Desertización

Tipos de Habitat de Vida La Temperatura y la Civilización

LOS AMBIENTES DE VIDA DEL PLANETA – RELACIÓN VIDA – TEMPERATURA

Es posible que si escuchamos a una persona afirmar en una reunión que los animales más pequeños, e incluso las plantas, tienen un “domicilio” y hasta una “dirección”, lo tomemos por un poeta o por alguien que no se encuentra en sus cabales. Sin embargo, esta afirmación no tiene nada de falsa. Al contrario: muchos científicos y naturalistas dedican su vida para conocer más acerca de este tema. Es claro .. . ellos no hablan de “domicilio” y “dirección”, sino, de habitat, término que proviene del latín (habitationis) y que significa habitación.

En ecología, habitat es el conjunto de las condiciones físico-geográficas en que desarrolla su vida una especie. En realidad, lo podemos identificar con el ambiente que le es propio a cada planta, a cada animal e, incluso, a cada ser humano.

Cada especie posee un habitat particular. Este ambiente lo componen diversos factores, que en parte son elementos vivos y en parte elementos muertos. Los ecólogos han clasificado a estos componentes ambientales en edáficos, climáticos y bióticos.

Los edáficos son los que se refieren al suelo, el  que de acuerdo con su localización geográfica puede poseer distintos componentes minerales, mayor o menor proporción de arena o de limo o de cantos rodados (que hacen variar sus posibilidades de retener el agua recibida de las precipitaciones y deshielos, y su consistencia) e incluso, diferencias en la cantidad de material orgánico (humus) incorporado. En relación con los suelos, los habitat más “codiciados” son los que cuentan con una gruesa capa de humus, buena capacidad para retener el agua de lluvias, muchos minerales y pocas rocas de mediano o gran tramaño.

El aspecto climático se refiere a las variaciones meteorológicas que afectan a un sitio determinado. Los elementos que lo componen son la temperatura, la presión, las precipitaciones y las radiaciones cósmicas. Tamibén influyen, indirectamente, la distancia entre el punto estudiado y el océano, la altura sobre el nivel del mar y la proximidad de factores extraños como fuentes termales o volcanes.

Por supuesto, tendrá más “inquilinos” aquel habitat que posea un clima cálido y húmedo, porque allí las condiciones de vida son más fáciles. Por último, resulta de especial importancia el factor biótico (de bios — vida).

No es posible lograr un cuadro real que refleje la existencia de cualquier especie si no colocamos en él a todos los otros vegetales o animales que están asociados con ella. Por otra parte, existe una relación dominante de unas familias sobre otras. Donde no hay vegetales no pueden existir animales herbívoros. Donde faltan éstos, no pueden prosperar los carnívoros.

El habitat habla del lugar donde se vive, es decir, un área física, una parte específica de la superficie terrestre.

De acuerdo con este concepto, puede ser acuático, aéreo o terrestre. Para cada caso, la evolución biológica ha dotado a cada criatura viviente de las “armas” necesarias para desenvolverse exitosamente en su medio. Los topos tienen uñas poderosas, los peces aletas en forma de remo y los pájaros alas que les permiten volar. Para alcanzar estas herramientas perfeccionadas la naturaleza empleó siglos en probar y seleccionar, generación tras generación, cada uno de los adelantos aplicados.

Recordemos, asimismo, que el habitat puede tener dimensiones muy dispares. Puede ser tan grande como un mar o una pradera, intermedio como un bosque o una laguna, o pequeño como un tronco de árbol podrido o el intestino de un mamífero.

Después de la Primera Guerra Mundial, un grave problema que, es su momento, se intensificó día a día afectó a la humanidad entera: la vivienda. Sobre este tema, evidentemente, la ecología tiene mucho que decir. Cuando una población aumenta (trátese de heléchos, de ratas o de personas) se van haciendo cada vez más difíciles de satisfacer las necesidades de mantener un habitat determinado. No olvidemos que al comienzo habíamos dicho que habitat era equivalente a domicilio.

El hombre extendió, con hélices, motores y ruedas, su ambiente; pero, al mismo tiempo, debió someterse a los efectos de sus propios avances. Su “habitat privado”, la vivienda, paulatinamente se reduce a departamentos cada vez más pequeños, única solución para dar cabida a las nuevas generaciones, más numerosas que las anteriores.

SOL Y SOMBRA

En el fondo de nuestro jardín podremos realizar una interesante experiencia. Si observamos detenidamente las partes del suelo en las que una pared o arbusto dan sombra permanente, descubriremos que las hierbas crecen allí con menos densidad que en otros sitios. En cambio, notaremos que en esa zona la humedad es mucho mayor y que la tierra es menos granulosa y más compacta. Si tenemos paciencia, podremos comprobar asimismo que, mientras en las zonas donde da el sol predominan los insectos, aquí son más abundantes los gusanos.

En fin… dos mundos distintos se desarrollan a pocos centímetros de distancia. Todos los factores que componen el habitat interactúan de tal manera que llegan a constituir unidades casi independientes, con fisonomía propia. El suelo compacto, la humedad, la vegetación y la microfauna se “entremezclan” al pie de la pared umbría para dar origen a un habitat con rasgos particulares que lo identifican. Al lado, la influencia solar crea las condiciones para que se desenvuelvan con comodidad otras especies diferentes.

EL POTENCIAL BIÓTICO: ¿Qué posibilidades habrá de que en el tiempo en que uno se va de vacaciones, las hormigas, libres de toda persecución, acaben con los rosales del jardín? En las condiciones ambientales óptimas que implica un jardín sin depredadores ni insecticidas, es muy probable que las hormigas salgan triunfantes.

El potencial biótico es justamente eso, la capacidad de una población para prosperar en un medio óptimo. Lo que medimos, en este caso, es su velocidad de crecimiento cuando no hay obstáculos ni límites que la detengan. Mientras una pareja humana podría originar una descendencia de. 200.000 individuos en cien años, una mosca, qon su compañera, podría llegar en un año a la “considerable” cifra de un tres seguido de . . .¡cincuenta y cinco ceros!

Como vemos, el potencial biótico varía para cada especie. Y gracias a Dios existen controles naturales para algunos animales, porque de lo contrario viviríamos inundados de insectos, a tal punto que el sol se nos haría invisible.

Lo que impide que cierto grupo de animales o vegetales crezca en forma desmedida es la suma de los factores físicos, químicos y biológicos que hay en el am biente. Y que influyen, en diversa forma, para alterar las condiciones óptimas de desarrollo.

Una familia humana tipo, en la actualidad, no tiene por lo general más de tres vástagos, porque un número mayor de hijos haría difícil el mantenimiento del núcleo. Es un factor económico el que constituye el límite. Algunos peces, en cambio, son “regulados” por animales de mayor tamaño que se los comen, “recortando el excedente” como la tijera lo haría con un trozo de género que la modista quiere adecuar a un molde.

Todas estas maravillas sólo pueden producirse en un marco multifacético como es nuestra Tierra, donde siempre hay lugar para algo asombroso o inesperado.

LA TEMPERATURA Y LA CIVILIZACIÓN

Es un hecho interesante de destacar el que casi todas las grandes civilizaciones hayan florecido allí donde el clima no es ni muy cálido ni muy frío. Parece ser que el género humano necesita, para su progreso, el estímulo de una temperatura templada, pues tanto el frío riguroso como el calor excesivo han frustrado, de alguna manera, su desarrollo.

Así la raza negra, sofocada por el calor bochornoso de su tierra nativa, avanzó poco en agricultura, artes y ciencias, hasta la época en que los descubrimientos y colonizaciones la pusieron en contacto con los pueblos europeos. El clima en que vivía no era propicio para la actividad y la empresa, pero sí para proveerle de alimentos y ropas sin mayor esfuerzo.

En el extremo opuesto, la gente de las tierras árticas, esquimales y lapones, ha quedado atrás en la marcha general del progreso, porque la inclemencia de su clima no retribuía el enorme esfuerzo que demanda la subsistencia.

El hombre de los trópicos es, entonces, semejante al hombre rico, que no se aficiona al trabajo porque no tiene la coacción de la necesidad para hacerlo; mientras que el hombre de las tierras frías se asemeja al muy pobre, que tampoco hace mucho porque sus esfuerzos no parecen ser retribuidos.

Muchos aspectos del clima —lluvias, visibilidad, cambios de las estaciones, temperatura media del año— y las variaciones de duración del día y de la noche afectan las condiciones de vida, pero sobre todo este factor parece tener la mayor influencia en el aliento o desaliento del empeño humano. Aquellos que han estudiado el problema han llegado a la conclusión que cualquier temperatura, entre 0° y 22°, es favorable al progreso, y que una temperatura media de 10° es la ideal.

Vemos abajo un mapa con las temperaturas del planeta.

mapa de mundo con temperaturas por regionesn

Es bien destacable que la zona amarilla incluye a muchas de las más importantes ciudades del mundo, como ser Londres, Nueva York, París, Chicago, Tokio y Berlín. Aunque los climas de estas ciudades no son iguales, todos ellos comparten una temperatura media anual, entre los 5o y los 15°. También están, dentro del área amarilla, dos grandes civilizaciones de la antigüedad: la cretense y la romana. Dentro del área anaranjada, floreció la antigua civilización griega y más tarde las de Rusia y España, mientras que en el área de color castaño se desarrollaron las de los incas, China e India.

Dentro de la zona anaranjada florecieron, en la antigüedad, las civilizaciones egipcia y maya, pero ambas cesaron hace mucho de extender una considerable influencia sobre el resto del mundo. Dentro del área roja hubo dos tempranas civilizaciones: la de la India y la de la Mesopotamia. De esto se desprende que no es absoluta la conclusión según la cual los climas muy cálidos o muy fríos sean incompatibles con el progreso humano; pero sí podemos afirmar que no lo favorecen.

El hombre es ahora dueño de su ámbito como nunca lo fue en el pasado. Hoy se elevan ciudades en las zonas árticas y cerca del ecuador, en Latinoamérica y en Indonesia.

Es fácil ver por qué la civilización fue más lenta en desarrollarse en el hemisferio sur. Son comparativamente pocas las zonas al sur del ecuador que gocen de una temperatura cercana a la ideal. Además, la gran extensión de los océanos Pacífico e Indico aisla una región de otra y dificulta extremadamente todo contacto.

HABITAT Y LA VIDA DEL MUNDO ANIMAL EN EL MUNDO:
Sabemos que el factor geográfico tiene un importante papel en la conformación de las civilizaciones, en la distribución de las razas humanas, en las lenguas que la gente habla y aun en las religiones que profesan. Si el ambiente geográfico significa tanto en su conducta, no es de maravillarse que’ sea por lo menos igualmente importante en el mundo animal.

La zoogeografía estudia la distribución de los animales sobre la superficie de la tierra, distribución no sólo en sentido horizontal, sino también vertical, porque algunos viven en la alta montaña, otros en las zonas llanas y otros en las profundidades abisales.

Basados en las últimas enseñanzas de la ciencia, vamos a dar una noción clara de la delimitación de las diferentes regiones.

Muchas circunstancias determinan las áreas dentro de las que varios animales terrestres viven normalmente. No pueden cruzar con facilidad anchas barreras de agua que dividen una región de otra; es raro que logren atravesar una cadena de montañas altas; muy pocas veces cruzan las vastas tierras desérticas.

La mayoría de los animales se nutre de una clase limitada de alimentos. Si son herbívoros, no pueden sobrevivir mucho tiempo en regiones donde las plantas necesarias no crecen. Si son carnívoros, viven sólo donde sus presas puedan hacerlo también en cantidades suficientes.

De manera que, aunque no es posible dibujar una línea de demarcación en el mapa del mundo y declarar que sólo ciertos animales viven a un lado de ella, y otros muy diferentes al otro lado, es posible dividir el mapa en unas pocas regiones principales e indicar, con certeza, que cada una tiene su fauna característica, es decir, una vida animal que le es propia.

mapa de habitat del mundo

El mapa superior de la lámina está dividido en siete regiones:

A)   Oceanía (Australia e islas vecinas).
B)   América Central, del Sur e islas del Caribe, que los zoólogos llaman región neo-tropical.
C)   La región tropical, que incluye casi toda África, junto con Madagascar y parte de Arabia, se caracteriza por la. presencia de gran número de mamíferos con pezuñas: viven juntos en manadas y entre ellos encontramos jirafas, cebras, leones, el elefante africano (que es el animal terrestre más grande que hoy existe), el rinoceronte y el búfalo africano.
D)   India, S.E. de Asia, con sus guirnaldas insulares.
E)   Una gran extensión de tierra que cubre la mayor parte de Asia, casi toda Europa y parte N. de África, llamada la región paleártica: viven el caballo, el pequeño oso castaño, el camello, el alce y el ciervo
E)  La región neártica que incluye la mayor parte de América del Norte.
G) Las   tierras   árticas,   alrededor  del  polo norte.

Los animales nativos de la India o S.E. de Asia; son ellos el elefante de la India, más pequeño, de lomo más recto, orejas más pequeñas y más manso que el africano; el tigre, el orangután y el búfalo acuático de la India.

Los animales que viven en las tierras árticas; son el oso polar, el reno y el zorro ártico. El reno, ya muy domesticado, provee a los lapones de leche, carne y piel, y suele servir de bestia de carga.

Es también posible hacer una distribución vertical de los animales, aunque, naturalmente, por la facilidad de desplazamiento, los límites son menos precisos que aquellos que se demarcan para los vegetales. Por ejemplo, en los Alpes, el ciervo no traspasa el límite de los vegetales, mientras que la gamuza se aventura hasta la zona de las nieves eternas.

Los geólogos saben que Australia y algunas de las islas que la rodean han estado separadas de las grandes extensiones de tierra del mundo, por muchos millones de años. La vida animal, durante tanto tiempo, no ha evolucionado de la misma manera ni al mismo tiempo que en otros lugares. Cuando el hombre blanco se estableció por primera vez allí, se vio sorprendido por los animales raros que halló, seres por completo diferentes de los que existían en el Viejo Mundo.

El canguro, por ejemplo, a pesar de que mide casi 1,50 m. de largo, tiene hijuelos que al nacer no alcanzan a más de 5 cm. Estos pequeños pasan no corto período de su desarrollo dentro de una especie de bolsa ventral en el cuerpo materno, el marsupio, y permanecen allí hasta que están suficientemente desarrollados, como para comenzar una existencia independiente.

Aún más destacable es el ornitorrinco, aunque es mamífero y, por tanto, alimenta a sus pequeños con leche, es un animal ovíparo; en cierto sentido podemos considerarlo como un fósil viviente, o sea, un representante de ciertos animales que debieron abundar hace mucho tiempo, cuando los mamíferos hicieron por primera vez su aparición en la tierra.

Los otros animales que se hallan en la parte superior de la lámina son: el dingo (especie de perro salvaje, nativo de Australia); el kiwi neozelandés o ápterix (pájaro sin cola y con alas no desarrolladas); un pez con pulmones y el equidna (especie de oso hormiguero con el cuerpo cubierto de espinas).

América del Norte tiene muchos que son comunes en Europa y Asia. Sus representantes propios son ciertos tipos de zorros, el bisonte americano (a menudo llamado búfalo) y osos negros algo parduscos. Estos últimos, además del oso pardo de Alaska, son los más grandes y temidos de todos los osos, y hoy rara vez se los encuentra fuera de los grandes parques nacionales, donde se los preserva de la caza.

Los animales oriundos de América Central y América del Sur incluyen armadillos; osos hormigueros de lengua muy larga; perezosos; llamas; jaguares o yaguares y otros pocos mamíferos desdentados.

La llama fue el único animal que los pueblos aborígenes de América lograron domesticar antes de la llegada del hombre blanco. Los dos animales que en la lámina están asentados sobre una base de color verde claro, viven en el extremo norte de Canadá y Alaska; son el zorro negro y el anta, el más grande de la familia de los ciervos.

En las grandes extensiones heladas de la Antártida no hay animales terrestres, pues, a excepción de algunas zonas aisladas, los vegetales no crecen en cantidad suficiente como para alimentarlos. Pero en la franja costera de la Antártida habita un mamífero, el lobo marino, que es el miembro más grande de la familia de las focas. Hay también pingüinos, en grandes cantidades. Han perdido su posibilidad de volar, pero son buenos nadadores. Al vivir en una región donde no hay materiales para fabricar sus nidos, colocan los huevos arriba de sus pies, y tanto los machos como las hembras comparten la tarea de incubarlos.

No todos los animales están confinados para siempre a una sola región de la tierra. A menudo el hombre ha llevado ciertas especies de una región a otra. Las ratas viajan por todas las partes del mundo en las bodegas de los barcos. El cangrejo chino, trepado a los buques, ha sido llevado a varios estuarios de Europa.

El conejo, trasladado de Europa a Australia, se multiplicó de manera tan sorprendente que se ha convertido en una terrible plaga. Y los caballos salvajes, que por muchos años vagaron por las pampas de América del Sur, eran los descendientes de aquéllos que los conquistadores españoles trajeron a estas tierras.

Fuentes Consultadas:
Enciclopedia Ciencia Joven Fasc. N°8 Edit. Cuántica – Los Habitat del Mundo –
El Mundo en el Tiempo Tomo III Globerama Edit. CODEX

Consumo de Agua en el Mundo Huella Hídrica, Tablas y Mapa

CONCEPTO DE HUELLA HÍDRICA – HISTORIA DEL CONSUMO DEL AGUA POTABLE

HISTORIA: Cualquiera sea la actividad del hombre que consideremos, siempre el agua ocupará una parte esencial en ella. Si observamos su búsqueda de energía comprobamos que la primera fuente natural de energía que dominó fue la de las corrientes y caídas de agua. Cuando pensamos en el hombre como agricultor vemos que una de sus tareas más importantes es asegurar que sus tierras estén bien irrigadas y desaguadas. Aun en el transporte vemos que los barcos que navegan en mares y ríos tienen un papel dominante.

Todo esto no es extraño, pues más de siete décimos (70%) de toda la superficie del globo está cubierta de agua hasta una profundidad media de unos 4 kilómetros. Si multiplicamos el número de kilómetros cuadrados que forman las siete décimas partes del globo terrestre por 4, comprobamos que nuestro planeta contiene más de 1.000 millones de kilómetros cúbicos de agua.

Sin embargo, excepto como ruta para los barcos y ambiente vital para los peces, la gran abundancia de agua en mares y océanos es de poca utilidad directa para el hombre. No la puede usar para calmar su sed y la de sus animales domésticos o para irrigar sus campos. Para todos estos propósitos debe conformarse con la cantidad mucho menor que pasa de la superficie de los océanos al aire como vapor de agua, luego corre por los aires en forma de nubes y cae como lluvia o nieve. Y aún de esta cantidad, relativamente pequeña, la mayor parte, y con mucho, busca su camino en los ríos y vuelve al mar antes que el hombre la haya usado.

Así, aunque en un sentido el agua es extraordinariamente abundante, en otro aspecto es excepcionalmente escasa. En muchas regiones cálidas y secas, incluyendo partes de España, ex Yugoslavia y África del Norte, la poca lluvia que cae sobre la tierra se cuela rápidamente a través de una capa muy gruesa de suelo poroso antes de ser detenida por otra impermeable, de roca, profundamente situada por debajo de la superficie.

En tales regiones es necesario perforar profundos pozos hasta la roca, y los aguateros que transportan la valiosa agua de estos pozos a aldeas distantes la pueden vender tan fácilmente como se venden helados, en otras partes, en un caluroso día de verano. Aun en clima como el nuestro, no es extraño para la gente que vive en distritos con pobre provisión de agua el recoger el agua de lluvia de los techos en barriles y usarla para cualquier fin en el que la absoluta pureza no sea realmente indispensable.

Pero en regiones donde las lluvias no son demasiado escasas y especialmente en las que tienen un subsuelo calcáreo, generalmente es posible asegurarse una provisión de agua constante cavando un pozo no muy profundo.

El agua se puede elevar del pozo en baldes o, siempre que el nivel del agua (la napa) no esté a más de unos 10 metros bajo tierra, por medio de una simple bomba aspirante.  En regiones muy secas, donde el nivel del agua puede estar mucho más profundo, o en cualquier parte donde un pozo tenga que proveer grandes cantidades de agua, se pueden usar bombas más poderosas.

A veces ocurre que el agua queda apresada profundamente bajo tierra entre dos capas de roca impermeable de forma de casquete. Perforando a través de la capa superior, cerca de su punto más bajo, donde hay gran presión de agua, es posible producir un pozo artesiano.  La presión causa un constante fluir de agua, que sube a la superficie.

Para proveer las vastas cantidades de agua que consumen grandes pueblos y ciudades, los pozos y fuentes no son suficientes. Los romanos fueron los primeros en dar una excelente solución al problema, cuando derivaron el agua abundante de los ríos y arroyos de montaña y la transportaron a pueblos distantes por medio de acueductos.

CONCEPTO DE HUELLA HÍDRICA: La huella hídrica es un indicador que define el volumen total de agua dulce usado para producir los bienes y servicios producidos por una empresa, o consumidos por un individuo o comunidad. Mide en el volumen de agua consumida, evaporada o contaminada a lo largo de la cadena de suministro, ya sea por unidad de tiempo para individuos y comunidades, o por unidad producida para una empresa. Se puede calcular para cualquier grupo definido de consumidores (por ejemplo, individuos, familias, pueblos, ciudades, departamentos o naciones) o productores (por ejemplo, organismos públicos, empresas privadas o el sector económico).

concepto de huella hidrica

La tarea de suministrar agua potable a las poblaciones fue muy ardua ya en tiempos de los romanos, pero no lo era entonces casi nada si la comparamos con la de la actualidad. Primeramente, hay ahora muchos más pueblos y ciudades y, además de esto, no pocos de ellos son más grandes que las mayores ciudades de la antigüedad, porque los modernos métodos de transporte han capacitado a las zonas urbanas para crecer en una extensión antes imposible.

Lo que hace que el problema resulte aún más formidable es el hecho de que cada persona usa mucha más agua hoy, diariamente, que en tiempos pasados. Cuando la gente tenía que molestarse en obtener agua levantándola de los pozos, en baldes, cuidaba naturalmente mucho más de no derrocharla que nosotros que conseguimos toda la que deseamos con tan sólo abrir un grifo. Pero no son solamente el descuido y derroche los que han aumentado el consumo del agua. Otra causa importante es el continuo progreso del nivel medio de higiene.

Hace 400 años no se habían inventado los inodoros y hace ciento existían exclusivamente en las casas de los ricos; hoy cada casa usa probablemente más de 50 litros diarios de agua en el lavatorio. Hace poco más de 400 años ni siquiera los palacios poseían cuarto de baño; sin embargo, actualmente, la gran mayoría de las familias de la clase trabajadora, en los países más adelantados, tiene cuarto de baño en su hogar, y cada una de ellas seguramente consume centenares de litros de agua por semana. Además, la industria moderna gasta agua en abundancia.

De manera que no es de extrañar que los 5 ó 10 litros de agua por persona que bastaban para las necesidades diarias de nuestros antecesores ya no sean suficientes hoy para nosotros. En la moderna Bruselas, cada persona usa un promediode 160 litros de agua diariamente.

En Londres, la cantidad es de alrededor de 210 litros, en Estocolmo 245, en París 265 y en Nueva York llega a 440 litros. Aun la más pequeña de estas ciudades —Estocolmo— tiene una población de casi mas de un millón de almas, lo cual significa que necesita unos 250 millones de litros diarios. Nueva York, con su enorme población y su elevado consumo de agua por persona, necesita algo más de 4.400 millones de litros. ¿De dónde proceden tan vastas cantidades de agua?.

Pocas veces están al alcance mismo del sitio en que se las necesita y muy frecuentemente deben ser obtenidas de ríos, lagos o fuentes distantes y transportadas por gigantescas cañerías a plantas de potabilización cercanas a la ciudad que las consume.

Allí el agua ha de ser purificada y pasada a través de filtros. Éstos consisten en tanques enormes, que contienen, generalmente, primero una capa de pedregullo y arena gruesa, y luego, encima de ésta, una de arena fina. La arena filtra la mayor parte de las impurezas sólidas, pero no deja el agua libre de bacterias. De modo que ésta pasa a continuación a depósitos donde la acción de la luz del sol y el aire contribuyen a destruir los microorganismos. Generalmente se agrega también cierta cantidad de cloro, que actúa como germicida.

Cuando el agua está completamente purificada se la bombea a torres de agua, de modo que finalmente llegue a todas las casas de la ciudad con una presión uniforme. Sólo a partir del siglo XX el hombre ha tenido tan colosales exigencias de provisión de agua, y éstas nunca se hubieran satisfecho de no haberse tomado medidas para impedir que los ríos llevaran todo su caudal de agua al mar, como siempre.

Hoy, a lo largo de los cursos superiores y medios de muchos grandes ríos, los ingenieros han construido vertederos para controlar la corriente del agua. De modo que, excepto en épocas de muy prolongada sequía, las autoridades encargadas del suministro de agua pueden casi siempre conservar la cantidad suficiente como para satisfacer las necesidades de las poblaciones.

La Organización Mundial de la Salud (OMS) recomienda utilizar 50 litros de agua por día y por persona, pero en la Argentina se calcula un consumo de entre 500 a 613 litros diarios.   Así, el consumo de agua limpia es diez veces mayor a lo sugerido por la OMS y las causas más habituales de este derroche son “pérdidas en las canillas, dispendio en la higiene personal o limpieza de ropas y lavado de vehículos, vajillas, frutas y verduras, regado de plantas y jardines y el uso de desagües como vertederos”.

MAPA DEL CONSUMO DE AGUA EN EL MUNDO – m³/año/persona –

mapa de consumo de agua en el mundo

TABLA DE CONSUMO FAMILIAR APROXIMADOS:

1 Lavado de Auto 500 l.
2 Ducha de 10 minutos 70-150l.
3 Descarga Inodoro 20-25 l.
4 Lavado de Manos 3 l.
5 Lavarropa 100 l.
6 Consumo Familiar 4 Personas 1200 l.

TABLA DE CONSUMO INDUSTRIAL APROXIMADOS:

1 Cemento por Kg. 30 l.
2 Harina por Kg. 0,5 l.
3 Azúcar por Kg. 2 l.
4 Lana por Kg. 0,7 l.
5 Papel por Kg. 0,5 l.
6 Cerveza por litro 10 l.
7 Gaseosa por litro 5 l.
8 Pescado por Kg. 6 l.
9 Acero por Kg. 500 l.
10 Un automóvil 35.000 l.

Nuevas estadísticas sobre la  disponibilidad y la utilización de los recursos hídricos informan que que sector agrícola consume el 92% del agua.  Analizar el consumo globalmente, aseguran, ayudará a los gobiernos a establecer medidas para elaborar sus planes hídricos nacionales y gestionar mejor los limitados recursos hídricos. EEUU, India y China son los países que más agua gastan. Entre los tres consumen el 38% de los recursos hídricos del planeta

8 CONSEJOS PARA EL AHORRO DE AGUA

tabla con consejos para el ahorro de agua potable

LA DEPURACIÓN DEL AGUA: Quizás uno de los elementos más importantes para el desarrollo de la civilización actual sea algo tan simple como el agua. Ella es la base de las operaciones industriales; es requerida, también, como bebida fundamental. Y resulta indispensable para lograr una adecuada higiene, tanto en lo que hace al aseo personal como a la limpieza de habitaciones, veredas y edificios.

Constituye la base de los servicios sanitarios. De acuerdo con las más actualizadas tablas de valores, cada ser humano utiliza, en promedio, unos 125 litros diarios de agua. Esta cifra aumenta considerablemente si nos referimos a las ciudades, especialmente las europeas. En Los Ángeles, por ejemplo, se consume individualmente un promedio de 350 litros por día.

Veamos cuál es el método empleado para purificar este líquido. Baste calcular que sólo París necesita por día más de 2.500 millones de litros de agua potable. Todo el sistema sanitario de una ciudad se basa en obras de ingeniería, consistentes en tuberías y canalizaciones de distintos diámetros.

Desde ríos, a veces muy distantes, se hace llegar el agua a plantas de potabilización que, generalmente, se instalan cerca del núcleo urbano.

Allí el agua pasa por varias piletas, en las que las impurezas mayores se depositan en el fondo por un proceso mecánico de sedimentación. Luego el agua pasa a otras piletas que actúan como filtros gracias a la acción depuradora de la arena fina y el pedregullo que hay en su fondo.

En otras piletas el agua se somete a un nuevo proceso, ahora de orden químico, que consiste en el agregado de agentes germicidas como el cloro, el ozono, etc., que eliminan todo vestigio de parásitos y otros microorganismos nocivos. Ya en este momento el agua, transparente como un cristal, está preparada para ser bombeada a presión en las tuberías que lallevarán porlaciudad. En algunos casos se envía a torres elevadas para que su distribución se produzca sin inconvenientes.

Luego de la acción germicida, de los filtros y de las piletas de decantación, el agua está lista para ser sometida a todos los usos imaginables. Ya servidas, las aguas tienen que ser eliminadas de algún modo. Una de las formas más comunes es restituirlas a los ríos de donde se extrajeron -aunque aguas abajo-, o en el océano, si es que éste se encuentra próximo. Para poder cumplir esta tarea sin contaminar las cuencas hidrográficas o marinas, debe volver a someterse al agua a un nuevo proceso de purificación.

tratamiento de agua potable

A: Planta Potabilizadora
B: Planta Potabilizadora Por Ósmosis Invertida

Ampliar Este Tema

RETENER EL AGUA PARA PRODUCIR ENERGÍA: Hay todavía una razón más en la actualidad para construir diques y represas en los ríos: contener el agua de manera que se la pueda usar en un fluir constante y uniforme para producir energía hidroeléctrica.

Antiguamente, los habitantes de la Mesopotamia usaban ruedas de agua primitivas, accionadas por los ríos o arroyos, para obtener agua para la irrigación. Durante la Edad Media, en muchas partes de Europa se empezaron a usar ruedas mucho mejor ideadas para impulsar diversas clases de máquinas simples en los molinos.

Cerca de las caídas de agua de poco caudal, en lugares montañosos, construyeron molinos equipados de ruedas con cangilones. Éstas eran ruedas con paletas bastante livianas, que la fuerza del agua, al caer, hacía girar a considerable velocidad. Por medio de una serie de engranajes, cada uno con ún número diferente de dientes, este veloz movimiento podía disminuirse a una velocidad apropiada para la lenta y pesada maquinaria colocada adentro del molino. Cerca de ríos anchos, en regiones llanas, construyeron molinos con ruedas y paletas de distinta disposición, movidas lentamente por la corriente. Por medio de una serie de engranajes, este lento movimiento podía acelerarse a la velocidad requerida.

Todo esto representaba un gran adelanto en la conquista de la energía hidráulica, pero conservaba aún dos enormes inconvenientes. Primero, se podía sólo hacer uso de la energía mecánica del agua eii movimiento construyendo molinos en el lugar en que se encontraba y no donde era más conveniente hacerlo. Segundo, el natural fluir del agua variaba con las épocas y la cantidad de energía disponible variaba con ella. Después de lluvias prolongadas, en las caídas de agua y los ríos el caudal de agua llegaba al máximo y movía las ruedas a una velocidad excesiva, que amenazaba con destruirlas. Después de una sequía prolongada, las ruedas apenas giraban.

No hubo indicación alguna de cómo se podría subsanar el primer inconveniente, hasta comenzado el siglo XIX. Fue cuando el científico inglés Faraday descubrió que un imán que se movía rápidamente podía provocar el fluir de una corriente eléctrica a través de un cable. Aquí, entonces, había un medio de transformar energía mecánica —la clase de energía necesaria para mover el imán con rapidez— en energía eléctrica.

En ese tiempo, cuando la era de la máquina de vapor llegaba a su punto más alto, la obvia manera de poner el imán en movimiento era usar un motor de vapor. De modo que los imanes de los generadores de las primitivas usinas que surgieron años más tarde se accionaban con vapor y así es como funcionan hoy la mayoría de los generadores.

Pero no hay nada que impida que los imanes de los generadores funcionen por las caídas de agua, y en efecto así es como se mueven en las modernas usinas hidroeléctricas. De este modo la energía mecánica del agua en movimiento se transforma en energía eléctrica, la cual puede ser transportada en cables hacia donde haga falta. En los hogares y fábricas de cualquier sitio esta energía eléctrica puede convertirse nuevamente en energía mecánica por medio de motores, en los cuales la corriente eléctrica pone en movimiento un imán.

El otro problema era cómo asegurarse que el agua diera una producción de energía constante. Aquí surgió, precisamente, la necesidad de construir diques y represas. Cuando se construye un dique a través de un río, las aguas del curso superior son contenidas para formar un lago artificial. Éste sirve como enorme depósito desde el cual se puede dejar correr el agua hacia los generadores, a través de cañerías o túneles, a una velocidad constante durante todo el año.

En terrenos montañosos, el agua que cae de grandes alturas hace girar veloces ruedas Pelton, no muy diferentes de las ruedas de antaño, para impulsar a los generadores. En terreno llano, un volumen mayor de agua que cae de una altura menor hace girar las ruedas de turbina, que se parecen también mucho a las de la Edad Media.

Fuente Consultada:
El Triunfo de la Ciencia El Agua en el Mundo Globerama Tomo III Edit. CODEX

Desarrollo Sustentable o Sostenible Concepto y Objetivos

CONCEPTO DE DESARROLLO SOSTENIDO

La expresión Desarrollo Sostenible, se refiere a una manera de resumir todas las técnicas necesarias de aplicar para que el desarrollo económico y social del mundo sea posible sin poner en peligro la capacidad de futuras generaciones para satisfacer sus propias necesidades, es decir, que considera la posibilidad de llevar adelante un desarrollo socio-económico preservando el ambiente, usando los recursos naturales, sin comprometer la preservación de esos mismos recursos para las generaciones futuras.

UN POCO DE HISTORIA: Cuando a fines del siglo XVIII empezó a fraguarse la Revolución Industrial, gran parte de la humanidad creyó haber alcanzado la panacea. La máquina de vapor, puesta al servicio de la navegación por el ingeniero James Watt (1736-1819), no sólo revolucionó el transporte, sino que modificó las estructuras comerciales.

Los barcos ya no dependían de los vientos, sino que se propulsaban solos y por el camino más corto al puerto de destino. La seguridad y la velocidad de aquellos viajes permitieron hacer más fluido el comercio entre los más distantes puntos del Globo. Tan interesante fue este salto tecnológico que, de ahí en más, la carrera no se detuvo.
En 1890 hizo su aparición en el mercado el motor diesel y, entonces sí, los historiadores y los economistas confirmaron que la humanidad había superado una segunda -y ahora definitiva- Revolución Industrial.

La utilización de la energía eléctrica y el perfeccionamiento de la mecanización propiciaron una radical evolución en las perspectivas socioeconómicas. El hombre había hecho pie en el industrialismo moderno.

A partir de ese momento, las costumbres y los gustos de la sociedad se fueron adaptando al ritmo de la tecnología, que a su vez se encontró presionada por las nuevas necesidades de la sociedad. El consumo de bienes y servicios creció, tal como lo sigue haciendo, en proyección geométrica, constituyendo un círculo vicioso: producción, más necesidades y, nuevamente, más producción.

Ante esta situación, el conjunto de países con mayor capacidad tecnológica se ocupó únicamente de producir. Con el tiempo, todos los países del mundo alcanzaron distintos niveles de desarrollo y se abocaron a la misma tarea.

Este proceso lleva ya casi doscientos años. A lo largo de ese tiempo, la humanidad ha crecido en bienes, servicios y tecnología, de manera desmesurada y sin medir las consecuencias. Pero ¿qué tiene que ver todo esto con el calentamiento global?

Efectos de la actividad industrial: La matriz energética es la fuente de donde proviene la energía que el hombre necesita. Durante los últimos doscientos años, la tecnología humana utilizó tres fuentes principales de energía: petróleo, carbón y gas; y, en menor medida, la electricidad proveniente de plantas nucleares y de represas hidroeléctricas.

La quema de estos tres combustibles produce toneladas de dióxido de carbono. Este gas, junto con otros liberados también por las actividades productivas del hombre, está operando un cambio del clima en el nivel mundial. ¿Por qué?

Cuando la atmósfera se convierte en un depósito de grandes cantidades de gases, se rompe el equilibrio natural entre la energía absorbida y la reflejada. Los organismos encargados de reciclar el carbono ven superada su capacidad máxima de trabajo, y entonces el ciclo natural del carbono se altera. Dado que hay una mayor cantidad de gases que absorben el calor y lo devuelven a la Tierra, la temperatura comienza a aumentar.

Este es el proceso que se conoce como calentamiento global. Así, el efecto invernadero, que permite retener el calor en la atmósfera y que resultó tan beneficioso desde tiempos remotos, se vuelve en contra de la vida.

desarrollo sostenido

Respecto al uso y gestión sostenibles de los recursos naturales del planeta, debemos tener en cuenta dos conceptos. En primer lugar, deben satisfacerse las necesidades básicas de la humanidad, alimentación, vestimenta, lugar donde vivir y trabajo. Esto implica prestar atención a las necesidades, en gran medida insatisfechas, de los pobres del mundo, ya que un mundo en el que la pobreza es endémica será siempre proclive a las catástrofes ecológicas y de todo tipo. En segundo lugar, los límites para el desarrollo no son absolutos, sino que vienen impuestos por el nivel tecnológico y de organización social, su impacto sobre los recursos del medio ambiente y la capacidad de la biosfera para absorber los efectos de la actividad humana. Es posible mejorar tanto la tecnología como la organización social para abrir paso a una nueva era de crecimiento económico sensible a las necesidades ambientales.

Que es el desarrollo y por qué debe ser sustentable: Desde la década de los ochenta el crecimiento económico fue explosivo, y en ello tuvo mucho que ver la revolución tecnológica. Los países industrializados consumen la mayor parte de los recursos naturales del mundo, produciendo un mayor impacto sobre los recursos comunes y compartidos con los países del sur.

Basta recordar que el gran consumo por parte del norte de combustibles fósiles ha contribuido al aumento de dióxido de carbono en la atmósfera (bien común), con la consecuente amenaza de un cambio climático global. También el Sur tiene comportamientos que amenazan la disponibilidad de recursos para las generaciones futuras. En su intento de lucha contra la pobreza, los ingresos insuficientes y el hambre, agotan o degradan gravemente los recursos de agua, suelos, bosques. biodiversidad, etc.

desarrollo sostenido

El crecimiento económico de las naciones, a veces depredador y causa de la degradación del ambiente, está acompañado por un crecimiento demográfico sin precedentes históricos. En los próximos treinta años se espera que la población mundial crezca en casi dos tercios, pasando de 5.000 a 8.500 millones de habitantes aproximadamente (World Resources, 1996).

Un porcentaje importante de esta población vivirá en los países en vía de desarrollo, fundamentalmente en las áreas urbanas. Surgirá entonces un sinfín de necesidades que estarán aparejadas con este crecimiento: aumento de la demanda de recursos alimenticios, aumento de la presión demográfica sobre el espacio, mayor consumo de energía y por lo tanto la necesidad de afrontar mayores niveles de contaminación, etc.

Cuando una actividad o acción origina o produce una alteración, modificación o cambio en el medio o en alguno de los componentes del sistema ambiental, de cierta magnitud o complejidad, se configura el llamado impacto ambiental. Las dos condiciones que están presentes en la alteración o el cambio son la magnitud y la complejidad: la primera está ligada al concepto de dimensión o tamaño de alteración, mientras que la segunda está referida a la cantidad de elementos ambientales naturales o sociales afectados por ese estímulo desencadenante que es la acción o actividad.

A la hora de evaluar el impacto de estos factores (crecimiento económico y demográfico) sobre el medio ambiente, necesitamos incorporar muchos otros factores, ya que la relación entre los primeros no es directa.

La creación de políticas gubernamentales y de sistemas legales que por un lado mitiguen los efectos del crecimiento demográfico y que por el otro reduzcan el potencial impacto ambiental ocasionado por el crecimiento económico ilimitado, permitirán ir rechazando el antiguo paradigma que oponía el desarrollo al medio ambiente y adoptar así un nuevo enfoque, “la nueva conciencia ecológica”, basada en la convicción de que el desarrollo económico y la conservación del medio ambiente son objetivos complementarios.

El progreso tecnológico de estos últimos años se ha convertido también en una herramienta muy importante para el ahorro de recursos y la optimización de su uso. Hoy se brega por el desarrollo sustentable o sostenible. es decir, el que “considera la posibilidad de llevar adelante un desarrollo económico preservando el ambiente, o sea, usar los recursos para satisfacer las cada vez mayores necesidades de la población, sin comprometer la preservación de esos recursos para las generaciones futuras”.

Este es un desarrollo que debe durar. Como lo decía la definición de la Comisión Mundial sobre el Medio Ambiente y el Desarrollo (Nuestro Futuro Común, 1987) es el que busca “asegurar que satisfaga las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer las propias”

LA MITIGACIÓN: La mitigación de los efectos del cambio climático requiere trabajar sobre las causas que lo originan. Como se mencionó anteriormente, la emisión de gases de efecto invernadero tiene dos orígenes fundamentales: la dependencia de los combustibles fósiles para la generación de energía y los cambios en el uso del suelo que promueven la deforestación. Para ambas situaciones, hoy tenemos la tecnología y el conocimiento suficiente para promover un cambio sustancial.

Se están impulsando en varias partes del mundo algunas estrategias fundamentales: una relacionada con el cambio en la matriz energética, para ir mutando hacia una dependencia menor de los combustibles fósiles, y apostando al desarrollo de energías limpias y renovables. Otra consiste en como reducir nuestra demanda de energía, siendo eficientes en el uso de la misma. Por ejemplo el uso de lámparas de bajo consumo, o bien ahora, la lámpara de led, de 5 a 10W. de consumo por unidad.

Lámparas eléctricas: El 95% de la energía consumida por las lámparas eléctricas incandescentes es transformada en calor. Sólo el 5% se transforma en luz. Las lámparas de bajo consumo consumen un 80% menos de energía para generar la misma cantidad de luz. Desde junio de 2011, la Argentina prohibe la comercialización de lámparas incandescentes. Si en todo el mundo se sustituyeran las clásicas bombillas eléctricas por las nuevas lámparas de bajo consumo, se ahorrarían unos 320 millones de kilovatios/hora de corriente, dejándose así de emitir 160 millones de toneladas de CO2. Ello corresponde a las emisiones de anhídrido carbónico de todos los vehículos automotores que circulan en Alemania.

Los acuerdos regionales: el papel de la Comisión Europea: Para alcanzar los objetivos de reducción de emisiones definidos en el Protocolo de Kyoto, la Comisión lanzó el Programa Europeo del Cambio Climático (PECO en marzo de 2000.

Uno de ios pilares de las políticas comunitarias para abordar el cambio climático es el Sistema de Comercio de Emisiones de la Unión Europea (ETS), puesto en marcha el 1 de enero de 2005. Los gobiernos comunitarios han establecido límites a la cantidad de C02 que pueden emitir cada año unas 10.500 instalaciones (centrales eléctricas y grandes plantas consumidoras), que son la fuente de casi la mitad de las emisiones de CO2 de la UE.

Las instalaciones que emitan menos C02 del que tienen asignado pueden vender la cuota de emisión no utilizada a otras plantas que no logren su meta. Esto supone un incentivo financiero para reducir las emisiones. El sistema también se asegura de que haya compradores para las cuotas de emisiones: las empresas que superen sus límites de emisión y no deseen cubrirlos comprando derechos deberán pagar multas.

La UE se ha comprometido a reducir de aquí a 2020 sus emisiones de gases invernadero hasta, por lo menos, un 20% por debajo de los niveles de 1990. Además, incrementará esta reducción hasta el 30% si los demás países industrializados hacen lo mismo y si los países en desarrollo también adoptan medidas.

Para conseguir esta reducción mínima del 20%, las medidas ya existentes -como el sistema ETS- se complementarán con nuevas disposiciones orientadas a aumentar la eficiencia energética en un 20% para 2020, a incrementar la cuota de las energías renovables hasta el 20% para la misma fecha y a equipar todas las nuevas centrales eléctricas con tecnologías de captura y almacenamiento de carbono.

Fuente Consultadas:
Calentamiento Global Las Dos Caras del Efecto Invernadero Adriana Patricia Cabrera Edit. longseller
Espacios y Sociedades del Mundo La Argentina en el Mundo Daguerre-Sessone Edit. Kapelusz

Microorganismos en el Ciclo del Nitrogeno Insectos y Bacterias

Todos los seres vivos, ya sean plantas o animales, dependen, en última instancia, de los nitratos y otros compuestos del suelo. Estas sustancias, indispensables para la formación de las proteínas, son la base de toda la materia viva. Las plantas pueden tomar el nitrógeno del suelo solamente en forma de nitratos o nitritos, pero no absorber las moléculas más complicadas del tipo de las prosternas o los aminoácidos que forman éstas.

Los animales adquieren los compuestos nitrogenados, necesarios para la formación de las proteínas, de las plantas que les sirven de alimento o de otros animales que forman, a su vez, parte de su dieta. Pero, en todo caso, este ciclo, termina en las plantas, que están en la base de toda cadena de alimentación. Si el nitrógeno existente en la Tierra se consumiera en la formación de proteínas anímales o vegetales, en los seres vivos o en sus restos, la vida cesaría, porque, bloqueado, sería inaccesible para las plantas.

Afortunadamente, en la naturaleza existen organismos cuya actividad es la descomposición de los restos orgánicos, que se trasfor-man en sustancias que contienen nitrógeno en forma mineral (nitratos y nitritos), y las plantas pueden absorberlo disuelto en agua. La serie de mecanismos mediante los cuales las sustancias nitrogenadas vuelven al suelo o a otros animales constituye lo que se llama ciclo del nitrógeno.

Algo parecido ocurre con el ciclo del anhídrido carbónico (CO2), necesario para la fotosíntesis de las plantas, que se libera constantemente en la respiración de los animales. De no mediar la actividad de un sinnúmero de organismos que se ocupa de la descomposición de restos orgánicos, una parte del carbono quedaría bloqueada en los restos animales y vegetales. En este proceso se desprende CO2, que va a la atmósfera, quedando otra vez a disposición de los vege,-tales, que lo incorporan en nuevas sustancias.

El proceso es análogo al de la respiración, y, con frecuencia, tiene lugar en el suelo, donde se descomponen numerosos restos vegetales y animales (en gran parte, microscópicos), por la acción de organismos de pequeño tamaño, en su mayoría imperceptibles a simple vista. Por tanto, puede hablarse de una respiración del suelo, que varía en intensidad según el contenido de restos (la llamada materia orgánica del suelo) y las condiciones de vida para los microorganismos.

Es particularmente sensible en los suelos de algunos bosques, donde se acumulan grandes cantidades de hojas caídas y las condiciones de humedad son favorables a la proliferación de los seres que actúan en la descomposición de los restos.

Actualmente, el ciclo del CO2 está en “equilibrio; es decir, las cantidades de carbono que fijan las plantas igualan las que se desprenden en la respiración y otros procesos; por tanto, las sustancias que contienen carbono -no se acumulan en grandes cantidades.

Pero no siempre ha ocurrido esto; los grandes yacimientos de carbón que se explotan en la actualidad son un testimonio de épocas geológicas pasadas (período carbonífero) en las que la fijación de carbono predominaba grandemente sobre la producción de CO2. El ciclo de nitrógeno tiene gran importancia en la economía de la naturaleza, ya que éste es, en sí, el elemento que con más frecuencia limita la producción vegetal y, con ello, el mecanismo que pone en marcha la vida.

El ciclo del nitrógeno corre a cargo de lo que podemos llamar Departamento de recogida de basuras de la naturaleza, que emplea un número enorme de obreros para eliminar los cadáveres y los excrementos. Prueba de la eficacia de ese Departamento es el hecho de que sea tan difícil encontrar animales muertos o, incluso, esqueletos en el campo.

MICROORGANISMOS
Las bacterias y otros microorganismos, entre los que se encuentran los protozoos y los hongos, desempeñan un papel importante en el ciclo del nitrógeno. Ellos son los que llevan finalmente a cabo la descomposición y mineralización de los restos más pequeños o más resistentes.

Las bacterias, por ejemplo, tienen a su cargo la demolición y mineralización progresiva de los restos vegetales de más difícil digestión para los organismos de gran tamaño, a causa de su abundancia de celulosa y otras sustancias todavía más inatacables, como las que componen el corcho o las cubiertas impermeables de las hojas.

Cuando se añade a la tierra un abono orgánico insuficientemente descompuesto, es decir, rico en celulosa (por ejemplo, cuando se entierra la paja del trigo directamente), se comprueba que las plantas sembradas en él tienen síntomas de falta de nitrógeno.

Este hecho paradójico se debe a que el alimento celulósico, proporcionado en gran cantidad a las bacterias, las hace proliferar enormemente, de forma que acaparan todo el nitrógeno, que entra a formar parte de las proteínas de sus organismos y queda fuera del alcance de las plantas. Al cabo de algún tiempo, cuado estas bacterias mueren, sus proteínas van siendo alteradas por la acción de otras bacterias y de procesos puramente químicos, que forman compuestos de nitrógeno asimilables por las plantas.

El fenómeno que primero aparece (causa del hambre de nitrógeno que sufren las plantas) es característico de la incorporación al suelo de restos vegetales insuficientemente descompuestos. Sin embargo, si esos restos se hubieran sometido previamente a la acción de microorganismos que los destruyeran (como los que se encuentran en los estercoleros y montones de abono orgánico, antes de su incorporación al suelo), no habría insuficiencia de nitrógeno.

El hombre se beneficia de la acción de las bacterias y otros microorganismos (capaces de convertir los restos vegetales y animales, y las basuras, en materiales inofensivos e, incluso, útiles) por medio de plantas industriales adecuadas que trasforman dichos residuos en abonos orgánicos. Por tanto, esto constituye una contribución del hombre a devolver al suelo sustancias útiles, de la misma forma que lo hacen los basureros de la naturaleza.

En algunas circunstancias, la actividad de las bacterias está dificultada por las condiciones del medio (por ejemplo, en los suelos demasiado ácidos); son los hongos microscópicos los que intervienen entonces en la descomposición final de los restos.  Las hijas o filamentos de estos hongos pueden verse fácilmente en las capas de humus o tierra vegetal, de color oscuro, del suelo de los bosques o de los brezales.

La humedad o la sequedad excesivas, así como la acidez demasiado grande del medio, son causas dp la lentitud del proceso de descomposición. En realidad, los microorganismos nunca actúan solos, sino que están asociados a una numerosa fauna microscópica, y también a otros animales de mayor tamaño, cuya acción es más espectacular.

Entre ellos se encuentran los animales devoradores de carroña, sin el concurso de los cuales, la Tierra estaría cubierta de cadáveres animales en distintos  estados  de descomposición.

INSECTOS
Los basureros de gran tamaño dejan fragmentos pequeños de la piel y de los huesos, que son atacados después por distintos coleópteros, quienes se alimentan de esas materias. Los más interesantes coleópteros basureros son los escarabajos enterradores y los que se alimentan del estiércol. Los cadáveres de animales pequeños, como los ratones y topos, atraen rápidamente la atención de los escarabajos enterradores.

Estos insectos, que tienen color negro y anaranjado, o negro solamente, son capaces de enterrar el cadáver de un ratón, en un suelo arenoso, en pocos minutos. Generalmente, trabajan en parejas y entierran los cadáveres extrayendo las partículas de tierra que hay debajo de ellos; tienen la cabeza ensanchada y la usan como pala en el trabajo de excavación.

Una vez enterrado, el cadáver sirve de alimento a los coleópteros y a sus larvas. Los adultos ponen sus huevos sobre el cadáver, lo que asegura el alimento para las crías. Al permanecer bajo el suelo, el cuerpo está húmedo y la acción de las bacterias es más rápida que si hubiese quedado en la superficie.

Durante el verano, es necesario proteger la carne y el pescado de los contactos de las moscas, cubriéndolos de alguna forma. En la naturaleza, sin embargo, esas moscas son útiles al poner sus huevos sobre los restos animales, ya que las larvas contribuyen a su descomposición y desmenuzamiento, acelerando su vuelta al suelo.

Los insectos que se posan en un cadáver en las distintas etapas de su descomposición, para poner en él sus huevos, suelen ser distintos. No se trata solamente de coleópteros y moscas, sino también de polillas, algunas de las cuales se alimentan de materias córneas, como la piel y los pelos, y otras, de sustancias grasas.

Por el estudio de las larvas que se alimentan de carroña, es posible determinar, con los datos de su desarrollo y sus clases, la época en que ocurrió la muerte del animal. Este procedimiento se ha aplicado en medicina legal, para conjeturar la fecha de las defunciones, en el caso de cadáveres humanos descubiertos accidentalmente o en el curso de una investigación. Se han distinguido hasta 10 tipos distintos de fauna, que se escalonan en el tiempo, conocidas con el nombre de brigadas de la muerte.

Antes que los excrementos del ganado vacuno se hayan enfriado, son visitados por moscas y coleópteros, que se alimentan allí y colocan sus huevos. Las larvas se desarrollan rápidamente, absorben los materiales en descomposición y dejan tan sólo restos vegetales, que. a su vez, son un alimento apreciado por otros coleópteros. Los insectos de la familia de los escarabeidos son enterradores de estiércol muy conocidos.

El escarabajo sagrado de Egipto, o gran escarabajo pelotero, forma grandes bolas de estiércol, que traslada rodando hasta llegar a un lugar adecuado para enterrarlas. Algunos escarabajos adultos se alimentan de estiércol (coprófagos); otros lo utilizan solamente para poner huevos.

Escarabajo Pelotero

El pequeño escarabajo enterrador de estiércol hace un túnel, cuyo fondo rellena con esta materia, antes de colocar allí sus huevos. Lo mismo hace el minotauro, escarabeido caracterizado por unos pequeños cuernos en la cabeza. Menos conocido es el trabajo de las legiones de insectos, ácaros y gusanos, que trabajan los restos entre la hojarasca y la materia orgánica del suelo.

Escarabajo Enterrador

Escarabajos   enterradores   se   ocupan   del   cadáver   ás   un   ratón.
En   un   suelo   arenoso,   el   cuerpo   es enterrado   rápidamente.

Numerosos colémbolos (diminutos insectos saltadores del mantillo) tienen a su cargo la demolición fina de los últimos restos vegetales, así como los ácaros, aunque entre éstos hay depredadores (que capturan presas vivas). Las lombrices se ceban en los restos orgánicos reducidos a su mínima expresión y mezclados íntimamente con el suelo.

El resultado final de este proceso, con la cooperación de bacterias y hongos, así como protozoos, que pueden contener en su interior bacterias simbiontes, es desmenuzar finalmente los restos orgánicos y asegurar su mineralización, es decir, la trasformación en sustancias útiles a los vegetales, que vuelven a incorporarlos, entonces, al ciclo vital de la naturaleza.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología TECNIRAMA Fasc. N°108 (CODEX) Los Basureros de la Naturaleza

Historia de la Evolución del Cambio Climatico

¿COMO ERA EL CLIMA ANTES?

A pesar del progreso tecnológico de las últimas décadas, el hombre se halla aún a merced de los elementos. Desde el pleistoceno, en que terminó la última glaciación, hace unos 10.000 años, hasta nuestros días, se han producido importantes fluctuaciones climáticas.

Las sequías a gran escala y anormalmente prolongadas se han traducido siempre en cosechas pobres y grandes privaciones para muchos seres humanos. En sus investigaciones sobre las condiciones climáticas del futuro, importantísimas para la agricultura y las reservas alimenticias mundiales, los científicos hacen especial hincapié en el conocimiento de las causas y la magnitud de los cambios climáticos del pasado.

Tras la retirada del principal manto de hielo del noroeste de Europa, el clima se caldeó rápidamente. Los granos de polen fósiles, preservados en turberas y sedimentos lacustres, señalan la presencia de bosques en este continente durante los períodos de clima seco denominados preboreal y boreal, de inviernos fríos y veranos calurosos.

Posteriormente, hace unos 7000 años, las temperaturas medias alcanzaron los valores más altos desde el final de las glaciaciones. En verano superaban a las actuales en 2 o 3 °C, mientras que las invernales lo hacían en 1 °C aproximadamente.

Este fue el comienzo del óptimo climático atlántico, expresión que alude a las favorables condiciones para el desarrollo de plantas y animales. En Europa, el límite de las nieves perpetuas se encontraba unos trescientos metros por encima del actual.

Las pinturas rupestres del Sahara, pertenecientes a esta época, revelan que en las actuales regiones desérticas hubo asentamientos humanos y migración. Es, por ello, lógico suponer que las lluvias monzónicas estivales se extendían más hacia el norte y regaban el Sahara.

Hacia finales de este óptimo climático, hace unos 5000 años, el incremento en las cantidades de polen de pino fósil indica que, en el noroeste de Europa, los bosques de coniferas sustituyeron a los de frondosas. En el período post-boreal volvió, al parecer, el frío y la sequedad. El declive fue gradual, aunque con algunas fluctuaciones importantes a corto plazo; hacia el año 900 a.C. (a principios de la fase climática subatlántica) aceleró su ritmo y las precipitaciones aumentaron considerablemente.

El nivel de numerosos lagos europeos subió bruscamente e inundó los terrenos próximos, incluidos algunos poblados. Los caminos tuvieron que ser desviados debido al crecimiento de las turberas, y el avance de los glaciares alpinos bloqueó los pasos de montaña durante varios siglos. El desplazamiento de las principales zonas climáticas hacia los polos, que tuvo lugar durante el óptimo climático atlántico, se invirtió y dejó paso a las tormentas subpolares sobre el norte de Europa.

La influencia del hombre sobre la vegetación natural, a través de la tala de bosques enteros, invalida el papel indicador del polen fósil para períodos posteriores. Por fortuna se dispone de otras indicaciones, como las fuentes arqueológicas y los documentos históricos. Mediante las modernas técnicas geofísicas y las sondas y taladros de gran profundidad se han obtenido asimismo datos fiables sobre el clima reinante a lo largo de todo el período postglacial.

Los siglos siguientes vieron un ascenso gradual de la temperatura y la sequedad, preludio del llamado óptimo climático secundario, que tuvo lugar entre los años 400 y 1200 d.C. Este período, especialmente cálido y sin tormentas en el Atlántico Norte, presenció los grandes viajes de los vikingos y su establecimiento en Islandia y Groenlandia, cuyas costas quedaban, en el siglo X, fuera de los mantos de hielo del Ártico. El cultivo de la vid en Inglaterra, mencionado por ciertas fuentes, prueba la suavidad del clima.

Durante los siglos VIII y XIV, estas condiciones ideales llegaron a su fin. Viejos cuadernos de bitácora y publicaciones meteorológicas mencionan la reaparición de los hielos polares que, junto a las condiciones cada vez más tormentosas del Atlántico Norte, interrumpieron las rutas entre Islandia y Groenlandia.

Las fluctuaciones climáticas extremas que tuvieron lugar en estos siglos han dejado sus huellas en numerosos puntos del hemisferio Norte. En el sudoeste de los Estados Unidos, los anillos de crecimiento de árboles milenarios indican que en el siglo xm, la sequedad fue muy acusada. En la India se conocieron también las consecuencias: la sequía y el hambre más desastrosas de su historia, debido a la ausencia de los monzones estivales.

En Europa, los años con inviernos rigurosos (el Danubio, el Támesis y el Rin se helaban) y veranos fríos y lluviosos (con pérdida de cosechas y el hambre subsiguientes) alternaban con otros de extrema sequía. Los datos disponibles sobre las fechas de la vendimia y los precios del trigo se han utilizado para determinar tales oscilaciones; no obstante, deben interpretarse con sumo cuidado, pues no dependen tan sólo de las condiciones climáticas.

Tamesis en 1677

El Támesis en 1677. En el siglo XVII se heló en más de veinte ocasiones y las ferias tenían lugar sobre el hielo. El viejo puente de Londres contribuía a ello al obstaculizar el descenso del hielo río abajo. El científico Robert Hooke registró cuidadosamente en su diario  el frío de la época.

cambio de clima

La Pequeña glaciación
En el noroeste de Europa se han realizado observaciones meteorológicas con instrumentos desde mediados del siglo XVII, por lo que se dispone de datos precisos sobre gran parte de la llamada Pequeña glaciación (1550-1880), en que las temperaturas descendieron a sus valores más bajos desde el final de las glaciaciones. Asimismo se dispone de abundante documentación acerca de los avances de los glaciares alpinos, como el del Ródano, que alcanzó su máxima extensión en el año 1602.

Los avances del hielo en otras partes del mundo, como América del Norte, se produjeron hacia la misma época. Ello permite, pues, trazar un mapa del fenómeno para todo el hemisferio Norte. En los cuadernos de bitácora se hace referencia a esta extensión de los hielos, jamás vista hasta entonces, que cubrían la mitad del océano entre Groenlandia y Noruega. Tanto en este país como en Islandia, los cultivos se perdieron y las granjas de montaña quedaron cubiertas por el hielo. Muchos grandes ríos se helaron por completo, entre ellos, el Támesis.

Cambios ocurridos en los últimos cien años
Si bien los instrumentos primitivos dejaban mucho que desear en lo que a su precisión se refiere, se estima que, en 1780, las temperaturas medias del mes de enero eran en el centro de Inglaterra unos dos grados más bajas que las actuales. A medida que se perfeccionaron los instrumentos, la cantidad de datos disponibles, sobre numerosas regiones del globo aumentó en oriental, un aumento del 130-140 por ciento ocasionó bruscas subidas en el nivel de los lagos.

El del lago Victoria, por ejemplo, ha subido 1,5-2 m desde 1961 y, hoy día, representa una seria amenaza para los poblados de las orillas. Por otro lado, las latitudes comprendidas entre los 10° y los 20° en ambos hemisferios han sufrido sucesivos años de sequía. Dado que se trata de zonas de agricultura marginal, donde las, escasas lluvias apenas permiten magros cultivos y una ganadería escuálida, la sequía trajo consigo un hambre catastrófica con pérdida de muchas vidas humanas.

Fuente Consultada:
El Arbol de la Sabiduría Fasc. N°53 Cambios Climáticos

Gases de Combustión Características Contaminantes Atmosféricos

Anualmente, sobre cada kilómetro cuadrado la mayoría de las grandes ciudades caen mas de 100 toneladas de polvo, y hollín, parte de este depósito procede de las combustiones  de carbón que se realizan en casas y fábricas.

Las chimeneas de las fábricas, las locomotoras y los automóviles también producen  polvo,   humos  y   gases  perjudiciales, que se suman  a la composición del aire. Los efectos de esta contaminación son parcialmente  nocivos   en   otoño,   porque   en esa  época  del  año  se forman nieblas  más fácilmente.

humo de fabricas

Las partículas de hollín y ceniza, junto con las pequeñas gotitas de alquitrán contenidas en el humo (gases de combustión incompleta) , contribuyen a formación  de  la  niebla. Los   períodos   de   niebla   persistente   tienen como   consecuencia un notable  aumento  de mortalidad. Las víctimas suelen ser, fundamentalmente, personas afectadas de bronquios y otras enfermedades respiratorias.

El problema es muy importante en Inglaterra, pues aun durante los años en que los períodos de niebla han sido muy cortos,  el número de   muertes   producidas   por   la  bronquitis ha superado a la mayoría de los restaantes países.

Aunque existen otros factores que influyen  en las  enfermedades  respiratorias, es casi seguro que las impurezas del aire   (tanto el anhídrido sulfuroso como polvo atmosférico)   son una de sus principales causas.

Las impurezas del aire tienen otros efectos directos sobre la salud de los habitantes de las ciudades. Los rayos solares desempeñan una importante función en la salud, puesto que ayudan a crear defensas contra la infección en el cuerpo. Pero el polvo y el humo del aire reducen la cantidad de radiación que alcanza el nivel del suelo. En las zonas industriales, hasta un cincuenta por ciento de la luz natural puede perderse por esta causa.

El hollín, polvo y gases corrosivos contenidos en el aire contribuyen también a la erosión y deterioro de los edificios de piedra. Los vestidos y cortinas tienen que ser lavados más frecuentemente porque acumulan más suciedad, y, como resulta más oneroso reparar que prevenir, hay que tratar las superficies metálicas y de madera expuestas a la acción de esta atmósfera, pintándolas frecuentemente. Muchas de estas costosas operaciones se evitan purificando el aire.

Uno de los efectos de la contaminación atmosférica  es que el  polvo y  los gases   corrosivos  
del   aire   erosionan   los   edificios   de   piedra.  

QUÉ  ES  EL HUMO: El humo consiste en un conjunto de partículas muy pequeñas de carbón, hollín y alquitrán, que son arrastradas con los gases residuales de los fuegos, hornos y motores de combustión interna; es consecuencia de la combustión incompleta.

El humo oscuro denota el mal funcionamiento de un horno. Al quemarse carbón en un sistema abierto, parte de las materias volátiles sale por la chimenea en forma de humo, antes de que se produzca su combustión. Todos los combustibles sólidos contienen algo de materias inorgánicas que no se queman. La mayor cantidad de éstas caerá a través de la parrilla en forma de ceniza, pero algunas de las partículas más finas serán arrastradas con los gases residuales por la chimenea.

Muchos combustibles contienen pequeñas cantidades de compuestos sulfurosos orgánicos e inorgánicos, que, al quemarse, forman anhídrido sulfuroso. Como este gas puede dar lugar a los ácidos sulfuroso y sulfúrico, es potencialmente tan peligroso como el hollín y el polvo del aire. Realmente, el anhídrido sulfuroso es el principal responsable de la erosión de los edificios de piedra  y, por otra parte, el hollín existente en el aire, ensucia los edificios al depositarse sobre la piedra.

En las modernas centrales eléctricas se hacen grandes esfuerzos para evitar la expulsión de polvo a la atmósfera. Una combinación de precipitadores mecánicos y eléctricos separa el 99,3 % del polvo, y chimeneas muy altas dispersan el resto  a   gran  altura. 

Las chimeneas de las casas resultan más perniciosas que las de las fábricas, puesto que, además de ser más numerosas, son mucho más cortas. En efecto, el humo expulsado en niveles bajos tiende, frecuentemente, a caer al suelo con mucha más rapidez, debido al insuficiente movimiento del aire.

En cambio, el humo de las chimeneas de instalaciones industriales, más altas, se distribuye sobre una zona mucho más amplia. Además de ensuciar el aire, la expulsión de hollín y alquitrán por la chimenea supone un continuo desperdicio de combustible. De hecho, se ha calculado que un 5 % (es decir, cincuenta kilogramos por tonelada) del carbón adquirido para usos domésticos se elimina por las chimeneas en forma de humo, desperdiciándose su poder calorífico.

Tipos de contaminantes según su procedencia: Los contaminantes primarios son los que proceden directamente de las combustiones u otro tipo de reacciones químicas, por ejemplo el monóxido de carbonc (CO), el óxido nítrico (NO) y el dióxido de azufre (SO2)

Los contaminantes secundarios son aquellos que se originan por la interacción química entre los contamíname: primarios y los compuestos de la atmósfera activados por la luz solar, por ejemplo el ácido sulfhídrico (H2S), que deriva de dióxido de azufre (SO2), y el ácido nítrico (HNO3), que deriva de dióxido de nitrógeno (NO2).

esquema de los gases contaminantes

Características de los principales contaminantes

Dióxido de azufre:
El dióxido de azufre (SO2) es un gas incoloro y no inflamable, de olor acre e irritante. Procede de la producción energética :érmica que deriva del consumo de combustibles fósiles que zontienen azufre. La mayor parte del azufre nocivo se forma :.xante el procesamiento del gas natural y en el refinamiento del petróleo.

Monóxido de carbono
El monóxido de carbono (CO) es un gas incoloro, inodoro e insípido. Es el contaminante más abundante y de mayor zistribución de la capa inferior de la atmósfera. El origen principal de CO por las actividades humanas es la combustión incompleta de los carburantes.

Dióxido de carbono
El dióxido de carbono (CO2) es un gas incoloro, inodoro y 1,5 veces más denso que el aire. Es un componente natural de la atmósfera. En los procesos de producción de energía, como en la calefacción y el transporte, se libera este compuesto y las elevadas concentraciones pueden llegar a ser muy contaminantes.

CFC
Los clorofluorocarbonos (CFC) son gases inertes. Se trata de sustancias de origen antrópico responsables, entre otras, del efecto invernadero.

Óxidos de nitrógeno
Los óxidos de nitrógeno (NO y N02) son un grupo de gases formados por nitrógeno y oxígeno. La emisión natural de óxido de nitrógeno es casi 15 veces mayor que la realizada por el ser humano. El óxido nítrico es relativamente inofensivo, pero el dióxido de nitrógeno puede causar daños en la salud, perjudica al sistema respiratorio y además contribuye a la formación de la lluvia acida.

Dioxinas
Las dioxinas son productos orgánicos incoloros e Inodoros. Se obtienen a partir de los fenómenos naturales, como la actividad volcánica y los incendios forestales, pero las fuentes más importantes son las incineradoras, la incineración doméstica de la madera y la industria del metal.

Partículas
Los contaminantes que no están en la atmósfera en forma de gas se llaman partículas. Pueden ser sólidas o líquidas.

Ozono troposférico
El ozono de la estratosfera protege de las radiaciones ultravioletas del Sol. Pero ocurre que ciertas reacciones químicas producen una disminución de este, lo que repercute en un incremento de la concentración en la troposfera, donde resulta muy perjudicial para la respiración de los seres vivos.

Gas Procedencia Efecto
Dióxido de azufre Combustión de petróleo Afecciones respiratorias
Monóxido de carbono Combustiones Muy tóxico
Dióxido de carbono Industria Aumento efecto invernadero
CFC Maquinaria refrigeradora Agujero de ozono
Óxidos de nitrógeno Carburantes de automóviles Lluvia acida
Dioxinas Incineradoras de basura Posible aumento del riesgo de cáncer
Partículas sólidas Canteras, humos en general Enfermedades pulmonares
Ozono troposférico Emisión de sus precursores Daños en vías respiratorias

CÓMO REDUCIR LOS HUMOS
Las cocinas y hornos de las casas constituyen la principal fuente productora de sustancias que ensucian la atmósfera, de modo que este peligro sólo podrá reducirse si las amas de casa se deciden a modificar los sistemas de cocina y calefacción de sus hogares. El gas y la electricidad se van haciendo cada vez más populares desde hace varios años, pero los que prefieren tener una chimenea encendida pueden encontrar en el mercado un buen número de combustibles sin humo.

Los combustibles sin humo se fabrican con carbón mineral. La mayor parte de la materia prima que de otro modo se perdería por la chimenea se recupera calentando el carbón en retortas cerradas (como no hay aire en la retorta, ni el carbón ni las materias volátiles pueden quemarse).

El residuo, que contiene poca o ninguna materia volátil, se evapora, quemándose sin producir humos. Además del coque, carbón casi puro, hay un conjunto de combustibles sin humos que contiene una pequeña cantidad de materias volátiles, por lo que resulta fácil encenderlo.

Aunque estos combustibles pueden quemarse en los tradicionales hogares abiertos, son mucho más eficaces cuando se queman en hornos modernos. En éstos no sólo se consigue que los combustibles sin humos ardan satisfactoriamente, sino que también es posible controlar con facilidad la combustión. Otros combustibles sin humo no son apropiados  para  quemarlos  en  hornos  abiertos.

Sin embargo, resultan excelentes para usarlos en hornos cerrados (o estufas) y calderas domésticas, como, por supuesto, lo son también los combustibles naturales sin humos: la antracita y algunas variedades de hulla. En las calderas y en los hornos modernos, el carbón puede quemarse eficazmente y, por consiguiente, sin humos. Pero, aun así, se expulsan al aire cenizas finas, que, por otra parte, pueden reducirse instalando precipi-tadores de polvo en las chimeneas.

El Protocolo de Kioto
Hoy se acepta de forma general que el calentamiento global es un hecho o, al menos, que puede serlo si sigue aumentando la concentración de C02 en la atmósfera. Por ello, los gobiernos mundiales acordaron reunirse para encarar el problema. Fruto de ello fue el Protocolo de Kioto sobre el Cambio Climático.

Es un convenio, elaborado en esta ciudad japonesa y aprobado el 11/9/1997, por el cual los Estados firmantes se comprometen a reducir (en el caso de los países desarrollados y principales contaminantes) o a no subir (en el caso de los países menos desarrollados) sus emisiones de gases invernadero en un cierto porcentaje con respecto a las emisiones de dichos gases generadas en 1990, año que se toma como referencia.

Posteriormente, en 2002, la UE adquirió el compromiso de que sus Estados miembros disminuirán sus emisiones totales un 8% con respecto a la concentración de 1990 antes del año 2012. Las actividades industriales y la producción de energía en las centrales térmicas son las que se verían más afectadas por este recorte, ya que, en la actualidad, sobrepasan bastante los límites.

Cada ciudadano contribuye a producir gases de efecto invernadero cuando quema combustibles fósiles: al usar el vehículo particular, al poner la calefacción, al cocinar, al calentar agua para el aseo personal, etc. Cada uno de nosotros puede contribuir a reducir la emisión de estos gases de muchas maneras, pero la principal es disminuyendo el consumo de energía y de recursos; así, reduciremos también las emisiones generadas al producirlos.

Fuente Consultada
Revista TECNIRAMA N°113 Enciclopedia de la Ciencia y la Tecnología
La Enciclopedia del Estudiante Tomo 14 Ecología

Regiones Mas Afectadas Por el Cambio Climático del Mundo Mapa

MAPA DEL IMPACTO EN EL MUNDO DEL CALENTAMIENTO GLOBAL

mapa impacto climatico

Efectos sobre la biodiversidad, incluyendo el riesgo o la extinción del 35% de las especies terrestres para el año 2050, la pérdida de la mayoría de los arrecifes de coral tropicales y el 30% de las comunidades de coral de los arrecifes restantes.

Estas consecuencias actúan de manera diferente en distintas partes del mundo. Y el efecto del cambio climático muchas veces se suma a otras presiones y amenazas que sufren los ecosistemas naturales como producto de la acción del hombre, aumentando aún más su fragilidad.

A continuación, se presentan ejemplos de los impactos que el cambio climático traerá en diferentes regiones del planeta, en un escenario de aumento de la temperatura media global de apenas 2° C.

1-Delta del río Mekong Tailandia, Vietnam, Camboya, Laos, Myanmar, Tíbet y la provincia de Yunnan (China): inundaciones masivas e incremento de la salinidad en los sistemas de agua dulce, incluyendo impactos en las más grandes pesquerías de aguas continentales del mundo, que proporcionan bienes a alrededor de 60 millones de personas.

2-Cáucaso Armenia, Azerbayán, Georgia, porción norte del Cáucaso de la Federación Rusa, noreste de Turquía y parte del noroeste de Irán: amenaza de sequías, Inundaciones, incendios forestales y resurgimiento de la malaria en poblaciones altamente dependientes de la agricultura y de los bosques.

3-Este de los Himalayas Nepal: el retroceso de los glaciares, combinado con la fragmentación del habitat, provoca deslizamientos de tierras, Inundaciones y restricciones en el acceso al agua dulce.

4-Costa este de África Kenya, Tanzania y Mozambique: escenarlo de 2° C: los manglares estarán en peligro por el aumento del nivel del mar, combinado con la expansión de la agricultura, la deforestación y la producción de leña y el crecimiento de áreas urbanas. Los arrecifes de coral y las pesquerías se verán amenazadas por el aumento de las temperaturas y del nivel del mar, la acidificación, la sobrepesca Industrial y las prácticas destructivas de las pesquerías costeras.

5-Andes del Norte Colombia, Ecuador, Perú: estrés hídrlco para comunidades Indígenas y pequeños granjeros, y para la fuente de agua del río Amazonas.

6-Cuenca central del río Yangtzé China: inundaciones masivas sobre viviendas. Afectarán a más de 400 millones de personas.

7-Cuenca del río Danubio 19 países Incluyendo Hungría, Rumania, Bulgaria, Ucrania y Moldavia: millones de personas que habitan en la cuenca de los ríos, y que dependen principalmente de la agricultura para su subsistencia, sufrirán severos impactos por las inundaciones.

8-Gran Chaco Sudamericano La Argentina, Bolivia, Paraguay y una pequeña parte de Brasil: Inundaciones y desertlflcaclón asociadas a la deforestación en el oeste de la región, debido al avance de la frontera agropecuaria, Las poblaciones rurales y las comunidades indígenas deberán desplazarse.

9-Arrecife mesoamericano México, Bellce, Guatemala y Honduras: aumento del nivel del mar, blanqueamiento de los arrecifes de coral por el aumento de la temperatura y de la acidificación, pérdida de las atracciones turísticas y de la productividad de la pesca, de las cuales dependen los habitantes.

10-Triángulo de Coral Indonesia, Filipinas, Malasia, Papua Nueva Guinea, islas Salomón y Timor-Leste: 100 millones de personas, beneficiadas directamente por los recursos costeros (las pesquerías, fundamentalmente) están seriamente amenazadas por el blanqueamiento de coral, el desarrollo costero y las Inundaciones en las zonas bajas.

11-Océano Austral Rodea todo el continente antartico: disminución del hielo marino del 10 al 15% y, en algunas áreas, del 30%. Se reducen algunas especies que dependen del hielo, como por ejemplo el krill. Este crustáceo se alimenta del plancton que se cría bajo las capas de hielo y constituye la base de la cadena alimentaria de muchas especies del océano Austral.

12-Donaña España: Incremento de la desertificación mayor que el promedio global. Impactos Intensos, como disminución de lluvias y aumento masivo de los ritmos de evaporación.

13-Sundarbans Oeste del golfo de Bengala: habitat muy amenazado por la Inundación de los ríos y el aumento del nivel de mar, que afectará elhogar de cuatro millones de personas y del 10% de la población de tigres de Bengala que aún existen.

14-Altai-Sayan Rusia, Mongolia, Kazajastán y noroeste de China: el calentamient registrado de 1,5° C en los últimos 60 años, el derretimiento masivo de glaciares, las inundaciones catastróficas y las sequías prolongadas impactan en la población, que es altamente dependiente de la agricultura.

15-Cuenca del río Ruaha Tanzania: escasez de agua, particularmente en la temporada seca, que también incrementará ¡a inseguridad alimentaria, el cólera y otras enfermedades infecciosas.
15-Fifi Defensas naturales, arrecifes y manglares se verían seriamente amenazados por el cambio climático y otras presiones.

isla malé

88.000 son los habitantes de Male (foto), la capital de Maldivas, cuyas vidas serán afectadas por el aumento del nivel del mar. El 80% de las islas se sitúa apenas un metro por encima del nivel del mar.

Fuente Consultada: Cuadernillo Calentamiento Global de la Fundación Vida Silvestre junto a Clarín

El Mundo y El Medio Ambiente Capa Ozono Calentamiento Global Historia

Geografía del Mundo – Ríos, Montañas, Océanos, Continentes y Países
Eras Geológicas del Planeta Tierra
Estructura Interna del Planeta Tierra
La Importancia del Agua
La Capa de Ozono
La Explosión Demográfica
El Efecto Invernadero
Desastres Naturales
La Antártida
La Población Mundial (Sus Desafíos)
El Petróleo: El Oro Negro
Grandes Ciudades: Megalópolis
El Agua, el Aire y La Atmósfera
La LLuvia Ácida
El Magnetismo Terrestre
El Magma Terrestre
Origen de la Vida-Evolución del Hombre-Proyecto Genoma-Clonación
TRAGEDIAS
Malas Noticias En El Mundo
La Tragedia del Challenger
El Titanic
El Hinbenburg
Aeropuerto de Tenerife
Accidente en el Rio Potomac
Desastre Químico de Seveso
La Usina Atómica de Chernobyl
El Peligro de la Ondas Ionizantes
DATOS GEOGRÁFICOS
Geografía de Argentina
Geografía del Mundo
Datos Estadísticos del Mundo
Accidentes Geográficos Notables
Datos de América del Sur
Atlas Mundial Con Datos Demográficos
Datos Curiosos del Planeta Tierra
Mapa Mundial del Hambre
El Planeta Se Rebela
Latinoamérica y el Mundo en el Siglo XX
Regiones, Países y Ciudades del Mundo
El Calentamiento Global Provocará Una Gran Crisis
La Biodiversidad
Los Recursos Energéticos Naturales del Planeta
El Agua Dulce y El Acuífero Guaraní
Conceptos Básicos de Ecología
Países Verdes,Que Cuidan el Planeta
Históricas Contaminaciones Fatales del Aire
Los Lugares Más Bellos del Mundo
¿Como Se Calcula la Riqueza de un País?
 Haz Una Búsqueda Porque Hay Muchos Temas Más Tratados Sobre Geografía….

 

Tsunami de Indonesia Asia Causas y Consecuencias Anillo de Fuego Pacifico

Uno de los sucesos que más fresco está en la memoria fue el tsunami del 26 de diciembre de 2004. Un terremoto a 4.000 metros de profundidad en el océano Índico, a unos 260 kilómetros al oeste de la costa de Aceh, Indonesia, que llegaría a los 9 grados de la escala Richter, ocasionó una cadena de tsunamis que borraron literalmente del mapa islas, playas y poblaciones, que quedaron sumergidas en una densa capa de lodo y agua. Murieron cerca de 300.000 personas.

El fenómeno, de proporciones increíblemente devastadoras, afectó a m de 5 millones de personas. En marzo de 2005 se calculaba que más de un millón de personas quedaron sin hogar y que unas 300.000 de todas las nacionalidades (numerosos turistas pasaban en la zona sus vacaciones de Navidad) habían perdido la vida en una docena de países, la mayor parte de ellas, un 170.000, en Indonesia, pero también miles en la India, Sri Lanka y Tailandia.  (ver el sexto sentido de los animales)

Cualquier movimiento de suelo en una escala mayor a 7 en la escala de Richter está considerado muy peligroso, por todos los destrozos materiales que puede provocar y la cantidad de victimas mortales. Este terremoto submarino es el segundo mas grande de la historia, casi superando al ocurrido en Valdivia Chile , en 1960, , cuya intensidad fue de 9,6.

El terremoto que generó el gran tsunami del Océano Índico de 2004 se estima que han dado a conocer la energía de 23.000 bombas atómicas de Hiroshima (unos 500 Megatones) y tipo, según el Servicio Geológico de EE.UU. (USGS). Al final del día más de 150.000 personas fueron muertas o desaparecidas y millones más se quedaron sin hogar en 11 países, por lo que es tal vez fue el tsunami más destructivo de la historia.

El epicentro del sismo de magnitud 9,0 se corresponden con el Océano Índico cerca de la costa oeste de la isla Indonesia de Sumatra, según el organismo internacional (USGS) que monitorea terremotos en todo el mundo. El movimiento violento de las secciones de la corteza de la Tierra, conocidos como placas tectónicas, el desplazamiento de gran cantidad de agua, el envío de potentes ondas de choque en todas las direcciones.

El terremoto fue el resultado del deslizamiento de la porción de la corteza terrestre que se conoce como la placa de la India bajo la sección llamada la placa de Birmania. El proceso ha estado ocurriendo durante miles de años, una placa de empuje contra el otro hasta que algo tiene que ceder.

El resultado del 26 de diciembre fue una ruptura de las estimaciones del USGS fue más de 1.000 kilómetros de largo, desplazando el fondo del mar por encima de la ruptura de tal vez 10 metros a varios metros de forma horizontal y vertical. Eso no suena como mucho, pero los billones de toneladas de roca que se movieron a lo largo de cientos de millas del planeta causado a estremecerse con el terremoto de mayor magnitud en 40 años.

Sobre el lecho del mar desplazado o quebrado, el gran volumen del océano se desplaza a lo largo de la línea de la ruptura, iniciando la creación de uno de los fenómenos más letales de la naturaleza: un tsunami. En cuestión de horas las enorme olas asesinas que se irradian en la zona del terremoto golpeó la costa de 11 países del Océano Índico, arrebatando a la gente al mar, otros ahogados en sus casas o en las playas, y la propiedad la demolición de África a Tailandia.

En las zonas más afectadas, en medio del desastre, los supervivientes tuvieron que enfrentarse desde el domingo a nuevos temblores. La noche del miércoles 29 se registraron seis réplicas del terremoto, la mayor de 6,2 grados magnitud, que volvieron a aterrorizaron a miles de damnificados que pasan la noche en tiendas proporcionadas por el Ejército.

Los tsunamis grandes han sido relativamente raros en el Océano Índico, al menos en la memoria humana, pues son más frecuentes en el Pacífico. Pero todos los océanos ha generado los flagelos. Muchos países están en riesgo. De todas maneras Indonesia pertenece a una zona llamada «Anillo de Fuego del Pacífico», un área de gran actividad sísmica y volcánica que es sacudida por unos 7.000 temblores al año, la mayoría de baja potencia. El aumento de la actividad sísmica de características severas desde 2004 ha generado preocupación en la comunidad científica.

El tsunami del Océano Índico viajó hasta casi 5.000 kilómetros llegando a África  con fuerza suficiente para matar gente y destruir propiedades.

Un tsunami puede ser inferior a un pie (30 centímetros) de altura sobre la superficie del océano abierto, por lo que no son percibidas por los marineros. Pero el pulso de gran alcance de la energía se desplaza rápidamente a través del océano a cientos de kilómetros por hora. Una vez que un tsunami llega a aguas poco profundas cerca de la costa es más lento. La parte superior de la onda se mueve más rápido que la parte inferior, haciendo que el mar aumentará drásticamente.

El tsunami del Océano Índico provocó olas de hasta 5 metros en algunos lugares, según informes de prensa. Pero en muchos otros lugares testigos describieron una rápida alza de los océanos, más como un río muy poderoso o una inundación que el avance y el retroceso de las olas gigantes.

Los tsunamis son enormes olas generadas, principalmente, a partir de terremotos localizados en el mar y, en algunos casos, a partir de erupciones volcánicas o de deslizamientos de tierra submarinos. Las sacudidas provocadas por estos eventos pueden, en ocasiones, originar grandes olas que arrasan todo lo que encuentran a su llegada a las zonas costeras. Las olas generadas en un tsunami pueden alcanzar velocidades de 800 km/h y recorrer grandes distancias. La prevención de los efectos dañinos de los tsunamis pasa por la construcción de diques y barreras de desvío, como se ha hecho en Japón, pero estas obras son tremendamente costosas y degradan el paisaje. Por otra parte, veintidós países de la región del Pacífico han puesto en marcha un sistema de alarma para desalojar las zonas ante la posible aparición de este fenómeno y reducir los efectos.

Keny E. Sieh (1952)
Kerry SiehGeólogo y sismólogo estadounidense. Fue quien predijo el maremoto de Sumatra que ocurrió en diciembre de 2004 causando la muerte de más de 200.000 personas en varios países de Asia.

Actualmente es el director fundador del Observatorio Tierra de Singapur, que tiene :omo objetivo llevar a cabo investigación básica y aplicada relacionada con terremotos, tsunamis, erupciones y riesgos climáticos  

El geólogo californiano Kerry Edward Sieh lleva varios años estudiando la falla frente a la costa del oeste de Sumatra y ef comportamiento de los corales en busca de información sobre los terremotos. Para este hombre la llegada de un desastre sísmico en el océano índico era sólo cuestión de tiempo.

Ahora Sieh y otros especialistas temen que sea apenas el comienzo de una serie de catástrofes. Según Kerry, lo peor todavía no ocurrió. La posibilidad de un nuevo terremoto de magnitud 8,8 seguido de un tsunami es casi una certeza en el curso de la próxima década, augura Sieh. “Hay auténticas bestias tectónicas en el mundo, pero la falla de subducción paralela a Sumatra es un tigre. Atacará con toda seguridad.”

La Falla de San Andrés
Antes de establecerse en Singapur, Sieh dedicó sus primeros años de investigación al análisis de las capas geológicas y los accidentes geográficos de la falla de San Andrés para comprender la frecuencia y la regularidad con que se producen los grandes terremotos en el sur de California. Para ello, estudió los árboles, los sedimentos y los viejos lechos de corrientes y lagos que se encuentran a lo largo de la falla de San Andrés en Patlett Creek, cerca de Palmcla-le, California.

Gracias a un minucioso trabajo en equipo y al registro de las evidencias de diferentes rupturas encontradas fue posible identificar una docena de terremotos históricos. El trabajo de exploración llevado a cabo en Pallett Creek sirvió también para descifrar que la ruptura se ha venido repitiendo, en promedio, cada 130 años durante los últimos 1.500 años. Sin embargo, los intervalos reales han variado mucho, desde menos de 50 años a más de 300 lo cual hace muy difícil hacer pronósticos certeros. El problema parece estar en la complejidad de la geología de la Tierra.

California abriga docenas de fallas importantes, pera también está llena de otras más pequeñas. Por lo tanto, ante cada terremoto se vuelve a acomodar la deformación en las fallas, aliviando la deformación en una e incrementándola en otra.

El resultado es una historia caótica de terremotos imprevisibles en lugar de un ciclo sísmico perfectamente uniforme que opere con regularidad y precisión. En consecuencia, tos sismólogos deben apoyarse en las probabilidades estadísticas a! hacer afirmaciones acerca del futuro.(Fuente: Revista Gran Atlas de la Ciencia – National Geographic, Terremotos y Tsunamis)

Ver: Terremotos Históricos

Vuelo Transpolar Argentina Nueva Zelandia Vuelo Comercial Directo Detalles

El vuelo transpolar argentino

Antaño la factibilidad de comunicación aerocomercial de la Argentina con Australia y Nueva Zelanda estaba limitada a una ruta que, básicamente, debía cumplir el itinerario Buenos Aires-Los Angeles-Honolulú-Auckland-Sydney. Como era necesario utilizar los servicios de varias compañías, con los trasbordos y esperas del caso, el viaje duraba varias decenas de horas.

El vuelo directo desde el aeropuerto internacional de Ezeiza y Auckland (con escala técnica de reaprovisionamiento en Río Gallegos) insume aproximadamente trece horas de vuelo efectivo (tiempo de vueloblock, o sea, en tanto funcionen los motores); desde Auckland a Sydney el tiempo de vuelo es de tres horas. En el regreso no es necesaria la escala técnica en Río Gallegos —por cuanto los vientos favorables permiten ahorrar combustible— y por ello la duración del vuelo se reduce considerablemente.

El servicio se cumple con aviones “Jumbo” (técnicamente: Boeing 747-287 B, serie 200, de cabina ancha), dotados de cuatro turbinas, con velocidad de crucero de 990 Km./hora (0,85 match, es decir, el 85% de la velocidad del sonido), a una altura promedio de 14.000 m.

El combustible es kerosene homogeneizado de gran pureza, con tanques que alojan aproximadamente 200.000 litros al despegue, lo que reporta una autonomía de vuelo de doce horas. La capacidad de carga incluye 334 pasajeros (25.000 Kg.), 7.000kg de equipajes y 20.000 Kg. de carga adicional en bodegas.

El avión tiene un largo total de 70,60 m, una envergadura de 59,64 m y una altura de 19,58 m. El instrumental de vuelo es complejo: tres equipos de navegación inercial (que lo liberan de los apoyos terrestres), tres pilotos automáticos que le permiten aterrizar “a ciegas”, computadoras para controlar rumbos, etc. En suma, un alarde de la actual tecnología.

Vuelo Transpolar

Un inconveniente es que  la tripulación de los vuelos transpolares están expuestos a niveles de radiación cósmica y solar inusualmente altos. El físico estadounidense Robert Barish asegura que el nivel de radiación recibido por cada uno de estos viajes equivale al de tres radiografías, una cantidad muy por encima del umbral aconsejado por la directiva europea y otras regulaciones internacionales.  Según los expertos, el motivo por el que estas radiaciones son especialmente altas en estos vuelos está en la atracción magnética que las regiones polares ejercen sobre las partículas procedentes del espacio. Además, el alarmante adelgazamiento de la atmósfera en ambos polos contribuye a agravar el efecto.

Estas dosis de radiación ya son especialmente altas en los vuelos convencionales. De hecho, determinados tipos de cáncer son estadísticamente más frecuentes en pilotos y azafatas que entre el personal de tierra. Y algunas compañías europeas han adoptado como política la permanencia en tierra de sus empleadas embarazadas.

De momento, las compañías con vuelos transpolares no informan a los pasajeros de este tipo de riesgos pero afirman que toman medidas como la medición constante de las radiaciones solares. Algunas empresas como la Continental o la United Airlines han empezado a desviar los aviones por zonas menos expuestas a la radiación, y cada vez son más los pilotos y expertos que exigen que se tomen medidas sobre el tema.(fuente:www.fogonazos.es)

Problemas Ambientales en Argentina Agentes Contaminantes

PROBLEMAS MEDIOAMBIENTALES DE ARGENTINA-AGENTES CONTAMINANTES
AGUA-RESIDUOS-AIRE-SUELOS-DEFORESTACIÓN

La calidad de vida de la población empeora día a día. Muchas son las causas que provocan esta situación pero, en gran medida, es producto del deterioro en que se encuentra el ambiente. Después de la década del 50, comenzaron a estudiarse medidas para detener ese deterioro en los países desarrollados. Hoy, todo el mundo sabe que si no se cuida el ambiente, el futuro de las generaciones venideras estará muy comprometido. Países ricos y pobres padecen los problemas ambientales aunque de diferente forma. Por otro lado, es seguro que las mejores posibilidades de solucionarlos las tienen los primeros. Estos problemas ambientales afectan ciudades, áreas rurales, países, regiones y al planeta en general, en distinta escala.

emision de humo al medio ambiente

PRINCIPALES PROBLEMAS AMBIENTALES DE ARGENTINA Y EL MUNDO

Los principales expertos sobre los problemas medioambientales que afectarán a nuestras vidas. Esta es la conclusión. La escasez de agua, la degradación de la calidad del aire y los suelos, el crecimiento y disposición de los residuos y la producción de energías contaminantes son los problemas ambientales más graves que afectarán a la población en los próximos 10 años. Al menos, ésa es la principal conclusión de un grupo de expertos y representantes de organizaciones dedicadas al estudio y seguimiento de la cuestión ambiental.

Con el cambio climático como telón de fondo, el paisaje ha comenzado a variar y esos nuevos trazos podrían ser irreversibles, aún más, podrían agravarse si no se toman medidas con urgencia.

Un informe del Banco Mundial, reafirma la gravedad de la situación. Las conclusiones cruzan variables políticas, económicas y ambientales e indican que el proceso se ha desatado y la productividad agrícola empezará a caer en América Latina entre un 12 y un 50 por ciento en las próximas décadas. El deterioro de los suelos por sobreexplotación y utilización exagerada de agroquímicos es una de las razones. Aquí, un recorrido por los temas medioambientales que más preocupan.

EL AGUA

El 71 por ciento de la superficie del planeta  está cubierto por agua. Apenas el 2,5 por ciento es agua dulce, pero no toda puede ser consumida porque más del 70 por ciento de esa agua dulce está congelada en los polos. Es decir, que con menos del 1 por ciento del total del agua existente hoy se deben satisfacer las necesidades de 6.600 millones de personas que habitan el planeta. Según cifras de las Naciones Unidas, en la próxima década, unos 2.700 millones de personas vivirán en zonas con escasez de agua.

La diputada nacional y licenciada en economía Fernanda Reyes agrega que a la alarmante y continua degradación del agua, hoy se le suma una distribución inequitativa: hay millones de personas sin acceso a agua segura para sus necesidades elementales. “Se trata de un bien escaso y lamentablemente se lo usa sin control”, y cita el ejemplo de los millones de litros que utiliza la minería a cielo abierto en provincias como Catamarca o San Juan.

“La expansión irracional y sin control de la frontera agrícola, junto con el efecto de la desertificación, están provocando la pérdida o modificación del habitat de miles de personas por la degradación de la biodiversidad con lo que se acentúan los efectos del cambio climático global”, explica Reyes.

Por otro lado, el incremento de la duración de los períodos de sequía y lluvias es una de las consecuencias más perniciosas de los cambios en el clima. Esto representa la mayor preocupación del especialista en meteorología Osvaldo Canziani, quien preside uno de los grupos de trabajo del Panel de Expertos sobre Cambio Climático de Naciones Unidas (IPCC, por sus siglas en inglés). Según menciona se está gestando una especie de revolución por el recurso hídrico, habida cuenta de que se ha duplicado el consumo de agua desde principios del siglo XX hasta 1940, y que se ha multiplicado dos veces más a fines del siglo. Esto está indicando que todos debemos informarnos de qué manera podemos darle una solución posible.

“El agua es un elemento vital que probablemente generará en un futuro no muy lejano negocios de trillones de dólares. Hoy una botella de agua es un elemento muy valioso para países con escasez, aunque cualquiera de nosotros puede despreciarla al abrir la canilla y dejarla correr libremente”, afirma Canziani, quien recibió, junto con sus colegas, el Premio Nobel de la Paz 2007.

LOS RESIDUOS

El mal manejo de los desechos afecta a casi todas las ciudades de Argentina y de Latinoamérica. La mayoría de los grandes ríos y lagos está contaminado por la basura domiciliaria, las cloacas y la actividad industrial o minera. Por lo menos, en la Argentina, hay más de 2.000 basurales a cielo abierto sin ningún tipo de control.

La directora Ejecutiva de la Fundación Ambiente y Recursos Naturales (FARN), María Eugenia Di Paola, explica que la basura —su tratamiento y disposición— será un problema a resolver en la década que viene. Di Paola, quien es experta en derecho de los Recursos Naturales e hizo un máster en derecho Ambiental, expresa que, en primer término, hace falta revertir el modelo de contaminación imperante por uno diferente, que i dé prioridad a la restauración y prevención. “Esto implica trabajar p en la gestión integral de los residuos que incluyen el re-ciclado, revalorización y reutilización de los elementos que consumimos”.

Para la especialista será notable el impacto de las actividades productivas en el agua, el aire y el suelo. “Producir la menor contaminación de estos recursos será fundamental para lograr el equilibrio de los ecosistemas. La clave está en el trabajo que, tanto en el nivel público como privado y ciudadano, pueda hacerse en las cuencas hídricas y atmosféricas. Hay que garantizar que el agua y la riqueza que encierra la tierra puedan perdurar y mantener la calidad porque lo que estará en juego es la salud de la población”.

EL AIRE Y EL SUELO

La superficie cultivada en América Latina se duplicó en los últimos 10 años. La agricultura intensiva y la utilización de productos químicos degradó los suelos hasta dejarlos, en algunas zonas como La Pampa o Santa Fe, inutilizados para cualquier tipo de producción.

Definitivamente, la deforestación indiscriminada cambió el paisaje y, en consecuencia, ha generado variaciones en las condiciones climáticas y ha restado posibilidades para la oxigenación necesaria. Di Paola propone cambiar el paradigma de las actividades productivas. “El sector privado debe adaptarse, integrando en su planificación y forma de trabajo al ambiente y al desarrollo sostenible. En la región, un ejemplo del desafío que se presenta es el de la agricultura sustentable —rotación de los suelos, evitar los fertilizantes químicos, proteger y mejorar la calidad del suelo, el aire y el agua para satisfacer las necesidades actuales y futuras del mundo— frente al avance de la frontera agrícola sin la debida planificación”.

ENERGÍAS CONTAMINANTES

La desaceleración en la utilización de energías contaminantes llevará varios años; los autos y la producción todavía se sostienen con los combustibles fósiles.

Los equipos técnicos de FARN alertan sobre la inminente escasez del petróleo y sus derivados. Señalan como alternativa las energías  renovables y apuntan que hace falta una modificación de la matriz energética mundial.“La dependencia de los combustibles deberá cambiar por dos razones: es un recurso no renovable y uno de los principales productores de dióxido de carbono”, dice Di Paola.

EL CALENTAMIENTO GLOBAL

Canziani señala que la temperatura global seguirá aumentando cada año y a consecuencia de esto, la Argentina sufrirá cada vez más tormentas fuertes, granizadas y el aumento del nivel del mar. “América del Sur contribuye al efecto invernadero del mundo con un cinco por ciento, y la mitad de ese porcentaje es a causa de la deforestación”, explica el científico.

Sergio Jellinek, director de Comunicación del Banco Mundial para América Latina y el Caribe, dice que “los países y ciudadanos de América Latina, en particular los que viven en condiciones de extrema pobreza, son altamente vulnerables a los efectos del cambio climático”, y cita las principales conclusiones del estudio que e] organismo acaba de presentar sobre la materia.

En un escenario sin cambios, es decir sin una acción decidida por partí de los gobiernos, el sector privado y  sociedad civil, los impactos más críticos del cambio climático en Amé rica Latina y el Caribe serían lo siguientes:

* En México, entre 30 por ciento y 85 por ciento de los establecimientos rurales podrían enfrentar la pérdida total de su productividad económica en 2100.

* Los desastres naturales resultantes de fenómenos climáticos (tormentas, sequías e inundaciones) tendrán un costo promedio de 0,6 por ciento del PBI en los países afectados.

* Varios glaciares andinos desaparecerán dentro de los próximos 20 años lo que afectará el suministro de agua de 77 millones de personas en el año 2020.

* El riesgo de dengue, paludismo y otras enfermedades infecciosas aumentaría en algunas zonas.

“Hay que entender que los países industrializados cargan una responsabilidad histórica por las actuales concentraciones de gases de efecto invernadero que causan el cambio climático. Por lo tanto, un compromiso concertado que involucre a América Latina debe estar basado en la idea de que una mejor gestión ambiental debe ir de la mano con el crecimiento económico”, expresa Jellinek.

Los desafíos que la humanidad tiene por delante en esta materia posiblemente sean los más grandes del siglo. Para llegar a buen puerto hace falta un compromiso que involucre no sólo a los Estados, las empresas y las organizaciones de la sociedad civil. Es la hora de la responsabilidad individual. Reconocerlo nos hará bien.

PARA SABER MAS…
¿Dónde están los árboles?: deforestación

La destrucción de los bosques y las selvas, para usar el suelo en otras actividades, lleva al proceso de deforestación. Esto compromete la existencia de las especies vegetales, animales y del suelo mismo; también altera el clima, porque tanto las selvas como los bosques lo regulan. La fotosíntesis que realizan los vegetales interviene en el equilibrio de los gases de la atmósfera: una hectárea de selva consume anualmente casi cuatro toneladas de dióxido de carbono y devuelve dos toneladas de oxígeno.

Con el fin de obtener alimentos, materias primas y energía, o realiza una explotación forestal, el hombre, desde épocas antiguas, fue talando beques y selvas de manera irracional. Originó así uno de los problemas que deben enfrentar en la actualidad los países desarrollados y subdesarrollados. Millones de hectáreas de bosques se deforestan anualmente por tala o quema.

Esto ocurre, sobre todo, en áreas tropicales donde los suelos tiene una cubierta vegetal delgada y las excesivas lluvias no permiten la acumulación de los materiales que le dan fertilidad (son suelos muy débiles, que se pierden fácilmente). Los pueblos agricultores que realizan estas prácticas con el tiempo tienen que abandonar el lugar porque el suelo ya no produce. Es bien sabido que para generar un centímetro de suelo se necesitar cien años.

Pero la deforestación continúa y en cada segundo que pasa desaparecer. del planeta tres mil metros cuadrados de bosques.
La consecuencia más significativa de la deforestación es la pérdida de ‘.i biodiversidad o diversidad biológica, que es el número de especies de plantas, animales y microorganismos existentes en el planeta. Esto pone en peligro el funcionamiento y el equilibrio natural de los ecosistemas. Las áreas de bosques y selvas tropicales encierran la mayor biodiversidad de la Tierra y actualmente corren serio riesgo de desaparecer. Casi cinco millones de kilómetros cuadrados de áreas territoriales o marinas, correspondientes a países desarrollados, se encuentran bajo protección. Pero todavía esos niveles siguen siendo insuficientes. Algunos científicos sostienen que dentro de cien años se perderán alrededor del 50% de las especies existentes en el planeta.

Si queremos conservar nuestros recursos forestales y que resulten renovables, son necesarias políticas de control y manejo basadas en el conocimiento de los ecosistemas. Lamentablemente, en los países subdesarrollados, los estudios forestales son elementales o no existen; y si se dictan leyes sobre el tema, probablemente no se cumplen. Las empresas madereras destruyen los recursos sin tener en cuenta las consecuencias futuras. La tala no respeta el tiempo que necesita una variedad para regenerarse, se desequilibran las comunidades de árboles y, muchas veces, son reemplazadas por otras de poco valor que crecen sobre suelos dañados. Sólo una gestión forestal sostenible, que equilibre objetivos ambientales, económicos y sociales, podrá servir de solución para este problema.

Los suelos se pierden: erosión
Los procesos erosivos se deben a la acción combinada de los agentes naturales (el viento, la lluvia y los cambios de temperatura) sobre la superficie de la Tierra. En muchas oportunidades, estos procesos provocan la pérdida del suelo. En las regiones áridas o semiáridas, es muy común la erosión eólica (producida por el viento), y en las regiones húmedas, la hídrica (ocasionada por el agua). Pero no sólo los agentes naturales son los causantes de la erosión de los suelos; las prácticas agrícolas inadecuadas, el sobrepastoreo, la explotación forestal, la deficiente utilización del agua y la urbanización también alteran o destruyen la cubierta vegetal protectora del suelo y aceleran estos procesos.

La deforestación y la erosión degradan los suelos, sobre todo en la regiones secas, y originan la desertización: transforman los suelos fértiles en desiertos.
También provocan desertización la tala excesiva de árboles para la obtención de leña, como ha ocurrido en la región del Sahel, en África. La salinización de los suelos es otra de las causas de desertización. En este último caso, se trata de un proceso que concentra en la superficie terrestre las sales que quedan por la evaporación del agua producida por las temperaturas elevadas; esto ocurre, por ejemplo, en las regiones áridas de Australia, Estados Unidos, Egipto, Pakistán, Siria e Irak.

La tercera parte del planeta está ocupada por desiertos, y a cada segundo que pasa desaparecen mil toneladas de suelo fértil. Según estimaciones de las Naciones Unidas, para el año 2000 un tercio de las tierras cultivables se habrá transformado en desiertos. Si esto no se detiene, ¿qué ocurrirá con las posibilidades de alimentación de la humanidad?

Para evitar todos estos procesos hay que implementar métodos de conservación de suelos. Algunos de ellos son: el aporte de materia orgánica obtenida de fertilizantes naturales o químicos; el cultivo en contorno, es decir, aprovechando las pendientes del terreno (como lo hacían los incas en los Andes peruanos) o la incorporación de plantas regeneradoras del suelo en la rotación de los cultivos. Estas plantas fijan y protegen el suelo durante la fase de crecimiento, y cuando se las entierra con el arado aportan materia orgánica.

Agricultura sustentable
Las prácticas agrícolas pueden generar la pérdida de fertilidad, la erosión y hasta la destrucción de los suelos, con el consecuente deterioro del medio ambiente.

La población mundial crece día a día y en muchos lugares del planeta el problema de la desnutrición es alarmante. Teniendo en cuenta que la agricultura es la base de la alimentación, es imperioso revertir la forma en que esa actividad se practica. Se trata, entonces, de realizar una agricultura sustentable, integrada, que tenga en cuenta el medio, y permita usar los recursos con más eficiencia.

Una de las formas de hacerlo es mediante la disminución del uso de los fertilizantes químicos, los plaguicidas y los insecticidas. Todos permitieron el aumento de la producción de alimentos, pero su uso desmedido provoca serias alteraciones en los sistemas naturales y en la salud de la población que los consume. Para revertir esta situación, se plantea su uso moderado y la valorización de los procesos naturales: uso de abonos naturales, como el estiércol, y otros que también permiten disminuir los costos, sobre todo en los países menos desarrollados.

La práctica de una agricultura altamente tecnificada le ha permitido a los países desarrollados obtener grandes ganancias, pero ha comprometido la fertilidad de los suelos. Esta situación los ha llevado a desarrollar una agricultura sustentable, más allá de los intereses de las empresas agroquímicas que imponen sus productos en el mercado.

Una agricultura sustentable supone: uso de los productos de desecho y el reciclado de nutrientes; prácticas de conservación de los suelos, del agua y demás recursos, y el conocimiento de las limitaciones que puede imponer el clima o el relieve del lugar.

Esta práctica sólo traerá beneficios reales si se implementa dentro de programas de política ambiental, y con el esfuerzo de las comunidades, los gobiernos y las organizaciones no gubernamentales (ONG).

cuadro de problemas medioambientales

ASPECTOS A RECORDAR PARA COMPRENDER LOS CONJUNTOS AMBIENTALES

1. Acerca de la relación entre la sociedad y la naturaleza La relación entre las sociedades y la naturaleza siempre es desigual, ya que las sociedades tienen diferentes estilos de desarrollo y la base natural del planeta no presenta las mismas condiciones para el desarrollo de actividades económicas a lo largo de todos los continentes.
2. Acerca del tapiz vegetal natural y el implantado: Cada vez es más difícil encontrar conjuntos ambientales que se basen en el tapiz vegetal natural u original. Por ejemplo; en el área de espacios cultivados en clima templado de la Argentina, el tapiz vegetal originario antes de que llegaran los colonizadores europeos era de pasturas, pero la acción humana ha implantado gran cantidad de árboles y cultivos que no eran originarios del lugar.
3. Acerca de los centros urbanos: Los centros urbanos son los ambientes con mayor nivel de modificación o, según algunos autores, de artificialización, de la naturaleza. Allí, no obstante, sigue lloviendo, sigue habiendo cursos de agua superficiales o subterráneos y continúan soplando los vientos.
4. Acerca de los actores sociales: Para entender cómo son y cómo funcionan los ambientes es necesario entender a los diferentes actores sociales que están implicados en su construcción: los empresarios, el Estado, las Organizaciones No Gubernamentales ambientalistas, los trabajadores y la gente en general.
5. Acerca de los Estados fuertes y los Estados débiles: Algunos ambientes son más saludables que otros. Por ejemplo, el ambiente de las grandes urbes latinoamericanas es mucho más nocivo para la salud de la gente que los ambientes de las ciudades centroeuropeas. Esto tiene que ver con el papel que cumplen los Estados en su relación con los demás actores sociales. Los Estados más débiles tienden a descuidar los aspectos de salubridad de los ambientes en los que intervienen.
6. Acerca de las escalas de análisis: El análisis de un conjunto ambiental siempre requiere estudiar lo que pasa en ese lugar, en vinculación con lo que pasa fuera de él. Por ejemplo: el deterioro del suelo por la utilización que realizan las comunidades campesinas en el sur de México tiene que ver con su atraso. Esta situación de extrema pobreza se entiende contextualizando a esos campesinos en la sociedad, la economía y la política de México. De la misma manera, la contaminación de los ambientes costeros en Uruguay requiere entender el movimiento de las corrientes marinas en relación con el crecimiento de las algas, además de los factores sociales que originaron ese problema.

7. Acerca del tiempo histórico: Los conflictos y las negociaciones entre los distintos sectores sociales varían a lo largo del tiempo. También hay sociedades con mayores posibilidades de realizar proyectos políticos, sociales y ambientales autónomos, en los que ninguna otra sociedad las obliga a realizar lo que no desean. Las sociedades “hacen” su historia y son responsables de sus acciones a través del tiempo. Una de las maneras en que se refleja el paso del tiempo histórico es en cómo aprovecharon o desperdiciaron las posibilidades que les brindaba la naturaleza.

Mirar un mapa de grandes conjuntos ambientales no es otra cosa que mirar un aspecto del estado de las distintas sociedades en un momento dado de la Historia. Es muy probable que el mapa de los grandes conjuntos ambientales de América Latina dentro de quinientos años sea muy distinto al que se observa en esta doble página. Al igual que este mapa de ambientes, que es muy distinto al mapa de ambientes de hace quinientos años, cuando llegaron los primeros colonizadores y empezaron a modificar aceleradamente la naturaleza… y a las^sociedades aborígenes que en ella vivían, punto de partida de este libro.

El deterioro ambiental en la selva paranaense
Para conocer el estado actual de deterioro ambiental en la Argentina y caracterizar los procesos de degradación, en el año 1986 la Fundación para la Educación, la Ciencia y la Cultura (FECIC) convocó a técnicos de distintas instituciones para trabajar en el tema. En 1988 se publicó el documento “El Deterioro del Ambiente en la Argentina” (PROSA: Centro para la Promoción de la Conservación del Suelo y del Agua).

Este documento se refirió especialmente a la degradación de los suelos de la provincia de Misiones. La erosión hídrica, considerada de moderada a grave, abarcaba el 9% de la superficie, o sea, 260.000 ha del territorio de esa provincia. Las áreas más afectadas eran las del centro-sur: departamentos de Oberá, L. Alem y San Javier, en los que el cultivo de la yerba mate es muy importante. Estimaciones de ese mismo informe señalaban que unas 400.000 ha o más del bosque nativo estaban sufriendo una degradación de mediana a intensa, al igual que unas 100.000 ha de pastizales. La degradación más acentuada afectaba a los bosques provinciales en la zona del Alto Paraná y del Alto Uruguay.

La selva paranaense, por su heterogeneidad, es un sistema de alta complejidad ambiental. Hasta el siglo XVI, su dinámica estuvo regulada por factores físicos y por la propia biocenosis -conjunto de especies distintas, libres, parásitas o simbióticas, todas indispensables para la supervivencia de la comunidad-, incluidas las poblaciones indígenas allí asentadas. En la etapa de conquista y de colonización europeas, se evidenciaron los primeros impactos a la orilla de los ríos, en los campos abiertos y en las áreas de borde, consecuencia de los emplazamientos humanos, de las actividades agrícolas y ganaderas y de las expediciones de exploración, la caza de esclavos y la recolección de yerba mate.

A partir del siglo XIX, el poblamiento y el modelo de desarrollo adoptado produjeron una importante reducción de las áreas selváticas. La expansión agrícola y el obraje forestal son las responsables de este cambio y de la degradación de los montes remanentes. En Misiones, se empobreció la masa arbórea antes que la cobertura boscosa, como consecuencia de la inadecuada explotación forestal.

En los últimos cien años desapareció el 90% de la selva original, y el futuro de este sistema se encuentra seriamente comprometido a corto plazo, salvo las 500.000 ha que se hallan protegidas.

Debería ponerse en marcha una planificación integral para un buen uso del suelo mediante la zonificación, según las aptitudes ecológicas y la viabilidad económica. Y deberían ordenarse los sistemas agrícolas, silvícolas y acuáticos a lo largo del tiempo para obtener un verdadero desarrollo sustentable.

Fuente: “La conservación de los recursos naturales y el hombre en la selva paranaense”, por Pablo
Laclau. Boletín Técnico N° 20. Fundación Vida Silvestre Argentina, Fondo Mundial para la Naturaleza

Fuente Consultada:
Selecciones de Reader Digest Abril 2009 – Podes Suscribirte A Su Publicación!

Sociedad, Espacio y Cultura De La Antigüedad Al Siglo XV Amézola-Dicroce-Ginestet-Semplici

La Explotacion del Petroleo Busqueda Cientifica y Técnologica

UN POCO DE HISTORIA SOBRE EL PETRÓLEO: A pesar de que el hombre ya conocía el petróleo desde los albores de la historia, la industria petrolífera apenas si cuenta con cien años de vida, y aun cuando los hombres han utilizado el petróleo durante miles de años, sólo desde hace poco se ha pensado en aprovecharlo como fuente de energía.

En muchas partes de la Tierra, el petróleo manifiesta su presencia con afloramientos que surgen de las profundidades terrestres, o con manchas oleosas que aparecen sobre la superficie de los ríos.

En las antiguas civilizaciones de la cuenca del Mediterráneo, se excavaban pequeños pozos para recoger el petróleo que surgía de los afloramientos superficiales, y la pez y el asfalto que se extraían del negro líquido eran utilizados para proteger las quillas de madera de las naves y hacerlas más resistentes para la navegación. La pez también se utiliza como aglomerante para pavimentos y otras construcciones. El asfalto sirvió para pavimentar las calles y las terrazas de Babilonia. Los egipcios, los chinos y los indios de América, utilizaban el petróleo crudo con fines medicinales y como desinfectante.

La existencia de petróleo y gas era conocida desde tiempos de los romanos. En su Historia Natural, Plinio habla del “aceite siciliano”, que se extraía de pequeños depósitos naturales y era utilizado por los griegos para la iluminación. Plinio habla también de los gases que servían para los fuegos sagrados en las fiestas en honor del dios Vulcano en la región de Emilia y describe una violenta erupción natural, acaecida en la provincia de Modena el año 91 a. de C. En un antiguo texto sobre los manantiales de aguas ricas en sales sódicas de Salsomaggiore, se hace mención de la existencia de gas y petróleo en aquella región, con manifestaciones y fenómenos registrados desde el año 589 d. de C.

El petróleo era utilizado como combustible en las lámparas de los egipcios y de otros pueblos antiguos, y ésta fue la aplicación que se le dio durante muchos siglos.

A mediados del siglo pasado, la fuente principal de luz eran las velas de sebo y las lámparas alimentadas con aceite de ballena. En aquel tiempo se producía con el petróleo crudo que emergía del suelo y era destilado en pequeñas refinerías, una pequeña cantidad de petróleo para la iluminación. La creciente demanda por parte del público, obligó a la busca del precioso líquido, pero hasta el año 1850 no se empezó a pensar en la utilidad de perforar pozos para extraerlo.

No puede señalarse con precisión quién tuvo por vez primera la idea de perforar un pozo para extraer petróleo. Muchos la atribuyen a un tal Georges H. Bissell, de Nueva York, quien adquirió un terreno en el que parecían existir, yacimientos petrolíferos, a la “Oil Creek” de Pennsylvania, y se dedicó a realizar investigaciones. Bissell fue uno de los fundadores de la “Petroleum Society” de Pennsylvania, que más tarde fue bautizada con el nombre de “Séneca Oil Company”.

Esta sociedad encargó a un tal Edwin L. Drake la excavación del primer pozo de petróleo. El 27 de agosto de 1859, después de dos meses de arduo trabajo, Drake encontró petróleo a unos 21 metros de profundidad, y del pozo surgieron tres metros cúbicos de petróleo por día.

El petróleo se reveló desde un principio como una notable fuente de riqueza, y a este primer experimento siguieron otros. Donde quiera que se descubriese petróleo, se manifestaba enseguida una gran actividad y confusión. Surgían nuevas ciudades como por encanto y la gente se disputaba a mano armada los terrenos petrolíferos.

De las experiencias prácticas cotidianas surgieron poco a poco las bases de los estudios científicos para la busca del petróleo. La composición y características físicas de la Tierra habían sido objeto de la curiosidad humana desde los tiempos más lejanos y la geología había ido evolucionando poco a poco. Sólo a principios del siglo actual, la experiencia de los investigadores del petróleo y la ciencia de los geólogos se unieron para dar vida a la “geología del petróleo”.

Entre 1965 y 1970 el petróleo había reemplazado al carbón como principal producto energético. Europa occidental y el Japón dependían cada vez más de los suministros petrolíferos del Cercano Oriente. Incluso los EE. UU., antaño el principal país exportador de petróleo, se veían obligados a importar desde finales de los años cincuenta debido a su elevada demanda energética. La creciente dependencia de Occidente de las importaciones petrolíferas incrementaba el poder de los países exportadores. Pronto iban a utilizarlo.

LA INDUSTRIA PETROQUÍMICA
El petróleo no es hoy solamente el principal producto energético, sino la materia prima más importante para la industria química, pues del petróleo se obtiene el 90 por ciento de las materias con que dicha industria elabora plásticos, abonos artificiales, caucho sintético, fibras químicas, detergentes, insecticidas y medicinas.

Desde que en 1868 el americano John W. Wyatt inventara el celuloide, indignado por el elevado precio de las bolas de billar de marfil, las cifras de producción de las materias sintéticas han aumentado ininterrumpidamente. Esta revolución técnica apenas tiene paralelo en la historia de la humanidad.

El desarrollo de las técnicas petroquímicas parte del hecho de que las moléculas de hidrocarburos se unen entre sí formando largas cadenas elásticas. Mediante el aprovechamiento de esta reacción química (polimerización) se han creado cada vez más sustancias orgánicas a partir de los hidrocarburos obtenidos del carbón, del gas natural y hoy principalmente del petróleo, sustancias que no solamente resultan más baratas que las inorgánicas (sobre todo los metales), sino que también reúnen todas las propiedades requeridas. Especial importancia tienen los termo-plásticos, materiales moldeables mediante el calor.

Los termoplásticos (dos tercios de la producción mundial de plásticos) han experimentado un desarrollo espectacular, y apenas hay campo en el que no encuentren aplicación. Entre otros muchos productos, el cloruro de polivinilo se utiliza para fabricar revestimientos de suelos, cuero artificial, esponjas sintéticas, discos y juguetes infantiles; el poliestireno, para vajillas, muebles, material de embalaje y de aislamiento; y las poliolefinas (polietileno y polipropileno), para artículos de uso doméstico, piezas de aparatos y máquinas, tubos y hojas. En pocas palabras, no es posible ya concebir un mundo sin plásticos. También desempeñan un importante papel en la fabricación de prótesis, dientes artificiales o válvulas cardíacas. Los aspectos negativos residen principalmente en la difícil eliminación de los residuos.

La industria de los plásticos consume anualmente unos 15 millones de toneladas de petróleo, es decir, sólo un 4 por ciento de la producción de crudos.

La energía alternativa
Después de la segunda crisis del petróleo de 1979, se emprendieron esfuerzos para encontrar fuentes alternativas de energía en los países avanzados. Pese a los considerables ahorros en el consumo de petróleo en los años entre 1979 y 1982, y el descenso relativo de los precios, el ímpetu siguió hasta finales de la década de los 80. Para complementar las tradicionales fuentes hidráulicas, de combustibles minerales, turba, madera y de energía nuclear, las nuevas alternativas incluían la conversión directa de la energía solar, la biomasa, la energía geotermal y la extracción de calor de los océanos, y el uso de energía de las mareas, así como el regreso a la tradicional energía eólica.

Muchas de éstas implicaban enormes programas de capital. Por tanto, la investigación y el desarrollo de las energías renovables habían sido emprendidos por gobiernos o con el apoyo gubernamental, por la friolera de 7.000 millones de dólares estadounidenses entre los 21 países miembros del Organismo Internacional de la Energía entre 1977 y 1985 inclusive. Los gobiernos también facilitaron subsidios, concesiones tributarias, préstamos baratos y otros incentivos.

La energía solar directa, por ejemplo la procedente del calentamiento del agua y del espacio, es ahora competitiva en cuanto al precio en muchos países y su uso se está ampliando. La energía eólica ha demostrado ser viable, aunque sólo para unidades pequeñas. La biomasa, en dos formas (los desperdicios o las cosechas especialmente cultivadas) se utiliza de modo creciente ya sea a través de la combustión o la conversión en combustibles líquidos o gaseosos.

En esta conversión se han utilizado el azúcar y el maíz. El excedente de azúcar de la CEE podría proporcionar cerca del 2 por ciento de las necesidades de petróleo de los países y existe un amplio potencial en otros excedentes agrícolas, así como en las cosechas especialmente plantadas.

Entre los programas a gran escala se encuentran los proyectos de las mareas en Gran Bretaña y Francia. Para sacar la energía de los océanos o de los estratos más profundos de la Tierra se necesitará mucha investigación costosa, pero finalmente ello puede resultar competitivo.

LA BÚSQUEDA CIENTÍFICA DEL PETRÓLEO. Algunas veces los estratos que contienen petróleo están cerca de la superficie terrestre, pero generalmente los depósitos se encuentran a profundidades de un kilómetro o más. Los primeros pozos fueron poco profundos y eran perforados casi al azar, guiándose los buscadores por las manifestaciones espontáneas de petróleo que aparecían en la superficie.

Hoy la búsqueda del petróleo depende de muy cuidadosos estudios científicos, realizados por geólogos, geofísicos y paleontólogos. No es posible asegurar con toda exactitud si existe petróleo en una región, pero los geólogos, estudiando los tipos de rocas y la forma en que se encuentran dispuestos los estratos pueden señalar si hay o no posibilidad de que existan depósitos; igualmente los paleontólogos, estudiando los fósiles extraídos en las perforaciones, pueden señalar si las rocas subyacentes pertenecen a formaciones propensas a contener petróleo.

Los geólogos buscadores de petróleo emplean distintos me dios para conocer la disposición de los estratos de las rocas a grandes profundidades. Uno de estos métodos es el empleo del sismógrafo, o sea, el mismo instrumento que se emplea para registrar los terremotos. El sismógrafo es tan sensible que puede registrar los pasos de una hormiga. Los geólogos perforan un pequeño pozo y depositan una carga explosiva.

Cuando se produce la explosión, las ondas viajan hacia el interior de la litosfera, en la forma en que sugiere el diagrama. Las ondas son reflejadas con mayor violencia por las rocas más duras, y regresan a la superficie en un tiempo más breve desde los estratos menos profundos que desde los situados a mayor profundidad. Igualmente las ondas varían de acuerdo con la naturaleza e inclinación de los estratos. Todas estas variaciones las registra el sismógrafo por medio de los teléfonos que aparecen colocados sobre la superficie.

El sismógrafo revela el tiempo transcurrido entre la explosión y el retorno del eco en los distintos lugares donde se instalaron los teléfonos. Estos datos, que son tomados en distintas áreas de la región estudiada, sirven a los geólogos para determinar si a grandes profundidades existen domos, anticlinales y trampas en las cuales pueda haber petróleo depositado. Si el informe es favorable, indica la posibilidad de que haya petróleo, pero no la seguridad; a veces son perforados numerosos pozos en una región, a enorme costo, sin resultada positivo alguno. (Cortesía de la Esso Standard Oil Company.)

DISTRIBUCIÓN DEL PETRÓLEO EN EL MUNDO
El petróleo se encuentra en el subsuelo, a grandes profundidades, y proviene de restos animales y vegetales que hace millones de años fueron aprisionados entre las rocas por movimientos telúricos y que, con el correr de los milenios, se transformaron en el tan codiciado “oro negro”.

Las mayores cantidades de petróleo se encuentran en los sedimentos rocosos de la era terciaria (que data de unos 200 millones de años). Las formaciones geológicas más antiguas, destrozadas y aplastadas por ios aluviones, se vieron despojadas de todo vestigio de restos orgánicos, y el petróleo que contenían terminó por perderse. Ello explica su ausencia en vastas zonas del Canadá, Brasil, Groenlandia, Escandinavia y en gran parte de África y Australia, constituidas por sedimentos muy antiguos.

La primacía en la producción mundial de petróleo le corresponde a los Estados Unidos, donde se extrae casi la mitad de toda la producción mundial; el segundo lugar lo ocupa Venezuela, en cuyo subsuelo existen reservas inmensas; el tercero Rusia y el cuarto Kuwait, un pequeño estado asiático.

Entre las naciones sudamericanas, la Argentina explota con un ritmo creciente sus riquezas petrolíferas existentes en Comodoro Rivadavia, Santa Cruz, Tierra del Fuego, Neuquén (Plaza Huincul), Salta y Mendoza. La industria de refinación cuenta con grandes y poderosas instalaciones en La Plata, Campana y San Lorenzo.

LA PERFORACIÓN DE LOS POZOS:
El petróleo solamente puede ser hallado por medio de un procedimiento bastante costoso: la perforación de pozos. En algunos yacimientos, el petróleo se encuentra relativamente cerca de la superficie; en otros, puede hallarse a bastante profundidad. A medida que la perforación alcanza mayor profundidad, el coste aumenta. La perforación se controla a medida que avanza; pero en tanto el taladro no penetre en una capa petrolífera, nada se sabe. Fuera de los campos petrolíferos muy extensos, solamente un pozo entre siete produce petróleo en cantidad comercial.

La técnica de la perforación de los pozos ha ido evolucionando durante el transcurso de los tiempos. Los primeros pozos petrolíferos eran perforados como si se tratara de pozos corrientes de agua, levantando y dejando caer alternativamente un pesado martillo, que fracturaba el terreno. Antes de comenzar su pozo, Drake levantó una torre de madera, en cuya cúspide colocó una polea que funcionaba por medio de una cuerda.

Esta torre, que en inglés se denomina derrick, se utilizaba para introducir y extraer los martillos de perforación del pozo. La verdadera perforación se realizaba mediante una especie de martillo bastante pesado que era alzado y bajado alternativamente por medio de una palanca formada por una gran viga de madera fijada a un perno.

Actualmente la perforación se realiza por medio de un taladro rotativo, colocado en el extremo de una larga transmisión de acero, compuesta por varias secciones o ejes de perforación que tienen una longitud de 27 a 36 metros, empalmándose uno tras otro a medida que la perforación se hace más profunda.

La extremidad superior de los ejes de perforación está adaptada a un eje cuadrado de acero, que a su vez se hace girar por medio de la rotary, para transmitir el movimiento a los citados ejes de perforación inferiores y a la broca, que gira en el fondo del pozo. A través de los ejes, se bombea un fluido especial para remover los restos producidos por la broca.

Estos residuos, una vez elevados a la superficie por el mismo barro que sale al exterior, son recogidos para obtener informaciones geológicas. El barro sirve también como refrigerante de la broca, reviste las paredes del pozo y con su peso impide posibles escapes de gas. Cuando el pozo alcanza la capa productiva, se retiran los ejes y la cabeza de perforación del agujero, mientras el peso del barro impide que el petróleo irrumpa en la superficie.

En el mismo terreno se cimenta la columna de tubos de revestimiento y se introduce en el agujero un tubo de pequeño diámetro a través del cual surgirá el petróleo. En la cabeza del tubo se fija, por último, un aparato llamado árbol de Navidad, compuesto por una serie de válvulas que sirven para distribuir el petróleo a las diferentes tuberías que lo conducen a los depósitos. Una vez han sido colocados el tubo y el “árbol de Navidad” en su sitio, se procede, por lo general, a desmontar el derrick.

EL REFINADO Y SUS PROCEDIMIENTOS

Tal como se encuentra en el subsuelo, el petróleo es sencillamente una materia bruta que, antes de utilizarse, ha de ser sometida a varios procedimientos. Estos procedimientos se designan con el nombre genérico de refinado y sirven para transformar el petróleo crudo en un centenar de productos diferentes.

Este apreciado líquido está constituido por una mezcla de diferentes compuestos cuyas moléculas están formadas por carbono e hidrógeno. Por esta razón a estos componentes del petróleo se les denomina hidrocarburos.
Existen diversas clases de petróleo crudo con características físicas variadísimas: algunas veces es pesado y denso; otras, ligero y claro como la gasolina. Hay tipos de petróleo negro, marrón, verde y amarillo.
La primera operación a realizar para el refinado del petróleo crudo, es la destilación, que sirve para separar las moléculas que lo componen en varias categorías, según su forma y peso.

El petróleo crudo, una vez calentado en el horno tubular, pasa a la torre de fraccionamiento, donde se transforma en vapores. Dado que la temperatura decrece del fondo a la parte alta de la torre, los diversos vapores se condensan a diferentes alturas, haciendo así posible la separación del petróleo crudo en sus diversos componentes. Mientras los aceites combustibles se condensan en los receptáculos inferiores, el petróleo de calefacción e iluminación se condensa en lo alto. Los vapores de gasolina se sitúan en la cabeza de la torre y se licuan en un condensador.

Cada componente sale de la torre a un nivel diferente y es conducido a otros aparatos para ser sometido a nuevos procesos de refinamiento que lo preparan para su ulterior uso. La necesidad de obtener de un solo producto crudo una gran cantidad de productos subsidiarios más apreciados (especialmente la gasolina), ha obligado a los industriales a desarrollar diversos procedimientos: el cracking, que permite obtener gasolina partiendo de fracciones más pesadas; la hidrogenación, con la que se obtiene por otros medios un resultado final análogo al cracking, y la polimerización, que permite obtener gasolina partiendo de los gases o de hidrocarburos ligeros.

Escasez de agua dulce Enfermedades en el Mundo Crisis del Agua Mapa

Escasez de Agua Dulce – Crisis del Agua Mapa

ESCASEZ DE AGUA EN EL PLANETA: El agua dulce es vital para la vida sobre la Tierra. Todos los seres vivos dependen de ella. Lamentablemente en pocas décadas, las muertes y enfermedades ocasionadas por la escasez y la contaminación del agua pueden adquirir dimensiones trágicas. América del Sur tiene el 20% de las reservas de agua potable del mundo, un tesoro de vida que algunos pretenden privatizar.

El agua dulce contribuye al desarrollo de las sociedades, por medio de su uso en la agricultura, en la industria, en la generación de energía y en los hogares. En la actualidad, por ejemplo, la agricultura representa más del 90 % del consumo global de agua dulce continental; el resto se distribuye entre la industria y el uso doméstico.

Actualmente la disminución de la disponibilidad de agua dulce en cantidad y en calidad es uno de los problemas ambientales más acuciantes. Sin embargo, no se puede considerar la escasez de agua como un problema nuevo. Desde el punto de vista hidrográfico, la distribución del agua dulce en la superficie terrestre es desigual y ha cambiado a lo largo del tiempo, respondiendo a oscilaciones naturales de distinta intensidad y permanencia.

escasez agua

Las sociedades han respondido de diferentes maneras a esta escasez natural: primero, ubicándose cerca del recurso; más tarde, construyendo reservorios, acueductos, sistemas de irrigación, etc., y tratando de transportar el agua hasta donde fuese necesario.

Por lo tanto, el problema de la escasez del agua está estrechamente relacionado con el modo en que las sociedades disponen de ella. Surge en el momento en que el abasto de agua no alcanza para satisfacer la demanda. Por supuesto, la demanda varía de país en país.

Es el año 2025 y el mundo está dominado por un poder hegemónico que tiene el control total sobre el agua dulce. En ese escenario, un superhéroe argentino que se hace llamar Zenitram se rebela contra el orden establecido. Su misión: sabotear a la corporación y distribuir el agua entre la población sedienta.

Hasta aquí, la historia creada por el escritor Juan Sasturain, que si bien pertenece al universo de la ficción, se nutre de los fantasmas que podrían asolar a la humanidad en un futuro no tan lejano.

Según la Organización de las Naciones Unidas (ONU), en la actualidad, de los 6.250 millones de habitantes, 1.100 millones no tienen acceso al agua potable y 2.400 millones carecen de un saneamiento adecuado.

Las cifras involucran en valores aproximados al 40 por ciento de la población mundial. Las páginas más negras del informe dan cuenta de que cinco millones de personas —la mayoría, niños— mueren cada año por beber agua contaminada. El mismo informe advierte que, de no revertirse este panorama, en el año 2025, las muertes y las enfermedades ocasionadas por la escasez y la contaminación del agua podrían adquirir dimensiones trágicas.

Según la ONU 1.100 millones de personas -20% de la población mundial- no tiene acceso a agua.

Nadie puede dudar de la importancia del agua, quizás el único elemento indispensable para el desarrollo de la vida. La escasez del agua dulce a nivel mundial es un problema de dramática prioridad, ya que representa un porcentaje limitadísimo en relación con el total de agua en el planeta: sólo el 3 por ciento, del cual menos del 1 por ciento es accesible, dado que el resto se encuentra congelada en los glaciares o a grandes profundidades, como es el caso de los acuíferos. El 97 por ciento restante es agua salada, no apropiada para la mayor parte de las actividades humanas.

A pesar de que el ciclo del agua es continuo y perpetuo, la explosión demográfica hace que cada vez se necesité más. Las principales causas que agravan la situación son el derroche indiscriminado de agua potable y la falta de herramientas legales para sancionar; el déficit de servicios básicos de abastecimiento y saneamiento, la degradación y contaminación de los cursos de agua superficiales,’tanto por la descarga de efluentes urbanos como industriales; el manejo inadecuado de’ las cuencas hidrográficas; la deforestación indiscriminada de vastas zonas geográficas y daños causados por la falta de regulación del uso del suelo ante inundaciones.

Un estadounidense consume más de 800 litros de agua por día. En la fabricación de un automóvil se utilizan 400.000 litros. En los hogares de Canadá, Francia o Alemania, cada inodoro utiliza 18 litros cada vez que se tira de la cadena. La producción de una tonelada de granos en un terreno poco indicado para su cultivo, como los campos de Arabia Saudita, pide 3000 toneladas de agua, tres veces más de lo que se considera normal…

Acuífero: El agua subterránea representa una fracción importante del agua presente en cada momento en los continentes, con un volumen mucho más importante que el del agua retenida en lagos o circulante, aunque menor que el de los glaciares. El agua del subsuelo es un recurso importante, pero de difícil gestión, por su sensibilidad a la contaminación y a la sobreexplotación.

Es un prejuicio común que el agua subterránea llena cavidades y circula por galerías. Sin embargo, se encuentra ocupando los intersticios (poros y grietas) del suelo, del sustrato rocoso o del sedimento sin consolidar, los cuales la contienen como una esponja. La única excepción significativa la ofrecen las rocas solubles como las calizas y los yesos, susceptibles de sufrir el proceso llamado karstificación, en el que el agua excava simas, cavernas y otras vías de circulación.

El agua subterránea se encuentra normalmente empapando materiales geológicos permeables que constituyen formaciones o niveles a los que llamamos acuíferos. Un acuífero es aquella área bajo la superficie de la tierra donde el agua de la superficie (p. ej. lluvia) percola y se confina, donde a veces lentamente se mueve subterráneamente al océano por ríos subterráneos.


Fuente Imagen:http://ga.water.usgs.gov/edu/watercyclespanish

El Origen de los Acuífero: El 70 por ciento de la superficie de la Tierra está ocupada por agua. El total de agua en el mundo es de 1400.000.000 km3 (Un km3 equivale de agua a un trillón de litros).Cada día, 280 km3 de se evaporan en la atmósfera. El agua dulce de la superficie aparece principalmente corno resultado de la lluvia Parte de esas precipitaciones cae sobre la tierra infiltrándose en el suelo. Otra parte se evapora y así retorna a la atmósfera para volver a caer cuando vuelve a llover. Esta agua se denomina agua superficial, que es La que fluye directamente hacia los ríos, lagos, humedales y reservorios. La precipitación que se infiltra en el suelo se mueve a través de los  poros, pequeños espacios vacíos en el suelo. Así se forman las aguas subterráneas, que se mueven lentamente hacia raguas superficiales como ríos y Lagos. Al cabo del ciclo, la capa superior del agua superficial se evapora y alcanza el cielo formando las nubes. Y cuando la presión debida al incremento en la cantidad de agua aumenta, llueve.

Del agua dulce que hay en la tierra, más de 100.000 km3 se almacenan en el suelo, sobre todo en los primeros mil metros de profundidad. Y otros 10.500.000 km3 de agua están almacenados como agua dulce en los lagos, los humedales y Las aguas corrientes.

La crisis es global y afecta a todos los países, no importa su nivel de desarrollo. Aunque sólo en los últimos años comenzó a ser objeto de debate. El primer encuentro mundial para buscar soluciones a esta problemática se llevó a cabo en 1977, en la ciudad argentina de Mar del Plata, pero desde entonces, y hasta el IV Foro Mundial del Agua, que se desarrolló entre el 14 y el 22 de marzo pasado en México, ningún indicador revela cambios significativos; por el contrario, como denuncian distintas organizaciones sociales y ambientales de todo el mundo, la situación tiende a agravarse. El grado de emergencia es tal que, en el año 2000, se realizó la “Declaración del Milenio”, por la que 160 jefes de Estado se comprometieron a impulsar políticas activas para que, en 2015, la cantidad de población sin acceso al agua potable sea reducida a la mitad. «Ninguna medida haría más por reducir las enfermedades y salvar vidas en los países en desarrollo que facilitar el acceso general al agua potable y a los servicios de saneamiento”, alertó entonces, casi como un ruego, Koffi Annan, secretario general de la ONU.

En general, se entiende que los países ricos son los que tienen los recursos financieros y la capacidad tecnológica para enfrentar con éxito los problemas de escasez del agua, a través de métodos como las transferencias entre cuencas o el almacenamiento. La escasez del agua es, pues, relativa, y está determinada por la capacidad de acceder al recurso.

Otro problema vinculado a la disponibilidad de agua dulce es que gran parte de los ríos más grandes del mundo (la principal fuente de agua dulce continental) y de los más importantes acuíferos están lejos de los mayores conglomerados de población. El alto costo económico que implica el transporte de agua, restringe el empleo del recurso para satisfacer la demanda.

La preocupación por la disminución de la cantidad de agua dulce llevó a los organismos internacionales a declarar a la década de 1980 como el “Decenio Internacional del Agua Potable y el Saneamiento”, con el objetivo central de contribuir a la solución del problema del abastecimiento del agua en los países pobres. Sin embargo, y a pesar de este tipo de iniciativas, en el año 1995, el 20 % de la población mundial aún carecía de agua potable

LA AMÉRICA HÚMEDA: El continente latinoamericano es el de mayor injusticia en el uso y acceso al agua, según señala un trabajo de Maude Barlow, activista canadiense y referente mundial en el tema. Aunque es la región con mayor volumen de agua dulce per cápita, con el 20 por ciento del total mundial, 80 millones de personas no tienen acceso al líquido vital en América latina. En el mismo trabajo se informa que mientras un latinoamericano consume en promedio 20 litros por día, un italiano llega a 213 un estadounidense puede superar los 600 litros diarios. Barlow pone otro ejemplo: Canadá tiene una décima parte del agua dulce de superficie del planeta, pero menos del 1 por ciento de la población mundial.

Los Esteros del Ibera, una enorme reserva de agua que está siendo privatizada

Para entender la crisis hay que empezar por dos miradas que dividir aguas. El ambientalista Cristian Frers colaborador de diversos medios especializados en medio ambiente de la Argentina y España, explica el principal contrapunto: “Cada vez que se habla de la crisis del agua, surge el debate: sí el agua es un bien comercial o un derecho del hombre”. Esto no es pura semántica, porque detrás del negocio del agua se encuentran el Banco Mundial, promotor de las privatizaciones de los recursos hídricos, y la Organización Mundial de Comercio, que impulsa medidas para que el agua sea considerada finalmente un commodity. “Las grandes corporaciones no son muchas: las francesas Vivendíy Suez, la alemana RWE, Thames Water en el Reino Unido y American Water Works, en los Estados Unidos. Pero el negocio del agua también incluye la construcción de represas, canales de irrigación y sistemas de riego, y, por fin, el embotellamiento del agua, un negocio que supera en ganancias a la industria farmacéutica».

La Argentina, como el resto de sus vecinos sudamericanos, es un país rico en recursos hídricos. Pero no está libre de los flagelos que se ocasionan cuando no hay políticas a largo plazo con respecto al cuidado del medio ambiente y sus recursos naturales. Así como cada vez son más comunes las largas temporadas de sequía en algunas regiones, las inundaciones crónicas jaquean a vastas zonas productivas, que ocasionan pérdidas millonarias en el sector agroexportador. Además, el país tiene serios problemas en la distribución y en el saneamiento del agua en zonas urbanas, un tema que no resolvieron ni la gestión privada ni la acción de los gobiernos de las últimas décadas. Tal vez, el ejemplo más claro sea el Riachuelo, ese espejo de agua turbia que baña las costas de la región más poblada del país y que alguna vez María Julia Alsogaray prometió limpiar en mil días.

Un Océano Subterráneo: El Acuífero Guaraní existe hace 132 millones de años. Empezó a nacer cuando Áfríca y América estaban todavía unidas. Es uno de los reservorios subterráneos de agua potable más importantes del mundo, con una reserva estimada de 40 mil kilómetros cúbicos, volumen suficiente para abastecer a la población mundial actual (6.000 millones) a razón de 100 Litros/día por persona. Para entender la importancia de este verdadero océano de agua dulce, Miguel Auge señala dos puntos cruciales: «Los países desarrollados, como los europeos, están seriamente limitados en la disponibilidad de sus recursos naturales, y, como no los tienen, se los apropian en nuestros países, hecho que pueden consumar con la anuencia de funcionarios y legisladores”. Como solución a la problemática, el investigador propone que los estados del Mercosur asuman la potestad de la investigación, exploración y explotación de los recursos naturales: «En nuestro país, ya ha sucedido: el ejemplo más nefasto fue la venta de YPF”

En los 90, la Argentina se subió a la ola de las privatizaciones y el oro azul no fue la excepción. Pero, en abril pasado, la rescisión del contrato de Aguas Argentinas, que operaba en el Gran Buenos Aires y en la Capital Federal, cuyo mayor porcentaje accionario pertenecía a la francesa Suez, culminó con ese proceso, aunque quedan las consecuencias. Un informe lapidario de la Auditoria General de la Nación alerta sobre la situación de emergencia sanitaria en la que se encuentra la cuenca Matanza-Riachuelo, en la que viven más de cinco millones de personas, de las cuales sólo el 12 por ciento tiene acceso al agua corriente, mientras el resto se debe conformar con aguas menos seguras como las de pozo.

El mismo informe (ahora refrendado por el plazo perentorio que puso la Corte Suprema de Justicia a los funcionarios para explicar cómo limpiarán la cuenca) señala la responsabilidad que le cabe a los organismos de control. Pero no sólo en la populosa Buenos Aires existen reclamos y quejas: las empresas concesionarias del servicio de agua han provocado en los últimos años la ira de los habitantes de Córdoba y Tucumán, ya sea por aumentos excesivos de tarifas o por denuncias en relación con la gestión y los deficientes sistemas de saneamiento.

EL ACUÍFERO GUARANÍ:

Es una reserva de agua potable estimada en 40.000 kilómetros cúbicos y ocupa alrededor de 1.170.000 km2, en Brasil 850.000 Km2 , en Argentina 200.000 Km2  , en Paraguay 70.000 km2 y en Uruguay 50.000 KM2.La Argentina posee alrededor del 17% de la superficie total, pero sólo dispone de un 5% del volumen total de agua dulce. El volumen explotable actualmente es de 40 a 80 km3/año cifra equivalente a 4 veces la demanda total anual de la Argentina.

Fuente Consultada: MIGUEL AUGE,  CONICET.

“Cada gota de agua es vida”, señala Adolfo Pérez Esquivel, quien hace años batalla para que el acceso al agua potable sea considerado un derecho humano indispensable. El Premio Nobel argentino señala el peligro latente en el que se encuentran los recursos hídricos de América latina, en general, y de la Argentina, en particular: “Lo que denunciamos es que el agua, al devenir un bien escaso, adquiere valores inusitados. Por eso, nosotros debemos defender el Acuífero Guaraní, porque ahí está nuestro futuro. las guerras de este siglo no serán por el petróleo, sino por el agua». El apocalíptico presagio circula tanto en las reuniones de la ONU como en los distintos encuentros de organizaciones sociales y ambientales.

ORO AZUL: El Acuífero Guaraní es la tercera reserva mundial de agua dulce, un verdadero océano subterráneo que corre a más de doscientos kilómetros de profundidad debajo de la Argentina, el Brasil, el Paraguay y el Uruguay y que, según el geólogo e investigador del Conicet, Miguel Auge, tiene capacidad para abastecer a la población mundial durante los próximos dos siglos. Auge fue uno de los encargados de estudiar el potencial de esta reserva entre 1994 y 2000: “Nuestro objetivo era comenzar a estudiar las características y el comportamiento hidrogeológico del acuífero y verificar su uso sustentable, para que también pueda ser utilizado por las generaciones futuras. Sin embargo, las universidades nacionales de los cuatro países que iniciaron los estudios no dispusieron de presupuesto alguno para hacerlo, por lo que, en la practica, lo hicimos a pulmón. En 1996, solicitamos seis millones de dólares para completar los estudios; la inversión hubiera sido de 11,5 millones por país, pero no obtuvimos ninguna respuesta de las respectivas cancillerías».

Auge no puede disimular su enojo y frustración: “En el año 2000, apareció el Banco Mundial ofreciendo un subsidio de 13 millones de dólares, provenientes del GEF (Global Environmental Found), para concretar la preparación del proyecto; para ello emplearon el conocimiento de los académicos y la información hidrogeológica obtenida por las universidades. El compromiso fue que las universidades iban a tener una participación trascendente en el proyecto. Pero, cuando estuvo armado, nos dieron un puntapié en el trasero, para no decirlo vulgarmente, otorgándonos sólo 270 mil dólares, lo que representa sólo el 1 por ciento del monto total del proyecto, pues a los 13 millones del Banco Mundial se le agregan otros 14 millones que deben aportar los países del Mercosur. Las consecuencias más trascendentes, además de las económicas, es que estamos cediendo nuestro principal tesoro para el futuro”.

Consultada sobre el tema, la embajadora María Esther Bondanza, directora general de Asuntos Ambientales de la cancillería argentina, recibió a Rumbos en su despacho. Bondanza defiende la decisión de sumar al Banco Mundial en la financiación del proyecto: “La decisión de tener un conocimiento más profundo del Acuífero Guaraní partió de los propios países y de las universidades. En un momento dado, surgió la conveniencia de pedir fondos de cooperación internacional para poder hacer estudios más acabados, que son, evidentemente, mucho más costosos. Fue una decisión de los países, rio fue algo impuesto. No creo para nada que de este modo se esté cediendo la soberanía”.

Por supuesto, uno de los puntos más conflictivos sobre el Acuífero es su ubicación geoestratégica, ya que el punto en donde se carga y descarga está cerca de la Triple Frontera (entre la Argentina, el Paraguay y el Brasil), una región que en la última década quedó en la mira de los Estados Unidos, con el argumento de que allí pueden existir células dormidas del terrorismo internacional.

Imagen de la triple frontera (Las Cataratas del Iguazú)

EL FORO DEL AGUA: El IV Foro Mundial del Agua se reunió en Ciudad de México, del 16 al 22 de marzo de este año. El tema principal en esta oportunidad estuvo atravesado por la consigna “Acciones locales para un reto global’: y fue abordado a través de cinco marcos temáticos: agua para el crecimiento y el desarrollo; implementación de la gestión integrada de recursos hídricos; suministro de agua y servicios sanitarios para todos; gestión del agua para la alimentación y el medio ambiente; y manejo del riesgo. También se desarrollaron más de 200 sesiones temáticas, en las que hubo unos 20 mil participantes, en representación de gobiernos, agencias de las Naciones Unidas, organizaciones intergubernamentales y no gubernamentales, la academia, la industria, los grupos indígenas, los jóvenes y los medios.

El Foro concluyó con una conferencia, en la que cerca de 140 ministros y funcionarios de alto nivel se reunieron en sesiones abiertas y cerradas, que incluyeron diálogos y mesas redondas sobre varios aspectos de la gestión del agua. Finalmente, se adoptó una declaración ministerial pidiendo la acción internacional sobre las cuestiones del agua y el saneamiento.

Sin embargo, así como el tema de la gestión y las políticas sobre el agua presentan conflictos, también el  Foro es cuestionado en cada una de sus reuniones, dado que la entidad que lo organiza es el Consejo Mundial del Agua, organismo creado por el Banco Mundial.

Esta situación inspiró el documental Sed, invasión gota a gota, dirigido por la actriz y cineasta Mausi Martínez.La hipótesis rectora del filme es la entrega de los recursos hidrográficos por dos vías: la privatización de tierras clave, como los Esteros del Iberá, en Comentes, cuya mayor extensión pertenece al millonario norteamericano Douglas Tompkins, y la presencia militar de tropas norteamericanas en la Triple Frontera. “El dato inicial fue un informe de Elsa Bruzzone, integrante del Centro de Militares para la Democracia Argentina (Cernida), que analizaba la situación del Acuífero Guaraní. Cuando lo leí, me pareció medio paranoico, casi un cuento de ficción, pero después me di cuenta de que se quedaba corta y que era apenas la punta del iceberg”, explica Martínez. Cristian Frers sustenta esa versión: “A medida que la escasez se acrecienta, los países ricos en recursos hídricos pueden llegar a sufrir saqueos forzad os, porque de lo que se trata es de tener el control sobre el agua. Debe haber una política clara, porque los Estados a veces dejan hacer, y cuando reaccionan, ya es tarde».

Bondanza admite que está al tanto de las especulaciones, pero intenta poner paños fríos: “En la cancillería, tenemos que tomar en cuenta todas las versiones y todas las expresiones de preocupación y, por supuesto, estamos alertas. Pero hasta el momento no ha habido ningún indicio fundado al respecto».

Está claro que cuando se habla de la actual crisis y del futuro de este recurso, las aguas están divididas. Mientras tanto, el planeta se agrieta y millones de niños mueren cada año, producto de la escasez y la contaminación. Pérez Esquivel elige la metáfora del Rey Midas, para advertir sobre el irracional despilfarro del presente: “No sea cosa que cuando unos pocos estén rodeados de oro, se acuerden que para calmar la sed hace falta agua. Nosotros estarnos aquí, pero debajo de la tierra corren ríos, ríos subterráneos que en algún momento emergen. Son lo que yo llamo emergentes históricos, los que cambian la geografía, la historia y el curso de los pueblos. Necesitamos de estos emergentes históricos para poder cambiar este mundo».

PROBLEMAS INTERNACIONALES POR EL AGUA DULCE:
El agua se evapora y divide al mundo

En el año 2000 cuando un funcionario de Singapur criticó públicamente a Malasia, su vecina, por su problema de delincuencia, los malayos respondieron en un ton inusualmente belicoso: advirtieron que dejarían de suministrarle agua a Singapur.

La reacción de Singapur fue aún más inusual lanzó un programa de emergencia para ampliar su propio abastecimiento de agua, cobrarle más al consumidor para exhortarlo a consumir menos y promover las técnicas voluntarias de ahorro de agua.

Las tensiones por los recursos hídricos están aumentando incluso en regiones tan húmedas como el sureste de Asia, al igual que el interés de muchos gobiernos en adoptar, de una vez por todas, una política sobre el uso del agua. [….]

Australia acaba de recortar sus subsidios públicos al agua para forzar a los agricultores a que consuman menos y dejen más agua para las ciudades. En las regiones andas de China, muchas ciudades y provincias subieron las tarifas —algunas veces e’ un 300%— para intentar recuperar el costo real del abastecimiento. En la provincia de Shanxi, en la región central del norte de China, donde las fábricas suelen cerrar periódicamente por falta de agua, la industria está reciclando el 84% del agua que usa y produce 3,5 veces más que en 1980 con la misma cantidad de agua.

Después de varios años de padecer el uso monopólico del río Ganges por parte de la India, Bangladesh recibió hace poco una promesa de su gigantesco vecino de permitirle usar más agua. En Inglaterra, las Filipinas y varios países más, la ola de privatizaciones de sistemas de acueducto trajo consigo un mejoramiento de los equipos de descontaminación y del servicio. […]

Nuevos lazos
La cooperación entre los países parece estar creciendo. En el sur de África, por ejemplo, los expertos reconocen que Angola, Namibia y Botswana no se están matando a tiros por sus divergencias en torno a la división del ríoOkavando. El río cruza Angola, pasa por la frontera con Namibia y entra a Botswana. Namibia, uno de los países mas secos de la región del Subsanara, quiere desviar agua del Okavango y bombearla nada la capital. Los namibios dicen que el plan cortaría sólo un 1 % del flujo del Okayango, pero aún esa cantidad es demasiado para Botswana, ya que el delta es importante para el turismo del país.

Los roces entre Singapur y Malasia demuestran cuan rápido un gobierno puede responder a un problema cuando enfrenta la realidad. Malasia abastece casi la mitad de agua que consume Singapur a través de un acueducto. La amenaza de cortar este suministro durante una sequía causó pánico entre los habitantes de Singapur.

En pocas semanas Singapur lanzó una campaña para aumentar el abastecimiento y reducir los residuos. El plan comprendía la construcción de una planta de desalinización, que produciría agua a un costo 8 veces mayor que el actual. También se comprometió a duplicar las tarifas para el 2000.

[…] Si estas medidas prácticas no satisfacen la sed de Singapur, el país deberá recurrir a ideas más innovadoras, como convertir una pequeña isla de Singapur en una reserva flotante; remodelar miles de apartamentos del Estado con un sistema de plomería distinto que recicle el agua sucia, y construir un enorme depósito debajo de una formación de roca de granito en el centro del país.

G. Pascal Zachary, La Nación

 

Fuente Consultada: Revista RUMBOS Año 3 Nro. 149
Nota de: Valeria Parente

El Indice de Octano en las Gasolinas Importancia y Factores

LAS GASOLINAS Y EL ÍNDICE DE OCTANO
La destilación normal del petróleo proporciona un 20 % de gasolina, pero el consumo de este producto es tal que se hace preciso elevar dicho porcentaje hasta el 80 %, a no ser que se oriente el consumo a la utilización de otros carburantes derivados del petróleo, como el gas-oil y el fuel-oil.

Para aumentar el rendimiento del petróleo en gasolina se recurre al craqueo o pirólisis, que consiste en la ruptura de las moléculas largas de hidrocarburos por la acción del calor, pasando de fracciones pesadas a otras más ligeras, es decir, más volátiles.

Las gasolinas son hidrocarburos cuyas moléculas tienen unos ocho átomos de carbono. Ahora bien, la disposición relativa de éstos átomos de carbono en la molécula, es decir, el que formen cadenas lineales o más o menos ramificadas, tiene una gran importancia para que los respectivos hidrocarburos puedan ser considerados como malas o buenas gasolinas.

Las características que definen una buena gasolina son las siguientes:
1°) volatilidad;
2°) ausencia dé corrosividad;
3°) estabilidad química;
4°) buena carburación;
5°) resistencia a la detonación.

Posiblemente, la más importante de ellas es la resistencia a la detonación, ya que si se dispone de una gasolina muy resistente, pueden utilizarse motores con gran relación de compresión y, por tanto, de gran rendimiento. Como todos saben, cuando se aumenta mucho la relación de compresión existe el peligro de que se produzca el autoencendido (detonación) de la gasolina antes de que el pistón finalice la carrera de compresión, y también que se produzca la chispa eléctrica en la bujía. Entonces se dice que el motor “pica”.

La resistencia de una gasolina a la detonación se expresa en términos del índice de octano, de tal forma que, a mayor índice, mayor resistencia al autoencendido. La escala de índices de octano se estableció, en su día, arbitrariamente, desde 0 a 100, asignándose el índice de octano 100 a la gasolina constituida exclusivamente por el hidrocarburo isooetano, que era, entre los conocidos entonces, el combustible más resistente a la detonación. El índice de octano 0 corresponde al n-heptano (cadena lineal de siete átomos de carbono).

RENDIMIENTO DE LAS NAFTASPara determinar el índice de octano de una gasolina se introduce ésta en un motor con culata regulable (para poder variar a voluntad su relación de compresión), y se aumenta la compresión hasta que aquél comienza a picar.

Manteniendo esta relación, se introduce despuésisooetano (índice 100), y, a continuación, n-heptano (índice 0), en cantidades crecientes, hasta que comience de nuevo a picar.

En tal momento, la proporción isooctano-heptano da el índice de octano. Por ejemplo, si el motor comienza a picar cuando se ha introducido 70 % de isooetano y 30 % de n-heptano, el índice de octano será 70.

En la actualidad la tecnología del petróleo ha avanzado tanto qué existen carburantes de índice de octano 120, lo que a primera vista parece absurdo, si no se tiene en cuenta el establecimiento arbitrario de la escala de índices. Pensando lógicamente, ello sólo quiere decir que dicho carburante es aún mejor que el isooetano. Mejores gasolinas han permitido diseñar motores más eficaces. Por ejemplo, en el año 1930, la relación de compresión máxima que se podía alcanzar era de 4, lo que permitía un rendimiento a los motores del 40 %; hoy día, es normal una relación de compresión de 7, lo que significa un rendimiento del 55 %.

Entre los factores que influyen en el índice de octano de una gasolina, y cuyo estudio ha permitido la elaboración de mejores combustibles, se encuentran:

1°) El peso molecular del hidrocarburo; cuanto mayor sea el peso molecular, menor será la volatilidad y también el índice de octano. Conviene, pues, emplear gasolinas volátiles, pero no excesivamente, pues formarían tapones de gas en las conducciones (obturación).

2°) La ramificación de la molécula; el aumento de ramificación favorece el índice de octano.

3°) La posición de la ramificación; el índice de octano es mayor cuanto más alejadas estén entre sí las ramas (o cadenas laterales) que salen de la cadena principal del hidrocarburo.

4°) La insaturación; cuanto mayor sea el número de dobles enlaces que unen entre sí los átomos de carbono que forman las moléculas de gasolina, mayor será el índice de octano.

5°) La delación (cadena de gasolina en forma de anillo) también favorece el índice de octano.

6°) La aromatización; un cierto porcentaje de hidrocarburos aromáticos eleva, asimismo, el índice de octano.

7°) Ciertos aditivos, como el plomo tetraetilo, elevan el índice de octano de las gasolinas medianas, pero no tienen casi influencia sobre las malas.

El Nuevo Orden Mundial Explotacion de Recursos Naturales Objetivos

El Nuevo Orden Mundial y la Explotación de los Recursos

Durante la Guerra Fría, la humanidad vivía con el temor de que en cualquier momento se desataría una conflagración con el uso de las armas nucleares, por parte de cualquiera de las dos potencias: la Unión Soviética o Estados Unidos. Sin embargo, no parecía darse cuenta de que, en los últimos 30 años, nuevos peligros están acechando a la vida de los habitantes del planeta.

Unos de ellos son la utilización y explotación indiscriminada de los recursos naturales y la contaminación del medio ambiente, que se agravan por la condición de no imponer limitaciones al libre comercio. El mensaje de la OMC, durante la reunión ministerial en Doha, fue claro: “No a la protección ambiental si ésta significa restricción comercial.”

Con la expansión de los mercados se ha incrementado el uso de materia prima de origen animal, vegetal y mineral para la elaboración de los productos, sin importar destruir selvas, provocar sequías y hambrunas, desecar y contaminar ríos y lagos, producir nuevas enfermedades a hombres y animales, erosionar la tierra cultivable, sumir en la miseria a incontables poblaciones, ni contaminar el aire con desechos tóxicos.

Manifestaciones contra el Nuevo Orden

El paisaje urbano y rural ha sido cambiado por el hombre a causa del cultivo agrícola organizado. Las montañas han sido cortadas para construir carreteras y vías de ferrocarril. Los bosques y praderas han desaparecido para construir casas. Además se han desviado ríos y construido industrias contaminantes.

Es imposible tratar de conservar la naturaleza como está, porque debido a las necesidades propias del hombre actual se vuelve necesario cambiarla. Para juzgar lo que sucedería en el futuro, debemos basarnos en la experiencia acumulada. La degradación del medio ambiente es un fenómeno global. Los gobiernos no han creado estrategias adecuadas para proteger el medio ambiente, ni se ha educado ni concientizado adecuadamente a la población para solucionar tales problemas.

Existen organismos no gubernamentales, como Greenpeace, que se preocupan por evitar la tala inmoderada de árboles, la contaminación del agua y el aire, el uso de aerosoles e insecticidas, la producción de alimentos transgénicos, la caza inmoderada de animales en peligro de extinción, etcétera; sin embargo, no se toma en cuenta con la seriedad que se necesita.

Se trata de un problema prioritario de seguridad nacional que debe atenderse considerando su importancia vital. Por otra parte, los Estados poderosos quieren el control y la explotación de los países ricos en recursos naturales, lo cual ha generado conflictos bélicos, que, a su vez, también aumentan la destrucción del medio ambiente, y la contaminación en tierra, ríos y mares.

Otro de los grandes problemas que forma parte de la vida cotidiana es el narcotráfico. Su presencia corrompe a autoridades civiles y militares, sumiendo en la drogadicción y la dependencia a millones de niños, jóvenes y adultos. Se ha convertido en un gran problema social que destruye física y mentalmente y provoca delincuencia, trastornos en la educación y en la producción, por h inasistencia a los centros de trabajo, así como problemas familiares.

Males de nuestro tiempo son el desempleo, la explosión demográfica y los trastornos psicológicos como el estrés y la depresión, provocados por cuestiones tanto económicas como sociales. El hombre se preocupa más por producir y poseer cosas que por pensar y buscar satisfactores para su crecimiento espiritual y emocional. Vivimos en una sociedad de consumo donde la riqueza está mal repartida; donde se manipula, se controla y se deshumaniza al hombre. Una sociedad que tiene un Big Brother que vigila, que dice lo que se tiene qué hacer.

Éste es el mundo donde nos tocó vivir. Tenemos que convivir en él de la mejor manera. Debemos construir nuestro presente construyendo al mismo tiempo nuestro futuro. Esto debe conducirnos a una reflexión histórica y razonada, con un sentimiento de comunidad y de humanismo, buscando  la preservación de la individualidad, pero sin perder la vista del conjunto.

Asimismo se necesita una orientación racional con principios morales, que construya nuestra propia historia con base en el respeto de otras lenguas, otras culturas, otros pensamientos, otras formas de vida. Busquemos un mundo globalizado en las prácticas humanas, en la justicia, en la responsabilidad, en la dignidad, para encontrar una forma de vivir a la altura de nuestras esperanzas y de nuestras aspiraciones.

Fuente Consultada: Historia Universal de Gómez Navarro y Otros

Importancia del Nitrogeno Para La Vida en el Planeta

Importancia del Nitrogeno Para La Vida en el Planeta

Tanto las plantas como los animales necesitan nitrógeno para elaborar las proteínas que les hacen falta. La clara del huevo es un ejemplo de proteína. Las plantas obtienen su nitrógeno de ciertos compuestos nitrogenados existentes en el suelo, con los cuales preparan sus proteínas.

La planta puede morir, y su nitrógeno volver al suelo, o bien ser comida por un animal, en cuyo caso dicho elemento es incorporado a las proteínas de su organismo. Son muchos y variados los caminos que puede tomar el nitrógeno. Esta circulación entre los seres vivientes y el ambiente que los rodea se denomina ciclo del nitrógeno.

Es importante que las plantas dispongan de suficiente nitrógeno para su nutrición, de modo que debe haber en el suelo una reserva constante de sus compuestos. Cada vez que son consumidos deben ser repuestos de algún modo para que la vida vegetal o animal no sufra alteraciones. Una manera de recuperarlos consiste en utilizar los restos descompuestos de plantas y animales. Alrededor de las cuatro quintas partes del aire se componen de nitrógeno. Esto representa una provisión enorme de dicho elemento. Si pudiéramos respirarlo y convertirlo directamente en proteínas el problema sería muy simple; pero tal cosa no ocurre pues tanto el inspirado como el espirado permanecen inalterados.

Tampoco lo pueden aprovechar las plantas (con excepción de algunas bacterias y algas). Una planta que crezca en un suelo desprovisto de nitrógeno se marchitará y morirá aunque esté rodeada por el nitrógeno del aire. El nitrógeno puro, el elemento propiamente dicho, suele reaccionar difícilmente. Las plantas necesitan ciertos compuestos de nitrógeno, es decir, nitrógeno combinado químicamente con otros elementos. Hay, sin embargo, algunas bacterias que pueden utilizar este nitrógeno atmosférico y formar nitratos, por lo cual se las denomina fijadoras de nitrógeno.

Algunas viven en unos nódulos situados en las raíces de las leguminosas, como las arvejas, porotos, trébol, etc. Se trata de un ejemplo de simbiosis. La planta y la bacteria viven juntas para tributarse mutuo beneficio. Las bacterias tienen donde vivir y la planta puede utilizar parte de los nitratos elaborados por la bacteria.

Todo exceso de nitratos pasa a enriquecer el suelo. Por eso, para abonarlo, los agricultores suelen sembrar los campos, que luego aran, con trébol, dejándolo enterrado. El suelo también se enriquece De nitratos durante las tormentas eléctricas, cuando el intenso calor de los relámpagos hace que una porción de nitrógeno se combine con el oxígeno. Esta mezcla se disuelve en la lluvia y se forma una solución muy diluida de ácido nítrico, que constituye un alimento reparador para las plantas. Simultáneamente se produce cierta cantidad de amoníaco.

ASIMILACIÓN DE LOS NITRATOS
Los nitratos son compuestos fácilmente asimilables por las plantas, si bien por ser muy solubles son fácilmente lavados. Todos los años se pierden así en el mar millones de toneladas de nitratos llevados por el agua de las lluvias, ríos, etc. como consecuencia, el mar es uno de Los mayores depósitos ele nitratos.

El lavado de dicho elemento no puede ser remediado, pero sí (jochía serlo la pérdida cié residuos cloacales que hoy se arrojan a los ríos y mares, y que constituye un enorme desperdicio de nitrógeno. Esto es consecuencia directa de vivir en ciudades en lugar de habitar en comunidades agrícolas, en las cuales los residuos cloacales vuelven automáticamente a la nena en forma ele fertilizante. Una vez en el suelo, la acción de las diferentes clases de bacterias descomponen las complejas moléculas de proteínas en compuestos amoniacales y otras convierten a éstos en nitratos que las plantas pueden utilizar.

Las mismas bacterias obtienen su propia energía durante el proceso. Ya que hablamos de bacterias recordemos que también las hay dañinas para la agricultura. Éstas viven en terrenos pobres, inundados, y obtienen su energía y oxígeno despojando a la tierra de nitratos y liberando nitrógeno en la atmósfera.

Acabamos de decir que el mar es un depósito de nitratos. Hay también bacterias que lijan el nitrógeno en la superficie del océano. Convierten el nitrógeno atmosférico en proteínas y forman parte del plancton, que provee de alimento a los peces. A su vez los peces pueden ser comidos por el hombre v los animales, por donde se recupera algo de nitrógeno.

El equilibrio de nitrógeno en el suelo puede mantenerse por lo general retirándolo en forma de alimento y devolviéndolo en la de abono y estiércol animal, pero las enormes exigencias de la civilización moderna pronto agotarían sus reservas si todo concluyera aquí. La necesidad de alimento sé ha hecho tan inmensa que ya no es posible dejar descansar la tierra y aunque en muchas partes se recupera el residuo cloacal.

hay enormes cantidades que siguen siendo vertidas al mar. De aquí la necesidad de incorporar a la tierra fertilizantes artificiales. En Chile hay enormes depósitos de nitrato de sodio, una sal conocida habitualmente con el nombre de salitre chileno, que debido a su contenido de nitratos puede ser empleado como abono, inmediatamente asimilable por las plantas. Este depósito de sal pudo formarse en Chile y no fue lavado porque se produjo en un lugar en que jamás llueve. Esto explica de paso la presencia de nitrato de sodio en las zonas bajas, a las que es arrojado por las lluvias.

EL CARBÓN COMO FUENTE DE ABONO
El carbón es otra fuente de abonos artificiales. Hace muchos millones de años, lo que hoy son depósitos de carbón eran selvas pantanosas cuyos árboles contenían proteínas. Enormes capas de esta vegetación en descomposición quedaron enterradas y las enormes presiones las convirtieron en carbón. Aunque éste se compone principalmente de carbono, también contiene algo de nitrógeno. Al quemarlo, el nitrógeno como gas se pierde en la atmósfera; pero puede ser recogido mediante su destilación. En la destilería aparece en forma de amoníaco.

El amoníaco propiamente dicho no puede utilizarse pues es un álcali que alteraría el equilibrio ácido-básico del suelo, pero se lo puede convertir en sulfato de amonio y entonces sí es apto para su empleo como fertilizante. No puede ser utilizado directamente por la planta: antes debe ser convertido en nitratos por las bacterias. El sulfato de amonio posee un contenido del 21 % de nitrógeno. Ahora se está haciendo popular como fertilizante el nitrato de amonio, que posee ?S % de nitrógeno. La parte de nitrato la aprovecha inmediatamente la planta y la de amonio la utiliza más tarde.

Se lo obtiene partiendo del amoníaco y del ácido nítrico. También pueden fabricarse abonos utilizando el nitrógeno atmosférico. Hay dos caminos principales: uno, el convertirlo en amoníaco; para esto se lo separa del aire y se lo mezcla con el triple de su volumen de hidrógeno; La mezcla gaseosa se comprime y se la hace pasar sobre una grilla de hierro calentado al rojo vivo que acelera la reacción; se forma algo de amoníaco que luego se convierte en sulfato de amonio.

El otro método imita las tormentas atmosféricas: en lugar de un relámpago se hace actuar el arco voltaico en condiciones sumamente controladas para formar ácido nítrico a partir del aire. Luego el ácido se convierte en fertilizante a base de nitratos. Aquí el problema estriba en el costo de la enorme cantidad de electricidad que se consume, por lo cual este proceso sólo puede usarse donde se dispone de energía hidroeléctrica barata. La mayor parte del ácido nítrico se fabrica hoy a partir del amoníaco.

Fuente Consultada:
Revista TECNIRAMA N°23

Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima

Los Efectos Nocivos sobre la Naturaleza
Accion del Hombre Sobre el Clima


Efecto Invernadero
Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima
Agujero Ozono
Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima
Lluvia Ácida

Muchos de los problemas ambientales que azotan a la sociedad moderna son el resultado de la interferencia humana en la forma como funcionan los ecosistemas. Los primeros habitantes humanos del planeta se mantuvieron con la energía que fluía del Sol y producían desechos que regresaban fácilmente a los ciclos de los nutrimentos. Sin embargo, conforme aumentó la población y la tecnología, el ser humano comenzó a actuar con mayor independencia de estos procesos naturales.

Hemos extraído de la tierra sustancias como plomo, arsénico, cadmio, mercurio, petróleo, uranio, que son extrañas a los ecosistemas naturales y tóxicas para muchos de los organismos en ellos.

En las fábricas se sintetizan sustancias que antes nunca se encontraban en la tierra: plaguicidas, solventes y una gran variedad de otras sustancias químicas industriales dañinas para muchas formas de vida.

La revolución industrial, que empezó a mediados del siglo XIX, dio como resultado un aumento tremendo del uso de energía producida por combustibles fósiles —en lugar de luz solar— para conseguir calor, luz, transporte, industria e incluso en la agricultura.

El hombre como transformador de la naturaleza
El hombre no sólo es miembro Integrante de la naturaleza, también se encuentra, en cierto sentido, por encima de ella. No es que sea su amo: ¡sería mucho decir! ¡Pero es su transformador! Tan pronto el hombre primitivo pasó de la mera recolección de los productos de la naturaleza virgen y de la caza de animales salvajes al cultivo de ciertas plantas y a la cría de animales, se inició su intervención transformadora sobre la naturaleza.

Se roturaron, entonces, o se destruyeron por el fuego, los montes, se regularon las aguas, se fundaron poblados cercanos en número creciente, se abrieron caminos. A medida que aumentan en cantidad, los hombres necesitan mayor superficie para sus cultivos: el paisaje natural se transforma en paisaje civilizado y, entre nosotros, ¡en estepa civilizada!

El bosque desaparece progresivamente, las turberas se hacen laborables; en su lugar aparecen tierras de labranza, prados y campos de pastoreo. En la actualidad sólo el 27% de la superficie de Alemania está cubierta de bosques en lugar del 60 al 75% de otros tiempos. Se prescribe al río por donde debe correr, al lago hasta qué altura debe crecer.

Las poblaciones van creciendo, se transforman en ciudades y aun en grandes ciudades; como consecuencia, la red de comunicaciones se hace más ceñida e invade una superficie cada vez mayor. Y además hay que eliminar los desechos de las grandes aglomeraciones humanas que contaminan las corrientes de agua.

La provisión de agua potable debe obtenerse directamente de las grandes reservas de las capas subterráneas; esto y el arrastre, cada vez más rápido, del sedimento en los cursos de agua rectificados, bajan el nivel de las aguas. La tierra se deseca; Europa se convierte en una estepa; se construyen Instalaciones de riego artificial. Se intenta prevenir el peligro de un descenso demasiado grande de las aguas provocado por aquellas mismas alteraciones o, como se dice, mejoramientos  y la contaminación demasiado intensa de los cursos de agua, sobre todo en las regiones industriales, por medio de la construcción de inmensos embalses.

Así nacen presas y lagos en lugares originariamente sólo surcados por arroyos y ríos. Canteras y yacimientos de carbón excavan profundas heridas en la superficie de la tierra; en el interior de ella, las cavidades de las minas adquieren una extensión gigantesca, y la ganga de los minerales forma en las laderas montañas.

Los establecimientos de la gran industria con sus chimeneas humeantes nublan el cielo de regiones enteras, y donde antes cubrían el paisaje verdegueantes bosques, hoy lo reviste una red de hilos eléctricos.

Vida y Mundo Circundante, August F. Thienemann. EUDEBA

Actualmente sabemos que la naturaleza es finita en sus recursos y que hemos llegado cerca de sus límites por las modificaciones descontroladas de los ambientes, alejándonos del equilibrio natural hacia un punto sin retorno, generando una maraña de problemas relacionados con la energía y el alimento. El hombre debe reflexionar antes de actuar sobre la naturaleza, para no seguir produciendo desequilibrios que la perjudiquen y comprometan los recursos naturales indispensables, y a la vez su bienestar y supervivencia, a tal punto que su existencia sea sobrevivir en un planeta hostil fabricado por él.

Lo múltiple y lo único
El estudio de la ecología nos enseña la interdependencia de todas las partes del planeta Tierra en relación sistémica: el sustrato geofísico, la atmósfera y el clima, las plantas y los animales. También es evidente que la Tierra depende del Sol como fuente de energía y de la Luna para sus mareas: el sistema es abierto y forma parte del Cosmos. Debido a esta interdependencia total de toda la miríada de componentes de un todo, no es arbitrario comparar la totalidad del sistema mundial con un organismo individual. Aceptamos la naturaleza sistémica de un individuo porque sabemos que existe una interdependencia evidente de los distintos órganos.

Si vemos a todo el planeta de esta manera, vacilaremos antes de efectuar cambios importantes y fundamentales en componentes determinados rápidamente y sin pensarlo….

…..Por esta razón ya no es una misteriosa paradoja ver a la naturaleza, a la vez, como lo múltiple y lo único. Los componentes del mundo natural son innumerables, pero constituyen un único sistema vivo. No hay escapatoria para nuestra interdependencia con la naturaleza; estamos entretejidos en la urdimbre más estrecha con la Tierra, el mar, el aire, las estaciones, los animales y todos los frutos de ella. Lo que afecta a uno afecta a todos; somos parte de un todo mayor: el cuerpo del planeta. Debemos respetar y amar su expresión múltiple si queremos sobrevivir.

Ecología humana: “El ecosistema humano”
Pasado, presente y futuro
Autor: Bernard Campbell
Biblioteca Científica Salvat (1985)

Fuente Consultada: Educación Para La Salud Liserre de Telechea – Cazado

Causas y Efectos del Efecto Invernadero Calentamiento Global

Causas y Efectos del  Efecto Invernadero

Introducción

Nuestra Tierra

El efecto invernadero

La capa de ozono

Calentamiento del planeta

Las consecuencias del Calentamiento Global

Sube el nivel del mar

1. Introducción

La temperatura de nuestro planeta es perfecta para la vida. Ni demasiado caliente como Venus, ni demasiado frío, como Marte. Gracias a estas condiciones, la vida se extiende por todos sitios.

La Tierra recibe el calor del Sol. Algunos gases de la atmósfera la retienen i evitan que parte de este calor se escape de retorno al espacio.

Hoy día esta situación de equilibrio delicado esta en peligro a causa de la contaminación de la atmósfera, que provoca que los gases retengan mucho calor cerca de la superficie. Las temperaturas de todo el planeta han aumentado en el ultimo siglo y esto podría provocar un cambio climático a nivel mundial.

El aumento del nivel del mar y otros cambios en el medio ambiente representan una amenaza para todos los seres vivos.

El termino efecto invernadero hace referencia al fenómeno por el cual la Tierra se mantiene caliente y también al calentamiento general del planeta. Para mantener las condiciones ambientales optimas para la vida es indispensable que entendamos las relaciones complejas que se establecen entre la Tierra y la atmósfera.

     2. Nuestra Tierra     

La Tierra es como una isla de vida en medio del espacio vacío. Los científicos no creen que exista vida en otro punto del sistema solar. En cambio, las condiciones de nuestro país son perfectas. No le falta ni aire ni agua y el Sol nos proporciona luz y calor.

Nuestro planeta esta rodeado por la atmósfera. Se trata de una fina capa de gases (principalmente de oxigeno y nitrógeno) que se extiende hasta unos 700 km. por sobre de la superficie terrestre. Es en la atmósfera, que mantiene el planeta caliente donde se producen todos los fenómenos climatológicos. Esta capa contiene también otros elementos químicos: nitrógeno, carbono y sofre, transferido constantemente a la Tierra y aprovechados por los seres vivos.

Las temperaturas de nuestro planeta son las mas adecuadas para que los animales y las plantas sobrevivan y se reproduzcan. Las temperaturas varían según la zona de la Tierra, des del frío de los casquetes polares hasta el calor extremo de la selva tropical y el desierto. Pero los seres vivos se han adaptado a todas las condiciones ambientales y podemos encontrar vida casi a todo el planeta.

Des del espacio se pueden ver los indicios del clima de la Tierra. La rotación del planeta y las diferencias de temperatura provocan movimientos de aire sobre la superficie terrestre. Así se forman el viento, las nubes y la lluvia. Las nubes transportan las lluvias que llenan los ríos y los lagos. La temperatura del planeta hace que el agua se mantenga en estado liquido. Si hiciera demasiado frío, el agua se helaría y si hiciera demasiado calor, se transformaría en vapor de agua.

    3. El efecto invernadero   

La atmósfera de la Tierra está compuesta de muchos gases. Los más abundantes son el nitrógeno y el oxígeno (este último es el que necesitamos para respirar). El resto, menos de una centésima parte, son gases llamados “de invernadero”. No los podemos ver ni oler, pero están allí. Algunos de ellos son el dióxido de carbono, el metano y el dióxido de nitrógeno.

causas el efecto invernadero

En pequeñas concentraciones, los gases de invernadero son vitales para nuestra supervivencia. Cuando la luz solar llega a la Tierra, un poco de esta energía se refleja en las nubes; el resto atraviesa la atmósfera y llega al suelo. Gracias a esta energía, por ejemplo, las plantas pueden crecer y desarrollarse.

Pero no toda la energía del Sol es aprovechada en la Tierra; una parte es “devuelta” al espacio. Como la Tierra es mucho más fría que el Sol, no

puede devolver la energía en forma de luz y calor. Por eso la envía de una manera diferente, llamada “infrarroja”. Un ejemplo de energía infrarroja es el calor que emana de una estufa eléctrica antes de que las barras comiencen a ponerse rojas.

Los gases de invernadero absorben esta energía infrarroja como una esponja, calentando tanto la superficie de la Tierra como el aire que la rodea. Si no existieran los gases de invernadero, el planeta sería cerca de 30 grados más frío de lo que es ahora! En esas condiciones, probablemente la vida nunca hubiera podido desarrollarse. Esto es lo que sucede, por ejemplo, en Marte.

En el pasado, la Tierra paso diversos periodos glaciales. Hoy día quedan pocas zonas cubiertas de hielo. Pero la temperatura mediana actual es solo 4 ºC superior a la del ultimo periodo glacial, hace 18000 años.

Marte tiene casi el mismo tamaño de la Tierra, y está a una distancia del Sol muy similar, pero es tan frío que no existe agua líquida (sólo hay hielo), ni se ha descubierto vida de ningún tipo. Esto es porque su atmósfera es mucho más delgada y casi no tiene gases de invernadero. Por otro lado, Venus tiene una atmósfera muy espesa, compuesta casi en su totalidad por gases de invernadero. ¿El resultado? Su superficie es 500ºC más caliente de lo que sería sin esos gases.

Por lo tanto, es una suerte que nuestro planeta tenga la cantidad apropiada de gases de invernadero.

El efecto de calentamiento que producen los gases se llama efecto invernadero: la energía del Sol queda atrapada por los gases, del mismo modo en que el calor queda atrapado detrás de los vidrios de un invernadero.

En el Sol se producen una serie de reacciones nucleares que tienen como consecuencia la emisión de cantidades enormes de energía. Una parte muy pequeña de esta energía llega a la Tierra, y participa en una serie de procesos físicos y químicos esenciales para la vida.

Prácticamente toda la energía que nos llega del Sol está constituida por radiación infrarroja, ultravioleta y luz visible. Mientras que la atmósfera absorbe la radiación infrarroja y ultravioleta, la luz visible llega a la superficie de la Tierra. Una parte muy pequeña de esta energía que nos llega en forma de luz visible es utilizada por las plantas verdes para producir hidratos de carbono, en un proceso químico conocido con el nombre de fotosíntesis. En este proceso, las plantas utilizan anhídrido carbónico y luz para producir hidratos de carbono (nuevos alimentos) y oxígeno. En consecuencia, las plantas verdes juegan un papel fundamental para la vida, ya que no sólo son la base de cualquier cadena alimenticia, al ser generadoras de alimentos sino que, además, constituyen el único aporte de oxígeno a la atmósfera.

En la fotosíntesis participa únicamente una cantidad muy pequeña de la energía que nos llega en forma de luz visible. El resto de esta energía es absorbida por la superficie de la Tierra que, a su vez, emite gran parte de ella como radiación infrarroja. Esta radiación infrarroja es absorbida por algunos de los componentes de la atmósfera (los mismos que absorben la radiación infrarroja que proviene del Sol) que, a su vez, la remiten de nuevo hacia la Tierra.

El resultado de todo esto es que hay una gran cantidad de energía circulando entre la superficie de la Tierra y la atmósfera, y esto provoca un calentamiento de la misma. Así, se ha estimado que, si no existiera este fenómeno, conocido con el nombre de efecto invernadero, la temperatura de la superficie de la Tierra sería de unos veinte grados bajo cero. Entre los componentes de la atmósfera implicados en este fenómeno, los más importantes son el anhídrido carbónico y el vapor de agua (la humedad), que actúan como un filtro en una dirección, es decir, dejan pasar energía, en forma de luz visible, hacia la Tierra, mientras que no permiten que la Tierra emita energía al espacio exterior en forma de radiación infrarroja.

A partir de la celebración, hace algo más de un año, de la Cumbre para la Tierra, empezaron a aparecer, con mayor frecuencia que la habitual en los medios de comunicación, noticias relacionadas con el efecto invernadero. El tema principal abordado en estas noticias es el cambio climático. Desde hace algunas décadas, los científicos han alertado sobre los desequilibrios medioambientales que están provocando las actividades humanas, así como de las consecuencias previsibles de éstos.

En lo que respecta al efecto invernadero, se está produciendo un incremento espectacular del contenido en anhídrido carbónico en la atmósfera a causa de la quema indiscriminada de combustibles fósiles, como el carbón y la gasolina, y de la destrucción de los bosques tropicales. Así, desde el comienzo de la Revolución Industrial, el contenido en anhídrido carbónico de la atmósfera se ha incrementado aproximadamente en un 20 %. La consecuencia previsible de esto es el aumento de la temperatura media de la superficie de la Tierra, con un cambio global del clima que afectará tanto a las plantas verdes como a los animales. Las previsiones más catastrofistas aseguran que incluso se producirá una fusión parcial del hielo que cubre permanentemente los Polos, con lo que muchas zonas costeras podrían quedar sumergidas bajo las aguas. Sin embargo, el efecto invernadero es un fenómeno muy complejo, en el que intervienen un gran número de factores, y resulta difícil evaluar tanto el previsible aumento en la temperatura media de la Tierra, como los efectos de éste sobre el clima.

Aún cuando no es posible cuantificar las consecuencias de éste fenómeno, la actitud más sensata es la prevención. El obtener un mayor rendimiento de la energía, así como el utilizar energías renovables, produciría una disminución del consumo de combustibles fósiles y, por lo tanto, de nuestro aporte de anhídrido carbónico a la atmósfera. Esta prevención también incluiría la reforestación, con el fin de aumentar los medios naturales de eliminación de anhídrido carbónico. En cualquier caso, lo importante es ser conscientes de cómo, en muchas ocasiones, nuestras acciones individuales tienen influencia tanto sobre la atmósfera como sobre la habitabilidad del planeta.

Consecuencias: Conocemos las consecuencias que podemos esperar del efecto invernadero para el próximo siglo, en caso de que no vuelva a valores más bajos:

  •     Aumento de la temperatura media del planeta.
  •     Aumento de sequías en unas zonas e inundaciones en otras.
  •     Mayor frecuencia de formación de huracanes.
  •     Progresivo deshielo de los casquetes polares, con la consiguiente subida de los niveles de los océanos.
  •     Incremento de las precipitaciones a nivel planetario pero lloverá menos días y más torrencialmente.
  •     Aumento de la cantidad de días calurosos, traducido en olas de calor.

pinguino emperador

El pingüino más grande de todas las especies es el emperador, y vive únicamente en la Antártida, En la parte más cálida de la región, península antartica; Pointe Géologie, han sufrido una importante disminución en décadas recientes. Las temperaturas más elevadas de los Inviernos han hecho que el hielo fuese más delgado, debilitándolo y haciendo que sea arrastrado por los frecuentes vientos. Como resultado, los huevos y los pinchones de los emperadores no llegan a adquirir la capacidad necesaria para sobrevivir por sus propios medios. Esta especie de ave necesita estabilidad, zonas bloqueadas por hielo marino donde puedan crecer y, al mismo tiempo, zonas del mar libres de hielo para alimentarse. En una zona al este de la Antártida la población se redujo al 50%. La mayor mortalidad fue en la década del 1970.

    4. La capa de ozono     

EL ozono es un gas cuyas moléculas están formadas por tres átomos de oxígeno(O3), uno más que las moléculas de oxígeno que respiramos. La capa de ozono se fue engrosando a medida que fue aumentando la cantidad de oxígeno. Esto es así porque su formación se debe a reacciones químicas entre el oxígeno y los rayos ultravioletas.

En la atmósfera, el ozono se concentra en un estrecha franja de la estratosfera, entre los 20 y 40 kilómetros de altura, formando la llamada capa de ozono, un elemento decisivo para la vida en el planeta. En efecto, la capa de ozono es para los seres vivos como un paraguas protector frente a los peligrosísimos rayos ultravioletas. Si estas radiaciones alcanzaran la superficie terrestre sin pasar por el filtro del ozono, causarían entre otros muchos efectos dañinos, la destrucción del fitoplacton, base de todas las cadenas alimentarias del océano, por lo que peligrarían todos los organismos marinos; en el hombre, la radiación ultravioleta causaría un debilitamiento general del sistema inmunológico, importantes daños en la vista, y un aumento de casos de cáncer de piel.

En 1974, dos científicos estadounidenses Sherwood Rowland y Mario Molina descubrieron que los CFC, sustancias muy utilizadas en la industria, destruyen el ozono.

Rowland y Molina fueron atacados por las empresas productoras, pero pocos años después se detectó que con la llegada de la primavera, el espesor de la capa de ozono sobre la Antártida era anormalmente delgado y se comprobó que la causa era el uso de CFC. En 1987, 40 países industrializados pactaron en Montreal la reducción de la producción de CFC en un 50% en el año 2000. En 1990 la Argentina firmó el protocolo.

    5. Calentamiento del planeta  

Algunos de los gases que producen el efecto invernadero, tienen un origen natural en la atmósfera y, gracias a ellos, la temperatura superficial del planeta a permitido el desarrollo de los seres vivos. De no existir estos gases, la temperatura media global seria de unos 20ºC bajo cero, el lugar de los 15ºC sobre cero de que actualmente disfrutamos. Pero las actividades humanas realizadas durante estos últimos siglos de revoluciones industriales, y especialmente en las ultimas décadas, han disparado la presencia de estos gases y han añadido otros con efectos invernadero adicionales, además de causar otros atentados ecológicos.

Es un hecho comprobado que las temperatura superficial de la Tierra está aumentando a un ritmo cada vez mayor. Si se continua así, la temperatura media de superficie terrestre aumentara 0,3ºC por década. Esta cifra, que parece a simple vista no excesiva, puede ocasionar, según los expertos grandes cambios climáticos en todas las regiones terrestres. La década de los años ochenta a sido la mas calurosa desde que empezaron a tomar mediciones globales de la temperatura y los científicos están de acuerdo en prever que, para el año 2020, la temperatura haya aumentado en 1,8ºC.

Hace demasiado calor…

Sí, demasiado calor como para que nosotros, los seres humanos, estemos tan tranquilos. Porque no estamos hablando sólo de un aumento de las temperaturas, sino de un cambio global que puede llegar a ser muy peligroso.

Pero no todo es tan malo: la causa de este calentamiento es la propia actividad humana. Por lo tanto, de nosotros depende detenerlo.

Entre el 1º y el 10 de diciembre de 1997, ciento sesenta países se reunieron en Kioto, Japón, para discutir sobre los cambios en el clima de la Tierra. Pero, ¿qué importancia tiene conocer cuántos grados aumentará la temperatura ambiente, dónde va a llover más o por qué no nevó tanto el año pasado?
Actualmente, estamos frente a un nuevo cambio climático, pero esta vez provocado por la actividad humana. La industria, los automóviles, los grande cultivos y la manutención de ganados, todo aquello que permite la supervivencia de los 5 mil millones de seres humanos que poblamos el planeta, provoca también grandes cambios. Uno de ellos, quizás el más preocupante, es el calentamiento global de la Tierra, provocado por un aumento del efecto invernadero.

    6. Las consecuencias del Calentamiento Global     

El clima en la Tierra es muy difícil de predecir, porque existen muchos factores para tomar en cuenta: lluvia, luz solar, vientos, temperatura… Por eso, no se puede definir exactamente qué efectos acarreará el Calentamiento Global. Pero, al parecer, los cambios climáticos podrían ser muy severos.

Una primera consecuencia, muy posible, es el aumento de las sequías: en algunos lugares disminuirá la cantidad de lluvias. En otros, la lluvia aumentará, provocando inundaciones.

Una atmósfera más calurosa podría provocar que el hielo cerca de los polos se derritiera. La cantidad de agua resultante elevaría el nivel del mar. Un aumento de sólo 60 centímetros podría inundar las tierras fértiles de Bangladesh, en India, de las cuales dependen cientos de miles de personas para obtener alimentos. Las tormentas tropicales podrían suceder con mayor frecuencia.

Los primeros pasos para detener el fenómeno

En la década de los 70, muchas personas comenzaron a darse cuenta de los cambios que estaba sufriendo la Tierra. Al estudiarlos, pudieron observar cuán frágil es el medio ambiente, y lo mucho que los seres humanos dependemos de él. Poco a poco, todos nos dimos cuenta de que no era posible seguir contaminando el agua, la tierra y el aire: la contaminación no iba a desaparecer por sí sola.

Además, muchas actividades humanas estaban afectando al clima de una manera muy, muy peligrosa.

En 1992, las Naciones Unidas realizaron la Primera Convención sobre el Cambio Climático. Desde 1980, científicos y representantes de diversos países se habían estado reuniendo para determinar cómo se producía este cambio y qué se podía hacer para frenarlo. Los resultados se dieron a conocer en la Cumbre de la Tierra, realizada en Río de Janeiro, Brasil, en 1992. El acuerdo fue firmado por 154 países.

¿Qué plantea el Acuerdo de Río? La necesidad de frenar el cambio climático, reduciendo las emisiones de gases de invernadero. Esto significa disminuir la cantidad de combustibles fósiles utilizados (petróleo, gas natural, carbón), y proteger los bosques (ellos atrapan y consumen el dióxido de carbono). También significa disminuir nuestro consumo de energía, y buscar otras fuente energéticas que no produzcan gases de invernadero (energía solar, energía del viento, del agua o de las olas del mar).

La Convención promueve el estudio y la investigación científica, para descubrir nuevas formas de acabar con el efecto invernadero. También se plantea la necesidad de intercambiar tecnología e ideas entre los países, promoviendo ayuda mutua. Además, se reconoce que existen áreas en el mundo que son muy especiales y delicadas (islas, montañas, ríos) y que deben ser especialmente protegidas de los cambios en el clima.

    7. Sube el nivel del mar     

Si la Tierra se calentar, los glaciares de las montañas y los casquetes del hielo del polo Norte y de la Antártida se fundirían. Si no se para de calentamiento en general el nivel del mar puede subir entre 20 y 40 cm a principios del siglo viniente, y luego aumentara aun mas.

Un incremento minúsculo del nivel del mar podría tener consecuencias catastróficas, especialmente por algunos países. Holanda, por ejemplo, ha ganado gran parte de su territorio a las aguas y muchas zonas se encuentran por debajo del nivel del mar. Si el agua subiera inundaría todos estos territorios o bien obligaría el país a construir unos diques de contención que representarían un gasto muy elevado. Las islas Maldivas, al océano Indico, también se encuentran a un nivel muy bajo. solo que el mar subiera un metro, las islas desaparecerian por debajo de las aguas. Si el aumento del nivel del mar fuera 4 y 8 metros, las consecuencias serian aun mas catastróficas.

Que se puede hacer?

Todos los habitantes de este planeta, estamos obligados a tomar medidas para detener el cambio climático y el aumento del efecto invernadero. Aunque las grandes decisiones, tomadas por los gobiernos de los países, son fundamentales, hay muchas formas de ayudar a la descontaminación que están a nuestro alcance.

Hemos de dejar de utilizar los CFC. Podemos sustituir los aerosoles, la fuente principal de estos gases, por pulverizadores que no perjudiquen el medio ambiente. También podemos encontrar métodos para reciclar o destruir los CFC que provienen de otras fuentes.

El metano procedente de los excrementos del ganado se puede reciclar en una planta química para producir energía.

Podemos plantar un árbol.

En casa, recordar no malgastar la energía eléctrica.

Podemos poner un buen aislante en el tejado y doble cristal en las ventanas para reducir los escapes del calor, con la cual cosa se necesita menos energia para mantener la casa caliente.

Utilizar un sistema de calefacción que aprovecha la energía al máximo y necesita mas energía para producir calor.

También podemos reducir el consumo de combustibles de los automóviles. Actualmente un coche desprende cada año cuatro veces su peso en dióxido de carbono. Si se diseñan modelos mas ligeros y aerodinámicos con motores de bajo consumo pueden llegar a consumir solo 1/3 parte de la energía que necesita un coche actual. Ya se han fabricado algunos automóviles que gastan menos de 2,8 litros por cada 100 kilómetros.

Apaga las luces cada vez que se salga de una pieza; los electrodomésticos i aparatos de bajo consumo. Las bombillas de bajo consumo pueden durar ocho veces mas y gastan solo 1/5 parte de la energía que necesita una bombilla normal. No dejar el televisor o el equipo de música encendidos cuando no lo usemos.

No dejar correr el agua caliente cuando se lava.

También puedes dar nuevos usos a las botellas. Recicla el vidrio, los plásticos y el papel. A demás así podemos salvar muchos árboles.

Recuerda siempre que cada minuto los seres humanos emitimos 48 mil toneladas de dióxido de carbono a la atmósfera. Y todos podemos ayudar a disminuir esta cantidad.

Enfermedades o Plagas Por el Calentamiento Global Cambio Climático

Enfermedades o Plagas Por el Calentamiento Global

PROBLEMAS AMBIENTALES EL CALENTAMIENTO GLOBAL:
La utilización de los bosques: una forma de afectar la biodiversidad

La biodiversidad, como su palabra lo indica, se refiere a la variedad de seres vivos del planeta. Este amplio abanico presenta un interés científico y un valor económico muy importante porque se puede utilizar en la agricultura, la industria y la medicina. En América Latina y el Caribe se erradican áreas vírgenes, con una heterogeneidad de flora y fauna importantes para cultivar plantas que no son del lugar, muchas veces con técnicas en las que no se cuida el suelo.

También en grandes áreas se eliminan las variedades biológicas para establecer campos ganaderos. En los distintos países de América Latina se establecen áreas protegidas, donde las comunidades vegetales y animales no pueden ser modificadas por las sociedades.

La Tierra Reseca

Disminución de vegetación, efecto invernadero y cambio climático
La disminución de la cobertura vegetal en América Latina y en otras partes del mundo, como África y Asia, da lugar a que haya menor cantidad de “verde” productor del oxígeno necesario para el mantenimiento de la vida de la mayoría de las comunidades biológicas. A su vez, los árboles tienen la capacidad de transformar el dióxido de carbono en oxígeno, motivo por el cual la cantidad de ese gas, perjudicial en exceso para la vida animal, está en constante aumento a nivel mundial.

Este gas es emanado por las comunidades biológicas pero también, y con mucha más intensidad, por los automotores y las industrias. Su concentración en la atmósfera, junto a otros como el metano, el óxido nitroso o los cloro-fluorocarbonos (CFCs), genera que los rayos solares que entran a la tierra no puedan ser reflejados al exterior. Esta capa de gases se comporta como si fuera un vidrio en un jardín de invierno: deja pasar la luz solar y retiene el calor dentro de él. Por ese motivo los especialistas llaman a este fenómeno como efecto invernadero.

El efecto invernadero está íntimamente vinculado a otro problema ambiental, que es el cambio climático del planeta. La Tierra, por el efecto invernadero, está sufriendo incrementos de la temperatura en forma constante. A este fenómeno se lo llama calentamiento global. En 1890, la temperatura mundial rondaba los catorce grados promedio. Noventa años después, en 1980, ya se encontraba en los quince. Algunos cálculos estiman que entre los años 2025 y 2050 la temperatura promedio mundial oscilará entre los dieciséis y diecinueve grados. Un aumento de tres grados de la temperatura llevará a que los mares aumenten su nivel en noventa centímetros, por el derretimiento de los hielos polares.

En el párrafo siguiente  se detallan los veinte países que más dióxido de carbono emiten por persona. Esta es una manera de apreciar mejor este problema:

Países petroleros: Qatar, Emiratos Árabes, Estados Unidos, Trinidad Tobago, Bahrain, Brunei, Arabia
Saudita y Kuwait. Sus economías son pequeñas y no aportan muchos gases al conjunto del planeta, con excepción ; de Arabia Saudita. Sin : embargo, la emisión de gases que es necesario  despedir en algunas de las fases del refinamiento revela que esta actividad es altamente contaminante.

Países con sistemas económicos pequeños o muy pequeños y altísimo nivel de vida, como Luxemburgo, emiten una alta cantidad de gases por persona. Esto significa que si todo el planeta se manejara con los niveles de vida de esta hiper-desarrollada pequeña nación, el problema del calentamiento global sería mucho más intenso aún. Algo similar ocurre con Noruega y Singapur.

Países con un fuerte desarrollo industrial, alto nivel de vida y economías grandes: Australia, Canadá, Alemania y Estados Unidos. Es importante destacar que este ultime país es el que más gases produce en el mundo, aunque se encuentra en el sexto lugar entre los que emiten mayor cantidad de dióxido de carbono por habitante (1992).

 Países que fueron socialistas y mantienen una industria atrasada y contaminante. Kazakstán, Federación Rusa, Estonia, República Checa y Ucrania son países que han tenido un muy importante desarrollo industrial hasta la década de 1970. A partir de ese momento la industria entró en decadencia. En la actualidad siguen funcionando, pero no se introdujeron aún medidas para corregir la alta emisión de gases que efectúa.

Un país con industrialización socialista vigente. Corea del Norte. Su situación es similar a la de los países del grupo anterior, aunque todavía sigue siendo socialista y no se prevé que reduzca los niveles de contaminación de una industria que parece que no va a modernizarse.

El período 1995-2005 fue la década más caliente registrada desde que comenzaron las mediciones regulares, en el siglo XIX. Además, esos años estuvieron marcados por varios fenómenos extremos: mayor frecuencia e intensidad de la corriente de El Niño; una canícula europea en 2003, que podría volverse cíclica; récord de huracanes tropicales en Estados Unidos y en Asia en 2004 y 2005. ¿Se trata de cuestiones coyunturales? Por otra parte, se confirman varios fenómenos estructurales, a pesar de que sus consecuencias difícilmente puedan ser previstas con precisión.

Además del recalentamiento de las regiones polares , el aumento de la temperatura tiene un efecto destructor sobre los corales, un medio vital de la vida marina, y también podría provocar un incremento en el nivel de las aguas de 25 centímetros a un metro, a raíz de la dilatación de los de entre 80 y 400 millones de “refugiados climáticos”.

Las perturbaciones en las precipitaciones influirían en la agricultura, en las áreas de propagación de enfermedades, etc. Las consecuencias sobre la biodiversidad también podrían ser gravísimas, a causa de la dificultad que encontrarán muchas especies para adaptarse a cambios tan rápidos. La destrucción y la contaminación causadas sistemáticamente por el ser humano son el origen de la sexta gran era de extinción biológica que registra el planeta.

Fuente Consultada:
Sociedad, Espacio y Cultura América y la Argentina E.G.B. Prislei-Tobío-Geli
El Atlas Le Monde Diplomatique

Dia de la Tierra Lucha Contra La Contaminacion Calentamiento Global

El Día de la Tierra es un día festivo celebrado en muchos países el 22 de abril. Su promotor, el senador estadounidense Gaylord Nelson, instauró este día para crear una conciencia común a los problemas de la contaminación, la conservación de la biodiversidad y otras preocupaciones ambientales para proteger la Tierra.

¿CONOCES LA REGLA DE LAS 3 ERRES? R: REDUCIR, REUTILIZAR Y RECICLAR

Reducir: significa evitar comprar y adquirir cosas que pronto se convertirán en basura como embalajes, bolsas de plástico y envases desechables.

Reutilizar: es tratar de darle algún uso a la basura antes de tirarla, por ejemplo forrar las cajas, frascos o latas y usarlas para guardar cosas.

Reciclar: se trata de volver a utilizar materiales como el papel o el vidrio para fabricar de nuevo productos parecidos como cuadernos, botellas, etc.

Presentación en Flash

 COMO HACERLE UN REGALO A NUESTRO PLANETA

  1. Planta un árbol en tu jardín, o una planta en un macetero: alegrará tu hogar, la vista y será de verdadero provecho para tu vida y el medio ambiente en general.
  2. Organízate con un grupo de amigos o compañeros y donen un par de horas de servicio comunitario al vecindario: se puede hacer limpieza de las basuras y desperdicios de un parque cercano, de una playa, de un par de calles aledañas. Donde quiera que veas basura, lánzala al contenedor o basurero más cercano.
  3. Celebra la biodiversidad dejando vivir a los animales: deja gradualmente de comer carne. Lo agradecerá tu cuerpo, los animales y el medio ambiente.
  4. Camina o monta tu bicicleta en vez de conducir o tomar el transporte público. Aprovecha los últimos calores del hemisferio sur, y la incipiente primavera en el hemisferio norte: huele el aire, observa los árboles, las flores, los pájaros urbanos. Te servirá como ejercicio y como manera de encontrarse en una naturaleza -alterada por la ciudad, pero que nunca deja de estar presente en nuestra vida diaria.
  5. No tomes baños de bañera y dúchate más brevemente. La cantidad promedio de agua que se ocupa en una ducha caliente de 10 minutos es monstruosa: 230 litros, gastados en un breve tiempo y que van a dar al desagüe.
  6. Comienza a hacer compost, separa y recicla la basura de manera más integral, dona la ropa que no usas y está en buen estado a una institución de beneficencia, lleva tus desechos tecnológicos a puntos de recogida. Si no existe un sistema de reciclaje o separación de desechos donde vives, escribe a las autoridades, a la prensa, o pide una cita con los responsables locales para pedirles un involucramiento mayor en temas de medio ambiente. Al final, nos compete e involucra a todos.
  7. Pide en tu biblioteca local libros sobre temas medio ambientales o de ecología e inspírate en ellos para actuar localmente.
  8. Apaga la calefacción innecesaria, apaga las bombillas (ampolletas) encendidas de más. Si comienza el frío abrígate para estar en casa y bebe líquidos calientes (té, tizanas); si comienza el calor abre tu ventana y apaga el aire acondicionado. Trata de disminuir tu huella ecológica.
  9. Haz un paseo a un parque o reserva natural. ¿Qué mejor manera de celebrar el día de la Tierra admirando la Naturaleza en su belleza más original y elemental?
  10. Hazte socio o benefactor de alguna organización ambiental local, nacional o internacional. Ellos te podrán dar más información sobre todos los temas de tu interés y que podrás difundir en tu comunidad.

5 de Junio: Día del Medio Ambiente