El Diamante

Historia del Uso del Guante a Través del Tiempo Significado

Historia del Uso del Guante
Significado: “Arrojar el Guante”

Cuenta una leyenda griega que mientras Afrodita, diosa del amor y la belleza, perseguía en los bosques al hermoso mancebo Adonis, se lastimó las manos con unas espinas. Las Gracias, tres divinidades secundarias de quienes los antiguos esperaban toda clase de prosperidad, en cuanto oyeron sus lamentos acudieron presurosas y, para evitar que ese percance se repitiera, tuvieron la idea de unir unas tiras delgadas y livianas que adaptaron a las preciosas manos de la diosa.

Si diéramos fe a esta leyenda, podríamos suponer que las Gracias fueron las inventoras del guante. Sin embargo, se ha comprobado que, mucho antes que los griegos, los habitantes del Norte, expuestos a los grandes fríos, tuvieron necesidad de proteger sus manos contra los rigores de la nieve, el hielo y los vientos polares.

El célebre general e historiador ateniense Jenofonte afirmó que los persas, después de cubrirse durante el invierno la cabeza y los pies, optaron por usar mitones (un guante sin cerrar en los extremos de los dedos) . Estos accesorios estaban muy difundidos entre otros pueblos de Asia Menor, y tanto etruscos como egipcios conocían su uso desde antiguo. Pero entre los habitantes del Nilo, los guantes tenían un carácter especial: se los consideraba atributos del faraón, a quien se suponía de origen divino.

En los pugilatos, los romanos empleaban un tipo de guantes que pueden considerarse, con razón, como los predecesores de los actuales guantes de boxeo. Eran una especie de manoplas armadas con correas llamadas cestos, que tenían en su interior laminillas de plomo para que los golpes resultaran más enérgicos.

En el siglo IV, para los caballeros el guante era un objeto de lujo, un símbolo de elegancia y un distintivo de casta. Durante la Edad Media, la armadura de los hidalgos incluía manoplas de acero; pero con el refinamiento de las costumbres, las manoplas aceradas se transformaron en guantes de terciopelo muy fino, a veces adornados con perlas y piedras preciosas. Sin embargo, la tradición y la etiqueta no permitían el uso de guantes a las damas. Además, eran un símbolo de la investidura feudal, un testimonio de ennoblecimiento otorgado por un emperador o un rey.

historia del guante

Guante metálico de protección en los caballeros medievales

Entregar guantes a un hombre era lo mismo que confiarle una misión, conferirle un poder, ponerlo en posesión de un bien preciado. En el Ciclo de la Mesa Redonda y en algún texto del siglo XII, como La Canción de Rolando, el guante desempeñó un gran papel. Menciona este último documento que, para dispensarle confianza a una persona, le entregaban el guante y el bastón.

Hacia el siglo IX, cuando las mujeres empezaron a llevar guantes, los guanteros emplearon diversos materiales para confeccionarlos y les dieron curiosas formas. Se sabe que en su realización se usaron toda clase de pieles, badanas y telas, tales como gamuza, conejo, cordero, cabritilla, marta, nutria, perro, lobo, zorro, gato, liebre, ciervo y búfalo.

Hasta los engalanaron con encajes, botones y delicadas armas. En algunas cuentas de gastos se hace mención de los guantes. Se lee que los de mujer iban adornados con cintas o trencillas de colores y que algunos llevaban un rosetón en el dorso. Es interesante hacer notar que en la antigüedad los guantes femeninos estaban profusamente adornados con botones se ha tenido notivcia de unos guantes de piel de perro que llevaban veinticuatro botones de oro y se ajustaban a la muñeca con cuatro botones de perlas.

Durante largo tiempo, los guantes fueron prenda de caballeros, y hasta los de terciopelo adornados con piedras preciosas estaban prohibidos a las mujeres.Los nobles y los ricos llevaban guantes que alcanzaban precios fabulosos; a menudo estaban adornados con escudos de armas.

Un solo guante confeccionado con piel de búfalo o de ciervo y con botones de oro, reforzado alrededor de la muñeca con cuero más resistente, era la insignia de los halconeros que acompañaban a los señores durante las grandes cacerías. En los siglos XII y XIII, Italia, Francia y España rivalizaban en la industria del guante. Los guanteros no tardaron en llegar a ser perfumistas y los guantes perfumados estuvieron en boga durante mucho tiempo. En España se perfumaban con aceite de jazmín, ámbar, aceite de cedro, azahar y rosa.

http://historiaybiografias.com/archivos_varios5/guante3.jpg

Arrojar el guante al rostro de un hombre era una grave injuria que sólo podía ser lavada con sangre.

Parece que el antecedente de la práctica de “arrojar el guante” como señal de desafío y la de “recoger el guante” como aceptación del reto, entre los hidalgos y caballeros de pasadas épocas, está basado en una leyenda que cuenta que, con el propósito de probar el amor de su pretendiente, una dama dejó caer en aparente descuido su guante en la jaula de los leones, ante la mirada de los caballeros y damas presentes. En osada acción, don Manuel de León recogió el guante y, al entregarlo a su dueña, le dio un bofetón en el rostro para que “otro día, por un guante desastrado, no pongáis en riesgo de honra a tanto buen fijodalgo”. La dama, vencida, le ofreció su mano por su valentía.

         Los guantes venecianos fueron célebres, pero Venecia también los importaba de Oriente y estaban adornados con gemas. Los guantes del Dux deslumhraban con sus zafiros, sus rubíes o sus esmeraldas, y lucían hermosos dibujos inspirados en los encajes venecianos y en la riqueza oriental que había heredado Venecia.

Catalina de Médicis, María Estuardo y la reina Isabel dieron mucha importancia al lujo de sus guantes. Entre los hombres, la idea del reto se asociaba siempre al acto de arrojar el guante, pero ese gesto podía significar también protesta contra una condena injusta. Conrado de Hohenstaufen, al subir al cadalso, arrojó su guante a la muchedumbre. Se cuenta que fue recogido por Juan de Procida, promotor de las Vísperas Sicilianas.

La costumbre de no tender nunca la mano enguantada deriva, tal vez, de que otrora se emplearon guantes como medio para desembarazarse de algún enemigo o rival. Se untaban externamente con un poderoso veneno que, al penetrar en los poros de la mano tendida, producía la muerte a la confiada víctima. Pero, entre auténticos amigos, los guantes no se retiraban nunca.

En la Edad Media no se permitía que una persona permaneciera enguantada en presencia de un superior. Se cuenta que un clérigo penetró en el templo con los guantes puestos y sólo pudo quitárselos después de muchos días de oración, pues parecían pegados a su dedos, como castigo.
En las miniaturas de los siglos XIV y XV se ven personajes con los guantes en la mano.

El uso del guante alcanzó su apogeo a fines de la Edad Media. Los llamados guantes litúrgicos constituían parte de los ornamentos que se entregaban al nuevo obispo en el momento de su consagración. Los guantes litúrgicos comenzaron a usarse antes del siglo XII, y llevaban en el dorso un bordado de oro que representaba una cruz, un cordero pascual, un monograma o cualquier otro símbolo relacionado con el culto.

En la actualidad, los guanteros fabrican algunos guantes extravagantes, pero sin mayor éxito, porque el público prefiere prendas sencillas y elegantes al mismo tiempo. Mas se da mucha importancia a la calidad de las pieles empleadas y al corte, y la fabricación está sometida a normas fijas que son las mismas en el mundo entero.

Las pieles sin curtir se apelambran sometiéndolas a un tratamiento especial con una mezcla de hidrato de calcio. Seguidamente se las deja descansar; luego se procede a seleccionarlas, apartando las más finas para la confección de guantes de mayor precio, tras lo cual las pieles pasan a la tintorería; allí comienza la verdadera elaboración, con sus tres operaciones: curtido, corte y recortado final.

Las pieles, que ya han sido cortadas según los moldes de las diferentes partes de la mano, son unidas y cosidas a máquina o a mano. Luego vienen el planchado y el lustrado. El primero se realiza por medio de un cilindro que se hace rodar sobre el guante o con planchas eléctricas especiales. El lustrado se obtiene con rollos de madera cubiertos de fieltro, que se hacen deslizar velozmente sobre el cuero.

En la actualidad, los guantes no se fabrican solamente con cuero. Las damas elegantes, en reuniones de gran gala, lucen maravillosas creaciones confeccionadas con la misma tela de sus vestidos; estos guantes de fiesta son generalmente largos, cubren el antebrazo y hasta parte del brazo, y lucen recamados con hilos dorados y piedras de fantasía.

En estas ocasiones también se usan guantes de encaje que constituyen, como los anteriores, un accesorio muy importante del atavío femenino. Pero estas prendas no tienen sólo la misión de realzar la elegancia de un traje de fiesta; en los días fríos, o para practicar deportes de invierno, se usan guantes de lana o de cuero forrados con piel.

Fuente Consultada:
LO SE TODO Tomo VI Editorial Larousse – Historia del Guante –

Historia del Lápiz Origen, Madera Usada y Fabricación

Breve Historia del Lápiz
Madera Utilizada, Dureza  y Fabricación

Los orígenes del lápiz, tal como lo conocemos actualmente, remontan a 400 años atrás. Hasta aquella época, para dibujar se utilizaba una pequeña vara hecha con una aleación de plomo y estaño. Hoy, al mirar ese estilo (especie de punzón), podemos pensar, con justa razón, que fue la primera forma del lápiz actual.

Los romanos empleaban el plúmbum que era un pequeño disco de plomo con que escribían sobre los pergaminos. En el año 1565, unos obreros ingleses que trabajaban en una cantera de Cúmberland hallaron, por casualidad, una substancia negra, de aspecto metálico, no muy consistente y grasienta al tacto.

Más tarde este producto se llamó plombagina, o mina de plomo, o grafito. En realidad no contiene ni rastros de plomo, pero sí 90 a 96 % de carbono y 4 a 10 % de óxido de hierro. En el año 1600, los ingleses tuvieron la idea de fabricar, con esos grafitos, unos pequeños cilindros que luego encerrarían en una funda de madera. Éstos fueron los primeros lápices “modernos.” Desde ese momento su fabricación fue perfeccionándose no solamente en Inglaterra sino también en muchos otros países.

http://historiaybiografias.com/archivos_varios5/grafito.jpg

Grafito, una de las tres formas alotrópicas del carbono; las otras son el diamante y el carbón.
El grafito también se llama plumbagina o plomo negro.

En 1795 fueron fabricados los lápices con plombagina artificial. El francés Conté concibió la idea de mezclar plombagina con arcilla purificada. Después transformó ese polvo en una pasta homogénea y con ella llenó unos finos moldes de madera.

Pero solamente ahora, con los progresos mecánicos y químicos, el lápiz se ha perfeccionado, siendo su uso universal. A medida que el dibujo industrial se ha ido extendiendo, el instrumento indispensable para esa tarea se multiplica y diversifica a fin de responder a las exigencias siempre nuevas y variadas.

Así han surgido los lápices duros, blandos, para dibujo, para copiar, de trazo indeleble o no. Alemania ha sido un país reputado como productor de lápices de calidad, pero actualmente existen excelentes fábricas en muchas partes del mundo.

El procedimiento de fabricación comprende dos fases: una se relaciona con el alma del lápiz, llamada corrientemente “mina”; la otra se refiere a la varita de madera que contiene la mina. La mina negra se fabrica en base a una escala que incluye 17 graduaciones si se trata del tipo fino para dibujo, y de 3 a 5 para tipos corrientes.

Esas graduaciones indican la dureza de la pasta según la constitución de la misma, la dosificación de la materia grasa y fe temperatura de cocción. Se empieza por amasar suavemente el grafito con la arcilla: luego se incorporan las materias grasas y las gomas adhesivas. Se obtiene así una pasta fina la que, después de otras manipulaciones, pasará repetidas veces entre los rodillos de una máquina que pulverizarán las menores impurezas.

Cuando la pasta está perfectamente homogeneizada, se vuelca en unos filtros especiales y luego se estira con prensas hidráulicas de gran poder. De aquí las minas salen como largos hilos tubulares.

http://historiaybiografias.com/archivos_varios5/clasificacion_lapiz.jpg

Graduación moderna dureza de las minas de lápiz: B es blanda y H dura, por ejemplo la mas blanda es la 4B y la mas dura 4H.

Terminada esa operación se las coloca en unos estantes de madera para su estacionamiento. Al final se cortarán según la medida deseada. Hasta ese momento, las minas son crudas; para utilizarlas deberán soportar una cocción a 800° centígrados.

El engrase es la última operación. Las minas ya cocidas se tratarán con emulsiones preparadas con cera, grasas vegetales y animales, para que tengan resistencia, blandura y fluidez.

Para conseguir minas indelebles se mezclarán substancias colorantes sintéticas básicas: talco muy fino, goma tragacanto y sales de ácido esteárico y oleico. Esa mezcla deberá ser sometida a un largo calandrado para obtener una homogeneidad perfecta. Después se la somete al secado a 40° centígrados sin hacerla cocer. Las minas producidas con esta mezcla se engrasarán con emulsiones especiales.

Análogo procedimiento se emplea en la fabricación de lápices de color. Pero en vez de los colorantes sintéticos básicos, se emplearán colorantes minerales y la operación de engrase se cumplirá antes del amasamiento.

En otros talleres se prepara la madera.

Para lápices de calidad superior y, por supuesto, de precio elevado, se utiliza el cedro colorado de América, enebro de California u otros árboles de fibras compactas y, al mismo tiempo, blandos y fáciles de cortar.

Pero, cuando se preparan fundas para lápices más baratos se emplea madera de bajo precio como el tilo y el aliso que, sin poseer las virtudes de las maderas antes mencionadas ni su hermoso color natural, dan un resultado satisfactorio. Toda la madera destinada a la fabricación de lápices deberá cortarse a escuadra y en tablillas de diferentes tamaños. Deberá asimismo estacionarse durante largo tiempo.Estas tablillas serán llevadas a una máquina que grabará en cada una pequeños surcos calibrados, en los cuales las minas tendrán exacta cabida.

Otra máquina untará la acanaladura con cola muy adhesiva para que se produzca la unión entre madera y mina. Cada mina será ajustada en la estría que le corresponda. Sobre la primera tablilla, en la que estará la mina pegada en su acanaladura, se colocará otra cuyas hendiduras corresponderán exactamente a las de las tablillas inferiores.

Terminada esta operación, las tablillas que encierran ahora las minas son sometidas a un proceso de refinación. Puestas en pilas bien ordenadas, Tas tablillas sandwiches se pondrán en prensas especiales donde permanecerán durante 24 horas para asegurar el encolado.

Muy importante es el procedimiento de perfilación confiado a máquinas complejas y delicadas, que separarán las varillas, a fin de que cada una contenga una sola mina encerrada en su correspondiente estría.

Perfiladas en la forma requerida (redonda o facetada) las varillas son luego alisadas eliminándose toda aspereza. Pasan después al barnizado que se hará según el aspecto que se quiera dar al lápiz: opaco, brillante, jaspeado, etc.

Secciones especiales afilarán las minas; otras confeccionarán minas destinadas a los lápices automáticos. No olvidaremos por fin la sección empaque que procederá a embalar el producto terminado enviándolo a los lugares de consumo.

Actualmente las fábricas de lápices trabajan en forma intensa y continua. El lápiz ya no es sólo artículo para escolares; ha llegado a ser imprescindible en oficinas, talleres, fábricas y en los más humildes hogares.

En la actualidad el lápiz tiene cada vez menos uso, debido a lo nuevos sistemas electrónicos de comunicación, diseño, etc. Una variedad práctica del lápiz consiste en el portaminas, que no es más que un lápiz de plastico o metalico huevo en su interior, por donde corre una mina de grafito que es sujetada por pequeñas mordazas en un extremo. A medida que se consume la mina, se la puede ir regulando con una simple presión en el otro extremo. Las minas vienen de diversos diámetros,largos y durezas. Abajo observamos el extremo de un portaminas

http://historiaybiografias.com/archivos_varios5/portamina.jpg

FABRICACIÓN MODERNA DE LAPICES

Fuente Consultada:
LO SE TODO Editorial Larousse Tomo V –  Historia del Lápiz –

Diferencia entre Arquitectura y Urbanismo Conceptos Básicos

ARQUITECTURA Y URBANISMO

Para establecer, concretamente, la diferencia entre Arquitectura y Urbanismo, nada mejor que determinar sus respectivos campos tomando en cuenta la definición lexicográfica de cada palabra. Según el Diccionario de la Lengua, la Arquitectura -“arte de proyectar y construir edificios”- tomó su denominación del latín, el cual, a su vez, adoptó ese término del idioma griego.

urbanismo

El urbanismo constituye la organización u ordenación de los edificios y los espacios de una ciudad acorde a un marco normativo. Es por tanto una disciplina que define teniendo en cuenta la estética, la sociología , la economía, la política, la higiene, la tecnología, el diseño de la ciudad y su entorno. Se ocupa tanto de los nuevos crecimientos como de la ciudad ya existente y consolidada a fin de mantenerla o mejorar sus infraestructuras y equipamientos.

Para los griegos, el vocablo que servía para designar a quien profesaba o ejercía la arquitectura estaba integrado por dos partes, de significación’ muy precisa: el verbo “mandar” y el sustantivo “obreros”. O sea que el arquitecto era, fundamentalmente, quien “mandaba a los obreros”.

También especifica el diccionario de nuestro idioma cuáles son las distintas posibilidades de la Arquitectura: “civil” -dice- es la que se encarga de “construir edificios y monumentos públicos y particulares”; “hidráulica”, la que se ocupa de “conducir y aprovechar las aguas o de construir obras debajo de ellas”; “militar”, será el “arte de fortificar”; “naval”, el de “construir embarcaciones”, y “religiosa”, la que se dedique a hacer “templos, monasterios, sepulcros y demás edificios de carácter religioso”.

La Real Academia Española, en su Diccionario oficial, se expide, en cambio, del siguiente modo sobre los alcances del Urbanismo. Es el “conjunto de conocimientos que se refieren al estudio de la creación, desarrollo, reforma y progreso de los poblados, en orden a las necesidades materiales de la vida humana”.

Es decir que la Arquitectura se refiere a un edificio público o privado, a la casa donde vivimos, a un puente o a un camino, mientras que el Urbanismo estudia la acción conjunta de tales valores arquitectónicos y su organización general, en función del más humilde villorio o de la ciudad más cosmopolita y lo hace desde el punto de vista comunitario. De ahí que, aunque las historias que señalan la evolución de tales disciplinas a través del tiempo puedan parecer difereiv tes, son, en el fondo, análogas y, lo que es más importante, complementarias.

La Arquitectura no puede funcionar separadamente, porque carecería de sentido social. Así lo señaló, entre otros, el arquitecto italiano contemporáneo Bruno Zevi en su ya mundialmente famoso libro “Saber ver la Arquitectura”. Y tampoco el Urbanismo tendría sentido si no manejase sus conceptos básicos en torno a los principios de la arquitectura civil, hidráulica, militar, naval y religiosa.

Fuente Consultada:
Enciclopedia Ciencia Joven Fasc. N°2  – Arquitectura y Urbanismo Edit. Cuántica

La Polinizacion de las Plantas Agentes y Mecanismos Tipos

La Polinización de las Plantas
Tipos, Agentes y Mecanismos

Las abejas y otros insectos tan comunes en las flores durante los meses de verano, no se dedican solamente a alimentarse del néctar, sino que están realizando un servicio vital para la planta. Cuando los insectos revolotean de flor en flor, están llevando involuntariamente polen de una parte a otra y realizando la polinización de las flores.Se llama polinización al paso o tránsito del polen desde el estambre en que se ha producido hasta el pistilo en que ha de germinar.

El trasporte de polen desde los estambres hasta el estigma es un proceso que recibe el nombre de polinización, y es la primera fase del ciclo por el cual las células masculinas llegan a las células femeninas, u óvulos, para formar las semillas. La segunda fase del proceso (fecundación) se describirá más abajo.

Todas las partes de la flor pueden desempeñar un papel en la polinización, pero los principales órganos que aquí intervienen son los estambres y el estigma. Cada estambre (órgano masculino) consiste en un filamento y un par de anteras, que son los sacos productores de polen. Cuando los granos de polen están maduros, las paredes de la antera se abren y los dejan en libertad.

El estigma es la superficie de recepción de la parte femenina de la flor, el carpelo. El estigma puede estar colocado, o no, sobre una columna, el estilo. Cuando el polen de la misma especie cae sobre el estilo, el proceso de la fecundación comienza.

polinizacion

Partes de una flor

Cuando las semillas se producen mediante la trasferencia de polen de una flor a otra (polinización cruzada), las plantas resultantes son, a menudo, más vigorosas que si el polen y el óvulo (célula femenina) procediesen de la misma flor (autopolinización).

No es sorprendente, por lo tanto, que la mayoría de las flores tengan algún método de evitar la autopolinización y de asegurar la polinización cruzada. Las flores que están adaptadas a la polinización cruzada producirán una descendencia más robusta, y con más posibilidades que las no adaptadas a ella.

Así se va introduciendo la propiedad que sirve para asegurar este tipo de polinización entre las distintas plantas de la especie, o, dicho de otro modo, la planta va evolucionandp hacia la adquisición de esta posibilidad.

La mayoría de las flores contienen a la vez estambres y carpelos (son hermafroditas), pero algunas plantas tienen flores con un solo sexo. Ciertas especies (por ejemplo, el sauce) tienen incluso las flores  masculinas  y  femeninas  en plantas de morfología distinta. En estos casos, la autopolinización es imposible. Cuando en la misma flor existen órganos de los dos sexos, la autopolinización se evita por la separación de las anteras o de los estigmas en el espacio o en el tiempo.

En la antena del estambre se libera el polen y cae en el óvulo de la misma flor

En una flor erecta, las anteras pueden estar debajo de los estigmas, y lo contrario ocurre en una flor colgante, de tal forma que el polen no cae en los estigmas. El mecanismo más frecuente, es que los estambres maduren antes de que el estigma esté preparado para recibir el polen. Esto es lo que se conoce con el nombre de protandria. El proceso inverso (protoginia) se encuentra en algunas flores, cuyos estigmas maduran antes de que los estambres dejen caer el polen.

Cierto número de plantas cuyas flores no están adaptadas estructuralmente para evitar la autopolinización son autoestériles. El polen cae sobre el estigma, pero no se realiza la fecundación, por existir, al parecer, una barrera química. En ciertos experimentos de genética, realizados para obtener nuevas variedades de plantas, es necesario evitar la autopolinización, incluso para especies de plantas que la poseen como un mecanismo normal.

Para ello, se procede a amputar artificialmente los estambres, y a realizar la polinización frotando el estigma con estambres tomados de otra flor, con la que se quiere realizar el cruzamiento. Con frecuencia, se cubren las flores con bolsitas o cucuruchos de papel, para impedir el acceso al estigma del polen de otras flores extrañas al experimento. En otros casos, interesa, por el contrario, favorecer la autopolinización, a fin de obtener líneas o variedades puras.

Los resultados de la polinización cruzada entre dos variedades muy diferentes son, con frecuencia, una descendencia de mayor vigor, lo cual puede tener agrícolamente un gran interés. Éste es el caso de los maíces “híbridos”, en los que se busca obtener este fenómeno por la polinización de dos variedades puras diferentes.

A pesar de que la polinización cruzada es preferible, la autopolinización debe realizarse en el caso de que no haya otra posibilidad. Con frecuencia, los estambres y los estigmas se doblan unos contra otros antes de que la flor muera, para que se efectúe la autopolinización, si la polinización cruzada ha fallado. Un grupo de plantas (en las que se incluye la violeta) produce, al final de la estación de crecimiento, flores especiales que se autopolinizan. Incluso no llegan a abrirse, y el polen pasa directamente desde los estambres hasta el estigma, asegurando, al menos, la producción de algunas semillas.

LOS AGENTES POLINIZANTES: Insectos, viento y agua
Los insectos desempeñan un papel importante en la polinización, pero existen otros agentes, como el viento. La polinización por el viento (anemofilia) tiene lugar en muchos árboles y gramíneas. Las flores están, generalmente, en amentos o inflorescencias colgantes en forma de plumeros o borlas que el viento puede sacudir fácilmente.

Algunos tipos de inflorencia de las flores. Son diversos tipos de agrupaciones de flores, pues normalmente las mismas no se encuentran aisladas

Los estambres poseen también largos filamentos, que hacen que las anteras puedan ser sacudidas por el viento con mayor eficacia. De esta manera, el polen puede soltarse con gran facilidad. El polen es ligero y se produce en grandes cantidades, ya que la polinización por el viento desperdicia una gran cantidad y sólo una pequeña parte llega a su meta, constituida por el pequeño blanco que presenta la superficie del estigma.

El polen de muchas plantas anemófilas (por ejemplo, en los pinos) presenta unos pequeños “flotadores” o vesículas huecas adosadas que contribuyen a aumentar su superficie, disminuyendo su peso específico aparente. Así el polen puede ser trasportado a muchos kilómetros de distancia por el viento, e incluso ascender a gran altura en la atmósfera, siguiendo los movimientos turbulentos (de remolino) del aire. Se ha observado un caso de polinización de una planta de palmera en el sur de Europa por el polen aparentemente procedente del norte de África.

El  agua tambien es un agente que trasporta el polen de algunas plantas acuáticas. Los granos de polen tienen flotadores finos que los llevan sobre la superficie del agua hasta que alcanzan alguna flor que esté en la superficie. Los pájaros son polinizadores’frecuentes en los trópicos (p. ejemplo, colibríes). Las flores, generalmente, son rojas y producen grandes cantidades de néctar. Los murciélagos pueden ser los polinizadores de algunas flores, especialmente en los trópicos. Otros animales pueden también polinizar durante sus viajes, pero no son polinizadores regulares.

Los estigmas son normalmente muy grandes y plumosos en las plantas polinizadas por el viento, para que pueda ser atrapado más polen. La polinización por el viento parece ser la forma más primitiva de polinización y es muy poco diferente de la dispersión de las esporas de los hongos y de los heléchos. Quizá era el único método empleado por las gimnospermas (plantas que no tienen las semillas cubiertas) fósiles, que formaban bosques de árboles enormes en épocas pasadas.

Hoy día es el método de polinización de las gimnospermas vivientes, como las coniferas (pinos, abetos, cedros, etc.), si hay que tomar como criterio la cantidad de polen producido. En momentos determinados, puede desprenderse el polen en tales cantidades que cubre el suelo, coloreándolo de amarillo y dando origen a lo que popularmente se han llamado “lluvias de azufre”. A veces se ve el polen flotando como una nube sobre los bosques de coniferas. En las típicas “lluvias de azufre”, parece que el polen es realmente arrastrado por las gotas de lluvia, procediendo de las capas relativamente altas de la atmósfera, donde han ido a parar por efecto del aire.

Esta inflorescencia es más bien fea y tiene un olor desagradable, que, sin embargo, atrae a las moscas. Las flores individuales están en una espiga, las femeninas debajo de las masculinas. Por encima de lis flores hay un anillo de pelos y toda la inflorescencia está envuelta en una vaina. Las moscas, atraídas del exterior, penetran en el tubo y quedan encerradas por los pelos que están dirigidos hacia abajo. Las flores femeninas maduran primero y se polinizan por los insectos que llevan algo de polen. Después maduran las flores masculinas y los pelos se marchitan. Cuando los insectos escapan, llevan polen que trasportan a la flor siguiente.

RECOGIDA DE POLEN AÉREO
Para analizar el polen flotante en el aire se disponen portaobjetos de microscopio al aire libre, cubiertos con una capa muy fina de vaselina. El polen de las plantas anemófilas queda pegado y puede examinarse al microscopio. La determinación se hace por comparación con el polen tomado directamente de las plantas. Los granos de polen presentan complicados y variables relieves en su superficie que son distintos para cada especie, y se utilizan para la identificación. Los inventarios de polen aéreo se hacen frecuentemente con fines médicos, debido a que el polen puede producir trastornos alérgicos en algunas personas (fiebre del heno), a para conocer las épocas de polinización de las plantas.

Entre las plantas que tienen flores (angiospermas), las flores anemófilas se caracterizan por lo sencillo de su estructura, lo cual parece ser un fenómeno de reducción posterior y no un carácter primitivo. Los pétalos suelen faltar, las flores no son llamativas, no producen néctar, y no llaman la atención de los insectos. Producen muchísimo más polen que las flores de plantas relativamente parecidas en cuanto a su estructura, pero que son polinizadas por insectos, y el polen es seco y pulverulento.

Hay una marcada tendencia a la separación de sexos y a la aparición de las flores, muy tempranamente en la primavera, antes que las hojas, lo que ocurre, especialmente, en los árboles y en los arbustos. Una de las características más interesantes de la anemofilia es que aparece en familias de plantas totalmente distintas, lo que muestra que es una adquisición reciente de tipo evolutivo. Se encuentra en las gramíneas (hierbas), que se polinizan todas por el viento, a excepción de la avena cultivada y algunas variedades de trigo que se autopolinizan, en los robles, chopos, etc.

En algunas de estas plantas, las anteras pueden “explotar”, proyectando el polen en el aire. El avellano, por ejemplo, produce sus flores en unas borlas colgantes alargadas (amentos). Las flores femeninas, sin embargo, son unas estructuras delicadas y de pequeño tamaño, con estigmas rojos ramificados. La separación de las flores por sexos asegura la polinización cruzada.

polinizacion

Dispersion de semillas

Las flores de las gramíneas (hierbas) tienen los estambres con largos filamentos, que aseguran que no haya autopolinización por su manera de colgar de la flor, lejos de los estigmas. Las especies de llantén producen espigas de flores protóginas. Las flores situadas en la parte más baja de la espiga se abren las primeras, y dejan sus estigmas al descubierto. Cuando éstos se marchitan, aparecen los estambres colgantes, pero no polinizan a las flores más jóvenes, ya que están siempre situados por debajo de los estigmas que se van abriendo en la parte superior de la espiga.

Algunas flores no están limitadas a un solo método de polinización, y, si no las visitan los insectos, descargan el polen en el aire. Estos casos sugieren la idea de que, cuando los tipos florales estaban adaptados a la polinización por el viento o por insectos y las condiciones se alteraron, las flores adoptaron un método diferente de polinización, pero la estructura floral se mantiene igual.

LA POLINIZACIÓN POR INSECTOS

La polinización por insectos (entornofilia) es el método más común de trasporte de polen para la fecundación. Hace mucho tiempo que se sabe que el brillante color, y el aroma de las flores, no se han hecho para la satisfacción estética del hombre, y que su objeto principal es atraer los insectos.

Polinización Cruzada

Hay bastantes flores que no están condicionadas y que pueden polinizarse por casi todos los insectos, pero otras son polinizadas por muy pocas especies. Las complicadas asociaciones entre flores e insectos no son, en absoluto, una casualidad, sino el resultado de las fuerzas de evolución, que actuaron desde que los primeros insectos empezaron a alimentarse en las flores.

Las primeras flores anemófilas debieron atraer a los insectos de alguna manera, probablemente a causa del alto valor nutritivo del polen. Las flores visitadas por insectos fueron polinizadas de una manera eficaz, y produjeron una descendencia en mayor número que aquellas que no tuvieron contacto con los insectos. Esta descendencia fue también atractiva para los insectos, por haber conservado el carácter hereditariamente de sus antecesores.

La Polinización Cruzada

A partir de este momento, debe haberse originado toda la serie de refinados mecanismos de las flores entomófilas. Se han escrito libros enteros sobre los mecanismos que los insectos, por una parte, y las flores, por otra, han desarrollado para perfeccionar esta cooperación. Algunos insectos tienen estructuras especiales para almacenar el polen —y por lo tanto para polinizar— de manera más eficaz.

El “cestillo del polen” y la fina pelosidad plumosa de las abejas son un ejemplo. Las abejas se cubren de polen al penetrar en las flores, después se cepillan (por medio de una estructura especial existente en las patas en forma de brocha) y aglomeran el polen en bolitas, que meten en el cestillo. Sin embargo, siempre queda polen adherido al cuerpo, y este polen puede ser retenido por el estigma pegajoso de las flores que el insecto visite a continuación.

Las flores entomófilas son, casi siempre, de colores brillantes y olorosas, aunque el olor no siempre es agradable para el hombre. Normalmente contienen un líquido dulce —el néctar—  además del polen; aunque algunas flores (como, por ejemplo, la rosa silvestre) tienen solamente polen, que producen en mayor cantidad, como alimento de los insectos. En el néctar dominan compuestos ricos en hidratos de carbono, que son utilizados como fuente de energía por los insectos, mientras que en el polen predominan compuestos nitrogenados, muy importantes para la alimentación de las larvas.

Los flores de este tipo (p. ejemplo, el guisante de olor) están muy especializadas para asegurar la polinización. Las abejas de “lengua” larga, atraídas por las flores, se posan en los pétalos laterales (alas). El peso de la abeja hace descender los pétalos y deja al descubierto los órganos sexuales, que frotan el cuerpo del insecto. La polinización tiene lugar cuando la abeja busca el néctar en la base de la flor. Sólo los insectos pesados, como las abejas, pueden polinizar esta clase de flores.

El polen de las flores entomófilas es pegajoso y se adhiere al cuerpo de los insectos. Dado que la polinización por los insectos es un mecanismo más eficaz que la anemofilia, el polen se produce menos en estas flores. Las abejas son los insectos polinizadores más importantes. En sus búsquedas de polen y néctar, visitan un gran número de flores, generalmente de la misma especie, polinizándolas. Su “lengua” (proboscis), relativamente larga, las capacita para encontrar y recoger el néctar “encerrado” (por ejemplo, en recovecos o en espolones formados por los pétalos).

Las abejas, cuyos ojos no son sensibles a la luz roja, visitan las flores purpúreas, azules, amarillas, algunas veces las blancas y, muy raramente, las de color rojo. Las líneas oscuras en los pétalos (guías de la miel) parecen guiar a los insectos hacia, el néctar, los estambres y el estigma. Para la fructificación de los árboles frutales, las abejas tienen una gran importancia, habiéndose comprobado que los árboles frutales plantados a los lados de las carreteras son cada vez menos fértiles, a medida que va uno alejándose de los pueblos donde hay numerosas colmenas.

Para obtener una buena polinización, se aconseja colocar colmenas en las plantaciones de frutales en una densidad de, por lo menos, dos por hectárea. Las mariposas, tanto diurnas como nocturnas (polillas), son también importantes agentes polinizadores. Las mariposas visitan todo tipo de flores, especialmente las rojas y las blancas.

Sus largas “lenguas” (espiritrompa) les permiten alcanzar el néctar en las flores tubulares. Las mariposas nocturnas se mantienen en el aire frente a las flores y obtienen el néctar con sus larguísimas espiritrompas. Las flores son, generalmente, blancas o amarillas (de forma que son visibles fácilmente en la oscuridad) y están perfumadas fuertemente. Sus estambres y estigmas sobresalen, de forma que tocan el cuerpo de la mariposa cuando ésta se mantiene en el aire¿ vibrando rápidamente sus alas.

Otros insectos que visitan con frecuencia las flores son las moscas y los coleópteros (escarabajos). Estos insectos no están especializados para llegar al néctar “encerrado”, y se encuentran normalmente sobre flores “abiertas”, como las de la familia de las umbelíferas.

Las inflorescencias planas suelen estar frecuentemente cubiertas por insectos, que se alimentan del néctar al descubierto. Las flores son marcadamente protándricas, y los insectos llevan el polen desde las flores jóvenes del centro de la inflorescencia a las del borde que, siendo más viejas, tienen ya maduros los estigmas. Las flores de la familia de las compuestas son también visitadas por numerosos insectos.

La mayoría de las flores entomófilas emplean alguno de los métodos ya descritos para evitar la autopolinización. A veces, la cooperación entre planta e insecto llega a traducirse en mecanismos muy complejos.

Las inflorescencias (cabezas) del trébol blanco producen flores erguidas. Cuando alguna flor ha sido visitada por una abeja, se inclina doblándose por el pedúnculo y quedando en posición colgante bajo la inflorescencia. Con esto, las abejas que llegan después no “pierden el tiempo” en visitas inútiles, y aumentan las oportunidades de que otras flores reciban su visita. En algunos casos, la falta del insecto para la polinización ha motivado que las plantas introducidas en una región, donde antes no existían, sigan estériles.

Esto ocurrió con la higuera de Esmirna, cuando se llevaron los primeros árboles de esta clase a California. Algunos años más tarde (1899) se llevaron de Argelia inflorescencias masculinas de la higuera de Esmirna, que se suspendieron en las ramas altas de los árboles, y la polinización  (y por lo tanto, la formación de higos) fue posible gracias a un pequeño himenóptero (familia de las avispas y las abejas), que llegó involuntariamente con las inflorescencias.

Fuente Consultada:
Revista Enciclopedia de la Ciencia y la Tecnologia N°46 TECNIRAMA

Que Significa Cebada Malteada en la Elaboracion de Cerverza?

La cerveza no es una bebida descubierta recientemente. Se sabe con seguridad que los antiguos griegos y romanos ya la elaboraban, y es probable, incluso, que sea anterior a aquel tiempo. A pesar de que la maquinaria utilizada en una gran fábrica de cerveza es muy complicada, en realidad, el proceso de la obtención del producto es sencillo, y para su fabricación en pequeña escala no se necesita máquinas tan complejas.

La cerveza se obtiene por la fermentación de los azúcares derivados de la cebada, y para darle sabor y conservarla se utiliza normalmente el lúpulo,  aunque es posible fabricarla sin él. Para producir un barril de cerveza se necesitan unos 35 Kg. de cebada, 1/2 kilo de lúpulo, 1/2 de azúcar (para suplementar el contenido por la cebada), y un puñado de levadura para la fermentación.

Los granos de cebada son unas pequeñas semillas que, durante su período de maduración, almacenan cierta cantidad de hidratos de carbono insolubles (almidones) y de proteínas, protegidos por una envoltura de celulosa. Cuando se siembran las semillas, la planta que germina utiliza, para su desarrollo, el almidón y las proteínas almacenadas.

Sin embargo, no puede utilizarlas en su forma insoluble, sino que primero debe trasformar los almidones para convertirlos en azúcares solubles. Antes de comenzar a germinar, las semillas absorben agua y se hinchan, y unas sustancias químicas llamadas enzimas se encargan de realizar dicha conversión en azúcares.

El almidón no puede fermentar; los azúcares, sí. Por lo tanto, antes de que la cebada fermente, sus hidratos de carbono deben convertirse en azúcares.

La cebada se convierte en malta. Esto se realiza en los malteadores, situados cerca de los mismos campos de cebada. El proceso consiste en dejar que germine la cebada y detener la germinación antes de que el brote haya podido utilizar demasiada cantidad del azúcar formado.

Cebada Malteada

Para todo lo cual, primero, los duros granos de cebada se colocan en montones, se remojan con agua, y se permite su germinación. Luego, cuando empiezan a salir pequeñas raicillas, se extiende la cebada sobre el suelo del malteador, y se facilita la germinación mediante agua y calor. Pasados algunos días, se dificulta la velocidad de crecimiento, extendiendo el grano en capas más finas sobre el mismo suelo.

Cuando las raicillas han alcanzado una longitud de unos 2 cm. se detiene por completo su crecimiento, secando y tostando los granos germinados en un horno. Esto se realiza extendiendo el grano sobre el suelo perforado del horno, y tostándolo por medio del aire caliente que sube a través de dicho suelo y que proviene de un fuego de antracita, que no despide humo, encendido debajo. La malta para la cerveza clara sólo se tuesta ligeramente.

Para obtener cervezas más oscuras y de mayor sabor el grano se tuesta a temperaturas más elevadas. Para otros tipos especiales de cerveza, se puede utilizar fuegos de leña u hornos de gas.

El color y el sabor de la cerveza dependen mucho del modo de obtención de la malta. Aunque por el aspecto externo no es posible diferenciar el grano de cebada no tostado del malteado, es fácil distinguirlos masticándolos. La cebada es dura y correosa, porque está constituida por sustancias insolubles, y la malta es dulce y crujiente por su contenido de azúcar.

Las raicillas secas que quedan con la malta resultan un estorbo para el fabricante de cerveza pero tienen aplicaciones por la gran cantidad de nitrógeno que contienen. Se separan tamizando la malta, y se utilizan para fabricar alimentos destinados a las aves de corral y al ganado. La malta, ya a punto para ser usada, se almacena; el fabricante escoge diferentes tipos de ella y los mezcla para producir la cerveza que tenga el sabor y el color deseados.

Ver: La Elaboración Completa de la Cerveza

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°55 La Fabricación de la Cerveza

La Dispersión de Semillas Mecanismos Objetivos Aire y Agua

¿PORQUE SE DISERSAN LAS SEMILLAS?: MÉTODOS Y OBJETIVOS

Las adaptaciones de las plantas a un modo de vida concreto o a una situación determinada es más difícil de observar que la de los animales. Los animales se mueven y resulta posible observar cómo actúan, cómo usan ciertos órganos y cómo se comportan cuando realizan sus funciones ordinarias. Hay, no obstante, muchas señales externas que permiten seguir las adaptaciones de las plantas y conocer sus actividades.

Todo el mundo ha visto cómo flotan en el aire las flores de los cardos o del diente de león, y cómo caen, a cientos, los frutos del arce apenas el viento agita sus ramas. Otro tanto ocurre con los llamativos frutos del acebo o del espino, de característico color rojo. Todas estas señales nos indican que las plantas han cumplido con su tarea de producir semillas. Éstas contienen embriones que, al desarrollarse, dan lugar a nuevas plantas, que, a su vez, vuelven a producir semillas. De esta manera cada especie asegura su supervivencia.

Las semillas de las plantas silvestres, abandonadas a sí mismas, corren muchos riesgos y, en su mayoría, no consiguen sobrevivir. Para contrarrestar ese riesgo, foseen los medios para reproducirse en gran número. Muchas plantas (por ejemplo: la mostaza, especies de la gramínea Agrostis, etc.) están constituidas de tal forma que producen una infinidad de semillas muy pequeñas; de éstas, sólo un grupo muy reducido (a veces en proporción inferior a 1:1.000) llega a germinar.

Las plantas no pueden críar a sus hijos, por lo que debe aseguarrse que las semillas que producen alcanzan un buen lugar para desarrollarse y crecer. Si las semillas simplemente cayeron al suelo bajo su planta madre, podrían tener dificultades para crecer. Por ejemplo, los animales podrían encontrar fácilmente estos depósitos y destruirlos; las semillas, al nacer, estarían tan amontonadas que tendrías que luchar entre sí por la luz, el agua, las sustancias minerales.

De hecho, en la vegetación natural, en la que el número de individuos no parece aumentar con el tiempo, cada individuo debe producir, por término medio, un solo descendiente. Si sucediese de otra forma, el número de los seres vivos iría creciendo hasta el infinito, y la tierra sería rápidamente insuficiente para contenerlos. De la regulación del número de individuos se encarga la selección natural (competencia y lucha por la vida).

Si las plantas que germinan se hubieran limitado a caer cerca de las plantas maternas, sus probabilidades de sobrevivir serían pocas. Los animales podrían encontrar fácilmente estos depósitos y destruirlos; las semillas, al nacer, estarían tan amontonadas que tendrías que luchar entre sí por la luz, el agua, las sustancias minerales, etc., y las enfermedades se propagarían entre ellas rápidamente.

Mientras, amplios territorios quedarían libres. Por otra parte, si la planta no se extendiese ocúpando nuevas zonas, y quedase localizada enratn lugar reducido, podría ser destruida de una vez para siempre por una catástrofe local o un cambio en las condiciones climáticas.

Se conocen, de hecho, ajgánas importantes emigraciones de plantaren períodos geoló-gicos,.shtiguos, debidas a cambios climáticos. Dorante el período cuaternario, las cuatro grandes épocas glaciales, períodos de intenso frío, hicieron “emigrar” hacia el sur a muchas plantas que necesitaban calor.

Estas “emigraciones”, como es lógico, se desarrollaron a lo largo de miles de año. La flora de Norteamérica es más rica en especies que la de Europa (aunque ambas poseen elementos parecidos) debido, seguramente, al hecho de que en Norteamérica muchas especies pudieron escapar hacia el sur, a través del istmo de América Central; en Europa, en cambio, con la retirada cortada por el mar, no cupo este recurso. Ésta es la razón de que en Europa falten muchas especies de plantas (magnolia, buganvilla, etc.) norteamericanas que, al ser trasplantadas por el hombre, se adaptan con facilidad a las condiciones del clima europeo.

El hecho de que las plantas puedan esparcir o dispersar sus semillas —unas veces a grandes distancias; otras, a sólo unos centímetros— utilizando para ello una gran variedad de recursos, hace que aumenten considerablemente sus posibilidades de supervivencia.

Para lograr dispersar sus semillas, las plantas utilizan como vehículo
al viento, a los animales y al agua.

CON EL VIENTO: Las semillas pueden dispersarse por sí mismas o ser llevadas con el fruto. En algunos casos, toda la planta puede servir de vehículo para la dispersión. Éste es el caso de algunas “rastreras” (salsola), que se dan en lugares secos.

dispersion de semillas en el desierto

La planta, al morir y secarse, se desprende del suelo y es arrastrada por el viento. Tiene, en ese momento, debido a que sus ramas secas están contraídas y curvadas, la forma aproximada de una bola. Puede ser trasportada en estas condiciones por el viento, que la hace rodar por el suelo; al chocar con éste, las semillas se van esparciendo. Este tipo de dispersión es muy corriente en aquellos lugares donde la vegetación ralea, y los espacios son abiertos (el desierto, por ejemplo), pudiendo recorrer las plantas grandes distancias.

Las semillas a las que el viento dispersa aisladamente, las de las orquídeas y la digitalis, entre otras, suelen ser muy ligeras. Estas semillas no tienen ninguna propiedad especial, dispersándose con facilidad por su poco peso; otras semillas, en cambio, pueden presentar “alas”. Éste es el caso de los frutos del pino, fresno, olmo y arce.

Algunas plantas, como el diente de león, el cardo lechero (Sonchus), la clemátide, el algodón, el sauce y el chopo, presentan unas prolongaciones pilosas en sus semillas o frutos, que les sirven de paracaídas para retardar su caída. De este tipo son los típicos “vilanos”, muy frecuentes en la familia de las compuestas, que suelen consistir en una serie de pelos plumosos dispuestos alrededor de un vastago, en forma de cono.

dispersion de semillas villanos

En algunas plantas tropicales (Myzodendron) estos pelos pueden tener hasta 13 cm. de longitud. Los “vilanos” trasportan mejor las semillas que las “alas”; estas últimas, sin embargo, suelen estar asociadas con semillas más pesadas. En algunas plantas, como la escabiosa (flor de viuda), el aparato de vuelo, que recuerda por su forma a los “vilanos”, tiene una consistencia membranosa. A veces, el aparato de vuelo sirve también para fijar la semilla a determinados animales; son complicados (así, el ramificado de los Cometes, expresivo nombre que recibe una planta tropical).

Los “vilanos” pueden trasportar la semilla muchos kilómetros. A veces están dispuestos de tal forma que, al cabo de algún tiempo, se desprende el aparato volador del resto del fruto. En muchas plantas compuestas las brácteas que rodean el capítulo con los frutos se cierran o se abren, según la humedad atmosférica, permitiendo sólo que los vilanos puedan volar cuando hace buen tiempo.

El delicado aparato plumoso pierde su eficacia si llega a mojarse por la lluvia. Los aparatos voladores formados por expansiones en forma de alas son también de gran diversidad. Los hay de una sola “ala”, caso del pino, el abeto y el fresno.

En el arce, dos semillas juntas, provistas cada una de su “ala”, pueden funcionar a modo de hélice. Este dispositivo sirve para que las semillas, una vez en el suelo, puedan ser elevadas por las corrientes ascendentes de aire. Algunas plantas tropicales presentan dispositivos con tres, cinco y hasta nueve alas. En algunas plantas, como la amapola y ciertas campanillas, existen los llamados mecanismos de incensario.

semillas de arce en forma de ala

Las semillas están contenidas en una cápsula (el fruto) que se abre formando agujeros o dientes. En otros casos, la cápsula se abre a lo largo. Cuando las cápsulas son colgantes, basta con una ligera brisa para que se esparzan las semillas. Si las cápsulas están sobre tallos erectos pero algo flexibles, como ocurre en las amapolas, las semillas pueden ser lanzadas por el tallo, al recuperar éste la postura vertical que le había hecho perder el viento. A veces, la cápsula se comporta de un modo muy peculiar, como es el caso de algunas especies alpinas de linaria.

Esta planta crece a una altura bastante elevada de las montañas, sobre terrenos muy escarpados entre las grietas de los peñascos. El pedúnculo floral crece en dirección a la luz, es decir, apartándose de la pared rocosa de donde brota la planta. Al madurar, la cápsula se orienta en dirección contraria, o sea, hacia la roca y sus grietas, depositando las semillas por aquella parte.

CON EL AGUA: Hay relativamente pocas plantas cuyos frutos o semillas se adapten a la dispersión por medio del agua. Esto está prácticamente reservado a las plantas acuáticas o a las de ribera. El agua de lluvia, sin embargo, desempeña un papel importante en la dispersión de numerosas plantas, cuyas semillas arrastra, y lo mismo ocurre en los regadíos, cuya agua es un vehículo de expansión para numerosas malas hierbas.

Algunas plantas, como el cocotero, el aliso y el lirio acuático, tienen medios especiales con los que sus frutos son trasportados por el agua. El coco (que es un fruto de drupa) tiene una cubierta externa fibrosa en forma de crin, que es eliminada en las fruterías antes de exponer los frutos para la venta. Esta cubierta, que retiene gran cantidad de aire, es muy ligera y permite que flote el fruto.

Lirio Acuático, usa el agua para dispersar sus semillas

El coco puede, así, navegar por el mar muchos kilómetros. El cocotero parece ser oriundo de Malasia; es posible que esta planta se aclimatase en la costa oriental de África y en muchas islas tropicales, después de que sus frutos fueron arrastrados hasta allí por las corrientes.

Las semillas del lirio acuático, o ninfea, tienen una cubierta esponjosa —el arilo— con numerosos huecos llenos de aire; esto les permite flotar y alcanzar distancias considerables. En algunas especies del mismo género se da un fruto colectivo, que flota, a modo de barquito, acarreando muchas semillas.

LOS ANIMALES: Los animales desempeñan un papel importante en la distribución de las semillas. Muchas plantas tienen semillas en el interior de frutos carnosos y brillantemente coloreados, para atraer a los animales. Las semillas, de ordinario, están protegidas por una cubierta fuerte. La parte dura no es ingerida por los animales, que se limitan a picotear o mordisquear la parte carnosa, abandonan el resto.

Lemur comiendo un fruto

En el muérdago, la carne del fruto es pegajosa y se adhiere al pico de los pájaros que se alimentan de ella. Así quedan pegadas algunas semillas, y, cuando el pájaro se limpia los restos de comida en una rama, las semillas quedan . allí, y pueden germinar como parásitas del árbol.

Como es sabido, el muérdago vive sobre las ramas de distintos árboles, introduciendo en los tejidos de éstos unas “raíces”, chupadoras, con las que absorbe la savia.

Por otra parte, sucede a veces que el animal traga todo el fruto, digiere la parte carnosa, y la dura pasa sin afectarse a través del tubo digestivo para ser expulsada con las heces en otro sitio. La parte dura de la semilla puede quedar ablandada por la acción de los jugos digestivos.

Entonces germina fácilmente. Pero muchas semillas desaparecen,digeridas por los mamíferos (que las rompen con sus dientes) o por los pájaros, que las parten con sus picos y las trituran con sus mollejas (buches). La porción carnosa de los frutos puede desarrollarse a partir de elementos muy distintos.

En las drupas (cereza, acebo, ciruela, damasco) y en las bayas (uva, muérdago, naranja) se forma en la pared del ovario (todos los nombrados son verdaderos frutos). En los pomos (por ejemplo: manzana), en la fresa, y en el escaramujo de la rosa, la carne se forma del receptáculo, que se hincha enormemente (todos ellos son falsos frutos). El color brillante, el aroma, el sabor y las propiedades alimenticias de los frutos, tienen como objeto la atracción de los animales, y hacen más fácil la dispersión de las semillas.

En ocasiones, la misma semilla puede ser carnosa. En el tejo, por ejemplo, la semilla posee un arilo brillantemente coloreado de rojo, que se desarrolla después de la fecundación. Algunas semillas, como las del ricino, contienen en un extremo pequeños corpúsculos de naturaleza carnosa y grasienta. Esta parte de la semilla parece que atrae a las hormigas, que desempeñan un papel importante en la dispersión. Algo análogo puede observarse en las semillas de celidonia.

Muchos frutos y semillas se adhieren, por medio de ganchos, a la piel de los animales que pasan cerca. Este tipo de frutos lo encontramos en el cadillo (Xanthium), que tiene toda la superficie recubierta de pequeños anzuelos retorcidos. Por su facilidad para engancharse, los niños lo emplean en los juegos como proyectil que se enreda firmemente en los jerseys o en el cabello.

A causa de los ganchos, algunos frutos son trasportados por las ovejas prendidos en la lana, y son una seria preocupación para los ganaderos por el desprecio que este defecto supone para la lana esquilada. En las lanas importadas de países lejanos se encuentra siempre una variedad de extrañas semillas de esta clase. Parecidos, en cuanto a sus efectos, son los aguijones de muchas umbelíferas y las barbas de las gramíneas, como las de la cebadilla de ratón. En la agrimonia, la parte superior del receptáculo se encuentra cubierta de ganchos.

Otras semillas consiguen el trasporte por medio de la adherencia con una sustancia. Cuando se humedecen, las semillas del llantén y del pan de pájaro se vuelven pegajosas. Entonces se adhieren a las plumas de las aves y al pelo de los mamíferos. Hay otras semillas, como la camelina, que utilizan esta propiedad adhérente para fijarse al suelo para la germinación. Algunos animales dispersan semillas y frutos con las patas. Las aves acuáticas recogen semillas adheridas al barro y luego las trasportan.

A veces, las semillas se proyectan a distancia por medio de un mecanismo explosivo. La dispersión tiene lugar por un desecamiento desigual de la pared del ovario, o por su saturación con agua. Cuando ocurre el desecamiento desigual, se desarrollan tensiones que producen una ruptura violenta del fruto. Entonces, las semillas se disparan a una cierta distancia de la planta madre. Éste es el medio que utilizan para su dispersión las legumbres, como el guisante.

El jaramago y la violeta disponen de mecanismos parecidos para la abertura de sus frutos. En las flores maduras de los geranios silvestres (que no son muy parecidos externamente al “geranio” cultivado, o pelargonio) se distinguen perfectamente unas curiosas catapultas encargadas del disparo de las semillas. Muy parecidas son las de los “picos de cigüeña” (Erodium).

Mecanismos explosivos de otro tipo se observan en la bolsa de pastor y en las oxalis. En un árbol de América tropical, llamado salvadera, las diferencias de tensiones entre los tejidos producen un violento desgarro de los frutos, con la proyección de las semillas hasta 14 metros de distancia. Es curioso comprobar que, en las plantas que poseen semillas aplastadas y mecanismo proyector, las semillas están en la cápsula de forma que son lanzadas al aire de canto y no de plano. La balsamina emplea para el lanzamiento de las semillas la elasticidad de los segmentos a que queda reducida su cápsula después de abrirse.

En el caso del pepinillo del diablo, planta muy frecuente en el sur de Europa, en los campos sin cultivar y a orillas de los caminos, la explosión se verifica por las tensiones internas del fruto, que se llena de agua a una cierta presión. El extremo del fruto, junto a la inserción del pedúnculo, se va debilitando con la madurez, hasta que se desprende, expulsando las semillas con gran violencia por el orificio resultante. Se puede provocar fácilmente la “explosión” de los frutos tocándolos con un palo. En los días de verano, puede oírse la explosión de los frutos desde larga distancia.

Mecanismo explosivo: (a) Frutos de jaramango, antes y después de estallar; (b) vainas del laburno; (c) cápsula de violeta antes y después de estallar; (d) cápsula de balsamina antes y después de estallar.

Dispersión por el viento – Mecanismo de incensario”, (a) Cápsula de amapola; (b) cápsula de boca de dragón; (c) cápsulas de coronaria; (d) cápsula de nigela.

GERMINACIÓN
Por la acción de las heladas, del calor del sol y del viento, el suelo se seca y se agrieta. La lluvia lleva las semillas, al interior de las fisuras. Por otra parte, muchos de los habitantes del suelo (lombrices, hormigas) introducen las semillas en sus túneles. Hay semillas que poseen adaptaciones especiales para introducirse en la tierra. Algunas especies de Stipa (gramínea de sitios desérticos) desarrollan un resorte formado por circunvoluciones de la barba. Este resorte es higroscópico, se distiende al humedecerse, y hace rotar a la semilla sobre su eje longitudinal.

La semilla tiene forma de huso, con una punta aguda en su extremo inferior. Parece que el movimiento de rotación hace que la semilla penetre en el suelo, cuando la tierra está blanda y húmeda. Estas semillas pueden herir a los carneros que pastan junto a la planta madre.

Otros frutos se anclan en el suelo con pelos o ganchos. En el caso de la castaña de agua, el mecanismo de anclaje formado por grandes espinas es muy eficaz para retener al fruto en el fondo de los cursos de agua, permitiendo la germinación, a pesar de los movimientos de las corrientes.

Los granos de la avena aumentan de longitud cuando se hinchan, y así penetran en el suelo húmedo. Muchas semillas quedan cubiertas por las hojas muertas y otros despojos. Las ardillas y el arrendajo facilitan la siembra de muchas semillas forestales, enterrándolas.

El arrendajo, especialmente, parece tener mala memoria y olvida con frecuencia sus depósitos, en beneficio de la repoblación forestal. Las semillas que quedan enterradas están mejor protegidas que las que permanecen sobre la superficie del suelo. En primavera, cuando la tierra se calienta y hay agua y humedad suficientes, las semillas se desarrollan o germinan.

Las semillas que quedan en la superficie pueden germinar también introduciendo sus raíces en el suelo, gracias a la tendencia de éstas a dirigirse en sentido de la gravedad. Sin embargo, en este caso los riesgos de fertilidad son mayores. No obstante, ciertas semillas germinan mejor a la luz que en la oscuridad.

En la germinación, la semilla absorbe grandes cantidades de agua y se hincha. A veces, la cubierta sufre tal tensión que llega a reventar. La reserva acumulada en forma de sustancias alimenticias proporciona la energía necesaria para el crecimiento. En la judía (chaucha) y el haba, los cotiledones son depósitos de alimento.

Germinación de una semilla de maíz

En otras plantas, como el ricino, la reserva está acumulada fuera de los cotiledones, en un tejido especial llamado endospermo. La actividad de la semilla se patentiza por el aumento de la respiración y por la elevación de la temperatura, que se comprueba fácilmente si se introduce un termómetro en un tubo donde germinan arvejas. La presión de hinchamiento es muy grande y se puede comprobar colocando un émbolo cargado con un peso en el tubo donde germinan las semillas.

Generalmente, la joven raíz, o radícula, es lo primero que aparece a través de la cubierta de la semilla, y crece hacia abajo, guiada por la gravedad. El joven tallo —plúmula— aparece poco después, y crece hacia arriba. Su punta permanece doblada hacia abajo hasta que alcanza (o rompe) la superficie del suelo. De esta forma, una porción más vieja se encarga de atravesar el suelo, y el frágil ápice vegetativo queda protegido en este momento delicado. En cuanto atraviesa el suelo, la punta se endereza rápidamente y crece hacia arriba.

En el haba y la judía, los cotiledones quedan bajo la superficie y dan alimentos a la pequeña planta hasta que el primer par de hojas empieza a producir sustancias alimenticias. En el ricino, la pequeña planta se alimenta del tejido endospérmico. Los cotiledones permanecen uno a cada lado de la plúmula, protegiéndola en su crecimiento. Ambos constituyen el primer par de hojas verdes.

La germinación de la semilla no siempre tiene lugar inmediatamente después de la maduración, pues antes suele pasar por un período de reposo. Para que la semilla inicie su actividad, son necesarias, a veces, condiciones muy especiales, como la exposición al frío durante cierto tiempo, o el desgaste .de la cubierta.

El tiempo durante el cual las semillas son viables, o capaces de germinar varía mucho y depende de las condiciones en que están almacenadas. El período máximo oscila, generalmente, entre 2 y 10 años. Sin embargo, han germinado semillas de geranio de más de 50 años de edad. En depósitos de turba de Manchuria, pertenecientes a un antiguo lago, se encontraron semillas de loto de la India que demostraron su capacidad para germinar.

La edad de estas semillas se estimó entre 150 y 200 años. Las noticias de que germinaron semillas encontradas en tumbas egipcias (depósitos de trigo en los enterramientos faraónicos) no se han confirmado.

Con la producción y la dispersión de semillas, se cierra el ciclo vital de la planta con flores (fanerógama). Cuando la semilla germina, comienza el ciclo de una nueva generación.

DISPERSIÓN POR EL VIENTO
En ¡o dispersión de los frutos, semiilas y esporas de las plantas inferiores, la turbulencia (remolinos! del viento desempeña un papel importante. Esta turbulencia depende fundamentalmente de ¡a velocidad del viento. Es interesante comparar la eficacia del trasporte de los frutos con la del polen y esporas.

Tabla de Dispersión de Semillas

Fuente Consultada
Revista TECNIRAMA N°48 Encilopedia de la Ciencia y la Tecnología – Dispersion de las Semillas –

Ver: Polinización de las Plantas Con Insectos

Características de los Caracoles Información General

Las babosas y los caracoles son gasterópodos (estómagos-pies), nombre que hace referencia al pie carnoso sobre el cual se mueven estos animales. Los gasterópodos pertenecen al gran grupo de animales de cuerpo blando llamado moluscos. Normalmente, tienen un caparazón arrollado, que cubre parte del cuerpo.

El caparazón es de una pieza (univalva) y no hecho de dos mitades, como en las almejas (bivalvos). Hay muchos gasterópodos que viven en el mar, y se encuentran normalmente en la costa. Como ejemplos, pueden citarse los caracoles de mar, las lapas y las litorinas. Éstas respiran por medio de agallas en forma de pluma, y pueden cerrar la entrada del caparazón con una placa córnea (opérculo), que es necesario quitar para comerlas, como sucede en los bígaros, por   ejemplo.

El término caracol suele aplicarse solamente a los gasterópodos con caparazón que viven en la tierra o en agua dulce. Aparte de unos pocos grupos, estos animales han perdido las agallas y respiran con un pulmón. Debido a esto, se llaman, de modo colectivo, pulmonados (del latín pulmo = pulmón). Generalmente, los pulmonados no tienen la placa córnea para cerrar el caparazón. Las babosas son pulmonados que han perdido, o casi perdido, sus caparazones; por lo demás, son muy parecidas   a   los   caracoles.

El caracol romano (“Helix pomatia”), ha puesto una masa de huevos en la superficie del suelo. Los caracoles ibernan y cierran sus caparazones con capas de mucus (“epifragma”), que se endurecen, pero ello no constituye un “opérculo”.

CARACOLES
El caracol común de jardín (Helix) es un caracol típico, aunque está muy lejos de ser un molusco típico. Si se separa de su caparazón, el cuerpo muestra tres partes: cabeza, pie y joroba visceral. La parte visceral contiene la gran glándula digestiva y algunos otros órganos, y está arrollada como una espiral.

La cubre una capa espesa de tejido, llamado manto. Hacia la parte delantera hay un -espacio entre el manto y el cuerpo-pie, que se llama cavidad del manto o paleal. En los gasterópodos marinos esta cavidad contiene las branquias.   Sin   embargo,   las   agallas   sólo pueden funcionar en el agua, y por ello los caracoles de tierra no poseen branquias. El techo de la cavidad tiene unas paredes muy delgadas y con muchos vasos sanguíneos, a los cuales puede pasar el oxígeno del aire. El bióxido de carbono pasa de los vasos a la cavidad.

En los gasterópodos marinos, los bordes del manto están libres; en los pulmonados, los bordes están unidos a la pared del cuerpo, salvo un pequeño poro. Cuando el caracol sube y deja caer la pared del cuerpo, fuerza la salida y entrada de aire en la cavidad de modo parecido a como lo hace el pulmón de los mamíferos.

Se puede observar que muchos caracoles de agua dejan escapar burbujas de gas en la superficie de las charcas. Lo que hacen es renovar el aire de sus pulmones. Algunos caracoles acuáticos, sin embargo, poseen cierto tipo de branquias.

Esquema Básico de un Caracol

Una característica bastante extraña es la comunicación del ano y del conducto excretor con el pulmón. Los caparazones de los caracoles varían mucho en forma y tamaño, de manera que aquella esta muy relacionada con el medio en que viven. Sin embargo, hay una variante curiosa, que es el sentido de arrollamiento. La mayoría de los caracoles arrollan sus visceras (y, por lo tanto, el caparazón) de manera que, si se mira la abertura del caparazón, esta entrada se encuentra a la derecha del arrollamiento.

Este es un caparazón dextro. Los sinistros son los que tienen la abertura a la izquierda del arrollamiento. La parte central del caparazón es una barra hueca, llamada columela, y su abertura está cubierta, con frecuencia, por el borde del ventrículo exterior.

El caparazón es una secreción del manto y tiene tres capas: una capa delgada córnea que cubre dos de carbonato calcico. La capa más interna está muy pulida, con la superficie semejante a la de perla. Como necesitan mucho carbonato calcico (caliza), apenas hay caracoles en terrenos arenosos, porque éstos contienen muy poca caliza.

Muchos caracoles sólo pueden vivir en regiones calizas y yeseras, en las que hay un gran contenido de carbonato en el suelo. La cabeza y el pie están unidos. Son las partes del cuerpo que aparecen fuera del caparazón cuando el animal se extiende.

Las paredes interiores de las espirales del caparazón se unen para formar la “columela”
central, que es un tubo hueco.

Sin embargo, todo el cuerpo puede ocultarse en el caparazón cuando hay peligro o cuando las circunstancias ambientales son malas. Unos músculos grandes, unidos a la columna central del caparazón, introducen la cabeza y el pie al contraerse. Los caracoles de tierra tienen dos pares de tentáculos en la cabeza.

Se cree que el par frontal más pequeño está relacionado con el sentido del olfato, mientras el par mayor lleva los ojos en los extremos. La mayoría de los caracoles de agua tienen sólo un par de tentáculos, que llevan los ojos en la base.

Entre los caracoles de tierra, los tentáculos son huecos y contienen un músculo largo. Cuando este músculo se acorta, los tentáculos se introducen en el cuerpo, igual que los dedos de un guante. Los caracoles se alimentan, en gran parte, de vegetales en descomposición; pero, en tiempo húmedo especialmente, también dañan las plantas en crecimiento. La boca está justamente bajo la cabeza y contiene una masa de dientes raspadores.

Esta masa de dientes se llama rádula. Dentro de la boca se forma una capa de tejido, que desarrolla muchas proyecciones córneas (dientes). Esta capa crece constantemente y, así, los dientes nuevos sustituyen a los viejos. Esto es muy importante para el caracol, porque sus dientes se desgastan rápidamente. Algunos gasterópodos, como los caracoles marinos, pueden usar sus rádulas para perforar, por desgaste, el caparazón de otros moluscos, con los que se alimentan.

El pie deslizante plano es típico de los gasterópodos. En algunas especies marinas está recubierto de pequeños pelos (cilios), que ayudan en el movimiento, pero la mayoría de las especies se mueven por acción muscular. Exactamente debajo de la superficie del pie hay una capa de músculos dispuestos longitudinalmente. Laxontracción rítmica de los músculos produce movimientos ondulatorios en la superficie, y estas ondas son las que mueven el caracol. Los movimientos de los caracoles acuáticos se observan fácilmente en las paredes de vidrio de un acuario, y los de un caracol de jardín cuando sube por el cristal de una ventana.

El rastro que dejan los caracoles y babosas es un depósito de mucus, que produce una glándula grande cercana a la boca. Sirve para lubricar la superficie, con lo cual el animal puede moverse suavemente sobre ella. También impide que el pie se seque.

LOS MOLUSCOS Los moluscos son un grupo de animales que tienen cuerpos blandos y, normalmente, caparazones. No son segmentados el cuerpo no está dividido como en los insectos y los gusanos). Hay cinco divisiones principales del grupo, que incluyen los bivalvos (almejas y mejillones), ios cefalópodos (calamares, sepias y pulpos) y los gasterópodos.

BABOSAS
Estos animales son pulmonados como los caracoles, con los que tienen estrecha relación. Probablemente, los varios grupos de babosas proceden de grupos de caracoles por reducción paulatina del caparazón y de la parte visceral. El manto cubre parte del euerpo y encierra el pulmón. El caparazón ss muy pequeño y suele estar encerrado en el manto, donde protege la cámara respiratoria.

Algunas babosas no tienen caparazón. La viscosidad de las babosas se debe a una secreción glandular que evita una evaporación excesiva de la humedad del cuerpo. En ausencia de un caparazón protector, éste es un factor muy importante. Sin embargo, las babosas sólo pueden vivir en ambientes húmedos y tienen costumbres nocturnas. Un sol fuerte las desecaría rápidamente.

Como los caracoles, son criaturas omnívoras, y cuando se hallan en gran número pueden llegar a causar significativos daños en los campos sembrados.

La babosa de invernadero (“Testacello haliotidea”), es carnívora y se alimenta de lombrices que busca en la tierra. El pequeñísimo caparazón está en la parte posterior de su cuerpo, que puede estirar enormemente para introducirse en los orificios de las lombrices. Los caracoles son hermafroditas, pero es necesario que dos caracoles se emparejen para reproducirse.

Fuente Consultada:
Revista TECNIRAMA N°93 Enciclopedia de la Ciencia y La Tecnología -Caracoles y Babosas-

Propiedades de las Piedras Preciosas y sus Minerales

CARACTERÍSTICAS DE LAS GEMAS O PIEDRAS PRECIOSAS

La mayoría de las piedras preciosas o gemas son minerales que se han formado en lugares muy variados en el interior de la Tierra. Estos minerales poseen una composición química definida y una ordenación atómica, que hace que sus propiedades físicas y ópticas permanezcan constantes o varíen solamente dentro de estrechos límites. Algunas propiedades tales como densidad e índice de refracción pueden medirse con precisión y ser utilizadas para identificar un mineral.

Casi todo el relieve de la Tierra se forma con rocas, y éstas con minerales. Algunas, como el mármol, se componen de un solo mineral. Otras, como el granito, comprenden varios, que en el granito pulido se ven a simple vista.

Las rocas más antiguas tienen tres mil millones de años. Otras son más recientes porque han pasado por una serie de vicisitudes: al principio la roca es ígnea, es decir, sale fundida por algún volcán o grieta de la Tierra; luego, el tiempo y el clima la dfishacen en polvo y se va acumulando en forma de sedimentos donde, con los años, forma rocas sedimentarias; por último, las altas presiones y temperaturas transforman rocas sedimentarias (la tiza) en rocas “me-tamórficas” (el mármol).

Los minerales son los componentes de las rocas, es decir, sus unidades básicas. Son sustancias naturales de composición química característica y se conocen muchos centenares. Algunos son elementos puros, como el oro, el cobre, la plata, etc., que se presentan en estado nativo; pero la mayoría de ios minerales son compuestos. No suelen clasificarse entre los minerales ciertas sustancias (eí petróleo) que provienen de restos de plantas y animales.

La identificación de los minerales es de gran importancia para la búsqueda de yacimientos; también es un pasatiempo interesante para el que tiene algunas nociones fundamentales. Cada mineral posee una composición química definida y características físicas propias (dureza, brillo, transparencia, etc.) que permiten identificarlo: son como sus impresiones digitales. Su estructura suele ser cristalina, o sea que sus partículas elementales se disponen, como en un panal, en una “malla cristalina” bien ordenada.

Ciertos minerales no son cristalinos, como el ópalo (una variedad de cuarzo): se los llama amorfos. Hay minerales bastante fáciles de reconocer, pero otros exigen cierto número de pruebas para distinguirlos.

Idealmente las gemas deben ser duras y no verse afectadas por las temperaturas, presiones, polvos abrasivos y agentes químicos que encontramos en nuestra vida diaria. La mayoría son silicatos que incluyen a las esmeraldas aguamarinas, peridotos y amatistas, así como otras muchas de rareza exótica.

El rubí, zafiro, espinela y crisoberilo son óxidos. El diamante es la única gema compuesta por un solo elemento químico —el carbono—. La nefrita, jadeíta y lapislázuli son rocas, es decir, agregados de uno o más minerales.

Las plantas y animales son las fuentes de las gemas «orgánicas» más frágiles que han sido usadas como adorno desde los tiempos más antiguos. El azabache y el ámbar son madera y resina fosilizadas de árboles extinguidos, mientras las perlas, las conchas y los corales son estructuras de carbonato calcico formadas por animales acuáticos. Los marfiles son los colmillos y dientes de los mamíferos terrestres y marinos.

CRISTALOGRAFÍA
Al examinar la mayoría de los minerales, que son cristales, vemos con sorpresa que sólo hay seis grupos básicos o sistemas de cristales. Estas seis familias tienen cada una muchos hijos, aunque todos ellos con un “aire de parentesco”.

Los minerales suelen ser impuros; sus impurezas son, a veces, las responsables del color; el rojo del rubí se debe al cromo; el azul del zafiro al titanio: ambos son sólo corindón, un óxido de aluminio cuya masa de fondo es incolora.

Hay seis grandes sistemas de formas cristalinas, o sea seis grandes grupos de redes cristalinas: regular o cúbico, tetragonal, hexagonal, rómbico, monoclínico y triclínico.

La división se basa en el número de líneas imaginarias, o ejes de simetría, que pasan por el centro del cristal, su longitud relativa y los ángulos que forman. En el sistema cúbico, por ejemplo, los cristales poseen tres ejes de igual longitud y perpendiculares entre sí, característicos del cubo, en geometría. La sal común se compone de pequeños cubos.

El tamaño de los cristales varía enormemente; algunos son invisibles, mientras ciertos cristales de espodumento, silicato con aluminio y litio, pueden alcanzar varios metros. Rara vez se encuentra un espécimen perfecto, y sólo una larga experiencia permite reconstruir el cristal tipo, a partir de un fragmento. El tamaño de un cristal depende de la lentitud con que se ha formado, o sea, de la oportunidad de que gozaron las partículas de ubicarse en la trama inicial ya formada.

La estructura-cristalina determina muchas de las propiedades minerales que son importantes en el tallado y la identificación de las piedras preciosas Por ejemplo, los átomos pueden estar menos fuertemente enlazados en algunos planos del cristal, indicando la dirección en la que se rompe más fácilmente o los planos de exfoliación.

La dureza puede cambiar también con la dirección del cristal. La estructura cristalina afecta a la trayectoria de propagación de la luz a través de esa sustancia.

En todos los minerales, salvo en los del sistema cúbico y los minerales no cristalinos, la luz se refracta formando dos rayos que viajan a distintas velocidades y con diferentes trayectorias a lo largo de la estructura cristalina. En los minerales coloreados los rayos pueden ser absorbidos de forma diferente en el interior de la estructura y emerger en forma de dos o tres colores distintos o sombras del mismo color. Este efecto se denomina pleoavísmo.

Desde tiempos antiguos muchos materiales, naturales y artificiales, han sido utilizados enjoyas y otros objetos preciosos. Sin embargo durante siglos el término piedra preciosa ha significado un mineral natural descable por su belleza, valioso por su rareza y suficientemente resistente para proporcionar un placer duradero.

PESO ESPECÍFICO
Es un buen indicio; el del azufre es 2, el del corindón 4, el de la casiteria 7, etc. Se necesita un aparato especial para determinarlo; es imposible hacerlo en el campo, aunque puede distinguirse manualmente entre minerales livianos y pesados. Un trozo de talco (peso específico 2,8) parece mucho más liviano que uno de apatita (peso específico 3,2).

ESCALA DE DUREZA DE MOHS
Una característica fácil de determinar es la dureza. Se recurre a la prueba del rayado; un material más duro raya a otro más blando, y dos de igual dureza no se rayan entre sí. Hay una escala convencional de dureza, la escala de Mohs. Se divide en diez grados numerados, cada uno más duro que el anterior; los índices son: 1, talco (el más blando); 2, yeso; 3, calcita; 4, feldespato; 5, apatita; 6, ortoclasa; 7, cuarzo; 8, topacio; 9, corindón; 10, diamante.

La dureza de un mineral se determina encontrando el más blando de la serie que lo raye. Por ejemplo, la calcita raya la galena, pero esta última rayará el yeso, de manera que su índice de dureza estará entre 2 y 3. Las piritas de hierro, parecidas al oro, tienen una dureza entre el 6 y el 7, mientras la del oro verdadero se sitúa entre el 2 y el 3.

Las series de Mohs se venden comercialmente. El número 10, diamante, suele faltar, pero no tiene mayor importancia porque difícilmente se hallará un mineral más duro que el corindón (si se lo encuentra es posiblemente diamante). Puede determinarse aproximadamente la dureza de un mineral aun sin esa colección. La uña tiene una dureza Mohs de alrededor de 2,5; un lápiz, 3; el vidrio común alrededor de 5,5; y la hoja de un cortaplumas aproximadamente 6.

tabla dureza de las pidras preciosas

Para ser apreciada, una joya debe ser también resistente. A pesar de que la esmeralda y el zircón son más duras que el cuarzo, son, sin embargo, frágiles, es decir, se separan en láminas fácilmente. El diamante y el topacio están entre las mucha gemas que pueden partirse si caen o son golpeadas contra objetos duros y lo hacen entonces según planos en los que los enlaces atómicos son más débiles. Las gemas más resistentes son la jadeíta, la negrita y el ágata; todas ellas tienen sin embargo una dureza igual o menor que 7. Su resistencia deriva del tipo de su estructura, que consiste en una masa de fibras o granos interconectados entre sí, lo que las permite ser modeladas en formas de exquisitos cuencos e intrincadas esculturas.

LOS MINERALES Y LA LUZ
Algunos minerales son transparentes: permiten ver nítidamente a través de ellos. Otros son opacos: la
luz no los atraviesa. Hay grados intermedios, translúcidos, lechosos. Pero la mayoría de los minerales opacos dejará pasar algo de luz si se los convierte en láminas muy delgadas.

Existen minerales que muestran doble refracción, es decir, que un texto leído a través de. ellos se ve doble; aquí los citamos únicamente por la influencia trascendental que han tenido en el desarrollo de toda la óptica.

El color es una característica importante de los minerales, especialmente para identificar los metálicos, pues sólo presenta ligeras variantes. Pero en minerales como el cuarzo, el corindón y el granate, el color se debe principalmente a las impurezas y puede variar notablemente. Minerales como la turmalina tienen diferentes colores, variables según desde donde se los mire.

Los minerales en polvo pueden tener un color distinto del superficial: el talco es verde, pero una vez molido es blanco. Del mismo modo, la hema-tita es superficialmente gris o negra, pero en polvo es pardo rojiza. La ventaja de moler los minerales es que su color es más uniforme que el superficial variable. Para conocer qué color tiene un mineral en polvo basta frotar un trozo sobre porcelana áspera.

La razón por la cual el color del polvo es diferente al del sólido se debe a la reflexión. La reflexión del vidrio, por ejemplo, es blanca, de manera que si pulverizamos una botella de vidrio verde, el polvo se vuelve cada vez más blancuzco debido a que aumenta el número de superficies que reflejan luz blanca.

El lustre o brillo del mineral depende de la cantidad de luz que refleja o absorbe. Puede ser resinoso (similar al de la resina) como en el azufre, perlado como la mica, sedoso en minerales fibrosos como el crisotilo, vitreo como el cuarzo, adamantino (de diamante) o metálico. Hay minerales que no poseen brillo: son de superficie mate (p. ej. la caolinita). Una interesante característica de los minerales es el grado en que desvían la luz. Los rayos de ésta siempre se desvían cuando pasan de un medio a otro de diferente densidad.

Si colocamos en agua vidrio molido cuyo índice de refracción o capacidad para desviar la luz, sea igual al del agua, se volverá invisible; si el índice de refracción de la luz es algo bajo podemos añadirle sal común: poco a poco llegará el momento en que no se vean más los trozos de vidrio. Para reconocer diamantes y otras sustancias, a fin de distinguirlas de sus falsificaciones, se usan líquidos especiales muy refractivos como el sulfuro de carbono.

Hay sustancias que, al recibir rayos invisibles como los rayos X o los rayos ultravioleta, devuelven rayos visibles: este fenómeno se llama fluorescencia. Bajo la luz ultravioleta ciertos minerales exhiben hermosos colores, como los de uranio. Algunos poseen esa propiedad por sus impurezas u otros factores. Uno de los materiales fluorescentes más hermosos es el rubí, que emite un brillante resplandor rojo al ser sometido a la luz ultravioleta.

Esta propiedad del rubí ha dado origen a la invención del Láser, instrumento que revoluciona la óptica y las telecomunicaciones, y del que nos ocuparemos en una nota especial. La luz es una onda, un serpenteo, que se produce en todos los planos. Pero en ciertos casos se la puede polarizar, es decir, hacerla vibrar en un solo plano. Las características ópticas especiales de un mineral, una vez reducido a una fina lámina y visto a través de un microscopio de luz polarizada, pueden servir de guía para su identificación.

El valor comercial de una gema depende de la calidad del color, de la ausencia de manchas internas y del peso. El peso de una gema se mide en quilates (5 quilates = 1 gramo) y las gemas son normalmente vendidas por peso, a tanto por quilate. La densidad de un mineral gema varía de manera que un zafiro amarillo parecerá más pequeño que una citrina menos densa de peso similar. La densidad de las gemas se mide como peso específico, comparando el peso de la gema con el peso de un volumen igual de agua.

CLIVAJE Y FRACTURA
Las fracturas de un mineral son otro indicio para clasificarlo. Se llama clivaje la tendencia a partirse más fácilmente según ciertos planos, llamados planos de clivaje. El tipo de clivaje se define seeún el número de “planos” y sus ángulos relativos. Tomemos un ejemplo sencillo: la galena tiene clivaje cúbico; se observan tres planos de clivaje que forman ángulos rectos entre sí. Cuando se desmenuza un cristal de galena se obtiene una cantidad de pequeños y brillantes cubos. Uno de los tipos más interesantes es el clivaje basal o laminar, en el cual hay un solo plano, paralelo a la base del cristal, como en la mica, que se divide en finísimas Láminas u hojas.

Cuando un mineral no se rompe según planos determinados, se dice que se fractura. Todos los minerales pueden fracturarse, pero no es probable que lo hagan, si poseen un plano definido de clivaje. Hay ¡diferentes tipos de fractura, por ejemplo: fibrosa, concoidea, irregular, etc. Por ejemplo el crisotilo (mineral de amianto) forma fibras que pueden hilarse y tejerse. La fractura concoidea puede apreciarse en la obsidiana (vidrio volcánico).

ANALISIS A LA LLAMA: Existe un gran número de ensayos químicos para determinar la naturaleza de un mineral. El ensayo a la llama se basa en el color característico que el mineral imparte a ésta. Con los minerales de sodio (sal común, sulfato de sodio, bórax, etc.) la llama adquiere una intensa coloración amarillenta. Los de estroncio producen un hermoso color carmín; por eso se usa en los fuegos artificiales.

analiis de minerales a la llama

Los minerales de cobre la colorean de azul o verde, etc. Si se usa un mechero de Bunsen conviene recordar que, si no recibe suficiente aire, su (lama es amarillo brillante; pero si tiene suficiente oxígeno hay una zona interior oscura tan fría, que una cabeza de cerilla, perforada por un alfiler y suspendida en esta zona, no se enciende. El mineral debe colocarse en la zona azul violeta o cono exterior de la llama del mechero de Bunsen. Ésta llega a una temperatura suficiente para los metales alcalinos (minerales que contienen sodio, potasio, etc.); pero otros precisan Mamas más calientes.

ANÁLISIS ESPECTROQUÍMICO
Ld luz emitida o absorbida por un átomo es como su fotografía individual. Cada átomo tiene su propio espectro de rayos, que son de luz o de sombra, según el átomo las emita o las absorba. Pero de todos modos el espectro de un átomo es un método de análisis: para ello basta obligarlo a que emita luz. Actualmente se prefieren las chispas, más enérgicas.

ANÁLISIS CON MICROSCOPIO
Este es un método moderno. Por ejemplo, el zafiro y el rubí natural tienen líneas de acumulación hexagonales y burbujas angulares, mientras que en los sintéticos las líneas de acumulación son curvas y las burbujitas son esféricas. Los microscopios electrónicos permiten observar partículas ínfimas en las arcillas, definiéndolas claramente. Cada vez la industria se acerca más a los minerales sintéticos, como en el caso de los rubíes para los relojes.

Cuando se sumergen un diamante falso y uno genuino en un líquido que desvíe los rayos luminosos en la misma proporción que el diamante falso, sólo el diamante real quedará visible.

LA BELLEZA: La belleza del color combinada con una perfecta transparencia es el ideal de belleza de muchas gemas. Sin embargo, en ciertas ocasiones, las inclusiones de minerales pueden ser la atracción principal de algunas de ellas, produciendo el colorido similar al de las lentejuelas del cuarzo venturina y la piedra del sol, y reflejando los ojos de gato y estrellas que brillan desde algunos crisoberilos y zafiros.

La atracción de las más sutiles ágatas coloreadas y jaspes está ligada a la enorme variedad de modelos y texturas que se desarrollan cuando ese mineral crece: su crecimiento en bandas y los fragmentos minerales incorporados hacen que se asemejan a menudo a exóticos paisajes y jardines.

La mayoría de las gemas muestran muy poca belleza en estado bruto: su auténtico color y lustre se revelan solamente por la destreza del tallado y del pulido. La mayor belleza del diamante alcanza todo su esplendor con el tallado preciso y apropiado al tamaño de la piedra.

Cuando llevamos joyas nuestros movimientos crean unos continuos cambios, que resultan de la relación mutua entre las piedras preciosas y la luz que las atraviesa, añadiendo destellos y luces a su color. Los focos realzan la «vida» de los diamantes, rubíes y esmeraldas, mientras suaves luces aportan el brillo al ámbar y a las perlas.

Respecto a la rareza, las gemas pueden ser raras en uno o más aspectos. Muchas son variedades de materiales comunes, y su rareza reside en un color o transparencia excepcionales. El cuarzo y el feldespato juntos constituyen cerca de las dos terceras partes de la corteza terrestre, pero la mayoría de sus variedades son grises o cremas.

Muy poco cuarzo posee el bonito color y la intachable transparencia de una fina amatista y raramente el feldespato labradorita muestra la iridiscencia del arco-iris . Los minerales gemas son raros aun en sus yacimientos: los diamantes constituyen una mínima proporción de su roca madre, la kimberlita —alrededor de 5 g. en 100 T.—.

FINALMENTE EL TALLADO: Un diamantista hábil puede convertir un guijarro en bruto en una brillante y valiosa piedra preciosa. El conocimiento necesario para conseguir estas transformaciones se ha ido haciendo a lo largo de muchos siglos, y hoy día es posible seleccionar el tallado que ponga de manifiesto las cualidades de cada gema.

Cuando se elige la mejor talla para una piedra preciosa, el diamantista debe considerar la forma del material en bruto y la magnitud y posición de los posibles defectos, tales como las fracturas o inclusiones. También debe tener en cuenta las propiedades ópticas del mineral y sus características cristalinas: es difícil conseguir un buen pulido paralelo a las direcciones de exfoliación, y las gemas pleocroicas han de estar talladas con una determinada orientación para que puedan mostrar su más bello color.

Sin embargo el tallado es a menudo un compromiso entre alcanzar el máximo lucimiento de la belleza de la gema y obtener la piedra preciosa de mayor tamaño posible.

Partes y Facetas de una Talla Brillante

IMAGENES DE LAS GEMAS MAS UTILIZADAS EN JOYAS

Diamante

Gema: Rubí

Gema: Zafiro

Gema: Esmeralda

Gema: Ópalo

Mineral: Amatista

Gema: Ágata

Gema: Turmalina

Gema: Jade

ALGO MAS…
LAS PIEDRAS PRECIOSAS ARTIFICIALES

La fabricación de las piedras preciosas artificiales ha sido, desde la antigüedad, un constante empeño del hombre. Estos esfuerzos tuvieron en general muy poco éxito hasta que, a principios del siglo XX, se sintetizaron los primeros rubíes. Gracias al considerable avance tecnológico producido por la segunda guerra mundial y a los recientes avances en la física del estado sólido, se han conseguido, en este campo, considerables progresos.

La posibilidad de estudiar determinados procesos físicos en monocristales ha aumentado su importancia, y los cristales producidos artificialmente no sólo son utilizados en investigación sino que también han encontrado aplicaciones en la industria.

La importancia de las piedras preciosas se debe, principalmente, a su dureza y, en segundo lugar, a los cambios que determinan en su color y en sus propiedades físicas, en general, las trazas de impurezas. En uno de los métodos empleados ,el método de presiones ultraelevadas, es necesario utilizar, simultáneamente, grandes presiones y altas temperaturas, problema que fue parcialmente resuelto con el empleo de un material denominado pirofilita, que tiene la ventaja de que su punto dé fusión aumenta considerablemente con la presión.

La síntesis del diamante, efectuada por la General Electric estadounidense en 1955, se consiguió por este método, con el que pueden lograrse, en la zona de trabajo, presiones de unas 150.000 atmósferas a 3.500°C, siendo necesaria por tanto una prensa hidráulica de gran capacidad, que resulta difícil de construir. Este problema fue parcialmente resuelto con la introducción del yunque tetraédrico, el cual emplea cuatro émbolos, que ejercen la presión sobre las cuatro caras del yunque. Con esta disposición, es posible conseguir 80.000 atmósferas a bajo costo y con maquinaria fácil de construir. Además de diamantes, se han sintetizado, con este método, borazón (forma cúbica del nitruro de boro) y una variedad del granate.

Con el método de fusión a la llama, se obtienen rubíes de alta calidad. Su fundamento es muy sencillo: sobre uno de los extremos de una semilla de rubí (pequeño monocristal alargado, obtenido previamente) se va dejando caer alúmina finamente pulverizada, mientras se calienta con un soplete. El polvo de alúmina funde y cae sobre el extremo superior de la semilla, que se va retirando lentamente de la llama a medida que el cristal crece. De este modo, se pueden obtener con facilidad mono-cristales cilindricos de hasta 45 cm. de longitud.

Todos los procesos descritos están, naturalmente, automatizados: el flujo de polvo, la temperatura y posición de la llama, así como el desplazamiento vertical del monocristal. Uno de los inconvenientes principales de este método es que los cristales se encuentran sometidos a elevadas presiones internas, como resultado de la desigual distribución de temperaturas, por lo que es frecuente él agrietamiento espontáneo.

El método hidrotérmico ha demostrado ser extraordinariamente valioso en la producción de monocristales de cuarzo (y otras sustancias silíceas) que se obtienen por cristalización a partir de soluciones acuosas. Para ello se utiliza un autoclave de paredes gruesas, capaces de resistir unos 1.000 atmósferas y 500°C de temperatura.

Dentro del autoclave se encuentra la disolución acuosa de la sustancia de partida (por encima de 100°C la solubilidad en agua aumenta considerablemente), y suspendidas de su parte superior se sitúan las semillas. La solución se calienta por una plancha metálica adosada a la base del autoclave, con lo que se crea en su interior un gradiente de temperatura. La sustancia de partida se disuelve en el fondo y la solución asciende por confección.

En la región superior, más fría, la solución está sobresaturada y la sustancia cristaliza sobre las semillas. Este método presenta varias limitaciones, como pueden ser el elevado costo del instrumental necesario y la imposibilidad de observar el crecimiento, lo que impide que en un momento dado puedan regularse la temperatura y le velocidad de cristalización con el fin de controlar los sucesivos pasos del proceso.

Actualmente se han desarrollado procesos con el misme fundamento, pero que utilizan, en vez de agua, tundentes sólidos ce puntos de fusión relativamente altos, tales como los halogenuros y carbonatos alcalinos, y el óxido v el fluoruro de plomo.

Se han obtenido diamantes de 0,2 g. por el método de las presiones ultraelevadas, con el empleo adicional de catalizadores metálicos que aceleran la conversión directa del carbono en diamante. El color de los cristales obtenidos puede modificarse alterando las condiciones de crecimiento.

Las variedades más conocidas del corindón son el rubí y el zafiro. Como ya hemos indicado pueden obtenerse ambas piedras preciosas por el método de fusión a la llama. El cromo proporciona al corindón una tonalidad roja; el níquel, amarilla; el titanio, azul, y el vanadio, azul verdoso. Aunque los detalles son secretes, el proceso más apropiado para la síntesis de esmeraldas (BeO – Al2O3 – 6 SiO2) parece estar fundado en el método hidrotérmico, aunque no pueda descartarse la utilización de un fundente sólido, si tenemos en cuenta los éxitos obtenidos con este último procedimiento en la obtención de otros monocristales.

Ver: Las Rocas   –   Minerales Para La Industria    –   Minerales de la Tierra

Fuente Consultada
Revista TECNIRAMA N°6 Encilopedia de la Ciencia y la Tecnología – Como se identifican los minerales
Las Piedras Preciosas Geological Musseum Ciencias de la Naturaleza

Fabricación de Fósforos o Cerillos Historia y Composición

LA  FABRICACIÓN  DE CERILLOS/AS O FÓSFOROS

En 1812, se había inventado una especia de cerillos, que consistían en un palito de madera que se introducía en azufre fundido, y la “cabeza” se formaba con una mezcla de azúcar y clorato potásico. Se inflamaban introduciéndolas en un frasco que contenía asbesto humedecido con ácido sulfúrico. Como puede observarse, en la composición de aquellos palitos no intervenía el fósforo, y, por tanto, no se podían llamar “fósforos”.

En 1827, el químico y boticario inglés John Walker descubrió que si cubría el extremo de un palillo con ciertas sustancias químicas y lo dejaba secar, podía encender un fuego en cualquier lugar, tan sólo frotando el palillo. Estos fueron los primeros cerillos de fricción.

Las sustancias que utilizó fueron sulfuro de antimonio, clorato de potasio, goma y almidón. Los cerillos se encendían al frotarlos contra un pliegue de papel de lija.

Walker John invnetor del cerillo

Walker no patentó sus cerillos, a los que llamó Congreves, en honor del cohete inventado por Sir William Congreve en 1808 y usado en la guerra contra los Estados Unidos. Eran también conocidos como “fósforos químicos”, proporcionando un gran adelanto en los medios para   producir  fuego.

Los cerillos de Walker prendían al tallarse en cualquier superficie, pero no eran muy confiables.

En 1830, el francés Charles Suria creó un cerillo mucho mejor, con cabeza de fósforo blanco. Al cerillo de este tipo se le llamó “lucifer” (portador de luz), y se usó hasta finales del siglo XIX.

Los luciferes prendían bien, pero eran sumamente peligrosos. El fósforo blanco produce emanaciones venenosas, y la prolongada exposición a éstas causa una enfermedad que pudre los huesos de la mandíbula y llega a ser mortal.

Los más afectados eran los obreros de las fábricas de cerillos, hasta que, a principios de siglo, se prohibió el uso del fósforo blanco, sustituido luego por el quisulfuro de fósforo.

En los primeros años, los cerillos contenían fósforo blanco, un agente oxidante (bióxido de manganeso, clorato o nitrato potásicos) y goma, en cantidad suficiente para formar una pasta espesa. La goma, además de actuar como adhesivo, protegía al fósforo de la oxidación.

El calor originado por frotamiento sobre arena, o papel esmeril, producía la inflamación, que a veces era explosiva, sobre todo cuando se utilizaba clorato como agente oxidante. La mezcla inflamable se prepara agitando lentamente el fósforo en una solución caliente de dextrino. o cola; se adicionan entonces les materiales oxidantes, y lo pasto sigue agitándose hasta que se enfrío.

Frecuentemente, se colorea con ultramar, cromato de plomo, negro de humo, etc. Se esparce luego uniformemente en capa delgada sobre uno tabla, y se hacen penetrar en ella, una o dos veces, palitos previamente preparados, con lo que se forman las cabezas. Cuando están secas las cabezas, suelen introducirse en un barniz o goma, para cubrirlas con una   ligera  capa  que  las protege  de  lo  humedad.

Desde hace bastantes años está prohibido en algunos pases el empleo del elemento fósforo (que es venenoso) en la fabricación de cerillas y se ha sustituido por el trisulfuro tetrafosforoso P1S3.

En líneas generales, la composición de las cerillas modernas es la siguiente: una sustancia que arde fácilmente por frotamiento, como el PiS3 un agente oxidante, clorato potásico; un agente oxidable, parafina o azufre; un adhesivo, goma; y un material de relleno, para la frotación, tal como vidrio molido. Formada la cabeza, se recubre con un barniz protector. Existen también los fósforos de seguridad, o cerillas suecas.

La cabeza es, generalmente, de azufre, o trisulfuro de antimonio con clorato potásico, o bicromato como material oxidante. En algunos casos, se utilizan minio, peróxido de plomo o bióxido de manganeso, formando parte del material oxidante.

Estas cerillas no pueden arder si no se frotan sobre una superficie especia], formada de fósforo rojo, trisulfuro de antimonio y dextrina, o cola, a la que se añade, a veces, vidrio pulverizado o esmeril para aumentar  la  fricción.

Las composiciones de distintas clases de fósforos se mantienen como secreto industrial por las respectivas fábricas. A continuación damos una de ellas:

Composición   de   la   cabeza
Clorato   potásico   (ClO3K)    ….      5   partes
Bicromato potásico (CraO;K2) ….    2     ”
Polvo  de   vidrio   ……………………     3     ”
Goma     …………………………………     2      “

Superficie   de   fricción
Trisulfuro de antimonio (S3Sb2) ….     5 partes
Fósforo   rojo   ……………………………      3   ”
Bióxido  de manganeso  (MnO2) …..    1,5  ”
Cola …………………………………………..      4   “

Cerillas modernas

A mediados del siglo XIX, el sueco John Lundstrom inició la fabricación de cerillos de seguridad. Utilizó el inocuo fósforo rojo en una franja de frotación y mezcló diversos elementos combustibles para formar la cabeza del cerillo. Las máquinas modernas producen hasta dos millones de cerillos por hora, ya empacados y listos para usarse.

John Lundstrom

Curiosidad: En 1861, la empresa de Bryant & May logró el primer cerillo de seguridad, en su planta de Bow, Londres. Al final de su primer año, la fábrica producía 1 800 000 cerillos a la semana. Tenían tanta demanda que en 1871 el ministro de Hacienda propuso un “impuesto al cerillo”, de un penique por caja.

primera fabrica de cerillos

La propuesta causó gran alboroto en el Parlamento y la prensa, y miles de obreros protestaron por lo que consideraron sería una amenaza a su subsistencia. Estalló la violencia y se abolió el tributo. Las máquinas modernas producen unas 800 cajas de cerillos por minuto, que sería una cantidad mucho mayor que la que causó el problema.

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología Fasc. N°57
Como son y como funcionan casi todas las cosas Reades Degeas´t

El Corcho Propiedades, Producción y Usos Arbol Alcornoque

El Corcho Propiedades, Producción y Usos País de Origen

Las primeras noticias acerca del uso del corcho se encuentran en algunos escritos griegos, que mencionan el empleo de este material en los flotadores de las redes de pesca. Desde esa época, el corcho ha venido sirviendo a la humanidad de muchas maneras, y la demanda de este producto sigue aumentando a pesar del enorme avance en la producción de plásticos.

El corcho es una materia natural que producen los árboles como capa protectora. Todos los árboles lo producen en pequeñas cantidades; a escala comercial, sólo se utiliza el corcho del alcornoque (Quercus súber). Como es una materia natural, el corcho está formado por pequeñas células (acumulación de células muertas), que son compartimientos muy pequeños, rodeados cada uno de ellos por paredes resistentes, suberificadas, elásticas e impermeables. Cada centímetro cúbico de corcho contiene unos 40 millones de estas pequeñas celdillas.

Corcho Natural del Alcornoque

El corcho tiene que pasar un periodo de al menos 6 meses desde que
fue extraído del alcornoque hasta que es cocido.

La importancia del corcho proviene de su estructura celular elástica, que le da unas propiedades que no tienen otros materiales; por otra parte, es imposible obtener artificialmente una estructura tan complicada. El poliestireno expandido es un material celular artificial, pero los espacios son mucho más grandes que en el corcho.

Varios operarios arrancan tiras de corcho. Es característico el color rojizo del árbol, una vez que se le ha arrancado el corcho.

Cuando se aprieta el corcho, por ejemplo, colocando un peso sobre él, este se comprime el aire que hay dentro de sus células y, al quitarle ei peso, recobra su estado normal. La goma, en cambio, se ensancha al apretarla.

Las pequeñas celdillas no contienen más que aire, y esta característica da al corcho su extremada ligereza (su peso específico es 0,2). Cuando se aprieta el corcho, lo que se comprime es el aire que hay en las celdillas y, por ello, cuando cesa la presión, el corcho recobra su volumen normal, siendo, por tanto, un material muy elástico con una excelente capacidad amortiguadora.

Las células del corcho están distribuidas de un modo muy compacto, y ésta es la razón por la que el corcho no deja pasar a través de él líquidos o gases. Así, pues, resulta un material extremadamente idóneo para fabricar tapones y para hacer cierres de juntas. El corcho es resistente a muchas sustancias orgánicas e impide el paso del petróleo y los aceites. Es muy indicado para fabricar con él juntas y arandelas para bombas y motores de petróleo.

Sin embargo, hay que hacer una importante objeción en lo que respecta a la penetración de los líquidos. El corcho natural está atravesado por una serie de pequeños poros (lenticelas), que permiten respirar a las células interiores del tronco. Para evitar la evaporación o las filtraciones, los tapones de corcho deben cortarse siempre de manera que los poros sean transversales.

El corcho se puede utilizar como tapón para muchos líquidos orgánicos, que
destruirían rápidamente los tapones de goma ordinaria. (hoy se usa el plástico)

Su estructura celular hace del corcho un material ideal cómo aislante del sonido y la vibración. El efecto amortiguador es tan grande que si se instalan grandes máquinas sobre piezas de corcho funcionan sin transmitir vibraciones al resto del edificio. Las máquinas de precisión también se pueden proteger de este modo de las vibraciones exteriores.

El aserrín de corcho, mezclado con aceite de linaza oxidado, se emplea para fabricar linóleo. El vacío es el mejor aislante para los cuerpos, sean fríos o calientes. Sin embargo, no siempre resulta posible usar este aislante; en este caso, lo mejor es utilizar una protección de corcho. Éste es un mal conductor del calor, y el aire de sus células también lo es, debido aque, por estar encerrado y no poder circular, no hay convección de calor.

Además, presenta la ventaja de que no absorbe agua como otros materiales aislantes (por ejemplo, el fieltro) y de que no es atacable por muchos productos químicos. Esto lo hace todavía más útil. Aparte de sus propiedades estructurales, el corcho tiene propiedades químicas muy ventajosas. Su constituyente más característico y abundante es la suberina, una mezcla compleja de esteres de ácidos orgánicos, que está depositada, junto con algunos materiales detipo céreo menos abundantes, en las paredes de las células.

Estas sustancias son muy resistentes a la acción química y por eso se puede utilizar el corcho como tapón en frascos que contengan muchos compuestos químicos. También es insípido y no afecta el sabor de los vinos más delicados. Las paredes de las células son resistentes á la acción delos insectos.

Por otra parte, es muy difícil hacerlo arder, por lo que puede ser utilizado como material aislante. Debido a su estructura celular, el corcho tiene muchas aplicaciones. Sin embargo, solamente la mitad de su producido se utiliza en su forma originaria. Cada vez se usa más el corcho de composición, que puede moldearse en las formas que la industria requiera. El corcho de composición, o aglomerado de corcho, está hecho generalmente de corcho natural. Para su obtención se reduce el corcho natural (incluyendo los recortes de tapones, etc.) a pequeños fragmentos.

El tamaño de éstos depende del grado de aglomeración que se requiera. Aunque el corcho se reduzca a pequeños fragmentos, su estructura celular no se destruye, porque cada uno de ellos conserva millares de células. El corcho así tratado se pasa a un molde; luego se calienta hasta que las resmas naturales y otros compuestos fundan y empiecen a surgir. Entonces se enfrían los moldes, y estas resinas unen entre sí los fragmentos de corcho.

Este tipo de material se utiliza mucho para recubrimientos aislantes, arandelas de cierre impermeable a los aceites, y para el montaje de maquinaria pesada. La gran flexibilidad y resistencia del corcho hacen que las planchas amortiguadoras colocadas bajo las maquinarias resistan durante muchos años sin deteriorarse.

celulas del corcho

Estructura celular del corcho, muy ampliada. Las propiedades extraordinarias del corcho se deben a sus células de paredes elásticas. Debido a que es insípido e innocuo, el corcho se utiliza como tapón para ios vinos más finos.

tapon de cocho de vino

PRODUCCIÓN DE CORCHO
El corcho es un tejido protector que se forma en el tronco de los árboles. Sin embargo, el corcho del alcornoque (“Quercus súber”) es la principal fuente del corcho comercial. Sus tejidos productores de corcho crecen año tras año y pueden formar una capa de considerable espesor.

Luego de haber formado las células, ¡as sustancias del corcho se depositan en las paredes y las células .mueren. Los líquidos celulares van desapareciendo a medida que las paredes se hacen más gruesas. Las células de corcho sólo contienen aire.

El alcornoque se cultiva en toda el área mediterránea, pero la producción es más intensa en España y en Portugal, donde hay grandes plantaciones. El primer eorcho se arranca cuando el árbol tiene veinte años. Este “corcho virgen” o “corcho bornizo” es d? baja calidad y está lleno de agujeros. Un árbol descortezado comienza a formar corcho con bastante rapidez, produciendo alrededor de tres milímetros por año. Las leyes de los países productores ordenan que Se descortecen los árboles una vez cada nueve años.

Con esto se obtiene corcho de un espesor de 2,5 centímetros. El corcho de la segunda recolección y de las siguientes se llama “corcho cultivado”. Es suave y uniforme, pero al cabo de ochenta años la calidad del corcho recogido empeora. Antes de utilizarlo, el corcho suele hervirse durante una hora o dos, con lo cual se elimina el tonino, en gran parte.

Portugal es el país mas importante en el cultivo mundial del corcho; casi una tercera parte de la superficie total de los alcornocales, que se ha estimado en 2.150.000 hectáreas, se encuentra en ese país, país que produce aproximadamente la mitad del corcho que se cosecha anualmente en todo el mundo (unas 310.000 toneladas).

Los arbolados de alcornoque se extienden por todo el país, aunque naturalmente, la intensidad de producción y la calidad del corcho varían según las diferentes zonas productoras. Esta especie, que cubre aproximadamente el 8 por ciento de la superficie total de Portugal y constituye el 28 por ciento de sus bosques, se da mejor en las regiones central y meridional del país, donde se hallan los alcornocales más extensos que suministran el mayor porcentaje de corcho de alta calidad.

El corcho de mejor calidad que se produce en Portugal procede de la provincia de Algarve y algunos sectores del Alentejo. El que se obtiene en el norte del país suele, en general, ser inferior.

http://historiaybiografias.com/archivos_varios5/corcho.jpg

El noventa por ciento del corcho se usa en la fabricación de tapones. Ya los romanos conocían ese empleo en ánforas pompeyanas en las que se habían usado tapones de corcho. Durante el Medioevo y el Renacimiento se empleaban tapones de plomo. En el siglo XVII, el padre bodeguero de la abadía’ de Hauteville empezó a utilizar el corcho para tapar botellas.

ALGO MAS SOBRE EL ARBOL Y LA COSECHA…

El árbol del corcho pertenece al género Quercus (encina). La altura y la robustez del tronco varían según la edad y la especie. Generalmente alcanza los diez o quince metros de altura, pudiendo llegar hasta veintidós metros, mientras el tronco, cuyo perímetro medio es de dos metros cincuenta centímetros, puede alcanzar cuatro metros de circunferencia. Sus hojas coriáceas, más o menos ovaladas, dentadas o lisas, según las especies, son de color verde obscuro en su cara superior y blanquecino en la parte inferior, y están dispuestas oblicuamente en la rama. Dejan pasar la luz, y esto permite que la vegetación prospere en el bosque, con gran ventaja para esa clase de árboles que necesitan de la humedad del suelo.

El alcornoque florece en primavera, y su fruto, cupuliforme, contiene una bellota como la del roble. Este árbol presenta la particularidad de fructificar solamente año por medio.

El alcornoque, pese a poder prosperar en terrenos secos y rocosos, prefiere el clima templado, terrenos húmedos y profundos, y una altitud inferior a los mil metros. El clima ideal para su crecimiento y para la obtención de un buen producto, es generalmente el clima de la cuenca mediterránea y de Portugal, donde las influencias del Mediterráneo y las del Atlántico aseguran condiciones climáticas ideales sin interrupción.

En la cuenca mediterránea prospera la mejor especie: la Súber hispánium que no soporta trasplante a otras tierras y cuyo cultivo es fuente considerable de riqueza para España y Portugal. Crece igualmente en Francia, Argelia, Italia, Grecia y Turquía.

Las tierras que se extienden a orillas del mar Tirreno, y sobre todo Cerdeña y Sicilia, son las zonas italianas de mayor producción de corcho, pero la materia prima de esas localidades se manufactura en otras provincias, más industrializadas.

LA COSECHA
El tronco del alcornoque está provisto de doble corteza: la interna, llamada “madre” o “libro”, está formada por tejidos fibrosos y muy delgados por los que corre abundantemente la savia; para proteger ese líquido precioso y muy delicado, cuya perfecta circulación es indispensable para la salud del árbol, la naturaleza ha cubierto el “libro” con una capa (el “manto” o “capa” felógena) que tiene la propiedad de producir un tejido celular, blando y esponjoso, excelente aislante del calor y del frío, y absolutamente impermeable.

Ese tejido es el corcho. Año tras año, las capas se van acumulando y alcanzan, a los catorce años, el espesor máximo (veinte a setenta milímetros).
En determinadas épocas, cuando las condiciones climáticas no pueden dañar al árbol por el frío o el calor excesivos, se procede a la separación del corcho, cuidando de no dañar la capa felógena durante la operación de descortezamiento.

Muy pacientes deben ser los cultivadores del alcornoque. Ese árbol puede soportar el primer descortezamiento entre el primero y el vigésimo año de edad, cuando el tronco, vigorizado ya, ha alcanzado una circunferencia  de  treinta  a   cuarenta  centímetros.

El producto de esa primera recolección se llama “corcho bornizo”, “corcho primario”, o “macho”; es muy áspero y nudoso.

No puede ser utilizado en la fabricación de tapones, pero se emplea en la preparación de “aglomerados”.
En las recolecciones siguientes, que se realizan a intervalos de siete y hasta catorce años, se obtiene un corcho de mejor calidad, llamado “corcho segundero” o “hembra” que el alcornoque seguirá produciendo con intensidad uniforme, hasta los sesenta o setenta años. A esta edad, el árbol empieza a disminuir su rendimiento, dejando por completo de producir a los doscientos años.

Historia del Sacarcorcho

Fuente Consultada:
TECNIRAMA – Enciclopedia de la Ciencia y la Tecnología Fasc. N°93
LO SE TODO Tomo V Editorial Larousse – El Corcho –

Cobre: Usos, Propiedades, Minerales y Yacimientos

El  cobre fue, probablemente, el primer metal que se extrajo de sus minerales. Todavía se encuentra entre los más importantes metales de la época actual. Se necesita en grandes cantidades para la electrificación doméstica, cables de trasporte eléctrico, etc., debido a que entre la gama de los metales más económicos es, con mucho, el mejor conductor de la electricidad.

El cobre fue obtenido y utilizado por el hombre ya en los tiempos prehistóricos, pero hasta los comienzos de la era industrial su empleo no empezó a revestir cierta importancia. Los primitivos egipcios hicieron cuchillos de cobre y armas hace ocho mil años, y tubos y cañerías en el año 2750 a. de J. C. Los romanos lo extraían de Chipre, por lo cual se conoció como aes cyprium; de aquí se derivó el nombre latino cuprum; y, de éste, el español cobre y el símbolo químico Cu.

Durante la primera década del siglo XIX, la producción anual mundial no era muy superior a la mensual de algunas de las minas importantes de la actualidad. En 1869, en Michigan estaba la mayor factoría del mundo, que sólo producía 6.200 toneladas de cobre. En 1877, las minas de Río Tinto, hasta finales del siglo XIX, eran las mayores productoras del mundo con cerca de 30.000 toneladas.

El descubrimiento (y la explotación) de minas de cobre con mineral de bajo contenido, a principios del siglo xx, inició una industria de minería en gran escala con bajos costos. Posteriormente se introdujeron procesos de flotación, que hicieron posible la obtención del cobre de minerales de bajo contenido a costos reducidos.

Las mejoras en los métodos de minería, la flotación, la lixiviación, y otros procesos, han beneficiado mucho más a los grandes productores con minas de bajo rendimiento que a los pequeños, aun con minas mucho más ricas. El resultado de esto ha sido que unos pocos industriales, cada uno de los cuales puede producir anualmente 700.000 toneladas, o más, dominan y controlan la producción mundial de cobre y las reservas mineras de mayor interés.

Mineral de Cobre

Los usos del cobre son muy diversos, pero la casi totalidad de ellos atienden a su conductibilidad eléctrica y a su ductilidad; por esto el 25 por 100 de la producción total lo utiliza la industria eléctrica, que es su principal consumidor. La mayor parte de los equipos eléctricos y líneas de conducción se hacen de cobre puro, pero se emplean asimismo considerables cantidades de este metal en la obtención de aleaciones, principalmente latón (cobre-cinc) y bronce (cobre-estaño-cinc).

En la actualidad conocemos más de 150 minerales de cobre, pero sólo unos pocos revisten importancia económica. Citaremos el cobre nativo, los sulfuros (de cobre, calcosina y covellina; de cobre y hierro, calcopirita y bornita), los sulfoarseniuros y sulfoantimoniuros (enargita y cobres grises), los óxidos (melaconita y cuprita) y las diversas oxisales hidratadas (malaquita, azurita, crisocola, etc.).

La elevada cotización del cobre, así como su metalurgia relativamente económica, permiten la explotación de yacimientos de baja concentración. Resultan perfectamente rentables las masas piritosas que contienen del 1 al 4 por 100 de cobre.

Se ha hablado de la existencia de yacimientos de cobre de origen magmático. La realidad de tales tipos ha sido vivamente discutida y acaso no exista ejemplo alguno de ellos.

Así, podemos decir que todos o casi todos los yacimientos conocidos han sido originados por aportes hidrotermales. La formación de los minerales a partir de sus soluciones acuosas a temperaturas más o menos elevadas se ha producido gracias a dos mecanismos diferentes: el relleno de oquedades preexistentes y el reemplazamiento. El primero de ellos puede haberse producido en fisuras, vesículas, cuevas o espacios porosos.

En lo que se refiere al segundo, se trata de un proceso mediante el cual materiales preexistentes, rocas o minerales, son lentamente sustituidos por intercambios que se efectúan entre tales masas y las soluciones hidrotermales. El reemplazamiento puede haber sido filoniano, diseminado o masivo, como en el yacimiento de Riotinto (Huelva), el mayor depósito de cobre pirítico del  mundo.

Este criadero comenzó a explotarse hace más de 3.000 años, con objeto de extraer oro; luego se pasó a la obtención de azufre y cobre. Su riqueza es extraordinaria: su producción se eleva, hasta el presente, a unos 5 millones de toneladas de cobre y a algo más de 200 millones de toneladas de pirita. Se calcula que las reservas son del mismo orden que el mineral obtenido.

Las masas minerales aparecen en forma de enormes lentejones, asociados a intrusiones de rocas porfídicas en las pizarras. Se han explotado unas 50 masas, la mayoría a cielo abierto, ya que la erosión ha desmantelado la roca suprayacente. Las de San Dionisio, Eduardo y Veta del Sur, que aparecen relacionadas entre sí, son las de mayor importancia: el conjunto se extiende sobre una longitud de 3 kilómetros, una anchura de 2,5, y una profundidad de 500 metros.

La mayoría de los yacimientos de importancia se encuentran en América del Norte (U.S.A., Canadá, México) y en ambos lados de la gran cordillera de los Andes. Estos últimos pertenecen a Chile, que es el segundo productor mundial, al Perú, a Bolivia y a la Argentina. Debemos citar asimismo los extraordinarios depósitos de Rhodesia y de Katanga, que constituyen la zona exclusivamente cuprífera más importante que se conoce.

La mayor cantidad del cobre se extrae a partir de piritas de cobre, conocidas como calcopiritas. El cobre bruto que se obtiene de sus minerales no es suficientemente puro para usos eléctricos, y se purifica posteriormente por electrólisis. Para esto se sumerge un bloque de cobre impuro en una disolución de sulfato cúprico y se conecta el bloque al terminal positivo de una fuente de corriente continua (esto es, actúa como ánodo), y una lámina delgada de cobre puro se conecta al terminal negativo como cátodo. Los iones de cobre pasan, a través de la disolución, del ánodo al cátodo.

El ánodo aumenta de tamaño, a medida que el cobre puro se va depositando a la disolución, o caen, depositándose en el fondo. El oro y la plata, en el barro que se recoge bajo el ánodo, son suficientes en muchos casos para pagar el proceso de refinado del cobre. El oro y la plata están íntimamente relacionados con el cobre, y por eso es frecuente que aparezcan junto a él en pequeñas cantidades.

Bornita

Calcopirita

Calcosina

Azurita

ALEACIONES  DE COBRE
El cobre es la base de muchas aleaciones de las cuales el bronce (cobre y estaño) es, probablemente, la más conocida; es mucho más duro y resistente al desgaste que el cobre puro. El descubrimiento del cobre cambió completamente el modo de vivir de la Edad de Piedra. Las nuevas armas de bronce, afiladas, facilitaron la caza de animales para la alimentación e hicieron posible la guerra organizada.

Las aleaciones que contienen más de 98 % de cobre se llaman cobres; cuando la cantidad de este metal es inferior, se denominan latonesbronces.

Inicialmente, el latón era una aleación de cobre y cinc, y el bronce, una aleación de cobre con estaño. Sin embargo, el término bronce se ha extendido a las aleaciones en las que intervienen otros elementos  diferentes del  estaño.

Para evitar confusiones se ha decidido aplicar el término bronce a todas las aleaciones de cobre con otros elementos que contengan como máximo el 96 % de cobre, excepto para el caso del cinc. El término latón se aplica a las aleaciones del cobre con el cinc, aunque pueden estar presentes otros metales, siempre que sus efectos (es decir, las propiedades que confieren a la aleación) estén subordinados a los del cinc.

USOS DEL COBRE POR GRADO DE IMPORTANCIA:
Manufacturas    eléctricas
Teléfono   y   telégrafo  
Conducciones  de energía  eléctrica
Alambre  
Automóviles   
Construcción   
Colado   
Municiones    
Ferrocarriles   
Refrigeradores    
Construcción   de   barcos   
Acondicionamiento   de   aire 

PRINCIPALES CONSTANTES DEL COBRE
Punto  de  fusión: 1.083°C
Punto de ebullición: 2.325°C
Densidad  específica: 8,94
Calor   específico: 0,0918
Calor de fusión: 50,6 Cal/gr.
Coeficiente lineal de dilatación: 16,42 x 10-6  cm/°C ó 0,00001642
Conductividad térmica  a  20°: 0,923  eal/sec/cm²/ °C/cm.
Dureza de Mohs:  3,0
Potencial   electrolítico: 0,344 Volt.
Resistencia esp.: 1,682 x 10-6 ohm/cm. ó 0,000001682

PROPIEDADES FÍSICAS Y QUÍMICAS DEL METAL
El cobre tiene tres capas electrónicas completas y sólo un electrón en la capa más externa. Cabría, por tanto, esperar que este elemento tuviera de valencia uno y, de hecho, el cobre tiene dicha valencia en una serie de compuestos, llamados cuprosos.

Todos los iones cuprosos han perdido su electrón más externo; son iones con una carga positiva. Sin embargo, los iones cuprosos son muy inestables, ya que a pesar de que el cobre puede tener una valencia uno, es más frecuente que tenga una valencia dos. Además del electrón más externo, se pierde un electrón de una capa interna, con lo que se produce un ion cúprico. Los compuestos cuprosos son muy inestables y fácilmente se convierten en compuestos cúpricos, que son mucho más estables.

El cobre puro cristaliza en forma cúbica centrada en las caras. Es un metal relativamente estable en condiciones atmosféricas normales. El color rojo distintivo del metal puro varía de acuerdo con las influencias externas, y esto tiene interés desde el punto de vista artístico, sobre todo en su uso como material de ornamentación.

La superficie del cobre, si no se pulimenta, varía de color al recubrirse con uno o con varios de los siguientes compuestos:  óxido cuproso, Cu2O, sustancia roja que da un color vivo a la superficie del cobre enfriado en agua, cuando está al rojo vivo;  óxido cúprico, CuO, de color negro, que se forma cuando el cobre caliente se enfría al aire;  carbonato cúprico hidratado, CO3Cu-H2O (o carbonato básico de cobre, C03Cu[OH]2) que es la sustancia verde que se forma en el cobre expuesto a la atmósfera (verdín).

La formación de este verdín, contrariamente a lo que le ocurre al hierro en las mismas condiciones, sirve de protección que evita la persistencia del ataque del gas carbónico sobre el metal. El cobre metálico es resistente a los álcalis, excepto a los que contienen amoníaco.

Su ataque por ácidos minerales y orgánicos depande, fundamentalmente, de la existencia de un oxidante en la disolución. El cobre resiste la oxidación por vapor de agua a altas temperaturas, y resiste la acción de la mayoría de las disoluciones salinas. Sin embargo, es poco resistente al ataque del azufre y de los compuestos del azufre, pero aleándolo con cinc, para producir el latón, se aumenta mucho su resistencia al azufre.

Aunque el cobre no desplaza al hidrógeno de los ácidos, se disuelve rápidamente en ácidos oxidantes (tales como ácido nítrico fumante), o en soluciones acidas que contienen agentes oxidantes, como son las soluciones de ácido sulfúrico, que tiene sulfato férrico. Los iones cúpricos tienen tendencia a asociarse con cuatro moléculas de agua, tanto cuando están en disolución como cuando se encuentran en forma cristalina. Esta agua está débilmente unida y si, por ejemplo, se calientan cristales de sulfato cúprico, se elimina el agua y la estructura cristalina se destruye.

El amoníaco también tiende a asociarse con los iones cúpricos. Así, las sales cúpricas se disuelven en disoluciones de amoníaco para formar un complejo de cuproamoníaco, en el cual cuatro moléculas de amoníaco, están asociadas alrededor de cada ion cúprico. Este complemento de cobre y amoniaco puede disolver la celulosa, y se ha ensayado como un medio de fabricar rayón.

El proceso de obtención de rayón, utilizando sales de cobre, se basa en el descubrimiento (de Schweintzer, en 1857) de que la celulosa se disuelve en el hidróxido de cuproamoníaco. El material básico de cobre se prepara tratando soluciones concentradas de sulfato cúprico con disoluciones frías de amoníaco, o hidróxido sódico.

La disolución de la celulosa purificada y desintegrada se hace también en frío, y en presencia de la cantidad adecuada de disolución de amoníaco (24-28 %). En general, el proceso del cuproamoníaco no puede competir económicamente con el proceso más extendido de la viscosidad, pero es más económico cuando se trata de obtener filamentos muy finos de rayón; por eso existen todavía numerosas fábricas que utilizan este proceso

COMPUESTOS  DE COBRE
El sulfato cúprico hidratado con cinco moléculas de agua es el más importante de todos los compuestos del cobre, en cuanto a su uso general y a su producción industrial. Un gran número de compuestos de cobre se fabrican a partir del sulfato cúprico.

El proceso de obtención industrial más común del sulfato cúprico consiste en inundar un depósito que contiene chatarra de cobre con ácido sulfúrico diluido y caliente. A pequeños intervalos, se vacía el ácido, y se recicla hasta que, prácticamente, se neutraliza. Es probable que en este proceso el sulfato cúprico actúe, sobre el metal en la disolución, formando sulfato cuproso, que oxida por reacción al sulfato cúprico con el óxido disuelto. El sulfato de cobre y otros compuestos de cobre son relativamente tóxicos, aunque, por regla general, la ley no exige que se les ponga la etiqueta de venenos, sino una advertencia de que son perjudiciales, en caso de ingestión.

El sulfato cúprico se utiliza, principalmente, en la agricultura. Desde hace muchos años es el más importante funguicida para el control de enfermedades de la vid, patata, tomate y otros cultivos agrícolas. Se utiliza en forma del llamado caldo bórdeles, que consiste en añadir yeso (lime) a la disolución de sulfato. Se aplica por aspersión.

Fuente Consultada:
Revista TECNIRAMA N°48 Enciclopedia de la Ciencia y la Tecnología
NATURA Reservas Económicas

Enfermedades de las Plantas Cultivadas Hongos e Insectos

EXPLICACIÓN DESCRIPTIVA DE LAS ENFERMEDADES

Cada año, cientos de millones de pesos se pierden como consecuencia de las enfermedades de las cosechas. El estudio de estas distintas afecciones constituye, por tanto, una rama importante de la ciencia, que recibe el nombre de patología vegetal. Las enfermedades de los vegetales son tan antiguas como las mismas plantas; muchos fósiles antiquísimos muestran claros síntomas de enfermedad.

Las plantas cultivadas sufren los ataques de los gérmenes mucho más que las silvestres debido, en gran parte, a que conjuntos de individuos de la misma clase crecen muy próximos. En la selva, una planta no está necesariamente rodeada por otras de la misma especie y las infecciones tienen menos probabilidades de propagarse.

Hasta hace muy pocos siglos se creía que las enfermedades eran debidas a la “cólera  de los  dioses”.   Esto  ocurre todavía en algunas comunidades primitivas, y se realizan complicadas ceremonias religiosas para “agradar a la divinidad”.

En el siglo XVII, se decía que el tiempo parecía influir en la salud de las plantas. Se supo, que el tizón y otros hongos estaban relacionados con muchas enfermedades, pero se creía que eran generados en los tejidos muertos. Hasta el siglo XIX, en que Pasteur demostró que los seres vivos no pueden surgir de la nada, no se llegó a comprender que, en muchos casos, los propios hongos provocan las enfermedades.

ENFERMEDADES CAUSADAS  POR LOS HONGOS
Hongos de una clase u otra son la causa de la mayor parte de las enfermedades de los vegetales. Algunas, tales como el moteado negro de las hojas de sicómoro,parece que no dañan mucho, aunque estén afectadas todas las hojas. Otras son más graves.

La roña de la patata es una enfermedad muy grave, que puede destruir rápidamente la totalidad de la planta; una plaga de roña causó en Europa (especialmente en Irlanda) el hambre de 1840. El tizón y el añublo son otras graves enfermedades micósicas de los cereales. La desecación de los brotes está causada también por hongos, que aniquilan la planta en el preciso momento de salir de la tierra.

El cuerpo de los hongos está constituido por una masa de delgadas fibras, llamadas hijas, que se introducen en la planta a través de las heridas, de los poros de las hojas, e incluso, de las cutículas sanas. A continuación, las fibras se dividen, se ramifican en los tejidos de su huésped y absorben materiales alimenticios.

En la planta aparecen defectos y decoloración donde, a menudo, se localiza la producción  de esporas. Éstas son diminutos ; unicelulares, que pueden flotar en el aire y esparcirse para alcanzar otras plantas, en las que se desarrollan, convirtiéndose en nuevas hifas. las enfermedades micósicas evolucionan más fácilmente en ambientes húmedos. La roña de la patata es un buen ejemplo de este tipo de agentes. La primera idea de que el mal tiempo proboca enfermedades no era descabellado después de todo.

BACTERIAS Y VIRUS
A medida que se desarrollaron nuevas stigaciones sobre patología vegetal, descubrió que algunas enfermedades eran provocadas por hongos. Se suposo entonces, que alguna bacteria podría ser la causa. Estos microscópicos organismos eran ya conocidos como agentes productores de enfermedades en los animales, aunque casi todos son inofensivos e, incluso, útiles. Hoy se sabe que muchos males de los vegetales son causados por las bacterias.

Estos seres invaden los tejidos y los destruyen mediante acciones enzimáticas. Aunque se descubrió el origen bacteriano de muchas enfermedades, quedaron otras que parecían no estar asociadas a ningún germen de los que ya hemos hablado. Pasteur sugirió que podría tratarse de “gérmenes” aún más diminutos.

Era cierto, y aquellos minúsculos seres reciben el nombre de virus. Su existencia fue demostrada por un científico ruso, llamado Ivanowsky, en el año 1892. Tomó una pequeña cantidad de jugo de una planta de tabaco afectada de una enfermedad llamada mosaico del tabaco; filtró este jugo a través de una porcelana lo suficientemente compacta como para que no pudieran pasar ni las más pequeñas bacterias; a continuación, roció el líquido filtrado sobre una planta de tabaco sana.

El mosaico apareció en ésta, demostrándose que, cualquiera que fuese, la causa de la enfermedad podía pasar a través de los filtros más finos. Después se descubrieron cientos de virus que provocan enfermedades graves en animales y plantas.

Los virus han sido aislados y examinados con el microscopio electrónico. Se trata de partículas diminutas, de unos 20 milimicrones de sección (un milimicrón equivale a 0,0001 mm); 50.000 virus alineados no alcanzan el diámetro de una cabeza de alfiler y parecen ser entes intermedios entre la materia inerte y los organismos vivos.

Pueden cristalizar como los compuestos químicos, aunque cuando se inyectan en un organismo se multiplican del mismo modo que las bacterias. En las plantas, los virus producen, frecuentemente, un moteado (mosaico) en las hojas y en las flores. Como consecuencia de su acción se reduce la función alimenticia de las hojas; la planta se debilita, con una pérdida importante de producción. Las patatas padecen varias enfermedades virósicas graves, tales como el mosaico y el abarquillamiento de las hojas; ambas afecciones son producidas por el Solanum virus.

OTRAS CAUSAS DE ENFERMEDAD
Algunas enfermedades son provocadas por protozoos y gusanos nemátodos, que se introducen en los tejidos. Las plantas presentan síntomas del tipo de las agallas, y atrofias en el crecimiento. Algunos insectos provocan síntomas enfermizos al inyectar sustancias venenosas en las plantas. Éstos se parecen, a menudo, a los de las enfermedades virósicas, pero no son tan persistentes y, normalmente, desaparecen.

Las enfermedades fisiológicas son graves, pero remediables con facilidad. Son consecuencia de la carencia de algún material alimenticio; puede tratarse de un oligoelemento como el boro, que la planta necesita en pequeñísimas proporciones, o bien de un fosfato, que requiere en mayores cantidades. El análisis del suelo resuelve el problema y añadiendo el elemento que falta, se cura el mal.

TRASMISIÓN  Y  CONTROL  DE   LAS ENFERMEDADES VEGETALES
No siempre es practico, ni aveces, posisible curar un vegetal enfermo. El control está basado en la prevención. La regla ideal para el agricultor que se encuentre con una planta enferma consiste en eliminarla (arrancarla y quemarla). Sólo  de este modo se pueden destruir completamente los gérmenes. Sin embargo, antes de poder controlar las enfermedades es necesario conocer el mecanismo de su trasmisión. Resulta conveniente desinfectar la semilla si la infección es trasmitida por insectos. Pero no es útil exterminar los insectos si los huevos se guarecen en el suelo, de un año para otro. Por otra parte, muchas enfermedades se trasmiten de distintos modos.

Algunas enfermedades propias del suelo, tales como la hernia de la raíz de los repollos y la sarna verrugosa de las patatas, se trasmiten de una planta a otra por medio de esporas, que permanecen en el suelo. Las esporas están en la tierra y siguen allí esperando la siguiente cosecha, para atacarla. Muchas de las enfermedades propias del suelo, causadas principalmente por nemátodos, hongos y bacterias, pueden evitarse alternando las cosechas.

Las esporas perecen antes de volver a sembrar el tipo de plantas en que se desarrollan. Sin embargo, algunos hongos tienen esporas de vida muy larga, y la alternancia de las cosechas no evita necesariamente las enfermedades producidas por ellos.

Algunas variedades de patata son inmunes a la sarna verrugosa y pueden cultivarse donde exista la enfermedad. Indudablemente, es inútil plantar variedades no inmunes en tales regiones. Otras enfermedades se trasmiten de una cosecha a otra por medio de la semilla u otro órgano reproductor (por ejemplo, un tubérculo).

Las micosis se contagian, frecuentemente, dentro y sobre las semillas. Pueden evitarse, en parte, tratando las semillas con fungicidas, antes de plantarlas. Por otro lado, los peligros de los tratamientos de las semillas y otras protecciones químicas para las cosechas se ponen cada vez más de manifiesto con grave riesgo para la fauna libre.

Las enfermedades virósicas raramente se trasmiten con las semillas, aunque a veces lo hacen por medio de tubérculos, bulbos y esquejes. Los virus de la patata se contagian con los tubérculos y, en pocos años, la población virósica puede ser tan grande como para inutilizar la planta.

Cada año deberían plantarse tubérculos sanos, libres de virus. Inicialmente, éstos son trasmitidos de una planta a otra por algunos áfidos (pulgones). Los áfidos son raros en las regiones frías, donde la enfermedad no suele existir. Los tubérculos de estas regiones están libres de virus y se usan como “semillas” en otros lugares.

Aunque las plantas se infecten durante su desarrollo, pueden producir una cosecha razonablemente buena. No obstante, deben obtenerse tubérculos libres de virus para el siguiente año.

Aun cuando se planten semillas sanas en tierras limpias, pueden contraer enfermedades. Esporas aéreas, procedentes de sembrados próximos, pueden provocar graves infecciones. El pulgón de la patata y el añublo del trigo son las dos enfermedades de trasmisión aérea más graves causadas por hongos.

El desarrollo de variedades resistentes ayuda a vencer la enfermedad. La eliminación de hierbas que pueden ser portadoras de los gérmenes es importante, y resulta esencial el uso de semillas limpias. Si sólo se han infectado algunas semillas, la enfermedad puede extenderse a toda la cosecha.

Cuando se conozcan fungicidas eficaces para matar las esporas de los hongos, deberán tratarse las plantas antes de que sean capaces de introducirse en ellas. Entre las enfermedades trasmitidas por los insectos, las virosis son las más importantes. Los principales agentes trasmisores son los áfidos o pulgones que chupan la savia. Los virus pasan a la saliva y, a continuación, son inyectados en la próxima pfanta.

Normalmente, sólo una o muy pocas especies de insectos pueden trasmitir un virus particular y, si el insecto puede exterminarse, se eliminará la enfermedad virósica.

enfermedades plantas

La roña de la patata, sobre las hojas y sobre el tubérculo. La enfermedad empieza en un tubérculo infectado y se extiende a las hojas. Desde éstas, las esporas se propagan a las otras plantas.

enfermedades de la papa

Un tubérculo de patata infectado  por un hongo que produce la enfermedad llamada “sarna verrugosa” o “sarna negra” (“Synchytrium endobioticum”).

Ampliación:  podemos decir que las plantas se hallan expuestas al ataque de otros seres vivos, que pueden producir en ellas alteraciones más o menos graves, con el consiguiente perjuicio para las cosechas. Los agentes que resultan nocivos para los cultivos son de la más diversa índole. La siguiente clasificación agrupa las más comunes:

1.  Virus y bacterias, que producen alteraciones denominadas virosis y bacteriosis, respectivamente, y son difíciles de combatir.
2.  Malas hierbas y plantas silvestres de crecimiento rápido, que compiten con los cultivos y absorben   agua  y  sales   minerales   de  la  tierra.
3.  Diversos tipos de hongos, entre los que se incluyen: el tizón del trigo, que destruye los granos reduciendo su contenido a un polvillo negro (las esporas del hongo); los denominado; «carbones», que atacan diversos cereales y destruyen sus espigas; la roya, con distintas especies que causan perjuicios en los cereales;  cornezuelo del centeno, productor de una peligrosa toxina; la ergotina, que puede ingerir el hombre en cereales contaminados por este hongo; el mildiu, que ataca a la vid, a la papa o patata y al tomate secando sus hojas; y el oidio de la vid, que forma manchas blancas que cubren las hojas.
4. Insectos, que son los enemigos más implacables de los cultivos agrícolas. A continuación se citan algunas de las especies más nocivas: la langosta, famosa por las devastaciones que produ-
ce periódicamente en el norte de África; el grillo topo, perjudicial por las galerías que forma en el subsuelo, que destruyen las raíces de las plantas; diversos tipos de mariposas, como la de la col, o las polillas, cuyas larvas, las orugas, muestran una gran voracidad y destruyen las hortalizas; los escarabajos, que atacan los cereales, como ocurre con los gorgojos, o las hortalizas, como en el caso del escarabajo de la papa o patata; y los pulgones, chupadores que debilitan las plantas.
5.   Ácaros, como la araña roja, que ataca las hojas.
6.   Limacos y caracoles, que destruyen las huertas.
7.   Nematodos, gusanos de suelo que atacan raíces y bulbos.
8.   Roedores, tales como las ratas, el ratón de campo, los topillos y el topo.

Para luchar contra estas plagas y enfermedades, el hombre cuenta con múltiples medios. Algunos de ellos son preventivos, y se basan en la inspección de productos importados, en la adecuada aplicación de los procedimientos de cultivo o en la obtención de variedades resistentes. Otros son físicos, tales como la eliminación manual, siempre que sea posible, o el descortezado de árboles para destruir huevos de insectos en la estación invernal. También se recurre a procesos químicos, como la utilización de agentes insecticidas, de aca-ricidas, de nematicidas, de herbicidas y de antifún-gicos. Por último se cuenta con medios biológicos basados en la introducción en un determinado ámbito de especies que ataquen las plagas.

Por cuanto se refiere a los insecticidas, hay que tener en cuenta su grado de toxicidad para el hombre y para las plantas cultivadas, así como la persistencia del efecto tóxico. Este tipo de sustancias se clasifican en tres categorías, la tercera de las cuales presenta una elevada toxicidad y sólo puede ser utilizada por organismos oficiales.

En función de su mecanismo de acción los insecticidas se distribuyen en cuatro grupos: (1) de ingestión, atacan a insectos que comen partes de la planta, y casi todos ellos contienen arsénico; (2) de contacto, como la rotenona o los diferentes aceites derivados del petróleo, que actúan fijándose a la cubierta de quitina de los insectos; (3) de ingestión y contacto, entre los que destacan el DDT y el linda-no, muy tóxicos y persistentes; y (4) sistémicos, que se introducen en la savia y atacan a insectos chupadores; entre los más usados dentro de esta categoría  están  el  vamidotión  y  el  metasystox.

ALGUNAS PLAGAS FRECUENTES EN LAS PLANTAS CULTIVADAS, EFECTOS Y TRATAMIENTO
Nombre de la plaga Planta afectada Alteraciones Tratamiento
Grillo topo (insecto) Todo tipo de plantas Destrucción de las raíces por la construcción de galerías subterráneasAtaque directo a tubérculos y raíces Cebos envenenados
Pulgones (insectos) Hortalizas y frutales Destrucción de las hojas, de cuya savia se alimentanFavorecen la proliferación
de hongos
Lucha biológica: utilización de mariquitas y pequeñas avispas parásitas de la larva
Productos fosforados: Malathión, Naled
Gorgojos (insectos) Granos de cereales y leguminosas Destrucción de granos de cereales y de semillas de leguminosas Compuestos azufrados, Lindano
Trips (insectos) Cebolla, olivo y cereales Destrucción de las hojas que se amarillean y secan Lindano, Naled
Escarabajo de la papa o patata (insecto) Papa o patata y, en menor medida, berenjena y tomate Rápida destrucción de las hojas que impide la formación de los tubérculos Esteres de fósforo
Orugas de la col (insectos) Coles Destrucción de las hojas Carbaril, Malathión
Araña roja (acaro) Hortalizas, frutales y algodón En condiciones de sequedad y calor, producen la devastación de los cultivos Acaricidas
Limacos v caracoles (moluscos) Hortalizas, cereales, frutales y vid Destrucción de las hojas Cebos
Nematodos (gusanos) Hortalizas Destrucción de bulbos y raíces Nematicidas
ALGUNAS ENFERMEDADES CAUSADAS POR HONGOS EN LAS PLANTAS CULTIVADAS Y LOS AGENTES INFECTANTES QUE LAS PRODUCEN
Agente infectante Planta infectada Alteraciones Tratamiento
Tizón del trigo (hongo) Trigo Ataca las espigas y destruye el grano Sulfatado (sulfato de cobre)
Carbón de los cereales (hongo) Diversos cereales Destrucción de espigas y flores Separación y quema de las partes afectadas
Roya (hongo) Cereales Tallos y espigas Forma manchas de color pardo No existe ningún tratamiento eficaz Utilización de variedades resistentes
Cornezuelo del centeno (hongo) Centeno y otros cereales Ataque a la espiga Aparición de filamentos en forma de cuernecillos de color pardo Impedir la germinación de los cornezuelos
Mildiu de la vid (hongo) Viñedos Ataque a las hojas, al racimo y a los brotes. Forma decoloraciones amarillas Sulfatado (sulfato de cobre) Compuestos orgánicos: Maneb, Captan
Oidio de la vid (hongo) Viñedos Ataque a hojas, racimos y brotes Sulfatado

Fuente Consultada:
Revista TECNIRAMA Enciclopedia de la Ciencia y la Tecnología
Enciclopedia HISPÁNICA Entrada: Agricultura

Historia del Vidrio Tipos y Técnicas de Fabricación Origen

RESUMEN DESCRIPTIVO DE LA EVOLUCIÓN HISTÓRICA DEL VIDRIO

La historia del vidrio es antiquísima y su fabricación está llena de dificultades. Vamos a seguirlo a través de sus más importantes perfeccionamientos y aplicación, y admiraremos la inteligencia y la tenacidad de los hombres que brindaron una prueba tan perfecta de lo que pueden hacer la mente y el trabajo para dar mayor esplendor a la civilización.

EL VIDRIO VIENE DEL DESIERTO
No se puede asegurar quiénes fueron sus descubridores: ¿los fenicios?, ¿los egipcios?, ¿otros?…Plinio, el célebre naturalista latino, cuenta que unos fenicios, al regresar de Egipto hacia su patria, hicieron un alto en Sidón, junto al río Belus. Encendieron el fuego, prepararon la comida y, para su mejor cocimiento, calzaron las ollas entre dos bloques de natrón (carbonato de sodio), mercancía que ellos transportaban y que entonces se utilizaba para el teñido de la lana. Después de comer se quedaron dormidos y dejaron el fuego encendido. Cuando despertaron fue muy grande su sorpresa, pues en lugar de los bloques de natrón había unos sólidos transparentes y luminosos como piedras preciosas.

Creyendo que un genio había obrado un milagro, se arrodillaron en señal de adoración. Pero el sagaz Zelú, jefe de la caravana, advirtió que había desaparecido la arena que estaba debajo de los bloques de natrón. Encendieron nuevamente fuego sobre la arena y, al cabo de algunas horas, de aquellas cenizas salió un colado rojo y humeante. Antes de que la arena incandescente se enfriara, Zelú tomó un poco de esa materia extraña y, modeló un vaso. ¡El vidrio había sido descubierto!

Dado el carácter legendario de la narración, no podemos aseverar que hayan sido los fenicios los descubridores del
vidrio, pero podemos decir que, junto con los egipcios, figuran entre sus primeros artífices. Pruebas bastante atendibles son los descubrimientos hechos en tumbas antiquísimas (del año 2000 antes de Jesucristo). Entre los tesoros de inmenso valor que solían ponerse al lado de las momias de los faraones, se encontraron cuentas de vidrio de variados colores, admirablemente trabajadas.

Se cree que los egipcios comenzaron a fabricar el vidrio hacia el año 1400 antes de Jesucristo. Se dedicaron, sobre todo, a la producción de objetos artísticos y decorativos, y se especializaron en el colorido, como lo prueban las piezas encontradas en las tumbas de Tel-el-Amán.

Tanto los fenicios como los egipcios llegaron a ser los maestros de esta industria y los abastecedores más requeridos de la época.

Jarrón de Vidrio Fenicio

EL CRISTAL: Con el nombre de cristal (krystallos), los griegos designaban al cuarzo. Con el mismo nombre se indicaba, en el período del Renacimiento el cristal de roca, una variedad de cuarzo que era trabajada como piedra preciosa. En la actualidad, este nombre se utiliza para indicar el tipo de vidrio que tiene un gran brillo, un alto grado de refracción y una absoluta ausencia de coloración. Estas características son debidas a la particular pureza de las materias primas y, más que nada, a la presencia de óxido de plomo.

Con el nombre de cristal se indican tambiér. impropiamente, las láminas de vidrio de espejos y de vitrinas. Éstas no son láminas de vidrie común, aunque requieren, sin embargo, un proceso de elaboración más complicado. En efecto: el vidrio que debe volverse cristal debe ser molido y pulido. Ambas operaciones se realizan mediante cilindros que giran sobre las mismas láminas.

En el molido, se coloca entre los cilindros y las láminas arena cuarzosa, que elimina las ondulaciones de la lámina volviéndola perfectamente lisa. En el pulido se usan cilindros revestidos de fieltro, que realizan esa acción de pulimento logrando brillo en la superficie. Existe también la denominación “medio cristal”, que indica las láminas pulidas en una sola cara.

EL COMERCIO DEL VIDRIO EN LA ANTIGÜEDAD
Cuando Egipto se convirtió en provincia del Imperio Romano, pagó gran parte de su tributo en objetos de vidrio y en mano de obra, pues sus mejores artesanos emigraron a Roma. Con la difusión del lujo y del refinamiento en las austeras casas romanas, los patricios revistieron las paredes de sus mansiones con resplandecientes planchas de vidrio.

Parece extraño que, no obstante usar el vidrio para tan diversos fines, no se les haya ocurrido aplicarlo en las ventanas. Hasta en las casas más lujosas las ventanas eran simples agujeros con placas fijas de alabastro translúcido o amplias aberturas que se cerraban con tablas.

A medida que los romanos conquistaban nuevos pueblos iban propagando la industria del vidrio, considerado únicamente objeto de lujo. Se establecieron fábricas en la península ibérica, en las Galias, Bretaña y en las provincias del Rhin.

Con la caída del Imperio Romano en el siglo v, esta industria se desplazó a Oriente. Bizancio tuvo el predominio en la fabricación del vidrio hasta los albores del medioevo. Siria se consolidó en el floreciente comercio y es muy probable que los venecianos, aquellos geniales e intrépidos navegantes, aprendieran de los sirios el secreto de la difícil elaboración.

En Venecia, la fabricación del vidrio nació en el siglo X y alcanzó su máximo esplendor en el siglo XIV. A fines del siglo XIII, el Consejo de los Diez ordenó que las fábricas de vidrio se trasladaran a la isla de Murano, para evitar que se difundieran los secretos de su elaboración. El título de “maestro vidriero” tenía carácter honorífico y los secretos de la fabricación pasaban de padres a hijos. En 1317 un veneciano inventó el espejo de cristal.

Los Estados del norte no permanecieron indiferentes a esta nueva industria tan rica. Un agente del rey de Francia, pagando generosamente a un maestro vidriero, logró enterarse de los métodos de elaboración. De Francia, el secreto pasó a Alemania y a Bohemia. Surgieron nuevas y poderosas industrias que compitieron con la de Murano, cuya decadencia comenzó entonces.

Gracias a los adelantos técnicos, poco a poco el vidrio dejó de ser un lujo. A fines del siglo pasado la industria del vidrio comenzó a mecanizarse (ya en 1876 el norteamericano Weber ideaba una máquina para la producción semiautomática de botellas),y desde entonces el maravilloso material se difundió cada vez más.

MATERIAS PRIMAS

COMPOSICIÓN BÁSICA DEL VIDRIO: El vidrio es una mezcla de varias sustancias que no tiene composición constante; ya que varía según el tipo de vidrio. No obstante, está formado principalmente por sílice. He aquí las principales materias primas y el porcentaje aproximado en que cada una entra en la composición del vidrio:
Silice (70%) Sustancia “vitrificante” que se usa en forma de anhídrido silícico. Es muy abundante en la naturaleza, y puro y cristalizado constituye el cuarzo hialino, o sea el conocido como cristal de roca. Otras sustancias vitrificantes son el anhídrido bórico y el anhídrido sulfúrico.
Soda 15%
(Carbonato de Sodio)
Sustancia “fundente”. Facilita la fusión de la masa silícea bajando la temperatura a que ésta funde. Esta sustancia es el carbonato de sodio, llamado también soda Solvay. Otras sustancias fundentes son el carbonato de potasio, el ácido arsenioso y trozos de vidrio.
Cal 10% (calcio)
Otras Sustancias 5%
(ver abajo)
Sustancia “estabilizante”. Sin ella, el vidrio, compuesto sólo por sílice y sodio o potasio, sería soluble en agua hirviendo y no podría utilizarse como tal.
Sustancias varias que dan al vidrio características particulares, según el uso que de él se quiera hacer.

Las propiedades que las materias primas otorgan al vidrio pueden dividirse en tres grupos:
1°, las que dan su consistencia y transparencia: anhídrido silícico, anhídrido fosfórico y anhídrido bórico;
2°, las que facilitan su fusión: hidróxido de sodio e hidróxido de potasio;
3°, las que impiden que el vidrio, compuesto sólo de sílice y álcali, sea soluble: óxido de calcio, óxido de magnesio y óxido de cinc.

La sílice, que es la materia esencial, se presenta bajo la forma de arena o de cuarzo y se encuentra en el lecho de los ríos y en las canteras.

El primer procedimiento, antes de la elaboración propiamente dicha, es el lavado de la arena o del cuarzo a fin de eliminar las sustancias orgánicas y arcillosas. Luego se añaden los demás ingredientes y la mezcla se coloca en crisoles refractarios para la fusión. Alcanza el estado líquido a una temperatura de 1300 grados; sobre la mezcla fundida flotan los residuos insolubles.

Entonces se procede a la afinación, que consiste en sacar de la masa esas materias flotantes. El colado pasa luego al proceso de reposo hasta alcanzar los 800 grados, temperatura a la cual se lo puede trabajar mejor.

El vidrio se hace enfriando ciertos materiales fundidos de tal modo que no puedan cristalizar, sino que permanezcan en un estado amorfo. El vidrio es, técnicamente, un líquido de viscosidad tan elevada que desde el punto de vista práctico es un sólido. Las sustancias capaces de enfriar sin cristalizar son relativamente raras. La sílice o cuarzo (Si02), combinación de un átomo de silicio con dos de oxígeno, es la más común. Existen vidrios sin sílice, pero su importancia comercial es mínima.

LA COMPLEJA Y MINUCIOSA ELABORACIÓN
Al entrar en una fábrica de vidrio, lo primero que se siente es un calor insoportable. Procede del clásico horno en forma de cúpula, dentro del cual están los crisoles para la fundición. El obrero pone a prueba su destreza desde que se inicia la elaboración.

Sumerge un tubo o caña de hierro en el crisol donde hierve el vidrio, toma o “pesca” una pequeña cantidad de la mezcla en fusión y la retira rápidamente. Tiene que transformar en ampolla esa bolita incandescente. El obrero la hace girar en la punta de su tubo, la hace oscilar y la sopla mientras está caliente. La bolita se agranda, se ahueca y adopta la forma que el obrero desea darle.

soplado de vidrio

Finalmente se vuelve a cocer la ampolla y así queda lista para su uso. En este trabajo agotador y peligroso, el obrero no sólo ha brindado su habilidad, sino también su sentido artístico. Además, sus ojos y sus pulmones han sido puestos a dura prueba en aquella atmósfera candente.

En otra sección está bullendo la materia que dará el vidrio para las ventanas. Sacada la porción de mezcla incandescente necesaria, se la hace dar vueltas sobre una plancha de mármol. Allí adquiere forma de cilindro, cuyos extremos deben sacarse, mientras otro obrero lo corta a lo largo con un hierro candente al mismo tiempo que derrama sobre él algunas gotas de agua.

Cilindros de vidrio

El cilindro en estas condiciones es ablandado en el horno y extendido sobre una mesa, con un rodillo de madera. La plancha de vidrio queda entonces lista para el pulido y el tallado. Para ello se utilizan las “ruedas de hierro” cubiertas de arena húmeda, que dan lustre a la lámina de vidrio.

En cada sección de la fábrica de vidrio descubrimos una nueva maravilla. Sentados frente a grandes mesas, los “obreros artífices” graban figuras y nombres en las frágiles copas. Para ello se necesita mano firme y un fino sentido artístico. La delicadeza de ciertas incisiones hace pensar en preciosos bordados con hilos de oro y plata.

Antes del grabado, el objeto de vidrio se cubre con un barniz de cera y trementina, sobre el cual se dibujan los motivos que se desea estampar. Después se lo somete a la acción del ácido fluorhídrico que corroe únicamente las partes no cubiertas por el barniz.

Y así obtenemos las copas, las botellas y toda la vasta gama de objetos decorativos que resplandecen con nuevas luces, en una perfección que parece casi fantástica.

No menos extraordinaria es la habilidad del obrero que fabrica los termómetros. Toma una porción de mezcla y la sopla hasta darle forma de pera. Otro obrero se coloca frente al primero, y pega su caña a la “pera” y retrocede, al mismo tiempo que lá estira hasta transformarla en un tubo, delgadísimo y muy largo (a veces alcanza los 40 metros).

Estos tubos tienen en su interior un canal casi imperceptible, donde se introduce el mercurio. Después se graban las distintas temperaturas. Hay fábricas que se especializan en la elaboración de material para laboratorios. Como dicho material debe tener gran resistencia a los agentes químicos y a las variaciones de la temperatura, en su fabricación emplean vidrios especiales, por ejemplo: el de Bohemia, el de Jena, el norteamericano y el Pyrex.

QUÍMICA DEL VIDRIO
La mayoría de los vidrios son silicatos. La sílice fundida da un buen vidrio, pero su alto punto de fusión (1.723° C) y su elevada viscosidad en estado líquido vuelven engorroso el trabajarla: es muy difícil, por ejemplo, extraer las burbujas de una masa líquida tan espesa. Los productos de sílice fundida son caros y se los emplea sólo cuando son esenciales sus propiedades particulares: baja dilatación térmica, buena transmisión de ciertos rayos (ultravioletas), resistencia al desgaste, notable firmeza a altas temperaturas.

Para disminuir la temperatura de fusión de la sílice se añade sosa, en su forma más barata: el carbonato de sodio o sosa común; también se usa el nitrato de sodio y, a veces, la potasa. Pero el silicato de sodio o potasio que resulta no tiene durabilidad química y hasta es soluble en agua. Este defecto se corrige añadiendo cal (en forma de carbonato de calcio o tiza). La sílice se obtiene de la arena, que es sílice casi pura.

El vidrio común es pues una composición sodio-calcio-sílice. El primero lo hace fusible, el segundo insoluble, la tercera le da las propiedades distintivas del vidrio. Cuando más sosa contiene un vidrio, tanto más “fusible” es. El vidrio de ventana es uno de los vidrios más baratos. El vidrio verde de las botellas debe su color a la presencia de trozos de hierro (las sales ferrosas son verdosas, las férricas son rojizas), siempre presentes en la arena o en el vidrio molido utilizado como materia prima.

ORIGEN DEL ANTEOJO DE LARGA VISTA
Un niño holandés, hijo de un fabricante de anteojos, jugaba un día con dos lentes, uno cóncavo y otro convexo. Miró con ambos una casa vecina y quedó maravillado. La veía mucho más cercana. El padre puso los dos lentes en un tubo ennegrecido por dentro y así se obtuvo el primer catalejo. Permaneció en estado rudimentario hasta que, en 1610, Galileo lo perfeccionó para poder estudiar los detalles de los astros.

La fabricación de vidrios para anteojos es costosa. Una vez seleccionados los materiales por su pureza y buena calidad, la masa se pone en un horno especial, donde se funde a una temperatura altísima. Después se enfría en el crisol mismo.

Cuando la masa se ha solidificado, se rompe en pedazos con un martillo especial para eliminar las partes imperfectas. Luego se refunde, se hace homogénea y se vierte en moldes de distinta forma y espesor, según el grado óptico que se quiera obtener. Los lentes se pulen luego hasta lograr exactamente la corrección deseada.

El primero que ideó máquinas para fabricar lentes de anteojos fue Leonardo de Vinci, quien nos ha dejado diseños y proyectos sorprendentes.

EL VIDRIO IRROMPIBLE
Tal vez los antiguos conocían el vidrio irrompible. Una anécdota atribuida a Tiberio sugiere su existencia en época de los romanos. Se dice que un artesano mostró al emperador una copa de vidrio irrompible, a fin de ganarse su simpatía y librarse de una condena. Tiberio tiró la copa al suelo y, en efecto, no se rompió. Entonces preguntó al artesano:
—¿Eres el único que conoce este secreto ?
—El único, señor —contestó el incauto, convencido de haber ganado la buena voluntad del emperador—.
—Si es así, morirás —replicó Ti-
berio, irritado—. Porque si el vidrio se hiciera irrompible no habría que reemplazar las piezas rotas y todas mis industrias acabarían.

El vidrio irrompible se obtiene con la unión de dos planchas de vidrio común, entre las que se intercala ,como si fuera un emparedado, una hoja de xilonita, sustancia transparente análoga al celuloide.Con esta clase de vidrio se hacen los anteojos para automovilistas y aviadores, y las ventanillas de numerosos medios de transporte, pues no se astilla en caso de accidente. El vidrio templado, que se obtiene mediante un enfriamiento brusco, es también inastillable y se lo utiliza en muchos objetos de uso doméstico.

VIDRIOS ESPECIALES
Los vidrios comerciales comunes contienen, además, otros ingredientes (óxidos de aluminio y magnesio) y también sustancias especiales para blanquear (como el óxido de manganeso, cuyo color alilado anula el tono amarillento) o para favorecer la oxidación. Ciertas clases especiales tienen otros óxidos como ingredientes principales.

Así, el óxido de boro B203 (empleado en forma de ácido bórico) es un elemento esencial del vidrio Pyrex, al cual imparte una baja dilatación térmica que le permite resistir cambios bruscos de temperatura. Este tipo de vidrio se conoce como “borosilicato”.

El óxido de plomo PbO se emplea en vidrios ópticos e imitaciones de piedras preciosas, porque imparte un alto índice de refracción.

Los cristales de seguridad de los automóviles se componen de dos capas de vidrio de unos 3 mm. de espesor soldadas entre sí por una capa de plástico transparente.

El vidrio desvitrificado es un vidrio cristalizado; este fenómeno, que por lo general trata de evitarse, se lleva a cabo aquí expresamente. Se lo llama Pyroceran y permite fabricar piezas mecánicas de precisión. Para la vajilla se usa vidrio opalino. Existe un vidrio sensible a la luz, la cual crea una imagen latente que el calor desarrolla: se lo emplea para “grabar” diales de radio, esferas de reloj, o para realizar fotográficamente tramas muy delicadas para fotograbado. La parte sensible a la luz es más sensible al agua que la otra.

El vidrio para soldar funde a baja temperatura (500°) y se usa para reparar, sin deformarlas, piezas de vidrio de alto punto de fusión.

El Vycor, por ejemplo, es sílice casi pura, sin los problemas que ésta plantea: se parte de un borosilicato, y luego se separan ambas porciones. Actualmente se fabrican vidrios sólidos como el acero y flexibles como la seda. Se protege a los cohetes con fibra de vidrio más liviana que el aluminio e inatacable por los ácidos. Mediante la incorporación de plomo y cerio se protege, a los investigadores, de las radiaciones letales.

También se tejen las fibras continuas de vidrio, pero su uso doméstico se limita, por ahora, a la tapicería. Las fibras discontinuas de vidrio son buenos aisladores del calor en las calderas, y se las combina a los plásticos en los aviones (pero los acríbeos, cuyas moléculas largas entrelazadas se asemejan a un plato de tallarines, resisten mejor al desgaste y se los emplea en la “nariz” de los aviones). Como la fibra de vidrio presenta una gran superficie para un reducido volumen, se procura eliminar de ella el sodio y el potasio, que la vuelven sensible al agua.

ALGUNOS TIPOS DE VIDRIO Y SUS INGREDIENTES
Vidrio óptico: Arena, ácido bórico, potasa, hierro, sosa.
Vidrio óptico “crown”: Arena, potasa, bario.
Vidrio óptico “flint”: Arena, potasa, plomo.
Tipo “Pyrex” para horno: Arena, ácido bórico, sosa, alúmina.
Vidrio para vajilla: Arena, óxido de plomo, potasa.
Vidrio de ventana: Arena, sosa, cal o tiza, magnesia, alúmina.
Vidrio de botella (blanco): Arena, sosa, caliza, alúmina, bióxido de manganeso.
Vidrio de botella coloreado: Arena, sosa, caliza, alúmina, bióxido de manganeso, óxido de hierro.

LOS ESPEJOS
¿Y los espejos, esas resplandecientes superficies donde vemos reflejada nuestra imagen, qué son? Naturalmente, ellos también son vidrio, pero de noble factura y brillo perfecto. Antiguamente los espejos eran placas lisas de metal muy pulido. Por lo común se empleaba el bronce, y,en casos excepcionales, el oro y la plata.

He aquí cómo se fabrica hoy un espejo. Con una tenaza larga, el obrero levanta el crisol del horno y la colada de vidrio se extiende sobre una mesa y el líquido se empareja con un rodillo de hierro. La placa todavía flexible se deja enfriar durante tres o cuatro días en un ambiente uniforme.

Por último se la pule con un rodillo de madera y arena fina húmeda. Pero todavía no podemos llamar espejo a esa placa. Después de frotarla ligeramente con fieltro y óxido de hierro, ya está bastante bella para recibir la capa infinitesimal de plata que la transformará en espejo; ésta se deposita sobre el vidrio mediante un procedimiento químico a partir de una solución de nitrato de plata. El antiguo método del azogado con estaño y mercurio era muy tóxico para los obreros y se abandonó.

Se vierte la masa en estado de fusión sobre una superficie plana, para fabricar el espejo.

TÉCNICA
El vidrio moldeado debe enfriarse muy cuidadosamente para que no resulte muy quebradizo, ni pierda la transparencia y no se creen tensiones en su interior. Por eso se lo somete a un procedimiento llamado recocido, en el que las piezas se calientan otra vez y se dejan enfriar lentamente en hornos especiales. En resumen, los pasos fundamentales de la fabricación del vidrio son: fusión de las materias primas para que se combinen, moldeado del vidrio y recocido. Variando los ingredientes de la mezcla se obtienen distintos tipos de vidrio. Cuando deben tallarse, se trazan dibujos sobre la superficie mediante discos abrasivos.

ARTE DEL SOPLADO
Otro arte de difícil ejecución es el soplado del vidrio. El artesano toma una cantidad de vidrio en fusión por el extremo de un tubo y sopla por él. Se forma una burbuja a la que va dando forma mediante herramientas especiales, moviéndola o haciéndola rodar sobre una mesa metálica. Este sistema se usa hoy sólo para fabricar objetos especiales a los que no pueden aplicarse los métodos de producción en masa.

LAMINADO
Para laminar el vidrio se hace pasar la mezcla fundida a través de grandes rodillos. Luego se la deja enfriar y si se desea obtener cristal se la pule entre dos muelas planas; así queda pronta para utilizarla en ventanas o espejos. En el caso de las botellas, se coloca la mezcla dentro de un molde de la forma deseada. Luego se inyecta aire a presión para obligarla a adaptarse a ella. Realizan esta operación máquinas automáticas que producen centenares de botellas por hora.

OTRAS APLICACIONES
Junto al arte del vidrio existe el arte de las vidrieras de iglesia (vitrales). Las vidrieras resplandecientes que vemos en las catedrales se componen de innumerables vidrios coloreados, unidos con varillas de plomo (ahora también se hacen sin plomo). Forman artísticos cuadros transparentes, como los que admiramos en las catedrales de Chartres y Notre Dame, en Francia; de Colonia y Maguncia, en Alemania, y de León, en España.

vitraux

Antiguamente se coloreaba el vidrio una vez que la placa estaba terminada. Ahora los colores se incorporan al vidrio durante la fusión. Pero la dificultad mayor consiste en reproducir el diseño correspondiente a cada una de las piezas, antes de unirlas.

El vidrio tiene muchas más -aplicaciones. Después de largos estudios se descubrió que, sometido a un proceso especial, es útil también para la construcción. Es el vitro-cemento. Las fibras y los tejidos de vidrio son malos conductores del calor y se usan como material de aislación. Su elaboración requiere máquinas especiales en las que el vidrio fundido se derrama poco a poco en un mecanismo giratorio, que lo estira en finísimos hilos.

Al ver esos hilos tan delgados y brillantes, nos parece imposible que procedan de vulgares granos de arena. Existen hoy varios materiales sintéticos transparentes, pero ninguno es tan duro e inalterable como el vidrio. Éste es insustituible, y cada día encuentra nuevos usos.

LOS VIDRIOS COLOREADOS

Como decíamos antes, el vidrio se fabrica a partir de una serie de ingredientes. El principal es la arena, a la que se añade soda, cal y óxido de plomo. Los colores se obtienen agregando pequeñas cantidades de óxidos metálicos.

El óxido de cadmio proporciona un color amarillo; el de cobalto, un azul oscuro, y el de oro, un rosa salmón. Según las condiciones, los óxidos de hierro y cobre pueden dar amarillo, verde, azul y rubí. Combinando los distintos óxidos metálicos en proporciones variables, y cuidando las condiciones de elaboración, se puede producir una gama completa de colores, y también pueden obtenerse colores veteados.

Los fabricantes de vidrios de hoy completan su “paleta” con otros varios colores. El selenio se usa, ahora, para obtener los colores amarillo y salmón vivos, y para acentuar los marrones y rojos. El óxido de níquel puede usarse para proporcionar un castaño grisáceo, además de un delicado color púrpura.

Gracias a los modernos métodos de purificación, pueden obtenerse materiales muy puros con los que es posible hacer vidrios muy transparentes. Los primeros vidrios coloreados solían obtenerse algo turbios, a causa de las impurezas. En los vidrios teñidos, el color suele extenderse por toda la masa, pero algunos tienen, solamente una capa coloreada. En ellos, se deposita una lámina delgada de vidrio coloreado sobre otra incolora y se calientan las dos hasta que se funden juntas. Después , parte de sus superficie coloreada puede ser atacada con acido fluorhídrico, apareciendo en estas partes el vidrio incoloro.

Este tipo de industria no produce a gran escala, y como los fabricantes elaboran una amplia variedad de colores y tintes, solamente se preparan pequeñas cantidades cada vez.

Los ingredientes del vidrio coloreado se ponen en un crisol, que se calienta en un horno hasta unos 1300° – 1350 °C, manteniendo esta temperatura durante unas 24 horas. Entonces, se va enfriando gradualmente el horno hasta que el vidrio alcanza una consistencia suficiente como para que pueda ser recogido con el extremo de un tubo de hierro, llamado “caña”, de un modo análogo a como se saca la miel con una cuchara. La masa informe de vidrio, al hacerla girar en un bloque metálico, ahuecado, adquiere una forma cónica.

La masa de vidrio se sopla, convirtiéndola en una ampolla, y se estira, sujetando el extremo con un par de tenazas. Durante este tiempo, la ampolla se ha enfriado y endurecido, y hay que recalentarla antes de que este tratamiento pueda repetirse, para aumentar su volumen. Mientras se cumplen estos procesos, la ampolla continúa girando para evitar que adquiera la forma de gota. La ampolla debe ser transformada, a continuación, en un cilindro. Se le corta el extremo y, una vez recalentada, se le da forma, haciéndola girar en el hueco cilíndrico de un bloque metálico.

El extremo curvado se ensancha con una barra. El otro extremo es también abierto y se le da forma, quedando un cilindro de vidrio coloreado, pero con tensiones internas y de muy fácil fractura. Estas tensiones se eliminan sometiendo el cilindro a un proceso de templado y dejando que la masa de vidrio se enfríe lentamente.

Las piezas cilíndricas de vidrio se convierten en láminas para poder emplearlas en la construcción de ventanales. Esto se logra practicando un corte recto, a lo largo de una generatriz del cilindro, con un diamante, y aplanándolo por el otro lado. La parte superior se calienta en un horno llamado aplanador.

En éste, el vidrio va, poco a poco, ablandándose y aplanándose. Con un bloque de madera muy dura, se nivelan las irregularidades. Posteriormente, se deja que las láminas se enfríen y endurezcan. Miden, aproximadamente, 60 x 35 cm. y ya están dispuestas para el mercado. Los artistas pueden escoger entre una amplia variedad de láminas coloreadas. Una rápida mirada a una ventana de vidrios coloreados nos muestra cómo los trozos de vidrio de distintas formas están unidos mediante tiras de plomo —con aspecto de maraña zigzagueante.

De hecho, la cara de un vidrio puede tener varios colores, o manchas negras, o rayas pintadas, aunque la pieza original tuviese un solo color. Los sistemas actuales para conseguir ventanas artísticas son mucho más complicados que la simple copia de un dibujo y la subsiguiente unión de las piezas de vidrio.

La ventana deberá añadir belleza al edificio, y esta función no se cumple si las condiciones luminosas son insuficientes. Su efecto depende de los rayos luminosos que pasan a través de los vidrios. Al llegar desde el exterior cierta cantidad de luz, que se difunde en el interior de la habitación, se podrá ver el dibujo, como manchas luminosas. Si el vidrio es demasiado oscuro, puede romperse el equilibrio, y la ventana resultará triste y mortecina; si permite el paso de demasiada luz, el efecto será desagradable, por deslumbrante. Por lo tanto, la iluminación del edificio es un problema que hay que tener en cuenta.

La ventana debe mantener su belleza, aun cuando se la vea a distancia, y, para ello, durante su ejecución, el artista debe tener en cuenta que el color azul tiende a extenderse con la distancia y sus límites pueden llegar a desdibujarse. Si se quiere evitar que el color se extienda, debe marginarse con un borde negro.

Si se pretende que se extienda sobre un área roja, para lograr un efecto púrpura, hay que tener en cuenta que el rojo se comporta de modo opuesto. Al acercarse hacia la ventana, los tonos rojos parecen crecer, mientras que los amarillos dan la sensación de permanecer del mismo tamaño.

En primer lugar, se pinta un boceto, a tamaño natural, de la ventana, y después se cubre con tela de calcar. Se trazan las divisiones mostrando dónde varía el color, y se eligen los colores básicos del muestrario de vidrios coloreados. Los vidrios se colocan sobre el boceto y se recortan, hasta darle la forma que se desea, con un cortavidrios ordinario, dejando espacio suficiente para las piezas de plomo que unirán los trozos de vidrio.

Existen varios procedimientos para concluir la obra. Después de cada etapa, se somete a la acción de la llama la lámina, para fijar el depósito de colorantes y eliminar la suciedad, antes de pasar a la próxima.

Un tinte eficaz para el vidrio es el color amarillo oscuro, que se obtiene pintando el vidrio con sales de plata y templándolo después. Este procedimiento fue descubierto en el siglo XIV. Se extiende, sobre la superficie del vidrio, una pasta a base de esta sal, y se la hace penetrar en la masa vítrea mediante la acción de la llama. Por este procedimiento puede conseguirse una gran variedad de efectos diferentes.

Por ejemplo, si se pinta sobre azul, el vidrio aparece verde. Se pueden aplicar otros tratamientos a las superficies vítreas. Pueden pintarse manchas negras y rayas, con una mezcla de óxido de hierro y polvo de vidrio. A continuación, viene el esmaltado.

Este limita la transmisión de la luz, pero se usa solamente para la luz reflejada del interior del edificio, haciendo que el área parezca verde oscuro, rojo oscuro, etc. Los esmaltes contienen silicato de plomo y pequeñas cantidades de óxido metálico mezclados con goma arábiga y agua. Los esmaltes también pueden ser rojos, verdes y púrpuras transparentes, pero éstos no son permanentes. La ventana es, finalmente, ensamblada y mantenida con piezas de plomo, en forma de H.

Fuente Consultada:
TECNIRAMA N°3 Enciclopedia de la Ciencia y la Tecnología (CODEX) Fabricación del Vidrio
LO SE TODO Volumen I La Historia del Vidrio

Historia de la Cerámica Origen, Evolución y Técnicas

RESUMEN DESCRIPTIVO DE LA EVOLUCIÓN HISTÓRICA DE LA CERÁMICA

Cuando los arqueólogos cavaron el suelo, encontraron vestigios de antiguas ciudades lacustres, casas desaparecidas y también fragmentos de vasijas y ánforas de terracota. ¡Habían pasado tantos milenios desde que primitivos artesanos las modelaran! Esos pocos fragmentos de tierra cocida de la época neolítica son, junto con las piedras labradas, los únicos y preciosos documentos de una civilización en la cua se iniciaron los progresos técnicos que tanto nos enorgullecen actualmente. Desde la época de Sos palafitos, la historia de la cerámica es la historia misma del hombre.

En la edad neolítica la cerámica era todavía un arte muy rudimentario. No había esmaltes, ni siquiera dibujos. Mucho más tarde, el hombre comprendió que un objeto útil podía ser también bello. Entonces aprendió a barnizar vasos; lo que, por otra parte, no servía sólo para que lucieran más y fueran más agradables de ver, sino también para terminar de impermeabilizarlos. Surgieron así las vasijas esmaltadas de los sumerios y las ánforas decoradas de los egipcios, de las que se encontraron muchas en las tumbas del IV milenio antes de nuestra era.

Cerámica Egipcia

Los pueblos de la Mesopotamia: los sumerios, los acadios y los caldeos fabricaron ladrillos policromos (es decir, de muchos colores)   para revestir los frentes de sus palacios.

ceramica de los sumerios

El nombre “cerámica” proviene de épocas menos lejanas. Todos coinciden en que deriva del griego; pero para unos se originó en el nombre de Ceramos, hijo de Ariadna y de Dionisio (Baco), a quien los helenos atribuyeron el invento de la alfarería, y para otros simplemente de la voz keramiké, que significa arcilla.

Si pensamos en el Extremo Oriente nos será fácil recordar que, tres mil años antes de nuestra era, los chinos cultivaban ya este arte, pero no con fines utilitarios.

Cerámica china

Para ellos, la cerámica tenía sólo el valor de sus formas exquisitas. Esmaltaban, adornaban y esculpían por el placer
de contemplar. La porcelana (Tsé-Ki) nació en China en el,  segundo siglo de la era cristiana, cuando los chinos  tuvieron la idea de emplear esa fina arcilla blanca que es el caolín.

Pero volvamos al Mediterráneo, en el segundo milenio antes  de Jesucristo.  Tenemos  a  la  vista  una  máquina muy
sencilla: es una rueda de madera accionada por un pedal,  la cual permite conseguir vasos de forma perfecta, de superficie lisa y de espesor uniforme, en un tiempo relativamente corto.

torno a pedal para ceramica

Los griegos aprovecharon la experiencia de sus maestros, los ceramistas asirios y caldeos, y los aventajaron. En la isla de Creta, en Tirinto, Atenas y Samos se fabricarón ánforas y copas que eran verdaderas obras de arte y estaban decoradas con paisajes marinos.

Las cerámicas halladas en los palacios de Cnosos y de Faistos pertenecen a épocas distintas; las más recientes datan del primer milenio antes de Jesucristo y,no obstante, sus dibujos y colores nos asombran porque son sorprendentemente “modernos”. Las cerámicas de Samos —ánforas, copas, platos— a menudo llevaban  dibujos rojos sobre  fondo  negro  o  azul.

ceramica griega

En ltalia, dos mil años antes de nuestra era, los etruscos estaban muy adelantados en el arte cerámico. Más tarde, tanto la cerámica etrusca como la griega y la perita fueron muy apreciadas por los romanos.

Cerámica etrusca

Los musulmanes enriquecieron la alfarería con dibujos y colores nuevos, pero sufrieron la influencia de los pueblos asiáticos y de los países ribereños del Mediterráneo. Hacía trescientos años que los árabes de España conocían el barniz, o vidriado plomífero, cuando un alfarero de Selestat (Aliacia) encontró el procedimiento para realizarlo.

Entonces comenzó la fabricación de vajillas, tiestos y azulejos decerámica barnizada, que dio origen a la loza común actual. Parece que esta loza fue llevada a Italia por ceramistas de las islas Baleares, aunque algunos historiadores afirman que fue el escultor Lucca Della Robbia.

Este artista florentino destinaba sus cerámicas a la decoración de edificios, como nuestros actuales azulejos y mayólicas. Sólo un siglo después se inició en Pésaro la industria de la alfarería esmaltada para uso doméstico. Ya al tanto del empleo del vidriado de plomo, los alfareros de esa ciudad del Adriático tuvieron la idea de utilizar el vidriado de estaño.

En seguida los imitaron otros artesanos. La loza pasó de Italia a Alemania, y fue al ver una copa fabricada en este país que Bernardo de Palissy (1510-1590),a quien más tarde se lo llamó el glorioso alfarero, emprendió las búsquedas que lo hicieron famoso y lo llevarían a perfeccionar  extraordinariamente  el  arte  cerámico.

alfarero Palissy

Bernardo de Palissy construyó su propio horno. Como era pobre tuvo que quemar leña prestada y, cuando ésta le faltó, fue echando a las llamas las maderas que sacaba de las sillas y de los pocos muebles que le quedaban. Sus experimentos fracasaban siempre… Una mañana, al levantarse del lecho, se sintió enfermo; estaba demacrado, pálido, más triste que de costumbre… A pesar de todo, intentó la última prueba y apeló a un recurso, desesperado: arrancó las maderas del piso y las echó al horno; con los ojos afiebrados seguía ansiosamente la transformación del esmalte sobre la arcilla.

Su familia lo había abandonado creyéndolo demente, los vecinos lo acusaban de haber dejado su oficio por haraganería; sus hijos padecían hambre… Pero después de dieciséis años de lucha llegó la recompensa, y, en aquel hogar azotado por la miseria, entraron la fortuna y la dicha.

La loza francesa comenzó a difundirse a principios del siglo XVII, impulsada por Carlos de Gonzaga, duque de Nevers, que había llamado a su provincia a un grupo de artesanos italianos.

En cuanto a la porcelana, sabemos que unos navegantes portugueses la descubrieron en China en el siglo XVI y tra-
jeron muchas muestras que despertaron gran admiración, pero en vano se intentó imitarlas. No se tenía la menor idea sobre la composición de la pasta, ni acerca del vidriado. Se procedió a tientas hasta que, en 1695, la fábrica de Saint-Cloud produjo una magnífica porcelana parecida a la china, pero mucho más blanda.

En 1709, un químico alemán descubrió, por casualidad, el caolín. Así nació la porcelana alemana e inmediatamente se abrió una fábrica en Meissen, Sajonia.

cerámica meisser alemana

Todavía no hemos dicho nada de América. Cuando Colón llegó al Nuevo Mundo, los indígenas ya conocían la alfarería y el esmalte. Algunas de sus vasijas podrían compararse con las de las  antiguas civilizaciones mediterráneas.

En México, aztecas y tolfecas modelaban, esculpían y adornaban ánforas y jarrones de formas muy variadas. En el Perú, los incas favorecían el desarrollo de una artesanía particularmente hábil, que se extendió mucho hacia el sur; los conquistadores se sorprendieron del alto grado de civilización que habían alcanzado estos pueblos.

ceramica inca

LA CERÁMICA HOY: Convertir arcilla u otros materiales en porcelana fina, o incluso en ladrillos y tejas, es algo que requiere gran habilidad. Básicamente, el proceso consiste en moldear la pieza con tierra amorfa, fijándose a continuación la forma por tratamiento térmico.

Lo que sucede es que, a altas temperaturas, los minerales que constituyen la arcilla pierden agua, modificándose sus estructuras. Algunos se funden parcialmente, en particular los feldespatos y las micas; al enfriarse (vitrificación), la materia vitrea contribuye a mantener unidos los granos arcillosos, convirtiéndolos en un producto duradero y resistente.

En esto consiste el oficio y arte de la cerámica, una ocupación tan antigua como el hombre mismo. El hombre primitivo se limitó a la fabricación de vasijas y otros útiles domésticos. Hoy se hacen también materiales estructurales (ladrillos, tubos y tejas) y productos refractarios.

Las arcillas más puras, usadas en la fabricación de materiales cerámicos, son las arcillas de porcelana o de China (caolín), compuestas casi enteramente por mineral caolinita (un silicato alumínico hidratado). La arcilla grasa (constituida por diminutos granos redondeados), se ha formado por la descomposición de los feldespatos, aunque los granos de caolinita han sidoy en este caso, trasportados desde las rocas de origen y depositados en otros lugares.

La arcilla grasa está constituida por granos más finos y más plásticos que las arcillas de China. Además, contienen otros minerales, como cuarzo y mica.

Una variedad de la arcilla grasa, con más sílice de la normal, es conocida con el nombre de arcilla de alfareros. La arcilla refractaria, como su nombre indica, se usa en la fabricación de materiales muy resistentes al calor. Se extrae de las rocas carboníferas, formadas hace 250 millones de años, que actualmente se encuentran  fosilizadas   en   los   suelos   pantanosos.

Además de los minerales del tipo caolinita, contienen mucha alúmina (Al2O3). Esta última sustancia es la que da a las arcillas refractarias sus propiedades térmicas. Las llamadas arcillas rojas y arcillas estructurales engloban compuestos de hierro, como impurezas. Al calentarse en atmósfera de oxígeno, estos compuestos toman un color rojo-ladrillo.   Este tipo de arcillas es el más importante en la fabricación de materiales para la construcción. A menudo, antes de moldear y cocer la arcilla se le añaden ingredientes no arcillosos.

El feldespato y la mica blanca son los más importantes. Actúan como fundentes, bajando el punto de fusión de la arcilla, puesto que ellos funden muy fácilmente. Durante el enfriamiento, el vidrio que se produce proporciona más dureza y cohesión al producto. Los fundentes sirven también para dar a la pieza una resistencia extra, haciéndola impermeable al agua.

El mineral cuarzo, que se .añade como material de aporte, evita la excesiva contracción, cuando la arcilla se está secando y cociendo. En la fabricación de cerámicas resistentes a las temperaturas muy altas no pueden usarse las arcillas refractarias comunes. Se utilizan materias primas de característica no plástica, algunas de las cuales no se encuentran en la naturaleza y tienen que ser preparadas artificialmente.

Para los ensayos de los productos cerámicos refractarios se usan aparatos especiales; por ejemplo, instalaciones de rayos X, para comprobar la naturaleza de los componentes cristalinos, tanto de las materias primas como de los productos finales.

ALFARERÍA: Las primeras piezas de alfarería se hicieron de loza. Las arcillas ordinarias se moldeaban hasta darles la forma definitiva, y se cocían a unos 1.200°C, Como sólo hay presentes pequeñas cantidades de materiales vitreos (feldespatos y micas) durante la recristalización, la loza, al contrario que otros tipos de porcelana, es porosa y permite que los líquidos la atraviesen. A pesar de esto, la loza puede hacerse impermeable vitrificando su superficie. Los lavabos y la porcelana económica se fabrican de este modo.

Las piezas de vajilla, incluidas las de mejor calidad, se hacen cociendo arcillas que tienen una considerable cantidad de fundentes naturales o añadidos. La porcelana es blanca y se fabrica con arcillas de China (caolín), que contienen cuarzo y feldespatos, y a las que, a veces, se añade arcilla grasa (granular).

La cocción tiene” lugar a temperaturas comprendidas entre 1.200 y 1.400° C, con lo que se asegura una vitrificación máxima y, consecuentemente, una máxima impermeabilidad. Ésta es mucho más esencial para las porcelanas y utensilios eléctricos y químicos.

Estrictamente, la denominación de porcelana china se refiere sólo a la bella porcelana de huesos. En su fabricación se mezcla la arcilla con fundentes y se añade una considerable cantidad de huesos calcinados de animales (fosfato calcico). Las piezas así obtenidas son traslúcidas y muy bonitas.

MATERIALES CERÁMICOS PARA LA CONSTRUCCIÓN
Dos requisitos importantes que se exigen a los materiales de construcción son la cantidad y el bajo precio. Afortunadamente, las arcillas impuras, apropiadas para la fabricación de ladrillos, tubos y tejas, son muy abundantes.

En primer lugar, las rocas arcillosas deben ser desmenuzadas en fragmentos pequeños. Antiguamente, este proceso se efectuaba apilando la arcilla y dejando que el tiempo hiciera el trabajo. En la actualidad, los métodos de trituración mecánica y secado aceleran el proceso.

Para dar forma a la arcilla, ésta debe ser suficientemente plástica. A veces hay que añadirle agua, para proporcionarle la consistencia adecuada. En el pasado, los ladrillos se moldeaban a mano. Actualmente, son máquinas las que realizan este trabajo.

La fabricación de ladrillos por el llamado método del alambre cortante hace necesaria una arcilla con un contenido del 15 al 20 por ciento de agua. Mediante unas paletas rotatorias, se fuerza a la arcilla a que salga, como una columna continua, a través de una boquilla de forma especial. A continuación, esta columna pasa por una máquina que corta las piezas en el tamaño adecuado.

Con el método plástico – resistente (“súff -plástic“), en la arcilla sólo es necesaria una cantidad de agua equivalente al 10 o al 15 %. Se fuerza a la arcilla laminada para introducirla en un molde cerrado y, después, es sometida a presión, mediante una máquina, con lo que se consigue un ladrillo de mejor calidad. En los procesos semi-secos, sólo se necesita del 5 al 10 % de agua. La arcilla pulverulenta y húmeda se somete a presiones comprendidas entre 36 y 1.400 kg./cm2. Esto proporciona gran cohesión a los constituyentes arcillosos.

Antes de someter los ladrillos a cocción es necesario secarlos. De otro modo, la rápida eliminación de agua produciría una contracción excesiva, con el consiguiente cuar-teamiento. La atmósfera existente en el horno influye notablemente en el color de los ladrillos. La abundancia de oxígeno produce la oxidación de algunos compuestos férreos, que lo colorean de rojo.

Reduciendo el oxígeno adquiere un color azul, mientras que, con una cantidad mediana de oxígeno, el producto es parduzco. A los tubos usados en los drenajes y alcantarillas se les da forma haciendo salir la arcilla plástica a través de una abertura adecuada. Las tejas se hacen también por extrusión; después, se cortan en tiras, a las que se da la forma curva por presión, antes de cocerlas.

REFRACTARIOS
Los productos cerámicos que no se funden a altas temperaturas (por encima de los 1.000° C.) son llamados refractarios. Un grupo de refractarios es el formado por los ladrillos resistentes al calor, que se usan para recubrir los hornos. Estos ladrillos deben tener también una cierta resistencia mecánica, e incluso, a veces, ser resistentes al ataque de distancias químicas fundidas.

Los refractarios ácidos son ladrillos especíales, usados para recubrir chimeneas domésticas y fábricas de gas, donde no son atacados por sustancias químicas básicas. Como materia prima se usa la arcilla refractaria (cocida a 1.400° C.) o la sílice. Ésta, que se presenta en la naturaleza en forma de arena, es sometida a presión, para darle forma, y se le añade algo de cal, para mantener la cohesión.

Cociéndolos a una temperatura de 1.400° C, los cristales de sílice adquieren una consistencia que no se altera con las altas temperaturas. Cuando las piezas tienen que estar en contacto con sustancias químicas básicas, como ocurre en los hornos para la fabricación de hierro y acero, se usan refractarios básicos. Éstos podrían ser corroídos por las sustancias acidas.

Un refractario básico corriente es la dolomita (carbonato doble de calcio y magnesio). La magnesita (carbonato de magnesio) sirve también para el mismo fin. Hay yacimientos de este mineral en muchas partes del mundo y también puede ser extraído del mar.

En el trabajo científico y en la industria, a veces son necesarios objetos particularmente fuertes y resistentes, que puedan soportar enormes temperaturas y también cambios bruscos de ésta (choques térmicos). Incluso las arcillas refractarias y otros refractarios corrientes pueden ser inadecuados. Debe usarse un nuevo tipo de materia prima. Para estos fines, tienen gran valor ciertos carburos y nitruros, preparados artificialmente, así como los óxidos de los metales aluminio, berilio, magnesio, torio y circonio.

El óxido de aluminio (alúmina) combina una gran resistencia térmica (punto de fusión: 2.050° C.) con una gran dureza y una notable resistencia eléctrica. Por ello, se usa en la fabricación de herramientas para cortar y como material aislante, para las bujías de encendido en los motores. Incluso, se aplica en partes vitales de los cohetes espaciales.

El óxido de berilio se utiliza como envoltura resistente al calor, para recubrir las varillas de metales radiactivos usados en los reactores atómicos.

Para la química y la metalurgia de altas temperaturas son esenciales los aparatos hechos con.estos óxidos resistentes al calor (el óxido de circonio no. funde hasta los 3.050° centígrados).

Para moldear los materiales no plásticos, se les añade alguna sustancia orgánica, la cual, al darles cohesión, evita que la pieza se desintegre mientras está blanda. Durante la cocción, esta sustancia orgánica es destruida y sólo quedan los componentes del material no plástico sinterizados, es decir, fuertemente unidos.

Fuente Consultada
TECNIRAMA La Enciclopedia de la Ciencia y la Tecnología N°107  Productos Cerámicos
LO SE TODO Historia de la Cerámica

El Azufre Caracteristicas y Propiedades Usos

El azufre es el elemento N° 16; como ya se explicó, ello significa que sus átomos poseen 16 electrones, equilibrados por otros tantos protones del núcleo. Los electrones del átomo de azufre forman 3 capas u órbitas: la primera se completa con 2 electrones, la segunda con 8 y la tercera también con 8, pero sólo contiene 6.

Por esta razón, el azufre es un elemento activo, que procura capturar los 2 electrones que le hacen falta o bien compartir los suyos con otro átomo, hasta lograr alcanzar su equilibrio.

El azufre se conoce desde la prehistoria; Lavoisier estableció, en 1777, su carácter de elemento simple. Se combina con la mayoría de los demás elementos. Si éstos poseen un exceso de electrones (como los metales), los apresa y forma uniones electrovalentes; si el otro elemento presenta una carencia de electrones (como los no-metales) ambos átomos comparten  algunos electrones periféricos y  forman

FUENTES NATURALES
El azufre nativo (sin combinar) se encuentra siempre en regiones donde hay o hubo actividad volcánica. Los mayores depósitos conocidos son, con mucho, los de Texas y Luisiana, en los Estados Unidos; también son importantes los de Japón, México y Sicilia, donde aún brota de los volcanes.

azufre natural

LOS TRES MÉTODOS DE OBTENCIÓN
El más importante es el procedimiento Frasch, que se emplea en los enormes depósitos de azufre casi puro, situados a 300 m. de profundidad, en Texas y Luisiana (las capas arenosas intermedias están impregnadas de gases tóxicos que impiden el acceso directo). Se introducen tres tubos concéntricos, cuyos calibres son respectivamente de 15, 10 y 3 cm.

Por el caño exterior se inyecta vapor sobrecalentado y a presión (165°C), que funde el azufre y mantiene el calor de los dos tubos interiores. Por el conducto menor se insufla aire comprimido, y por el espacio intermedio asciende una mezcla espumosa de azufre fundido, agua y aire, que se acopia en grandes depósitos.

Allí se enfría y solidifica. La pureza del producto supera el 99 °/0 y está libre de arsénico, selenio y teluro. En el antiguo método siciliano de los calcaroni, se apila la roca de azufre sobre suelo inclinado y se enciende el vértice del montículo.

El calor de la combustión funde el resto del azufre, que se acumula en el punto más bajo donde se solidifica en moldes. El procedimiento es lento, el rendimiento, pobre (casi el 40 % del azufre se consume como combustible) y el producto, relativamente impuro. Se lo refina por destilación en grandes hornos de ladrillos, en cuyas paredes se condensa la denominada flor de azufre.

El procedimiento Claus utiliza el gas sulfhídrico (SH2), subproducto de muchas industrias, tales como las coquerías. Consiste en despojar a dicho gas del hidrógeno que contiene, a fin de liberar el azufre. Esto se obtiene mediante el oxígeno, que forma agua (H20) con el hidrógeno. Se emplea óxido de hierro para acelerar la reacción. También se puede privar al gas sulfuroso (SO.,) de su oxígeno, mediante el carbón de coque, que forma entonces anhídrido carbónico   (C02).

EXISTEN MUCHAS FORMAS DE AZUFRE
La mayoría de las sustancias cristaliza de una sola manera; pero el azufre se ordena según varias estructuras, llamadas estados alotrópicos. Por debajo de los 95°C la única forma estable es la rómbica, que funde a 112°8C y cuyo color es amarillo limón; a temperaturas normales, todos los demás estados alotrópicos se transforman paulatinamente en cristales rómbicos.

La forma monoclinica estable entre 95°C y 119°C (que es su punto de fusión), se   presenta   fácilmente,   como   finas   agujas,   si   se enfría con rapidez azufre fundido en un recipiente pequeño. Cuando se echa el elemento hirviente sobre agua fría, se obtiene azufre plástico, formado por largas moléculas que se disocian en pocas horas.

A 445 °C el azufre se convierte en vapor, cuyas moléculas constan de sólo 2 átomos; si entonces se lo enfría bruscamente, se obtiene azufre púrpura. de idéntica estructura  molecular.

azufre en polvo

EL AZUFRE LÍQUIDO
El azufre fundido es una de las pocas sustancias cuya viscosidad aumenta con la temperatura. Al principio, es un líquido móvil y amarillo pajizo; poco a poco se vuelve pardo oscuro y forma una masa espesa; pasados los 200° se ennegrece y nuevamente aumenta su fluidez. Su vapor es rojizo, pero al elevarse la temperatura tiende a ser amarillo claro.

COMPUESTOS NATURALES
Son principalmente los sulfatos y sulfuros. Entre los primeros, que contienen oxígeno, se cuentan el veso (sulfato de calcio), el blanco fijo de las pinturas (sulfato de bario), el sulfato de sodio y el sulfato de magnesio.

A los segundos, que no contienen oxígeno, pertenecen la galena (sulfuro de plomo), las piritas (sulfuro de hierro), la blenda (sulfuro de cinc), el cinabrio (sulfuro de mercurio), el gas sulfhídrico (sulfuro de hidrógeno, que huele a huevo podrido) v el sulfuro de alilo (característico del ajo).

Casi todas las proteínas contienen vestigios de azufre; las sustancias de olor más repulsivo y penetrante son los mercaptanos, compuestos orgánicos del mismo elemento. Los gases extremadamente fétidos son útiles en los laboratorios de análisis, porque permiten percibir rastros infinitesimales de azufre.

IMPORTANCIA  INDUSTRIAL
El uso principal del azufre es la elaboración de ácido sulfúrico, base de toda la industria química. El elemento libre sirve para fumigar plantaciones y vulcanizar el caucho (actualmente se prefieren algunos compuestos orgánicos). El sulfuro de carbono es el solvente de elección del fósforo y del mismo azufre. Con el oxígeno arde fácilmente y forma gases (sulfuroso, sulfúrico), materia primera del  ácido sulfúrico.

Fuente Consultada
TECNIRAMA N°18 La Enciclopedia de la Ciencia y la Tecnología (CODEX)

Historia del Cacao Produccion y Fabricación del Chocolate

HISTORIA: En Europa, la historia del cacao es bastante reciente, pero mucho antes del descubrimiento los indígenas de América cultivaban varias especies. Los mejicanos preparaban una bebida a la que llamaban chacolatl, y a la cual nosotros conocemos por chocolate.

Si un niño nos preguntara dónde se obtiene esa bebida tan agradable, le responderíamos: ” Amiguito, podríamos llevarte a la Costa de Oro o a Guinea cuya producción de cacao es la mayor del mundo; podríamos también mostrarte los cacaotales de la Martinica, de Jamaica, de las islas de Sonda, de Ceilán o de Venezuela, o, si lo prefieres, acercarnos a las costas de México, en el mismo lugar en que desembarcaron los conquistadores españoles al mando de Hernán Cortes, hace cuatro siglos.”

La vegetación de esa tierra mexicana, tan rica y fértil, sorprendió a los invasores: en los jardines de Moctezuma, el rey vencido, encontraron árboles del tamaño de los cerezos, cuyos frutos, amarillos, rojos, de doce a veinte centímetros de largo, despertaron su curiosidad.

Se enteraron de que esos frutos proporcionaban una sabrosa bebida, llamada “bebida real”, y de que para obtenerla era preciso abrir los frutos maduros, extraer los granos o almendras, colocarlos en unas cajas para que fermentaran y después secarlos. Ya secos, se separaban de su envoltura coriácea, se colocaban sobre parrillas y se dejaban tostar a fuego lento. Luego se los molía golpeándolos con una piedra.

El polvo así obtenido se mezclaba con substancias aromáticas, con miel, vainilla y azúcar de agave, agregándosele agua hirviente en pequeñas cantidades. Esa mezcla se agitaba rápidamente con un palillo; se lograba al fin un espumoso líquido de color castaño y de riquísimo sabor.

No todas las plantas de cacao son de igual calidad. Moctezuma consumía la “bebida real” y sus subditos la de calidad inferior. Hernán Cortés encontró que la bebida real era excelente y, habiendo comprobado sus efectos estimulantes, envió a su soberano, Carlos, V, unos granos de cacao con todas las indicaciones útiles para su preparación. Seguramente, al remitir ese producto a su rey no imaginó la importancia del regalo que hacía a la vieja Europa, un obsequio que valía tanto como los metales más escasos y las piedras preciosas: esos granos echaron los cimientos de una gran industria.

Carlos V encontró muy de su gusto la nueva bebida y, en seguida, la envió con un mensajero a la familia real de Austria. Esa corte mandó más tarde cacao al Papa.

Como era frecuente en aquella época, a las plantas nuevas se les atribuían virtudes medicinales. El arzobispo de Lyon, Alfonso, hermano del cardenal Riche-lieu, declaró que el cacao había contribuido a curarle una inflamación del bazo. En el siglo xvn, Madame de Sevigné escribía a su hija: “Estáis enferma, el chocolate os repondrá.” Pero también es verdad que poco después afirmaba: “El chocolate me ha hecho mucho daño y he oído hablar muy mal de él.” No obstante, la gente que no estaba enferma consumía el cacao como desayuno o merienda.

aztecas cacao

Los aztecas enseñaron a los conquistadores la manera de tostar cacao: lo hacían con
fuego lento, sobre piedras y con los granos previamente fermentados.

Hernan Cortes y el cacao
Después de la torrefacción, los granos se molían con procedimientos muy primitivos.
Hernán Cortés envió el producto a Carlos V, con las indicaciones necesarias para la preparación del chocolate.

Ana de Austria y el cacao
En ocasión del casamiento de Ana de Austria, el arzobispo de Lyon ofreció a la futura
reina un cofrecillo con granos de cacao.

Asimismo, en 1681 el chocolate se servía en las meriendas ofrecidas por Luis XIV en su palacio de Versalles ,y, en 1684, un médico llamado Bachot quiso demostrar la superioridad del chocolate sobre el néctar y la ambrosía, en una tesis universitaria.

Luis XIV de Francia y el chocolate

María Teresa, esposa de Luis XIV, hizo conocer el chocolate en la corte. Su acompañante española, la Molina, tenía siempre preparada una taza de esta exquisita bebida a disposición de su real ama.

En Italia, Jerónimo Benzoni y Francisco Carletti contribuyeron a divulgar las propiedades medicinales del cacao. Pero antes del siglo xvm se conoció el principio activo del grano mejicano: la teobromina.

En las selvas que rodean la cuenca del Amazonas y la del Orinoco, existen muchos cacaotales silvestres. Pero es a la antigua civilización azteca a la que debemos la explotación y utilización de ese árbol incomparable que más tarde fue trasplantado a América Central, donde sus granos constituyeron no sólo un alimento, sino también unidades monetarias. Efectivamente, las almendras del cacao se usaban como moneda entre los aztecas y el emperador recibía en ellas parte del tributo que le pagaban sus subditos.

En cuanto se conoció el cacao en los mercados mundiales, todos los países colonizadores se ocuparon de plantarlo en sus posesiones tropicales, porque el cacao exige para su crecimiento una temperatura  mínima de 24.grados, humedad constante, tierra fértil y escasa altura.

Napoleon y el cacao

Napoleón afirmaba que el chocolate de Turín justificaba hasta una guerra. Para recompensar a sus generales les ofrecía bombones de chocolate envueltos  en   billetes  de banco.

La sombra le es indispensable: para conseguirla se colocan en los cacaotales plantas provisionales, que se llaman “padres”, y otras definitivas denominadas “madres”. Estos parientes adoptivos, que protegerán a los jóvenes arbustos de los ardientes rayos solares y de los vientos impetuosos, son generalmente los plátanos y las mandiocas o yucas.

Cuando las plantitas de cacao son más robustas, se arrancan los “padres” y se dejan las “madres”. Para que tengan más vigor y para que produzcan mayor cantidad de frutos, a los 2 ó 3 años se les despuntan las ramas y se les arrancan muchas hojas. Además, con ese procedimiento su recolección será más fácil. A los 30 años un cacaotero todavía rinde bastante; sin embargo, ya empieza a envejecer. No es un árbol de larga vida, pero esto se compensa porque produce mucho.

Cuando se abre el fruto, las semillas son blancas; mas, al entrar en contacto con el aire, toman su característico color castaño. Durante varios días, las semillas se dejan amontonadas en un lugar cubierto para que fermenten. Luego se secan al sol y se envían a las fábricas, donde son tostadas para mejorar su aroma; se les quita la cascarilla y se muelen.

El polvo resultante de la molienda contiene aproximadamente un 50 % de materia grasa (manteca de cacao). La manteca de cacao se extrae haciendo hervir el polvo en agua; separada la manteca, queda el “cacao soluble”, que se vende para consumirlo disuelto en leche u otros líquidos.

Para fabricar el chocolate se utiliza el polvo de cacao sin desgrasar. Este polvo mezclado con azúcar y vainilla, o con canela, forma la pasta que, una vez seca, constituye el chocolate.

La primera fábrica de chocolate sólido fue instalada en Turín (Italia), donde se descubrió el secreto de derretir la pasta de cacao. La técnica moderna popularizó su uso.

En 1778 se inventó una máquina hidráulica que trituraba la pasta de cacao, mezclándola al mismo tiempo con azúcar y vainilla, con mayor rapidez y limpieza que haciéndolo a mano.

Después de la cosecha se abren inmediatamente los frutos para extraer los granos y someterlos a una ligera fermentación. Los indígenas desparraman los granos fermentados sobre la era para secarlos. Para separar la primera envoltura se procede a pisotear los granos. En muchos lugares de América del Sur, ese trabajo lo hacen los niños.

SOBRE LA PRODUCCIÓN Y LA FARICACIÓN DEL CHOCOLATE

El cacao en polvo se obtiene a partir de los granos de cacao, que son las semillas del Theobroma cacao, originario de la cuenca del Amazonas y de otras regiones selváticas de América Central, habiéndose cultivado, durante muchos siglos, en México.

Los aztecas bebían cacao en grandes cantidades, y los exploradores españoles de los siglos XV y XVI introdujeron la costumbre en Europa. En la actualidad, se consume en todo el mundo, en forma de bebida y de chocolate, del que es su principal ingrediente.

El cultivo del cacao se ha extendido fuera de América, pero en un área confinada dentro de los 20° de latitud al norte y al sur del ecuador, y la mayor parte de la cosecha se desarrolla dentro de unos límites todavía más estrechos, comprendidos entre unos 10°. Sólo en esta región el clima proporciona la gran cantidad de lluvias y la temperatura constantemente alta que necesitan esos árboles.

Planta de Cacao

Planta de Cacao: En estado silvestre, el cacao alcanza de ocho a diez metros de altura. Al cultivarlo, sus proporciones cambian: pierde en altura y gana en corpulencia. El fruto es una cápsula ovoide que contiene treinta o cuarenta granos del grosor de un haba, encerrados en una pulpa mucilaginosa.

También se requiere un suelo rico y profundo, para obtener buenas cosechas. Los árboles del cacao necesitan sombra y deben estar resguardados del viento; en sus habitáis naturales crecen debajo de los árboles altos del bosque. Los cultivados están, normalmente, protegidos por árboles de esa clase o por árboles umbrosos especiales y, a veces, por cocoteros o árboles del caucho. El árbol adulto del cacao tiene de seis a nueve metros de altura; por lo general, se compone de un tronco corto y de una media docena, aproximadamente, de ramas principales.

Los árboles del cacao se desarrollan a partir de semillas o de esquejes. El segundo método, sin embargo, es caro y no siempre hay disponibles los esquejes convenientes. Gran parte del cacao mundial es cultivado por pequeños agricultores en áreas reducidas de terreno, aunque en Brasil hay grandes estados de cacao. Se cultivan distintas variedades de árboles, espaciados de dos a cinco metros uno de otro, según las condiciones.

El espaciamiento se escoge para obtener el máximo rendimiento por hectárea, durante el mayor tiempo posible. Antes de que los árboles den fruto, han de pasar cuatro o cinco años. Unas flores pálidas aparecen directamente sobre el tronco y en las ramas principales (estas plantas se denominan caulifloras) y son seguidas por las bayas. Éstas constituyen los frutos y se hacen amarillas o rojas cuando están maduras.

Cada baya contiene hasta unos cuarenta granos o semillas, y la cosecha anual por árbol puede ser de veinte a treinta bayas. Esto corresponde, aproximadamente, a un kilogramo de semillas, una vez secas. Los frutos se cosechan, normalmente, de octubre a diciembre (la estación seca en África Oriental).

En Ghana y países vecinos se recoge otra cosecha mucho más pequeña en junio y julio. Las bayas se abren y se sacan las purpúreas semillas, junto con la jugosa pulpa. Las semillas se colocan en montones y se cubren con hojas, o pueden ponerse en cajas, durante unos días, para que fermenten.

El calor generado en los montones mata las semillas y ayuda a que se desarrolle el sabor de chocolate; es, por lo tanto, un proceso, muy importante. Luego de la fermentación, se las seca al sol o en espacios interiores, por medio de aire caliente. Las semillas secas tienen un color chocolate y pesan, como máximo, la mitad de cuando están frescas. Pueden ser afectadas por insectos nocivos o por hongos, y hay que protegerlas durante su almacenado y transporte.

MANIPULACIÓN  DE  LAS SEMILLAS O GRANOS DE CACAO
Cuando llegan a la factoría, las semillas se clasifican y limpian, y luego se tuestan, durante una hora, a 135° C. Su cubierta (cascarilla) se vuelve frágil, y el sabor de chocolate se desarrolla por completo. Después, se las rompe en un molino y la cascarilla se separa aventándola. Las pequeñas piezas de semilla tostada que quedan io llaman grano de cacao y pasan a un molino triturador.

El grano contiene alrededor de un 50 % de grasa y, cuando se muele, .se convierte en un líquido espeso, llamado masa. El que se destina a .ser convertido en polvo de cacao es desviado y se lo somete a grandes presiones en una prensa hidráulica.

Una gran proporción de la grasa (manteca de cacao) fluye como un líquido dorado. Los terrones sólidos que quedan se muelen y tamizan, y, finalmente, se envasan para su venta como cacao o chocolate en polvo para bebidas. Los granos destinados a la fabricación de chocolate se muelen con azúcar y se mezclan con el exceso de manteca de cacao obtenido en las prensas.

El líquido espeso que resulta ya es chocolate, y se pasa a unos moldes, donde se solidifica. Para producir chocolate con leche se añaden sólidos de la leche a la mezcla.

ANÁLISIS DEL CACAO O CHOCOLATE EN  POLVO

Producto Grasa (%) Agua (%) Proteína (%) Total de hidratosde carbono (%) Fibra (%) Poder Alimenticio
450 cal./g.
Chocolate
amargo
52,9 2,3 5,5 18 2,6 2585
Cacao graso 23,8 3,9 8 29 4,6 1645
Cacao 11,0 6,2 8,9 30,5 4,7 1248
Cacao
sin
grasa
0,0 4,7 9,9 34,0 5,3 887
Cacao por el método alcalino 22,8 5,5 7,5 29,0 4,5 1595

PROCESO ALCALINO
El cacao puede recibir una serie de tratamientos, tales como ser sometido a vapor de agua, o mezclado con disoluciones de malta, sólidos de leche, ácidos débiles, etc.; también puede ser oreado, calentado, desodorizado y sometido a luz ultravioleta. De todos estos tratamientos, el más importante es el que se conoce con el nombre de proceso holandés o, más descriptivamente, proceso alcalino.

Este proceso incluye el tratamiento de las grasas de cacao, el licor de chocolate o el cacao en polvo, con carbonato, bicarbonato  o hidróxido  sódico,  potásico  o amónico, o cualquier combinación de esos álcalis en pequeña cantidad (del 1 al 3 %, según los casos), disueltos en agua.

En comparación con el cacao natural elaborado con el mismo tipo de granos no sometidos al proceso alcalino, el producto resultante de este tratamiento es mucho más oscuro y menos ácido. En suspensión acuosa da una reacción neutra, mientras que el cacao natural da una reacción ligeramente acida. El producto tratado es más fácilmente soluble en agua y se humedece con más facilidad también.

Cuando se mezcla con agua o leche calientes, se suspende mejor y presenta menos separación grasa en la superficie. Por otra parte, el sabor, aunque algo distinto del natural, resulta bastante parecido y agradable, y su poder alimenticio es similar al del producto natural.

mapa produccion de cacao

Las regiones más productoras de cacao están situadas dentro de los 20° de latitud al norte y al sur del ecuador. Ghana y Nigeria, junto con los países vecinos, producen alrededor de la mitad del cacao del mundo.

FABRICACIÓN  DE CHOCOLATE DULCE
En la actualidad, en las grandes fábricas se utilizan procedimientos de fabricación en los que se ha sustituido el antiguo proceso por una operación continua, sin pérdida de calidad en los productos resultantes. Las fórmulas se hacen para obtener toneladas de chocolate por hora y, durante el proceso, se disponen los adecuados controles de laboratorio, para conseguir grandes cantidades del producto a menor costo.

Primero, se mezclan el azúcar, el licor de chocolate, la leche o los elementos necesarios para darle los sabores especiales requeridos (almendra, nueces, etcétera), y la manteca de cacao. Esta parte, de consistencia grosera, se “refina”, pasándola por rodillos de acero que la convierten en una masa pulverulenta, que contiene una textura más suave.

Puede ser necesaria una adición de pequeñas cantidades de manteca de cacao. Luego de refinarse el chocolate, se lo somete a un proceso muy importante, consistente en calentar, airear y batir la masa pastosa, con lo cual se consigueque el chocolate adquiera una viscosidad menor y una suavidad extrema, con un sabor más suave.

Las temperaturas a que se trata el chocolate suelen estar comprendidas entre los 54-82°C, aunque, en el caso del chocolate con leche, nunca se pasa de los 60°C.

La operación puede durar unas 12 horas para los chocolates ordinarios; pero, cuando se trata de chocolates de alta calidad, puede durar hasta 120 horas y, en casos especiales de chocolates de lujo, se llegan a tener de 5 a 8 días, en procesos no continuos, desde luego.

Una vez batido, el chocolate puede modelarse en bloques de 5 kg., con destino a otros fabricantes, o en pequeñas barras para el consumo público. La transición del chocolate líquido al sólido es una de las más importantes manipulaciones de todo el proceso, que se llama, normalmente, temperado.

En este proceso, hay que enfriar el chocolate líquido a una temperatura por debajo del punto de fusión de la manteca de cacao (alrededor de los 32°C.), y mantenerla (27-29°C.), para conseguir una solidificación regular. Esto se consigue mezclando continuamente la masa y controlando el enfriamiento, para que la manteca se vaya espesando y se solidifique, hasta cementar los sólidos suspendidos, formando un bloque compacto de una textura fina.

Esquema de la fabricación del chocolate

Esquema de la fabricación del cacao y del chocolate, donde se muestra cómo el exceso de manteca de cacao obtenido de una operación se usa como materia prima en otra.

Fuente Consultada
TECNIRAMA N°86 La Enciclopedia de la Ciencia y la Tecnología (CODEX)
LO SE TODO Tomo I -El Cacao –

El Mundo y El Medio Ambiente Capa Ozono Calentamiento Global Historia

Geografía del Mundo – Ríos, Montañas, Océanos, Continentes y Países
Eras Geológicas del Planeta Tierra
Estructura Interna del Planeta Tierra
La Importancia del Agua
La Capa de Ozono
La Explosión Demográfica
El Efecto Invernadero
Desastres Naturales
La Antártida
La Población Mundial (Sus Desafíos)
El Petróleo: El Oro Negro
Grandes Ciudades: Megalópolis
El Agua, el Aire y La Atmósfera
La LLuvia Ácida
El Magnetismo Terrestre
El Magma Terrestre
Origen de la Vida-Evolución del Hombre-Proyecto Genoma-Clonación
TRAGEDIAS
Malas Noticias En El Mundo
La Tragedia del Challenger
El Titanic
El Hinbenburg
Aeropuerto de Tenerife
Accidente en el Rio Potomac
Desastre Químico de Seveso
La Usina Atómica de Chernobyl
El Peligro de la Ondas Ionizantes
DATOS GEOGRÁFICOS
Geografía de Argentina
Geografía del Mundo
Datos Estadísticos del Mundo
Accidentes Geográficos Notables
Datos de América del Sur
Atlas Mundial Con Datos Demográficos
Datos Curiosos del Planeta Tierra
Mapa Mundial del Hambre
El Planeta Se Rebela
Latinoamérica y el Mundo en el Siglo XX
Regiones, Países y Ciudades del Mundo
El Calentamiento Global Provocará Una Gran Crisis
La Biodiversidad
Los Recursos Energéticos Naturales del Planeta
El Agua Dulce y El Acuífero Guaraní
Conceptos Básicos de Ecología
Países Verdes,Que Cuidan el Planeta
Históricas Contaminaciones Fatales del Aire
Los Lugares Más Bellos del Mundo
¿Como Se Calcula la Riqueza de un País?
 Haz Una Búsqueda Porque Hay Muchos Temas Más Tratados Sobre Geografía….

 

Los nuevos medios de comunicacion o transporte en el siglo XIX

Hacia una nueva técnica industrial.

Después de 1840, el maquinismo industrial se complicó en el término de cincuenta años todas las industrias fueron reequipadas eficaz y completamente. En las ciudades se concentró la industria con sus grandes fábricas y los talleres desaparecieron progresivamente. El obrero ya no fue responsable del producto final, sino un pequeño engranaje dentro del proceso productivo. Prueba de ello fueron los nuevos métodos de trabajo (Taylorismo). Estos intentaban obtener el máximo de rendimiento en el menor tiempo posible. La especialización y la producción en serie fueron también rasgos típicos de este período.

El aprovechamiento de las nuevas fuentes de energía sumado a la invención de nuevas máquinas, abrieron paso a la era de la siderurgia moderna. Comenzaron a utilizarse la rotativa y la máquina de escribir (1867), el cemento y el hormigón (1883), las armas arepetición (1862) y la dinamita (1866), además de os tornos y las perforadoras neumáticas, Inglaterra, Francia, Alemania y los Estados Unidos, dominaron la producción mundial y se convirtieron en potencias de primer orden..

A su vez, también el maquinismo agrícola se diversificó: se fabricaron trilladoras, segadoras, tractores, etc. Estas nuevas máquinas comenzaron a utilizarse a partir de 1870 en los Estados Unidos e Inglaterra. Se adoptaron métodos intensivos de agricultura; el guano peruano, por ejemplo, fue utilizado como fertilizante.

A partir de 1850, el libre cambio y el deseo de competir, aceleró las transformaciones agrícolas estimuladas, a su vez, por la ampliación de nuevos mercados consumidores. Se fortalecieron, de este modo, los lazos coloniales que sometieron a las naciones pequeñas, productoras de materias primas, a la voluntad de las poderosas.

Transportes comunicaciones: las distancias se acortan.

Los transportes y las comunicaciones alcanzaron gran despliegue a partir de la segunda mitad del siglo XIX, merced a los grandes avances científicos descubrimiento de nuevas fuentes de energía y a la importancia que había cobrado la industria del carbón, el hierro y el acero.

El barco a vapor. El transporte marítimo se vio favorecido por la adopción del barco de vapor en reemplazo del velero. Esto posibilitó no sólo una mayor rapidez,. sino que permitió el traslado de gran cantidad de mercancías a lugares distantes. Así el mercado internacional creció en forma notable. También aparecieron grandes transatlánticos que favorecieron el traslado de emigrantes europeos hacia América, Asia o África. Los puertos cambiaron su fisonomía y fueron remodelados para adecuarlos a las nuevas necesidades comerciales.

Primeros Barcos de Acero

El ferrocarril. La gran revolución del transporte terrestre fue protagonizada por el ferrocarril. Los malos caminos y la precariedad de los vehículos no podían competir con este “caballo de hierro”. En 1860, los Estados Unidos y Europa contaban con 108.000 Km. de vías férreas y hacia comienzos del siglo XX, existían en el mundo aproximadamente 1.000.000 Km. de vías. El ferrocarril, al igual que el barco de vapor, amplió el mercado internacional, ya que partía de los centros de producción industrial y agrícola hasta las terminales que se encontraban en los puertos desde donde los productos eran exportados (ampliar sobre el ferrocarril)

tren siglo xix

El automóvil La segunda revolución en el transporte terrestre se introdujo con e4 automóvil. Hasta mediados de siglo existían ciertos vehículos propulsados por vapor. Sin embargo, eran peligrosos, demasiado pesados y lentos (aproximadamente 4 Km. por hora).

En 1884, los alemanes Daimler y Maybach inventaron el motor de gasolina, mucho más liviano que el anterior, y al año siguiente Daimler y Benz fabricaron el automóvil. A partir de entonces la industria automotriz creció yse desarrolló cambiando el aspecto y la atmósfera de las ciudades hasta alcanzar el nivel y la importancia de los que gozan en nuestros días Esto favoreció también el mejoramiento de caminos y puentes. El tránsito en las ciudades también se vio innovado por la aparición del tranvía. (ampliar sobre la industria automotriz)

La bicicleta. Ya hacia 1879 había aparecido una de las tantas antecesoras de la actual bicicleta. A diferencia de la bicicleta moderna, aquélla tenía la rueda de atrás mucho más grande que la de adelante. Con el correr el tiempo experimentó grandes cambios. Para 1890 ostentaba un aspecto muy similar a las bicicletas de nuestros días y en 1895, casi todas contaban con ruedas neumáticas. Fue uno de los medios de transporte más difundido, ya que facilitó enormemente la movilidad individual en el campo y la ciudad. En la actualidad se la utiliza también con fines recreativos y deportivos.

Historia de la Bicicleta

Canales: El mercado internacional se había ampliado, pero se necesitaban rutas más cortas entre Europa y los demás continentes. En 1869 se abrió el Canal de Suez que redujo de 25 a 18 días el viaje de Marsella a Bombay. Gracias al éxito obtenido se construyeron luego el de Corinto en Grecia (1893), el de Kiel, en Alemania (1895), y el de Panamá, en América (1914)

El avión. El hombre había conquistado el mar y la tierra entonces miró hacia el cielo. En 1900 Zepellin realizó los primeras experiencias con el dirigible, nave que permitiría el transporte de pasajeros. En 1903 los hermanos Wright inventaron el aeroplano. Estas experiencias fueron continuadas por Alberto Santos Dumont y Luis Blériot y se iniciaron, entonces, los primeros vuelos y servicios regulares. En 1914 se recorrió una distancia de 1.021 km en casi 21 horas a una velocidad de 203,85 Km. por hora a la altura de 6228 metros.(ampliar sobre la historia de la aviación)

Comunicaciones. Gran desarrollo alcanzaron las comunicaciones postales debido al avance de los transporte. El telegrafo creado por Morse en 1837 se extendió con increíble rapidez. En 1845 se instaló el primer cable bajo el agua en los Estados Unidos y en 1878 se instalaron los primeros cables transatlánticos. La importancia 4 de este nuevo medio queda corroborada por el siguiente dato: en 1908 se enviaron por telégrafo 334.000.000 de despachos.

En 1876, Alejandro Graham Bel inventó el teléfono que se difundiría a partir de 1879. En 1877 Tomás Alva Edison construyó el primer fonógrafo y en 1887 apareció la telegrafía sin hilos (radio) producto de la inventiva de Guillermo Marconi.

Otras técnicas. La técnica tipográfica (la imprenta) evolucionó también notablemente al igual que la fotografía. En 1895 los hermanos Lumiére inventaron el cinematógrafo que se transformó, no sólo en un elemento importante de información y difusión de ideas, sino en una de las más importantes expresiones artísticas del Sigo XX.

Las exposiciones industriales: la esperanza de una nueva era:

El auge adquirido por el industrialismo produjo en las naciones europeas un sentimiento de orgullo y satisfacción por el progreso alcanzado.

Se realizaron entonces múltiples exposiciones con el fin de mostrar al mundo el nivel técnico e industrial logrado. En 1851, Gran Bretaña mandó construir, a instancias del príncipe Alberto, el Palacio de Cristal, en el que se realizó la primera de estas exposiciones. En 1862 se efectuó la segunda, también en Londres. En 1867, París organizó su primera exposición a la que asistieron no sólo los más importantes científicos y representantes de la industria, sino también las más destacadas personalidades políticas del momento. En años subsiguientes se efectuaron nuevas muestras en Holanda, España, Estados Unidos, Australia y nuevamente en Francia. (Ver: La torre de Eifel)

En todas ellas, los protagonistas fueron las máquinas,, los descubrimientos científicos, los nuevos productos industriales. De esta manera, el mundo parecía afrontar con un optimismo creciente los conflictos internacionales que, día a día, eran más profundos. Así, se festejaba el comienzo de una nueva era cuyo progreso y desarrollo se creía no tendría límites y cuyos alcances posibilitarían el mejoramiento del nivel de vida medio.

AMPLIACIÓN DEL TEMA
LOS FERROCARRILES TRANSCONTINENTALES Y EL AUTOMÓVIL
La revolución más espectacular tuvo lugar en los ferrocarriles. Dos cifras bastan para dar una idea de este extraordinario desarrollo: año 1850, en el mundo había 38.700 kilómetros de vías férreas; año 1913, 1.100.000. Las zonas de mayor densidad ferroviaria eran Europa y los Estados Unidos. Y este enorme aumento se debió al progreso de la técnica: al uso del acero y del cemento armado en la construcción de puentes, y al de la perforadora de aire comprimido en la de túneles (el túnel de San Gotardo se construyó entre 1871 y 1882, y el del Simplón fue acabado en 1906).

El aumento de la velocidad fue el resultado del perfeccionamiento de las locomotoras, que se convirtieron en más potentes y menos pesadas, y del de los rieles, que en lo sucesivo serían de acero, en vez de hierro. La segunda mitad del siglo xix fue el gran período de la construcción de ferrocarriles. Cada país construyó su propia red, y, después, las naciones establecieron acuerdos para construir líneas transcontinentales. A este fin, decidieron adoptar, en general, el mismo ancho de vía (1,44 m.).

En Norteamérica, la construcción del primer ferrocarril transcontinental, Nueva York-San Francisco, fue concluida en 1869. Unos años después, el zar Alejandro III de Rusia tomó la decisión de construir el transiberiano, que fue acabado en 1904, y puso a Vladivostok a sólo 15 días de viaje de Moscú. Ferrocarril que se vería prolongado, en seguida, por el transmanchuriano, que llegaba hasta el mar de la China. De menor importancia fueron el transcaspiano (que iba del Caspio a la frontera china), el transaraliano (de Samara a Tachkent), y el transandino (de Buenos Aires a Valparaíso).

El sueño de Cecil Rhodes, de unir a Ciudad del Cabo con El Cairo, no llegó a realizarse. En efecto, de los 11.000 kilómetros de distancia, hay que recorrer 3.500 kilómetros por carretera o en barco, y en los 7.500 kilómetros de ferrocarril, hacer catorce transbordos.

La utilización práctica del ferrocarril tuvo importantes consecuencias. Permitió el transporte rápido de los productos (a partir de 1900, sería posible recorrer 1.200 Km. diarios): los nuevos países pudieron consagrarse, en lo sucesivo, al monocultivo.

Al tiempo que se desarrolló este medio de transporte colectivo, lo hicieron dos medios de transporte individual: la bicicleta, «la pequeña reina» (la primera vuelta a Francia se organizó en 1903), y, sobre todo, el automóvil. El lejano antepasado de éste fue el carro de vapor, de Cugnot, cuyo modelo tuvieron presente, pasado 1820, los ingleses Griffith y Hancok para su diligencia de vapor, cuyo desarrollo quedó detenido por el del ferrocarril. El francés Amadée Bollée, construyó nuevamente un coche de vapor (1873), la «Mancelle». Pero el progreso decisivo no tuvo lugar, sin embargo, hasta que se perfeccionó el motor de explosión, y se produjo, después, la invención del neumático por Dunlop y Michelin.

En 1891, la fábrica Panhard-Levassor construyó según el diseño de Daimler, un coche que alcanzaba una velocidad de 22 kilómetros por hora. Tres años después, la carrera París-Lyon enfrentó a más de cien monstruos ruidosos y tosedores. Varios de ellos eran de motor de vapor, otros de motor de bencina, habiendo otros más de motor de aire comprimido, o movido por electricidad. Pero sólo veinte de ellos lograron tomar la salida siendo el coche con motor de vapor De Dion quien ganó la carrera, a una media de 22 kilómetros hora.

Mas, a pesar de este triunfo, el automóvil de vapor no consiguió tener un porvenir como su rival, el de bencina. Poco a poco, este último se fue perfeccionando.En 1914, la velocidad récord superó los 100 kilómetros por hora. La industria automovilística, aunque nacida en Europa, se desarolló, sobre todo, en Estados Unidos. En vísperas de la primera guerrao mundial, ,circulaban por el mundo dos millones de automóviles, la mitad de los cuales pertenecía a Estados Unidos.

 

Historia del Whisky Resumen Bebidas alcoholicas mas populares del mundo

HISTORIA Y ELABORACIÓN DEL WHISKY

historia del vino

La historia del Whisky: Aunque resulte increíble, en sus lejanos comienzos el whisky era utilizado por farmacéuticos y monjes como un producto medicinal, que servía para tratar diferentes afecciones. Claro que todo en su justa medida, ya que el abuso de esta bebida podía provocar un estado de ebriedad profunda en los enfermos a tratar.

Como todos sabemos, desde hace décadas existe un gran debate en torno a cuál es el mejor whisky del mundo, batalla que confronta a escoceses, irlandeses y estadounidenses.

Pero lo cierto es que nuestra intención no es llegar a una conclusión al respecto, sino más bien conocer algunos detalles acerca de la historia en torno a la invención de esta bebida tan especial.

De acuerdo a su etimología, la palabra whisky proviene del término celta “Uisge”, utilizado para abreviar el concepto de “Uisge Beatha”, que traducido al español significa “agua de vida”. Durante mucho tiempo, el idioma celta era una de las lenguas oficiales de Escocia e Irlanda, de allí su origen.

En sus orígenes, el whisky solía ser utilizado como medicamento, por un lado como anestesia para llevar a cabo complejas intervenciones, e incluso operaciones quirúrgicas, y por el otro para ser utilizado como antibiótico externo en heridas presentadas en la piel.

Se estima que entre los años 1100 y 1300, fueron los monjes quienes incorporaron las técnicas de destilación que comenzaron a ser posteriormente utilizadas en Irlanda y Escocia.

Por aquella época, el popular vino no era en realidad una bebida de fácil fabricación para los escoceses y para los irlandeses, por lo que durante la fabricación de cerveza de cebada comenzaron a destila un nuevo licor, que se convirtió en el whisky. Claro que la fabricación de licores destilados por aquellos años sólo se limitaba a los boticarios y los monasterios. Esto sucedió hasta fines del siglo XV.

En el año 1500 se llevó a cabo la publicación del primer libro conocido sobre la destilación, escrito por Hieronymus Brunschwygk y editado bajo el título de “Liber de arte distillandi”. Allí se exponían las grandes virtudes de la bebida alcohólica como medicamento, como así también los métodos para su fabricación.

Lo cierto es que la destilación legal del whisky es algo realmente reciente, ya que de acuerdo a la fecha de inicio oficial a partir de la cual se permitió la producción legal de whisky en Escocia está relacionada a la promulgación de la Ley de Impuestos Especiales, que fuera impuesta por el duque de Gordon en 1823.

Pero, por supuesto que Escocia no esperó hasta ese momento para producir la bebida nacional, generando así fábricas que funcionaban de manera clandestina.

Si nos remontamos aún más en el pasado, según relata la historia, la destilación del whisky se inicia en el antiguo Egipto, quienes utilizaron una técnica que se implementaba para la producción de perfumes.

Hoy, después de haber transcurridos varios siglos desde su descubrimiento, el whisky es la bebida preferida de muchos, quienes pueden optar por una enorme e inagotable variedad de tipos, ya que en cada país del mundo su fabricación suele tener una receta diferente, dotando a cada uno de ellos de una verdadera personalidad. Es así que hay whisky para todos los gustos.

CRONOLOGÍA

3000 a.C. — No es que se produjera whisky en estas fechas, pero el arte de la destilación de los perfumes, que ya se conocía en Egipto, fue un primer paso.

SIGLO V — Primera referencia escrita del agua de vida destilada de cereales en un manuscrito irlandés. Según la leyenda, el propio san Patricio llevó el secreto a ese país.

SIGLO XII – La destilación del agua de vida se extiende por toda Europa desde Irlanda, donde es descubierta por los invasores ingleses, aunque en Escocia, donde los monjes hacen servir por primera vez un alambique, tenían sus propios métodos.

1494 — El fraile inglés John Cor destila aguardiente a base de malta por primera vez en las altas tierras de Escocia. Se puede decir, después de todo, que se destila whisky por primera vez, ya que I anterior eran aguardientes de lo más corriente.

1505 — El Gremio de Barberos Cirujanos escocés consigue los derechos de su fabricación en Edimburgo.

SIGLO XVI – Se descubre la manera de condensar los destilados refrigerando los tubos por medio de agua; de esta manera de acelerar el proceso y mejora la calidad. Los monjes escoceses, expulsados de sus monasterios en este siglo por los ingleses, difunden sus conocimientos, que escapan de las manos de barberos y cirujanos y entran e’ todas las casas donde uno pueda construirse un alambique.

1608 — La destilería Bushmills empieza a producir whisky con licencia del rey Jaime I de Inglaterra e Irlanda y VI de Escocia.

1802 — Thomas Jefferson elimina las tasas sobre el whisky y éste empieza a producirse en masa en EE. UU. El padre baptista Elijah Craig es el primero en utilizar toneles de roble para su transporte.

1825 — El americano Alfred Eaton es el primero en filtrar el whisky a través de un lecho de carbón, el mismo que hará servir más tarde Jack Daniel’s.

1826 — Se descubre el método de destilación continua en Irlanda, que tiene un gran éxito en Escocia.

1853 — La destilería Glenlivet crea el primer blend (mezcla) en Escocia, mezclando diferentes whiskies de malta y de grano, y revolucionan el mundo del whisky, abaratando su producción y adaptándose al gusto del consumidor. Los irlandeses rechazan el blending y tienen que cerrar las dos terceras partes de sus destilerías.

1900-1933 – En 1900 se establece la Ley seca en EE UU. que deja de producir whisky abiertamente, propiciando el auge de los grupos mafiosos que trafican a escondidas; la ley fue derogada en 1933, pero el mercado del bourbon no se recuperará hasta los años ochenta. Sustituye a la bebida alcohólica el café, que empieza a servirse sin límite en los restaurantes.

¿Porque Nos Duele La Cabeza al Tomar Alcohol?

Fuente Consultada: Graciela Marker Para Planeta Sedna

Seda Natural Fibra Hecha Por Los Gusanos Origen de la seda en China

La seda de Oriente ha llegado al mundo occidental desde hace siglos, y sigue siendo la tela más preciada. Su fibra se obtiene del gusano de seda, Bombyx mori, cuando Forma su capullo para convertirse en mariposa. Cada capullo consta de un solo filamento que llega a medir más de 1.5 km. Se necesitan 110 capullos para confeccionar una corbata, 630 para una blusa y 3000 para un kimono.

Según la tradición china, la seda se descubrió en el año 2640 a C., en el jardín del emperador Huang Ti. De acuerdo con la leyenda. Huang Ti pidió a su esposa Xi L.ingshi que averiguara qué estaba acabando con sus plantas de morera. La mujer descubrió que eran unos gusanos blancos que producían capullos brillantes. Al dejar caer accidentalmente un capullo en agua tibia, Xi Lingshi advirtió que podía descomponerlo en un Fino filamento y enrollar éste en un carrete. Había descubierto cómo hacer la seda, secreto que mantuvieron bien guardado los chinos durante los siguientes 2000 años. La ley imperial decretó que todo aquel que lo revelara sería torturado hasta morir.

La manufactura de la seda tiene cuatro etapas: el cultivo de las moreras, la cría de los gusanos de seda, el desenrollado de la fibra y el tejido de la tela.Los gusanos de seda se alimentan con las hojas de varios árboles, pero los que ingieren hojas de morera producen la seda más fina. En 1608 el rey Jacobo I de Inglaterra ordenó sembrar 10.000 plantas de moral en su país, para crear una industria de la seda. Pero Fracasó debido a que esa variedad de moráceas no era la adecuada.

En China se cultivan arbustos de morera para recolectar fácilmente sus hojas y alimentar a los gusanos de seda. Estos se crían en la primavera. Durante losmeses de intensa actividad. Los huevecilios de la temporada anterior, almacenados en un lugar fresco, se incuban tan pronto como brotan las hojas de las moreras. Los gusanos comen hojas continuamente durante casi un mes y aumentos en su peso 10.000 veces.

Es preciso consentir a los gusanos para que sean productivos. En China se decía que detestan el frío, la humedad, la suciedad, el ruido, el olor a pescado frito, las lágrimas, los gritos y las mujeres embarazadas o poco después de parir. Aún hoy, en la provincia china de Hang-zhou, a las mujeres que cuidan a los gusanos de seda se les prohíbe fumar, maquillarse o comer ajos.

Después de formados los capullos, las dos glándulas de seda que los gusanos tienen a lo largo del cuerpo empiezan a segregar una mezcla semilíquida. Las hebras de ambas glándulas se combinan en un solo filamento.

Primero se fijan haciendo una fina red. Luego, con un movimiento en forma de 8, menean la cabeza de un lado a otro y lentamente van construyendo un capullo impermeable que los cubre por completo. Tardan unos tres días en hilarlo, proceso durante el cual sacuden la cabeza unas 300.000 veces.

Hilado Los filamentos íntegros de entre cinco y ocho capullos se entrelazan para obtener el hilo de seda, con el cual se forman madejas. Los armazones de madera tradicionales, como éste. han cedido su sitio a modernas máquinas.

Si la metamorfosis se completa, el gusano se convierte en mariposa al cabo de dos semanas, aproximadamente; en ese tiempo las enzimas segregadas por el capullo ablandan éste y sale la mariposa, para iniciar un nuevo ciclo de vida. Sólo se permite que ocurra esto en pocos casos, para preservar la especie. A los demás se les mata. Si se evita que el capullo se dañe al salir la mariposa, puede recuperarse la fibra entera.

El desenrollado de la fibra se realiza remojando los capullos en agua tibia para encontrar la punta del filamento de seda, que se devana en un carrete. Las fibras de varios capullos —por lo general entre cinco y ocho— se enrollan en el mismo carrete, para obtener un hilo suficientemente grueso. Hoy se usan devanadoras automáticas.

Si se colocan juntos dos gusanos de seda, producen un capullo doble. La seda de estos capullos se llama ocal. El hilo tiene “mechones’ y se usa para hacer telas con variantes de textura.

La producción mundial de seda es de unas 50 000 toneladas al año, que representan apenas el 1 % de la producción total de fibras textiles. Su brillantez se debe a que las fibras no tienen forma cilíndrica, sino de prismas triangulares, por lo cual reflejan la luz. La seda sigue siendo un material de lujo.

Bordado Las madejas de seda se tiñen y se utilizan ya sea para producir telas o para bordar.

Más Abajo Puede Tener Una Explicación Más Profunda

COMO LLEGARON A OCCIDENTE LOS SECRETOS DE LA SEDA NATURAL: Los dos monjes Fueron muy insistentes: tenían que ver al emperador. Dijeron poseer un valioso secreto y que habían viajado de China a Constantinopla (hoy Estambul) para revelarlo a la corte.

Eso fue hacia el año 550 d.C., cuando Justiniano I encabezaba el Imperio Romano de Oriente (bizantino). El secreto de los monjes mereció su atención: ofrecieron revelarle la técnica china para obtener seda.

En la pequeña isla griega de Kos se produjo un poco de la lujosa tela, con gusanos de seda encontrados en la localidad, que ingerían hojas de roble. Pero no era comparable a la seda china, hecha por gusanos alimentados con hojas de morera. Los romanos orientales compraban seda china a comerciantes que la transportaban más de 4800 Km. a través de Asia Central, por la peligrosa Ruta de la Seda, desde luoyang hasta el Mediterráneo oriental. La travesía duraba ocho meses.

Cuando la seda llegó a Europa su peso se valoró, literalmente, en oro. Y carla vez era más costosa y difícil de conseguir, pues la Ruta de la Seda atravesaba territorios en guerra. Justiniano intentó importarla por conducto de comerciantes etíopes, que recibían embarques de China.

Aquellos monjes eran persas que habían divulgado el cristianismo en China durante muchos años, y aprendido los secretos de la seda. Entonces hicieron una propuesta a Justiniano: dado que era imposible mantener vivos a los gusanos durante una travesía tan larga. ofrecieron transportar sus diminutos huevecillos. Bastan 28 gr. de éstos para obtener 36.000 gusanos.

Justiniano colmó a los monjes de regalos y les prometió jugosas recompensas, los dos hombres volvieron a China y se abastecieron de huevecillos. Luego emprendieron el arduo viaje a Occidente, con su preciosa carga escondida en bastones de bambú.

A su regreso, los monjes enseñaron a los romanos cómo criar a los gusanos, que se usaron para hacer la primera tela de seda europea. A algunos gusanos se les dejó convertirse en mariposa para conservar la especie y así nació la primera industria de seda en Europa. Pero a pesar de ello, los gusanos siguen prefiriendo la morera china.

AMPLIACIÓN DEL TEMA:
La seda es una fibra natural, obtenida industrialmente de varias especies de mariposas. Cuando las orugas de éstas (gusanos de seda) alcanzan su mayor tamaño, hilan los capullos en los que pasarán normalmente la fase de reposo (pupal) antes de convertirse en adultas.

La seda natural se obtiene a partir de esos capullos. No sólo produce seda la mariposa de este nombre; todas las orugas pueden generarla, y muchas de ellas la usan para la fabricación de capullos, como el dañino “bicho de cesto” o “bicho canasto”. También la pueden producir otros insectos, e incluso la de las arañas (aunque, hasta ahora, no haya podido ser explotada comercialmente) es de tan buena calidad como la del gusano de seda.

La mayor cantidad de seda producida en el mundo proviene, en gran proporción, de la mariposa Bovibyx mori, que, según se cree, tuvo su origen en China. Se viene criando desde hace siglos, y existen numerosas variedades de ella. La mariposa adulta tiene un color cremoso y su envergadura es de unos 5 cm.

mariposa Bovibyx mori

No vuela ni come, y la variedad doméstica no se encuentra jamás en estado silvestre. La hembra pone unos 500 huevos, de los que salen minúsculas orugas. Éstas comen una gran variedad de hojas, incluso de lechuga, pero la seda de mejor calidad se obtiene de las que se alimentan con hojas de morera.

Estas hojas contienen proteínas y resinas que parecen añadir resistencia y brillo a la seda. Los gusanos de seda que se crían con otros tipos de hoja raramente dan un producto que se pueda hilar, es decir, seda que se pueda convertir en largos hilos. La oruga cambia de piel cuatro veces durante su vida.

Gusano de Seda

Cuando alcanza su tamaño máximo, la oruga tiene unos 8 cm. de largo y un color blancuzco. Al llegar a esta fase, empieza a hilar el capullo. Produce la seda un par de glándulas arrolladas, situadas alrededor del tubo digestivo. Cada glándula fabrica una hebra de seda, y las dos hebras se unen, antes de surgir al exterior, por un orificio especial u órgano hilandero próximo a la boca.

El cuerpo de la oruga completamente desarrollada está casi lleno de seda líquida. La seda se endurece rápidamente, al contacto con el aire. Hay varias glándulas accesoria próximas al orificio hilandero que producen una goma que da pegajosidad a la seda. Así, la oruga puede fijar los capullos sobre algún objeto.

Esta goma (sericina) es amarilla o blanca, según la traza de mariposa. Al empezar a hilar su capullo, la oruga mueve la cabeza de un lado a otro y segrega una hebra continua de seda, con la que teje el capullo completo, que tiene unos 4 cm. de longitud. En esta operación invierte unas setenta horas. De un solo capullo pueden obtenerse unos 1.000 metros de seda bruta, pero ésta es tan fina, que mil hebras unidas no llegan a tener 2,5 cm. de ancho.

Una vez encerrada dentro del capullo, la oruga se arruga y pierde de nuevo su piel, para alcanzar el estado de pupa o crisálida. Desde el avivamiento de los huevos a la formación de la pupa transcurren de 4 a 5 semanas, según las circunstancias. El estado de pupa dura otros 10 días más, y, por último, brota del capullo la mariposa adulta. Sin embargo, los gusanos de seda son sacrificados por los cultivadores en el estado de pupa, excepto los pocos ejemplares que se dejan para que se conviertan en mariposas.

LA SERICICULTURA
El Japón es el primer país productor de seda del mundo, tanto en calidad como en cantidad, a pesar de que la patria tradicional de ella sea la China. La industria japonesa de la seda es muy importante, y está regulada de manera muy estricta.

Las disposiciones sobre la cría de los gusanos son muy severas, y se parecen a las dictadas sobre “el estado sanitario de otros animales domésticos, como las gallinas y el ganado vacuno. En el Japón se dan las condiciones ideales tanto para la cría del gusano de seda como para el cultivo de su planta alimenticia, la morera. Existen muchas variedades de esta última, todas las cuales tienen un desarrollo rápido.

Es posible cortar hojas del árbol varias veces al día. La morera es una planta muy resistente, y su cultivo, al servicio de la cría de los gusanos de seda, se practica también en otras regiones del mundo, como en la zona Mediterránea sur de la U.R.S.S.

La India produce grandes cantidades de seda, tanto de la proveniente de la mariposa Bombyx mori, como de la llamada “seda silvestre”, que procede de otras especies. Algunas razas de Bombyx mori dan varias generaciones al año, pero la mejor seda proviene de la variedad que normalmente sólo produce una generación.

Los huevos de esta variedad requieren un período de frío para que puedan avivar. Sin embargo, se ha podido comprobar que este período puede evitarse, tratando los huevos con una solucióndiluida de ácido clorhídrico durante algunos minutos. Por este procedimiento, los gusanos pueden criarse durante todo el tiempo que la morera mantiene sus hojas, en vez de limitarlo simplemente a unas cuantas semanas durante el verano. En consecuencia, la producción de seda por unidad de superficie de plantación de morera ha crecido enormemente.

Los métodos de cría del gusado para la obtención de la seda son muy parecidos en todo el mundo, y este artículo tratará de los principios generales. Cuando las hojas de la morera comienzan a abrirse, los huevos se sacan de un depósito frío y se les hace adquirir gradualmente una temperatura de unos 20°C.

Las jóvenes orugas avivan en unos 10 días, y se las alimenta con finas tiras de hojas de morera. Deben proporcionárseles hojas frescas cada pocas horas, y éstas no deben estar húmedas en absoluto, pues, de otro modo, las orugas se verían atacadas por una infección de hongos. Los gusanos tienen un apetito voraz y pasan el tiempo comiendo, excepto durante los períodos de muda.

No deben tocarse, y el método para proporcionarles el alimento de refresco consiste en colocar sobre ellos las hojas en un papel perforado: las orugas se abren paso por los agujeros de éste, y pueden eliminarse del criadero las hojas viejas y los excrementos. Los grandes criaderos de gusanos de seda aprovechan estos productos como abono. Cuando los gusanos crecen, se les van administrando porciones mayores de alimento, y finalmente hojas enteras. Cuando la oruga ha llegado a su tamaño máximo, se dedica a buscar un sitio adecuado donde tejer su capullo.

Esquema del hilado de la seda

En las cámaras de cría se ponen a su alcance haces de paja u otros objetos apropiados, sobre los que puedan hilar. Lo primero que construyen es una especie de “hamaca” donde reposan mientras van tejiendo el verdadero capullo. La primera parte del capullo (la externa) está formada de diversas hebras unidas a la “hamaca”, pero la interior se forma de una sola hebra continua de unos mil metros de longitud. Cuando el capullo está terminado, la oruga, encerrada en él, se transforma en crisálida, y en este estado se calienta el capullo en un horno, durante unas doce horas. Así se mata a la crisálida, sin dañar la seda. Se deja vivir un 5 % de las crisálidas, para obtener mariposas que produzcan los huevos de la próxima generación.

El capullo es muy resistente e irrompible, pero la mariposa está provista de una glándula que genera un disolvente, que le sirve para ablandar la seda y salir al exterior. Cuando una mariposa ha salido del capullo, éste carece de utilidad para el hilado, pues la hebra está rota.

HILADO DE LA SEDA A PARTIR DEL CAPULLO
Antes de desenrrollar la seda de los capullos, debe ablandarse la goma, lo que se consigue colocándosela en agua caliente durante un rato. Con un cepillo o un agitador, se recogen los extremos pegajosos y se tira de ellos hasta que sale una hebra de cada capullo. Una hebra sola resulta demasiado fina para los usos industriales, por lo que se reúnen varias para producir una del grosor suficiente.

Antes, el hilado solía hacerse a mano, pero hoy día se realiza en máquinas adecuadas. Sin embargo, hacen falta operadores muy hábiles para ir reemplazando los capullos a medida que se agotan. Se han introducido máquinas automáticas que usan aparatos electrónicos para incorporar nuevas hebras cuando el grosor del hilo de seda bruta se hace menor. La seda se va hilando, a partir de los capullos colocados en recipientes de agua caliente.

Las hebras de cada grupo de capullos giran alrededor de un disco, y se van pegando unas a otras, a medida que la goma se va endureciendo otra vez. Después de pasar por una serie de poleas, la seda bruta, como se la llama entonces, se recoge en bobinas.

La larva termina casi su capullo, no tiene mucho espacio donde moverse, y por eso las últimas porciones de hebra suelen estar enredadas. Por esta razón, no se aprovecha la parte final para el hilado, y tan pronto el capullo empieza a aparecer transparente, se retira para reemplazarlo por otro. El operario realiza esta maniobra frotando simplemente la nueva hebra contra las otras.

A partir de las bobinas, se van haciendo madejas de seda que, una vez revisadas, pasan a ser tejidas. Las técnicas de tejido son similares a las que se usan para el de otros materiales. Sin embargo, antes de estampar o teñir la seda, debe desengomársela por completo, lo que se consigue haciéndola hervir. Los extremos de ios capullos que se eliminaron al empezar el hilado, y la parte interior de ellos, que no se ha hilado tampoco, no se tiran, sino que se peinan como la lana y se usan luego en madejas para bordados y productos similares. Los capullos agujereados, de los que han salido las mariposas, proporcionan también una materia válida para esos tipos de labores. Incluso las crisálidas muertas se aprovechan como pienso para las gallinas, abono o cebo para la pesca.

La “seda silvestre” (tusor) que producen otras mariposas (Antherea sp.), especialmente en la India, Mongolia y Japón, no puede hilarse de la manera normal, ya que los capullos no están formados por una hebra continua. Estas sedan deben tejerse, y, por lo general, son más bastas que las producidas por el gusano de morera, siendo usadas para tipos especiales de tejidos.

Fuente Consultada:
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia –
Enciclopedia Encarta – Enciclopedia Consultora Tmo II
Eniclopedia de la Ciencia y La tecnología TECNIRAMA N°82 La Seda Natural