Datos del Planeta Tierra

Vientos Monzones Causas de su Origen e Importancia Para India

Vientos Monzones – Características
Importancia Para La India

La  zona de los monzones se encuentra entre los dos trópicos. Los monzones son vientos periódicos que, durante la estación fría, soplan de las regiones continentales de altas presiones al mar; en verano van del mar al interior del país, adonde llevan benéficas lluvias. Estos monzones ejercen gran influencia sobre los cultivos y, por lo tanto, sobre la vida de los hombres. A pesar de que el arroz, alimento básico de estas regiones, posee alto valor nutritivo, la subalimentación sigue constituyendo un inquietante problema.

Durante la época de vacaciones a orillas del mar se puede observar que, hacia el mediodía, los veleros y las cometas son impelidos por un viento que sopla del mar en dirección a la costa. En efecto, la tierra recalentada constituye una zona de baja presión y se levanta brisa de mar.

Por la tarde, cuando el sol se ha puesto, la tierra se enfría mucho más de prisa que el mar y se convierte en zona de alta presión. La brisa de tierra sopla en dirección al mar y las barcas de pesca la aprovechan para salir.

Esta alternancia de vientos se produce, a mayor escala, entre Asia y los dos océanos que la bañan: el Indico y el Pacífico.

Los monzones son vientos estacionales que traen consigo lluvias torrenciales en verano y tiempo soleado y seco en invierno. Estos vientos soplan en respuesta a las diferencias de temperatura entre el aire de la tierra y el aire del mar.

En Indonesia, Filipinas, China y Japón, pero sobre todo en la India y en Vietnam, reina un clima particular, totalmente influido por la alternancia de vientos de estación llamados monzones (del árabe mausim, que significa «estación»).

Viento monzon en Tailandia

Tailandia goza de un clima tropical húmedo afectado por la acción de los vientos monzones, que varían de dirección según la estación del año. De abril a octubre, los vientos son en su mayoría de componente sureste y están cargados de humedad. Los continuos aguaceros que se producen, provocan grandes inundaciones.

Durante el invierno las tierras del interior de Asia son glaciales y constituyen una región de altas presiones, mientras que el océano es centro de bajas presiones: el viento sopla del continente al mar. Este viento (monzón de invierno) es seco, frío o tibio según la latitud.

http://historiaybiografias.com/archivos_varios5/monzones1.jpg

Monzón de Invierno

En verano el fenómeno se produce a la inversa. Los vientos soplan del mar (zonas de altas presiones) al continente recalentado (más caliente y, por lo tanto, área de bajas presiones). Los vientos de verano provocan fuertes lluvias que pueden registrar hasta 12 m. al año.

http://historiaybiografias.com/archivos_varios5/monzones2.jpg

Monzón de Verano

El viento monzón sopla desde el suroeste, en general entre abril y octubre, y en la dirección opuesta, la noreste, desde octubre a abril. Así, típicamente se distingue un “monzón de verano” debido a que en la región del sur de Asia se forma un centro de bajas presiones que atrae los aires procedentes del Índico y del Pacífico suroeste. Estos aires, húmedos y cálidos, se dirigen hacia el norte y noroeste generando fuertes lluvias en la región sureste de Asia.

En los países monzónicos cae más agua en cuatro meses que en un año en zona ecuatorial, donde, sin embargo, llueve durante los doce meses.

El clima de estos países se caracteriza, pues, por la alternancia de una estación anormalmente fría y lluvias de verano anormalmente abundantes. Los monzones soplan hacia la derecha en el hemisferio norte y hacia la izquierda en el hemisferio sur.

El paso del monzón de invierno al de verano va siempre acompañado de profundas perturbaciones, especialmente de ciclones o tifones, de manera que, cerca de las costas, el océano Pacífico nada tiene de pacífico. Muy al contrario, ciertas regiones son asoladas de modo regular por graves cataclismos.

A pesar de que el régimen de los monzones es característico del clima del sur y sudeste del continente asiático, en Australia y en las costas de Guinea también encontramos corrientes parecidas. En verano, el monzón llega a penetrar profundamente en América del Norte por el golfo de México.

Los monzones, que son responsables en gran parte de la sequía y humedad de las regiones intertropicales, ejercen profunda influencia sobre las plantas, los animales y los hombres.

Si en la India, por ejemplo, no sopla el monzón, la consecuencia inevitable es el hambre. Tras el largo período de sequía invernal, todas las plantas y cultivos esperan la humedad. Si las lluvias se retrasan, las cosechas se agostan. Las precipitaciones prematuras también pueden ser catastróficas, sobre todo si los chaparrones son demasiado fuertes y echan a perder los trabajos preparatorios para los cultivos.

Como vemos, los monzones ejercen gran influencia sobre la vida de los hombres.

En la zona de los monzones de Asia las variaciones de temperatura son muy débiles. En efecto, en la región ecuatorial siempre hace calor. En este territorio, durante la estación calurosa la temperatura casi es constante. Oscila entre 26 y 29,5°. En invierno, por el   contrario,   las   diferencias   de temperatura entre las regiones del norte y del sur son más sensibles y se sitúan entre —5 y +25°.

Los monzones de Indonesia difieren totalmente de los de China meridional. A estas diferencias se debe, precisamente, la diversidad del mundo asiático. La alternancia de una estación húmeda y otra seca determina, sobre todo, las modificaciones del suelo: éste pierde sus constituyentes orgánicos y también ciertas sales minerales, lo que influye en la vegetación. Además, las lluvias monzónicas provocan enormes inundaciones de dramáticas consecuencias. Las aguas invaden inmensas extensiones que a veces quedan cubiertas por gruesas capas de limo nuevo, como ocurre, especialmente, en los deltas donde se cultiva el arroz.

Si comparamos dos mapas de la región de los monzones, uno relativo a la densidad de la población y el otro a las precipitaciones (es decir, las lluvias), veremos que coinciden. Las regiones que no reciben las lluvias monzónicas están prácticamente deshabitadas. También es interesante observar que la zona de los monzones es una región esencialmente agrícola. En ella las poblaciones viven en comunidades bien organizadas.

El arroz, probablemente originario de Bengala, es el principal cultivo de los países de los monzones y el alimento básico de la mayoría de sus habitantes. A pesar de que el arroz tiene alto valor nutritivo, estas regiones deben hacer frente a la subalimentación.

El hombre necesita un promedio de 2.750 calorías diarias: en la India, Birmania, Tailandia, Laos, Vietnam, Camboya, China, Indonesia y Corea el promedio es muy inferior a esta cantidad: no llega a 2.200 calorías.

En estas regiones, el consumo de proteínas de origen animal también se sitúa por debajo de lo normal.

Con frecuencia se cree que las poblaciones subalimentadas se encuentran, sobre todo, en África. Esto no es exacto: en África, el promedio diario oscila, en efecto, entre 2.200 y 2.750 calorías.

Actualmente, la zona de los monzones constituye el principal motivo de preocupación de la Organización para la Alimentación y la Agricultura (FAO), dependiente de las Naciones Unidas.

Esta inquietud es tanto más viva cuanto que la población de la zona de los trópicos registra un aumento anual de dos y medio por ciento, mientras que el promedio mundial de la producción alimenticia sólo aumenta dos por ciento.

Esto se podría solucionar mejorando los sistemas de cultivo (en Asia los métodos de cultivo del arroz son arcaicos, en África el rendimiento por hectárea no llega a la tonelada, mientras que en Australia rebasa las seis toneladas), ampliando las superficies cultivadas (según los especialistas, se podrían recuperar ocho millones y medio de kilómetros cuadrados) y buscando nuevos recursos alimenticios: plancton, algas, prótidos obtenidos del petróleo, etc.

Flora de la Zona Tropical Plantas Que Habitan en los Trópicos

Flora de la Zona Tropical

A pesar de que generalmente el suelo de las regiones tropicales es de mala calidad, da vida a numerosas plantas útiles. Los blancos han empezado a explotar la selva por sus maderas preciosas y han establecido plantaciones que abastecen de productos tropicales al mercado mundial: caucho, aceite de palma, algodón, café, té, cacao, azúcar de caña, especias, etc. Pero esta dependencia de los mercados mundiales hace que el mundo tropical sea económicamente muy vulnerable

En los trópicos muchos pueblos viven todavía en condiciones muy primitivas. El sofocante clima frena la actividad humana y es difícil crear en su medio una sociedad moderna evolucionada. Además, la exuberancia de la vegetación dificulta la construcción de buenas vías de comunicación, que son uno de los fundamentos del progreso de una sociedad.

Por el contrario, la selva y la sabana proporcionan medios de subsistencia, sin obligar al hombre a realizar grandes esfuerzos. La naturaleza también le ofrece vestido y habitat. En las regiones más próximas a los trópicos todavía existen estas ventajas, pero de modo más atenuado. Por este motivo el hombre se ha visto obligado a preocuparse más por su subsistencia: se ha dedicado a la agricultura. Así sucede, sobre todo, en el sudeste de Asia.

La zona tropical no es en absoluto acogedora para el hombre. El suelo es de mala calidad: en un clima tórrido la roca se descompone con mayor rapidez que en un clima templado. Con frecuencia se efectúa un proceso de profunda colada que rechaza a las profundidades los óxidos de hierro y aluminio.

Los óxidos de hierro pierden el agua que contienen y forman duras costras de color ladrillo: la laterita, que cubre inmensas extensiones en África, la India y Brasil. Sin embargo, la zona tropical posee gran diversidad de plantas útiles. La rápida descomposición de ias plantas muertas permite que se forme suficiente humus para proporcionar a los vegetales los elementos indispensables. En general, esta zona no es apta para la agricultura.

Afortunadamente, en los trópicos abundan las tierras aluviales, a lo largo de los ríos, en las costas y en los deltas. Son suelos jóvenes, en plena formación y de muy buena calidad.

Las relativamente precarias condiciones de vida de las regiones tropicales explican la débil densidad de la población. Los habitantes de la selva virgen llevan una existencia primitiva, basada en la caza, la pesca o la recolección de frutos. En la sabana se practica la agricultura, pero la población todavía aparece diseminada.

Al cabo de dos o tres años, cuando el suelo está agotado, los indígenas emigran. Los principales cultivos de sabana son el maíz en América central y del Sur, el arroz en Asia, y diversas clases de raíces, entre ellas la mandioca, en África. En los suelos aluviales fértiles se cultiva, con preferencia, el arroz.

El arroz constituye el primer cultivo cerealista del mundo: para más de la mitad de la población del globo representa el elemento esencial de la alimentación. En la mayor parte de regiones se practica el «cultivo acuático»: los arrozales permanecen anegados durante todo el tiempo que duran las operaciones de preparación del suelo, nivelación, plantío y trasplante. No se desagua hasta el momento de la cosecha.

Los blancos han modificado profundamente el aspecto económico de las regiones tropicales. En primer lugar explotaron la selva, en la que abundan las maderas preciosas como la limba, la teca (muebles y construcción naval), la caoba (muebles), el ébano y el okumé (muebles y suelos).

La selva proporciona importantes productos, por ejemplo, las nueces de palmito de las que se obtiene aceite. El fruto de la palmera oleífera está protegido por una gruesa cascara carnosa que contiene gran cantidad de aceite de palma.

De otros árboles se extraen jugos. El más conocido es la hevea. En su corteza se practican ligeras incisiones a lo largo de las cuales fluye un jugo lechoso y gomoso que se utiliza en la fabricación del caucho. El copal, resina que ha sido encontrada en la selva virgen, se emplea en barnices y material aislante.

Para obtener cosechas más abundantes, los blancos establecieron en estas regiones unas plantaciones muy modernas y emplearon la mano de obra allí existente. De este modo, en el África tropical numerosos negros trabajan en las plantaciones de palmeras de aceite.

En las regiones tropicales los blancos han dado impulso a cultivos especiales, entre otros los del algodón, café y cacao. En China, el cultivo del algodón está asociado al del arroz. En el interior de Bombay, en la India, los ingleses introdujeron el cultivo del algodón a gran escala del mismo modo que lograron aclimatarlo en Egipto y Sudán. Más tarde, los franceses, belgas y portugueses siguieron su ejemplo en sus colonias.

Actualmente, la América tropical proporciona al mundo grandes   cantidades   de   café,   planta originaria de Arabia (Moka) y Etiopía. El cacao también procede de la América tropical. El fruto del cacao, que contiene algunas docenas de semillas, crece pegado al tronco de un arbusto que se da en las tierras húmedas ecuatoriales. África (Ghana, Nigeria) proporciona mucho cacao.

Y llegamos al té, otro cultivo tropical: 90 % de la producción mundial de té procede del Asia de los monzones. El té es muy exigente: necesita tierra buena, mucho calor y abundantes lluvias. Dado que el agua estancada le resulta perjudicial, las plantaciones se encuentran en las pendientes. La recolección requiere mano de obra muy numerosa.
China y Japón eran los productores tradicionales de, pero a fines del siglo XIX perdieron su monopolio e incluso han sido aventajados por Ceilán, la India y Java.

La caña de azúcar, originaria de la India, fue importada en el siglo XVIII por América central, y sobre todo por Cuba, Puerto Rico y las Antillas. Actualmente, Brasil y México también cuentan con grandes plantaciones de caña de azúcar.

Desde muy antiguo también se cultiva en España la caña de azúcar, pero sólo en aquellas tierras cuyo clima ofrece cierta semejanza con el de los países que acabamos de citar. Tal sucede con las islas Canarias y las provincias andaluzas, especialmente Málaga, Almería y Granada.

Los países tropicales nos proporcionan tantas plantas útiles que es imposible citarlas todas. Mencionaremos las fibras textiles (yute, sisal, capoc), las semillas oleaginosas (cacahuetes, copra), numerosas especias (pimienta, vainilla, nuez moscada, canela) y frutas, de las cuales los plátanos y las pinas se exportan a todo el mundo.

El mundo tropical sufre cada vez más las alzas y bajas de precios de los mercados mundiales, y por este motivo se halla muy expuesto a las crisis económicas.

Plantas Que Habitan en los Trópicos

http://historiaybiografias.com/archivos_varios5/fuente_credsa2_a.jpg

Fauna de la Sabana Animales Que Habitan la Zona Intertropical

La Fauna de la Sabana

Conforme nos vamos acercando a los trópicos, el clima se vuelve más seco y el paisaje se transforma en sabana y después en estepa. La sabana es el reino de los herbívoros: gacelas, jirafas, antílopes. En la estepa abundan los camellos y las cabras y también acoge a gran cantidad de roedores.

Recordemos que la estación seca se prolonga a medida que se acercan los trópicos: entonces aparecen las regiones de sabanas y estepas. En la sabana encontraremos otra clase de animales, por lo general herbívoros: antílopes, jirafas, rinocerontes, cebras, búfalos y, desde luego, elefantes.

También tienen allí su morada los animales carniceros: leones, leopardos, chacales, hienas (sólo en África), pumas (únicamente en América) y tigres, que se encuentran, sobre todo, en Asia.

Entre las numerosas aves rapaces, la más temible es el buitre. También se encuentran reptiles: serpientes, cocodrilos en África y caimanes en América.

Más cerca aún de los trópicos, allí donde las estaciones de lluvia sólo duran dos o tres meses, la sabana se convierte progresivamente en estepa. La hierba es corta, dura, y a veces incluso espinosa. Crece en tupidas masas. Aquí y allá aparecen algunos arbustos, especialmente los de la goma y las acacias.

La mayor parte de las plantas de la estepa son carnosas y pueden almacenar una reserva de agua que les permite resistir en la estación seca.

Como la estepa es árida y estéril, está menos habitada que la sabana. En ella viven, principalmente, los herbívoros que han logrado adaptarse a la sequía, su principal enemigo. Es el dominio del camello y la cabra y, en la estepa australiana, del casuario.

Si bien se encuentran roedores, los carnívoros, en cambio, son raros. Estos animales han de poder desplazarse rápidamente, pues los lugares donde hay agua están muy distantes unos de otros.

Entre los insectos que más abundan figuran los termes, que, además, también aparecen en la sabana.

Citamos a continuación algunas especies características en vías de desaparición.

En primer lugar, el rinoceronte. Puede medir más de cuatro metros de largo, y su cabeza prácticamente representa un tercio de su longitud total. Por lo general, estos grandes animales viven por parejas, cerca de las charcas y cenagales de la sabana, pues para poder digerir las hierbas secas de las que se alimentan durante la estación seca necesitan mucha agua. Por otra parte, el fango protege su piel contra los parásitos. Algunos de los pájaros que viven en sus cercanías se alimentan de estos parásitos y los libran de ellos.

El rinoceronte debe su nombre al gran cuerno que tiene en la parte delantera de la cabeza, entre los ojos, y que no sólo utiliza para abrirse camino a través de la espesa vegetación, sino también como arma.

http://historiaybiografias.com/archivos_varios5/fauna_sabana.jpg

Existen dos clases de rinocerontes: el blanco y el negro. El primero se encuentra exclusivamente al nordeste del Uelé (Congo), sobre todo en el Parque nacional del Garamba, o también en la reserva de Umfolosi, en África del Sur. Su hermano negro, de menor tamaño, pero más peligroso, vive en la sabana arbórea y en las selvas: su habitat se halla, por lo tanto, más disperso.

La sabana acoge a varias especies de rumiantes y bóvidos. Los más numerosos son los antílopes. A este grupo pertenece el ñu, del que subsisten muy raros ejemplares. Su cabeza recuerda la del toro y tiene una larga cola cubierta de pelos de color blanco amarillento.

El impala, que presenta muchas similitudes con la gacela, es otro animal con cuernos. Los impalas viven en la sabana y la selva en grupos de veinte o treinta dirigidos por un macho. Pueden llegar a medir dos metros de largo, incluida la cola, pero en Katanga existe una especie de menor tamaño.

Entre los bóvidos citaremos el springbok, antílope de El Cabo (Sudáfrica) y el gran antílope kudú.

http://historiaybiografias.com/archivos_varios5/fauna_sabana1.jpg

La sabana arbórea es la residencia preferida de las jirafas. La hierba constituye su principal alimento, pero también sienten predilección por las hojas de los árboles. En los mismos lugares encontramos las cebras, équidos de pelo listado blanco y negro y de crin recta que viven en grandes manadas. Son difíciles de domar y más aún de adiestrar como los caballos.

Tanto en la sabana como en la estepa viven millones de pájaros. Debido a su propiedad de engullir todo lo que es comestible, el marabú, que se encuentra extendido por toda África, recibe, a veces, el sobrenombre de «basurero».
Los avestruces también tienen costumbres características. Por lo general se mezclan a una manada de antílopes o cebras. Comen hierba, granos, hojas y frutos; sin embargo, no vacilan en dar consistencia a su alimento normal con insectos, serpientes pequeñas o pájaros.

Por último mencionaremos los animales carniceros: el león, la hiena y el leopardo cazador. El leopardo, muy ágil y astuto, puede ser adiestrado para la caza de antílopes.

http://historiaybiografias.com/archivos_varios5/fuente_credsa2_a.jpg

La Zona Tórrida o Intertropical Características Climas Ubicación

La Zona Tórrida o Intertropical
Características,Climas,Ubicación Geográfica

La zona tórrida o región intertropical  está comprendida entre los dos trópicos. En ella se distinguen tres climas principales, a los que corresponden paisajes típicos: clima ecuatorial, caracterizado por la selva de lluvia o selva virgen; clima tropical de dos estaciones, con la selva-parque y la sabana; clima subtropical seco, con la estepa. Podría también definirse como la franja latitudinal de nuestro planeta en la cual los rayos solares inciden verticalmente por lo menos una vez en el año (una vez en los trópicos y dos veces en el resto).

Las regiones de la tierra que pertenecen a la zona tórrida, que se halla situada entre los dos trópicos. Se da el nombre de trópicos a dos pequeños círculos de la esfera terrestre, paralelos al ecuador y entre los cuales se efectúa el movimiento aparente del Sol alrededor de la Tierra.

El trópico del hemisferio norte es el de Cáncer. El 21 de junio, día del solsticio de verano (en el hemisferio norte), el sol envía sus rayos verticalmente sobre este trópico (se dice que el sol pasa por el cénit).

El trópico del hemisferio sur es el de Capricornio. El sol pasa por su cénit el 21 de diciembre, día del solsticio de invierno, en el hemisferio norte.

Los trópicos están situados a 23° 30′ de latitud a uno y otro lados del ecuador.

He aquí algunas ciudades que se encuentran aproximadamente en el trópico de Cáncer: Asuán (Egipto), La Meca (Arabia), Calcuta (India), Cantón (China), México D. F. (México) y la Habana (Cuba). Pretoria (Transvaal), Alice Springs (Australia) y Sao Paulo y Rio de Janeiro (Brasil) están situadas cerca del trópico de Capricornio.

De modo general puede decirse que la zona situada entre los trópicos (zona intertropical o tórrida) se caracteriza por la exuberancia de la naturaleza y por estaciones más o menos diferenciadas.

Existen tres tipos principales de climas cálidos:

1) Clima ecuatorial (a ambos lados del ecuador hasta 10° de latitud norte y sur), con fuertes lluvias durante todos los meses del año.

Estas lluvias torrenciales alcanzan dos máximas por año, en los equinoccios, cuando el sol está en el cénit, y dan origen a gigantescos ríos, como el Amazonas, cuyo caudal medio equivale a doscientas veces el del Sena. Su desembocadura mide 270 km, o sea, aproximadamente, la distancia entre París y Bruselas. En cuanto a su cuenca, es alrededor de veinte veces la superficie de la provincia de Buenos Aires.

La temperatura y la humedad son altas y constantes a lo largo del año. La temperatura media del mes más frío supera los 18 ºC, y la temperatura media anual se sitúa por encima de los 25 ºC. Las precipitaciones anuales sobrepasan los 1.500 mm e incluso, en algunas áreas, los 3.000 milímetros. La duración del día y de la noche es muy similar.

En las regiones ecuatoriales la humedad permanente, unida al calor, favorece el desarrollo de inmensas selvas compuestas por gigantescos árboles de inimaginable variedad: plátanos, palmeras, sifonias, caobas, etc. El bosque bajo de bejucos y heléchos arborescentes es prácticamente impenetrable: el hombre tiene que abrirse camino a través de él a golpe de hacha. Es la selva virgen o selva de lluvia, que cubre inmensos territorios en Guinea, Congo, Amazonia e Indonesia (o Insulindia)

La selva ecuatorial constituye un obstáculo para la población: el hombre se ve como abrumado por la violencia de la naturaleza. Los cultivos y las vías de comunicación están permanentemente aménazados por una vegetación natural que lo invade todo. La atmósfera pesada y húmeda y las lluvias casi diarias no favorecen la actividad humana.

La selva virgen sólo cuenta con algunas poblaciones aisladas, cuyos habitantes se dedican principalmente a recoger hierbas, frutos comestibles y raíces. Amazonia, por ejemplo, tiene menos de un habitante por kilómetro cuadrado.

2) Climas tropicales de dos estaciones, que son los de las regiones situadas entre los grados 5° y 20° de latitud norte y sur. El invierno es la estación seca y el verano la húmeda, con fuertes lluvias parecidas a las de la zona ecuatorial.
A medida que nos alejamos del ecuador aumenta la duración de la estación seca y disminuye la de la lluviosa. En estas regiones la selva es menos densa: los árboles no son tan gigantescos. Es la selvaparque, típica de Australia septentrional y del sudeste de Brasil, India y Vietnam.

Donde la estación seca predomina sobre la húmeda, la selva cede gradualmente el sitio a la sabana, inmensa extensión de hierba que durante la estación de las lluvias a veces llega a medir cuatro o cinco metros de altura. Pero la sequía de la estación invernal no permite que estas plantas se desarrollen: se marchitan y mueren. Son los llanos de las Guayanas, los campos de Brasil y la maleza congoleña (en ocre oscuro en el mapa).
Las poblaciones de las sabanas viven del cultivo y la ganadería.

3) Los climas subtropicales secos, que dan origen a la estepa: el suelo está cubierto de masas de hierbas cortas y secas, espaciadas unas de otras: Australia, África del Sur, noroeste de la India, pampa argentina. Cada uno de los tres medios, selva virgen, sabana y estepa posee fauna y flora netamente características.

Excepto la zona de los monzones, que goza de clima particular, puede decirse que la zona tórrida es inhóspita para el hombre. En ellos gran cantidad de gente que vive en esa región, lleva una existencia nómada o practica una primitiva forma de agricultura.

Los nómadas vagan en grupos reducidos, cazan, pescan y recogen frutos silvestres hasta que la región en la que se han establecido temporalmente deja de proporcionarles la subsistencia necesaria; entonces se ven forzados a buscar un nuevo habitat. Sus emigraciones no causan problema alguno, pues estos nómadas son poco exigentes en cuanto a comodidades.

EL MEDIO NATURAL: SABANA, SELVA VIRGEN Y ESTEPA

La transición entre las distintas zonas climáticas se realiza de modo progresivo; cada zona posee un paisaje característico: selva de lluvia en zona ecuatorial, sabana en zona tropical de dos estaciones, y estepa en zona subtropical seca. En cada uno de estos tipos de vegetación vive una fauna distinta. El conjunto suelo-flora-fauna constituye  el  medio natural

Dos veces al año, el 21 de marzo y el 21 de setiembre, el día y la noche son de igual duración en toda la superficie de la tierra. Son los equinoccios.

Esos días los rayos del sol caen verticalmente sobre el ecuador: se dice que el sol está en el cénit del ecuador.

Como decíamos antes el sol pasa por el cénit del trópico de Cáncer el 21 de junio y por el del trópico de Capricornio el 21 de diciembre. Son los días de los solsticios.

Cuando el sol pasa por el cénit de un lugar, sus rayos caen, pues, verticalmente sobre la tierra. De este modo provoca una intensa evaporación. Este paso del sol siempre coincide con una estación de lluvias abundantes: en efecto, el aire saturado de vapor de agua por la evaporación se eleva hacia las capas superiores más frías, se condensa y cae en forma de lluvia.

Estas lluvias reciben el nombre de cenitales, porque se producen en el momento en que el sol pasa por el cénit. Si se observa el diagrama de la izquierda se verá que el sol pasa dos veces al año por el cénit del ecuador, y en períodos que distan lo mismo uno del otro.

En teoría deberían producirse lluvias cenitales en marzo y setiembre. En la práctica, debido a la sobreabundante evaporación y al hecho de que el sol se aleja relativamente poco del cénit, el aire está constantemente saturado de vapor de agua. Todos los días del año las nubes se acumulan y después, por la tarde, se desencadenan violentas tormentas.

http://historiaybiografias.com/archivos_varios5/diagrama_sabana.jpg

Observe los distintos ambientes a medida que nos alejamos del Ecuador, desde el bosque virgen en el ecuador hasta la estepa en el Trópico de Cáncer. Lo mismo ocurre en el hemisferio sur.

El clima ecuatorial es un clima de lluvias constantes. Si nos alejamos del ecuador, entre los 5 y 20 grados de latitud encontraremos un clima tropical con dos estaciones: seca en invierno y húmeda, análoga al clima del ecuador, durante los meses de verano. El diagrama nos muestra claramente que cuanto más nos alejamos del ecuador más corta es la estación húmeda.

Entre el ecuador y los trópicos, las distintas especies vegetales cobran vida según su capacidad para soportar la abundancia o la escasez de agua. Hemos visto que la selva virgen, la sabana y la estepa corresponden a los tres tipos de climas intertropicales. Pero la transición no es brusca: existen numerosos paisajes intermedios. La ilustración de la derecha nos muestra un aspecto típico de la selva de lluvia o selva virgen: en ella reina una húmeda atmósfera de estufa y la vegetación es lujuriante.

http://historiaybiografias.com/archivos_varios4/sabana.jpg

Sabana

http://historiaybiografias.com/archivos_varios5/estepa.jpg

Estepa

http://historiaybiografias.com/archivos_varios5/selva_virge.jpg

Selva Virgen

Debido a la estabilidad del clima, las plantas no gozan de período de reposo. Sus hojas caen una vez al año, pero no todas, motivo por el cual la selva siempre verdea. Los árboles llegan a medir 70 m. de altura y están unidos entre sí por bejucos que van de un tronco a otro.

Los árboles grandes detienen los rayos del sol y el bosque bajo aparece sumido en la penumbra. Allí la vegetación está menos desarrollada : se compone, sobre todo, de hierbas, musgo y tupidas alfombras de heléchos.

Si nos alejamos de la zona ecuatorial, disminuye la humedad y los árboles son de tamaño más reducido. Las plantas pierden la hoja durante la estación seca, período de descanso de los vegetales. En estas regiones, la selva de tipo ecuatorial sólo subsiste a lo largo de los cursos de agua: se trata de la selva en que abunda la caza.

Siempre alejándonos del ecuador, encontramos la sabana arbórea,  la sabana parque, la de matorrales y la herbosa. Con frecuencia, en la sabana se practica el cultivo itinerante en chamiceras: durante la estación seca se cortan los árboles a un metro del suelo, se queman las hierbas secas y los arbustos y después se procede a las plantaciones (arroz, mijo). En cuanto el suelo está agotado, cosa que sucede al cabo de cuatro o cinco años, y a veces menos, se abandona el campo que rápidamente recobra su estado salvaje, y se rotura más lejos.

En la región subtropical, la sequía ya no permite que crezcan árboles. En su lugar aparece la estepa, recorrida por gacelas, chacales y antílopes. Sus habitantes son pastores nómadas.

Observemos que cada zona climática se caracteriza por cierta clase de vegetación (flora) y por animales (fauna) que en este clima encuentran favorables condiciones de vida.

Esta asociación suelo-flora-fauna recibe el nombre de medio natural.

La selva virgen: Si la vegetación de la selva virgen es lujuriante y arrolladura, el mundo animal no aparece representado en ella de modo tan abundante. Las ramas, los bejucos y la maleza hacen que la selva sea tan densa que sólo los grandes animales pesados (elefantes, hipopótamos) pueden abrirse camino a través de ella. Los cursos de agua no sólo son los únicos caminos naturales sino también los lugares de reunión de numerosos animales: peces, en primer lugar, pero también, en el légamo de las orillas, cocodrilos y gaviales (cocodrilos de hocico largo).

Sabana, pradera tropical poblada de arbustos y árboles dispersos de varios tamaños. La aparición de la sabana podría deberse a las características del suelo, a fuegos periódicos provocados por rayos o por la acción humana, y a la influencia del clima. Las sabanas que aparecen por razones climáticas, como las del oeste y suroeste de África, se desarrollan en regiones con estaciones húmeda y seca bien marcadas y una precipitación media anual entre 100 y 400 mm.

Estepa (ecosistema), paraje llano y muy extenso que carece casi por completo de vegetación arbórea. El término estepa, en sentido estricto, tiene su origen en la palabra rusa stepj (traducido como desierto, en el sentido de no cultivado ni arbolado) con la que se nombran las praderas de gramíneas de la zona templada de Rusia y de la Europa del Este.

http://historiaybiografias.com/archivos_varios5/fuente_credsa2_a.jpg

Primer Acoplamiento en el Espacio Historia del Programa

HISTORIA DEL PROGRAMA SOYUZ-APOLLO-PRIMER ENCUENTRO ESPACIAL

En julio de 1975 se concretó un ambicioso proyecto conjunto entre los Estados Unidos y la Unión Soviética, consistente en el acoplamiento en órbita de una cosmonave Apolo con otra Soyuz. En esta misión se pusieron de manifiesto, en las técnicas utilizadas por ambas potencias para la conquista cósmica, diferencias que debieron en gran parte limarse con el objeto de hacer posible el éxito del programa.

Así, fue necesario emplear un módulo de anexión para que los tripulantes de una y otra cápsula pudieran aclimatarse lentamente a las diferencias de presión y de aire utilizado (oxígeno puro en la Apolo y oxígeno con nitrógeno en la Soyuz) y hasta ponerse de acuerdo acerca de la alimentación y los horarios de descanso.

mision soyuz apollo

Ambas naves acopladas

ANTES Y AHORA
La diferencia entre los vuelos orbitales iniciales y los actuales radica en que estos últimos cuestan mucho menos. ¿Por qué? Por la sencilla razón de que antes el cohete lanzador se usaba una soia vez y se perdía. Un cohete Saturno V, por ejemplo, que envió la nave Apolo a la Luna, costaba 300 millones de dólares y luego de terminar su combustible se perdía. Desde la construcción del “Space Shuttle” y otros naves similares se usa muchas veces un mismo equipo como un avión, lo que permite reducir notablemente los costos

Con “siete horas de diferencia partieron las cápsulas; de Baikonur, llevando a bordo a Alexei Leonov y Valeri Kubasov, y de Cabo Cañaveral, conduciendo a Thomas Stafford, Donald Slayton y Vanee Grand. Una vez en órbita hicieron las correcciones necesarias, descansaron y al día siguiente lograron sin dificultades el histórico acoplamiento.

En el aspecto político, significó el comienzo de una nueva era de cooperación; y en el técnico, un verdadero intercambio de conocimientos. Además, por primera vez desde el lanzamiento del primer Sputnik, la Unión Soviética abrió las puertas de su centro espacial de Baikonur no sólo a los científicos y cosmonautas sino también a los periodistas especializados de todo el mundo.

Se trata de un complejo levantado en medio de un desierto, que en nada se parece a la lujuriosa vegetación y los pantanos del Cabo Cañaveral, en Miami. Está situado cerca de la ribera este del Mar Caspio, en un sitio de difícil acceso y prácticamente sustraído a las posibilidades de espionaje desde la superficie o la atmósfera terrestres.

El desarrollo de la misión fue impecable y dejó las puertas abiertas a otro proyecto, ya en marcha, que se concretará cuando la astronáutica indique los nuevos rumbos a seguir.

Porque si bien esta misión significó la última de la serie Apolo, hay que esperar que Estados Unidos complete sus planes con el “transbordador espacial” (programa Shuttle) y que la Unión Soviética desarrolle los suyos con las series Soyuz o con las estaciones espaciales Salyut.

El descenso de la cápsula rusa se realizó tres días antes que el de la estadounidense, la que aprovechó ese tiempo en órbita para efectuar varios trabajos científicos. La Apolo regresó el 24 de julio de 1975 y a pesar de un inconveniente causado por el escape de gas letal que irritó los pulmones de los cosmonautas, el amerizaje en aguas del Pacífico se llevó a cabo con la precisión acostumbrada.

Para los Estados Unidos el programa Apolo-Soyuz representó la culminación de una larga serie de esfuerzos que se inició con las cápsulas Mercurio, de un solo tripulante; siguió con el proyecto Géminis, de dos ocupantes; y culminó con el plan Apolo, cápsula para tres astronautas.

A partir de aquí los programas ruso y norteamericano se bifurcaron; los soviéticos siguieron perfeccionado su navio Soyuz, acoplándolo con otras, cápsulas y dejándolo cada vez más tiempo en órbita: la NASA a su vez, tras un experimento de larga duración con el “Space Lab”, desechó los vuelos clásicos e hizo un paréntesis para reiniciar la actividad en 1980 con el “Space Shuttle” o Trasbordador Orbital.

tripulantes de la mision soyuz apollo

Los cinco tripulantes del programa conjunto pasaron a bordo 44 alegres horas en las que se alternaron los idiomas —inglés y ruso— con una facilidad que sorprendió a los mismos directores del programa. Parecía como si fuera una misión conjunta más que realizaran los cinco hombres del espacio. Alternando algunas bromas de tono político con informaciones sobre la marcha del vuelo y hasta discusiones acerca de cuál comida envasada o deshidratada era la más sabrosa, si la rusa o la estadounidense, se cumplió una misión que tuvo más importancia para la distensión entre Moscú y Washington que para los cosmonautas, quienes ya habían ensayado incontables veces en tierra esta misión, a tai punto que la esposa de Leonov manifestó a los periodistas: “Parece que para ellos es más fácil volar que esperar en tierra”.

Ampliar Este Tema En Este Sitio

Fuente Consultada:
Enciclopedia Ciencia Joven Tomo II Edit. Cuántica

Pioneros de los Viajes Espaciales Inventores de Cohetes

Pioneros de los Viajes Espaciales  – Inventores de Cohetes

Antes de que los hermanos Montgolfier hicieran su primera ascensión, nadie se había elevado nunca más que unos pocos centímetros sobre la superficie terrestre. Un siglo y medio después, miles de aviadores volaban a varios kilómetros por sobre la tierra. Luego, una vez conquistado el aire, los hombres empezaron a soñar en viajar a través del espacio hacia otros mundos.

Al principio parecía que los viajes espaciales no serían, por mucho tiempo, más que un sueño, ya que los problemas que se debían vencer eran dificilísimos. Uno consistía en que todos los motores hasta entonces conocidos tenían que quemar necesariamente algún tipo de combustible, y es bien sabido que ninguno de éstos puede arder en el espacio vacío donde no hay oxígeno con qué combinarse. Otro era el de que todos los aparatos de vuelo inventados hasta ese momento necesitaban aire para volar.

Pero hay una antigua forma de vuelo que no necesita aire. Si desatamos el cuello de un globo de juguete inflado, éste siempre se desplazará en la dirección opuesta a la del aire que escapa de él. Esto, no ocurre porque el aire mencionado empuje el del exterior: es que el de adentro del globo presiona fuertemente contra el frente, por donde no puede salir, pero no contra la parte posterior, o cuello, por donde sí puede escapar. Esta diferencia de presión es la que impulsa al globo hacia el frente.

Tsiolkovsky, hijo de un inspector forestal de Riazán, tras iniciar sus estudios en Moscú, se recibió de profesor de matemáticas, siendo asignado a la escuela de Borovo en 1882. Ya para aquel entonces el científico había llegado a profundizar sus estudios en tal forma que tenía casi terminada la teoría que años después lo hiciera célebre.

Tsiolkovski se dedicó a divulgar sus atrevidas ideas a través de obras de ficción, artículos periodísticos, muchos de los cuales fueron recibidos con luirlas por parte del gran público y con despectivas opiniones  por parte de  sus colegas moscovitas y de otaos países. En Borovo diseñó un dirigible enteramente metálico impulsado a motor de explosión -nítido precursor del Zeppelín germano-, un avión sumamente similar al que luego elevara pollos aires a los hermanos Wright y comenzó a afrontar las dificultades que había que vencer para iniciar los viajes interplanetarios.

Konstantín E. Tsiolkovski (1857-1935), científico e inventor ruso, pionero en la investigación de cohetes y espacial. A los nueve años se quedó casi totalmente sordo y siguió sus estudios en su domicilio; trabajó como profesor de matemáticas de la escuela secundaria hasta su retiro en 1920.

En 1903, una revista de Moscú publicó, con cinco años de arraso, su artículo “La exploración del espacio cósmico por medio de los aparatos a reacción“, en el que se sostenía que el único camino posible para abandonar  la Tierra  era  un cohete impulsado por propelentes líquidos como el oxígeno y el hidrógeno, fórmula utilizada años después por los misiles estadounidenses Centauro y Saturno-1.

En 1898 anticipó también la idea de la alimentación de los cohetes por medio de la presión, deflectores de lanzamiento, la cabina estanca conteniendo oxígeno para el piloto y un dispositivo para la absorción de anhídrido carbónico. De 1911 a 1915 perfeccionó su cohete y propuso un sistema para que el cosmonauta se halle en la cabina en posición horizontal para resistir la aceleración -idea que fue redescubierta 20 años después por el alemán Diringshofen.

Y en 1929 llegó a su momento cumbre, cuando concibió, con una precisión casi increíble, la construcción de un cohete de varias etapas pura escapar de la atmósfera; las escafandras de los astronautas; los satélites artificiales; las estaciones en órbita albergando invernaderos para la eliminación del gas de carbono -tal cual se hace hoy en día en las estaciones Skylab y Salyut-, e incluso la utilización de la energía solar como tuerza motriz de las astronaves, genial intuición hoy ya utilizada tras muchos fracasos de sus inventores.

Es recién en 1919 cuando comienzan a reconocerse los méritos de este pionero, que murió en 1935 convencido de que el destino del hombre está en las estrellas; idea que quedó grabada sobre su tumba, con una muy usada frase suya: “La humanidad no permanecerá siempre en la Tierra”.

El otro precursor, Goddard, había nacido en Massachusetts en 1882 y realizado sus estudios en la ciudad de Boston, al tiempo que su mente se dejaba llevar fantasiosamente por los trabajos de Verne; lentamente penetra en el mundo de los cohetes, representados en esa época únicamente por los de pólvora utilizados en la guerra o por aquel duramente criticado invento del misil a vapor, tipo ametralladora, del alemán Hermán Ganswindt en 1891.

Costeándose sus experimentos con sus escasos recursos, aquel joven llegó a demostrar la importancia de la cóhetería en la astronáutica e, incluso, en la guerra.

Goddard Cientifico

El ingeniero espacial estadounidense Robert Hutchings Goddard publica un libro titulado Método para alcanzar alturas extremas, en el que describe un tipo de cohete que podría alcanzar la Luna.

Tras perfeccionar un cohete con carga explosiva inventó en 1918 la célebre “bazooka”,arma que no se utilizaría hasta la segunda Guerra Mundial. Continuó luego sus experimentos y poco a poco comenzó a vislumbrar las posibilidades de construir un cohete impulsado por combustibles líquidos, y sin conocer las teorías de Tsiolkovski inició en 1920 sus primeros trabajos sobre el tema. Le llevó seis años concretar la idea, pero en 1926 logró algo fundamental en la historia de la astronáutica: el primer misil propulsado con carburante líquido.

A partir de entonces el pionero prosiguió su obra, ya con el apoyo del gobierno norteamericano, y fue obteniendo éxito tras éxito, hasta que la muerte lo sorprendió en 1946, cuando irrumpían en la carrera espacial otra serie de ideas y nombres que darían un fuerte impulso a la astronáutica.

Entre otros importantes avances debidos a la obra de Goddard podemos destacar los que significaron la bomba centrífuga de combustible; el cohete por etapas; las aletas desviadoras del chorro y la dirección giroscópica de loscohetes. Fue, además, el primero en lanzar un cuerpo a una velocidad mayor que la del sonido.

Alemania, creadora de las primeras bombas voladoras, las célebres V-1 y V-2, no surgió en la cohetería por obra de la casualidad. También allí existió un pionero: se llamó Hermán Oberth. Este,que trabajó casi exclusivamente en teoría, desarrolló las ideas del ruso en tal forma que llegó a proyectar íntegramente un cohete de 110 metros de altura, de características casi idénticas a las del Sarurno-5.

Oberth y sus alumnos Riedel, Nebel y Werner von Braun comenzaron a real izar sus proyectos y, en 1931, lanzaron el primer cohete europeo, que rápidamente fue perfeccionado hasta que el gobierno nazi vió -en 1933- la posibilidad bélica de esa arma y estableció una base experimental oficial en Kummersdorf, 28 kilómetros al sur de Berlín.

Allí, un año después la primera bomba V-1 alcanzó una altura de 2.200 metros. Después, a causa de los bombardeos aliados, la base fue trasladada a una isla del mar Báltico, Peeiiemünde, en la que se concretó la V-2, que asoló a Londres, Amberes, Lieja y Bruselas hasta el final de la contienda.

A partir de entonces, los científicos del Tercer Reich pasaron en su mayor parte a Estados Unidos y otros a la Unión Soviética, donde en base a los planos secretos que llevaban en la mente y a lo realizado por especialistas locales como Goddard, Tijoranov y Bajcjovangui, comenzó realmente la carrera espacial que culminaría asombrando al mundo, en 1957, con la puesta en órbita del primer satélite artificial: el Sputnik-1.

bomba V2 alemana

LA BOMBA V-2
Llevada a Estados Unidos por Von Braun y sus compañeros de Peenemunde, la bomba V-2 se convirtió en vital elemento para las naciones victoriosas de la segunda contienda mundial. En efecto, había llegado a producirse en serie y en número de 3.000, de las cuales solamente algunas decenas cayeron en manos de las tropas aliadas tras la “Operación Paperclip”, la que estuvo destinada a llevar a EE.UU. la mayor cantidad de científicos germanos y los documentos secretos sobre esa destructora arma, antes de que cayeran en manos soviéticas.

Y entre esos documentos se hallaban los de dos cohetes aún en experimentación, cuya finalidad, en tiempo no muy lejano, era bombardear la ciudad de Nueva York, además de los proyectos de Eugen Sanger, sobre un bombardero estratosférico, predecesor del X-15 norteamericano. He aquí algunas de las principales características de la V-2: Fuerza de impulsión: 24.401 kg. Impulso específico: 206 segundos. Peso vacío: 4.676 kg. Peso con combustible ycarga: 12.884kg.Tiempo de combustión: 70 segundos. Longitud total: 21 m. Diámetro: 1,65 m. Ancho entre alerones: 3,57 m.

ALGO MAS…

Durante la segunda guerra mundial inventores alemanes e ingleses produjeron aviones que usan un método similar de propulsión. Werner von Braun tuvo parte activa en la producción del arma alemana V-1. De su motor grandes masas de gas escapaban en rápida sucesión de cortos estallidos. A cada estallido la presión era mayor hacia el frente del motor que hacia atrás, dando a la bomba V-1 un impulso hacia adelante.

Von Braum cientifico alemanMientras tanto, en Inglaterra, el capitán Whittle inventó el motor de chorro, en el que un chorro continuo de gas da un impulso ininterrumpido hacia adelante. Motores de este tipo podrían funcionar en el espacio si no necesitaran combinar el oxígeno del aire con su combustible.

Afortunadamente, había todavía otra antigua forma de vuelo que usaba combustible pero no necesitaba oxígeno del aire exterior. Era el cohete, usado por primera vez en la China hace centenares de años.

En los primitivos cohetes el combustible era pólvora, y uno de los ingredientes de ésta —salitre— de por sí contiene bastante oxígeno como para permitir a los otros que ardan sin aire.

Cuando el combustible arde dentro de un cohete, la presión es mayor al frente, donde los gases no pueden escapar, que atrás, donde pueden hacerlo, del mismo modo que ocurría en el globo de juguete que tenía el cuello abierto. De este modo, el cohete da la solución a ambos problemas del vuelo espacial.

Durante la segunda guerra mundial, científicos alemanes, incluyendo a Werner von Braun, produjeron cohetes capaces de volar cientos de kilómetros, en los cuales el combustible líquido ardía con el oxígeno que se había comprimido y almacenado en forma líquida. Uno de ellos, el famoso V-2, está representado en la lámina (arriba, derecha, la figura más grande).

Sputnik satelite artificial rusoDesde entonces los vuelos de cohetes se han desarrollado enormemente, especialmente en Estados Unidos de América y en Rusia. Muchos cohetes modernos constan de tres partes, y cada una de ellas añade su propia tremenda velocidad a la ya aportada por su predecesora.

Con un cohete de este tipo los científicos rusos enviaron el primer satélite artificial de la Tierra, el Sputnik I, en octubre de 1957.

Tanto Rusia como los Estados Unidos han enviado luego muchos más, y hacia fines de 1960 más de 30 circulaban alrededor de la Tierra. Un cohete ya ha hecho impacto en la Luna. Otro ha dado la vuelta alrededor de ella, tomando fotografías del lado hasta entonces nunca visto. Todavía otro se ha transformado en un diminuto planeta que gira alrededor del Sol.

En abril de 1961 el astronauta ruso Yuri Gagarin surcó el espacio interplanetario dando un giro completo en 89 minutos alrededor de la Tierra, y en agosto del mismo año, otro cosmonauta ruso, Gherman Titov, dió 17 vueltas en torno a la Tierra en 25 horas 18 minutos. En febrero de 1962, el estadounidense John H. Glenn dio 3 vueltas alrededor de la Tierra en 4 horas 54 minutos.

Fuente Consultadas:
Enciclopedia Ciencia Joven La carrera espacial Edit. Cuántica Fasc. N°12
El Triunfo de la Técnica Tomo III Globerama Edit. CODEX

Composición Mineral de la Corteza Terrestre Tabla de Minerales

Composición Mineral de la Corteza Terrestre

Grandes son las riquezas que guarda en su seno la corteza terrestre y numerosas las necesidades que el hombre puede satisfacer con aquéllas. Pero rara vez esos recursos, que conocemos con el nombre de minerales, se encuentran tan a la vista que su busca, extracción y beneficio no exijan conocimientos y considerable trabajo.

Los estudios que se han realizado para conocer la composición de los constituyentes minerales de la Tierra se limitan a una pequeña porción del escenario que la ciencia geológica llama hidrosfera y litosfera.

Esta, que ordinariamente llamamos corteza terrestre, tiene un espesor de unos 120 kilómetros, que se considera dividido en dos zonas distintas, conocidas con los nombres de sial y sima.

corteza terrestre

Los componentes esenciales del sial son rocas del carácter del gneis y el granito, constituidos por minerales en los que predominan los elementos silicio y aluminio. De ahí el nombre de sial, formado con los símbolos de ambos elementos, que son Si y Al, respectivamente. Los constituyentes del sima son rocas de carácter volcánico, en las que abundan el silicio y el magnesio, con cuyas dos primeras letras se forma dicha voz.

El sial o zona de fractura de la corteza terrestre, que forma los bloques continentales, estaría, por su menor densidad (2,6), inmergido en el material de mayor densidad (3,0) del sima o zona de fluidez de la litosfera, como los témpanos de hielo en el agua.

En ambos componentes de lacorteza terrestre las substancias minerales, en un 98%, contienen los elementos siguientes en los porcentajes que se indican: oxígeno (46,46), silicio (27,61), aluminio (8,07), hierro (5,06), calcio (3,64), sodio (2,75), potasio (2,58) y magnesio (2,07). El porcentaje que resta lo forman, en orden decreciente, el titanio, hidrógeno, fósforo, manganeso, carbono, azufre, cloro, bario, flúor, estroncio, etc.

En la hidrosfera, parte líquida constituida principalmente por los mares, también existen varios de estos elementos que entran en la composición, por ejemplo, del cloruro de sodio, cloruro de magnesio y sulfato de magnesio, contenidos en solución, particularmente del agua de mar, desde un 3,5 a un 4 %.

Los elementos componentes de los minerales de la hidrosfera constituyen un 7% y los de la litosfera un 93 % deja composición media del material inorgánico o mineral de la superficie terrestre.

Entre los minerales más comunes e importantes se cuentan los siguientes: azufre, diamante, grafito, oro, plata, platino, galena, pirita, blenda, cinabrio, calcopirita, magnetita, hematita, corindón, cuarzo, halita, nitratina, calcita, yeso, bórax, coaolín, feldespatos, micas y asbetos o amiantos.

Las cantidades en que se encuentran estos y otros minerales varían muchísimo de unos a otros. Así, algunos, como la calcita en forma de caliza, ocupan por sí solos superficies de varios kilómetros; otros, como la casiterita, se hallan en cantidades moderadas, y algunos son una rareza, como la greenockita, que es un sulfuro de cadmio (CdS).

Además, si bien la contemplación ligera de los minerales produce la impresión de una cosa eterna e invariable, basta una observación atenta para reconocer que casi todos se hallan alterados de diversos modos, siendo muy pocos los que  se muestran tan resistentes como el cuarzo. Así, por la acción de los agentes atmosféricos, como el agua, oxígeno y dióxido de carbono, se forman óxidos, hidróxidos, carbonatas, etc., a partir de sulfuros y otras sales.

Por ello puede afirmarse que la corteza terrestre es objeto de una continua transformación en la que mueren los minerales viejos y nacen otros nuevos.

esquema de la composicion mineral de la corteza terrestre

DEL NÚCLEO A LA SUPERFICIE
De acuerdo con las hipótesis de los geólogos que tienen como base observaciones sismológicas, el núcleo de la Tierra estaría formado por una esfera cuyo radio sería,aproximadamente, de 3.500 kilómetros. Tal zona recibe el nombre de nife, pues se la considera compuesta de níquel (Ni) e hierro (Fe).

Sobre ella se encuentran los mantos de! núcleo, de unos 1.700 kilómetrcs de espesor que -según algunos autores- contienen hierro en forma de óxidos y sulfuros; otros estudiosos suponen que están formados por una mezcla de metales que contienen silicatos. Encima de los mantos del núcleo se hallan los mantos rocosos, cuyo espesor alcanza a medir 1.200 kilómetros.

Los forman rocas que se originaron en esa masa mineral, pastosa, a menudo denominada magma. En esta parte rocosa se distinguen la barisfera o zona del manto profundo -de unos 1.000 Kilómetros de espesor- y, sobre ella, la litosfera o corteza terrestre.

Ver: La Corteza Terrestre

Fuente Consultada:
Secretos del Cosmos Tomo 2 (Salvat)
Enciclopedia Ciencia Joven -La Corteza Terrestre – Fasc. N°15 Editorial Cuántica

El Crecimiento de las Ciudades y la Importancia del Transporte

EL CRECIMIENTO DE LAS CIUDADES Y LA INFLUENCIA DEL TRANSPORTE

EL DESARROLLO DE LAS CIUDADES: Ya se tratase de una cabaña, en la Edad de Piedra, un castillo medieval, o una casa moderna, el hombre invariablemente ha planeado sus edificaciones. Siempre ha sabido de qué tamaño las quería, cuáles eran los propósitos a que estaban destinadas, y qué aspecto tendrían una vez terminadas. Sin embargo, no ha ocurrido lo mismo con respecto a la mayoría de sus ciudades.

Casi siempre han crecido con la libertad de una planta  que surgió de la semilla de su mismo fruto, sin que nadie pudiese predecir qué extensión alcanzarían; sin embargo, también como los robles, muchas han llegado a tener gran belleza, fuerza y utilidad.

Un fruto crecerá y llegará a ser una gran planta sólo si se la planta en favorables condiciones del suelo, temperatura y humedad. Análogamente, un pequeño caserío debe poseer condiciones apropiadas para transformarse en una ciudad.

¿Cuáles son las condiciones que favorecen este desarrollo? Una es que haya abundante provisión de agua a mano, porque los seres humanos siempre han necesitado, y frecuentemente derrochado, mucha agua. Otra es que el caserío originario esté situado en un lugar adonde la gente de las aldeas vecinas pueda llegar con facilidad, o mejor aún, donde simplemente deba encontrarse.

Vemos, por ejemplo, que muchas ciudades se han desarrollado en el último punto donde un puente puede tenderse a través de un río antes de que éste se ensanche en su curso hacia el mar. En esos casos, los habitantes de las aldeas situadas a muchas millas a la redonda, necesariamente tienen que usar ese puente cada vez que deseen cruzar el río. Por ejemplo, Londres, sobre el Támesis, es un ejemplo típico de ciudades cuyos puentes les han concedido enorme importancia.

Pueblos pequeños suelen convertirse en grandes ciudades, cuando están situados cerca del punto de unión de dos regiones de muy diferente carácter, en el límite entre llanura y meseta, o en tierras bajas y montañosas, o donde las estepas se unen a los bosques. Un pueblo en tales lugares tiene una situación ideal para que los habitantes de dos regiones intercambien los diferentes artículos que producen.

En primer lugar, para que una población pueda desarrollarse grandemente en extensión e importancia, debe tener fáciles accesos respecto a los lugares cercanos y distantes. Antes del comienzo de la era de la aviación, esto significaba que debía estar en un sitio donde los caminos, canales o ferrocarriles pudieran comunicarla con pueblos cercanos, y donde a los barcos les fuera posible aproximarse, preferentemente desde el mar abierto.

Grandes e importantes ciudades como París, Londres, Venecia, Buenos Aires, Coblenza y Estocolmo, aunque sus planos  difieren ampliamente en muchos otros aspectos, todos tienen en común esta importante condición de fácil acceso.

Por ejemplo los caminos de París irradian en todas direcciones, desde la vieja ciudad, cuyo núcleo está en una isla del Sena. El laberinto de los caminos de Londres se extiende a lo lejos a ambos lados de los puentes sobre el Támesis. Venecia, construida sobre un grupo de islas sitas en lagunas, se extiende hasta encontrar el mar abierto.

Buenos Aires, en el estuario del río de la Plata, tiene acceso tanto a las ricas pampas como al Atlántico. Coblenza está situada en la confluencia de dos grandes ríos, el Rin y el Mosela, y cuenta también con buenas comunicaciones, por medio de caminos y ferrocarriles, con muchas zonas industriales importantes de Alemania, Francia, Holanda, Bélgica y Luxemburgo. Estocolmo tiene no sólo acceso directo al mar, sino también, por canales y lagos internos, al corazón de Suecia central.

Sólo en los últimos cincuenta años, el tremendo desarrollo de los viajes por aire ha dado nueva importancia a ciertas ciudades que no tienen comunicaciones particularmente buenas por tierra o por agua. Algunos de los ejemplos más notables son: Nairobi, en Kenya; Kano, en Nigeria, y Bogotá, en Colombia.

vista de una  ciudad super poblada

En un país tan industrializado como Japón, el ferrocarril desempeña un papel esencial: transporta las materias primas importadas y conduce a los puertos los productos industriales de exportación. Esta estación de contenedores en Tokio muestra la Interdependencia del ferrocarril y de la ciudad. Hace unos cien años, las estaciones se construían en la periferia, originando rápidamente una poderosa corriente de intercambios: el barrio de la estación, con sus hoteles, comercios y oficinas de todo tipo se convertía en uno de los polos activos de la ciudad, creciendo y desarrollándose con rapidez. Por ello, en nuestros días el ferrocarril se encuentra totalmente incorporado al entramado urbano. Esta disposición presenta grandes ventajas: los expresos pueden conducir a los viajeros hasta el corazón mismo de la aglomeración urbana, sin especiales retrasos por los obstáculos de la circulación; son más rápidos y más baratos, pero también plantean graves problemas de urbanización que es necesario solucionar.

LA PLANIFICACIÓN DE CIUDADES: Cuando una población ha crecido más que las cercanas, suele mostrar tendencia a desarrollarse mucho más rápidamente aún. Como ya tiene numerosos comercios, los moradores de las aldeas vecinas hacen sus compras allí, y a su tiempo esto provoca la creación de más comercios. Puesto que ya tiene más oficinas y fábricas que sus vecinos, y ofrece mayores posibilidades de empleo, la gente de los pueblos más pequeños comienza a establecerse allí; y pronto los industriales levantan más fábricas, porque la población dispone de gran cantidad de mano de obra. (Ver: Planificación de ciudades)

En tiempos pasados varias circunstancias limitaban la extensión de las ciudades. Primero, la provisión de agua local era suficiente para las necesidades de un cierto número de gente y nada más; después, si una ciudad medía sólo unos pocos kilómetros de largo, una persona podía caminar desde su casa de los suburbios hasta el lugar de su empleo cerca del centro de la ciudad; pero si crecía mucho, ya no le era posible; finalmente, mientras una ciudad permanecía pequeña, los campos circundantes podían proveerla de toda la leche fresca, carne y verduras que necesitase; pero si se desarrollaba demasiado, las provisiones podían resultar escasas.

Hoy esas limitaciones ya no obran. Si la provisión de agua local no es suficiente, el agua es llevada por cañerías desde depósitos situados a muchos kilómetros de distancia (ya lo hacían los romanos en sus acueductos).

Las ciudades han crecido tanto que hoy la mayoría de sus habitantes ya no puede ir y volver de su trabajo a pie todos los días; pero ahora se trasladan fácilmente en taxis, auto personales, en ómnibus o metro. Muchas ciudades crecen tanto que los campos que las rodean no logran abastecerlas; pero transportes rápidos les traen productos y alimentos frescos, desde cientos de kilómetros de distancia, mientras la carne llega en barcos con refrigeración desde lejanos continentes.

Por lo general, las limitaciones al desarrollo de las ciudades en nuestro siglo son las que el hombre mismo impone, a veces porque teme que un mayor desarrollo reduzca demasiado las tierras laborables; a veces porque considera perjudicial que la gente quede tan encerrada entre mortero y ladrillos; a veces por los problemas de tránsito.

Por fin el hombre está comenzando a planear cómo se deben desarrollar las poblaciones. A las viejas ciudades hay que darles forma de manera bastante similar a lo que se haría con un viejo árbol: podando un poco aquí, promoviendo mayor crecimiento por allá. Las ciudades nuevas se pueden planear tal como las casas nuevas.

tren en la ciudad

El ferrocarril se utilizó en primer lugar en las minas . Cuando la fuerza del vapor fue aplicada a la tracción de los primeros vagones, nació un medio de transporte revolucionario por su rapidez y economía. Desde entonces fue posible transportar, sin grandes costos, cargas pesadas a largas distancias. El tendido de las redes ferroviarias fue efecto y causa de la implantación industrial y de la ocupación humana; y al contrario sucedió allí donde no llega. Al colocar sobre raíles las diligencias, nacía el primer medio de transporte popular. Por ejemplo, en una diligencia sólo cabían 10 ó 12 pasajeros; en cambio, ya hacia 1870, los trenes tenían un promedio de 250 plazas. Pero el ferrocarril poseía otras ventajas importantes: ya por aquella fecha (1870), el tiempo invertido en un desplazamiento se había reducido siete veces, la carga que se podía transportar era 300 veces mayor y, además, costaba la mitad que antes.

La circulación de las informaciones y de los bienes: El aldeano de la sabana africana dispone de terrenos de caza, de ríos para pescar, de un espacio reservado a la vivienda y otro dedicado a los cultivos. Entre esos diferentes espacios de utilización específica, se desplaza con total libertad. Lo mismo debería suceder en las sociedades modernas, pero en ellas el espacio está dividido de forma mucho más compleja: barrios residenciales, centros administrativos, áreas industriales, núcleos mineros, países desarrollados y subdesarrollados, etc. Por ello el hombre ha de recurrir a otros sistemas de transporte y circulación que le permitan enlazar esos espacios.

En este campo, nuestra época conoce una verdadera revolución: gracias a los modernos medios de comunicación, el hombre puede unir los espacios más diversos y los más alejados, incluso sin desplazarse. Una gran sociedad industrial, por ejemplo, utiliza todo un sistema de comunicaciones y de transportes: el fax, el teléfono , el email  «conducen» las informaciones y las órdenes de la sede central a todas las filiales del mundo. Por otra parte, las agencias bancarias aseguran las transferencias de dinero.

Oleoductos, líneas de alta tensión o petroleros aportan la energía de fuentes que se encuentran, a veces, a miles de kilómetros de distancia. Los buques de carga llevan las materias primas a las fábricas, mientras que los trenes transportan los productos acabados que los camiones distribuirán finalmente a los consumidores.

Gracias al avión, al barco, al tren y al automóvil la circulación constituye la base de la economía moderna; y gracias a los modernos sistemas que utiliza, podemos hablar de un espacio mundial en el que la comunicación es hoy muy rápida.

Los transportes crean núcleos de intercambios
Si los espacios especializados (pueblos y campos, agua y bosque) originan vías de comunicación, también es cierto que los caminos y carreteras han originado aglomeraciones. Una posta donde se renovaban los caballos en la época de la diligencias atraía hacia ella al posadero, al herrador, al guarnicionero, al carpintero; así aparecía paulatinamente el embrión de lo que llegaría a ser, posteriormente, un poblado.

Son numerosas las ciudades fundadas a partir de una casa de postas: junto a un puente, al lado de un puerto, en un cruce. Algunos países se formaron gracias a una situación geográfica privilegiada en una vía esencial de transportes, es decir, de intercambios. El Líbano, por ejemplo, ha basado su existencia en su situación como puerta del Próximo Oriente; y Suiza se constituyó, en parte, debido al control sobre los pasos de los Alpes.

El ferrocarril abre el camino…
Aproximadamente hasta el año 1850, una fábrica debía situarse al borde de un río, que le proporcionaba la fuerza necesaria para las máquinas, o cerca de un bosque, de una mina e incluso de una cantera, donde encontraba las materias primas necesarias.

Con la aparición del ferrocarril, todo cambió: en adelante, sería posible transportar a largas distancias materiales pesados —por ejemplo, la hulla— para alimentar las nuevas máquinas de vapor. Las fábricas podían, pues, situarse cerca de las ciudades, donde encontraban mano de obra y clientes; desde entonces se pudo enviar a cualquier lugar del país, e incluso a otros países, los productos más diversos y más pesados.

El invento del ferrocarril hizo disminuir las distancias relativas en pocos años: el territorio parecía más pequeño. En la primera mitad del siglo xix, se tardaba una semana en ir de Barcelona a Madrid; en 1870, viajando en ferrocarril, se tardaba siete veces menos: 21 h 30′.

modifica los paisajes…
En Estados Unidos, en la mítica colonización del Oeste, el gobierno se sirvió del ferrocarril, asignando a cada una de las compañías ferroviarias una zona de 15 km a cada lado de la vía; las compañías dividieron sus zonas en grandes lotes que vendieron a los colonos.

A medida que la vía férrea progresaba hacia el Oeste, la agricultura estadounidense surgía y se extendía. Los silos de cereales se alineaban a lo largo de la vía férrea; y los rebaños, conducidos por los cow-boys, eran cargados en los vagones. Asimismo, la aparición del ferrocarril transformó profundamente los paisajes europeos. Las regiones dejaron de vivir aisladas y se especializaron en los cultivos más rentables.

el tren en la costa oeste de ee.uu.

En pocos años, el ferrocarril se convirtió en uno de los principales factores del paisaje. Si la existencia de una vía férrea vitalizaba una región y posibilitaba cambios profundos en su estructura económica, su carencia podía dejar marginadas y en regresión a regiones o ciudades que hasta entonces habían gozado de cierta prosperidad.

Además, la construcción de los ferrocarriles fue una de las actividades que más influyó en la industrialización del siglo pasado. La demanda de material rodante y de infraestructura, el empleo de gran cantidad de mano de obra, la inversión de capitales con saneados beneficios, etc. son aspectos sin los que no se comprendería el despegue y crecimiento económico de los actuales países desarrollados.

 La industria ha sido atraída rápidamente por la gran potencia del ferrocarril. A cada lado de las líneas principales se extienden las instalaciones ferroviarias: apartadero, depósitos, talleres para el material rodante. Cada fábrica importante posee incluso su propia vía férrea, cerca de la cual se han concentrado otras actividades. Al atraer la mano de obra, las fábricas han favorecido así la formación y el crecimiento de ciudades obreras. En nuestras ciudades, el barrio de la estación, con sus hoteles, sus oficinas y a veces con sus casas anticuadas, ha conocido una expansión indudable.

En la actualidad, sin embargo, la importancia del ferrocarril ha disminuido. No todo son ventajas, en efecto. También presenta inconvenientes: trazado rígido, necesidad de un tráfico rentable, construcción demasiado cara…

Poco a poco han surgido competidores que no presentan tales defectos: el automóvil transporta más fácilmente los pequeños grupos; el camión es más adecuado para las mercancías ligeras y de tipo perecedero; y las gabarras, para cargas pesadas de escaso valor añadido.

Un número muy elevado de líneas de ferrocarril es deficitario. Prueba de ello es que desde 1930 se están suprimiendo las líneas menos rentables. En Francia, por ejemplo, se considera que sobran unos 10.000 km. En Estados Unidos han desaparecido más de 70.000 kilómetros.

autos congestionados en una gran ciudad

Los coches, ocupados a menudo por una sola persona, necesitan diez veces más espacio que el ferrocarril para transportar el mismo número de viajeros en una hora. En una época en la que las grandes ciudades conocen graves problemas de circulación y de contaminación, hay que plantearse si se debe restringir la circulación privada y mejorar los transportes públicos o, por el contrario, adaptar las ciudades al coche, remodelando toda la red vial.

El automóvil necesita mucho espacio incluso cuando no circula. Para asegurar el aparcamiento y una circulación fluida, haría falta reconstruir la mayoría de las ciudades, dotándolas de grandes ejes circulatorios, tréboles a varios niveles y abundantes zonas de estacionamiento. A fin de solucionar de algún modo el problema de la circulación automovilística en las ciudades, se han creado en el centro de las aglomeraciones zonas exclusivamente reservadas a los peatones.

Algunos barrios han mejorado mucho con estas medidas, que, por otra parte, evitan los embotellamientos en el corazón de la ciudad. Para un futuro no muy lejano, se prevé la creación de grandes aparcamientos en las entradas o accesos de la ciudad, donde los usuarios dejarían su coche. Desde allí seguirían en metro, tranvía o con una red de pequeños autobuses rápidos. Algunas ciudades han introducido ya el sistema de transportes colectivos gratuitos.

Una nueva estructuración de la ciudad: El atasco creado en las ciudades por el tráfico motorizado origina la huida del centro de la ciudad: los habitantes más pudientes escogen la tranquilidad de los barrios residenciales; otros, menos favorecidos por la fortuna, se ven obligados a vivir en las ciudades-dormitorio de la periferia.

Sin embargo, unos y otros son posibles gracias a la existencia de medios de transporte que permiten rápidos desplazamientos hasta el centro urbano. Cerca de los cruces de autopistas se instalan empresas y supermercados a los que afluyen sus clientes motorizados, satisfechos de encontrar al fin un centro de compras de fácil acceso. También las fábricas se establecen lejos del centro, en lugares donde exista espacio suficiente para su expansión y donde sus camiones puedan evitar los atascos de las carreteras.

Cuando estas zonas que rodean a la ciudad están mal servidas por los transportes públicos, sus habitantes deben desplazarse con su propio vehículo, convirtiéndose así en esclavos del automóvil y contribuyendo a una mayor congestión del tráfico urbano.

Por mar y aire: Pero la característica más acusada de la revolución de los transportes actual es, sin duda, el intento del hombre por tratar de conquistar y dominar todos los medios que le rodean para poder trasladarse por y a través de ellos.

La navegación es un primitivo invento del hombre. Sin ella no hubiese sido posible la expansión del mundo antiguo, ni los descubrimientos de la Edad Moderna. Durante mucho tiempo, las técnicas de navegación no se modificaron o lo hicieron lentamente, pero durante el siglo XIX se produjo una gran transformación cuando se comenzó a construir los barcos con hierro, lo que permitió aumentar su tamaño y capacidad, y se les aplicó como medio de tracción la máquina de vapor. Esto último supuso una mayor potencia y rapidez, además de conseguir la independencia respecto al viento.

En la actualidad, el transporte marítimo y fluvial es el más adecuado para el traslado a grandes distancias de productos pesados, de gran volumen o con escaso valor añadido. La tendencia actual es la especialización del transporte en grandes buques petroleros, butaneros, de áridos, etc.

Del mismo modo, volar ha sido siempre una de las grandes aspiraciones del hombre a lo largo de su historia, que sólo ha conseguido hacer realidad en época relativamente reciente. Por sus exigencias técnicas y económicas, el transporte aéreo se reserva para pasajeros o para trasladar mercancías urgentes, de poco peso y alto precio, ya que de este modo la repercusión del costo del transporte sobre el valor añadido del producto es mucho menor.

transporte en bicicleta en la ciudad

La bicicleta es un medio de transporte a la medida del hombre: no contamina, no consume energía exterior, no despilfarra materias primas y plantea a la ordenación del espacio urbano problemas mucho más sencillos de resolver. En muchas ciudades de los Países Bajos , este modo de locomoción es muy utilizado, al igual que en China.

Datos sobre el transporte que hacen pensar
Evolución del tiempo empleado para ir de Lausana a Milán
En 1640: unos 7 días
En 1850: 61 h en coche de posta
En 1905: 19 h 35′ (en verano)
En 1906: 6 h 26′: al abrir al tráfico el túnel de Simplón
En 1935: 5 h 25′: línea electrificada
Desde 1972: 3 h 11′: TEE Cisalpino

Una vía de circulación de 3 m. de anchura permite transportar en una hora:
En coche particular: 4.000 personas
En autobús de: 80 plazas 6.400 personas
En autobús de: 150 plazas 12.000 personas
En tranvía: 16.000 personas
En metro: 27.000 personas
En ferrocarril expreso: 40.000 personas

Consumo de espacio
Un coche particular    a 50 km/h: 75.0 m²/viajero
Un autobús de 80 plazas  a 30 km/h: 14.0 m²/viajero
Un autobús de 150 plazas  a 30 km/h: 8.0 m²/viajero
Un tranvía de 300 plazas  a 30 km/h: 6.0 m²/viajero
Un tren expreso regional   a 60 km/h : 4.50 m²/viajero
Un tren del metro con 1.000 plazas a 3.3 km/h: 75.0 m²/viajero

Fuente Consultada:
La Técnica en el Mundo el Crecimiento de las Ciudades Tomo III Globerama Edit. CODEX
Enciclopedia Salvat del Estudiante Tomo 6 Transportes y Distancias
Enciclopedia Electrónica ENCARTA Microsoft
Sitio Web Wikipedia

El Descubrimiento del Planeta Neptuno La Influencia de Urano

HISTORIA DEL DESCUBRIMIENTO DE NEPTUNO Y PLUTÓN

Mucha sorpresa causó la revelación de Federico Guillermo Herschel cuando descubrió, en 1781, con la ayuda de un telescopio de fabricación casera, un nuevo planeta, nunca visto antes. Este famoso astrónomo tuvo siempre para sus observaciones, la colaboración de su hermana Carolina; la lámina del ángulo inferior izquierdo los muestra a ambos trabajando.

Herchell Guillermo astronomo

Urano, que así fue llamado este nuevo planeta, está tan alejado del Sol —a unos 2.991.200.000 km. con un año 84 veces más largo que el nuestro— que las manchas de su superficie no pueden ser apreciadas con claridad. Tiene algunos cinturones paralelos a su ecuador, de color grisáceo, y parece que está constituido en su mayor parte por el gas metano.

El diámetro de Urano es de 49.700 Km.; está levemente aplanado en los polos y su tiempo de rotación es de unas 10% horas. Contrariamente a otros planetas, cuyos ejes están algo inclinados con relación a las órbitas, los puntos de su eje están dispuestos casi en la misma dirección que su trayectoria, de manera que muchas veces avanza con un polo adelante. Otras veces, también, sus polos apuntan hacia la Tierra, de tal forma que podemos ver la totalidad de un hemisferio; algunas veces lo vemos de costado y entonces el aplanamiento del polo es bien evidente.

Seis años después de descubrir a Urano, Herschel vio dos de sus satélites, llamados Titania y Oberón. Más recientemente se han identificado otros tres, Ariel, Umbriel y Miranda. Cuando éstos dan la vuelta alrededor del ecuador de Urano, podemos observarlos en la totalidad de su curso; esto no es posible para ningún otro satélite.

También difieren de todos los demás satélites en que giran de este a oeste, en lugar de hacerlo de oeste a este. Sus distancias a Urano están comprendidas entre 129.000 y 586.500 km. Están muy alejados para ser medidos, pero tienen probablemente unos pocos cientos de kilómetros de diámetro.

El color azul verdoso de Urano se debe al gas metano presente en su atmósfera fría y clara. Lo que en la imagen parece ser el extremo derecho del planeta es en realidad el límite entre el día y la noche. Por la forma de girar el planeta, la noche y el día duran 42 años cada uno. Los científicos se formaron esta visión de Urano por las imágenes enviadas por el Voyager 2 en 1986, en un momento en el que la sonda estaba a 9,1 millones de kilómetros del planeta.

Apenas fue descubierto Urano, los matemáticos comenzaron a dibujar su órbita; pero pronto se dieron cuenta de que sus movimientos no concordaban con los cálculos. Pensaron entonces que debia haber otro planeta, aún más distante del Sol, que lo alejaba de su curso. De una manera totalmente independiente, dos jóvenes matemáticos, Le Verrier y Adams, se pusieron a la tarea de descubrir este planeta, no por medio del telescopio, sino por puro cálculo.

Esto fue sumamente dificultoso, pero finalmente triunfaron y enviaron sus resultados a los astrónomos, para que los verificaran. Lamentablemente, la verificación del resultado obtenido por Adams no fue continuada; pero en 1846, Galle, del Observatorio de Berlín, trabajando sobre las cifras de Le Verrier, halló este desconocido planeta, de acuerdo con la posición calculada.

El nuevo planeta, llamado Neptuno, el nombre del dios del mar, emplea 164 años y 280 días en dar una vuelta completa alrededor del Sol y está a una distancia media de 4.467.200.000 km. de éste, demasiado lejos para poder conocerlo bien.

Es levemente más grande que Urano, pues tiene unos 53.000 km. de diámetro y tarda 17 horas en dar una vuelta alrededor de su eje. Muy poco puede apreciarse en su superficie, que está constituida, completamente o en su mayor parte, por gases, como los demás planetas grandes.

Tiene dos satélites: Tritón, grande, de por lo menos 4.900 km. de diámetro, más cercano a Neptuno que la Luna a la Tierra, y Nereida, de 321 km. de diámetro, que se traslada describiendo una órbita sumamente alargada, de manera que algunas veces se encuentra a 1.609.300 km. de Neptuno mientras que otras veces se halla a 9.660.000 km.

Neptuno:En 1989 la misión Voyager 2 produjo esta imagen de Neptuno en falso color, mostrando los diferentes componentes de la atmósfera del planeta. El rojo muestra la luz del Sol dispersada por una capa de neblina alrededor del planeta, el azul verdoso indica el metano y las manchas blancas son nubes en la parte alta de la atmósfera.

El descubrimiento de Neptuno provocó, naturalmente, una gran duda en los astrónomos, la de si habría o no otros planetas más alejados del Sol.

Finalmente, hallaron que pequeñas diferencias entre las trayectorias calculadas de Urano y Neptuno y sus actuales movimientos hacían posible esa suposición. Así, en 1905, Percivall Lowell, que era al mismo tiempo astrónomo y matemático, comenzó a probar, por medio de cálculos, la existencia del que llamó “planeta X”. Triunfó en teoría, pero murió antes de que sus resultados pudieran ser confirmados.

No fue sino en 1930 cuando Clyde Tombough, del Observatorio de Flagstaff, en Arizona, anunció que había descubierto el “planeta X”. Examinando fotografías del cielo, vio que lo que había parecido una pequeña estrella era realmente un planeta, que se movía lentamente entre los demás. Las copias de dos fotografías que llevaron al descubrimiento se muestran en el costado superior derecho de la ilustración; fueron tomadas con tres días de diferencia entre sí y se puede apreciar que la pequeña “estrella” señalada por las flechas de color está ubicada en distintos lugares.

Plutón, último planeta del sistema solar, últimamente cuestionado por su pequeño tamaño

Este planeta recientemente descubierto es llamado Plutón, nombre del antiguo dios del averno. La distancia media que lo separa del Sol es de alrededor de 5.920.000.000 de km. y tarda 249 años para recorrer toda su órbita. Tan alejado se halla Plutón, que desde su superficie, el Sol aparecería como una gran estrella, según se ve en la parte inferior de la ilustración; pero ese paisaje es imaginario, puesto que poco se conoce de este planeta y ni siquiera se sabe si tiene satélites o no. Su diámetro, según se cree, es de 4.900 km.

Ver: Sistema Solar Para Niños

Fuente Consultada:
GLOBERAMA Tomo: Cielo y Tierra Nuestro Mundo En El Tiempo y El Espacio
Enciclopedia Microsoft ENCARTA
Enciclopedia Ciencia Joven Fasc. N°38 Los Planetas del Sistema Solar

 

 

 

 

Los Alpes Cadena Montañosa en Europa Descripción General

DESCRIPCIÓN DE LA CORDILLERA DE LOS ALPES EN EUROPA

Es el sistema montañoso más importante de Europa y también uno de los más poblados del mundo entero. Los Alpes conforman una cordillera en forma de arco desde el golfo de Genova (Italia) hasta Viena, la capital austríaca.

La cordillera de los Alpes, con sus 1.200 kilómetros de longitud entre Niza y Viena, y su superficie de 220.000 kilómetros cuadrados, es, sin lugar a dudas, el sistema montañoso más importante de Europa. Moles antiguas como el Cuadrilátero de Bohemia, el Macizo Central Francés, los Maures y el Esterel, han servido de contrafuerte para que los Alpes adquirieran, durante la Era Terciaria, las características con que hoy los reconocemos.

Los Alpes forman la cadena montañosa más importante de Europa. En la imagen se aprecia la belleza del paisaje de la localidad francesa de Combloux y del Mont Blanc, la más elevada de las cumbres alpinas.

vista de los alpes con nieve

Su desarrollo en forma de arco, convexo hacia el norte, es septentrional a la península Itálica y, si bien la mayor altura -el Monte Blanco de 4.807 metros-se encuentra en Francia, la mayor altitud media se registra en Suiza, con 1.800 metros de promedio.

Su anchura varía, de 150 kilómetros, entre el Lago de Ginebra y el Piamonte, a 200 kilómetros en la línea Munich – Innsbruck – Trento – Verona y a 300 kilómetros en el Tirol. Aunque son muchos los métodos que se emplearon para clasificar a los Alpes, la división más útil, que ayuda a conocerlos mejor, es la que los divide en tres secciones: los Alpes Franco-Italianos u Occidentales, los Alpes ítalo-Suizos o Centrales, y los ítalo-Austríacos u Orientales.

Alpes Occidentales. De contextura calcárea al sudoeste y granítica al nordeste, estas montañas comienzan en el Mar de Liguria después del paso de Cadibona que las separa de los Apeninos. De ahí en adelante describen un arco convexo hacia el noroeste que culmina en el Gran San Bernardo, un paso coincidente con el río Dora Baltea, afluente importante del Po.

vista aerea de los alpes europa

En un comienzo encontramos a los Alpes Ligúricos, que continúan a los Apeninos del mismo nombre más allá de Cadibona. Entroncados en las Colinas de Tenda, surgen luego los Alpes Marítimos, donde se encuentran los picos Argentera de 3.297 metros, Tenibres, de 3.031 y Pelat, de 3.052. Por el norte se extienden los Alpes Cotienos, cuyos puntos máximos s’on el Chambeyron de 3.400 metros, y el Viso, de 3.853.

Desde Niza hacia el noroeste se extienden los Alpes de Provenza, encuadrados por cadenas menores como los montes Esterel, Santa Victoria,, Luberon y Lure. Los Alpes del Delfinado, situados al oeste, tienen elevaciones considerables, como los montes Pelvoux, Ailefroide y Ecrins, los tres de aproximadamente 4.000 metros.

Los Alpes Graios, volcados hacia el este, culminan en el macizo de Gran Paradiso, de 4.061 metros. Y finalmente, se llega a los Alpes de Saboya, colmados de glaciares. En este “imperio de las nubes” se yergue el pico más alto de Europa, el Monte Blanco (4.807 m). Alpes Centrales. Se extienden hacia el este hasta la línea formada por el lago Constanza, los ríos III y Adigio, el primero con pendiente hacia el norte y el otro hacia el sur.

Todas sus montañas se desarrollan en líneas que convergen en un punto: el Macizo de San Gotardo. Imaginemos un reloj cuyo eje es San Gotardo. En la hora 1 se hallan los Alpes Glaris, con su pico de Todi (3.623), los cuales se continúan con los Alpes de Saint Gall y los Appenzell. Aproximadamente en la hora3 y media se ubican los Adula y los Alpes Grisones.

Entre las 4 y las 6 y media están los Alpes Lepontinos, y con la misma orientación que si la aguja horaria estuviese en las 7 y media, los Alpes Peninos, donde se destaca el misterioso Cervino, delicia de los alpinistas, con 4.505 metros, y el Rosa, aún mayor, de 4.638. A las 8 y cuarto se encuentran los Alpes Berneses, con las cimas Finsteraahorn (4.275), Jungfrau (4.167) y Aletschhorn (4.198). A las 12 en punto, los Alpes de los Cuatro Cantones, que finalizan en el lago del mismo nombre. Su pico máximo es el Pilatos, de 2.133 metros.

Alpes Orientales. Este último tramo comienza en el macizo Rhaticon, presentando un cordón norte entre 2.500 y 3.000 metros y otro sur, menos elevado, divididos por otro central. En el cordón norte se encuentran los Alpes Algavianos, Ba-viera, Salzburgo y Austria; en el central, el Oetzhal, los Tauern Gross Glockner y Estiria y en el sur, los Alpes Dolomíticos, Cárnicos y Julianos.

Además de la importancia oro-génica de los Alpes, existen otros rasgos que determinan su fama mundial. Sus bellezas panorámicas, realzadas por las laderas cortadas a pico, los glaciares y la flora y la fauna locales, hacen del sistema una de las regiones más atractivas para el turismo. A esto hay que agregar las posibilidades deportivas suscitadas por la caza, la pesca, el esquí y el alpinismo. Los valles interiores encierran ciudades muy pobladas y de gran poderío económico, tales como Marsella. Turín, Ginebra, Zurich, Vaduz, Innsbruck, Trento, Salzburgo y Viena.

ALGO MAS DE INFORMACIÓN…

A partir de un criterio geológico y geográfico se los suele dividir en tres secciones. Los Alpes Occidentales discurren de norte a sur a lo largo de la frontera entre Francia e Italia, desde las primeras elevaciones cerca del mar Mediterráneo hasta encontrarse con los Alpes Centrales.

Estos recorren el norte de Italia y el sur de Suiza y Alemania. Los Alpes Orientales, hacia el este y el sur, abarcan el nordeste de Italia, el norte de Yugoslavia y casi toda Austria, y sus últimas elevaciones llegan hasta las primeras de uno de los otros grandes macizos europeos, los Cárpatos.

El sistema alpino tiene alrededor de 1.200 km de longitud y un ancho de entre 50 km y 300 km. Sus alturas medias se encuentran entre los 1.800 m y los 2.400 m, pero existen varios picos de más de 4.000 m, concentrados sobre todo en los sectores central y occidental: Mont Blanc (4.807 m), en Francia; Monte Rosa o Doufourspitsze (4.634 m), en Suiza y el Matterhorn (4.478 m), también en Suiza.

En sus zonas elevadas nacen ríos importantes como el Ródano o el Rin.Los Alpes se elevaron durante la era terciaria. Los depósitos que se habían acumulado durante la era anterior fueron impulsados hacia arriba, en un proceso que culminó hace más de 10 millones de años. Luego, durante la llamada Era del Hielo, en la época Cuaternaria, los glaciares cubrieron las montañas. Su acción erosiva talló valles en forma de U, lagos e hizo que el relieve se volviera más abrupto y escarpado.

Todavía hoy existen más de un millón de glaciares, aunque se encuentran en retroceso. El mayor es el de Alestch, de más de 25 km de longitud, ubicado en el sudoeste de Suiza. Junto con el Konkordiaplatz forma un conjunto de 130 km2.

Fuente Consultada: Enciclopedia Ciencia Joven Fasc. N°39 Los Alpes Edit. Cuántica

Ciudad Mas Al Norte del Mundo Cercana al Polo Norte

VERJOIANSK, LA CIUDAD MAS FRÍA DEL PLANETA, EN EL POLO NORTE

Se conoce como Polo norte, al punto situado en el extremo norte del eje de rotación de la Tierra. El polo norte geográfico terrestre se sitúa en el centro del océano Glacial Ártico, en una región cubierta por hielos marinos que se desplazan a la deriva.

Allá en el confín de Siberia Nordoriental, en la República de Yakutos, perteneciente a la parte asiática de la ex Unión Soviética, se encuentra una ciudad -en realidad se la llama así en honor de sus sacrificados pobladores, porque tiene menos de 1000 habitantes- que posee un raro récord en su haber: es el punto del globo terráqueo en el que se registran las más bajas temperaturas.

verjoiansk

La Ciudad Mas Fría del Planeta

En esta ciudad, llamada Verjoiansk, muchas veces hubo menos de 70 grados bajo cero. Las casas son de madera, y la actividad principal consiste en la cría de caballos y renos. El único medio de comunicación esta representado por la radio, ya que los caminos no tardan en ser bloqueados por el hielo.

Los yakutos, pobladores originarios del lugar, resisten las inclemencias del tiempo debido a la adaptación que lograron luego de siglos de asentamiento. La ciudad fue fundada en 1630, pero los territorios pantanosos de las inmediaciones ya hacía mucho que servían de escenario para la vida de los yakutos. Verjoiansk está edificada a orillas del Yana o lana, río que vierte sus aguas –cuando no están congeladas– en el Océano Glacial Ártico.

Muy cerca se encuentran las cordilleras del mismo nombre. Las cadenas de Verjoiansk constituyen el contrafuerte septentrional de los montes Stanovoi. Miden aproximadamente 800 kilómetros de extensión y tienen una vertiente con perfil suave, la del norte, mientras que la otra es escarpada. Verjoiansk, que constituye el polo del frío del mundo, se halla a 107 metros sobre el nivel del mar y son sus parámetros los 67°33’31” de latitud norte y los 133°51’4″, de longitud este.

Se la llama el polo del frío del mundo debido a las mínimas temperaturas que en ella se registran. Las mismas se deben a la excesiva continentalidad de su clima. Este fenómeno motiva temperaturas extremas que se agravan por la proximidad al polo norte. En el verano, sin embargo, los valores no son tan bajos, hecho que determina que la amplitud térmica anual resulte enorme.

Durante cuarenta días al año no se ve la luz del sol en estas latitudes hiperbóreas, y sólo el paisaje imponente y el clima seco salva de la desesperación a los habitantes de esta desolada población de Verjoiansk, especie de aduar de yurtas e isbas construidas por los primitivos yakutas con maderos de la taiga meridional.

Las rudimentarias viviendas, resistentes al frío exterior, se hallan diseminadas sobre las dos márgenes del lana, helado casi todo el año, en una zona desolada, sembrada de pequeños lagos en cuya superficie han visto reflejarse, la estrella polar y raras veces la luna los condenados al destierro siberiano por la tiranía de los zares blancos y de los zares rojos, con el frío y la distancia por únicos y seguros guardianes, ante la mirada -indescifrable, como su lengua- de los yakutas.

Y bajo la corteza gélida, entre latundra y las taigas, ¡cuántos fósiles gigantescos de reptiles y paquidermos duermen intactos una hibernación de milenios! … Más allá, hacia el Oriente, al otro lado de las estribaciones orográficas de Kular, el suelo desciende en terrazas arenosas sobre capas del devoniano hasta asomarse al mar de Okhotsk, cerrado por la península de Kamchatka y la cadena insular de las Kuriles y Sajalín. Al Oeste, desde el lago Baikal hasta el Ártico, la extensa cuenca del Lena (nueve meses del año una cinta de hielo de 4.500 kilómetros), encierra esta región continental, la más fría del mundo alrededor de Verjoiansk.

Fuente Consultada:
Enciclopedia Ciencia Joven Tomo II Ediciones Cuántica N°24

Descripción de las Selvas Tipos, Flora y Fauna Información

LOS TIPOS DE SELVAS – FLORAS Y FAUNA

Un lejano eco de tambores se esparce por el ambiente- Delgadas agujas de luz solar se filtran a través de la tupida malla vegetal. Cientos de murmullos surgen, como por encanto, desde todos lados, sin que podamos identificar a las fuentes de sonido. Esta imagen es laque, probablemente, nos evoque a la selva con más facilidad.

Pero la selva es todo esto y mucho más. Constituye la más exuberante y variada de las agrupaciones de flora y fauna que existen en la Tierra. Su difusión, ante todo en la zona que queda limitada por ambos trópicos, resulta muy amplia, encontrándose selvas de distintos tipos, en todos los continentes, excepto en Europa y América del Norte.

Selva

De acuerdo con sus características podemos clasificar a las selvas según las condiciones geográficas, que nos indican su mayor o menor proximidad con el Ecuador, o topográficas, que nos establecen el tipo de relieve que subyace en la zona estudiada. Podemos establecer así el siguiente cuadro:

TIPO DE SELVA              CONDICIONES      EJEMPLO
Tropical                       Geográficas          Selva Amazónica
Subtropical                 Geográficas         Selva Australiana
De llanuras                 Topográficas        Selva del Orinoco
De montaña               Topográficas        Selva Argentina

En realidad, el último tipo se origina a raíz de la concentración de la humedad, que precipita en forma de lluvias, en la ladera de la montaña que recibe el viento. En nuestro ejemplo la cadena que origina el fenómeno es la de las Sierras Subandinas.

Debemos agregar que si tenemos en cuenta las condiciones de humedad e impenetrabilidad de una selva, la que tiene rasgos más acentuados se denomina jungla. Su tupido follaje y su suelo pantanoso contrastan con los componentes de la selva espinosa seca, que es la transición con el próximo bioma o zona de vida: la sabana.

Desde un avión, la visión de una selva nos recuerda a un enorme mar verde, paralizado. Sin duda, lo que contemplamos son las copas de los árboles más altos; sin embargo, mucha es la flora que se oculta detrás de esta primera capa. Toda ella conforma una armazón continua. A treinta metros de altura, sobre el nivel del suelo se extiende la capa arbórea de los vegetales de la clase megafanerófita. Estos tienen hojas perennes, troncos tabulares y raíces chicas en comparación con el cuerpo total.

En un nivel menor se desarrollan las palmeras y arboles de poca altura, para llegar al estrato de los arbustos, que no supera los tres metros. Como vegetación intermedia podemos mencionar las epífitas y lianas, que cuelgan de los troncos y ramas dándole un aspecto aun más enmarañado a la selva.

La última capa, la herbácea, es bastante rala, ya que la falta de luz solar hace difícil el desarrollo de la pequeña flora. Pueden mencionarse muchos musgos, helechos, hongos y liquenes, así como algunas plantas de hojas grandes (para captar más luz) lustrosas y escurridizas. Estas dos últimas propiedades les son útiles para evitar el exceso de agua.

Helecho

Musgos

En contra de lo que comúnmente se piensa, en la selva predominan los animales más pequeños: los insectos. Muchos de ellos son temibles como algunas especies de hormigas, avispas u orugas. Aparte de la increíble variedad de peces que habitan los ríos de la jungla, se destacan los reptiles, entre los que podemos encontrar cocodrilos, iguanas, lagartos y serpientes. De estas últimas, en las selvas habitan las de mayor tamaño, que matan a sus presas apretándolas entre sus anillos.

Como ejemplo citaremos a la lampalagua, la boa constrictor, la pitón y la anaconda. Tienen gran difusión también los monos o simios, de hábitos arborícolas. Muchos de ellos, como el chimpancé, el orangután, el gorila y el gibón, han llamado la atención a los biólogos por sus grandes similitudes con el hombre.

Las aves se destacan en el ambiente selvático por su vistoso plumaje. Ejemplos típicos son: los papagayos, el tucán y diversas variedades de colibríes. Los animales mayores, que muchas veces alternan la vida selvática con incursiones a la pradera o la sabana, son, entre otros, el tapir, el venado, félidos como el tigre, y la pantera, y el león, la hiena, el elefante, la cebra, el rinoceronte y el hipopótamo.

Los habitantes humanos de la selva aún conservan costumbres atávicas y viven atrasados varios siglos. Esto ocurre en aquellas zonas donde, por un aislamiento excesivo, los adelantos técnicos no pudieron difundirse en forma adecuada.

En los últimos años, sin embargo, se ha revalorizado el concepto de la selva por razones que en seguida se expondrán. En efecto, a medida que las grandes áreas ciudadanas acusan el alarmante proceso de contaminación ambiental que envilece elementos naturales como el aire, él agua y la tierra, son muchos los que vuelven los ojos hacia los medios vírgenes para juzgarlos como una reserva importante en el porvenir de la humanidad.

Así, por ejemplo, los ecólogos revalorizan la selva, el monte y el bosque, por considerarlos como zonas exentas de los peligros de la industrialización. Es más: se considera que las selvas vírgenes que quedan en el mundo tal el caso de algunas regiones centrales de África, América del Sur, Asia Ecuatorial, islas de Oceanía, ciertas partes del Himalaya y otras cordilleras, son verdaderos reguladores climáticos.

En tal sentido, ecólogos y climatólogos se han pronunciado en contra de la transformación de amplias zonas del Mato Grosso, por considerar que el talado de los árboles alteraría la relación de humedad y, por ende, sobrevendrían cambios importantes en los regímenes pluviales.

Entre la necesidad de nuevas tierras aptas para el cultivo y la preservación de elementos tan importantes como la madera y los espacios verdes, ha de mediar una política de criterioso respeto entre la exigencias del presente y las preocupaciones de un futuro mediato.

Por fortuna, un nuevo enfoque científico ha puesto límites al deslumbramiento del progreso ininterrumpido y ha comenzado a analizar críticamente los logros de todo proceso que renuncie al legado natural de la humanidad.

Etnólogos, sociólogos, ecólogos y etólogos miran hoy Con interés las grandes áreas verdes donde el calor y la vegetación lujuriante muestran una realidad distinta al frío cemento de las cosmópolis donde el hombre pierde contacto con el medio biológico que lo nutrió hereditariamente.

Fuente Consultada:
Enciclopedia Ciencia Joven Tomo II Ediciones Cuántica N°24

Plataforma Submarina Argentina Geología y Riqueza

Plataforma Submarina Argentina

CONCEPTO Y RECURSOS NATURALES DE LA PLATAFORMA CONTINENTAL

Si consideramos aun muy esquemáticamente a la Tierra, llegaremos a la conclusión de que su superficie no es homogénea, Posee convexidades y concavidades. Las primeras constituyen las tierras emergentes, o sea, los continentes; las segundas, están cubiertas por grandes masas de agua: los océanos. Existe, estructuralmente, una faja de contacto que se localiza en la zona donde las curvaturas cambian de sentido, es decir, en la transición entre convexidades y concavidades. Esta faja se denomina plataforma submarina.

Geológicamente la plataforma continental, también llamada submarina, es la superficie del territorio  costero que se va extendiendo debajo del océano, como consecuencia de la prolongación natural de esas costas. En una superficie submarina que va avanzando hacia adentro del mar, con una suave pendiente que casi no supera a 1° de inclinación.

El ancho de esa superficie sumergida es medida en kilómetros a partir de la costa del continente hasta  el comienzo de un gran escalón submarino, denominado talud continental, donde la pendiente del lecho del océano es mas vertical y la profundidad cambia notablemente, llegando hasta el fondo marino profundo, zona que geológicamente tiene otra composición. Este talud separa a la plataforma continental del fondo marino profundo denominado: llanura abisal

De acuerdo con la Ley del Mar de Naciones Unidas, plataforma, talud y hasta una porción de la emersión continental puede ser reivindicado por los Estados ribereños y a tal fin la República Argentina ha presentado los planos correspondientes, y en marzo de 2016, la Comisión del Límite Exterior de la Plataforma Continental (CLPC), dependiente de las Naciones Unidas, dictaminó sobre cuáles son los límites marítimos de la Argentina y estableció que la plataforma continental, Islas Malvinas, Georgias del Sur y Sandwich del Sur, y Antártida Argentina son parte de nuestro territorio. Con esto, el país aumentó su plataforma marítima en un 35%, es decir, exactamente 1.782.000 kilómetros cuadrados. 

 La plataforma continental argentina  se extiende en dirección N-S desde la desembocadura del Río de la Plata hasta el sur del archipiélago de Tierra del Fuego. La plataforma continental argentina   tiene una superficie aproximada de 1.000.000km², una longitud máxima de 2.300 km en el sentido NNE-SSO, y un ancho promedio de 440km en sentido E-O, con un mínimo cercano a los 180km frente a las costas de la península Mitre (este de la Isla Grande de Tierra del Fuego), y un máximo de 880km, en el sector norte de las islas Malvinas. Presenta una profundidad máximacercana a los -250m inmediatamente al oeste de las islas Malvinas.

plataforma submarina argentina

Más allá de la costa, el relieve continental se prolonga debajo del mar en la plataforma continental. Esta se caracteriza por su gran extensión, que se estima en más de milllón de kilómetros cuadrados, y por su pendiente suave, con una profundidad de aproximadamente 200 metros. Su ancho varía entre los 210 km, frente a Mar fe Plata, y los 850 km, a la latitud de ias islas Malvinas.

esquema de la plataforma submarina argentina

Sobre la plataforma continental el estado ribereño ejerce derechos exclusivos de soberanía para la exploración y explotación de los recursos naturales allí existentes (artículo 77 de la Convemar). Los fondos oceánicos que queden más allá de los límites que fijen los estados están bajo la jurisdicción de la Autoridad Internacional de los Fondos Marinos y son considerados para beneficio de toda la humanidad. El fondo oceánico profundo con sus crestas oceánicas y su subsuelo, queda fuera de la jurisdicción de los estados.

CARACTERÍSTICAS: La plataforma submarina es simplemente continente inundado por el mar. En la plataforma submarina argentina el mar apenas alcanza los 200 m. de profundidad, sus aguas albergan importantes recursos pesquero y es una zona de nuestra soberanía naciona.

A lo largo de la historia geológica del planeta el nivel del mar vario con frecuencia, y las plataformas submarinas emergieron de la superficie o quedaron hundidas en otros momentos. La constitucion geológica de la plataforma submarina es igual a la de los continentes y por eso mismo es muy diferente a la de los fondos marinos profundos.

Mientras estos fondos están constituídos por rocas volcánicas, la constitución de las plataforma está formada por rocas plutónicas , metamórficas y grandes pilas de rocas sedimentarias profundamente enterradas. Gran parte de los sedimentos continentales terminan en la plataforma por la accion de los ríos y de los vientos.

Los sedimentos mas gruesos como arena y canto rodado son generalmente acumulados cerca de la costa y en la plataforma, en cambio los sedimentos mas finos quedan  suspendidos en el mar por mucho tiempo y son desplazados por las corrientes hacia zonas alejadas, donde terminan formando parte del fondo oceánico.

La plataforma ha ocultado durante muchísimo tiempo un material mas importante que los sedimentos, que tiene desde hace mas de un siglo un importante uso como energía no renovable, y que lo conocemos como petróleo.

Durante la Segunda Guerra Mundial cuando el mundo necesitaba mas anergía y el precio del crudo de petróleo comenzó a aumentar, el hombre comenzó a mirar el fondo del mar, porque los geólogos ya sabían que el las profundidades del océano había grandes posibilidades para la explotación del ese oro negro.

A partir de 1942 se diseñaron las primeras plataformas petroleras modernas y la Argentina no fue ajena a este proceso, pues nuestra plataforma era un importante reservorio de petroleo y gas. El lugar para iniciar la actividad fue la boca del Estrecho de Magallanes y el Golfo de San Jorge en sur de la Patagonia.

Hacia el océano la plataforma está limitada por el Talud y la Elevación Continental, y a su vez la zona entre ambos límites forman lo que llamamos el Margen Continental, este se extiende desde los 35° de latitud sur, donde tiene un ancho de 500 Km., hasta la punta sur del Golfo de San Jorge donde alcanza los 850 Km de ancho. A partir de alli se extiende hacia el este formando un arco que se une con la península antártica, arco que se conoce como el Arco de Scotia.

El margeN continental argentino, puede dividirse en dos partes, una al sur y otra al norte del paralelo 49 de latitud sur. Al sur, en el arco de Scotia,  se encuentran los archipiélagos de las Islas Sandwich del Sur, Georgias del Sur, Islas Orcadas y el archipélago de las Islas Malvinas.

La parte norte se extiende por mas de 1.500.000 km² y tiene un talud pronunciado, alli bajo el agua hay un enorme y variado paisaje verde que nada tiene que envidiarle lo que vemos en la superficie. La historia de la nuestra plataforma submarina, se remonta a unos 250 millones de años atrás, donde existía un solo continente que se llamaba Gondwana, que reunía a los actuales continente de América del Sur, Africa, la Antártida, la India y Australia.  Unos 100 millones de años despúes el desmembramiento de esas masas territoriales , vino a formar los acéanos Atlántico e Indico, mas la separación de las masas continentales. Esa separación creo importantes movimentos y la formación del Arco de Scotia.

La parte norte es la que sufrido menos desplazamientos, pero en la zona sur del paralelo 49 las masas continentales se deslizaban lateralmente unas con otras, dando lugar al Pasaje de Drake, que separa la Antártida de América del Sur, al arco volcánico de las Islas Sandwich del Sur, y a la plataforma submarina mas austral.

movimiento de masas territoriales

Con el tiempo, hasta nuestros días el océano fue moldeando su lecho, y las costas de Argentina, creando una gran plataforma submarina, cuna de una gran fuente de energía y de un importante medio de subsistencia.  La plataforma submarina argentina es la mas rica del mundo en Fitoplacnton y Zooplancton, es decir plantas y animales microscópicos muy buscados por el hombre.

A principio del siglo XX comenzó la pesca en el Mar Argentino que está contenido en la plataforma argentina, extrayendo con redes merluzas y lenguados, desde entonces Argentina se incorporó en el mercado mundial como un importante exportador, abriendo nuevos puertos, como el de San Antonio y Puerto Deseado y construyendo barcos mas grandes y modernos.

La plataforma submarina argentina, a pesar que no está a la vista, es parte fundamental de la economía nacional, su petroleo, sus peces, sus aguas, su relieve y sus islas, son parte de la riqueza, no solo de Argentina, sino también del Planeta, que vive transformaciones cada vez mas rdicales y que exige dia tras dia, que mieremos, conoscamos y cuidemos los recursos naturales.

Esta enorme región escondida en la profundidad del mar, esconde paisajes que aun tiene mucho para ofrecer y sorprender.

EL MAR ARGENTINO:
El Mar Argentino o mar epicontinental se extiende sobre la plataforma continental. Sus aguas presentan importantes variaciones en cuanto a temperatura y composición química, lo cual permite el desarrollo de una fauna y una flora abundante y diversa.

Por ejemplo, las variaciones de temperatura se deben, en gran medida, a la presencia de diferentes corrientes marinas. En el Mar Argentino se presentan, con dirección opuesta, la corriente cálida del Brasil, que avanza hacia el sur, y la corriente fría de Malvinas, que se desplaza hacia el norte; la corriente Patagónica, de alcance local, lleva aguas frías, en sentido casi paralelo a la costa. Además, cerca de la costa, la salinidad del agua (es decir, la proporción de sales) es menor que mar adentro, entre otras causas por el aporte de las aguas dulces continentales.

Estas variaciones en la temperatura y en el tipo y la cantidad de minerales permiten, junto a otros factores, la formación de una variedad de zonas o ambientes acuáticos donde viven distintas especies de peces de valor comercial. Por ejemplo, en las aguas del sector bonaerense, más próximas a la superficie, viven anchoítas, bonitos, caballas, anchoa lisas, pejerreyes y comalltos.

En las aguas más profundas se encuentran especies de origen subtropical, favorecidas por la corriente de Brasil, como la corvina negra, el besugo, la pescadilla y el mero; también, algunas especies de origen subantártico, debido a la presencia de la corriente de Malvinas, como la merluza bonaerense, la merluza de cola, la castañeta y el abadejo.

ALGO MAS SOBRE EL TEMA…

Los rayos del sol penetran en el océano brindándole la posibilidad de albergar vegetales cuyo metabolismo se basa en el proceso de fotosíntesis. Este grado de penetración varía según la turbiedad de las aguas, pero se estima que con aguas muy claras llégamenos del 1 % de la energía luminosa de la superficie hasta el límite de los 200 metros de profundidad. Más allá, prácticamente no hay luz. Por ello, la importancia de la plataforma submarina, ya que en ella se albergan los vegetales que integran el plancton junto con pequeños animales que no tienen movilidad propia y que se alimentan de los primeros. Toda unacadena se estructura a partir de ellos, que da, directa o indirectamente, posibilidades de alimentación a especies de mayor tamaño y gran movilidad, como son los peces.

La fauna y flora bentónica, es decir la que se arrastra por el fondo marino, tiene en la plataforma condiciones de luminosidad que le permiten desarrollarse. Como conclusión, puede afirmarse que las áreas de mayor riqueza ictícola del océano se localizan en las plataformas submarinas. La pesca es una actividad económica de gran importancia, que adquiere cada vez mayor auge debido al aumento de la población en el mundo, que requiere más y más proteínas para nutrirse. Además, la presencia de petróleo en vastos sectores de la plataforma, así como otros minerales de gran valor, ha abierto nuevas perspectivas de explotación a estas fajas de terreno sumergido.

Según lo establecido en convenios internacionales, como el de Ginebra, de 1958, los países ribereños poseen soberanía sobre las plataformas que corresponden a sus líneas costeras. Incluso se permite ampliar la zona de explotación hasta profundidades mayores, donde la pesca resulte posible.

Muchos países, particularmente aquellos que poseen altos cordones montañosos próximos a la costa, como Chile, cuentan con estrechas plataformas, ya que por lo general, a grandes alturas en el continente corresponden grandes profundidades en el océano. En Estados con costas de llanura, como la Argentina, la plataforma es amplia y la cubren mares epicontinentales de jurisdicción local.

Fuente Consultadas:
Video del Canal Encuentro Sobre Geografía Argentina
La Enciclopedia del Estudiante Tomo 21 Geografía Argentina
Enciclopedia Joven Editorial Cuántica Fasc. N°36 La Plataforma Submarina
Sitio Web: http://www.plataformaargentina.gov.ar/es/plataforma

 

La Cuenca del Mississippi – Hidrografía de Estados Unidos

IMPORTANCIA Y CARACTERÍSTICAS  DEL RÍO MISSISSIPPI

El Mississipi forma, junto con el Missouri, uno de los ríos más largos del mundo (6.260 km). Es el «agua grande» de los algonquinos, ya que en su lengua mis significa «grande», y sipi, «río». Con sus numerosos afluentes, el Mississipi-Missouri constituye una de las más hermosas redes fluviales que existen. Las aguas de estos ríos riegan un territorio cuya superficie equivale aproximadamente a un tercio de la superficie total de Estados Unidos.

El Mississipi-Missouri, que nace en la región de los grandes lagos, atraviesa de norte a sur la parte central de Estados Unidos. El río ha contribuido, por otra parte, a la formación de la llanura central de Norteamérica, llanura de origen aluvial.

HIDROGRAFÍA DE EE.UU.: Surcan el territorio muchos grandes ríos. El más importante es el Mississipi (“Padre de las Aguas”, en lengua algonquina), uno de los más caudalosos del mundo. Nace en el lago Itasca (Minnesota) y desemboca en el golfo de México por cuatro  bocas y varios  ramales, formando un delta de 32.000 km2. Su longitud es de 3.975 km, pero con su principal tributario, el Misuri, forma la tercera vía fluvial más larga del mundo, con 6.230 km. Atraviesa los Estados de Minnesota, Iowa, Illinois, Misuri, Kentucky, Tennessee, Arkansas, Misisipi y Luisiana.

Sus afluentes más importantes son el Minnesota (534 km), lowa (480), Des Moines (526), St. Francis (684), White (1.110), Arkansas (2.333), que a su vez recibe afluentes de más de 1.000 km; Ouachita (974) y Washita (805). Del Este: Wisconsin (692 km), Rock (480), Illinois (800) y Ohio (1.579).

El Misuri recibe también afluentes valiosos como el Osage (800 km), Kansas (480), que recibe a su vez al Republican (724) y Smoky Hill (869); Pequeño Misuri (901), Yellowstone (1.080), Milk (1.006) y Dakota (1.143). La cuenca del Misuri es de 1.370.000 km2; la del Ohio, de 523.000, y la del Misisipi y sus afluentes, de 3.206.000 km2.

La red navegable de esta cuenca es de 24.500 km. Los ríos de ¡a vertiente del Atlántico nacen en los Apalaches. Los principales son el Susquehanna (715 km), Delaware (660), Hudson (492), que comunica con los Grandes Lagos y con el San Lorenzo; Connecticut (655 km), Penobscot (480) y Potomac (804), sobre cuya margen izquierda se alza la capital del país.

En estos ríos el mar penetra en sus estuarios y hace posible el fácil acceso de grandes navios. En sus orillas hay muchas ciudades populosas. En el golfo de México desembocan, además del Mississipi, el Ala-bama (565 km). Grande del Norte o Bravo (2.800), que sirve de límite, en parte, con México; el Tombigbee (658 km), PearI (789), Brazos (1.400) y Colorado (1.352), en Texas.

La vertiente del Pacífico incluye como ríos más importantes al San Joaquín (510 km), Columbio (1.950), con su afluente el Snake (1.670); Sacramento (615) y Colorado. Este río, de 2.334 km, corre por la garganta conocida como Cañón del Colorado, en Arizona, cuyo último tramo, llamado Gran Cañón, tiene 1.500 m de profundidad, 347 km de longitud y 6,5 a 28 km de ancho.

En Alaska está el Yukón, de 3.185 km, con importantes afluentes, como el Tanana, Kuyakú, Kuskokwim, navegable en 1.000 km, y  otros.

Lagos. En la frontera con el Canadá hay un   conjunto   notable   de   lagos:   Superior (82.500 km2), el más grande del mundo, exceptuado el Caspio, al que se considera un mar interior; Hurón (59.250 km2), Erie (25.700) y Ontario (19.500).

Entre estos últimos corre el río Niágara, con sus famosas cataratas de 50 m de altura, 427 de ancho máximo, y terceras en el mundo por su caudal. Otros lagos: Michigan (58.000 km2), Gran Salado (4.650), en Utah, cuyas aguas son seis veces más saladas que las del mar; George y Champlain,- en el Estado de Nueva York; Kentucky, Red (Minnesota) y Pont-chartrain (Luisiana). La cantidad de lagos menores que tiene Estados Unidos es inmensa;  en  la  Florida  hay 30.000; en Michigan 11.037.

HISTORIA:

El explorador español Fernando de Soto fue probablemente el primer blanco que vio el Mississipi. La expedición española, que iba en busca de oro, llegó hasta el río en 1541, cerca del lugar en donde hoy se levanta la ciudad de Memphis (Tennessee). De Soto atravesó el río y siguió su camino. Al año siguiente volvió a encontrar el Mississipi, aunque mucho más al sur. Murió a causa de las fiebres y echaron su cuerpo al río. Los españoles no fundaron establecimiento alguno en la región.

En 1662 el francés Cavelier de la Salle descubrió a su vez el Mississipi y tomó posesión de todo el valle en nombre de Francia; bautizó la región con el nombre de Luisiana, Por el Tratado de París de 1763, Luisiana se convirtió en una colonia inglesa. En 1803, finalmente, la región que comprende el curso inferior del Mississipí entró a formar parte de Estados Unidos.

Durante la guerra de Secesión el río representó un importante papel, y en sus orillas se enfrentaron a menudo tropas nordistas y sudistas, combates entre los que cabe destacar la batalla de Vicksurg, ciudad que cayó, en 1863, en-manos de las tropas de la Unión, que se aseguraron de este modo el control del río.

El Missouri, en cambio, fue descubierto por los blancos un siglo después que el Mississipí, y el mérito correspondeponde a dos franceses: Louis Jolliet y Jacques Marquette.

Cerca del lugar en donde el Missouri desemboca en el Mississipí, el comerciante de pieles Pierre Lacléde Liguest fundó la ciudad de San Luis. A principios del siglo XIX (1804-1806), los pioneros norteamericanos Lewis y Clark emprendieron una expedición a lo largo del Missouri que les llevó hasta las montañas Rocosas.

A mediados del siglo XIX, cuando se dirigían a Utah, los mormones siguieron igualmente el curso del Missouri. El Mississipi y el Missouri se unen unos kilómetros al norte de la ciudad de San Luis. Antes de alcanzar la ciudad, los dos ríos fluyen separadamente uno al lado del otro. Cuando, finalmente, ambas corrientes llegan a reunirse, el Mississipi adquiere el color lúteo del Missouri. El primero termina su recorrido en el golfo de México, en un delta de múltiples ramificaciones.

El Missouri y el Mississipí reciben las aguas de numerosos afluentes que descienden de las montañas Rocosas o de los montes Apalaches. Estos afluentes son bástante caudalosos y tienen a menudo carácter torrencial, por lo que en algunas ocasiones el Mississipi-Missouri ve perturbado su plácido fluir y se sale de madre. Estos desbordamientos son causa de inundaciones que causan incontables daños.

La cuenca del Mississippi, una de las zonas agropecuarias más importantes de América y del mundo
Durante la Segunda Guerra Mundial fue una de las primeras abastecedoras de Europa; cuenta además con recursos minerales como carbón y petróleo.

El río Mississippi nace en el lago Itasca y su afluente más importante por la margen derecha, es el Missouri, uno de los ríos más destructores de los Estados Unidos. Nace en las Rocallosas y antes de confluir con el Mississippi recorre la zona árida del Oeste por lo que arrastra un gran volumen sedimentario.

Sus desbordes son muy temidos por los agricultores de la zona, uno de ellos provocó la gran inundación de 1951 que anegó más de 800 000 ha. de tierras cultivadas, produjo numerosos muertos y dejó a más de 200 000 personas sin hogar.

mapa cuencia mississippi

Desde 1944 el gobierno de los Estados Unidos encaró un proyecto de control de crecidas, que consiste en regular el caudal mediante represas, algunas de las cuales figuran entre las más grandes del mundo. Estas presas tienen una capacidad de 93 000 millones de metros cúbicos. Además de evitar las inundaciones, el agua contenida en ellas alcanza para superar tres años de sequías.

En toda la llanura Central se practica una agricultura comercial que por el intenso uso de fertilizantes y plaguicidas tiene alto rendimiento y por el aumento de la mecanización ocupa cada vez menos mano de obra. En 1920, alrededor de 32 000 000 de habitantes eran hacendados o granjeros, en 1960 los rancheros y sus familias sumaban 15 000 000 y en 1980 la población rural había disminuido a 6 200 000 personas.

Imagen del Río Mississippi

El maíz es el más importante de los cultivos de los Estados Unidos, la producción llega al consumidor en forma de leche, quesos, carne de cerdo y aves de corral pues la mayor parte del maíz se destina a forraje. Además este cereal es materia prima de una industria muy versátil, pues por destilación se obtiene gasohol (alcohol combustible) que se utiliza en las maquinarias agrícolas y en otros vehículos. Los científicos extraen de este cereal medicamentos, aceite, vitaminas, edulcorantes y minerales; se ha producido una película de plástico biodegradable que puede sustituir a los plásticos derivados del petróleo.

En el área ocupada por el cinturón maicero, en los últimos años ha tenido gran expansión el cultivo de la soja cuyo destino es similar al del maíz.

Hasta aproximadamente el meridiano de 100° Oeste se extiende el cinturón triguero. Como las temperaturas varían de Norte a Sur se dan distintas variedades de este cereal, desde el trigo de primavera en Canadá hasta el de invierno en los Estados Unidos. El monocultivo triguero se abandonó por la introducción de nuevos cultivos como girasol y remolacha azucarera.

PARA SABER MAS SOBRE EL RÍO MISSISSIPI:

La región que atraviesan los dos ríos en su curso superior, antes de alcanzar la ciudad de San Luis, es la pradera, zona esteparia cubierta de pastos cuya tierra es de excelente calidad. Las tierras de la pradera contienen mucho humus, y bajo la vegetación, incluso en los bosques, se encuentra una capa negra y espesa, rica en elementos fertilizantes y cuya actividad biológica es suficiente para obtener una mezcla ideal de Sustancias orgánicas y minerales: En estas tierras, que forman parte del wheat belt, se cultiva principalmente el trigo de invierno. Más al sur empieza el corn belt, o región del maíz.

El estado de Missouri es un gran productor de ambos cereales. Debido a estos extensos cultivos, la pradera ha perdido su aspecto pintoresco. De su aspecto anterior sólo quedan unos pocos ejemplos en alguna reserva natural.

A partir de la confluencia del Missouri con el MississipI se inicia el curso medio del río, y un poco más abajo encontramos la ciudad de San Luis, que se convirtió rápidamente en un gran centro comercial. Los campesinos llegaban a ella desde muy lejos para vender sus productos y hacer sus compras.

El cotton belt, o región del algodón, empieza a mitad de camino entre San Luis y Memphis. El algodón es el principal cultivo de Mississipí, que es uno de los mayores productores mundiales. Las plantaciones aumentaron considerablemente a partir de 1793 como resultado del invento de una máquina y después de importar una variedad de filamentos largos.

El curso inferior del Mississipí riega Luisiana. En este estado precisamente se construyeron la mayoría de los diques destinados a evitar las inundaciones. El delta produce principalmente caña de azúcar. Este delta se extiende cada año un poco más, a veces hasta 50 ó 70 m., debido a las tierras que arrastra el río

El Mississipi-Missouri no es una vía de comunicación fluvial muy activa; el nivel del agua es tan pronto demasiado bajo como demasiado alto, mientras los bancos de arena constituyen un serio obstáculo para la navegación regular. El río, en cambio, sirve para los desplazamientos de tipo regional.

Desde 1928, y especialmente después de la segunda guerra mundial, se emprendieron importantes trabajos para mejorar su navega-bilidad: esclusas, presas y canales. También se construyeron embarcaciones especiales para reemplazar a los célebres vapores movidos por aquellas enormes ruedas de palas.

Centenares de puentes atraviesan el Mississipí; el más antiguo es probablemente el Stone Arch Bridge, en el estado de Minnesota, y el más conocido, el Eads Bridge, entre San Luis (Missouri) y East Saint Louis (Illinois).

Fuente Consultada:
GEOGRAFÍA América y Antártida Lorenzini-Balmaceda-Echeverría Editora AZ
Enciclopedia Juvenil AZETA Editorial CREDSA Tomo IV – El Mississipi

Porque se Produce el Eco? Aplicaciones Rebote del Sonido

Muchas veces, al gritar, sentimos el eco que al cabo de un instante nos imita. Normalmente, las ondas sonoras de nuestra voz se transmiten en línea recta, perdiéndose en la distancia. En ese caso no oímos ningún eco. Pero si algo hace que las ondas sonoras vuelvan, lo percibiremos.

Éste es, pues, el reflejo de las ondas sonoras emitidas, que vuelven luego de chocar contra una superficie como la de un edificio o las laderas de una montaña. En este sentido, las ondas sonoras se comportan muy similarmente a las luminosas, que son desviadas por un espejo, por ejemplo. La velocidad de la luz es tan fantástica que todo el proceso parece instantáneo. El sonido viaja más lentamente, su velocidad en el aire es de alrededor de 330 metros por  segundo.

Si disparamos un revólver, las ondas sonoras viajarán a través del aire con esa velocidad, y al cabo de un segundo se encontrarán a 330 metros de distancia. Si en ese momento son reflejadas por un obstáculo, tardarán otro segundo en volver hasta el sitio en donde se disparó el tiro, de modo que el eco se escuchará dos segundos después que el sonido original. El tiempo empleado por el sonido en ir y volver puede servirnos para encontrar la distancia que nos separa del obstáculo.

esquema del eco

CONDICIONES Y CÁLCULOS
El oído puede percibir y distinguir unas 10 sílabas por segundo; por lo tanto, la percepción de una sílaba exige 1/10 de segundo. Para que exista un eco monosílabo será preciso que el sonido reflejado llegue al oído 1/10 de segundo más tarde que el sonido directo, y como en 1/10 de segundo el sonido recorre unos 33 m., tendremos que la pared reflectora deberá hallarse, por lo menos, a la mitad de 33, o sea a 16,5 m. del observador. Cuando la distancia es menor, el sonido reflejado se superpone al directo.

Si la superposición es exacta, el eco (llamado entonces resonancia) aumenta la intensidad del sonido sin oscurecerlo; pero si la coincidencia de ambos sonidos no existe, las resonancias restan claridad al sonido directo. Este efecto pernicioso de las resonancias se evita, en las salas de audiciones que poseen malas condiciones acústicas, cubriendo las paredes con tapices que eviten la reflexión del sonido.

REFLEXIÓN
Al reflejarse, el sonido no siempre tiene que volver sobre sus pasos. Respeta las mismas leyes de reflexión que la luz (el ángulo de incidencia es igual al de reflexión) . Si la onda sonora incidente es guiada por algún medio, comprobaremos que se comporta exactamente igual que la onda luminosa.

Las superficies duras y brillantes son, generalmente, buenas reflectoras del sonido; en cambio, las blandas y rugosas lo absorben. En una habitación grande vacía será posible advertir el eco de la voz del que habla, pero si la habitación estuviera llena de gente, probablemente no se notaría el eco, porque las ropas de las personas absorberían gran parte del sonido.

ECOS MÚLTIPLES
En circunstancias especiales puede oírse más de un eco del mismo sonido, es decir, un eco múltiple. Estos ecos se hacen cada vez   más   débiles,   hasta   perderse.   Tienen lugar cuantío hay más de una superficie desde donde se pueda reflejar el sonido. Con cada reflexión, gran parte del sonido es absorbido, de modo que los sucesivos ecos van siendo cada vez más débiles.

ECO  EN  EL AGUA
El eco-sonda, o sonda ecoica, para determinar la profundidad del agua, funciona con el mismo principio. En este caso, un oscilador produce una onda ultrasónica, que es reflejada por el fondo y captada nuevamente por un micrófono ubicado en el casco del barco. Las ondas ultrasónicas son aquellas de frecuencia demasiado alta como para ser captadas por el oído humano. Se las utiliza porque no son amortiguadas por el agua tan rápidamente como las ondas sónicas. El sonido viaja mucho más rápidamente en el agua que en el aire.

En aquélla, su velocidad es de alrededor de 1.500 m./seg., más de cuatro veces superior. La información provista por los ecos es recogida por un aparato, que la traduce a signos inscriptos sobre un rollo de papel.

APLICACIÓN  PRÁCTICA
Los barcos desprovistos de radar pueden utilizar un método similar para estimar la distancia que los separa de un témpano o un acantilado, midiendo el tiempo que tarda en llegar el eco de la sirena de niebla desde el obstáculo. Un ejemplo: si el eco regresa 10 segundos después de haber hecho sonar la sirena, el sonido debe haber recorrido 10 seg. x 330 m./seg. = 3.300 m., de modo que el barco está a 1.650 m. (3.300 /2) del témpano o acantilado.

La profundidad del agua se determina enviando ondas ultrasónicas y midiendo el tiempo que tardan en regresar.

Aquí se forma un eco múltiple por la” repetida reflexión del sonido en las paredes del cañón.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°41 El Eco y sus aplicaciones

Conservación de los Bosques Importancia e Impacto Ambiental

DISTRIBUCIÓN DE LAS COMUNIDADES DE PLANTAS
¿Por qué las selvas se encuentran únicamente en las regiones tropicales? La aparición y distribución de cualquier tipo de comunidad de plantas dependen de tres factores: el climático —que incluye la influencia de la iluminación solar, de la temperatura, del viento, de las lluvias- y de la humedad—; el del suelo o edafológico —composición y propiedades del suelo que soporta   la   comunidad   de   plantas—,   y   el biótico —principalmente, la influencia de la población animal sobre la comunidad.

El factor climático es, sin duda alguna, el más importante de los tres. La gran variación de los climas, a través del mundo, es la que origina los cinturones de vegetación característicos de las formaciones de plantas. Cualquiera que sea la calidad del suelo, una selva no crecerá nunca en Europa occidental.

Las selvas necesitan humedad, calor y una fuerte luminosidad a lo largo de todo el año; estas condiciones sólo se reúnen en las regiones tropicales. En cambio, Europa occidental —con sus veranos húmedos y templados, y sus inviernos más fríos— es ideal para los árboles de hoja caduca.

Bosque

Ver: Impacto de la Deforestación

El factor del suelo o edafológico tiene una influencia secundaria, pero en modo alguno despreciable, en las comunidades de plantas. Los tipos de asociación y consociación, en el interior de una formación de plantas, dependen, en gran parte, de los suelos. Por ejemplo, en la categoría de árboles de hoja caduca, el roble monopoliza, generalmente, los bosques bajos. El motivo es que los robles están adaptados a las arcillas pesadas y húmedas, que suelen formar las áreas más bajas.

Las hayas prefieren suelos ligeros, de poca profundidad, calizos, y, por tanto, crecen desperdigadas sobre los collados y las colinas calizas. Suelos de arena fina, bien drenados, favorecen el crecimiento de abedules y pinos. Aquí también pueden encontrarse robles, pero éstos (Quercus petraes) pertenecen a una especie distinta del roble pedunculado (Quercus robur) de los suelos bajos arcillosos.

El factor biótico significa, teóricamente, la acción de todos los organismos sobre la comunidad de plantas, incluyendo la influencia de unas plantas sobre otras. Pero, en general, este término se utiliza para designar el efecto de la población animal únicamente. Incluye los animales que viven en la tierra, como las lombrices de tierra, las bacterias y los virus; los insectos que trasportan el polen; las larvas destructoras; los animales que ramonean y pastan, como los ciervos y los conejos; las aves que trasportan las semillas.

El factor más importante en las características de toda comunidad de plantas es el hombre. El impacto del hombre en la comunidad de plantas, con su hacha, su arado y sus rebaños de animales que pastan, es inmenso. Por ejemplo, hace tres mil años, Gran Bretaña se encontraba totalmente cubierta de bosques (excepto en las altas montañas, en los pantanos y en las marismas).

Siglos de agricultura han hecho retroceder los bosques hasta la escasa extensión que ocupan hoy día. En lugar de ellos se encuentran comunidades de plantas completamente artificiales —campos de cosechas y pastos cuidadosamente preservados por el hombre para impedir la invasión de las plantas inútiles   (las malas hierbas).

CONSERVACIÓN DE LOS BOSQUES: La vida en un terreno inculto comienza por la zona de hierbas, a la que sucede el monte bajo y los bosques. Estas etapas pueden observarse en muchos brezales y terrenos de pastos comunes y culminan con las formaciones forestales. En el bosque verdadero o bosque alto, predominan los árboles de tronco bien desarrollado, que no se ramifican sino a cierta distancia del suelo, y son aprovechables para la producción de madera.

En la actualidad, el bosque se extiende por dos zonas principales del mundo, uns situada en las regiones ecuatoriales, densamente poblada por una vegetación mixta y de hoja perenne (es decir, siempre verde), y otra en las regiones nórdicas de clima moderado, formada por los bosques de coniferas y especies de hoja caduca, de América y Eurasia. Las condiciones climatológicas (por ejemplo, la falta de lluvia) no favorecen la proliferación del arbolado en las zonas batidas por los vientos alisios, en las inmediaciones de los trópicos.

Con la entrada del hombre en escena, comenzó la tala de las selvas, que trajo como consecuencia la pérdida de extensas zonas de bosques. Al principio, el hombre buscó en éstos resguardo y terrenos de caza; después empezó a cortar árboles para fabricar armas y utensilios y construir refugios, y, finalmente, fueron talados en gran escala, para dedicar el terreno a la agricultura y a la edificación de pueblos y ciudades.

Desde hace mucho tiempo, año a año la demanda de madera aumenta sin cesar, ya que, aparte de los usos tradicionales, se emplea como materia bruta en la manufactura de seda artificial, del papel y de los plásticos. Además, los bosques tienen cierta influencia sobre el clima y cooperan decisivamente en el mantenimiento y la conservación del suelo.

La destrucción masiva de bosques en el pasado ha dado lugar a que los países con gran densidad de población sean deficitarios en madera, y a que muchas zonas presenten, hoy día, una intensa erosión del suelo, como resultado de la desaparición de los bosques.

El problema actual es mejorar los bosques existentes, y repoblar, en lo posible, nuevas zonas. Este es el fin de la silvicultura, ciencia que se ocupa del cultivo, conservación, mejora y aprovechamiento científico de los bosques, y de la repoblación forestal, a fin de asegurar un suministro continuado de maderas de calidad, así como la estabilidad del suelo.

MEJORA DE LOS BOSQUES EXISTENTES
Muchos bosques existentes son de baja calidad y contribuyen poco, o nada, a la producción maderera. Estos bosques, de escaso rendimiento, se pueden restaurar y hacer que den resultados económicos, lo que, en general, significa transformarlos en bosque alto.

Durante muchos años se ha practicado la explotación del monte bajo mediante talas periódicas. Los árboles, tanto los que hayan sido plantados como los que crezcan espontáneamente, se cortan cerca de la base, dejando un haz de retoños, que regenerarán el árbol en unos pocos años, al cabo de los cuales se talan de nuevo; y la madera cortada encuentra diversas aplicaciones en los medios rurales, tales como fabricación de mangos para herramientas y construcción de cercas.

Muchas de estas aplicaciones han caído en desuso, por lo que se ha abandonado el aprovechamiento del monte, dejándolo en estado silvestre. En general, es mejor convertirlos en bosque alto, excepto en los lugares en que la demanda de madera para cercados y vallas haga rentable su explotación.

El avellano y el castaño son las dos especies más útiles para estos fines, y también las más difíciles de transformar en bosque alto, ya que continuamente nuevos retoños crecen con rapidez desde la base. Existen varios métodos para convertir el monte bajo en bosque alto, y la elección del más adecuado depende de las especies ya existentes, de las que se desee tener, y de las condiciones del bosque.

Aclarar totalmente el bosque y repoblarlo con plantones de vivero es muy costoso y no produce tan buenos resultados como los obtenidos por otros medios. Más adecuado resulta ir situando los plantones a medida que se tala el bosque, con lo que no se altera el aspecto general de éste, y además los árboles jóvenes encuentran protección; pero el desarrollo de las hierbas limita las especies que se pueden trasplantar a las coniferas de crecimiento rápido.

También da buenos resultados el aclarar totalmente franjas o pequeñas zonas de bosque, repoblarlas y esperar a que se desarrollen los árboles para ir cambiando, poco a poco, el bosque entero, aunque esto tiene el inconveniente de que los árboles resultantes son de distintas edades, pues únicamente unas cuantas franjas forestales suelen ser aclaradas a la vez.

Otro método es seleccionar plantas singulares, para que crezcan y se transformen en árboles útiles. Éste es el método más rápido de transformar un bosque bajo en alto, pero está limitado a los casos en que las condiciones sean adecuadas para un crecimiento rápido de aquellas especies.

El arce blanco, plátano falso o sicómoro, el roble y el fresno dan buenos resultados, pero el avellano, por supuesto, no puede nunca transformarse en bosque alto. El bosque así obtenido se complementa con los árboles crecidos a partir de las semillas caídas, los cuales pueden servir para llenar los huecos existentes, no presentando gastos de plantado, lo que compensa, . hasta cierto punto, las enormes desventajas de que todos los árboles no sean de la misma edad.

Un método popular, en los siglos pasados, para la producción de madera, fue el plantar árboles maduros entremezclados con el monte bajo, método que no presenta el más mínimo interés económico, por lo que el mejor tratamiento en estos casos es talar los árboles maderables y tratarlo como a un bosque bajo corriente.

Los bosques que han sido descuidados o arruinados por una tala indiscriminada o por incendios pueden recuperarse por varios métodos. Los árboles sanos que queden, se conservan para que den protección, y, siempre que se pueda mantener alejados a los conejos, el bosque puede regenerarse de forma natural, bien con plantones o por ambos métodos a la vez.

Los bosques formados por árboles viejos o raquíticos no pueden producir nunca buena madera, ya porque procedan de bosques bajos descuidados o a causa de que el suelo no sea el conveniente para esas especies. El abedul es el árbol más común en dichos bosques, pero en muchas zonas se dan el cornejo o sanguiñuelo y el espino.

La única solución es plantar nuevas especies, aclarando franjas o pequeñas zonas de terreno, que ganen altura con rapidez sobre los árboles bajos existentes. Estos últimos mueren pronto, o bien se cortan. Si el monte bajo es muy claro, se pueden plantar, entremezcladas, coníferas que den sombra, ya que, al crecer éstas, los demás árboles raquíticos morirán y serán arrancados.

CREACIÓN   DE  NUEVOS BOSQUES
Antes de plantar un nuevo bosque, se debe estudiar con cuidado el suelo y las condiciones climatológicas, para decidir las especies más adecuadas, y si es más indicado un bosque homogéneo o uno mixto, misión que corresponde a los técnicos forestales.

El terreno se ara, si las pendientes lo permiten, y los árboles jóvenes se plantan en hoyos o hendiduras practicados en el césped. La mayoría de los nuevos bosques se plantan en terrenos cubiertos de hierbas y arbustos, y en las laderas de las montañas, empleándose coniferas tales como el pino, el pinabete, el abeto, etc.

Dichos árboles producen madera blanda, de la que existe gran demanda en la actualidad. Las coniferas crecen con más rapidez que los árboles de madera dura y hojas anchas, y, aunque individualmente son de menos valor, dan lugar a una regeneración más rápida de un área determinada.

Cuando se obtienen bosques maduros y productivos, el problema es conservarlos en este estado, reemplazando los árboles cortados por otros de vivero. Si la tala se realiza en pequeñas franjas o trozos de terreno, que a continuación se repueblan, el bosque en conjunto puede mantenerse productivo. Cabe agregar que todo lo enunciado anteriormente son generalidades y que los métodos pueden variar según las regiones y el clima imperante en ellos.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°123 Comunidades de Plantas y el Cuidado de los Bosques

Historia del Descubrimiento de los Planetas del Sistema Solar

LA OBSERVACION DE LOS PLANETAS DEL SISTEMA SOLAR

Para los primeros observadores terrestres, era evidente que la Tierra estaba en el centro del universo. La Luna giraba alrededor de la Tierra cada 28 días. La Tierra era el centro de su órbita. Aparentemente, el Sol tardaba 365 días en dar la vuelta alrededor de la Tierra. Se puede argumentar fácilmente que el resultado habría sido el mismo si el Sol estuviese quieto y la Tierra girase a su alrededor; pero la mayoría de los astrónomos prefería creer que la Tierra ocupaba el lugar más importante, en el centro.

Además de la Luna y la Tierra, parecían existir otros objetos relucientes, que se movían en el fondo formado por las estrellas fijas. Se los denominó planetas, o sea caminantes. Su movimiento resultaba muy complejo. Mercurio y Venus, los dos planetas interiores, parecían oscilar alrededor del Sol, con la oscilación al oeste,(con respecto al Sol) más rápida que la del este.

Cuando el planeta se halla al este del Sol, se pone después que él y es una estrella vespertina. Cuando está al oeste, “sale” antes que el Sol y es una estrella matutina. Según se cree, Pitágoras (572-492 a. de C.) fue el primero en darse cuenta de que estas “dos” estrellas eran la misma. Marte y los otros dos planetas gigantes, Júpiter y Saturno, se conocían también.

Sistema Geocentrico

Parecía que los planetas seguían órbitas planas, con curvas o vueltas. Cada noche salían antes que la anterior y se movían en el cielo a velocidades variables. Su comportamiento peculiar mostraba que los planetas diferían de la Luna y del Sol, así como de las estrellas.

Los astrónomos tardaron mucho tiempo en construir una imagen del universo. Tolomeo, en el siglo n de nuestra Era, explicó los movimientos de los planetas, suponiendo que cada uno, al igual que el Sol, giraba en órbitas circulares alrededor de la Tierra, una vez por año. Pero los planetas se mueven en pequeños círculos alrededor de otro círculo. Estos se llaman epiciclos.

Concepto de Epiciclo de un Planeta

Aunque la teoría de Tolomeo se aceptó durante más de mil años, otros astrónomos anteriores, como Aristarco, habían propuesto un modelo de universo donde el Sol era el centro (heliocéntrico). Esta teoría fue extendida, en el siglo XVI, por un astrónomo polaco, Nicolaus Koppernigk, conocido como Copérnico. Éste completó las tablas de los movimientos planetarios y observó que se explicaban fácilmente, si se suponía que el Sol estaba en su centro. Pensó que las órbitas eran perfectamente circulares, pero tuvo problemas, porque los planetas no se mueven en sus órbitas a velocidades constantes.

Después, Juan Kepler (1571-1630) demostró que esto era debido a que las órbitas no son perfectamente circulares, sino elípticas. Galileo (1564-1642) mantuvo las teorías de Copérnico. Fue uno de los primeros astrónomos que usó el telescopio (aparato que inventó Hans Lippershey, en Middleberg, en 1608).

Galileo hizo su propia adaptación del telescopio. Con ella realizó importantes observaciones, en apoyo de las teorías copernicanas. Si la Tierra estuviera en el centro del sistema, resultaría que el planeta Venus, siguiendo sus epiciclos entre la Tierra y el Sol, sólo se vería como un delgado cuarto creciente. La parte iluminada por el Sol sería invisible para los observadores de la Tierra. Sin embargo, Galileo demostró que Venus puede verse en todas sus fases, desde un disco entero hasta un pequeño cuarto.

Además, el tamaño de Venus parece cambiar Galileo pensó que esto sólo sería explicado si Venus girase entre el Sol y la Tierra y siendo aquél el centro del universo. Galileo descubrió también las lunas de Júpiter. Fue la primera vez que se obse: una luna distinta a la de la Tierra. A través de su telescopio, vio las cuatro lunas más brillantes de Júpiter, Todas giraban alrededor del planeta.

También advirtió una estrecha relación entre el modo en que los planetas se mueven alrededor del Sol y el modo en que las lunas de Júpiter lo hacen alrededor de éste. Comenzó a observar a Saturno de cerca. Su aspecto variaba sensiblemente de año en año. Galileo lo examinó en 1610 y parecían tres planetas unidos; dos años después volvió a verlo como uno solo. Esto le resultó incomprensible.

El holandés Húygens se dio cuenta de que Galileo” no había observado la existencia de un sistema de anillos. Éstos se encuentran rodeando el ecuador de Saturno y, cuando el planeta se mueve en su órbita, pueden verse desde distintos ángulos. ¿Por qué todos los planetas deben moverse alrededor del Sol? Según las teorías heliocéntricas, las órbitas de los planetas eran más sencillas; pero hasta el momento en que Newton expuso sus teorías, no hubo evidencia física para rechazar el sistema geocéntrico.

Newton (1642-1727) demostró que las fuerzas gravitatorias existentes entre los cuerpos pesados los mantienen en sus órbitas. Los planetas se mueven alrededor del cuerpo más pesado, que será el que ejerza una mayor fuerza de atracción. Este cuerpo es el Sol.

Seis de los planetas solares —Mercurio, Venus, Tierra, Marte, Júpiter y Saturno— no han sido propiamente descubiertos, puesto que eran conocidos en la antigüedad. El séptimo planeta es Urano, débilmente visible a simple vista pero, a pesar de esto, no descubierto hasta 1781.

William Herschel estaba llevando a cabo una investigación sistemática del cielo. Entonces observó un cuerpo de contorno discoideo; pensó que debía tratarse de un planeta y midió el diámetro del disco, Durante varias noches observó el movimiento del planeta, anotando cuidadosamente los cambios de po. sición. Luego examinó los datos de los observadores anteriores y comprendió que habían registrado el mismo astro desde cien años antes.

Un astrónomo, llamado Lemonnier, había visto el planeta ocho veces en un mes; pero pensó que se trataba de una estrella. Algunas de estas observaciones estaban escritas en la tapa de una polvera. Nadie se había dado cuenta de que se trataba de un planeta. Con ayuda de estas notas, Herschel pudo determinar la órbita de Urano. Herschel descubrió dos lunas más de Júpiter y seis lunas en Urano. Sin embargo, hoy se sabe que Urano sólo tiene cinco lunas; cuatro de las descubiertas por Herschel son estrellas débiles.

Hasta 1800, Urano se comportó de una manera prevista, pero, a partir de dicho año, el planeta comenzó a apartarse de las órbitas señaladas ppr las leyes gravitatorias. Se sabía que las órbitas de los planetas interiores eran perturbadas cuando otro planeta pasaba por sus cercanías,

En 1841, John Couch Adams expuso la teoría de que los cambios en la órbita de Urano podían ser debidos a la atracción de un planeta más lejano; pero esta teoría no se tomó en cuenta. Después, en 1845, el astrónomo francés Le-verrier, trabajando independientemente, estudió con atención la órbita de Urano. Parte de la distorsión podía atribuirse a Júpiter y a Saturno, pero, además, había otra causa de la perturbación.

Leverrier calculó la posición y el tamaño del planeta que podría causar la distorsión restante. Solicitó al astrónomo alemán Galle que observara el planeta, que fue descubierto aquella misma noche, denominándoselo Neptuno. Incluso la existencia de Neptuno no explicaba del todo la distorsión de la órbita de Urano.

El movimiento de éste mostraba un comportamiento raro, que debía ser causado por un cuerpo desconocido. Muchos astrónomos, especialmente William Pickering y Percival Lowell, calcularon la órbita de un planeta más externo, el noveno en el sistema solar; pero no fue encontrado hasta 1931, en que la imagen de Plutón se percibió en una placa fotográfica, una de las muchas que se impresionan en la búsqueda sistemática de los planos de las órbitas planetarias.

Fue descubierto por Clyde Tombaugh, que trabajaba en el antiguo observatorio de Lowell, 14 años después de la muerte de éste. Plutón resultó ser más pequeño y menos visible de lo que se esperaba. Es posible que haya algún planeta más externo perturbando las órbitas de los otros; pero, hasta la fecha, no se lo ha descubierto. Con la construcción de telescopios más potentes, los planetas se fueron conociendo con más exactitud. Se sabe poco de la superficie de Mercurio, porque siempre se encuentra muy próximo al Sol.

La superficie de Venus está cubierta por un velo de niebla. Lowell hizo mapas detallados de la superficie de Marte; pero la mayor parte del detalle era obra más de la deducción que de la observación. Júpiter y Saturno se encuentran envueltos en una nube de amoníaco y metano. Se cree que la situación de Urano y Neptuno es similar, y se conoce muy poco de Plutón.

Los radiotelescopios están resultando muy útiles en la exploración de los detalles superficiales de los planetas envueltos en nubes. Las ondas de radio pueden penetrar a través de las nubes, pero las ondas luminosas no. Una información más extensa se obtendrá de las pruebas espaciales.

Los nueve planetas brillantes forman ia mayor parte del sistema solar. Sus órbitas son casi circulares y, a excepción de Pintón, se encuentran casi en el mismo plano. Además, el sistema solar contiene otras tres clases de cuerpos. Los más grandes son los “asteroides” y los “meteoritos”. Las dimensiones de los asteroides y meteoritos oscilan entre unos centímetros y cientos de kilómetros. La mayoría de los asteroides tiene órbitas casi circulares o elípticas, situadas entre las de Marte y Júpiter. El primero de ellos, Ceres, fue descubierta en 1801; varios otros fueron descubiertos poco después. Los asteroides son fragmentos rocosos. También le son tos meteoritos, que pueden chocar casualmente con ia superficie de le Tierra. El primer meteorito registrado cayó en China, en el año 644 a. de C. Se piensa que el 30 % de la claridad del cielo, cuando no hay luna, se debe a pequeñas partículas similares, que reflejan la luz del Sol, Se trata de la “luz zodiacal”. Los “cometas” y las “estrellas fugaces” están compuestos de pequeñas partículas sólidas,, rodeadas de una capa de gas. Los “rayos cósmicos” constituyen un tercer tipo de materia interplanetaria. Son partículas atómicas, en su mayoría “protones”, originadas en el sistema solar o en su exterior.

Ver Una Lámina del Sistema Solar

14 de Julio de 2015: La sonsa New Horizon llega a Plutón despúes de un viaje de 9,5 años.

Esta sonda tomará las que está previsto que sean las mejores imágenes de Plutón nunca conseguidas, así como numerosos datos de la composición de la atmósfera gracias a los instrumentos que lleva a bordo. El paso cerca de Plutón se alargará una semana más y luego seguirá alejándose del planeta enano, pues no orbitará ante su incapacidad de detener la altísima velocidad que le ha permitido llegar en “solo” diez años hasta allí.

Fuente Consultada:
Enciclopedia de la Ciencia y La Tecnología N° 106 – Los Planeta –

Primeros Huevos de Dinosaurios Encontrados Fosilizados

IMPORTANCIA DEL DESCUBRIMIENTO DE LOS HUEVOS DE DINOSAURIOS

En 1923, un miembro de la expedición del Museo Americano de Historia Natural de Estados Unidos, dirigida por el doctor Roy Chapman Andrews, a la zona de areniscas rojas del desierto de Gobi, en Mongolia, encontró un nido completo de huevos de dinosaurio fosilizados.

Los huevos habían sido puestos a fines del período cretácico, hace unos 80 millones de años. Estaban enterrados cerca de la superficie, que había estado expuesta a los efectos de la erosión durante millones de años también. Los dinosaurios fueron animales dominantes —es decir, de gran importancia por su influencia sobre todas las restantes formas de vida— en la era Mesozoica. Se los divide en dos grandes órdenes, siendo, por una parte, parientes de los cocodrilos y, por otra, antecesores de los pájaros.

Los primeros representantes de los dinosaurios que aparecieron en escena eran de tamaño pequeño, pero, en conjunto, se observa en ellos una evolución gradual hacia dimensiones cada vez más gigantescas. Algunos constituyeron los mayores animales terrestres que han existido. Unos eran carnívoros y otros, la mayoría, herbívoros.

Los primeros dinosaurios se caracterizaron por ser bípedos (marchaban de pie sobre las patas posteriores). Sin embargo, se ha observado que a lo largo de su evolución muchos tendieron a adquirir la postura cuadrúpeda, sobre todo los herbívoros. Bastantes carnívoros conservaron la posición bípeda.

La clasificación que se ha hecho de los dinosaurios se basa en las afinidades de su esqueleto y de la estructura de los huesos con los reptiles o los pájaros. Aquellos que presentaban semejanzas con los reptiles se clasifican en el orden de los saurisquios.

huevos de dinosaurios hallados en Gobi Mongolia

El descubrimiento de los huevos de dinosaurio es uno de los raros hallazgos (como el de las impresiones de las membranas interdigitales momificadas) que nos ilustran sobre el modo de vida de estos seres. Quizá si los detalles de su biología estuviesen más claros, podrían conocerse las causas de la desaparición repentina de los dinosaurios, después de un período de florecimiento espectacular. Se ha pensado, fundamentalmente, en cambios climáticos que afectaron de tal modo a la flora, que las especies herbívoras, demasiado especializadas, no, pudieron adaptarse a un cambio de régimen alimenticio. La desaparición de los herbívoros trajo consigo la de los carnívoras que vivían a costa de ellos. La imposibilidad de los dinosaurios de evolucionar, y adaptarse a las cambiantes condiciones, parece radicar en la extremada especialización de su forma de vida. De hecho, es una regla; comprobada por el estudio de los fósiles, que las formas de animales se adaptan mejor a las condiciones cambiantes cuanto menos evolucionadas están, es decir, cuanto menos especializadas se hallan   en   una   forma   de  vida   determinada.

A pesar de los abundantes datos existentes sobre la morfología de los dinosaurios, nuestros conocimientos sobre su biología y costumbres se apoyan, en muchos aspectos, solamente en conjeturas. Se sabe que la médula espinal presentaba, en algunas formas, un ensanchamiento a la altura de la cintura pelviana (caderas), que podía tener un tamaño mayor que el del cerebro (ganglios cerebroides).

Este ganglio actuaría como un centro local de reflejos en las formas gigantes, dado el tiempo considerable que los reflejos habían de tardar en recorrer el largo camino existente entre el cerebro y las patas. Desde que se comenzó a estudiarlos, se supuso que estos antecesores de animales realmente ovíparos (que ponen huevos), fueron ovíparos también, pero no se tuvo una prueba material hasta dicho hallazgo de huevos fosilizados del Protoceratops, pequeño reptil antecesor de los dinosaurios cornúpetas a que nos hemos referido.

El mismo no presenta, sin embargo, traza de cuernos, pero sí el citado repliegue posterior de la cabeza. En una expedición previa a Mongolia ya se había encontrado parte de la cascara de un huevo, pero el descubrimiento, realizado después, del nido entero, en una zona desértica —a cientos de kilómetros de distancia de los habitantes más próximos— sobrepasó las esperanzas.

Por fin se había conseguido la prueba de que, al menos, algunos dinosaurios ponían huevos. Además, este dinosaurio (Protoceratops) los ponía (en cantidad de 15 o más) en un nido, de la misma forma que los ponen las tortugas y muchas aves actuales. Las rocas de color rojo ladrillo donde, se encontraron los huevos se componen de granos de arena fina y roja. Son blandas y se desmenuzan e, indudablemente, fueron formadas por la arena arrastrada por el viento. Mongolia debe de haber sido un desierto muy seco y cálido cuando el Protoceratops vivía.

Probablemente, los huevos fueron enterrados a demasiada profundidad por la arena movediza, de forma que los rayos solares no pudieron incubarlos. Poco a poco se fueron hundiendo cada vez más, a causa de la continua presión ofrecida por la gran carga de arena que soportaban encima y, a su vez, la arena que los rodeaba fue comprimiéndose y trasformándose en roca arenisca.

Entretanto, los huevos mismos fueron rellenándose de arena, al fosilizarse, y conservaron su estructura. Las condiciones de Mongolia resultaban ideales para la formación de fósiles, y de hecho el país es el lugar perfecto para buscarlos. Había muy poca humedad, y el aire, indudablemente, velaba por los restos animales, arrastrando la arena, que los enterraba en enseguida, lo que evitaría su descomposición. Además, desde que se extinguióle! Protoceratops, se ha sumergido uña pequeña extensión de Mongolia,, por lo que las rocas sedimentarias (rocas formadas bajo el agua) se han depositado sobre la arenisca sólo en contados lugares.

El Protoceratops vivía en condiciones desérticas. Sin embargo, debió de haber algunos ríos o lagunas cerca del nido, ya que se han encontrado fósiles de tortugas en los alrededores, y el esqueleto de la cola del Protoceratops hace pensar que este animal pasaba parte de su vida en el agua. Su pico córneo y la escasez de dientes sugieren que era herbívoro, y quizás arrancaba las hojas y las ramas de las plantas o arbustos del desierto.

Además de abandonar el agua para ir a comer, ponía sus huevos en hoyos que cavaba en la arena de las dunas. Colocaba los huevos en círculos, con el extremo más alargado dirigido hacia el centro del nido. La cascara era dura. Los huesos que se encontraron cerca del nido fueron después cuidadosamente conjuntados. Es curioso el hecho de haberse hallado cierta cantidad de esqueletos de jóvenes animales, próximos unos a otrosflo que hace pensar en la existencia de una especie de “colonia infantil”, o de un lugar de cría.

También se han encontrado esqueletos de adultos, que no tenían más qué unos dos metros de longitud. La placa o expansión de la cabeza que protege el cuello está muy desarrollada, y en ella van insertos los músculos de la mandíbula y de la cabeza.

El notable descubrimiento de parte del esqueleto de un dinosaurio con forma de avestruz, el Oviraptor (“ladrón de huevos”), en el nido del Protoceratops, hace pensar que dicho ser estaba realmente robando los huevos del nido. Por desgracia, sólo se ha conservado una pequeña parte de este esqueleto, pero es tan semejante al de otros dinosaurios con forma de avestruz, que el Oviraptor, probablemente, presentaba el aspecto que se le da en el grabado.

SIEMPRE SIGUIERON LOS DESCUBRIMIENTOS EN EL MUNDO

Huevos Hallados en China, Cuando Se Excavaba Para Una Zanja

La ciudad de Heyuan, en China, es conocida popularmente como “la ciudad de los dinosaurios”, debido a los constantes descubrimientos de fósiles en su territorio. Esta vez, unos obreros han descubierto 43 huevos de dinosaurio mientras instalaban un nuevo sistema de cañerías, y muchos están intactos.

Fuente Consultada:
Revista TECNIRAMA N° 67
Enciclopedia de la Ciencia y La Tecnología

Historia del Telescopio – Inventor y Primeras Observaciones

HISTORIA DEL TELESCOPIO: SU INVENTOR Y LAS PRIMERAS OBSERVACIONES

ORIGEN DEL INVENTO: Despúes de la invención del microscopio no debía pasar mucho tiempo para que se hagan distintas combinaciones de lenetes y aumentaran los objetos distantes, o bien, hacerlos mas próximos.

El descubrimiento parece que se produho en 1608 por accidente. Hans Lippershey (1590-1619) un anteojero holandés, tenía un ayudante que jugaba con los lentes durante sus momento de ocio, y descubrió que si sostenía dos lentes, delante de sus ojos, a una cierta distancia de la otra, y miraba a través de ellas, veía el campanario de una iglesia situada a lo lejos como si estuviera considerablemente más cerca, y además invertida.

Hans Lippershey (1590-1619)

Asustado, se lo contó a su patrón, el cual de inmediato captó la importancia del descubrimiento. Lippershey montó las lentes en un tubo, colocándolas a la distancia adecuada entre sí, y logró el primer telescopio primitivo (de las palabras griegas que significan «ver lejos»).

Los Países Bajos aún se hallaban en rebelión contra España, y Lippershey se dio cuenta de que el telescopio constituiría una importante arma de guerra, al hacer posible la observación de la proximidad de navios o tropas enemigas, antes de poderlos descubrir a simple vista.

Así se lo explicó a Mauricio de Nassau, quien le comprendió y trató de mantener en secreto las características del dispositivo. Este propósito fracasó, sin embargo, pues los rumores se extendieron, y el aparato era demasiado sencillo para no ser reconstruido en seguida.

La astronomía óptica emplea, para captar la luz, dos tipos de instrumentos: el anteojo (o telescopio refractor) y el telescopio reflector, o telescopio propiamente dicho. Consisten básicamente en un tubo provisto en uno de sus extremos (el que apunta al cielo) de un objetivo y, en el otro (próximo al ojo del observador), de un ocular.

El objetivo recoge los rayos luminosos emitidos por los astros observados y los concentra teóricamente en un punto —una pequeña mancha en realidad—, que el ocular amplía.

La naturaleza del objetivo es lo que distingue el anteojo del telescopio: en el primero es una lente —o, más bien, una combinación de lentes— que refracta la luz, mientras que en el telescopio es un espejo en el que la luz se refleja.

Las dimensiones del objetivo determinan las posibilidades máximas del instrumento: la energía, o luz, recogida está en función de su superficie colectora, mientras que de su diámetro depende su aptitud para separar dos fuentes luminosas angularmente próximas (poder separador), o distancia angular mínima entre dos puntos objeto que permita obtener imágenes separadas.

UN POCO DE HISTORIA…
Los Descubrimientos de Galileo Galilei

El científico italiano Galileo Galilei , debido a su formación técnica, pudo entender mejor que Lippershey el principio de funcionamiento este tipo de lente, por lo que pudo construir uno de mayor aumento (30x) y que le permitió observar algunos satélites de Júpiter y los novedosos cráteres de la “perfecta” Luna. Entre otras observaciones futuras, Galileo pudo estudiar Saturnos y sus anillos y las fases del planeta Venus.

Telescopio de Galileo

El mayor de los telescopios de Galileo aumentaba en treinta veces la imagen, pero era muy imperfecto. Desde entonces la astronomía recibió un extraordinario impulso de notables científicos vinculados al desarrollo de lentes y telescopios, que son la base de los modernos instrumentos de nuestros días.

Con todo estos conocimiento publuca un pequeño libro, que se podía leer en un par de horas, de solo 24 hojas llamdo Sidereus nuncius, que significa “El Mensajero de las estrellas”, donde informa sobre los observado cn su nuevo telescopio.

Para ello usa una forma de expresarse sumamente distinta al utilizada hasta el momento, a los efectos que sea comprendida por todos los curiosos de su época, consiguiendo que este libro se convienta en una especie de best sellers del momento. La novedad de esta información, no fue por su originalidad, pues ya otros científicos de su época habían también enfocado el firmamento nocturno, sino que fue el primero en publicar sus observaciones

Un gran científico europeo, que vivía en Alemania, pudo leer esta edición porque Galilei el envía una copia, solicitandolé que diera su opinión al respecto, opinión que resultó positiva, aunque no pudo confirmar esas observaciones ya que no contaba con el moderno instrumento

En una carta muy amable y elogiosa contestó Kepler a Galileo, rogándole que le prestara un telescopio para repetir las observaciones y ofreciéndole ser su escudero. Galileo no sólo no le prestó el telescopio sino que ni siquiera le contestó su carta.

Galileo Galilei

En el año 1609, el físico y astrónomo italiano Galileo Galilei recibió, según dice él mismo, noticias del extraordinario invento holandés. Como no se sabía nada de su construcción, Galileo se puso a meditar sobre el acerca de su construccn tema y tuvo la satisfacción de construir un primer anteojo que aumentaba en tres veces el tamaño de los objetos. Inmediatamente construyó anteojos con los cuales descubrió cráteres en la Luna, las fases de Venus, las manchas del Sol y los s liles de Júpiter. También especie de “orejas” que luego serían identificadas como los anillos que orbitan a Saturno.

En 1611, Galileo muy entusiasmado con sus logros, decide avanzar, y dar un paso importante, mostrando su telescopio en Roma a las mayores autoridades eclesiásticas. Fue muy bien recibido, atendido con una importante cena en su honor y escuchado. Galileo apuntó su equipo hacia el cielo y los invitó a observar, tratando de explicar el nuevo fenómeno que veían por ese misterioso tubo.

Observaron a Júpiter con sus satélites. Más tarde desmanteló el telescopio para que todos pudieran ver las dos lentes que lo formaban. A este instrumento le habían dado el nombre en latín de perspicillum o instrumentum, pero se dice que el nombre de telescopio fue dado por un principe de la zona conocido como Cesi, quien creo el nuevo nobre de telescopio.

Mas tarde se entrevistó primero con el cardenal Barberini, que más tarde sería el papa Urbano VIII; también se entrevistó con el papa Paulo V, en una audiencia muy amistosa.

De vuelta a su Padua, en 1611 siguió estudiando los astros celeste. Decidió estudiar el Sol, pero debió ingeniarse una pantalla para evitar lastimarse la vista con la fuerte energía lumínica con que nos abraza. Pudo descubrir las manchas solares y también su periódo de rotación.

En 1615 un teólogo romano conservador expresó la opinión de que la concepción copernicana debía tratarse como una hipótesis, pues contradecía a la palabra de la Biblia. Galileo insistió en que era real. En el edicto de 1616 el Santo Oficio puso el De revolutionibus orbium coelestium de Copérnico en el índice de libros prohibidos y ordenó a Galileo que no siguiera defendiendo a Copérnico so pena de ser encarcelado.

Galileo se daba cuenta que tarde o temprano el papa se moriría. Pocos años después se cumplieron sus expectativas y su viejo amigo Maffeo Barberini, que tantas veces le había defendido, fue elegido papa. Pero el poder absoluto corrompió a Barberini tan absolutamente que cuando los pájaros del Vaticano interrumpieron sus pensamientos hizo envenenarlos. Barberini —ahora el papa Urbano VIII— confirmó el edicto de 1616.

Galileo se mantuvo en las suyas. Durante seis años, animado por su amistad con el papa, trabajó en un libro titulado Diálogos sobre los dos máximos sistemas del mundo. Allí siguió lo legislado al pie de la letra; presentaba sus ideas como una hipótesis que explicaba un personaje llamado Salviati. El punto de vista de la Iglesia estaba representado por un personaje llamado Simplicio.

El insulto era intencionado y se percibió. En 1632 se prohibía el libro. Al año siguiente Galileo fue procesado por la Inquisición. Negó que creyera en el sistema copernicano, se derrumbó en todos los sentidos y se le ofreció firmar una confesión donde afirmaba: «El Santo Oficio me ha considerado vehementemente sospechoso de herejía; es decir, de haber sostenido y creído que el Sol es el centro del mundo e inmóvil, y que la Tierra no es el centro y se mueve». Se puso de rodillas, leyó el texto en voz alta y lo firmó.

La leyenda dice que entonces susurró: «Eppur si muove» («Sin embargo, se mueve»). Esta historia no es cierta, escribe el físico George Gamow, «y sólo ha dado pie a una vieja anécdota según la cual Galileo estaba observando el rabo que meneaba el perro de un amigo que entró, por equivocación, en el Santo Oficio de la Iglesia». Sin embargo, si Galileo no reaccionó de este modo, hubiera debido hacerlo. Algunas leyendas merecen la pena ser perpetuadas.

Galileo fue condenado a prisión y a repetir siete salmos una vez a la semana durante tres años, pero el papa redujo el castigo del astrónomo setentón a arresto domiciliario.

Galileo pasó el resto de su vida confinado en su villa próxima a Florencia (donde lo visitó una vez John Miltón). Hasta su muerte, su hija la hermana María Celeste lo cuido. (Un accidente geográfico de Venus lleva el nombre ella).

Durante este periodo, Galileo se quedó ciego, probablemente a consecuencia de mirar el Sol. Pero no todos los placeres le fueron negados; hasta su muerte en 1642 tocó el laúd, habilidad que había aprendido de su padre.

ALGO MAS SOBRE LOS TELESCOPIOS ASTRONÓMICOS

REFLECTORES Y REFRACTORES
5e pueden distinguir dos tipos principales de telescopios: refractores (o de lentes) y reflectores (o de espejos). Estos dos tipos combinados constituyen los instrumentos más recientes, como el telescopio de Maksutov. Las imágenes producidas por los telescopios reflectores están libres del efeto de aberración cromática, lo cual, para ciertos tipos de trabajos, constituye una clara ventaja respecto de los refractores ; pero, por otra parte, es::s últimos no presentan los efectos de difracción producirdos en los soportes del segundo espejo de los telescopios reflectores, aunque estos efectos no constituyen necesariamente un obstáculo de importancia.

El telescopio refractor suele ser más conocido; su principio es análogo al que se aplica en la construcción de catalejos, binoculares y anteojos de teatro. La luz procedente del objeto que se observa entra en el aparato a través de la lente objetivo. El objetivo de los telescopios se construye casi siempre corregido, para evitar la aberración cromática (o sea el defecto que suelen presentar muchas lentes que producen la aparición de franjas con los colores del el arco iris).

Hay alguna excepción a este respecto, particularmente en campo de la astronomía solar, pero estos casos caen fue-
a de nuestra atención en este momento. La luz se refracta al atravesar el objetivo, es decir, se desvía; la magnitud de
a desviación depende de la curvatura de la lente objetivo.

Para una lente dada, la desviación proyecta la imagen del objeto en un punto invertida, del mismo modo que lo está la imagen formada sobre la película por la lente de una cámara fotográfica. Si colocamos una placa fotográfica hemos trasformado el telescopio en una cámara fotográfica, y así se lo usa para fotografiar los astros.

En esta época de reflectores gigantes quizá resulte sorprendente saber que tales instrumentos son, por así decirlo, unos recién llegados. El principio en el que se basan es conocido desde hace más de doscientos años, pero los trabajos para su adaptación práctica sufrieron durante largo tiempo toda una serie de reveses técnicos.

Hoy día, los telescopios más grandes son invariablemente del tipo reflector. No parece aventurado afirmar que será muy difícil mejorar el refractor, con un objetivo de más de un metro de diámetro, del observatorio Yerkes, en Williams Bay, Wisconsin. Las razones para esta afirmación son varias y bien fundadas. En primer lugar, el moldear un disco de vidrio de grandes dimensiones es una tarea que requiere pericia extraordinaria y que origina gastos cuantiosos, y, desde luego, es incomparablemente más difícil obtener un gran disco de vidrio ópticamente puro, adecuado para la elaboración de una lente, que el necesario para formar un espejo.

El grosor de una lente aumenta con su diámetro, lo que significa un aumento en la cantidad de luz que es absorbida por el vidrio —lo cual, se comprende fácilmente, es un inconveniente para el astrónomo—. Pero, además, es necesario que la lente, bien centrada, esté sostenida en el extremo del tubo telescópico; un disco de vidrio macizo, sostenido sólo por sus bordes, tiende a deformarse por la acción de su propio peso (la lente del observatorio Yerkes pesa más de 225 Kg.), y cualquier imperfección tiene consecuencias catastróficas sobre la calidad de la imagen formada por la lente.

Estos problemas no se presentan en el caso del telescopio reflector. Para construir un espejo no es esencial la purezaóptica del vidrio, con tal de que la superficie que va a ser trabajada ópticamente reúna ciertas condiciones. La diferencia fundamental entre los dos sistemas es ésta: en un refractor la luz pasa a través de la lente, lo que exige una gran pureza óptica; en un reflector la luz se refleja en la superficie de un espejo, sin que resulte afectada por la calidad del vidrio.

corte de un telescopio refractor

Telescopio “refractor”. La lente objetivo A forma una imagen real en B, la cual se observa mediante la lente de aumento u ocular C.

En el telescopio reflector de Newton. La luz que entra por el tubo del telescopio incide sobre la superficie del espejo, al que se ha dado, con gran precisión, una forma parabólica. Esta superficie está formada por una capa muy fina de plata, o de aluminio (actualmente se prefiere el aluminio, porque la plata se deteriora muy rápidamente por la acción de distintas impurezas presentes en la atmósfera).

Corte de un telescopio reflector

Forma de Newton del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa lateralmente en el telescopio.

El espejo parabólico formaría la imagen en su punto focal A, pero antes de que los rayos alcancen este punto son desviados lateralmente por un pequeño espejo plano B, que está colocado con una inclinación de 45° respecto del eje principal del espejo primario.

De este modo la imagen es examinada con el ocular C en una dirección perpendicular a la de la luz enfocada por el aparato. Este tipo de reflector tiene gran aceptación entre los aficionados, por su sencillez. Sin embargo, los grandes instrumentos modernos no se sujetan exactamente a este esquema; incorporando el sistema óptico de Cassegrain se consigue una mayor versatilidad.

En el sistema de Cassegrain se reemplaza por un espejo convexo el pequeño espejo secundario B, y se practica un orificio en el espejo primario para permitir la observación de la imagen. Así, imagen y ocular se sitúan detrás del espejo principal, lo que proporciona varias ventajas, siendo la más importante la posibilidad de replegar la distancia focal, lo que permite reducir las dimensiones del tubo telescópico, con lo que el instrumento resulta más manejable.

corte de un telescopio sistema cassagrain

Forma de Cassegrain del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa por el extremo del telescopio.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Evolución de la Observacion del Espacio Historia

Cronología de las técnicas de observación
c. 2800 a. C: Stonehenge. La primitiva construcción incluye un foso, un montículo de tierra, 35 toneladas de restos pedregosos y cincuenta y seis pozos, llamados agujeros de Aubrey, que pueden haber sido utilizados para predecir eclipses. Entre 600 y 1000 años después se agregaría el famoso círculo de piedras.

c. 2600 a. C.: Se construye la Gran Pirámide de Gizeh, orientada hacia el Cinturón de Orion y Thuban de Draco el Dragón, la estrella del norte en aquel tiempo.

c. 440 a. C.: Se construye en Saskatchewan, Canadá, la Rueda de la Medicina de la Montaña del Ratón orientada hacia la posición del Sol en el solsticio de verano.

52 a. C. a 132 d. C: Los astrónomos chinos proyectan una esfera armilat para medir las posiciones de los objetos celestes. Empezando por un anillo metálico que representa el ecuador, incluye al final un ani lio que representa la trayectoria de los planetas, otro que reprc senta el meridiano y un reloj de agua.

150 d. C: Equipado con un plinto —un bloque de piedra con un arco calibrado que se utilizaba para medir la altura del Sol— y una regla triangular llamada triquetrum, Ptolomeo anota la posición de las estrellas.

927: Un fabricante árabe de instrumentos llamado Nastulo construye el astrolabio más antiguo que se conoce, un mapa metálico de los cielos que representa el movimiento aparente de las estrellas alrededor de la Polar y en relación con el horizonte.

1000: Los mayas erigen un observatorio en Chichén Itzá, en la península de Yucatán. Conocido como el Caracol, está alineado con el sol en los solsticios así como con las estrellas Castor, Pólux, Fomalhau y Canope.

1391: El Tratado sobre el astrolabio de Geoffrey Chaucer enseña a construir y utilizar el astrolabio para medir la posición de las estrellas.

1576: Tycho Brahe inicia la construcción de Uraniborg, su observatorio insular. Entre el equipamiento hay un cuadrante de pared, una gran esfera armilar y un sextante que abarca 30° de firmamento y va equipado con brazos fijos y móviles para medir las distancias entre las estrellas.

1608: El óptico holandés Hans Lippershey inventa el telescopio.

1609: Galileo Galilei se construye su propio telescopio. Un refractor con dos lentes de cristal (el objetivo convexo y el ocular cóncavo) que aumenta la imagen unas treinta veces.

1611: Johannes Kepler, retinando el telescopio, sustituye el ocular convexo por otro cóncavo, con lo que agranda el campo de visión pero invierte la imagen.

1636: El fraile y matemático francés Marín Mersenne propone la utilización de espejos para construir un telescopio reflector.

1668: Isaac Newton construye un telescopio reflector utilizando un espejo cóncavo en lugar de objetivo. Dado que los distintos colores se refractan de manera distinta, los telescopios refractores que se utilizan en osla época producen alrededor de las imágenes un cerco con los colores del arco iris. El reflector elimina esta aberración cromática porque los colores se reflejan de forma homogénea.

Otra ventaja es que el espejo, a diferencia de las lentes, puede sostenerse por detrás, con lo que produce menos distorsión. El físico francés N. Cassegrain diseña un telescopio en el que la luz se refleja desde un espejo secundario convexo a través de un agujero hecho en el primer espejo, una mejora del gran reflector new-toniano, en el que el ocular quedaba en la parte superior del telescopio, con lo que exigía al observador que trepara a una torre o escalera para mirar. Con el telescopio de Cassegrain el observador se mantiene a nivel del suelo. Según Newton, «La ventaja de este aparato es ninguna».

1733: Chester Moor Hall superpone dos clases de cristal para aumentar la lente del objetivo a la vez que suprime la aberración cromática.

1758: Utilizando el invento de Hall para hacer lentes de flint glass y de crown glass, John Dolland hace una lente acromática, que presenta en la Royal Society.

1789: William Herschel construye un telescopio con un espejo de 49 pulgadas.

1845: William Parsons, conde de Rosse, construye un telescopio reflector con un espejo de 72 pulgadas, el mayor del mundo hasta 1917. Se lo conoce como el Leviatán de Parsonstown.

1888: Se acaba el telescopio refractor de 36 pulgadas del Observatorio de Lick.

1897: Se construye el mayor telescopio refractor del mundo en el Observatorio de Yerkes, en Wisconsin. Tiene un objetivo con una lente de 40 pulgadas y un tubo de 64 pulgadas.

1908: Se acaba el telescopio reflector de 60 pulgadas de Monte Wilson.

1917: Se acaba el telescopio reflector de 100 pulgadas de Monte Wilson.

1930: Bernhard Schmidt inventa el Telescopio Schmidt, que utiliza lentes correctoras para eliminar la distorsión alrededor de los bordes de los espejos y para hacer fotografías claras del firmamento con gran angular.

1936: Después de diseñar el primer radiotelescopio del mundo, el ingeniero Grote Reber, de Illinois, erige un plato metálico de 9,15 metros en su patio trasero y empieza a hacer el mapa de la Vía Láctea, proyecto que completa al cabo de ocho años.

1948: Se acaba el telescopio reflector de 200 pulgadas de Monte Palomar.

1962: Un pequeño cohete detecta rayos X procedentes de más allá del sistema solar.

1970: Se lanza el primer satélite de rayos X.

1978: Se lanza la nave espacial Explorador Internacional de Ultravioletas (IUE), alimentada por energía solar.

Se lanza el Observatorio Einstein, que contiene un telescopio de rayos X de alta resolución.

1980: Una serie de veintisiete observatorios dispuestos en forma de Y, llamada la Gran Formación (Very Large Array), comienzan a operar en Nuevo México.

1981: El dispositivo de carga acoplada (CCD) deja obsoleta la fotografía. Mientras que las fotografías utilizan una fracción de la luz procedente de un objeto para producir un cambio químico en una película, el mucho más sensible CCD responde a casi toda la luz y envía corrientes eléctricas directamente al ordenador.

1983: Es puesto en órbita el Satélite de Astronomía Infrarroja (IRAS).

1989: Se lanza el satélite Explorador del Fondo Cósmico (COBE) de la NASA.

1990: Se pone en órbita desde la lanzadera espacial Discovery el Telescopio Espacial Hubble.

1991: Se pone en órbita desde una lanzadera espacial el Observatorio Compton de Rayos Gamma (GRO), con cuatro detectores de rayos gamma a bordo.

1992: El 14 de abril comienza sus observaciones el Telescopio Keck, con los treinta y seis espejos hexagonales colocados en su sitio. El 24 de agosto, su gemelo el Keck II recibe el primer segmento de sus treinta y seis espejos coordinados.

1993: Diciembre. Astronautas instalan durante un paseo espacial nuevos paneles solares, giróscopos, una nueva cámara y otros instrumentos para corregir la visión del Telescopio Espacial Hubble.

Entre los futuros instrumentos que se espera que estén funcionando el año 2000 se cuentan: el Telescopio Keck II; el Observatorio Estratosférico para Astronomía en el Infrarrojo Lejano (SOFÍA)en órbita; la Instalación Astrofísica de Rayos X Avanzada (AXAF); la Instalación Espacial para Telescopio de Infrarrojos (SIRTF); el Telescopio Sloan de la Universidad de Princeton, diseñado para hacer un mapa del desplazamiento hacia el rojo de un millón de galaxias; y el telescopio de múltiples espejos controlado por ordenador del Observatorio Europeo Austral en Chile, conocido como el VIT (Gran Telescopio).

El Gran Telecsopio que será construído en Chile

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway