año 1470 a. C. en la Isla de Thera, destruyó completamente una civilización, dando origen posiblemente a la leyenda de la Atlántida. La isla se colapso a causa de la erupción, formándose una inmensa caldera de 80 kilómetros cuadrados, inundada por el agua del mar y rodeada de escarpadas paredes de cenizas volcánicas.

El cataclismo arruinó la próspera civilización minoica, centrada durante la tardía Edad del Bronce en la isla de Creta, isla que fue devastada en su mayor parte por enormes olas y enterrada bajo espesas capas de cenizas. Las leyendas griegas aluden a esta tragedia, pero tanto la erupción como la civilización minoica cayeron en el olvido, hasta que investigaciones arqueológicas llevadas a cabo en este siglo las sacaron a la luz.

Un viajero griego, Solón, visitó Egipto probablemente el año 590 a. C., y allí oyó hablar a los historiadores egipcios de un desastre que en los tiempos antiguos destruyó el pueblo de Keftiu, situado «lejos hacia el Oeste», acabando con el comercio que existía entre ambos pueblos. Así nació la idea de unas islas perdidas en el mar, que Platón convirtió, alrededor del año 380 a. C., en la épica saga de la Atlántida.

Krakatoa en 1883
El Krakatoa es un volcán del mismo tipo que el de Thera. Ambos tenían una larga historia de pequeñas erupciones que fueron progresivamente formando grandes conos volcánicos, compuestos de basaltos y andesitas, seguidas por gigantescas erupciones que constituyeron auténticos cataclismos y provocaron el colapso del edificio volcánico, para a continuación volverse a formar lentamente un nuevo cono volcánico.

La última gran erupción del Krakatoa es lo suficientemente reciente como para estar bien documentada. Los efectos de la erupción se extendieron por todo el mundo. La explosión final, el domingo 27 de agosto de 1883, se oyó a 4,700 km. de distancia.

La onda expansiva y las olas marinas producidas por dicha explosión dieron la vuelta al globo; originales puestas de Sol, producidas por la presencia de finas arenas en la atmósfera, se pudieron observar incluso en Londres, y grandes islas flotantes de pumita fueron arrastradas por las corrientes de los océanos durante meses. La mayor parte de las 36.000 víctimas fueron debidas, sin embargo, a los tsunamis provocados por la explosión. Estos tsunamis, olas de hasta 35 metros de altura, arrasaron las costas de Java y Sumatra.

Valle de las Mil Chimeneas en 1912
El Valle de las Mil Chimeneas surgió en Alaska, en las cercanías del volcán Katmai, durante una erupción de este último. Tres grandes explosiones, que se pudieron oír a 950 km. de distancia, señalaron el comienzo de una erupción de coladas de cenizas calientes, que cubrieron el valle, alcanzando en algunos puntos espesores de más de 200 m. Las coladas de cenizas mantuvieron su calor durante muchos años; el agua subterránea, que se había filtrado hasta alcanzar esas zonas, se calentó lo suficiente como para escapar a la superficie en forma de innumerables fumarolas, las «Diez Mil Chimeneas».

Las cenizas aéreas afectaron a un área mucho mayor: el más próximo asentamiento humano de tamaño apreciable, Kodiak, a 160 km. del volcán, permaneció envuelto en una sofocante oscuridad durante dos días. El magma de esta erupción se acumuló inicialmente en una cámara magmática bajo el mismo volcán Katmai, pero no fue expulsado a la superficie por su cráter sino que a través de fisuras alcanzó un salidero alejado 10 km. de la cima del volcán originando un nuevo volcán, Novarupta. Al vaciarse la cámara magmática se produjo la fragmentación y el hundimiento de la cima del Katmai, formándose una caldera de 6 km. de diámetro y 800 m. de profundidad.

Nacimiento del Paricutín en 1943
Durante muchos años una pequeña fosa existente en un valle de una zona agrícola de México intrigó a los habitantes del valle, por su persistencia en reaparecer al poco tiempo de haber sido rellenada con tierra. El día 20 de febrero de 1943, un poco después de las cuatro de la tarde, se abrió a través de dicha fosa una grieta, por la que escapaba una pequeña columna de cenizas grises.

A las 24 horas, la lava estaba fluyendo de la base de un cono de escorias basálticas de 50 metros de alto, que se había formado durante este tiempo sobre la fisura. En unos pocos meses el nuevo volcán forzó a sus habitantes a desalojar Paricutín, localidad situada a 3 km. del volcán, y en junio de 1944 la capital del distrito, la ciudad de Para ngaricutiro, había sido completamente destruida por la lava. En septiembre de ese mismo año, la lava cubría ya una superficie de 25 km2, y las nuevas coladas se iban apilando sobre las antiguas.

Al cabo de dos años el volcán Paricutín alcanzó su máxima altura, 500 metros, y el ritmo de la erupción comenzó a declinar, hasta que, exactamente en su noveno aniversario, la erupción cesó bruscamente. El Paricutín ha sido el primer volcán que ha podido ser observado científicamente desde su nacimiento.

Destrucción de St. Fierre, Martinica, en 1902
La ciudad de St. Fierre y sus 30.000 habitantes fueron prácticamente borrados del mapa en unos pocos segundos, a las 7,50 de la mañana del día 8 de mayo de 1902, por una «nube ardiente» surgida del cercano volcán de Monte Peleé. El volcán había estado emitiendo cenizas y gases desde el 23 de abril, hasta el punto que los animales se desplomaban moribundos en las calles, a causa de los gases venenosos provenientes del volcán.

A pesar de esto no se había dado orden de evacuar la ciudad, pues era inminente la celebración de unas importantes elecciones en las que sólo se podía votar en su propio distrito. La actividad explosiva se incrementó en el cráter durante los días 5, 6 y 7 de mayo, dando lugar a coladas de lodos, que ocasionaron algunas víctimas
en las cercanías del volcán. La nube ardiente del 8 de mayo surgió repentinamente de una hendidura en la pared del cráter desplazándose ladera abajo a lo largo del valle de la Riviére Blanche; pasado St. Fierre giró bruscamente a la derecha internándose en el mar y dejando el valle de la Riviére Blanche cubierto de espesos y sofocantes depósitos de ignimbrita.

El frente de la nube lo constituía una onda de gases calientes y cenizas suspendidas que se expandía rápidamente en dirección a St. Fierre desvastando completamente la ciudad. La temperatura del gas que formaba la ola frontal era lo suficientemente elevada como para fundir el vidrio y determinados metales; dejó tras ella solamente una fina capa de ceniza que cubría el terreno como una ligera capa de nieve. El 14 de mayo, una semana después de la erupción, aún se desprendían volutas de humo de las brasas en que se habían convertido las ruinas de la ciudad. En los meses siguientes el volcán continuó expulsando nubes ardientes, aunque normalmente fueron menos violentas que la primera.

Este ciclo eruptivo, que presenta en primer lugar una fase de actividad gaseosa con desprendimiento de cenizas, seguido por una nube ardiente con gran desprendimiento de gases, y que termina con la formación de un domo y un pitón, es un proceso típico que se repite en muchos volcanes.

COMO ACTUAR FRENTE A LAS ERUPCIONES VOLCÁNICAS:

Entre 50 y 60 volcanes entran en erupción cada año: de 20 a 30 producen a veces flujos letales de lava y la misma cantidad generan explosiones más violentas, que crean nubes de ceniza asfixiantes. También existe la posibilidad de que haya emanaciones de lodo e inundaciones.

Qué hacer. Pronóstico de erupción
1. Manténgase informado. Escuche la radio, mire televisión o use Internet para obtener información actualizada.
2. Preste atención a las advertencias oficiales. Esté preparado para evacuar el lugar. Planifique qué llevará, adonde irá y cuáles son las rutas más seguras para llegar allí. Siga de inmediato todas las órdenes de evacuación emitidas por las autoridades. Si no es necesario evacuar el lugar, igualmente es fundamental contar con suministros de agua, comida y baterías.
3. Prepare un equipo de supervivencia. Debe incluir gafas de seguridad y mascarillas (tapabocas) desechables para cada persona además de los artículos habituales.

Caída de cenizas
1-Protéjase. Si se encuentra afuera cuando empiece a caer la ceniza, póngase ropa para cubrirse lo más posible y, si tiene un paraguas, ábralo para protegerse de las partículas filosas de roca. De ser posible, póngase gafas y una máscara. Si no tiene una máscara, átese una bufanda o un pañuelo humedecido en agua sobre la boca y la nariz. Use anteojos en lugar de lentes de contacto.

2. Busque refugio. Si puede, resguárdese dentro de un edificio o un auto. Si se encuentra de vacaciones cuando empiecen a caer las cenizas, quédese adentro (a menos que haya algún riesgo de que el techo colapse) y mantenga todas las ventanas bien cerradas. Cierre las entradas de aire y chimeneas con cartón y cinta adhesiva.

3. Prevenga los daños estructurales.’ Si está de vacaciones y se está alojando en un departamento o en un lugar con techo con poca inclinación, limpie periódicamente el techo para quitar las cenizas y evitar que colapse por el peso. Cuando las cenizas se mezclan con agua, se vuelven más pesadas y se pueden solidificar como cemento.

4. Evite viajar. No maneje a menos que sea esencial o que le indiquen que debe evacuar el lugar. Si está manejando, hágalo lentamente y evite levantar cenizas ya que podrían afectar el motor. Use los faros y cerciórese de que haya líquido de parabrisas. Use mucha agua para mantener el parabrisas despejado.

Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima

Los Efectos Nocivos sobre la Naturaleza
Accion del Hombre Sobre el Clima


Efecto Invernadero
Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima
Agujero Ozono
Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima
Lluvia Ácida

Muchos de los problemas ambientales que azotan a la sociedad moderna son el resultado de la interferencia humana en la forma como funcionan los ecosistemas. Los primeros habitantes humanos del planeta se mantuvieron con la energía que fluía del Sol y producían desechos que regresaban fácilmente a los ciclos de los nutrimentos. Sin embargo, conforme aumentó la población y la tecnología, el ser humano comenzó a actuar con mayor independencia de estos procesos naturales.

Hemos extraído de la tierra sustancias como plomo, arsénico, cadmio, mercurio, petróleo, uranio, que son extrañas a los ecosistemas naturales y tóxicas para muchos de los organismos en ellos.

En las fábricas se sintetizan sustancias que antes nunca se encontraban en la tierra: plaguicidas, solventes y una gran variedad de otras sustancias químicas industriales dañinas para muchas formas de vida.

La revolución industrial, que empezó a mediados del siglo XIX, dio como resultado un aumento tremendo del uso de energía producida por combustibles fósiles —en lugar de luz solar— para conseguir calor, luz, transporte, industria e incluso en la agricultura.

El hombre como transformador de la naturaleza
El hombre no sólo es miembro Integrante de la naturaleza, también se encuentra, en cierto sentido, por encima de ella. No es que sea su amo: ¡sería mucho decir! ¡Pero es su transformador! Tan pronto el hombre primitivo pasó de la mera recolección de los productos de la naturaleza virgen y de la caza de animales salvajes al cultivo de ciertas plantas y a la cría de animales, se inició su intervención transformadora sobre la naturaleza.

Se roturaron, entonces, o se destruyeron por el fuego, los montes, se regularon las aguas, se fundaron poblados cercanos en número creciente, se abrieron caminos. A medida que aumentan en cantidad, los hombres necesitan mayor superficie para sus cultivos: el paisaje natural se transforma en paisaje civilizado y, entre nosotros, ¡en estepa civilizada!

El bosque desaparece progresivamente, las turberas se hacen laborables; en su lugar aparecen tierras de labranza, prados y campos de pastoreo. En la actualidad sólo el 27% de la superficie de Alemania está cubierta de bosques en lugar del 60 al 75% de otros tiempos. Se prescribe al río por donde debe correr, al lago hasta qué altura debe crecer.

Las poblaciones van creciendo, se transforman en ciudades y aun en grandes ciudades; como consecuencia, la red de comunicaciones se hace más ceñida e invade una superficie cada vez mayor. Y además hay que eliminar los desechos de las grandes aglomeraciones humanas que contaminan las corrientes de agua.

La provisión de agua potable debe obtenerse directamente de las grandes reservas de las capas subterráneas; esto y el arrastre, cada vez más rápido, del sedimento en los cursos de agua rectificados, bajan el nivel de las aguas. La tierra se deseca; Europa se convierte en una estepa; se construyen Instalaciones de riego artificial. Se intenta prevenir el peligro de un descenso demasiado grande de las aguas provocado por aquellas mismas alteraciones o, como se dice, mejoramientos  y la contaminación demasiado intensa de los cursos de agua, sobre todo en las regiones industriales, por medio de la construcción de inmensos embalses.

Así nacen presas y lagos en lugares originariamente sólo surcados por arroyos y ríos. Canteras y yacimientos de carbón excavan profundas heridas en la superficie de la tierra; en el interior de ella, las cavidades de las minas adquieren una extensión gigantesca, y la ganga de los minerales forma en las laderas montañas.

Los establecimientos de la gran industria con sus chimeneas humeantes nublan el cielo de regiones enteras, y donde antes cubrían el paisaje verdegueantes bosques, hoy lo reviste una red de hilos eléctricos.

Vida y Mundo Circundante, August F. Thienemann. EUDEBA

Actualmente sabemos que la naturaleza es finita en sus recursos y que hemos llegado cerca de sus límites por las modificaciones descontroladas de los ambientes, alejándonos del equilibrio natural hacia un punto sin retorno, generando una maraña de problemas relacionados con la energía y el alimento. El hombre debe reflexionar antes de actuar sobre la naturaleza, para no seguir produciendo desequilibrios que la perjudiquen y comprometan los recursos naturales indispensables, y a la vez su bienestar y supervivencia, a tal punto que su existencia sea sobrevivir en un planeta hostil fabricado por él.

Lo múltiple y lo único
El estudio de la ecología nos enseña la interdependencia de todas las partes del planeta Tierra en relación sistémica: el sustrato geofísico, la atmósfera y el clima, las plantas y los animales. También es evidente que la Tierra depende del Sol como fuente de energía y de la Luna para sus mareas: el sistema es abierto y forma parte del Cosmos. Debido a esta interdependencia total de toda la miríada de componentes de un todo, no es arbitrario comparar la totalidad del sistema mundial con un organismo individual. Aceptamos la naturaleza sistémica de un individuo porque sabemos que existe una interdependencia evidente de los distintos órganos.

Si vemos a todo el planeta de esta manera, vacilaremos antes de efectuar cambios importantes y fundamentales en componentes determinados rápidamente y sin pensarlo….

…..Por esta razón ya no es una misteriosa paradoja ver a la naturaleza, a la vez, como lo múltiple y lo único. Los componentes del mundo natural son innumerables, pero constituyen un único sistema vivo. No hay escapatoria para nuestra interdependencia con la naturaleza; estamos entretejidos en la urdimbre más estrecha con la Tierra, el mar, el aire, las estaciones, los animales y todos los frutos de ella. Lo que afecta a uno afecta a todos; somos parte de un todo mayor: el cuerpo del planeta. Debemos respetar y amar su expresión múltiple si queremos sobrevivir.

Ecología humana: “El ecosistema humano”
Pasado, presente y futuro
Autor: Bernard Campbell
Biblioteca Científica Salvat (1985)

Fuente Consultada: Educación Para La Salud Liserre de Telechea – Cazado

La atmósfera terrestre Importancia Composicion del aire Caracteristicas

La Atmósfera Terrestre: Importancia y Composición del Aire – Características

El Aire: El aire que respiramos no es un compuesto químico, sino una mezcla de gases, formada en un 99,997% —por debajo de los 90 Km. de altitud sobre la superficie terrestre— por cinco componentes: nitrógeno (N2), oxígeno (02), argán (Ar), dióxido de carbono (C02) y vapor de agua.

De los cinco componente principales del aire, el nitrógeno, el oxígeno y el argón son considerados gases permanentes, porque su concentración no varía de forma sustancial en el tiempo, ya que tienen un periodo de permanencia muy grande (se consideran gases permanentes aquellos con una duración media de las moléculas en la atmósfera superior a 1 .000 años). La tabla siguiente recoge la proporción en la que se hallan los distintos gases que componen el aire atmosférico en las proximidades del suelo, así como su tiempo de permanencia:

Tabla de gases que componen el aire

En las proporciones que figuran en el cuadro anterior, ninguno de los gases es considerado como contaminante, ya que forman parte de la composición natural del aire. Sin embargo, entre ellos aparecen muchos que, habitualmente, se identifican como contaminantes: el dióxido de carbono, el sulfuro de hidrógeno, los óxidos de nitrógeno y de azufre o el propio ozono.

Esto es así cuando su concentración en el aire supera sustancialmente la que corresponde al equilibrio natural de la atmósfera, de forma que, cuando éste se altera, hablamos de contaminantes atmosféricos. 

El aire que respiramos, aun en su estado más puro, contienen también partículas sólidas y liquidas en suspensión, lo suficientemente pequeñas como para que su tiempo de permanencia en la atmósfera sea importante. Muchas de estas partículas, llamadas aerosoles, son emitidas por fuentes industriales o urbanas, aunque también pueden hallarse de forma natural en la atmósfera. Una parte de ellas procede de reacciones químicas entre los gases contaminantes.

El vapor de agua representa aproximadamente el 4% en volumen del aire situado cerca del suelo; es resultado de la evaporación de las aguas superficiales de océanos y mares y de la transpiración de las plantas. Sin embargo, su bajo peso molecular hace que sea transportado con relativa facilidad hacia arriba por las corrientes ascendentes, hasta una altura máxima de 10-12 Km. sobre la superficie terrestre, franja en la que la turbulencia es más efectiva. A alturas superiores la concentración de vapor de agua en el aire es prácticamente nula.

¿Podemos considerar al aire como un gas perfecto?

Si prescindimos del vapor de agua —dado su bajo tiempo de permanencia en la atmósfera (del orden de 10 días)—, de todos los gases que forman parte de la composición del aire en muy pequeña proporción y de las posibles impurezas presentes en el mismo, podemos hablar de aire seco o aire puro con una composición fija hasta alturas de 16 km:

— N2: 755,5 g/kg. aire seco.

—02: 231,4g/kg. aire seco.

— Ar: 13,1 g/kg. aire seco.

El hecho de que estos gases se hallen en unas condiciones de presión y temperatura muy alejadas de las críticas para cada uno de ellos, hace que podamos identificar el aire seco con un gas perfecto a la hora de describir la evolución térmica de la atmósfera. El efecto del vapor de agua en el aire es mínimo mientras no se den condiciones que favorezcan su condensación.

Evolución termodinámica del aire

La mezcla de los gases que componen el aire atmosférico es muy homogénea hasta niveles muy altos, debido a la agitación atmosférica. Esto quiere decir que los gases están perfectamente mezclados entre sí, algo que no ocurriría si no existiera turbulencia, ya que en este caso los gases más ligeros ascenderían más rápido que los más pesados y el aire que respiraríamos los seres vivos estaría formado casi en exclusiva por nitrógeno y oxígeno.

Una de las principales características de la atmósfera desde el punto de vista termodinámico es que la temperatura del aire desciende, en general, con la altura. No obstante, existen estratos en los que ocurre exactamente lo contrario; son las denominadas inversiones térmicas, que se caracterizan por una gran estabilidad que impide las corrientes verticales y los movimientos turbulentos (favorecen, por tanto, la concentración de contaminantes por debajo de ellas).

Aire frío y cálido. Su influencia en el comportamiento de la atmósfera

Una masa de aire frío es aquella que se halla a temperatura inferior que el suelo sobre el que se encuentra. Normalmente proviene de latitudes altas y. por tanto, según evoluciona hacia latitudes más bajas se va calentando.

Se trata de una masa de aire inestable, en la que se desarrollan con facilidad corrientes verticales convectivas como resultado del calor que absorben del suelo, y también corrientes turbulentas. El efecto de estas corrientes es la dispersión por toda la masa de aire del vapor de agua y de las partículas de polvo procedentes del suelo. Por eso, las capas bajas de la atmósfera quedan limpias de impurezas y proporcionan una gran visibilidad.

Por el contrario, una masa de aire cálido posee mayor temperatura que el suelo sobre el que se halla, ya que normalmente procede de bajas latitudes y evoluciona hacia las más altas. Al estar el suelo más frío, las capas más bajas de la masa de aire se enfrían antes que las superiores, por lo que suele producirse una «inversión de tierra», es decir, una inversión térmica junto al suelo, en la que la temperatura del aire aumenta con la altura.

Las corrientes verticales en estas capas, por tanto, quedan impedidas, lo que hace que se acumulen el vapor de agua y las partículas de polvo en la zona más próxima al suelo, dificultando la visibilidad.

En primavera ocurre que, aunque el aire no procede de latitudes frías, se comporta como una masa fría por efecto de la radiación solar, que empieza a ser cada vez más fuerte y hace que el suelo se caliente antes que el aire. Por eso suelen darse días muy claros y limpios en esta época del año.

Por el contrario, las nieblas son características del otoño, debido al fenómeno opuesto: al decrecer la radiación solar, el suelo se enfría antes que el aire que se halla sobre él, por lo que éste se comporta como una masa cálida aunque no provenga de latitudes bajas. La inversión térmica que se produce hace que se acumule el vapor de agua, dando origen a la niebla.

Reducción de la contaminación atmosférica
El control de la contaminación ambiental requiere de la acción voluntaria de las personas, y de leyes que restrinjan la emisión de agentes contaminantes y penalicen a los infractores. En el caso de la contaminación atmosférica, el control debe incluir la medición de la calidad del aire para conocer la concentración de sustancias nocivas; la determinación de las fuentes contaminantes y la implementación de acciones para corregir la situación.

Algunas medidas que se pueden tomar para reducir la presencia de contaminantes en el aire son:

• controlar el gas de escape de los automotores;
• fabricar automóviles con conversores catalíticos, que reducen la nocividad de los gases de escape;
• eliminar el uso de plomo en las naftas o utilizar gas natural comprimido (GNC), que contamina 40 % menos que la nafta con aditivo de plomo;
• fomentar la utilización de medios de transporte menos contaminantes, como la bicicleta;
• utilizar fuentes alternativas de energía menos contaminantes, como la eólica, la hidráulica o la solar;
• reducir las emisiones de dióxido de azufre, que provocan las lluvias acidas, y que provienen fundamentalmente de la combustión de carbón en las centrales eléctricas. Otra alternativa es seleccionar los combustibles que tengan la menor proporción de azufre;
• reducir la producción y el uso de CFCs y de otros productos químicos que destruyen la capa de ozono;
• reducir la deforestación y reforestar, teniendo en cuenta la importante función que desempeñan las plantas en el mantenimiento de la concentración de CO2 en la atmósfera.

EL COLOR DEL CIELO
Astronómicamente, el cielo es el firmamento. Meteorológicamente, el cielo es la apariencia de la atmósfera para nuestros ojos. Los astrónomos han aprendido ya a evadirse de la pantalla de la atmósfera para registrar los rayos ultravioletas y los rayos cósmicos, pues estos últimos llegan a nivel del mar transformados después de una reacción en cadena; nace también una astronomía liberada de las limitaciones de nuestra retina, que sólo capta las ondas de las frecuencias llamadas visibles, comprendidas entre 8/10.000 y 3/100.000 de segundo.

En otras palabras, los mensajes del espacio eran como un iceberg del que sólo veíamos  la  parte flotante; estamos aprendiendo ahora a conocer las 9/10 partes que quedaban ocultas. En los días secos el cielo es azul. Sabemos que la luz solar es una mezcla de muchas longitudes de onda, desde la más corta (extremo violeta) hasta la más larga (extremo rojo), y que las primeras se refractan o desvían más q.ue las segundas.

En otros términos, nuestra retina recibe mucho más directamente del Sol la serie que comienza en el rojo y llega hasta el verde, que el azul, añil y violeta, que se dispersan en la atmósfera, y sus partículas en suspensión. Cuando miramos el Sol éste parece ligeramente amarillento, mientras que los componentes azulados de su luz nos llegan de todos los ángulos y nos dan la impresión de un cielo azul.

Si estuviéramos en el fondo de un pozo oscuro, o ante el ocular de un largo telescopio, sólo recibiríamos la luz directa y no esos rayos laterales, y no veríamos el cielo de color azul. De esta manera podríamos percibir las estrellas de día. En la aurora y en el crepúsculo el Sol es más rojizo y la Luna anaranjada; ello se debe a que sus rayos deben atravesar un mayor espesor de la atmósfera y la dispersión de la luz azul, añil, violeta, etc., es más acentuada. Cuando hay nubes o partículas en suspensión el Sol aparece completamente rojo (la Luna, de intensidad luminosa mucho menor, no se ve en estos casos).

En otras palabras, el color azul de la atmósfera, o, como decimos comúnmente, el cielo, depende de la presencia de luz solar y de la dispersión selectiva de ésta por las partículas atmosféricas. Debido a esto, a 20.000 metros de altura el cielo es completamente oscuro. También por el mismo motivo, cuando el Sol ya se ha puesto en el horizonte y su rayos iluminan solamente la alta atmósfera, las nubes que encuentran a su paso se nos presentan de color rojo, la longitud de onda de mayor alcance dentro de la gama visible.

Las fuentes principales del movimiento de la atmósfera son las corrientes ascendentes, producidas por el calor, y las llamadas cinturas de circulación primaria, que resultan de la rotación ele la Tierra; el sentido de giro del aire, contrario al de ésta, es diferente en los polos norte y sur; lo mismo se observa en los remolinos que se forman al desagotar una bañera, según se esté en el hemisferio norte o en el sur. Se denomina frente al límite entre dos masas de aire de temperatura y densidad diferentes. Dicho límite puede ser muy angosto y determinar, por su traslación, un cambio súbito en las condiciones climáticas.

Estructura Atmosfera Terrestre Compuesto del aire que respiramos

Estructura de la Atmósfera Terrestre – Compuesto del Aire que Respiramos

LA NATURALEZA: COMPOSICIÓN DE AIRE

INTRODUCCIÓN: La Tierra está completamente envuelta por una capa gaseosa, que se llama atmósfera, de la cual forma parte el aire que respiramos.’La ciencia que la estudia se llama Meteorología. La atmósfera es como una esfera de vapor formada por numerosos gases (hidrógeno, helio, oxígeno, nitrógeno, anhídrido carbónico, vapor de agua) que rodeó por completo la corteza terrestre en el momento de consolidarse. Los gases más volátiles y livianos (hidrógeno, helio) se diseminaron por el espacio en razón de la gran movilidad de sus moléculas y de su temperatura. A este escape de gases contribuyó también el calor del Sol y la ausencia de presión en las capas superiores. »

En las primeras eras geológicas abundaba en anhídrido carbónico y agua, mucho más que en la actualidad, tenía poco oxígeno y la densidad era tremendamente alta. Merced a la función clorofílica de los vegetales, del carbonífero en particular, varió de manera total.

Las plantas, para formar sus tejidos, absorbían anhídrido carbónico y liberaban grandes cantidades de oxígeno que cambiaron La composición química de la atmósfera y posibilitaron el desarrollo de la vida animal. E! anhídrido carbónico, contenido en 0,03 % en volumen, es elemento imprescindible en la vida de los vegetales. Éste, con el vapor de agua, en presencia de La luz y por acción de la clorofila (verde de las plantas), obtiene las substancias nutritivas necesarias para su evolución. A este proceso se lo llama  fotosintesis.

Sobre el hombre, que habita en la superficie terrestre y en la capa más profunda de la atmósfera, gravita el peso de un volumen de aire que tiene mulares de metros de altura. Pero sin esa atmósfera no podría vivir, ya que carecería del oxígeno para respirar y la presión de la sangre y demás líquidos de su cuerpo lo harían estallar.

El ser humano, para respirar, necesita de una composición adecuada de aire (oxígeno, nitrógeno y vapor de agua). A la vez, la atmósfera actúa como capa protectora de la directa radiación de los rayos del Sol y de oirás radiaciones mortíferas que proceden del espacio. No es del todo transparente, y al paso que se asciende a las altas capas el cielo se va obscureciendo hasta volverse completamente negro.

LA ATMÓSFERA TERRESTRE: La atmósfera es la envoltura gaseosa que rodea a la Tierra. Está formada por una serie de capas de distintas características en cuanto a composición y comportamiento. En su capa más baja. la troposfera, se desarrolla la vida.

Composición del Aire Que Respiramos: La atmósfera terrestre está constituida principalmente por nitrógeno (78%) y oxígeno (21%). El 1% restante lo forman el argón (0,9%), el dióxido de carbono (0,03%), y distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de carbono, helio, neón, kriptón y xenón.

Estructura de la atmósfera terrestre

Estructura de la Atmósfera TerrestreDesde el punto de vista térmico la atmósfera se divide en una serie de capas horizontales diferenciadas entre sí:

Troposfera y estratosfera, que constituyen la atmósfera inferior.

Mesosfera, termosfera, exosfera y magnetosfera, que forman la atmósfera superior.

Troposfera

Es la capa más baja de la atmósfera, la que se halla en contacto con la superficie terrestre

 y en la que se desarrolla la vida y la mayor parte de los fenómenos meteorológicos que nos afectan. A ella le pertenece el 75% de la masa gaseosa de la atmósfera y prácticamente todo el vapor de agua y las partículas o aerosoles presentes en el aire.

Desde el punto de vista térmico, se caracteriza porque, en condiciones normales, la temperatura desciende con la altura a razón de unos 6,5 °C por metro ascendido.

El límite superior de la troposfera varía con la latitud: es más elevada en el ecuador y los trópicos (16-17 m), donde es mucho más marcado el efecto de la turbulencia vertical y de las corrientes convectivas (el suelo está muy caliente y transmite este calor al aire que se halla sobre él), mientras que la altura más baja la alcanza en los polos (7-8 m), en los que ocurre lo contrario.

Este límite superior es la tropopausa, y representa una inversión térmica —por ser una capa de aire cálido sobre otra de aire más frío; en este estrato, por tanto, la temperatura aumenta con la altura— e impide, por ello, los movimientos ascendentes tanto convectivos como turbulentos. Actúa como una tapadera de la troposfera, por lo que ésta se comporta casi como un sistema cerrado.

¿Por qué es importante la troposfera?
£s la parte más baja de la atmósfera y casi todos los fenómenos climáticos ocurren en ella. Además de aire, contiene vapor de agua cuya participación es fundamental en los fenómenos meteorológicos.forma de lluvia, nieve o granizo. Cumple otra función muy importante, que es absorber la energía radiante proveniente del Sol y de la Tierra. Esto la convierte en una capa aislante que evita que escape el calor de la superficie terrestre. Además, contiene partículas de polvo de diversos orígenes (erupciones volcánicas, incendios forestales, desintegración de meteoritos, procesos industriales, etc.). Como el Sol calienta n ecuador que en los polos,  se genera un sistema de vientos que distribuyen el calor y las partículas de esta capa hacia todas las regiones del globo

Estratosfera

La capa inmediatamente superior a la troposfera, separada de ésta por la tropopausa, es la estratosfera, con un espesor medio de 50 Km.. En el trópico y el ecuador las capas más bajas son de una gran sequedad, debido a que el aire que asciende desde la troposfera se congela al atravesar la tropopausa, siendo este hielo eliminado por precipitación.

A medida que aumenta la latitud la tropopausa se halla cada vez a menor altura y su temperatura es mayor, por lo que disminuye el efecto anteriormente descrito y aumenta la humedad de los estratos más bajos de la estratosfera.

Desde el punto de vista meteorológico, la estratosfera es mucho más tranquila que la troposfera, pero si se atiende a las reacciones químicas entre los gases atmosféricos, es una capa mucho más activa y fundamental para la vida en el planeta. No no, en ella, a unos 22 Km. sobre la superficie terrestre, se encuentra la ozonos-estrato en el que la concentración de ozono es máxima (aproximadamente el 90% del total existente en la atmósfera). Es la denominada capa de ozono. Éste actúa básicamente como protector de la radiación ultravioleta procedente del Sol, que es a para los seres vivos.

El ozono, debido a su poder altamente oxidante, es muy reactivo y, por tanto, sensible a otros compuestos que puedan hallarse de forma anómala en la atmósfera (contaminantes), ya que reacciona rápidamente con ellos y desaparece. Si son pocos los contaminantes capaces de atravesar la tropopausa y penetrar en atmósfera, algunas especies químicas emitidas por fuentes antropogénicas son lo suficientemente estables como para superar la barrera que supone la tropopausa y a la ozonosfera, destruyendo el ozono existente. Este es el gran problema del do agujero de la capa de ozono. La estratosfera, al igual que la troposfera, está limitada por un estrato de inversión térmica denominado estratopausa, en el que se alcanzan temperaturas superiores a los 0°C.

La Ionosfera
Por encima de la estratosfera se encuentra la ionosfera, enrarecida capa exterior compuesta principalmente de iones. Un ion es un átomo que ha ganado o perdido uno o más electrones (en este caso debido a las radiaciones o a las partículas emitidas por el Sol o las estrellas) y que por lo tanto posee una carga eléctrica.

Puesto que la ionosfera depende de la actividad solar, no extrañará que presente variaciones diarias y estacionales. Aunque los datos son dudosos más allá de los 100 Km. de altura, se estima que la ionización del oxígeno no pasa de los 120 Km. de altura y que la ionización del nitrógeno tiene lugar hasta los 200 kilómetros.

En la ionosfera toda vida es imposible. La temperatura, es decir, la energía cinética de las escasas moléculas existentes consideradas aisladamente, es muy elevada. Pero la atmósfera es tan tenue que en otro sentido reina un inmenso frío. El observador que se encontrara en la ionosfera y mirara hacia el Sol, casi perecería por su luz, calor y radiación, mientras que por la cara opuesta el frío y la oscuridad lo matarían (irradiaría el calor de su cuerpo).

De todos modos, la vida tal como la conocemos es imposible en la ionosfera debido a las letales radiaciones cósmicas y solares; y más allá de los 90 Km. de altura, excepto para el nitrógeno, las moléculas son rápidamente descompuestas por las ondas electromagnéticas.

Hemos estudiado que los campos magnéticos actúan sobre las partículas cargadas de electricidad; sabemos también que la Tierra es un enorme imán. No extrañará por lo tanto que estas partículas ionizadas (electrizadas) se orienten según el campo magnético de la Tierra y experimenten perturbaciones cuando ocurren tormentas solares (por ejemplo, se observan auroras boreales y australes, principalmente cerca de los polos magnéticos terrestres).

El interés práctico de la ionosfera consiste ante todo en su influencia en las transmisiones radioeléctricas. En efecto, la capa que se halla entre los 90 y los 200 Km. forma dos niveles que en conjunto se denominan capa de Heaviside o capa E, que refleja las señales radioeléctricas de longitud de onda larga y mediana: si estas ondas no rebotaran en las capas de Heaviside proseguirían en línea recta, y no podrían realizarse transmisiones que superaran el problema de la curvatura de la Tierra mediante una trayectoria en zigzag entr^e la capa reflectora y la superficie.

Encima de la capa de Heaviside está la capa de Appleton  que refleja hacia la Tierra las radioemisiones de onda corta que de otro modo proseguirían su camino en el espacio. La capa de Appleton se asocia a la ionización del nitrógeno.

No existe ninguna capa que desvíe las señales de onda muy corta (por ejemplo las que se utilizan para la televisión), de manera que éstas siguen su camino en línea recta y se pierden en el espacio. De allí que los transmisores y antenas de televisión se ubiquen en los lugares más elevados posibles porque su radio de acción es el del horizonte visible.

Mesosfera

Por encima de la estratopausa, en la que la temperatura puede considerarse «cálida», se halla la mesosfera, donde los valores térmicos descienden hasta alcanzar cerca de —90 °C, a una altura próxima a los 80 Km. sobre la superficie terrestre, en la rnesopausa o límite superior. La mesopausa constituye un nuevo estrato de inversión de forma que la temperatura empieza a aumentar otra vez con la altura.

Termosfera

Inmediatamente por encima de la mesopausa se localiza la termosfera, donde prácticamente no existe densidad molecular; no obstante, por encima de los 250 Km. la poca atmósfera existente es todavía capaz de ofrecer resistencia a los vehículos espaciales. Mientras que en la parte más baja de la termosfera se encuentran Oxígeno atómico y molecular y nitrógeno molecular, por encima de los 200 Km. predomina el oxígeno.

Debido a la absorción por el oxígeno atómico de la radiación ultravioleta procedente del Sol, la temperatura asciende con la altura, llegando a alcanzarse (teóricamente) los 1.200 °C a alturas del orden de los 350 Km..

Conforme se sigue ascendiendo, cada vez es más efectiva la acción de la radiación ultravioleta y los ráyos X del Sol, que provocan la ionización de los átomos de oxígeno y nitrógeno. Es aquí donde se producen las auroras boreales y australes, por introducción de partículas ionizadas en la atmósfera desde alturas elevadas (de 300 a 1000 Km.) hacia abajo. Desde el punto de vista eléctrico se denomina ionosfera a la zona situada por a de los 80 Km. de altura, aunque muchas veces se emplea este término Cminte para nombrar la región en la que existe una gran densidad de electrones, los 100 y los 300 Km..

Exofera

Por encima de los 500 Km.. se halla la exosfera o atmósfera exterior. En ella existe atmósfera muy tenue formada por átomos de oxígeno, hidrógeno y helio, parte de ello ionizados. La presencia de partículas ionizadas aumenta conforme nos alejamos en el espacio. Los átomos neutros de hidrógeno y helio, al tener un peso atómico muy bajo, en escapar al espacio exterior, ya que cada vez es menor la posibilidad de que iones con otras moléculas y sean impulsados hacia abajo en el choque. Este hielo que desaparece es sustituido por el que resulta de la descomposición de r de agua y del metano en las proximidades de la mesopausa. El helio aparece la acción de los rayos cósmicos sobre el nitrógeno y también por la desintegración  progresiva de los elementos radiactivos existentes en la corteza terrestre.

Magnetosfera

Es la capa más alejada de la atmósfera, más allá de los 2.000 Km.. En ella sólo hay electrones y protones, concentrados en los denominados «cinturones de radiación de Van Allen».

CUADRO CON LA CAPAS DE LA ATMOSFERA

Exosfera o Magnetosfera: Representa la transición hacia el espacio exterior.

Termosfera o ionosfera: Sobrepasa los 700 Km.. En ella se produce un brusco incremento de la temperatura y el aire se “enrarece”, pues las moléculas de gas están ionizadas (pierden electrones) por las radiaciones solares de alta energía. A ella corresponde sólo el 1% de la masa tota de la atmósfera.

Mesosfera: Se extiende desde cerca de los 50 Km. de altura hasta alrededor de los 80 Km.. La temperatura desciende hasta alcanzar los -80 °C en la mesopausa.

Estratosfera: Se extiende hasta cerca de los 50 Km. de altitud. Contiene el 19% de la masa total de la atmósfera y, junto con la troposfera, constituyen la bajo atmósfera. En la parte superior de la estratosfera se encuentra la capa de ozono, u ozonósfera, que actúa a modo de filtro o pantalla.

El Incremento de la temperatura parece estar relacionado con la absorción de la radiación por parte del ozono (03). Las temperaturas ascienden gradualmente hasta llegar a un valor similar al de la superficie terrestre, a los 50 Km., cuando se produce nuevamente un descenso de la temperatura, en la zona llamada estrtrapausa,

Troposfera: Se extiende hasta 16 Km.. de altitud en las áreas tropicales y hasta unos 10 Km. en latitudes medias. Por cada 1.000 m de altura la temperatura desciende 6,4 °C. Esta capa representa el 80% de la masa de la atmósfera y es la más Importante para la vída; en ella se forman las nubes y se absorbe la radiación infrarroja. A partir de los 14 Km., lo temperatura se mantiene constante en un área de transición con la tropopausa

Composición y Capas Atmosféricas:

La atmosfera no es uniforme , ni está constituida por una sustancia única. En la parte más baja (en donde vive el hombre) la forman distintos gases, entre los cuales el nitrógeno y el oxígeno se encuentran en la proporción de 4 a 1. El oxígeno permite los fenómenos de la combustión y de la respiración, y el nitrógeno, químicamente inerte, lo diluye para atenuar su acción química.

En cantidades muy pequeñas y con las mismas propiedades que el nitrógeno figura el gas argón. Hay también gas carbónico, ozono, amoníaco, hidrocarburos, materias orgánicas, bacterias y polvos minerales. En las capas superiores existe hidrógeno y abundan los denominados gases raros (helio, argón, criptón, radón, xenón y neón).

En la atmósfera hay, asimismo, cierta cantidad de vapor de agua, en proporción muy variable debido a los fenómenos de evaporación y condensación. Es así como el vapor de agua disminuye con rapidez hacia la parte superior de la atmósfera; en la inferior (5Km. de-altura) el vapor de agua se condensa cuando la humedad relativa llega al estado de saturación.

En las grandes alturas suelen aparecer fenómenos de sobresaturación. Las nubes que se forman por debajo de los 6.000 metros están constituidas por pequeñas gotas de agua (estado de sobre-fusión de ésta). A mayores alturas predominan las nubes heladas. Las gotas sobre fundidas, al convertirse en cristales de hielo, originan la mayoría de las precipitaciones atmosféricas. Pasados los 20 kilómetros de altura la proporción de nitrógeno aumenta y decrece la de oxígeno.

La atmósfera, no obstante ser gaseosa, permanece adherida a la superficie terrestre debido a las fuerzas de atracción y centrífuga, ocasionadas por la rotación de la Tierra. A 40.000 kilómetros de ésta la fuerza de atracción se anula, y a esa distancia las partículas gaseosas, de existir, escaparían a la fuerza de atracción terrestre y se dispersarían por el espacio. El límite real de la atmósfera se sitúa a menor distancia. Por otra parte, la capa de gases no circunda al globo terrestre con idéntico espesor. La altura de la atmósfera la proporciona la observación de los astrolitos. Por su notable velocidad, cuando la atraviesan se tornan incandescentes y trazan en el espacio una estela luminosa.

Si dos astrolitos son observados simultáneamente desde distintos puntos, se puede determinar su altura, que suele sobrepasar los 200 kilómetros. De no existir aire pasarían sin dejar rastros, puesto que su temperatura no aumentaría por roce alguno. Al estudiar las auroras polares se ha comprobado que hay atmósfera, aun cuando muy enrarecida, hasta 1.000 kilómetros. Los ensayos realizados con globos-sondas y satélites artificiales han suministrado muchos pormenores relacionados con la atmósfera superior. La atmósfera se divide en tres capas claramente definidas: troposfera, estratosfera y ionosfera.

PARA SABER MAS…
LA ATMÓSFERA PRIMITIVA

Para comprender bien cómo se formó la atmósfera de la Tierra debemos tener presente tres hechos fundamentales.

Primero: un camión de muchas toneladas tiene, a una velocidad determinada, mucho más energía cinética que una bicicleta liviana a la misma velocidad.

Segundo: la temperatura es la expresión de la energía cinética de las moléculas. En una mezcla de gases, las moléculas chocan e intercambian su energía cinética de manera que las más pesadas son, a la misma temperatura, mucho más lentas que las más livianas.

Tercero: existe una velocidad límite que permite escapar a la atracción de la gravedad, y que es la que se calcula en astronáutica. En el universo el hidrógeno es el elemento más abundante. En la Tierra el hidrógeno libre es prácticamente inexistente. La razón es que la Tierra, que hace millones de años fue muy caliente, no pudo retener las veloces moléculas de hidrógeno como puede hacerlo el Sol cuya atracción gravitatoria es muchísimo mayor. Aún ahora la Tierra pierde, en las capas exteriores de la atmósfera, hidrógeno y helio.

Si tenemos en cuenta que en sus fases primitivas la Tierra era muy caliente, deducimos que debió perder fácilmente su vapor de agua, su anhídrido carbónico, su nitrógeno y aü metano, todos ellos gases relativamente livianos, cuyas moléculas se movían a velocidades superiores a la necesaria para escapar de la gravitación de la Tierra. En otras palabras, la Tierra perdía ciertos gases, así como la Luna, demasiado pequeña, quedó privada de atmósfera.

En cambio Júpiter, planeta enorme, retuvo el metano y otros gases livianos. La deducción de los geólogos es que después que la Tierra se enfrió suficientemente, los volcanes siguieron emitiendo vapor de agua, anhídrido carbónico, nitrógeno, azufre y cloro.

El hidrógeno y el oxígeno de los óxidos minerales se combinaban gradualmente para dar agua. Aparecieron luego en el agua bacterias capaces de transformar el metano (CH4) y producir suficiente anhídrido carbónico.

El nitrógeno provenía del amoníaco, exhalado por la Tierra y descompuesto por el oxígeno para formar nitrógeno y también agua. Por último, sobre la superficie de los océanos aparecieron las primeras algas, es decir los primeros organismos capaces de realizar la fotosíntesis o sea de asimilar anhídrido carbónico y emitir oxígeno. La atmósfera de la Tierra, ya fría, fue incorporando oxígeno libre.