El Proyecto Bergius

Origen de la Sal Natural Descripción de su Explotación y Turismo

Origen de las Minas de Sal Natural
Descripción de su Explotación

Lo que comúnmente llamamos “sal”, es el cloruro de sodio (NaCl) de uso cotidiano y que se encuentra en mayor proporción en nuestro planeta. La sal que utilizamos procede ya sea del agua del mar, o ya de una de las numerosas minas de sal gema que hay repartidas por distintos lugares del globo. La sal se extrae aproximadamente de la misma manera que el carbón, o con ayuda del agua.
Algunas minas de sal son verdaderos palacios subterráneos. Otras también, aunque menos notables, merecen ser visitadas. En la Argentina, se obtiene extrayéndola de las salinas , que son las “cuencas en donde  se  ha  acumulado  cloruro  de  sodio  en  cantidades  económicamente  explotables,  pudiéndose  extraer  por  labores  a  cielo  abierto”.  También  se  la  llama  salar.
Su origen puede ser el siguiente: a) Marino en donde las  sales  se  cristalizaron  a  partir  del  agua  de  mar. b) Continental: es el más común en la Argentina y resulta de la  cristalización de aguas subterráneas o superficiales en zonas áridas y c) de Aguas Termales típica de la zona de la Puna y que se formó a partir de movimientos orogénicos.

La sal es uno de los minerales más utilizados al tiempo que uno de los que más abundan y más fáciles son de explotar. La sal de cocina o cloruro de sodio se halla en multitud de lugares y en diferentes formas; de éstas las dos que podemos considerar principales son, sin embargo, la sal del agua del mar y la extraída de las minas de sal gema.

Como los mares cubren la mayor parte de la superficie del globo, las reservas de sal que contienen son inmensas. Pero también la sal gema se reparte  y la encontramos en numerosos lugares y países. Estos depósitos sedimentarios se han formado generalmente en lugares ocupados antaño por el mar o por lagos o lagunas salados.

Gema o también Halita: es una forma mineral de la sal común, con composición química NaCl. También llamada sal gema, es un mineral muy abundante formado tras el secado de cuerpos rodeados de agua salada; posteriormente, los lechos así formados quedan con frecuencia enterrados bajo estratos de roca formados por otros depósitos sedimentarios. Los lechos de halita tienen espesores que oscilan desde unos pocos metros hasta 30 m, y se han encontrado a grandes profundidades bajo la superficie terrestre.

Todavía  en  la  actualidad  se produce sal gema. El proceso es como sigue: el lugar de la operación es por ejemplo un golfo unido al mar por un estrecho canal. El golfo constituye de este modo, prácticamente, una extensión de agua cerrada en la que el agua permanece casi inmóvil, por lo que la evaporación es muy importante.

Sin embargo, la sal no se evapora, y a medida que lo hace el agua, aumenta su concentración salina. De este modo se forman depósitos salinos en el fondo del golfo. A medida que la evaporación prosigue, nuevas cantidades de agua procedentes del mar entran en el golfo por la estrecha abertura.

La  sal gema se encuentra en numerosos lugares de todas las partes del mundo. En Europa occidental hay importantes yacimientos salinos cerca de Stassfurt, en Alemania; en los alrededores de Salzburgo, en Austria; cerca de Wieliczka, en Polonia, y en la Lorena. En Estados Unidos los grandes productores de sal son los estados de Tejas, Nueva York, Luisiana, Kansas y Michigan. En este último estado se han encontrado depósitos de 150 a 600 m de espesor. Hay también otros países, como Colombia, que poseen minas de sal.

Minas de Wieliczk (a menos de 15 km al sudeste de Cracovia), estas minas han sido explotadas sin interrupción desde el siglo XIII y todavía hoy siguen produciendo sal de mesa.Declaradas Patrimonio de la Humanidad en 1978 por la Unesco, este conjunto de excavaciones subterráneas consta de 3 mil cámaras unidas mediante galerías cuya longitud llega a los 300km y nueve niveles de profundidad que llegan hasta los 327m. Pese a toda su extensión los turistas sólo pueden recorrer 3,5km.

La sal gema se encuentra a profundidades muy diversas; en España, por ejemplo, en los alrededores de Cardona, la sal se presenta en la superficie, mientras que en otros lugares es preciso buscarla a cierta profundidad. La  naturaleza  de  las  capas  difiere igualmente; en ciertos yacimientos las venas son regularmente horizontales, mientras que en otros constituyen plegamientos discontinuos.

Los métodos de explotación difieren también. En ciertos yacimientos se procede del mismo modo que se haría en una mina de carbón: se excavan dos pozos por mina después de haber determinado mediante un sondeo previo el lugar más favorable. Luego, en el inicio de estos pozos, se empiezan a excavar galerías y salas en el espesor de la capa de sal. Para sostener a estas últimas no hace falta emplear los mismos materiales que en las minas de carbón.

A menudo se dejan pilares compuestos por la propia sal cuando la dureza y el espesor son suficientes. Otra ventaja sobre las minas de hulla es que en las de sal no hay que temer al explosivo gas grisú.

Claro que éste es únicamente uno de los muchos métodos que existen para la extracción de la sal. En ciertos casos, por ejemplo, se hacen unas perforaciones por las que se inyecta agua en las capas de sal gema; cuando esta agua está lo bastante saturada de sal se bombea o se hace subir a la superficie mediante presión.

A veces se combinan ambos procedimientos: pozos y agua. En tal caso se disponen en ía mina lugares en los que la sal se disuelve en el agua para obtener una salmuera que es impelida a continuación hacia la superficie. A la larga se forman unas cavidades, unas salas. Cuando estas últimas alcanzan determinadas dimensiones se pone fin a la explotación para evitar un hundimiento. Pero la cavidad subsiste y el agua que cubre su fondo evoca un lago subterráneo.

No es corriente que la sal extraída por cualquiera de estos dos procedimientos sea cloruro de sodio puro; en la mayoría de los casos se presenta en mezcla con sulfatos y cloruros de calcio y de magnesio y con varios otros elementos. Pero, a veces, como en Wieliczka, a 25 km de Cracovia, se extrae sal pura.

La visita a una mina de sal no es sólo una excursión llena de interés, sino a menudo apasionante y muy agradable.

Algunas minas de sal se han transformado, en el transcurso del tiempo, en verdaderos palacios subterráneos. En la mina de Wieliczka, por ejemplo, que alcanza una profundidad de 280 m. y que está en explotación desde la Edad Media, encontrarnos en varias de sus salas bancos, columnas e incluso estatuas esculpidas en la sal. Cada año descienden a la mina numerosos visitantes para admirar estas obras maestras realizadas en sal.

También en otras partes se encuentran curiosas realizaciones hechas en sal. En América del Sur, en los alrededores de Bogotá, capital de Colombia, en el antiguo emplazamiento de una mina de sal se encuentra la catedral subterránea de Nuestra Señora del Rosario. Este templo es tan grande que puede albergar a miles de fieles.

http://historiaybiografias.com/archivos_varios5/catedral_sal.jpg

Bogotá , catedral subterránea de Nuestra Señora del Rosario

Sin embargo, no son estas minas artísticamente trabajadas las únicas que merecen que se íes haga una visita. Hay otras que también atraen a infinidad de turistas, como las de Salzkammergut, en Austria. En estas minas la sal es disuelta en agua y bombeada a la superficie.

La sal que se explota en el Salzkammergut quedó depositada allí, en forma de cristales sedimentarios, hace unos ciento ochenta millones de años y se cree que la mina está en explotación, aproximadamente, ¡desde unos novecientos años antes de Jesucristo! La posesión de sal era, tradicionalmente, un signo de riqueza no sólo entre los celtas, sino también entre los romanos.

Una de las más interesantes minas de sal del Salzkammergut es la de los alrededores de Dürnberg, una población cerca de Hallein. Esta mina de sal ocupa prácticamente la totalidad de las entrañas de una montaña. Para visitarla es preciso, en primer lugar, ir de Hallein a Dürnberg, situada en las alturas, por la Saizberg-Gondelbahn, en las cabinas de un teleférico. Con él la subida lleva sólo diez minutos, en tanto que a pie se tarda una hora.

Antes de que se les permita entrar en la mina se invita a los visitantes a que se protejan con una bata. Entonces empieza la visita bajo la guía de un minero experimentado. Esta visita, que viene a durar hora y media, se efectúa en grupos.pequeños y es realmente apasionante.

Se inicia penetrando horizontalmente en la montaña por un estrecho pasadizo; seguidamente los visitantes se dejan resbalar a lo largo de una pendiente de las que se encuentran varias durante esta travesía en dirección al valle, la más larga de las cuales mide alrededor de ochenta metros. Cada vez seis visitantes se deslizan pendiente abajo, detrás del guía, en un descenso vertiginoso.

La travesía de la mina de sal presenta muchos aspectos interesantes y puede comprobarse que sus instalaciones técnicas y su equipo son muy modernos. También se atraviesa, en una barquita, un lago salado subterráneo que se ha formado en el hueco de una cantera explotada antaño. Docenas de lámparas alumbran las riberas de este lago y hacen de él un espectáculo alucinante.

Al fin de esta excursión tan poco corriente se encuentra uno en el fondo de la mina, en donde le espera una especie de pequeño tren formado por bancos con ruedas en los que uno se sienta a horcajadas. Estos pequeños trenes, a los que llaman «Grubenhunden», arrastran a los visitantes, a toda velocidad, a través de dos kilómetros de estrechos corredores, hasta llegar de nuevo al aire libre. Los que hayan visitado la mina es seguro que no olvidarán la excursión. Aunque la mina de Dürnberg es sólo uno de los muchos yacimientos de los alrededores de Salzburgo.

http://historiaybiografias.com/archivos_varios5/fuente_credsa3.jpg

Uso de los Recursos Naturales y el Cuidado del Ambiente Historia

 Historia del Uso de los Recursos Naturales y el Cuidado del Ambiente

Las sociedades aprovechan los elementos naturales, como agua, minerales, animales y plantas, para satisfacer sus necesidades, por ejemplo para producir bienes de uso personal como calzados, muebles, automóviles, cerámicos, utensillos, etc. Así, los seres humanos van modificando y transformando la naturaleza para obtener alimentos, vivienda, vestimenta, etc.

En el campo, con la cría de ganado y el cultivo de plantas, y en las ciudades, con la construcción de edificios, caminos, etc. El ambiente es el resultado de la relación entre los elementos de la naturaleza y las transformaciones realizadas por las personas. Por ejemplo, una montaña es un elemento natural, pero si las sociedades construyen allí casas, caminos y puentes, se la considera un ambiente de montaña.

USO Y CONSERVACIÓN DE LOS RECURSOS NATURALES: La especie humana, aparecida hace aproximadamente 40.000 años atrás, ha sobrevivido principalmente como cazadora-recolectora nómada durante la mayor parte de ese tiempo.

Dos cambios culturales de gran importancia, la Revolución Agrícola (10.000 a 12.000 años atrás) y la Revolución Industrial (a fines del siglo XVIII) trajeron beneficios como el aumento de la tecnología, el suministro de alimentos, la obtención de mucha mayor energía, el aumento de la esperanza de vida, etc. Pero también tuvieron consecuencias negativas: se produjo un brusco aumento de la población y un crecimiento exponencial del uso de los recursos, de la contaminación y de la degradación del ambiente.

Nuestros primeros antecesores cazadores-recolectores (sociedades paleolíticas) lograron sobrevivir porque tenían un adecuado conocimiento del ambiente donde vivían, y entendían su íntima dependencia respecto ele la naturaleza.

Ellos aprendieron eficazmente a encontrar agua, a saber cuándo maduran los frutos y a conocer los movimientos de sus presas. Al mismo tiempo descubrieron una gran variedad de animales y plantas que les proveían alimento y a las que usaban como medicamentos. Estos hombres sólo empleaban, por un lado, la energía solar, y por el otro, su propia fuerza muscular.

En consecuencia, era escaso el impacto que causaban en el medio natural. Eran grupos humanos pequeños que poseían un comportamiento nómada y dependían de su propia fuerza física.

La Revolución Agrícola se produjo por un cambio gradual de los pequeños grupos nómadas cuando se establecieron en comunidades agrícolas, donde aprendieron a criar animales salvajes y a cultivar plantas silvestres para sobrevivir. Para preparar esos cultivos desmontaban pequeños sectores de bosque, derribando árboles y malezas, para luego quemar esa vegetación talada y utilizar las cenizas como abono.

Dichos cultivos eran de subsistencia, esto es, producían sólo lo necesario para comer ellos y sus familias. El trabajo era manual y usaban precarias herramientas de labranza, por lo cual hubo escaso impacto sobre el medio natural.

Más adelante, con la aparición del arado de metal tirado por animales domesticados, junto con el aumento de las parcelas cultivadas donde se abrían los suelos fértiles, la degradación se incrementó.

urbanizacion primitiva

La Revolución Urbana introdujo fuertes cambios culturales que aparejaron problemas ambientales, cuyas consecuencias se mantienen vigentes en la actualidad. La urbanización se originó en un grupo de agricultores con capacidad de producir alimento suficiente para mantener a sus familias, más un excedente que podía comercializar con otras personas. Estos grupos crecieron hasta convertirse en pueblos y ciudades, donde se centralizaron el comercio, los gobiernos y la religión, y el agua se transformó en un recurso económicamente valioso.

primeros asentamiento humanos

Empezó en esta etapa una verdadera contienda contra la naturaleza, donde la supervivencia de animales y plantas silvestres dejó de ser importante pues competían con el ganado y los cultivos; fueron eliminados o desalojados, ya no eran considerados recursos vitales para el hombre. Como consecuencia sobrevinieron guerras, sobrepoblación, contaminación y degradación ambiental.

La Revolución Industrial comenzó en Inglaterra a mediados del siglo XVIII y se extendió a los Estados Unidos en el siglo siguiente; la leña fue reemplazada por el carbón como combustible sustituto. El consumo promedio de energía por persona aumentó considerablemente y, por lo tanto, el poder de alterar y utilizar la Tierra para satisfacer las necesidades del crecimiento económico. El uso del carbón llevó a la invención de la máquina de vapor.

carbon y la maquina a vapor

Más adelante, el carbón fue reemplazado por el petróleo y el gas. Con el avance de la Revolución Industrial surgió la sociedad industrial avanzada, que se caracterizó por la intensa producción y el gran consumo de bienes motivados por la publicidad masiva para crear falsas necesidades o necesidades artificiales, alentando de esta manera lo que llamamos la “sociedad de consumo”.

maquina a vapor

Se produjo también un cambio en la utilización de materiales sintéticos en lugar de los naturales, con el correspondiente perjuicio al ambiente ya que los primeros se degradan muy lentamente y muchos son tóxicos para el hombre, los animales y las plantas. Conjuntamente con los beneficios que acompañaron a estas sociedades se intensificaron muchos problemas ambientales y aparecieron otros nuevos.

torre de petroleo

El uso desmesurado de combustibles fósiles fue el que generó un crecimiento económico vertiginoso, con la consecuente aparición de problemas ambientales graves. La industria de exploración y explotación de la “energía fósil” es la responsable de gran parte de la contaminación del aire y el agua del mundo.

Conquistar la naturaleza puede aparecer como una idea asociada al progreso, pero exacerbada por el proceso de industrialización. Es imprescindible revertir el uso irracional y abusivo de los recursos.

SINTESIS: Volviendo al inicio, decíamos que  las sociedades utilizan los recursos naturales para producir alimentos, ropa, calzados muebles, etc. La mayoría de las veces, las industrias no tienen: en cuenta los daños que generan en los ambientes al obtener los recursos naturales para fabricar sus productos.

El desarrollo sustentable consiste en una serie de acciones que tienen como objetivo lograr un equilibrio entre el desarro llo económico y el cuidado del ambiente. La idea principal en satisfacer las necesidades de las sociedades sin afectar los re cursos naturales y preservarlos para las generaciones futuras Para ello, es necesario que la sociedad y las industrias respeten los tiempos de la naturaleza.

Esto significa que al utilizar los recursos naturales se les debe conceder el tiempo necesario que se reproduzcan y se formen nuevamente. Si ese tiempo no se respeta, es posible que se agoten. Por ejemplo, realizar acti vidades de pesca solo en los períodos determinados para que los peces puedan reproducirse y no estén en peligro de extición. Lo mismo sucede con las plantas y otros animales.

Al mismo tiempo, las sociedades deben prac ticar un consumo responsable, que significa elegir productos teniendo en cuenta como has sido elaborados y cómo afectan al ambiente. Consiste en consumir y elegir lo indispensable y no comprar productos innecesarios, que tengan componentes contaminantes.

Realizar un consumo responsable requiere de un cambio en los hábitos, no muy diferente de los que ya se tienen. Por ejemplo, las bolsas de plástico se pueden reemplazar por una úni ca bolsa de tela y siempre llevar la misma para hacer las compras. De esta manera, se disminuye no solo la producción de plásticos, también los residuos de este material.

Ver: Basura Electrónica

Fuente Consultada: Espacio y Sociedades del Mundo Política, Economía, y Ambiente – Daguerre y Sassone – Edit. Kapeluz Biblioteca Polimodal

Desperdicios de Comida en el Mundo y Datos Alarmantes Huella

DESPERDICIOS DE COMIDA EN EL MUNDO
La Huella del Desperdicio

Desperdicios de Comida en el Mundo: Hoy el mundo vive la contraposición de niños muriendo de hambre por millones en el mundo, mientras en Europa se tirá a la basura anualmente el 50% de lo que se compra en alimentos. El autor del libro ‘Despilfarro’, Tristram Stuart, denuncia que 40 millones de toneladas de alimentos despilfarrados en los EEUU cada año, podrían alimentar a los 1.000 millones de personas que se van a la cama con hambre cada día. Si recogiera toda la comida despilfarrada en Gran Bretaña en un solo dia, podría ofrecer una comida a 60 millones de personas.

desperdicio de comida en el mundo

¿El desperdicio de comida aún comestible es algo cultural, típico de los paises ricos o bien es una práctica que se encuentra por todo el mundo?

Las personas tenemos el poder para producir los cambios necesarios si convertimos el desperdicio de comida en algo socialmente inaceptable.

¿Qué recomendarla a un ciudadano para evitar tanto desperdicio de alimentos? ¡Come lo que compras y compra lo que necesitas!

La solución es no producir más de lo necesario y no despilfarrar. Sin embargo, está claro que despilfarrar comida es el equivalente de sacar comida de las bocas de los pobres a escala global. Cuando compramos comida, por ejemplo, pan, estamos interactuando en el mercado global del trigo.

Las recientes subidas de precio de algunas materias primas como el trigo han sido provocadas en gran medida porque la demanda supera la oferta. Estas subidas de precio condenan a millones de personas al hambre.

Si nosotros, en los países ricos, despilfarráramos menos pan y, por lo tanto, compráramos menos trigo en el mercado mundial, quedaría más cantidad disponible para las personas en África y Asia que pasan hambre, y que compran el trigo en el mismo mercado mundial” dijo Stuart.

Si un supermercado u otro comercio de alimentación acaba teniendo excedentes de productos que van a caducar, deberían donarlos para que la gente pueda consumirlos, antes que despilfarrarlos.

Los paises ricos no invierten más en la agricultura de los países pobres.

En India hay montañas de frutas y de verduras que se están pudriendo simplemente porque faltan infraestructuras agrícolas. Hoy las ONG están dándose cuenta de que se puede aumentar la disponibilidad de alimentos en estos países invirtiendo cantidades de dinero relativamente pequeñas para crear infraestructuras, y asi asegurarse de que la comida llegue en condiciones a los consumidores y no se pudra.

Hoy 2 millones de personas que pasan hambre en España hoy como consecuencia de ia crisis económica. En este momento, se despilfarra más comida de la que podría ser consumida por todas ¡as personas hambrienta.

La producción agrícola mundial deberá aumentar en un 60 % de aquí a 2050 para satisfacer la demanda de una población mundial en crecimiento.

En la actualidad una gran parte de los alimentos producidos en el mundo se pierde. La expresión “pérdida de alimentos” se refiere a la disminución de la masa comestible de los alimentos en tres etapas de la cadena alimentaria ―producción, poscosecha y elaboración―, principalmente en los países en desarrollo.

Cada año un tercio de los productos que se producen en el mundo se pierden en los negocios o se desperdician en los hagares y restaurantes, esto no es solo una pérdida economica sino que todos los recursos naturales usados para el cultivo, la elaboración el envasado , el transporte y la comercializacion de los alimentos tambien se pierden.

desperdicios de comida

Si se vendiera al precio al consumidor los alimentos despilfarrado, el valor estimado es aproximadamente dos veces el producto bruto interno (PIB) de Noruega. No olvidemos que por otro lado esos alimentos desperdiciados lanzan a la atmósferá millones de gases de efecto invernadero generando verdaderos problemas ambientales, que mas tarde perjudicarán la producción de nuevos alimentos.

En el 28% de las tierra del mundo se producen cultivos que se desperdician, lo que equivale a toda la superficie de China, Mongolia y Kazajtán juntas y además toda el agua que se desperdicia es de unos 250 km³, volumen de agua que podría satisfacer la necesidad de agua de todo los habitantes del planeta.

Por otro lado conforme se expande la agricultura y la pesca, se sobreexplotan los recursos naturales y se pierden habitat marinos y forestales, junto con su biodiversidad.

Los alimentos desperdiciados despiden 3.300.000.000 (tres mil trescientos millones o 3,3 Gigatoneladas) de gases de efecto invernadero, y si suponemos que esos gases sean de un país, este se convertiría en el 3° país con mayor emisión del mundo.

Es fácil darnos cuenta que esto asi no puede continuar, en un planeta con cada vez mas personas y menos recursos, no podemos permitirnos tirar nuestros recursos naturales a la basura.

No olvidemos que los esfuerzos pequeños , pero en cantidad se suman, por ejemplo:

a) Los productores de alimentos deben invertir en una mejor tecnología de cosecha y almacenamiento para evitar pérdidas de alimentos.

b) Los minoritas de alimentos pueden reducir los precios de esas hortalizas imperfectas y donar los excedentes no vendidos a instituciones que atienden a los mas necesitados.

c) Los alimentos no utilizables como alimento humano deben utilizarse con pienso para los animales.

d) Los consumidores pueden ser compradores ma cuidadosos, cuidando los desperdicios en sus hogares para ser vueltos a consumir y también puede exigir porciones mas pequeñas en los restaurantes.

La pirámide del desperdicio de alimentos se basa en la basura y los encargados de las políticas pueden mejorar la capacidad de los productores, minoristasy consumidores para invertir la pirámide, por ejemplo crear capacidad en  los productores de alimentos para adoptar tecnologia post cosecha , revisar las fechas de caducidad de los alimentos para que no se desechen productos utilizables inútilmente, hacer campañas de concientización para alentar a los consumidores a aplicar medidas que estén a su alcance para frenar el desperdicio. Reducir los vertederos de basuras y convertir esos desechos en abono y biogas.

La solución viene con políticas nacionales, pero en fundamental el apoyo de los productores, industrias, comerciantes, familias y Ud., pues se requerirá la ayuda de todos los sectores para reducir la pérdida y el despilfarro de alimentos, para que todos los recursos naturales utilizados en la producción de alimentos terminen verdaderamente como recursos alimentarios y no como basura en los vertederos.

No olvidemos que para producir todos esos alimentos:

a) Se usó agua, (un bien escaso) para riego y lavado en volúmenes gigantes, aumentando la escasez.

b) Se talaron miles de Km² de bosques y erosionaron tierras.

c) Produjeron pérdidas de polinizadores, peces y otras biodiversidades.

Como se observa es importantísimo reducir el despilfarro de alimentos, porque la misma genera pérdidas económicas, ambientales y sociales. No todas las medidas son iguales y algunas son mejores que otras para la naturaleza y la sociedad.

EL PRINCIPIO DE LAS 3R: Cada persona tiene  la oportunidad y la capacidad de contribuir a mejorar nuestro espacio y nuestro mundo a partir de pequeñas acciones cotidianas. Por ello, es importante que busques, dentro de tu casa y oficina, aquellas oportunidades donde puedas:

Aplicar y transmitir el principio de las 3 erres puedes ser parte de la solución al problema de la basura.

Reducir tu consumo de energía (luz, gas, etcétera); de agua y de todo tipo de productos, especialmente aquellos que son contaminantes. Evitar todo aquello que de una u otra forma genera un desperdicio innecesario.

Reciclar los materiales susceptibles de ello, como plásticos, vidrio y cartón en puntos cercanos a tu casa. Volver a usar un producto o material varias veces sin tratamiento. Darle la máxima utilidad a los objetos sin la necesidad de destruirlos o deshacerse de ellos.

Reutilizar / Reusar: artículos como el papel y otros, antes de comprar dichos productos nuevamente. Utilizar los mismos materiales una y otra vez, reintegrarlos a otro proceso natural o industrial para hacer el mismo o nuevos productos, utilizando menos recursos naturales.

Ampliar En Este Sitio Sobre las 3R

CURIOSOS DATOS DEL MUNDO: POBLACIÓN, HAMBRE, EDUCACIÓN

UN MENSAJE DEL PAPA:

El Papa Francisco advirtió que en la actualidad puede hablarse de una tercera Guerra Mundial azuzada por intereses espurios como la codicia y permitida por la misma indiferencia que ya consintió atrocidades del pasado.

papa francisco

El pontífice dijo que la guerra es “una locura” alimentada por conceptos como “la avaricia, la intolerancia y la ambición de poder” que encuentran justificación en la ideología y que lo destruye y lo trastorna todo.

Es que en la “sombra” de la sociedad convergen “planificadores del terror”, o lo que es lo mismo, “estrategias de codicia de dinero y de poder” cuyo corazón está “corrompido”.

Aquí entran en juego los siete pecados capitales, que no deben ser entendidos como hechos religiosos sino como la trampa que envenena a la sociedad humana.

Es bueno tener convicciones pero cuando se exceden pasan a ser: La soberbia.

Es grato tener ambiciones, pero cuando es demasiada es: La avaricia.

Es buena la competencia que mide nuestro progreso pero no: La envidia.

Es útil la rebelión contra lo que nos oprime pero no: La ira.

Es placentera y humana la sexualidad pero no: La lujuria.

Es grata y necesaria la alimentación pero no: La gula.

Es una condición humana el placer del descanso pero no: La pereza.

UN VIDEO INTERSANTE DE LA F.A.O.

Historia del Transporte de Cargas Hasta el Ferrocarril

HISTORIA DEL TRANSPORTE DE CARGAS HASTA EL PRMER TREN A VAPOR

Al dominar la energía, al explotar las materias primas, al construir cosas o alimentar gente, el progreso ha estado siempre estrechamente relacionado con los adelantos del transporte. Por ejemplo, ninguna cantidad de energía muscular sería capaz de llevar centenares de toneladas de material de Buenos Aires a Córdoba en diez horas, pero una locomotora moderna lo hace con facilidad.

El hombre puede usar madera como materia prima para construir carros que van a ser arrastrados por caballos, pero debe aprender a usar el hierro antes de construir locomotoras. Al edificar una choza de barro, un hombre puede acarrear los materiales por sí mismo, pero un rascacielos exige enormes vigas que se pueden transportar sólo por medios mecánicos. En el problema de la alimentación, la falta de transporte hacía depender antes a cada localidad de sus propias cosechas, mientras que hoy las facilidades de transporte les dan a los habitantes de cada lugar la posibilidad de comer alimentos producidos en cualquier parte de la tierra.

transporte miscular de cargas

Las ilustracion superior representan algunos de los métodos principales que los hombres han usado en distintas épocas para simplificar el problema de mover cosas. Los de la primera ilustración están valiéndose, como lo harían los de la Edad de Piedra, tan sólo de la fuerza de sus músculos. Pero también denotan cierto ingenio. Uno de ellos, al colocar un bulto sobre su cabeza, no sólo se ha asegurado de que el peso está parejamente distribuido sobre todo su cuerpo, sino que se ha dejado también ambas manos libres para poder abrirse camino a través de la jungla.

Los otros dos han atado cuerdas a sus cargas, de modo que pueden inclinarse hacia atrás y usar su propio peso para transportarlas, en vez de agacharse incómodamente para arrastrarlas.Los tres hombres de la primer ilustración  están transportando unas 50 toneladas; los mismos no llegarían a arrastrar 500 kilos por tierra.

historia del transporte

En las ilustracion siguiente nadie está sosteniendo peso alguno. En ambos casos, el agua soporta el peso del bote y de su carga, y el único problema es que éste siga la dirección requerida. En un caso esto se consigue utilizando remos; en el otro, sogas. No es extraño que a través de la historia los hombres hayan preferido el transporte por agua al transporte por tierra siempre que tuvieron que mover pesos realmente considerables.

historia del transporte de carga por el agua

Cuando el hombre tuvo que mover grandes cargas por tierra, se valió de los animales. Hoy todavía usamos caballos para atravesar caminos difíciles, fuertes perros para arrastrar trineos por el hielo, elefantes para que separen la maleza con sus colmillos y transporten pesados troncos con sus trompas, y hasta no hace mucho se hacía arrastrar trineos cargados a los caballos en zonas sin caminos. En estos casos, también, el hombre ha usado su ingenio.

Siempre que le fue posible ideó arneses para facilitar a los animales su labor, evitándoles fatigas innecesarias, y unció varios animales juntos a fin de hacerles compartir el esfuerzo de tirar de una carga pesada. Puso a los trineos lisos patines capaces de reducir al mínimo la fricción que se debía vencer.

Las ilustracion de abajo muestran medios de transporte que aprovechan las fuerzas naturales en vez de los músculos. La balsa no está solamente sostenida por el agua sino también empujada por la corriente. El barco de vela está sostenido por el agua y movido por el viento que hincha las velas. El trineo alpino, con su pesada carga, es impulsado pendiente abajo enteramente por la fuerza de la gravedad; su conductor sólo debe guiarlo.

Las láminas de abajo representan cuatro etapas en el desarrollo de la rueda, gran invento que hizo el transporte por tierra más fácil al reducir los efectos de la fricción y al permitir mover cargas por toda clase de superficies duras.

tipos de ruedas historia

Debajo de cada rueda se ve la figura de los vehículos que la usaron: un carro alema´n, un carro romano, una diligencia del siglo XVIII y de primeros autos del siglo XX.

Disminuir los efectos de la fricción ha sido siempre uno de los grandes problemas para el transporte por tierra. Las ruedas lo solucionaron, en parte, especialmente cuando los carreteros aprendieron a hacerles llantas con aros de hierro. Pero se necesitaba algo más: una superficie lisa para que las ruedas pudieran deslizarse.

Hasta hace poco más de un siglo, ni los mejores caminos mantenían su superficie dura y lisa durante mucho tiempo. Muy pronto se ponían barrosos, anegados y llenos de surcos. Pero por lo menos en una industria, en la cual grandes pesos debían moverse continuamente, los ingenieros encontraron la manera de resolver el problema. Desde el siglo XV muchas minas de carbón fueron equipadas con largos rieles paralelos, a lo largo de los cuales los hombres o caballos podían arrastrar fácilmente pesados vagones provistos de ruedas con pestaña.

Ciertos motores de vapor se hicieron por vez primera a fines del siglo XVII y comienzos del XVIII, y entre los inventores estaban: Dionisio Papin, francés; Fernando Berbiest, flamenco, y dos ingleses, Savery y Newcomen. Pero casi todos los primitivos motores de vapor estaban destinados a hacer funcionar bombas y eran en cambio inapropiados para las locomotoras. Todos funcionaban por el principio de bombear vapor primero dentro de un cilindro, para expulsar el aire, y luego enfriarlo, de tal modo que se condensara en agua y dejara un vacío.

La presión de la atmósfera exterior luego movía el extremo de una palanca, colocada dentro del cilindro, hacia abajo, y de este modo elevaba el otro extremo que, provisto de un recipiente, levantaba agua de un pozo o una mina anegada.

James Watt mejoró el diseño del motor de vapor de Newcomen, conectándole un condensador. En lugar de tener que enfriar todo el cilindro, era necesario enfriar sólo el pequeño condensador. El motor de Watt no sólo ahorraba combustible, sino que funcionaba más velozmente que el de Newcomen —lo suficiente como para mantener una rueda girando. Pero todavía no era el más apropiado para impulsar una locomotora, porque un condensador requiere una constante provisión de agua fría.

Watt mismo y hombres como Guillermo Murdock, que trabajaba con él en la fábrica Boulton, y Watt, en Birmingham, pronto advirtieron que la manera de mejorar sus motores era abandonar el uso de vapor condensado y utilizar directamente la presión del vapor. Bastante antes de fines del siglo XVIII, pudieron construir motores en los cuales el vapor empujaba un extremo de un pistón y, cuando éste se movía, cerraba una válvula y abría otra, de manera que el vapor presionara contra su otro extremo, impulsándolo de vuelta otra vez.

progreso del ferrocarril

Hacia 1802, Murdock y Ricardo Trevithick, un hombre con amplios conocimientos de los motores de vapor usados para bombear en minas de estaño en Inglaterra, habían hecho locomotoras realmente satisfactorias. (Una locomotora de vapor había sido construida 40 años antes por el francés Cugnot, pero ésta podía funcionar sólo durante un cuarto de hora y viajando a menos de 4,5 kilómetros por hora.) Un poco más tarde del triunfo de Murdock y Trevithick, muchos inventores crearon nuevas locomotoras, pero ninguna logró tanta fama como la “Rocket” de Jorge Stephenson, que en 1829 transportó carga a casi 45 kilómetros por hora.

Veinte años después, una red de ferrocarriles se extendió por toda Inglaterra, y mucho antes de terminar el siglo XIX la mayor parte de los grandes sistemas ferroviarios eran ya realidad.

Con el tiempo nacieron los proyectos de grandes ferrocarriles transcontinentales que unen las costas este y oeste de América del Norte, y que aceleraron la colonización del lejano oeste estadounidense. Famosa obra, hasta nuestros días,  fue la ruta del Transiberiano, que une a Vladivostok con Moscú, recorriendo más de 8.000 kilómetros. Otros ferrocarriles conectan a Moscú con Varsovia, Berlín, París y otras capitales.

Fuente Consultada:
El Triunfo de la Ciencia La Máquina a Vapor Globerama Edit. CODEX

Proceso de Fabricación de Ladrillos Comunes Propiedades

PROPIEDADES Y PROCESOS PARA LA FABRICACIÓN DE LADRILLOS

El uso de los ladrillos como un recurso, además de las piedras, para construir casas, data de los tiempos de las antiguas civilizaciones de Babilonia y Egipto. Durante miles de años, los ladrillos se han fabricado a mano, e incluso una pequeña proporción se produce así actualmente.

Podemos decir que el ladrillo es un material de uso universal para construcciones, aun en países donde abunda la piedra, por ser un material económico, resistente, de fácil manejo y transporte y que, por sus dimensiones y fácil corte, permite construir muros de espesores variables.

Los ladrillos se dividen en varias clases: adobes (ladrillo crudo); ladrillo común, ladrillo-prensado (de máquina), ladrillo hueco y ladrillo refractario.

Adobe:  Es un ladrillo crudo, hecho de tierra arcillosa y secado simplemente al aire libre a la sombra. Se emplea en países de clima seco y caluroso, por perjudicarlo la humedad y las heladas. Es el primitivo ladrillo que empleó la humanidad en lugares carentes de piedra blanda, fácil de labrar. Se ha encontrado esta clase de material en los antiquísimos monumentos de Judea (Palestina), Egipto y en las ruinas que se supone pertenecen a la Torre de Babel. También se encontró en varios antiguos monumentos de Grecia y Roma.

En la Europa meridional hasta hoy día. se emplea, a veces, esta clase de material en construcciones campestres. En nuestro país, sobre todo en las provincias del Norte y Oeste, es muy común su empleo con buenos resultados bajo el punto de vista de duración y conservación, teniendo la precaución de levantar los muros, externos de adobe sobre un zócalo de piedra o ladrillo cocido, que sobresalga unos 30 cm. sobre el terreno natural. Son frecuentes.

Los edificios, hasta de dos pisos, que cuentan con más de dos siglos de existencia y se encuentran en buen estado todavía. El tamaño del adobe es grande, generalmente de unos 40 cm. de largo por unos 20 cm. de ancho y hasta 10 cm. de espesor.

Esta clase de manipostería es muy económica por ser material barato y por usar, como mortero, la misma tierra amasada con agua, que ha servido para fabricar el adobe. Levantadas las paredes, se recubren con revoque de tierra con parte de arena fina y luego se blanquean con varias manos de cal, con lo que se obtiene una vista agradable y al mismo tiempo es un protector contra la humedad.

Las casas construidas de adobe son frescas en verano y abrigadas en invierno. El espesor mínimo de las paredes externas debe ser del largo del adobe. El coeficiente de trabajo a la compresión es de 2 Kg/cm2.

Ladrillo común. — Los ladrillos cocidos son una especie de piedras artificiales que se obtienen exponiéndolos a la acción del fuego, una vez hechos y secados a la sombra. Su color rojo es debido al óxido de hierro que generalmente se encuentra en las arcillas o tierras arcillosas, material que se usa. para la fabricación de ellos.

Las tierras arcillosas para la fabricación de los ladrillos suelen dividirse en dos clases: grasas y margas. Las primeras son bien plásticas y se prestan para moldear y las segundas son impuras, hasta llegar a no poder moldearse. Para hacer un buen ladrillo se precisa una tierra arcillosa ni muy grasa ni, muy magra. En general se elige una arcilla grasa, y se agrega una pequeña cantidad de arena silícica, pero no calcárea.

Un obrero ladrillero práctico por tacto reconoce las cualidades de la tierra para este objeto. Si no se tienen datos sobre la plasticidad de la tierra a emplearse, conviene fabricar algunos ladrillos de ensayo para ver el resultado.

La tierra se amasa con agua en canchas especiales, utilizando caballos para tal objeto o  con ayuda de máquinas. Una vez bien amasada la pasta, se da principio al moldeo con cajoncitos sin fondo de la forma del ladrillo (adoberas), trabajo que se hace a mano o con máquinas apropiadas. Un obrero práctico puede moldear de 4000 a 4500 ladrillos por día.

cancha de ladrillos comunes

El material se contrae mucho (alrededor de 20 %) por la cocción y, por lo tanto, las adoberas deben ser más grandes que el tamaño definitivo del ladrillo. Al sacarlos de los moldes, se disponen en hileras, en la sombra, para secarlos.

La cocción se efectúa en hornos improvisados al aire1 libre, formados por los mismos ladrillos crudos, dispuestos eri forma de pirámides truncadas, en el interior de las cuales se deja lugar para el combustible.

En la parte superior se deja un orificio para la salida del humo y otro abajo para la alimentación; el resto de la pirámide se tapa y se alisa con barro. Los adobes se apilan colocándolos de canto, y entre hilada cada hilada se pone una capa de carbonilla. Terminada la cochura se desarma el horno y, una vez enfriados los ladrillos, quedan listos para el uso.

horno de ladrillos comunes

La operación de la cocción se hace también en hornos circulares de fuego continuo, sistema Hoffman, los que permiten hacer la cocción sin interrupción, y descargar un compartimento, mientras que los demás funcionan. El tamaño de los ladrillos comunes, que se fabrican en el país, es de 26 ,5  a 27 cm. de largo por 13 cm. de ancho 5 a 5,5 cm. de espesor.

Ladrillo comun

Hay que distinguir tres clases de ladrillo común: ladrillo de 1a. (llamados de cal); ladrillo de 2a. (media cal); ladrillos requemados o vitrificados.

Los de 1a. son bien uniformemente cocidos sin vitrificaciones, de estructura compacta, sin núcleos calizos u otros cuerpos extraños; no serán friables (desmenuzables), de tamaño uniforme; darán por golpe un sonido claro; serán duros y de color rojo marrón. Ensayados por compresión, en probetas constituidas por dos medio ladrillos unidos con cemento portland. darán una resistencia de 90 Kg cm². a rotura.

Los de 2a. son de cocción defectuosa o irregular, de color rojo pálido, no son sonoros ai golpe y poco resistentes (40 Kg/cm2 a rotura). Esta clase de ladrillos no son aceptables y sólo podrían emplearse en obras económicas y de poca importancia.

Y finalmente los ladrillos requemados o vitrificados, los que solamente pueden ser empleados en las dos o tres primeras hiladas de las fundaciones. A pesar de ser muy duros, su defecto consiste en que no hacen buena liga ron los morteros.

TABLA N°1: Cantidad de ladrillos comunes y mezcla por cada m3 de albañilería efectiva

Espesor ladrillo Espesor real de la pared sin revoque Peso del millar
1/2 ladrillo 1 ladrillo 1 1/2 ladrillos
5cm. 442 ladrillos
0,28 m3. mezcla
415 ladrillos
0,3 m³. mezcla
408 ladrillos
0,32 m3, mezcla
Secos 2.250 Kg.
Mojados 2.600 Kg.
5,5cm. 410 ladrillos
0,29 m3. mezcla
387 ladrillos
0,32 m³. mezcla
380 ladrillos
0,33 m3. mezcla
Secos 2.500 Kg.
Mojados 2.900 Kg.
6 cm. 383 ladrillos
0,25 m3. mezcla
360 ladrillos
0,3 m³ mezcla
353 ladrillos
0,3 m3. mezcla
Secos 2.750 Kg.
Mojados 3.150 Kg.

TABLA N°2: Cantidad de ladrillos comunes y mezcla por cada m2 de albañilería efectiva

Espesor del ladrillo 1/2 ladrillo 1 ladrillo 1 1/2 ladrillos De canto
5,0 cm 55 ladrillos
0,034 m³. mezcla
110 ladrillos
0,083 m³ mezcla
165 ladrillos
0,13 m3. mezcla
26 ladrillos
0,007 m3. mezcla
5,5 cm. 52 ladrillos
0,032 m³. mezcla
103 ladrillos
0,08 m³ mezcla
155 ladrillos
0,125 m3. mezcla
26 ladrillos
0,007 m³ mezcla
6 cm. 43 ladrillos
0,032 m³ mezcla
96 ladrillos
0,076³ mezcla
144- ladrillos
0,121 m3. mezcla
26 ladrillos
0,007 m³ mezcla
Peso de la pared por m2 240 Kg. 280 Kg. 720 Kg. 125 Kg.

LA AUTOMATIZACIÓN: Sin embargo, como sucede en otros muchos campos, la necesidad de grandes cantidades y el alto coste del trabajo manual, ha obligado a esta industria a buscar procesos nuevos, mecanizados en gran parte. Un ejemplo característico es la fabricación de los ladrillos tipo fletton, que se describe aquí, aunque no todas las empresas utilizan técnicas idénticas.

El proceso de fabricación que a continuación detallamos toma, como elemento tipo, el ladrillo realizado con base arcillosa. Este material acredita la calidad del producto terminado y proviene de minas, casi siempre superficiales, donde la máxima profundidad de perforación no excede de 20 metros. Casi todos los países del mundo poseen arcillas que llenan las condiciones mínimas para la fabricación de ladrillos.

Antes de que se pueda extraer la arcilla es necesario quitar la capa de tierra que la cubre, por medio de una excavadora (dicha capa puede tener una profundidad de 4,5 a 9 metros). La arcilla se saca también con una maquinaria análoga, y con ella se llena una tolva, que, a su vez, sirve para cargar los vagones de ferrocarril. El tren conduce la arcilla desde la mina a la fábrica de ladrillos.

La primera etapa de la fabricación consiste en la molienda, mediante la cual los terrones de arcilla se desmenuzan en partículas menores de 3 mm. A continuación, se tamizan, para eliminar la materia de tamaño excesivo, y seguidamente se pasan a las prensas mediante un trasportador.

La arcilla se deja ligeramente seca (al contrario de como se utiliza, en otras técnicas de fabricación, es decir, con mucha agua). En las prensas, la materia prima se moldea en forma de ladrillos; en cada prensado la máquina produce dos ladrillos, mediante un doble juego de moldes.

En esta operación, es necesario ejercer una gran presión (aproximadamente, 4 toneladas por cm.2), a fin de asegurar que los ladrillos tengan la suficiente consistencia para colocarlos derechos en el interior del horno, sin que sea necesario un secado preliminar.

El trasporte del ladrillo crudo y plástico al horno presenta un problema de manipulación, puesto que es necesario apilar cuidadosamente grandes cantidades de ellos. Para resolverlo, se ha introducido una serie de cintas trasportado-ras, controladas electrónicamente, que apilan los ladrillos de tal forma que pueden trasportarse fácilmente al horno, mediante carretillas elevadoras.

COCIDO DE LA ARCILLA
Los ladrillos crudos se componen, básicamente, del mismo material que se extrajo del suelo. En el horno se someten a elevadas temperaturas para endurecerlos y modificarlos químicamente. Un horno puede tener 36 cámaras (en los de mayores dimensiones), y en cada una de ellas se pueden colocar hasta 40.000 ladrillos; allí permanecen, unos 18 días.

La operación consta de dos fases, la de secado y la de cocido. Durante -la primera fase, se elimina de la arcilla una gran cantidad de humedad y de gas (aproximadamente, 40 toneladas en cada cámara). A continuación, se aumenta la temperatura hasta unos 1.000°C y se mantiene así, 24 horas. Con esta operación, termina el cocido; entonces, se enfría el horno, se sacan los ladrillos y se almacenan hasta que se necesiten.

Las operaciones descritas anteriormente constituyen el proceso plástico duro, pero no es la única técnica que se utiliza para la fabricación de ladrillos. El procedimiento de corte por alambre es otro método que también sa utiliza mucho; con esta técnica se elabora, primero, una masa de arcilla blanda de dimensiones adecuadas (que se extrae de manera análoga a como sale la pasta dentífrica del tubo), y a continuación se va cortando en trozos con forma de ladrillo, mediante un alambre.

De hecho, con cualquier técnica que se utilice, el tamaño de la pieza de barro es algo mayor que el ladrillo que se quiere conseguir, para compensar el fenómeno de contracción que tiene lugar durante su cocido.

Los problemas surgen cuando se trata de establecer normas sobre el tamaño y calidad de los ladrillos. Por ejemplo, la “British Standards“, miembro de la Comisión de Normas Internacionales, que no es más que una organización que se propone coordinar los esfuerzos de productores y consumidores para la mejora, tipificación y simplificación de los materiales industriales, decidió que a partir de 1963, los ladrillos corrientes de arcilla para construcción debían tener en Inglaterra las medidas siguientes: 21,90 cm. por 10,47 cm. por 6,66 cm, ó 21,90 cm. por 10,47 cm. por 7,30 cm.

Sin embargo, a causa de la naturaleza de la materia prima y del proceso de fabricación, no es posible hacer todos los ladrillos exactamente iguales. A este respecto, existen unos límites de tolerancia que especifican que las dimensiones de los ladrillos pueden variar, como máximo, en un 1 % de las establecidas. Se pueden realizar medidas satisfactorias de comprobación, disponiendo una pila de varios ladrillos.

Otras pruebas consisten en medir su resistencia a la compresión (resistencia que ofrecen a la trituración), su capacidad de absorción de humedad, y los cambios de tamaño que experimentan en este fenómeno.

La mayoría de los problemas surgen cuando entran en conflicto las exigencias de tipificación de los consumidores, y las dificultades que encuentran los productores para lograr ladrillos de calidad y tamaño uniforme.

ARCILLA  PARA  LA FABRICACIÓN   DE  LADRILLOS
Los depósitos de arcilla se componen de partículas rocosas muy finas. La arcilla contiene minerales y sustancias pegajosas o coloidales que absorben agua y forman una masa plástica.

La mayoría de los tipos están constituidos de cantidades variables de óxido de aluminio y arena (bióxido de silicio); se formaron a partir de rocas de origen volcánico (ígneas) por acción química, a través del tiempo, sobre los feldespatos (silicatos de aluminio que contienen potasio, sodio y calcio) y los silicatos de hierro  y  magnesio.

Cuando la arcilla se calienta, pierde agua, se seca y se contrae. El grado de contracción depende de la cantidad de agua que contiene; una contracción excesiva puede indicar que la arcilla no es adecuada para la fabricación de ladrillos ni para la manufactura de objetos cerámicos.

Por ello, se realizan, en este sentido, pruebas exhaustivas para determinar la calidad de las arcillas. La contracción se puede reducir, hasta cierto punto, mezclando la arcilla con arena o material cocido.

No teda el agua que existe en un ladrillo crudo se elimina en las primeras etapas del horneado, puesto que parte se combina químicamente con otras sustancias para formar silicatos. El propósito de la cocción es producir la suficiente vitrificación para unir las restantes partículas que no se han fundido.

En muchas arcillas, se presentan también pequeñas cantidades de carbono orgánico y de azufre (este último, frecuentemente, como sulfuro ferroso). El carbón se quema en el horno y el sulfuro de hierro se oxida, con lo que el ladrillo adquiere un color rojizo. El hecho de que exista una cierta proporción de carbono en la arcilla, permite reducir a un mínimo el consumo de carbón y,  por tanto, se ahorra combustible.

Ladrillos prensados (de máquina).—Se distinguen de los ladrillos comunes por el mayor cuidado en la elección y preparación del material, por su esmera, fabricación y por ser sometidos a gna compresión mecánica durante la elaboración,  lo que las hace más resistentes.

Su tamaño es de 23 x 11 x 6.5 cm. El peso del mular es de 2.600 Kg. secos y de 2.800 Kg. mojados. Resistencia a rotura: 120 Kg cm2.Esta clase de ladrillos se emplea, usando morteros cernenticios, para construir pilares bases de columnas, cámaras de cloacas y en general cuando se necesita una pared de mucharesistencia a la compresión.

También se emplean en muros externos sin revoque, sino con loma de juntas (albañilería aparente). Por ej. en fábricas, depósitos, chalets, etc. o como revestimiento de muros de ladrillo común.

El ladrillo prensada debe responder a las siguientes exigencias: tener estructura compacta; estar uniformemente y bien cocido sin vitrificación; carecer de núcleos calizos u otros cualquiera, tener superficies tersas sin alabeos ni hendiduras y aristas vivas; no ser friable y de forma muy regular y sonoro al golpe.

El espesor del mortero en las juntas tro debe ser mayor de 1.cm, El peso de esta clase de albañilería es de 1.800 Kg/m3.


Fuente Consultada
TECNIRAMA N°86 La Enciclopedia de la Ciencia y la Tecnología (CODEX)
EL Calculista de Estructuras Hierro-Madera-Hormigón Tomo II – Simón Goldenhorm

Biografia de Ohm Simón Obra Científica y Experimentos

Una vez Fourier hubo elaborado un sistema matemático que daba cuenta adecuadamente del flujo de calor, parecía que el mismo sistema podía emplearse para describir la corriente eléctrica. Mientras que el flujo de calor de un punto a otro dependía de las temperaturas de ambos puntos y de si el material que los unía era buen conductor del calor, la corriente eléctrica de un punto a otro podía depender del potencial eléctrico de los dos puntos y de la conductividad eléctrica del material intermedio. hm haciendo diversas experiencia de laboratorio, logró al fin determinar la famosa ley que lleva su nombre: “Ley de Ohm”

ley de ohm

Dice así: La magnitud de una corriente I eléctrica que pasa entre dos puntos es igual al cociente entre la tensión (o voltaje V) y la resistencia R del conductor por el que atraviesa dicha corriente. Esta es una ley de fundamental importancia, y una de las primeras que se aprenden al estudiar electricidad.

Hoy es conocida como la ley de Ohm, aunque en 1827, al ser enunciada por Jorge Simón Ohm, pasó inadvertida. De hecho, hubieron de transcurrir 16 años para que dicha ley recibiera 4a consideración que merece. En aquella época se prestaba mayor atención a los científicos jactanciosos y con amigos influyentes que a los de carácter reservado y tranquilo como lo era Ohm. Ohm nació en Erlangen (Alemania), en 1789.

ohm simon

Trabajando con alambres de diversos grosores y longitudes, el físico alemán Georg Simón Ohm (1789-1854) halló que la cantidad de corriente transmitida era inversamente proporcional a la longitud del alambre y directamente proporcional a su sección. De este modo pudo definir la resistencia del alambre y, en 1827, demostró que «la intensidad de la corriente a través de un conductor es directamente proporcional a la diferencia de potencial e inversamente proporcional a la resistencia». Ésta es la llamada ley de Ohm.

Era hijo de un maestro de taller, el cual decidió dedicarlo al estudio de las matemáticas y de la física. Y. el propio padre se puso entonces a estudiar estas disciplinas, para poder enseñar a su hijo lo aprendido, dándole clases cuando el muchacho salía de la escuela.

A la edad de 16 años, Ohm comenzó sus estudios en la Universidad de Erlangen, pero, desgraciadamente, la situación económica de la familia hizo que, al cabo de dos años, tuviera que dejar la universidad para colocarse como profesor en Suiza. Más adelante, pudo completar sus estudios y licenciarse; pero, por segunda vez, la falta de dinero le obligó a abandonar sus investigaciones en la universidad, volviendo, de nuevo, a su puesto de profesor.

Después de pasar 4 años enseñando física en Bamberg, se trasladó al Gimnasio de Colonia, donde llevó a cabo sus más importantes investigaciones.

Cuando Ohm comenzó sus experiencias, la electricidad se describía en términos muy imprecisos. No existía un modo exacto de expresar el comportamiento de una corriente eléctrica, y Ohm resolvió hacer algo en este sentido. Fourier había trabajado ya en la conducción del calor, llegando a la conclusión de que en un material conductor existía un gradiente de temperatura y que la cantidad de calor que conducía dependía de la caída de temperatura a lo largo del conductor.

Ohm se preguntó si la electricidad se comportaría del mismo modo que el calor, y si la diferencia de potencial jugaría aquí el mismo papel que la diferencia de temperatura jugaba en termología.

En sus últimos experimentos, Ohm utilizó como f. e. m. (fuerza electro-motriz) constante la proporcionada por un termopar (termocupla), constituido por cobre y bismuto soldados, una de cuyas uniones iba sumergida en hielo y la otra en agua caliente. Para medir la magnitud de la corriente, utilizó una aguja imantada, suspendida convenientemente. De este modo, Ohm pudo estudiar la magnitud de variación de la intensidad de corriente cuando se introducían en el circuito distintas resistencias.

Ohm era muy meticuloso en la realización de medidas y, a pesar de los instrumentos primitivos que utilizó sus resultados fueron lo suficientemente exactos como para demostrar, de manera concluyente, que la intensidad de corriente es igual al cociente entre la tensión y la resistencia. Ohm comprendió instantáneamente la importancia de su descubrimiento y supuso que le sería concedido un puesto en la universidad; en esta creencia, renunció a su cátedra de profesor en el Gimnasio de Colonia.

Las cosas no sucedieron exactamente así, y Ohm estuvo sin colocación durante 5 años; recién a los 60 de edad fue nombrado catedrático de la Universidad de Munich, cargo que desempeñó hasta su muerte, acaecida 5 años después, en 1854.-

EJEMPLOS PARA EXPLICAR DE LA LEY DE OHM

Fórmula General de Ohm

Un método sencillo de recordar las ecuaciones de la ley de Ohm: tapar: la cantidad buscada y los
dos símbolos restantes darán la fórmula requerida.

A condición de que las manifestaciones Físicas, tales como la temperatura, no varíen, la intensidad de la corriente (la cantidad de electrones en movimiento) que circula por un hilo es directamente proporcional a la diferencia de potencial (es decir, la diferencia de presión eléctrica que origina el movimiento de los electrones) entre las extremidades del hilo.

Este hecho se conoce con el nombre de Ley de Ohm. Veamos un ejemplo de esta ley: supongamos que tenemos un circuito en donde circula una corriente de 4 amperios. Por ejemplo una estufa eléctrica conectada a una red de 240 voltios. ¿Cuál es la intensidad de la corriente, si el voltaje de la red cae a 120 voltios?

La ley de Ohm nos dice que, ya que la diferencia de potencial (voltaje) se reduce a la mitad, la corriente debe reducirse en la misma proporción: se divide por dos. La nueva intensidad es, por lo tanto, de 2 amperios. En cada caso la relación voltaje/intensidad es la misma: 240/4=60 A ó 120/2=60 A

Por lo tanto, la ley de Ohm puede escribirse en forma de ecuación: V/I=constante

Si el voltaje, o diferencia de potencial, se mide en voltios, y la intensidad en amperios, entonces la constante, en vez
de ser simplemente un número, es por definición una medida de la resistencia del hilo; o sea, una medida de la resistencia que opone el hilo al paso de electrones a través de él. La resistencia se mide en unidades que reciben el nombre de ohmios.

Por tanto, diferencia de potencial / intensidad de corriente = resistencia en ohmios

Las resistencias medidas en ohmios se suelen simbolizar por el signo R; la diferencia de potencial en voltios se simboliza, generalmente, por V y la intensidad en amperios por I. Utilizando estos símbolos, la ley de Ohm puede escribirse en forma de ecuación: R=V/I. Que se desprende que V=I . R

En realidad, la corriente I=4 amperios es menor cuando la estufa está fría, ya que la resistencia de la mayoría de los metales aumenta con la temperatura. Por eso la ley de Ohm sólo es exacta cuando no varían las propiedades físicas.

Una resistencia de 60 ohmios presenta una oposición moderadamente alta al paso de la corriente eléctrica; si la estufa tiene una resistencia pequeña, digamos de 2 ohmios, presenta un camino mucho más cómodo y a su través pasa una intensidad mucho mayor.

¿Qué intensidad tiene la corriente que pasa por una estufa (con una resistencia de 2 ohmios) que se conecta a una red de 240 voltios? Como lo que buscamos es una intensidad, que se simboliza con una I, utilizaremos la ecuación:
I =V/R=240/2=120 amperios.

Ésta es una intensidad enorme (que fundiría los fusibles tan pronto como se encendiera la estufa). La mayor intensidad que puede soportar, normalmente, un fusible doméstico es de 15 amperios.

¿Cuál es la resistencia de una estufa eléctrica, que funciona justo a esta intensidad, con un voltaje de red de 240 voltios? Aquí lo que buscamos es la resistencia, simbolizada por una R, así qué lo mejor será utilizar la ecuación que contenga la R=V/I=240/15=16 ohmios (Ω)

También la ley de Ohm proporciona un método cómodo para medir voltajes. Un voltímetro sencillo es, realmente, un medidor de intensidad, o amperímetro. Nos indica la intensidad (I) amperios que el voltaje (V) que se quiere conocer hace pasar por una resistencia conocida (R) ohmios.

La magnitud del voltaje se deduce de la ecuación V=I . R- (No se necesita hacer el cálculo en la práctica, ya que esto se ha tenido en cuenta al calibrar el voltímetro.) Si un amperímetro, cuya resistencia total es de 200 ohmios, registra una corriente de 1/10 amperio, ¿cuál es el voltaje que impulsa a la corriente a través del amperímetro?.

O dicho en otras palabras, ¿cuál es la diferencia de potencial entre los bornes del amperímetro? De la ecuación:
V = I . R (esta ecuación es la preferible, ya que la V aparece en el lado izquierdo), se deduce el voltaje: 1/10 amp. . 200 ohm.=20 voltios.

ANALOGÍA DE LA CORRIENTE CON EL FLUJO DE AGUA

Lo intensidad de la corriente de un río es la cantidad de agua que pasa por debajo del puente en un segundo. La intensidad de una “corriente eléctrica” es la cantidad de electrones que pasa en un segundo por un conductor.

El movimiento del agua está producido por una diferencia de altura entre los extremos del río.
Un movimiento de electrones está producido por una diferencia de potencial entre los extremos de un conductor. La diferencia de potencial recibe el nombre de voltaje.

Cuanto mayor es la diferencia de alturas, mayor es la corriente de agua. Del mismo modo, cuanto mayor es la diferencia de potencial (voltaje), mayor es la corriente eléctrica. Al doblar la diferencia de alturas, dobla el flujo de agua; al doblar la diferencia de potencial (voltaje)/ dobla lo intensidad de la corriente. Ésta es la ley de Ohm.

La “estrechez” del río también controla la cantidad de agua que corre por debajo del puente en un segundo. Si el río es muy estrecho, la corriente es pequeña. Del mismo modo, la “resistencia” de un conductor controla el flujo de electrones. Si la resistencia es muy alta, la corriente eléctrica es débil. Si la resistencia es baja (equivalente a un río ancho), la corriente es intensa.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología – TECNIRAMA N°89 La Ley de Ohm

Vida de Bunsen Roberto Inventor del Mechero Científico

En el siglo XIX floreció en Alemania una aristocracia científica. En aquella época, los químicos eran personajes muy importantes y gozaban de gran estima entre el resto de la población. Pero no sólo eran respetados, sino que, con frecuencia, los científicos notables estaban muy bien remunerados, disfrutando de un elevado nivel de vida. La admiración general que la química despertaba, atrajo a los mejores investigadores de otros países, y nadie podía ser considerado un buen químico si no había realizado estudios en Alemania.

Bunsen Robert

Roberto Guillermo Bunsen (1811-1899) fue uno de los personajes más brillantes de la Alemania del siglo xix. Inició sus estudios de zoología,  física y  química  en su ciudad natal, Goettinga (Alemania), ampliando sus conocimientos en París, Berlín y Viena. Fue nombrado profesor de química de la Universidad de Heidelberg, en 1852.

Fue un experimentador audaz. En el curso de uno de sus experimentos perdió la visión de un ojo, lo que no impidió que repitiera el experimento delante de sus alumnos, aterrorizando a los que ocupaban los primeros bancos. En otra ocasión, estuvo a punto de morir envenenado por arsénico y, durante sus experiencias con este elemento, descubrió que el óxido de hierro hidratado era un antídoto eficaz contra dicho tóxico.

Su nombre es recordado, principalmente, por el aparato de laboratorio ideado por él y llamado, en su honor, mechero Bunsen. El gas era, en aquella época, la fuente de calor más usada en los laboratorios; pero si abrimos una llave de gas y prendemos el chorro que brota por el extremo del tubo, la llamita luminosa que se produce es relativamente fría.

Esto se debe a que no existe suficiente cantidad de oxígeno, en el interior de la llama, para que el gas se queme por completo, y el carbono que no ha ardido se deposita en forma de una capa negra, ennegreciendo los objetos calentados. El mechero diseñado por Bunsen aumenta la eficacia calorífica de la llama, ya que su temperatura es más elevada y no deposita hollín. Para conseguirlo, dispuso una entrada de aire regulable en la base del tubo.

La corriente de gas succiona el aire a través del orificio y, si la mezcla resultante contiene 2,5 veces más aire que gas, la llama que produce un zumbido característico será limpia y de gran poder calorífico. Pero si contiene un exceso de aire, la llama se propagará al interior del tubo, ardiendo en la base, en lugar de hacerlo en el extremo superior; es decir, el mechero se cala. Bunsen estudió el tamaño del tubo y del orificio de entrada de aire, hasta conseguir resultados satisfactorios.

Mas, sus esfuerzos científicos no se concentraron en una sola dirección, sino que trabajó en diversos campos, realizando descubrimientos importantes. Inventó una pila de carbono-cinc y un calorímetro de hielo; obtuvo magnesio metálico en grandes cantidades, empleándolo, en parte, como fuente luminosa; contribuyó al análisis de gases y estudió las solubilidades de éstos en los líquidos. Otra de sus invenciones, el jotómetro de mancha, es un dispositivo que se emplea para comparar la intensidad de dos fuentes luminosas, y todavía lleva su nombre.

En colaboración con Kirchhoff, estudió el espectro emitido por los elementos al calentarlos, encontrando dos espectros no identificados, que les condujeron al descubrimiento del cesio y el rubidio. Tras una vida muy activa, falleció en 1899, a la edad de 88 años.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología TECNIRAMA N°88 Roberto Bunsen

Diferencia entre peso y masa Concepto Físico

El peso y la masa son, probablemente, las palabras más intensamente empleadas por el lenguaje científico. Están en tan íntima relación que, en circunstancias normales, el peso y la masa de un objeto tienen exactamente el mismo valor numérico. 10 kilos de papas tendrán un peso de 10 kilos y una masa de 10 kilos.

Como los valores son los mismos, se tiene la falsa impresión de que las palabras son sinónimas. Si hemos pesado una zapallo con un aparato que funciona mediante el alargamiento de un resorte (cuanto más pesado sea el objeto, el resorte se estira más), entonces medimos realmente el peso. El zapallo tiene un peso de 10 kilos.

Cuando se ponen las papas en el platillo del aparato, el resorte tira del platillo y de su contenido hacia arriba, oponiéndose a su alargamiento. Por otra parte, la fuerza de la gravedad actúa sobre el zapallo, empujándolo hacia abajo. El resorte se larga hasta que estas dos fuerzas opuestas se equilibran exactamente, y el peso se lee como una medida de dicho alargamiento.

balanza de resorte pensado

Esta balanza de resorte mide la fuerza (P) con que es atraída la masa del zapallo, que según la Ley de Newton, es igual a la masa (m) por la aceleración de la gravedad (g) , ósea: P=m.g. Esta balanza mide peso o fuerza, y según donde se haga a medición variará, porque depende del valor de “g”, no es lo mismo pesar en la Tierra que en la Luna, o en cualquier orto planeta, es decir, el peso varía según la masa m y la aceleración g. Cuanto mas masa o mas aceleración, mayor será el estiramiento “x” del resorte.

El resorte mide, por tanto, la magnitud de una fuerza que intenta estirarlo, y por ello el peso debe ser una clase de fuerza. El empuje hacia abajo del zapallo  depende de dos factores: la cantidad de sustancia o materia contenida en las papas y la atracción de la gravedad de la Tierra. La masa del zapallo no depende del lugar donde se encuentre éste; a menos que se les quite algún trozo, la cantidad de materia que las compone será siempre la misma.

En cambio, el campo gravitatorio de la Tierra (la atracción que ésta ejerce sobre un cuerpo) varía. Si dejamos caer una piedra en un pozo sufrirá un incremento de velocidad de 9,8 metros por cada segundo que cae.

Si la piedra cayera desde un satélite en órbita, situado a muchos kilómetros de distancia, entonces, en un segundo, el incremento de velocidad sería muchísimo menor. Esto es debido a que la piedra se encuentra más lejos de la Tierra y la influencia de esta última sobre ella es mucho menor.

A medida que cambia la acción del campo gravitatorio de la Tierra, cambia el peso del objeto. Si utilizamos un dinamómetro, el zapallo pesará ligeramente menos en la cima de una montaña que al nivel del mar. En cambio, la masa es algo que no varía nunca. Es la cantidad de materia que contiene una sustancia.

Un bloque de plomo está compuesto de un número determinado de átomos. Cada átomo tiene 82 protones, 126 neutrones y 82 electrones. En otras palabras, cada átomo tiene cierta cantidad de materia en él. No importa que el bloque de plomo está en el fondo de un pozo, en la cima de una montaña o en la superficie de la Luna: si no se le ha quitado ni añadido nada, contiene la misma materia y, por lo tanto, la misma masa.

Por este motivo, para medir la masa hay que utilizar un aparato que dé la misma medida, cualquiera que sea el lugar donde sea utilizado. A este fin se usa una balanza. El objeto cuya masa se desconoce, se coloca en el platillo izquierdo de la balanza.

balanza de masa

El platillo desciende, y el brazo de ésta se inclina al no haber nada en el otro platillo para equilibrarlo. Unas pesas metálicas (denominación impropia, pues deberían llamarse masas) se colocan en el otro platillo hasta alcanzar el equilibrio: una masa se equilibra con otra masa.

Si se lleva la balanza a un lugar donde la atracción de la gravedad sea mucho menor, el objeto sufre un menor empuje, pero también le ocurre lo mismo a las “pesas” del otro platillo, y se obtiene el mismo resultado. La balanza de precisión se utiliza para medir masas con una exactitud de cuatro diez-milésimas.

Las pesas, por lo tanto, deben tratarse con mucho cuidado. Si se desgastan pierden cierta masa, y en contacto con los dedos se ensucian con la grasitud de las manos y sufren un aumento de masa. Por ello se deben tomar siempre con pinzas. Éste es uno de los motivos por los que las balanzas de mayor precisión se manejan por control  remoto.

Fuente Consultada:
Enciclopedia de la Ciencia y Tecnología TECNIRAMA N°86

Anticongelantes: Uso de Etilenglicol Baja Punto de Congelamiento

ETILENGLICOL: PARA BAJAR EL PUNTO DE CONGELAMIENTO DEL AGUA

En los climas intensamente fríos, los automóviles pueden sufrir averías si no se toman medidas para protegerlos. El radiador y el bloque de los cilindros (bloque del motor) son las partes afectadas en primer lugar. Si el agua que contiene el bloque de los cilindros llega a congelarse, éste se parte, del mismo modo que los conductores de agua cuando el líquido que contiene se hiela. El hielo es menos denso que el agua y, por tanto, cuando éste se congela, convirtiéndose en hielo, ocupa un volumen mayor.

En el radiador de un automóvil, el agua está encerrada en un espacio limitado. El metal no puede dilatarse; de hecho, se contrae cuando disminuye la temperatura. Así, cuando el agua se congela, el sistema refrigerante está sometido a una presión interior, puesto que aquélla se expande, haciendo lugar para el hielo; el bloque de los cilindros o el radiador no pueden soportar esta tensión y se rompen.

Estas roturas son costosas, pues la dificultad de la reparación obliga a sustituir las piezas. Una vez que se ha roto el bloque, el sistema de refrigeración del motor deja de funcionar y, si se usa el coche en estas condiciones, el motor se sobrecalienta, expulsando chorros de vapor de agua.

Por esto, resulta muy importante que el agua del sistema de refrigeración no se congele, aunque la temperatura externa descienda por debajo de O° C. Hay que añadir alguna sustancia que rebaje el punto de congelación. En otras palabras, al agua de refrigeración debe añadírsele un anticongelante.

Cuando se añade al agua un poco de sal, el punto crioscópico (punto de congelación) baja ligeramente. Si añadimos más sal, dicho punto sigue descendiendo.

La adición de una impureza tiene, pues, el efecto de hacer descender el punto de congelación. Aunque con sal se puede conseguir este efecto perfectamente, no se usa nunca como anticongelante por su fuerte poder corrosivo, que atacaría rápidamente el metal del radiador. Normalmente, se usa el compuesto orgánico etilénglicol.

Éste es muy eficaz para disminuir el punto de congelación del agua de refrigeración. Al contrario que la sal, no es nada corrosivo y, por tanto, puede usarse sin peligro de dañar el radiador. Los anticongelantes que compran los automovilistas contienen, fundamentalmente, etilénglicol, junto con un pequeño porcentaje de otros compuestos químicos, que actúan como inhibidores (antioxidantes), protegiendo de la corrosión el interior del radiador.

Los antioxidantes son muy necesarios, porque la misma agua es un agente corrosivo que puede atacar la superficie metálica, si no lo evitamos. Aunque se podría usar el mismo glicol indefinidamente, los antioxidantes tienden a perder su eficacia.

Por tanto, es aconsejable usar anticongelante nuevo cada invierno, para impedir la corrosión del radiador.El anticongelante se mezcla con agua y, una vez diluido, se vierte en el radiador. Una solución con un 25 % de glicol en volumen tiene un punto crioscópico de — 12,8° C, y es la adecuada porque no resulta fácil que la temperatura descienda por debajo de este punto. Este tipo de mezcla, naturalmente, no se puede usar dentro del Círculo Polar Ártico, donde la temperatura desciende, con frecuencia, por debajo de —12,8° C.

Se necesita, por tanto, un líquido cuyo punto de congelación sea mucho más bajo. A medida que se va aumentando la proporción de glicol, el punto crioscópico desciende hasta un cierto límite, desde el que empieza a subir nuevamente. El punto de congelación más bajo que puede obtenerse con una mezcla de etilénglicol y agua es — 44° C. Se trata del punto crioscópico de una mezcla al 50 % de glicol y agua.

Para las condiciones extremas del Ártico se añade una pequeña cantidad de éter de glicol. Así se consigue que el punto descienda hasta — 68° C. Casi todos los sistemas de refrigeración de los automóviles que -circulan actualmente pueden ser vaciados o llenados por sus dueños, pero la tendencia moderna es que estén precintados y que su contenido sea renovado solamente cada dos años.

El radiador se llenará y precintará en la fábrica, usando una mezcla más concentrada que las habituales. Se utiliza una mezcla al 50 % de glicol y agua, que hace descender el punto crioscópico hasta — 44° C. De este modo, los autos pueden funcionar en cualquier país. Los antioxidantes plantean problemas, pero se están llevando a cabo investigaciones para prolongar su período de actividad. Con mejores antioxidantes, no sería necesario cambiar el anticongelante tan frecuentemente.

En el gráfico se observa: A medida que se va añadiendo más etilénglieol al agua, el punto crióscopico desciende gradualmente. El refrigerante del radiador puede elaborarse de tal forma que siga estando liquido por debajo de O°C. Esto no se puede conseguir indefinidamente. Cuando se añade mucho glicol, el punto crioscópico se eleva de  nuevo, como se vé en la línea roja de la derecha.
grafico etilenglicol

Fuente Consultada
Revista TECNIRAMA N°113 Enciclopedia de la Ciencia y la Tecnología

Subproductos Derivados del Petroleo Etileno Destilación y Refinación

Aunque el petróleo es importante como fuente de lubricantes y carburantes para los motores de combustión interna, los subproductos de las refinerías se utilizan como el punto de partida para la obtención de nuevas sustancias. Rápidamente, estos subproductos se han convertido en las principales materias primas para la obtención de una amplia gama de compuestos orgánicos complejos y, en particular, de los polímeros.

Hasta hace quince años, las principales fuentes de compuestos orgánicos eran el alquitrán de hulla y el alcohol etílico, obtenido por la fermentación de melazas. Cuando las compañías de petróleo más importantes comenzaron a trasportarlo crudo para su refinación posterior cerca de los centros, consumidores, en vez de refinarlo en los campos petrolíferos, se pudo disponer de los subproductos del petróleo en gran cantidad.

Desde un punto de vista económico, esta fue una situación ideal. Por un lado, las refinerías producían hidrocarburos gaseosos (con moléculas que contienen uno, dos, tres o cuatro átomos de carbono), de los cuales había una demanda limitada en aquella época.

Por otra parte, varios productos nuevos estaban en etapa de desarrollo y necesitaban materias primas económicas. Así, pues, los subproductos del petróleo se convirtieron en materiales de partida para muchos otros procesos.

Debido a la interdependencia entre las refinerías y las plantas químicas que utilizan sus productos, gran parte de los procesos iniciales se realiza en fábricas que dependen de las compañías de petróleos y de las empresas de productos químicos.

MATERIAS PRIMAS
Los elementos básicos con los que se obtiene gran número de compuestos son los hidrocarburos gaseosos, que son separados de los componentes sólidos y líquidos del petróleo crudo cuando éste se destila.

También se producen en gran cantidad durante la operación del craqueo catalítico. En este proceso, el gasóleo (fracción de petróleo con un punto de ebullición más alto que la gasolina) se vaporiza, se mezcla con vapor de agua y se hace circular por un catalizador caliente.

Las moléculas más grandes del gasóleo se rompen, para formar moléculas más pequeñas. Entre los compuestos más importantes que se obtienen por este procedimiento figuran el etileno, el propileno, el butileno y el butadieno. Sus moléculas no están saturadas (es decir, tienen dobles enlaces débiles), y algunos se utilizan para obtener hidrocarburos de cadena ramificada de peso molecular mayor, que se añaden a la gasolina para mejorarla (le dan un mayor índice de octano). Como hay una superproducción de gasóleo, no es difícil producir cantidades suficientes de estos compuestos no saturados para atender cualquier demanda.

Antes de que los gases se puedan utilizar en las plantas químicas, deben separarse. Esto se hace por destilación fraccionada, que se efectúa a presiones altas y baja temperatura, con lo cual los hidrocarburos se licúan.

Casi todos los gases que provienen de la planta de destilación son hidrocarburos saturados (es decir, los átomos de la molécula están unidos por enlaces sencillos fuertes). El propano y el butano se utilizan, principalmente, como gases trasportables. Éstos se licúan fácilmente a presiones moderadas y se envasan. Las garrafas o bidones de propano y butano se utilizan mucho, sobre todo en los lugares donde no hay gas de alumbrado.

Sin embargo, el metano (gas natural) es importante como materia prima. Este hidrocarburo (CH4), en sí, es poco reactivo, pero se puede convertir en alcohol metílico (CH3-OH), que tiene muchas aplicaciones. Esta conversión tiene lugar en dos etapas. Primero, el metano, mezclado con vapor de agua y anhídrido carbónico, se pasa sobre un catalizador caliente de níquel. Se forma una mezcla de monóxido de carbono e hidrógeno en las proporciones adecuadas. Cuando se comprime la mezcla, se obtiene alcohol metílico.

El alcohol metílico es un disolvente importante como tal, pero grandes cantidades de él se convierten en formaldehído (CHaO) por una reacción de oxidación. El formaldehído se usa en la preparación de varios fármacos, pero la mayor parte del producto se utiliza en la fabricación de plásticos de fenol-formaldehído (por ejemplo, la bakelita),

REFINACIÓN  DEL PETRÓLEO: En la refinería, la primera operación a la que se somete el petróleo crudo es la “destilación”. Ésta separa el petróleo en seis “fracciones”, la mayoría de las cuales sufre un tratamiento posterior. La gasolina destilada contiene gran proporción de parafinas de cadena lineal, que producen el picado o detonación cuando se quema aquélla en el motor del coche.

Este efecto se puede disminuir añadiendo a la gasolina parafinas de cadena ramificada e hidrocarburos cíclicos. Para producir estos compuestos cíclicos y ramificados se realizan tres procesos, que son: el craqueo, la polimerización y el “reforming”. Calentando a temperaturas elevadas los compuestos orgánicos, cuyas moléculas constan de muchos átomos, éstos se descomponen, dando compuestos de moléculas más pequeñas.

torre de destilación de petroleo

En el proceso de destilación primario se suministra petróleo crudo y se separan las distintas fracciones.

Este proceso, llamado “craqueo”, tiene lugar en las refinerías de petróleo, donde se rompen los aceites de alto punto de ebullición y se obtienen compuestos más volátiles, que se pueden añadir a la gasolina. Para facilitar estos cambios químicos se utilizan catalizadores, por lo cual el proceso se llama “craqueo catalítico”.

Además de dar compuestos adecuados para la destilación de gasolina, también se producen hidrocarburos gaseosos. Estos últimos (que contienen uno, dos, tres o cuatro átomos de carbono por molécula) se obtienen tanto en la etapa de destilación como en las del craqueo Catalítico.

Algunos de estos compuestos, especialmente los hidrocarburos no saturados propileno y butileno, se utilizan en reacciones de “polimerización”, para obtener hidrocarburos ramificados mayores, que, cuando se añaden a la gasolina, le confieren propiedades antidetonantes y elevan su índole de octano. Estos gases son también la materia prima para la industria petroquímica.

ETILENO
El etileno y los hidrocarburos superiores no saturados (propileno, butileno y butadieno) son mucho más reactivos que los hidrocarburos saturados, y por eso tienen muchas más aplicaciones como materias primas. Se obtienen, principalmente, en la planta de craqueo catalítico, donde, controlando con cuidado las condiciones de reacción (temperatura y presión) y la proporción de vapor añadido, se puede obtener un gran rendimiento en compuestos no saturados.

Como el etileno es un compuesto no saturado, resulta bastante reactivo. Toma parte en reacciones de adición (es decir, se le pueden añadir otras moléculas), y con facilidad forma polímeros, como el polietileno.

La mayor parte del etileno se usa en la fabricación de plásticos: polietileno, poliestireno, policloruro de vinilo (P.V.C.) y acrilonitrilo. El etileno también puede convertirse en alcohol etílico, que se emplea como disolvente.

El alcohol se oxida para dar acetaldehído y ácido acético, que, a su vez, se usan como materiales de partida para la fabricación de otros productos

También se utiliza el etileno en la fabricación de óxido de etileno, del cual se puede obtener etilénglicol, que se emplea como anticongelante en los sistemas de refrigeración de los automóviles. El etilénglicol es una materia prima utilizada en la fabricación de la fibra artificial llamada terilene.

La obtención de alcohol etílico a partir de etileno y agua es también un proceso catalítico en el que se usa ácido fosfórico como catalizador. En este proceso se obtiene, al mismo tiempo, éter dietílico en pequeña cantidad. Sólo un 5% del etileno que’entra en el reactor se convierte en alcohol etílico; por eso, el etileno se separa para reciclarlo, y el alcohol y el éter se separan por destilación fraccionada. El éter que se produce se utiliza como disolvente y anestésico.

La producción de plásticos y fibras artificiales que se derivan del etileno constituyen un tema demasiado extenso para describirlo aquí.

En casi todos los casos, la polimerización se realiza abriendo los dobles enlaces y utilizando las valencias libres para unir muchas moléculas entre sí. El polietileno se obtiene directamente del etileno, mientras que el cloruro de vinilo se produce a partir de etileno y cloro, antes de polimerizarlo.

El estireno, del cual se obtiene el poliestireno, también se consigue del etileno. Cada uno de esos plásticos tiene gran variedad de aplicaciones; algunos son buenos aislantes eléctricos, otros resisten el ataque químico. Unos son trasparentes, mientras que otros resultan traslúcidos u opacos.

En la actualidad, el propileno se utiliza principalmente para la obtención de otros compuestos orgánicos intermedios, como alcohol isopropílico, acetona y fenol, entre los más importantes; pero parece probable que en el futuro se utilicen cantidades mayores en la producción de un nuevo plástico: el polipropileno. Actualmente, la acetona se fabrica del propileno por medio de dos procedimientos diferentes. El primero consiste en obtener alcohol isopropílicoy luego oxidarlo a acetona.

En el proceso más reciente, el propileno reacciona con benceno para dar eumeno, que se oxida después y se descompone en fenol y acetona. La acetona es un disolvente muy importante y se utiliza en la producción de explosivos y adhesivos. El fenol es uno de los principales materiales de partida para la fabricación de gran número de plásticos y resinas; por ejemplo, el plástico fenol-formaldehído (bakelita)  y las epoxiresinas.

Cuando se unen cuatro moléculas de propileno, se obtiene una sustancia llamada isododeceno (CH2HE,), que se utiliza en la fabricación de varios detergentes de uso doméstico e industrial. Grandes cantidades de butadieno (CH2=CH—CH=CH2) y butileno (C4H8) se utilizan actualmente en la producción de varios tipos de caucho sintético y de plásticos.

Estos cauchos sintéticos se emplean en la fabricación de suelas de calzado y de neumáticos de automóvil. Durante el proceso de refinación del petróleo, también se obtiene gran número de compuestos inorgánicos. En el petróleo hay varios compuestos de azufre que deben eliminarse y que pueden ser una fuente de azufre para la producción de ácido sulfúrico.

El exceso de gas hidrógeno procedente de las refinerías se puede utilizar en la elaboración de amoníaco, que es un material esencial en la fabricación de varios fertilizantes.

tabla uso del petroleo

ALGO MAS SOBRE LOS USOS DEL PETROLEO:

El petróleo es una sustancia que las personas conocen y usan desde hace miles de años. Con el nombre de aceite de roca se empleaba, por ejemplo, para impermeabilizar todo tipo de embarcaciones, y en el antiguo Imperio babilónico (el actual Irak) ya se asfaltaban con él las calles principales. Sin embargo, sus utilidades eran escasas.

El primer pozo petrolero se perforó a mediados del siglo XIX, obteniendo como primer subproducto el queroseno, que sustituyó al aceite de ballena como combustible. A finales de ese mismo siglo aparecieron los primeros automóviles impulsados por gasolina, y la creciente demanda de coches con motor de combustión convirtió al petróleo en la principal fuente de energía en unas pocas décadas.

La industria petroquímica comprende la elaboración de todos aquellos productos que se derivan de los hidrocarburos, tanto del petróleo como del gas natural. Produce cientos de productos diferentes, con aplicaciones en casi todos los ámbitos de nuestra actividad:

•  Las fibras textiles artificiales, como el nailon. Presentan, sobre las fibras naturales, grandes ventajas, como resistencia ante el ataque de bacterias, hongos e insectos, se arrugan menos, se secan más rápidamente, etc.
•   Fertilizantes, herbicidas e insecticidas de todo tipo para la agricultura.
•   Colorantes, conservantes, antioxidantes y otros productos aditivos para la industria alimentaria.
•   Detergentes.
•   Envases y embalajes variados.

Todos los tipos de plástico son polímeros, es decir, materiales derivados del petróleo. Sus utilidades son incontables: carcasas para aparatos electrónicos (teléfonos, computadoras, televisores, etc.); film transparente para envolver alimentos; fibra óptica para comunicaciones; encapsulados y coberturas para material eléctrico; neumáticos, etc. Las aplicaciones del petróleo y sus derivados en nuestra vida diaria son muy numerosas.

CUADRO SOBRE EL USO DEL DERIVADO ETILENO:

cuadro uso del etileno

Fuente Consultadas:
Revista TECNIRAMA N°124 El Petróleo Como Materia Prima
La Enciclopedia del Estudiante Tomo 04 Tecnología e Informática Santillana

Energía Geotermica Concepto y Técnicas de Producción

Hasta las mayores centrales de producción de energía creadas por el hombre quedan empequeñecidas por la principal fuente de energía de la Tierra, el Sol. Directa o indirectamente, el Sol proporciona casi toda la energía que necesitamos, porque él es quien calienta el planeta, y en último extremo, quien impulsa el viento y las olas. Incluso la energía química de las reservas mundiales de carbón, petróleo y gas, procede originariamente de plantas y algas, que obtuvieron a su vez su energía del Sol.

Cada  vez   se   necesita   más   energía   para mover toda la maquinaria del mundo, y el hombre busca continuamente nuevas fuentes de ella. Además de quemar carbón y petróleo, rompe los átomos de los elementos radiactivos (energía atómica), construye presas en los ríos (energía hidráulica) y convierte directamente el calor del sol (energía solar).

Incluso, las fuerzas de los vientos y los grandes movimientos de las mareas han sido aprovechados. Una nueva fuente de energía, llamada a tener gran importancia en el futuro, es el calor producido por la misma Tierra: la energía geotérmica. No se conocen con absoluta certeza las causas de este calor terrestre; pero no puede dudarse de su existencia.

En muchas partes del mundo hay volcanes que expulsan grandes cantidades de lava fundida; el vapor se escapa a través de grietas; hay conos volcánicos donde hierve la lava, y agua hirviente que sale a la superficie en forma de manantiales calientes o geiseres. Se calcula que la energía que disipa la Tierra excede la contenida en los combustibles convencionales. Lo único que hace falta es descubrir el procedimiento para utilizar la potencia geotérmica.

No es una novedad la utilización del calor terrestre. Los islandeses tienen una larga conducción de agua, procedente de manantiales termales, que terminan en sus casas y huertos. Las casas de 46.000 personas (la cuarta parte de la población de Islandia) están calentadas geotérmicamente. En Larderello, cerca de Pisa, en el norte de Italia, los gases calientes que  salen del suelo se han utilizado, desde comienzos de siglo, para producir electricidad.

Pero, hasta muy recientemente, la potencia geotérmica no se consideraba como una fuente de energía importante, sino, simplemente, como un suplemento de las otras grandes fuentes naturales.

Los “geiseres” son manantiales calientes, que expulsan agua y vapor sólo a intervalos. Junto a la superficie, hay un sistema de cámaras intercomunicadas, que están llenas de agua caliente. En la base, el agua llega a sobrecalentarse y su temperatura sube a más dé 100°C; pero, debido al peso de las capas superiores del líquido, no puede hervir. Lentamente, se eleva la temperatura del agua próxima a la superficie. Por fin, parte de ella hierve, convirtiéndose en vapor. Con ello, la presión desciende y el agua sobrecalentada hierve también; como consecuencia, se produce un violento surtidor de vapor, que puede alcanzar alturas considerables.

La Tierra intercepta cientos de miles de millones de megavatios de energía del Sol. Aunque la mayor parte de ellos es devuelta por irradiación al espacio y no resulta utilizable, la cantidad de energía solar absorbida por la Tierra en un solo año es todavía mucho mayor que la energía que se podría obtener de toda la reserva aprovechable de combustibles fósiles del mundo.

Bastaría con utilizar al máximo una fracción minúscula de esta energía solar para satisfacer nuestras necesidades actuales. El Sol seguirá brillando durante miles de millones de años; por ello, las formas de energía obtenidas diariamente de él reciben el nombre de energías renovables.

Tarde o temprano se agotarán las reservas mundiales de carbón y petróleo, pero abajo de nosotros hay otra fuente de energía virtualmente ilimitada. Se trata de la energía geotérmica, el calor del núcleo de la Tierra. La parte externa del núcleo, justo debajo de la corteza terrestre, se compone de magma, esa roca al rojo vivo que expelen los volcanes en erupción.

En muchas zonas volcánicas, la energía geotérmica brota a la superficie en forma de agua caliente o vapor, que puede usarse para accionar generadores de electricidad. En 1904 se inauguró en Larderello, Italia, una planta activada por energía geotérmica, pero la electricidad que produce satisface apenas las necesidades locales. Hoy, en Cornwall, Inglaterra, y en Los Alamos, Nuevo México, se investiga la forma de extraer la energía que se halla escondida en el centro del planeta.

tecnica para geotermia

Gambusinos del calor Cerca de Los Alamos (desierto de Nuevo México) se han hecho perforaciones por pares. La más profunda de ellas llega a 4.400 m, donde la temperatura de la roca es de 327°C. Se inyecta agua, bombeándola a alta presión, para romper la roca y formar fracturas que unan los pozos. Así, el agua impelida por uno de los barrenos se vuelve vapor, que se fuga por las fracturas hacia el otro barreno, de donde se devuelve a la superficie por bombeo. Si se perfecciona esta tecnología de “ardientes rocas secas”, el agua calentada servirá para generar electricidad a gran escala, sin dañar el ambiente.

Energía geotérmica: A unos 30 km por debajo de nuestros pies, la roca alcanza una temperatura de aproximadamente 900°C. Este calor proviene principalmente de la descomposición radiactiva gradual de los elementos en el interior de la Tierra. En sentido estricto esta fuente de energía no es renovable, pero es inmensa. En los 10 km superiores de la corteza terrestre, a profundidades accesibles con las técnicas actuales de perforación, hay energía suficiente para cubrir todas nuestras necesidades energéticas durante cientos de años.

En algunas partes del mundo, como Islandia, por ejemplo, la cantidad de calor geotérmico que llega a la superficie es notablemente superior a la de otros lugares y puede utilizarse directamente como método de calefacción doméstica. En otros países, se calientan bloques de pisos con agua caliente procedente de pozos de unos 2 o 3 km de profundidad.

Sin embargo, las mayores reservas de calor geotérmico se encuentran a una profundidad muy superior, a unos 6 km. Como a esa profundidad las rocas están secas, resulta más difícil y costoso extraer su calor, porque es necesario bombear agua hacia abajo para transportar posteriormente el calor hacia arriba.

En un proyecto experimental llevado a cabo en Cornualles, Inglaterra, tres perforaciones de 2 km de profundidad han sido interconectadas mediante un sistema de grietas, que permite bombear el agua desde una perforación a otra.

Existen proyectos para taladrar agujeros de hasta tres veces esa profundidad, pero incluso a las profundidades actuales el agua vuelve a la superficie lo suficientemente caliente como para producir el vapor que hace funcionar las turbinas. Algunas estimaciones sugieren que en Cornualles y otros lugares donde las rocas están más calientes a menores profundidades, proyectos de este tipo podrían llegar a generar una energía equivalente a diez mil millones de toneladas de carbón.

Soltando vapor:En Islandia,Italia y Japón, la energía geotérmica es liberada, por medios naturales, de
su asiento bajo la corteza. Desde la superficie se filtra el agua de lluvia  y se acumula en capas de roca porosa, donde el magma subyacente la calienta. El agua caliente  sube de nuevo a la superficie por entre las fisuras de la roca y brota en forma de fuentes termales, charcos de lodo, chorros de vapor o geiseres. La humanidad puede abastecerse de energía natural con ayuda de una tecnología sencilla. Más del 80% de las casas islandesas cuentan con sistemas de calefacción alimentados con agua caliente geotérmica entubada.

Fuente Consultada:
Guinnes Publishing Limited Fasciculo N°20
Actualizador Básico de Conocimientos Universales Océano Tomo I

Historia de la Siderurgia Minerales de Hierro Obtención del acero

El hierro es el metal dominante en la civilización industrial actual, y su consumo en el mundo crece de un modo exponencial con el transcurso de los años. En efecto: el hierro constituye el 95 por 100 de los minerales que se extraen en la Tierra, y gran parte de otros minerales se extraen para ser aleados con el hierro, como en el caso del cromo y el níquel. El desarrollo y perfeccionamiento de las técnicas siderúrgicas hizo posible la revolución industrial del siglo pasado. El perfeccionamiento en la obtención de aleaciones ha permitido el avance en la técnica espacial.

Si importante es el hierro desde el punto de vista geológico, ya que por su abundancia es el segundo de los metales de la Tierra, todavía lo es más si se atiende al aspecto económico, puesto que constituye, sin lugar a dudas, la base sobre la que se apoya nuestra civilización. El hierro ha ido desplazando a otros materiales, la madera, por ejemplo en ramos tan importantes como el de la edificación.

La cantidad de hierro contenido en la corteza terrestre es verdaderamente extraordinaria: alcanza, en promedio, un valor del 5,05%. A pesar del extraordinario tonelaje que esto representa, no es posible la explotación masiva con los medios técnicos disponibles en la actualidad. Ahora bien, si alguna causa geológica produce una concentración local, aparece un criadero metálico económicamente explotable. Como es natural, la rentabilidad varía a tenor de los progresos técnicos.

El descubrimiento de los metales y la primitiva metalurgia
Es difícil decir cómo, cuándo y dónde fueron descubiertos y utilizados por primera vez los metales. Seguramente su descubrimiento fue casual y, con toda probabilidad, simultáneo en muchos lugares.
Puede asegurarse que el hombre primitivo conocía el hierro meteórico, procedente de los espacios celestes, y el oro nativo, inoxidable por la acción del aire; pero los utilizaba sólo para hacer ornamentos, sin emplearlos en gran escala.

El primer descubrimiento de importancia práctica fue el del cobre, cuyos minerales se distinguían con facilidad por sus coloraciones verdes, azules y rojas, y que debían encontrarse en el suelo en bastante abundancia; hoy en día estos afloramientos han desaparecido debido al lento paso de los siglos.

Trozos de estos minerales, carbonates o sulfuros, puestos en el fuego se “reducían”, es decir, el azufre y el carbono se quemaban, y el metal, que quedaba puro, se fundía recogiéndose en pequeños bloques. Golpeados con piedras, se les podía dar con facilidad las formas apropiadas para los instrumentos necesarios, que resultaban de gran resistencia. Entonces se inició la búsqueda sistemática de estos minerales y la construcción de pequeños hornos, con lo que nació la primera metalurgia, que se convirtió desde su origen en un arte para especialistas.

Sin embargo, el uso del cobre puro se extendió poco debido a que en seguida sobrevino el descubrimiento del bronce, aleación formada aproximadamente por cuatro partes de cobre y una de estaño. Cómo se descubrió el mineral de estaño y su aleación con el cobre es imposible establecerlo. Probablemente fue una unión casual entre ambos metales en el lugar donde debían hallarse afloramientos vecinos. Pero la importancia reside en que, obtenido el primer bronce, el hombre se da cuenta que es mucho más resistente y fácilmente fusible que el cobre puro.

El descubrimiento y uso del hierro llegó mucho más tarde; el mineral del hierro —constituido sólo por óxidos— resiste temperaturas más altas que la necesaria para fundir el cobre. Durante muchos siglos no se obtuvo hierro fundido; aunque la iniciación de la edad del hierro se remonta a unos 1.000 años a. de C., hasta la época moderna no se pudo obtener fundido en forma de fundición, esto es, en unión de cierta cantidad de carbono; solamente a alta temperatura tiene lugar esta “carburación” del hierro, y la fundición se recoge líquida.

El mineral de hierro calentado, se reducía parcialmente y se ablandaba; entonces, forjándolo repetidamente se expulsaba la escoria, se completaba la reducción y quedaba en el hierro una pequeña cantidad de carbono; se obtenía, finalmente, lo que hoy llamamos acero, muchas veces en estado de gran pureza.

Con el proceso de la técnica se introdujeron en la primitiva metalurgia notables perfeccionamientos: del simple horno de pila protegido por piedras se pasó a los hornos verticales, llamados de cuba, en los que el mineral y el carbón de leña, en sustitución de la leña verde, se introducen alternativamente por la parte superior; se utilizó, después, la ventilación forzada mediante fuelles de piel accionados a mano; del bajo horno empleado hasta 1800, llamado “horno a la catalana”, se pasó gradualmente a los tipos que fueron los precursores de los actuales altos hornos.

La carburación del hierro, que se transforma en fundición, se verifica a temperaturas de 1600-1700° C; para que el horno pudiera alcanzarlas fue necesario aumentar sus dimensiones e introducir la “ventilación por agua”, en la que el paso de agua a gran velocidad dentro de un tubo vertical produce una fuerte corriente de aire. Carburado ya, se obtiene el hierro colado. Al principio se consideró la fundición como un producto de desecho, utilizable sólo para recipientes y tubos, pues es frágil y tiene menos resistencia que el acero; sin embargo, posteriormente se aprendió a eliminarle el exceso de carbono, convirtiéndola en acero.

Con todo, estamos solamente en el siglo XIX, en vísperas de la gran transformación industrial. También las técnicas de la fundición del bronce se remontan a la antigüedad y fueron rápidamente perfeccionadas, como lo demuestran los objetos prehistóricos y las admirables obras de arte de la edad clásica.

En la antigüedad clásica se conocía el plomo, fácil de fundir, con el cual se construían planchas para revestimientos y tubos; el cinc, sin embargo, no se conoció hasta el Renacimiento, ya que si no se toman precauciones especiales pasa directamente al estado de vapor; si después se enfría, se deposita en forma de diminutos cristales.

Este fenómeno recibe el nombre de “sublimación”, totalmente incomprensible para la mentalidad del hombre antiguo. El mercurio fue descubierto en estado nativo en pequeñas cantidades sin que fuera empleado; se conocía, sin embargo, su sulfuro, llamado cinabrio, usado como colorante y cosmético. En la Edad Media fue estudiado por los alquimistas, quienes descubrieron la amalgama que forma con los otros metales y sugirieron su empleo para la fabricación de espejos y productos farmacéuticos.

La metalurgia moderna
La época moderna, y en especial el siglo XIX, trajo el descubrimiento de numerosos metales que enriquecieron el escaso patrimonio de los antiguos y pasaron con rapidez, del estudio en el laboratorio químico, a las aplicaciones técnicas en las fábricas.

Bastará señalar el manganeso, níquel, cobalto y wolframio (conocido también con el nombre de tungsteno) que, unidos en porcentajes relativamente pequeños al acero, le confieren gran resistencia; se obtienen así los aceros especiales, entre los que se pueden destacar el acero al manganeso, al níquel, al cromo-níquel, el acero de corte rápido que contiene wolframio, así llamado porque con él se construyen herramientas para la elaboración en frío de los aceros corrientes, debido a que no pierde su dureza aunque se caliente al rojo; por este motivo puede girar rápidamente sobre otro acero sin que, al calentarse, se alteren sus propiedades.

Vemos, pues, que gracias al profundo estudio científico de la metalurgia, se está en condiciones de producir una vastísima gama de aceros con propiedades especiales y aptos para las más diversas aplicaciones.

Se suele decir que la edad del hierro prosigue aún hoy en día, pero ¡qué perfección en los materiales presenta respecto a las simples industrias de hace 200 e incluso 100 años!

El hierro —se le da este nombre, pero en realidad debiera decirse la fundición y el acero— domina todavía la técnica moderna en las construcción Bessemer-Thomas o, simplemente, Thomas. El horno Martín-Siemens es de reverbero, constituido por una cámara rectangular cerrada, de piso horizontal y cubierta por una bóveda baja.

La cámara está dividida en dos compartimentos por un tabique bajo, llamado altar; en un lado arde el combustible, y en el otro el material a tratar, que es hierro muy dulce (en general, trozos) y mineral en proporciones adecuadas.

Este se calienta tanto por los humos del combustible como por el calor que refleja la bóveda. A este tipo de horno, ideado por el francés Martín, el alemán Siemens le añadió un dispositivo para recuperar parte del calor que se escapa con los productos de la combustión. De aquí su nombre.

El acero puede obtenerse también mediante el horno eléctrico de arco o de inducción. Los aceros especiales se obtienen al crisol, es decir, en vasos cerrados de material refractario, a fin de preservar a los componentes de las impurezas que contienen los humos del horno.

La producción siderúrgica en el mundo
Desde la fundición, en todas sus variedades, hasta los aceros especiales ya mencionados (al cromo, al níquel, al manganeso, al cromo-níquel, al cromo-vanadio, al wolframio, etc.), la gama de los productos de la industria del hierro, llamada siderurgia, es extensísima y representa la base del sistema productivo de todos los países, constituyendo la denominada industria pesada.

Sin ésta no serían posibles las construcciones de maquinaria en general, ni las ferroviarias, automovilísticas, navales, aéreas y agrícolas. La siderurgia puede tomarse, por consiguiente, como un índice del potencial industrial de una nación. La cantidad de fundición y acero producidos anualmente alcanza cifras del orden de millones de toneladas. La mayor potencia siderúrgica son los EE.UU., seguidos por la Unión Soviética y, con menor producción, por Japón, República Federal de Alemania, Inglaterra y Francia.

La edad del hierro, iniciada hace cerca de 3.000 años, continúa, pues, en nuestros días. A pesar del descubrimiento de otros muchos metales, esté sigue siendo fundamental, pues ningún otro ha podido mejorar su resistencia y demás propiedades mecánicas; y algunos, que quizá las igualarían, son raros, y su producción industrial difícil y antieconómica.

El único que ha mantenido su importancia junto al hierro, en el transcurso del último siglo, es el aluminio. Este es el metal más abundante en la corteza terrestre (casi el doble que el hierro) y conduce el calor y la electricidad mejor que aquél. Su escasa densidad y la facilidad para producir aleaciones ligeras le hacen insustituible en la fabricación de las estructuras y revestimientos de los modernos aparatos de aviación así como en muchas otras industrias de todo tipo.

Sin embargo, los campos de aplicación del hierro y del aluminio están perfectamente delimitados, aunque ambos metales se emplean provechosamente unidos en producciones de todo género que abarcan una extensa gama, que comprende desde la industria pesada antes mencionada a los pequeños objetos de uso cotidiano.

alto horno

Imagen Alto Horno

Un alto horno, un horno de fundición, trabaja constantemente. El trabajo puede disminuir y aun cesar en otros departamentos de una fábrica de acero, pero el horno de fundición funciona sin interrupción alguna día y noche para producir los lingotes de hierro.

LOS MINERALES DE HIERRO…

Los minerales de hierro importantes son: magnetita, oligisto, limonita y siderita, los cuales pueden hallarse en muy diversos tipos de yacimientos. Cuando una masa de materiales fundidos —un magma— cristaliza, no todos sus componentes lo hacen simultáneamente, y se produce la concentración de determinados compuestos. Así, se han originado los yacimientos magmáticos.

La diferenciación puede haber ocurrido en el sitio donde se encuentra el mineral, o haber sobrevenido una inyección de él, como ocurre en el depósito de magnetita de Kiruna (Suecia), que es el mayor del mundo. En él, la gran masa de magnetita aflora a lo largo de 2.800 m con una anchura de 145 m. Se halla dentro del círculo polar ártico, en la Laponia sueca, y se le atribuye una longitud real de 160 kilómetros.

En otros casos, si bien el agente causante de la mineralización continúa siendo una masa de materiales fundidos, no es ella la única que colabora en la formación del yacimiento. En efecto, durante el proceso de consolidación se desprenden emanaciones gaseosas a elevada temperatura, las cuales, al actuar sobre las rocas próximas, producen reacciones que engendran la mineralización. De esta forma se originaron los yacimientos metasomáticos, como los de Cornwall e Iron Springs (Estados Unidos). En Cornwall (Pengilvania) la magnetita se halla en contacto con una diabasa que, durante el triásicó, cortó rocas sedimentarias del cámbrico.

También se encuentran yacimientos de mineral de hierro formados por transformación de otros minerales existentes (yacimientos por reemplazamiento). Los más característicos son los de Lyon Mountain (Nueva York), donde masas muy ricas en magnetita forman reemplazamientos en un gneiss granítico. La masa mayor tiene de longitud más de 1.500 metros y 6 de anchura. Dentro del mineral existen cavidades miarolíticas lo suficientemente grandes para que quepa en ellas un hombre. En Iron Mountain (Montana) se explota, a su vez, una masa de reemplazamiento de considerable tamaño, formada por hematites y magnetita.

Los yacimientos de hierro sedimentario representan la mayor parte de la producción y de los recursos identificables del mundo. Casi todas las menas proceden de sedimentación química, y el período de la historia de la Tierra durante el cual se depositaron los mayores sedimentos ricos en hierro datan de entre los 3,2 y los 1,7 mil millones de años de antigüedad. Estos sedimentos forman en el Lago Superior (Estados Unidos) bandeados muy finos, que consisten en una alternancia de mineral de hierro y sílice.

Los yacimientos residuales se forman donde hay meteorización y el hierro ferroso presente en una roca es oxidado hasta la forma férrica relativamente insoluble. Muchos constituyentes inútiles son arrastrados y permanece insoluble el hierro, que, poco a poco, es concentrado. El conocido yacimiento de Vizcaya aparece instalado en una capa de calizas cretácicas, en parte de las cuales el carbonato cálcico fue reemplazado por siderita; además, en la parte superior, la meteorización originó una concentración residual de oligisto y limonita.

magnetita Oligisto
Magnetita Oligisto
Limonita sidorita
Limonita Sidorita

AMPLIACIÓN: DEL HIERRO AL ACERO
El hierro obtenido en los altos hornos es una materia prima, no un producto acabado. Para ser útil tiene que ser convertido en hierro colado o en acero. El hierro colado se produce mediante la refundición de lingotes de hierro (hierro fundido en moldes y enfriado), ajustando cuidadosamente las proporciones de carbono, silicio y demás elementos que entran en la aleación.

Fuerte y resistente al desgaste, el hierro colado puede ser trabajado y es fácilmente moldeable en formas bastante complejas. Los moldes en los que se funde el hierro son cajas llenas de arena. La forma se graba en la arena y se vierte sobre ella la colada. Cuando la pieza de hierro ha solidificado, se saca y la arena se reutiliza para un nuevo molde.

La mayor parte del hierro tratado en los altos hornos se convierte en acero, reduciendo considerablemente su contenido de carbono. En 1857 el ingeniero inglés Henry Bessemer (1813-1898) descubrió una forma muy económica de eliminar el carbono del hierro fundido.

En el procedimiento Bessemer, se inyecta aire combinado con algo de carbono a través del hierro fundido, eliminando el monóxido de carbono y el dióxido de carbono. También se oxida parte del hierro, que entonces se combina con el silicio y el manganeso para formar la escoria. En tan sólo 15 minutos se convierten en acero varios centenares de toneladas de hierro. El convertidor entero gira sobre un eje, como una hormigonera, para verter el acero fundido.

En la década de 1860, un grupo de ingenieros inventó un proceso mucho más lento y más controlable: el procedimiento de horno de solera. En este procedimiento se utiliza gas de carbón de baja concentración para calentar hierro fundido en un horno poco profundo. Los cambios químicos son los mismos que en el convertidor Bessemer, pero el procedimiento tiene la ventaja de que se puede añadir chatarra de hierro a la mezcla. Con este método se tarda unas doce horas en producir acero, lo que permite un control muy exacto de la composición final.
Actualmente, tanto el procedimiento Bessemer como el procedimiento de solera han sido sustituidos en la mayor parte de los países por un proceso que combina las ventajas de los dos.

En el procedimiento LD (abreviatura de Linz-Donawitz), se insufla un chorro de oxígeno casi puro a través de una lanza sobre la superficie del hierro fundido. El proceso es rápido y puede absorber hasta un 20% de chatarra, a la vez que produce un acero de muy alta calidad. La adición de cal al oxígeno permite convertir en acero hierro con un mayor contenido en fósforo; este último procedimiento se denomina horno básico de oxígeno.

Para los aceros más caros, incluidas las aleaciones y los aceros inoxidables, se utilizan hornos de arco eléctrico (ver fotografía). El calor lo proporcionan tres electrodos de carbono introducidos en una mezcla de chatarra con los elementos» de adición propios de cada aleación. El silicio si manganeso y el fósforo se eliminan e! carbono se elimina al añadir de hierro, que reacciona exactamente igual que en un alto horno. El hecho de que los hornos de arco eléctrico puedan fundir cargas constituidas en su totalidad por chatarra es una gran ventaja en los países desarrollados, donde el acero reciclado representa una gran proporción de la producción total.

Tipos de acero
El acero se vende en forma de planchas fundidas, enrollado en láminas, en tiras, en barras (para clavos, tornillos y alambre) o en vigas (para edificios, puentes y otras utilizaciones propias de la construcción). Las características del acero se pueden modificar con ciertos procedimientos, como el tratamiento por calor y las aleaciones, a fin de que resulte adecuado para usos específicos. El factor más importante en cualquier acero es el contenido de carbono.

Los aceros con alto contenido de carbono son más duros y fuertes, pero también más quebradizos y no se pueden soldar. Para que la soldabilidad sea adecuada, el contenido de carbono debe ser inferior al 0,2%. Las características precisas de cualquier tipo de acero dependen también del tratamiento por calor, que determina su micro-estructura.

El acero puede endurecerse calentándolo al rojo vivo —en torno a los 850°C— y apagándolo entonces con agua, pero también en ese caso resulta quebradizo. Es posible conservar la dureza en gran parte y reducir la fragilidad mediante una segunda cocción a temperatura más baja —unos 250°C—, seguida del enfriamiento del acero a temperatura ambiente. Este acero recibe el nombre de acero templado.

La aleación del acero con otros elementos, además del carbono, también es importante. El acero que contiene un 3% de níquel, por ejemplo, es extraordinariamente duro y se utiliza para ruedas dentadas y ejes que deben soportar grandes esfuerzos. Los aceros que contienen hasta un 13% de manganeso tienen bordes muy duros, y se emplean para hacer determinadas maquinarias como las excavadoras y taladradoras.

El molibdeno se alea con algunos aceros para reducir su fragilidad. Los aceros inoxidables, que contienen en torno a un 14% de cromo y a veces también níquel, no se oxidan debido a la formación en su superficie de una capa impermeable de óxido. En la actualidad, estos aceros son muy empleados para la realización de cuberterías y fregaderos de cocina, así como para el revestimiento de edificios.

hierro moldeado

El acero fundido (izquierda) es moldeado en formas básicas y estandarizadas, como barras y planchas, antes de ser laminado o convertido en productos para la venta. En el pasado, todo metal fundido pasaba siempre por una etapa intermedia de lingotes antes de ser recalentado y laminado. Sin embargo, el desarrollo del sistema de fundición continuo ha permitido verter directamente el metal fundido en una máquina especial para producir barras o planchas.

chatarra autos

La disponibilidad de chatarra reciclable es un factor importante a la hora de determinar el proceso más adecuado para la fabricación de acero, in una economía desarrollada típica, la chatarra disponible es tanta que cualquier objeto nuevo fabricado con acero puede estar constituido por chatarra reciclada hasta en un 50%: los automóviles nuevos llevan otros viejos en su interior. En las economías en desarrollo, donde hay menos acero viejo, se usa una proporción mucho menor de chatarra. No toda la chatarra procede de productos que han llegado al final de su existencia. En las propias fábricas de acero se el material que no alcanza el nivel requerido. Por otra parte, los recortes de la industria vuelven a las acerías para su reprocesamiento.

Petróleo               Carbón              Gas natural

Fuente Consultada:
Natura Las Reservas Económicas Naturales
Biblioteca Temática UTEHA – El Mundo Que Nos Rodea

Las reservas de energia en paises de America Petroleo, Gas Natural y Carbon

En 2005 los países del hemisferio occidental produjeron 25% del petróleo mundial y consumieron 36%. Los tres países de América del Norte (Estados Unidos, Canadá y México) produjeron aproximadamente el doble de petróleo que los demás países americanos y consumieron alrededor de cinco veces más del mismo que el resto del hemisferio combinado.

En gas natural, la producción y el consumo en el hemisferio occidental en 2005 fueron más o menos iguales: 32% en el primer caso y 33% en el segundo. En este renglón la producción y el consumo en el resto del hemisferio fueron de entre 16 y 17% de los de América del Norte. La mayor parte del gas natural del hemisferio se mueve por gasoducto, y por consiguiente poco se puede importar de países de otros ámbitos. Si, como se espera, aumenta el comercio de gas natural licuado (GNL), este se volverá una mercancía global que podría importarse de fuera del hemisferio.

reservas de petroleo en el mundo

La cooperación energética es extensiva entre los tres países norteamericanos. Expertos de cada país se reúnen con periodicidad bajo la égida del North Americai Energy Working Group (Grupo de Trabajo de Energía de América del Norte) para evaluar sus perspectivas y necesidades individuales y colectivas. Canadá es el mayor ex portador de petróleo, gas natural y electricidad a Estados Unidos.

En años recientes México ha llegado al segundo lugar en la exportación de petróleo a su vecino del norte sin embargo, es importador de gas natural su red eléctrica está mucho menos integra da a la estadounidense que la de Canadá. La mayoría de las exportaciones canadienses de petróleo provienen hoy día de las arenas bituminosas del país, y existe confianza en que los suministros futuros provengan de ese vasto recurso.

Por el contrario, las reservas probadas de petróleo de México, dados los niveles actuales de producción, durarán sólo unos 10 años, y la exploración y nueva producción están limitadas por la falta de fondos en Pemex y el veto constitucional a la participación privada en proyectos de petróleo y en la mayoría de los de gas.

En contraste con América del Norte, la cooperación energética es limitada entre países del resto del hemisferio, sobre todo por animosidades políticas; el caso más notable es entre Bolivia y Chile, que data de la época en que Bolivia perdió acceso al mar tras ser derrotada en la Guerra del Pacífico, hace unos 125 años. La incapacidad de generar cooperación sostenida en temas energéticos en América latina refleja añejos fracasos en generar acuerdos duraderos en materia de comercio e integración económica.

Otra diferencia entre América del Norte y el resto del hemisferio es que ni Estados Unidos ni Canadá tienen una compañía petrolera nacional, en tanto que estas son ubicuas en otras partes. Estas empresas de ningún modo son iguales: Pemex y Petrobras (la firma brasileña) tienen estructuras diferentes y Petrobras tiene muchos proyectos conjuntos con compañías independientes y con otras paraestatales; Pemex no. La firma estatal venezolana, Petróleos de Venezuela SA. (PDVSA), opera hoy en forma muy diferente de como lo hacía antes de que Hugo Chávez llegara a la presidencia del país.

La situación energética en cada nación del hemisferio es única. Algunas recurren mucho a la energía hidroeléctrica para generar electricidad, otras al carbón, y otras al petróleo y el gas natural. La energía nuclear no se ha desarrollado mucho en el hemisferio. El etanol desempeña un papel más importante como combustible para el transporte en Brasil que en cualquier otro país de la zona.

ESTADOS UNIDOS. La producción petrolera fue de 6,8 millones de barriles diarios en 2005, más que en cualquier otro país del hemisferio, pero el consumo fue de 20,6 millones; la diferencia se cubrió con importaciones de 13,5 millones de barriles diarios (incluyendo derivados) El consumo representó 25% del total mundial. Alrededor de la mitad de las importaciones de petróleo y derivados procede ahora de países del hemisferio occidental.

La producción de gas natural en 2005 fue de 525.700 millones de metros cúbicos y el consumo fue de 633.500 millones, más que cualquier otro país. El consumo estadounidense de gas natural en 2005 representó 23% del total mundial. Cerca de 85% de las importaciones de gas de ese año provino de Canadá. Las importaciones de GNL fueron de casi 15% de todo lo que se entrega por oleoducto, y 75% procede de Trinidad y Tobago. El Grupo de Trabajo de Energía de América del Norte ha concluido que Estados Unidos, y América del Norte en su conjunto, tendrán que depender en el futuro más que hoy día de las importaciones de GNL.

La posición dominante de Estados Unidos en petróleo y gas lo convierte en el foco del análisis energético hemisférico, al tiempo que su creciente dependencia de las importaciones de petróleo y derivados se ha vuelto fuente de cada vez mayor preocupación interna. Esta inquietud se traduce en el discurso político nacional como la necesidad de lograr “independencia” energética, lo cual no es factible en el futuro previsible y tal vez no lo sea nunca, a menos que se produzcan importantes innovaciones tecnológicas. Esta independencia tampoco es factible en el hemisferio en las circunstancias actuales. Estados Unidos genera alrededor del 50% de su electricidad a partir del carbón, lo cual crea considerables gases de invernadero, en particular dióxido de carbono. Otro 20% de la electricidad del país es generado por energía nuclear.

La mayoría de las importaciones petroleras se utiliza en el transporte, y ello explica el actual énfasis en la producción de biocombustibles, en especial etanol, para suplir la gasolina.

 CANADÁ. Las reservas probadas de petróleo de Canadá ascienden a 179.000 millones de barriles, las segundas en volumen detrás de las de Arabia Saudita, pero con una salvedad: el grueso de sus reservas es de petróleo no convencional, que puede extraerse de las arenas bituminosas de la Cuenca Sedimentaria del Oeste de Canadá (CSOC). Esta producción es de aproximadamente un millón de barriles diarios y se proyecta que se elevará a 3,5 millones hacia 2025. Este recurso hace de Canadá el proveedor más importante para Estados Unidos y también el más seguro en el hemisferio, y tal vez en el mundo a causa de la amistad y cooperación sustanciales entre ambos países. Más de 99% de las exportaciones de petróleo crudo de Canadá se envía a su vecino del sur.

La producción de las arenas bituminosas se logra con un alto costo ambiental, pues se contaminan enormes volúmenes de agua en los que se realiza la extracción de bitumen, además de que se liberan grandes cantidades de gases de invernadero. El país tiene 1,59 billones de metros cúbicos de reservas probadas de gas (56 billones de pies cúbicos), concentrados en la cuenca.

MÉXICO. Las reservas probadas de petróleo de México son de unos 14.000 millones de barriles, la mayoría crudos pesados ubicados frente a la costa del Golfo de Campeche, en el sudeste. Cantarell, el yacimiento que ocupa el segundo lugar del mundo en términos de producción, aportó 63% de la producción mexicana en 2004, pero ha ido declinando en más de 20% entre enero de 2006 y principios de 2007; a principios de 2007 produjo 1,6 millones de barriles diarios en comparación con 2 millones en 2005. Se hace un gran esfuerzo por moderar el descenso mediante la inyección de grandes cantidades de nitrógeno en el campo y perforando horizontalmente para extraer petróleo de una superficie mayor.

México produjo un promedio de 3,8 millones de barriles diarios de petróleo en 2005, pero a esta tasa de producción, combinada con el descenso en Cantarell, las reservas probadas durarán quizá 12 años —a menos que se den nuevos hallazgos—, de las cuales se han encontrado algunas de poca importancia en años recientes. El gobierno impone un fuerte gravamen a los ingresos brutos de Pemex para financiar alrededor de 35% del presupuesto federal. Esto ha sido necesario porque otras recaudaciones fiscales ascienden a sólo 11% del PIB, en un presupuesto equivalente a un 18% de este. A causa de esta alta carga fiscal, Pemex ha operado con pérdida neta en años recientes; tuvo una modesta ganancia en 2006 a causa de los altos precios del petróleo. Es incapaz de financiar exploraciones en aguas profundas del Golfo de México, donde hay elevadas perspectivas de nuevos descubrimientos; debido a esta escasez de fondos, carece de experiencia en perforación en aguas profundas, en contraste con Petrobras, que tiene gran experiencia en esa actividad.

La Constitución mexicana confiere a Pemex un monopolio sobre la exploración y la producción de petróleo y no permite el financiamiento accionario privado en estas actividades.

Las reservas probadas de gas natural del país son de 0,41 billones de metros cúbicos y si bien la producción de 2005 fue significativa, de 39.500 millones de metros cúbicos, México debe importar gas natural para hacer frente al creciente consumo. Pemex es el mayor consumidor de gas natural del país.

VENEZUELA. Las reservas probadas de petróleo de Venezuela a finales de 2005 eran de 79.700 millones de barriles, las mayores del hemisferio. Serían más altas (hasta 270.000 millones más) si el país lograra contar con el bitumen recuperable de la faja petrolera del Orinoco en la misma forma en que Canadá incluye su petróleo no convencional de sus arenas bituminosas. Sin embargo, Venezuela no ha llegado tan lejos como Canadá en la explotación de este recurso, aunque sin duda esos vastos depósitos serán importantes en el futuro. La producción petrolera es de 3,1 millones de barriles diarios (cifra de PDVSA) en 2005. Ese año Venezuela suministró 1,3 millones de barriles diarios a Estados Unidos, con lo cual ocupó el cuarto lugar en importancia entre los proveedores de ese país (detrás de Canadá, México y Arabia Saudita). Pese a la fricción política entre ambas naciones, cerca de 70% de las exportaciones petroleras venezolanas se destina a Estados Unidos. Hay dos razones para ello: la capacidad de las refinerías estadounidenses de manejar el petróleo crudo pesado venezolano, y el costo relativamente bajo de envío, lo cual es evidente en comparación con lo que se remite a China.

Los altos precios mundiales del petróleo ofrecen ingresos sustanciales a Hugo Chávez, el presidente de Venezuela, para ocupar un papel preponderante en América latina y en la escena mundial. Venezuela ofrece precios reducidos a países del Caribe, entre ellos Cuba, y ha adquirido bonos para ayudar a Ecuador y Argentina.

Ha propuesto la construcción de un megaducto para enviar gas natural a Argentina, vía Brasil, a un costo que probablemente rebasaría los 25.000 millones de dólares; el futuro de esta propuesta es incierto, por razones económicas, y también porque Venezuela no produce gas suficiente para enviarlo por tal conducto. Sus reservas probadas de gas son altas, de 4,32 billones de metros cúbicos, pero la producción en 2005 fue relativamente modesta, de 28.900 millones. En 2006 tomó medidas para obtener la propiedad mayoritaria de seis proyectos en la cuenca del Orinoco que antes pertenecían en su mayor parte a seis firmas privadas.

BRASIL. A finales de 2005, Brasil contaba con 11.800 millones de reservas probadas de petróleo. La producción y el consumo en ese año fueron más o menos iguales: la producción fue de 1,7 millones de barriles diarios, y el consumo, 1,8 millones. Sólo en años recientes dejó de ser importador de petróleo, en parte por el aumento de producción y en parte por el uso extendido del etanol como combustible para motores de automóviles.

Hoy día el etanol puede suministrar 40% del combustible para autos en el país. La mayoría de los vehículos son de consumo flexible, capaces de funcionar con cualquier mezcla de gasolina y etanol; la mezcla actual contiene 23% de etanol, el cual en el país sudamericano se elabora a partir de la caña de azúcar. El gobierno estadounidense subsidia directamente la producción de etanol, lo cual ocurrió también en Brasil durante muchos años, pero ya no. Estados Unidos cobra un derecho de 54% por galón <3.785 litros) más 2,5% de impuesto de importación ad valorem al etanol brasileño, pese a que Brasil es su proveedor más importante de este combustible. Brasil también realiza investigación en biodiésel fabricado a partir de semillas oleaginosas que se pueden encontrar en la parte nordeste del país, rezagada económicamente. A finales de 2005 Brasil tenía 0,31 billones de metros cúbicos de reservas probadas de gas. Su producción para ese año fue de 11.400 millones de metros cúbicos, y su consumo, de 20.200 millones.

La diferencia fue cubierta en gran parte con importaciones de Bolivia, la cual nacionalizó en 2006 las productoras extranjeras de gas, incluidas las instalaciones propiedad de Petrobras, y también elevó los precios del gas natural. Ha habido hallazgos recientes de depósitos aparentemente grandes de gas en las sondas de Campos, Santos y Espíritu Santo. La perforación en la sonda de Santos fue profunda, hasta de 3.500 metros. La capacidad de Petrobras de emprender perforaciones en aguas profundas merece subrayarse porque es precisamente una habilidad que Pemex no ha desarrollado. Brasil prevé contar con la infraestructura completa para llevar el gas de la sonda de Santos al estado de San Pablo en unos cinco años, y reducir la necesidad de importaciones de Bolivia. Además construye dos plantas para la regasificación de GNL Petrobras es una paraestatal emisora de acciones que se venden en las bolsas de valores, pero el gobierno posee la mayoría de acciones ordinarias. A diferencia de Pemex, Petrobras debe satisfacer tanto a accionistas privados como al gobierno de Brasil.

Aproximadamente 80% de la electricidad del país se produce con energía hidroeléctrica, lo cual necesita el respaldo de plantas generadoras termoeléctricas que requieren importaciones de gas natural y diésel durante los períodos de secas.

 ARGENTINA. Las reservas probadas de petróleo de Argentina ascienden a 2.300 millones de barriles (finales de 2005). La producción fue modesta en 2005, 725.000 barriles diarios, y el consumo fue de 421.000 barriles diarios. Las reservas de gas natural a finales de 2005 fueron de 0,50 billones de metros cúbicos. La producción de ese año fue de 45.600 millones de metros cúbicos, y el consumo, de 40.600 millones, más o menos suficiente para el uso interno pero poco para exportar. De hecho, en 2004 Argentina canceló un contrato para enviar gas natural a Chile, aunque siguió remitiendo un poco durante más o menos un año. El gas natural dio energía a cerca del 55% de la producción eléctrica del país y petróleo para 30% en 2005. En 1997 Argentina ocupó el tercer lugar entre los mayores usuarios de gas natural en el mundo, detrás de Estados Unidos y Rusia. Ha cerrado un contrato para importar grandes cantidades de gas de Bolivia una vez que la infraestructura de esta se haya instalado.

La estatal argentina, Yacimientos Petrolíferos Fiscales (YPF), fue privatizada en 1993, durante la presidencia de Carlos Menem; la nueva empresa se llama hoy Repsol-YPF. En 2004 se fundó una nueva paraestatal, Energía Argentina S.A. (Enarsa), sin capital pero con la autoridad para vender nuevos contratos de concesión costera a empresas privadas de petróleo y gas y colaborar en proyectos conjuntos.

BOLIVIA. La importancia de Bolivia en el campo energético se deriva de sus hallazgos relativamente recientes de gas natural. Las reservas probadas de gas a finales de 2005 ascendían a 0,74 billones de metros cúbicos, segundas en volumen en América del Sur, después de las de Venezuela. La producción en ese año fue de 10.400 millones y casi toda se destinó a la exportación. La mayor parte de los descubrimientos ocurrió en la década de 1990, durante el gobierno del presidente Gonzalo Sánchez de Lozada, y fueron seguidos por contratos extranjeros con la paraestatal boliviana, Yacimientos Pe trolíferos Fiscales Bolivianos (YPFB), y la instalación de gasoductos para exportación, en especial Gasbol, que va de Río Grande, al sur de Santa Cruz, en Bolivia, a San Pablo y Porto Alegre, en Brasil, país que ha desempeñado un papel importante para Bolivia al generar 18% de su PIB en 2005.

A partir de 2000, el nacionalismo político creció y se enfocó abiertamente en el papel del gas natural, pero sobre todo en la división de la energía nacional. Hubo manifestaciones callejeras bajo el lema “No al gas”, y dos presidentes, Sánchez de Lozada y luego su vicepresidente y sucesor, Carlos Mesa, fueron obligados a renunciar. Evo Morales fue elegido presidente en diciembre de 2005 y en mayo del año siguiente se nacionalizaron las compañías energéticas extranjeras. En 2007 Brasil accedió a pagar precios más altos por el gas boliviano, y también decidió acelerar la construcción de infraestructura para transportar gas natural de la son-da de Santos a San Pablo y dos instalaciones para regasificar GNL.

Aquí es apropiada una mención a Chile porque demuestra los problemas de la cooperación en asuntos energéticos en América del Sur. Antes de la elección de Morales, una evaluación realizada por empresas extranjeras del ramo proponía llevar gas boliviano a un puerto chileno en el que se transformaría en GNL para envío a las costas occidentales de México y Estados Unidos. La propuesta se rechazó porque el puerto estaba en Chile. Bolivia no vende gas natural a Chile y advierte a otras naciones de no reenviar gas boliviano a ese país. Argentina, como se dijo antes, rescindió un contrato para enviar gas natural a Chile. Perú, como se indicará más adelante, tiene la mayor parte de su gas comprometido para uso interno y para embarques de GNL a México y Estados Unidos. Chile está rodeado de países con gas natural, pero ahora construye una instalación de regasificación para comprar GNL de Asia.

PERÚ. El énfasis actual en Perú está puesto en el gas natural más que en el petróleo. A finales de 2005, el país contaba con 1.100 millones de barriles de reservas probadas de petróleo. La producción en 2005 fue de 111.000 barriles diarios, y el consumo, de 139.000. Las reservas probadas de gas natural a finales de ese año eran de 0,55 billones de metros cúbicos, pero la producción en Camisea, el mayor hallazgo gasífero del país, está apenas en preparación. La expectativa es que Perú será exportador de hidrocarburos en 2007. Su tasa de éxito es de 75% en recientes exploraciones de gas, así que las perspectivas futuras son prometedoras.

Camisea se ubica en la delicada zona selvática del país y ha habido considerable presión, tanto de organismos internos como foráneos, para imponer estrictos controles ambientales. El Banco Interamericano de Desarrollo también insistió en previsiones sociales que beneficien a la población local y condicionó su apoyo financiero a que se tomen medidas sociales y ambientales, postura que fue reforzada por otras entidades financieras que prestan apoyo, como el Banco Mundial, la Corporación Andina de Fomento y el Banco Nacional de Desarrollo de Brasil. Dichas previsiones consisten en destinar aproximadamente 40% de las regalías e impuestos pagados por los operadores de Camisea directamente a los municipios de la zona del proyecto, lo cual abre nuevos terrenos en los contratos sobre gas natural. El gobierno peruano no tuvo que endeudarse para invertir en Camísea.

La primera prioridad para el uso del gas extraído de Camisea será satisfacer las necesidades internas peruanas. También existe un contrato gubernamental con un consorcio de compañías energéticas extranjeras para producir GNL, que se enviará a las costas occidentales de México y Estados Unidos. El desempeño en dos variables clave 1 —por encima y más allá de la extracción exitosa de gas— será crucial para la percepción futura de Camisea: serán eficaces las salvaguardas ambientales a la luz de algunos fracasos iniciales, y será cierto que los fondos designados se distribuirán directamente entre los municipios cercanos?

ECUADOR. Las reservas probadas de petróleo a finales de 2005 eran de 5.100 millones de barriles, terceras en volumen en América del Sur (detrás de Venezuela y Brasil). La producción en ese año fue de 541.000 barriles diarios, y el consumo, de 148.000. Como puede observarse en estas cifras, el país exporta una gran proporción de su producción. Sus reservas de gas natural son bajas y no es un productor significativo.

Ecuador es un país turbulento en términos políticos. Ha tenido por lo menos siete presidentes en los 10 años pasados (sin contar un triunvirato que duró unas horas y un presidente que fue depuesto después de un día). Un contrato con Occidental Petroleum se anuló en 2006 y todavía no hay un veredicto sobre la compensación que se pagará. ExxonMobil abandonó Ecuador y en 2005 EnCana, gran compañía energética canadiense, vendió sus activos a una empresa china.

COLOMBIA. Las reservas probadas de petróleo del país a finales de 2005 eran de 1.500 millones de barriles. Su producción de ese año fue de 549.000 barriles diarios, y el consumo, de 230.000. Las reservas de gas natural a finales de 2005 eran de 0,11 billones de metros cúbicos; la producción, de 6.800 millones de metros cúbicos, y el consumo, también de 6.800 millones. A finales de 2005 tenía reservas probadas de carbón de 6.600 millones de toneladas cortas.

En la década de 1920 Colombia era exportadora de petróleo; en la de 1970 se volvió importadora, pero ahora puede satisfacer su demanda interna con producción propia y deja un modesto residuo para la exportación. Se encuentra ubicada en una región prometedora en hallazgos petroleros, al lado de Venezuela y Ecuador, pero ha tenido menos éxito que sus vecinos. Existe preocupación de que pueda volver a ser importadora y, en consecuencia, sE otorgan términos favorables a los inversionistas. Alrededor de 80% de sus sondas se dimentarias permanece sin explorar. La paraestatal Empresa Colombiana de Petróleos (Ecopetrol) se fundó en 1951 y tiene buena fama de eficiencia. En 2006 se privatizó 20% de la firma.

Durante mucho tiempo, Colombia ha tenido un problema grave en la explotación de petróleo y gas a causa de la destrucción de ductos por la guerrilla y de la violencia y secuestros dirigidos a menudo contra extranjeros que trabajan en el sector energético.

TRINIDAD Y TOBAGO. Las reservas probadas de petróleo a finales de 2005 eran de 800 millones de barriles. Ese año la producción fue de 171.000 barriles diarios. La mayor sombra que proyecta este país en el hemisferio es por su producción de gas natural y sus exportaciones de GNL A finales de 2005 contaba con reservas probadas de gas de 0,55 billones de metros cúbicos y la producción de ese año ascendió a 29.000 millones. Sus reservas de gas representan menos de 1% de las del planeta, pese a lo cual se ha vuelto un importante proveedor de GNL a Estados Unidos; como se indicó antes, suministra a ese país 75% de sus importaciones de ese energético. Esta situación es muy prometedora para la nación caribeña silos expertos en energía de las tres naciones norteamericanas son precisos, a saber, es probable que las tres tengan que apoyarse en mayores importaciones de GNL en el futuro.

Trinidad y Tobago es un pequeño país con una población de 1,3 millones de habitantes, que ha sacado el mayor partido a sus recursos de petróleo y gas, los cuales generan alrededor de 40% del PIB y 50% del ingreso del gobierno; también han generado industrias internas que consumen energía, como las del amoníaco, el metanol y el aluminio para fundición. Estas actividades han producido considerable daño ambiental, problema que debe atenderse.

CONCLUSIONES. La cooperación en asuntos energéticos es mucho mayor en América del Norte que en América del Sur. Los mejores contrastes son la relación de colaboración entre Canadá y Estados Unidos y la postura antagónica de Bolivia y Chile. Muchos de los problemas irreconciliables con naciones del hemisferio surgen del nacionalismo defensivo, como las turbulentas relaciones de Ecuador con las compañías petroleras foráneas y la negativa de México a permitir la inversión privada en la exploración y producción petroleras. Bolivia estaba dispuesta a enemistarse con Brasil al intervenir por la fuerza en las operaciones de Petrobras para nacionalizarlas. La política energética también sufre por la agitación política en los países, como el derrocamiento de dos presidentes en Bolivia a causa de las ventas de gas natural a extranjeros, y por el desacuerdo en el Congreso en torno a los impuestos a las compañías energéticas foráneas en Ecuador. El presidente de Venezuela declara con regularidad que se propone reducir las ventas de petróleo a Estados Unidos, pero no lo lleva a cabo en la amplitud que proclama porque no existen mercados alternativos que puedan manejar el crudo pesado de su nación. El origen de estas discordancias no es un misterio, pero todas tienen costos económicos para los países involucrados.

Sólo dos de los 11 países analizados no tienen empresas energéticas estatales: Estados Unidos y Canadá. Esas compañías no son iguales en ninguna forma. Petrobras ha desarrollado un historial envidiable, en tanto Pemex ha sido incapaz de actuar como una tipica compañía petrolera porque el gobierno central la priva de los fondos necesarios para la exploración y producción normales. Las otras firmas estatales varían considerablemente; PDVSA se encuentra bajo mayor control político que Ecopetrol en Colombia. Por último, existe a menudo una diferencia patente entre los objetivos de los discursos y las acciones concretas para alcanzarlos. Varios presidentes estadounidenses han proclamado el objetivo de la independencia energética, pero se niegan a elevar las normas de eficiencia de combustible. El presidente Chávez anuncia un proyecto para construir un megaducto de Venezuela a Argentina, y bien puede ser que el objetivo real sea el anuncio en sí, porque nada se ha hecho por llevarlo a cabo. Las autoridades mexicanas están hoy de acuerdo en que deben explorar las prometedoras aguas profundas del Golfo de México, pero hasta ahora no han hecho nada por hacer de ello una realidad. El hemisferio no ha sido más capaz de integrar su política energética y cada uno de esos fracasos acarrea costos considerables.

Director de la cátedra William E. Simon de Economía Política en el Center for Strategic and International Studies.

Fuente Consultada: Revista Veintitrés Internacional Junio 2007.

 

Recursos Naturales de Santiago del Estero Produccion Agropecuaria Ganaderia

PRINCIPALES RECURSOS NATURALES DE SANTIAGO DEL ESTERO:
Santiago del Estero
Introducción

El Producto Bruto Geográfico (PBG) provincial representa alrededor del 0,8% del PBl nacional, ya que es una de las provincias de menor desarrollo relativo del país. El PBG provincial está conformado en un 7% por el sector primario, 15% por el secundario y 78% por el terciario.

Dentro de este último, el 24% corresponde al sector público. La contribución del sector público provincial en el valor agregado supera la duplicación del promedio nacional (11 %). La estructura productiva de la provincia se basa en la producción primaria, especialmente en los sectores agria-ganadero y forestal, dentro de los cuales se destacó, durante la última década, la actividad algodonera.

La expansión experimentada en ese periodo, la constituyó en la principal actividad productiva no solo por la magnitud de su valor agregado, sino también por su importancia en el comercio exterior provincial y sus eslabonamientos con el sector industrial. Sin embargo, en los últimos años, dicha actividad está siendo desplazada por la creciente importancia del cultivo de la soja.  El sector manufacturero provincia! tiene escaso desarrollo y la principal actividad industrial es si desmotado de algodón. El valor agregado agropecuario está generado, en su mayor parte, por un reducido número de actividades. Entre estas las de mayor importancia son: algodón, soja, maíz, hortalizas (principalmente la cebolla) y la ganadería.

Producción agropecuaria y agroindustrial

La agricultura de esta región está totalmente condicionada por la disponibilidad del recurso hídrico, ya que gran parte de la provincia es semiárida, lo que implica que la demanda de agua solo es satisfecha por la captación de aguas superficiales o de pozo para riego.

En la provincia se diferencian las siguientes áreas de agricultura bajo riego, de acuerdo con el estudio de Moscuzza et al. (2003):

• El sistema del río Dulce, que abarca casi 300.000 ha, cuya producción se concentra cultivos frutihortícolas de gran importancia dentro del país, especialmente melón, cetolt5; batata, sandía, tomate, zapallo, lechuga, y con menor relevancia, algodón, alfalfa. El maíz, sorgo y pasturas. El área es, desde el punto de vista agrícola, económicamente activa, pero no puede extender su superficie cultivada ya que la cantidad de agua utilizadas para riego es limitada. La unidad económica está determinada en 25 has.

Zona de riego del río Sedado: el área explotada es de casi 20.000 has y se desarrollan cultivos de algodón, alfalfa y maíz.

Zona de riego del ría Horcones y Urueña: los ríos del área se caracterizan por ser estacionarios, por lo que solo tienen caudales aprovechables en periodos cortos que, la mayoría de las veces, favorecen a los cultivos estivales. Los principales cultivos de esta zona son el poroto y el garbanzo y, desde hace algunos años, se ha expandido el cultivo de soja. La superficie con explotación bajo riego se calcula en unas 4.000 has.

Subzona de riego con aguas surgentes que se encuentra entre los 120-450 m de profundidad.  Las unidades de producción ocupan más de 100 has. Los principales cultivos son: soja,  sorgo granífero, girasol, comino y cultivos forrajeros.

El área de agricultura de secano comprende la región sudeste de la provincia (límite con Santa Fe) y parte de la zona norte. Donde se dan precipitaciones estivales, se produce sorgo forrajero y  granífero, además se cultiva maíz, girasol y cultivos forrajeros. En donde las precipitaciones son menores, nos encontramos con cultivos de doble propósito, como el sorgo granífero, que en buenas condiciones climáticas se cosecha y si no se utiliza como pastura para el ganado, ;;

ALGODÓN

La expansión experimentada a mediados de la década del noventa, producto del fuerte aumentó de los precios internacionales, transformó a este cultivo en la principal actividad económica de la provincia de Santiago del Estero es la segunda provincia productora de algodón país, luego del Chaco.

La mayor parte de la producción algodonera se localiza en la zona oriental de la provincia, bajo condiciones de secano. Las nuevas explotaciones radicadas en esta zona tuvieron su  origen en la expansión de los productores chaqueños. En la región central se realiza el cultivo riego con mejores rendimientos en relación con los rendimientos promedio de la provincia.

Las inversiones en nuevas plantas o maquinaria incrementaron la capacidad de desmote provincial en los últimos años en un 30% aproximadamente. Aunque la mayor parte de la producción de algodón sale de la provincia ya sea en bruto o como fibra, en la provincia existen tres líricas de hilados de algodón. En 2004 se exportó fibra de algodón por un valor de casi 3 millones de dólares e hilados de algodón por casi 8,4 millones de dólares.

SOJA

Su cultivo se localiza principalmente en el área de secano y ha experimentado un significativo crecimiento en los últimos años: entre 1993 y 2004 la superficie sembrada se multiplicó casi por nueve, alcanzando casi 710.000 has sembradas, es decir el 57% de la superficie cultivada en la provincia.

La tendencia ha sido la de sustituir algodón por soja, por lo que la soja se transformó en si principal cultivo de la provincia. Los rendimientos promedio se acercan a los 2.000 Kg./ha y están un poco por debajo del promedio nacional. Santiago del Estero no cuenta con plantas procesadores de soja; por lo tanto, la producción se destina a la exportación o a otras provincias para su industrialización, especialmente, Santa Fe. La soja fue el principal producto de exportación de la provincia, que en 2004 alcanzaron a los 67,2 millones de dólares.

CEREALES

El maíz es el tercer cultivo en importancia provincial, con casi el 10% del área sembrada total. Las exportaciones en 2004 fueron de 34,5 millones de dólares, constituyéndose en el segundo producto de exportación de la provincia.

Los rendimientos están en el orden de los 4.000 Kg./ha en la zona de riego y en los 3.000 Kg./ha en secano, siendo el promedio nacional para la presente década de 4.400 Kg./ha.

La superficie sembrada con trigo tuvo un fuerte incremento desde fines de la década de! noventa, pasando de superficies no superiores a las 40.000 has en 1999, hasta llegar a las 184.000 has en 2004. E! trigo es el tercer producto de exportación con 26,5 millones de dólares en 2004.

El cultivo de sorgo en la provincia representó, en el 2004, el 6% del total de la superficie sembrada provincial, alcanzando un volumen de, aproximadamente, 240.000 toneladas. Esta actividad se desarrolla en forma conjunta con la ganadería, debido a su utilización como alimento para ganado. La producción se destina, en su mayor parte, al mercado interno para su uso como forraje y como insumo en la producción de alimentos balanceados y, en menor medida, para la exportación.

HORTALIZAS

Como se explicó, la producción hortícola se desarrolla en el área de riego de! río Dulce, culos departamentos de La Banda, Robles y Capital. Los principales cultivos son, entre otros, cebolla, batata, cucurbitáceas (zapallos, sandía y melón), tomate y maíz dulce. Normalmente, la producción se destina a los mercados locales y al Mercado Central.

La disponibilidad de riego y las condiciones climáticas de la zona permiten que buena parte de estos productos lleguen al Mercado Central como “primicia” (es decir, se comercializa antes que la mayor parte de la oferta, lo que le da una ventaja). La principal hortaliza que se produce en la provincia es la cebolla y la provincia aporta aproximadamente el 17% de la producción nacional.

GANADERÍA

Predomina la ganadería vacuna y, en menor medida, la caprina. La explotación ganadera se concentra principalmente en la franja oriental de la provincia, donde las condiciones climáticas son más favorables para su desarrollo. A principios de la presente década, las existencias bovinas fueron de alrededor de un millón de cabezas, lo que significa el 45% de las existencias vacunas del NOA.

En su gran mayoría, las explotaciones están dedicadas a la cría y su destino principal son las ventas de ganado en pie a otras provincias y, en menor medida, a la exportación.

Mapa Económico de Santiago del Estero

Fuente Consultada:
ARGENTINA , una visión actual y prospectiva desde la dimensión territorial
Juan Alberto Roccatagliata
Trabajo de Albina L. Lara.

El fin del eter de Aristoteles Quintaesencia llena el espacio Quinto

Durante el siglo XIX la idea de que la luz era un fenómeno ondulatorio estaba bastante afirmada. Las ondas que pueden observarse habitualmente a nivel macroscópico siempre son perturbaciones de algún medio material: las ondas de sonido son oscilaciones de las moléculas de aire, las ondas en un estanque son oscilaciones de las moléculas de agua, las ondas en una soga son oscilaciones de las moléculas que componen la soga, etc.

Por ese motivo resultó natural suponer que existía un medio material necesario para la propagación de las ondas luminosas. A este medio se lo llamó éter. Esta palabra ha tenido muchos usos a través del tiempo en explicaciones sobre la naturaleza, cuando se necesitaba postular la existencia de algún fluido que hiciera posible algún proceso (se ha hablado alguna vez de cierto éter que conduciría las sensaciones de una parte a otra del cuerpo humano).

El éter lumínico, de existir, debía tener propiedades muy particulares: ser lo suficientemente tenue como para llenar todos los espacios, incluso el interior de los cuernos transparentes o traslúcidos, y ser lo suficientemente rígido como para poder transmitir ondas de altísima frecuencia como las que conforman la luz. Los años pasaban y nadie podía diseñar una experiencia en la que se manifestara claramente la presencia del éter.

Si el éter llenaba también el espacio interestelar a lo largo de todo el Universo, esto hacía surgir una pregunta: ¿El mar de éter estaba fijo en el espacio y a través de éste se movían los astros sin perturbarlo, o cada planeta arrastraba el éter como si friera una atmósfera? La sistema de referencia absoluto respecto del cual se moverían todos los otros cuerpos. Y como la luz se propagaría a velocidad c en el éter estacionario, desde un cuerpo en movimiento, como la Tierra, se vería que la luz se mueve a distintas velocidades según lo haga en la misma dirección del movimiento terrestre, en sentido contrario o perpendicularmente.

Cuando el haz de luz viaja en la misma dirección y sentido que la Tierra, su velocidad relativa a ésta es c — y. Cuando viaja en una sentido contrario, su velocidad vista desde la Tierra es c + y.

En 1887, el físico Albert A. Michelson (1852-1931) diseíió un interferómetro y, junto con el químico Edward W Morley (1838-1923), realizó un experimento que debía mostrar la diferencia en las velocidades, vistas desde la Tierra, de dos rayos que se mueven en direcciones diferentes. Se usaban dos rayos provenientes de la misma fuente (para asegurar la coherencia), y luego de desplazarse en direcciones perpendiculares, se los hacia interferir.

La clave del experimento residía en que el patrón de interferencia debía cambiar si se rotaba el aparato con respecto a la dirección del movimiento de la Tierra.

El aparato original tenía muchos espejos para aumentar el camino recorrido por los rayos hasta unos 10 m, y así aumentar el efecto de interferencia. El dispositivo descansaba sobre una gran piedra que flotaba en mercurio.

El experimentador iba observando el patrón de franjas mientras hacía rotar lentamente la piedra. Hicieron miles de mediciones en diferentes puntos de la órbita terrestre y nunca notaron ni siquiera el mínimo corrimiento en el patrón de franjas. La orientación de los rayos de luz con respecto al movimiento de la Tierra no parecía afectar el movimiento de aquéllos. Algunos años más tarde, Michelson también investigó interferométricamente la posibilidad de que la Tierra arrastrara con ella al éter y demostró que esto tampoco era posible. La teoría del éter fue abandonada.

El Indice de Octano en las Gasolinas Importancia y Factores

LAS GASOLINAS Y EL ÍNDICE DE OCTANO
La destilación normal del petróleo proporciona un 20 % de gasolina, pero el consumo de este producto es tal que se hace preciso elevar dicho porcentaje hasta el 80 %, a no ser que se oriente el consumo a la utilización de otros carburantes derivados del petróleo, como el gas-oil y el fuel-oil.

Para aumentar el rendimiento del petróleo en gasolina se recurre al craqueo o pirólisis, que consiste en la ruptura de las moléculas largas de hidrocarburos por la acción del calor, pasando de fracciones pesadas a otras más ligeras, es decir, más volátiles.

Las gasolinas son hidrocarburos cuyas moléculas tienen unos ocho átomos de carbono. Ahora bien, la disposición relativa de éstos átomos de carbono en la molécula, es decir, el que formen cadenas lineales o más o menos ramificadas, tiene una gran importancia para que los respectivos hidrocarburos puedan ser considerados como malas o buenas gasolinas.

Las características que definen una buena gasolina son las siguientes:
1°) volatilidad;
2°) ausencia dé corrosividad;
3°) estabilidad química;
4°) buena carburación;
5°) resistencia a la detonación.

Posiblemente, la más importante de ellas es la resistencia a la detonación, ya que si se dispone de una gasolina muy resistente, pueden utilizarse motores con gran relación de compresión y, por tanto, de gran rendimiento. Como todos saben, cuando se aumenta mucho la relación de compresión existe el peligro de que se produzca el autoencendido (detonación) de la gasolina antes de que el pistón finalice la carrera de compresión, y también que se produzca la chispa eléctrica en la bujía. Entonces se dice que el motor “pica”.

La resistencia de una gasolina a la detonación se expresa en términos del índice de octano, de tal forma que, a mayor índice, mayor resistencia al autoencendido. La escala de índices de octano se estableció, en su día, arbitrariamente, desde 0 a 100, asignándose el índice de octano 100 a la gasolina constituida exclusivamente por el hidrocarburo isooetano, que era, entre los conocidos entonces, el combustible más resistente a la detonación. El índice de octano 0 corresponde al n-heptano (cadena lineal de siete átomos de carbono).

RENDIMIENTO DE LAS NAFTASPara determinar el índice de octano de una gasolina se introduce ésta en un motor con culata regulable (para poder variar a voluntad su relación de compresión), y se aumenta la compresión hasta que aquél comienza a picar.

Manteniendo esta relación, se introduce despuésisooetano (índice 100), y, a continuación, n-heptano (índice 0), en cantidades crecientes, hasta que comience de nuevo a picar.

En tal momento, la proporción isooctano-heptano da el índice de octano. Por ejemplo, si el motor comienza a picar cuando se ha introducido 70 % de isooetano y 30 % de n-heptano, el índice de octano será 70.

En la actualidad la tecnología del petróleo ha avanzado tanto qué existen carburantes de índice de octano 120, lo que a primera vista parece absurdo, si no se tiene en cuenta el establecimiento arbitrario de la escala de índices. Pensando lógicamente, ello sólo quiere decir que dicho carburante es aún mejor que el isooetano. Mejores gasolinas han permitido diseñar motores más eficaces. Por ejemplo, en el año 1930, la relación de compresión máxima que se podía alcanzar era de 4, lo que permitía un rendimiento a los motores del 40 %; hoy día, es normal una relación de compresión de 7, lo que significa un rendimiento del 55 %.

Entre los factores que influyen en el índice de octano de una gasolina, y cuyo estudio ha permitido la elaboración de mejores combustibles, se encuentran:

1°) El peso molecular del hidrocarburo; cuanto mayor sea el peso molecular, menor será la volatilidad y también el índice de octano. Conviene, pues, emplear gasolinas volátiles, pero no excesivamente, pues formarían tapones de gas en las conducciones (obturación).

2°) La ramificación de la molécula; el aumento de ramificación favorece el índice de octano.

3°) La posición de la ramificación; el índice de octano es mayor cuanto más alejadas estén entre sí las ramas (o cadenas laterales) que salen de la cadena principal del hidrocarburo.

4°) La insaturación; cuanto mayor sea el número de dobles enlaces que unen entre sí los átomos de carbono que forman las moléculas de gasolina, mayor será el índice de octano.

5°) La delación (cadena de gasolina en forma de anillo) también favorece el índice de octano.

6°) La aromatización; un cierto porcentaje de hidrocarburos aromáticos eleva, asimismo, el índice de octano.

7°) Ciertos aditivos, como el plomo tetraetilo, elevan el índice de octano de las gasolinas medianas, pero no tienen casi influencia sobre las malas.

Concepto de Temperatura Relacion entre las escalas Centigrado Fharenheit

Concepto de Temperatura – Relación Entre las Escalas

Qué es la temperatura?
Hemos dicho antes que calor y temperatura son dos cosas diferentes. Sin embargo, están estrechamente relacionadas entre sí; en realidad, la temperatura no es más que uno de los efectos del calor. Para hacernos una idea clara del concepto de temperatura, imaginemos una vasija llena de agua y un pequeño recipiente situado encima, comunicados ambos por un tubo.

Si vertemos agua en el recipiente superior, a través del tubo se unirá con el agua de la vasija, ya que aquélla se halla a un nivel más elevado. Sin embargo, si no recurrimos a una bomba no podremos hacer pasar el agua de la vasija al recipiente superior. Pues lo mismo sucede con el calor, si bien éste es movimiento y no materia: para que la energía calorífica pueda pasar de un cuerpo a otro, es necesario que en uno de ellos el calor se encuentre a un nivel superior al del otro.

Al cuerpo con nivel calorífico superior lo llamamos cuerpo caliente o fuente calorífica; y al de nivel calorífico inferior cuerpo frío o refrigerante.

La temperatura nos indica, pues, el nivel térmico de un cuerpo. Se dirá que un cuerpo está caliente respecto a otro cuando le cede calor; y, viceversa, que está frío respecto a otro, cuando lo recibe. El cuerpo caliente tiene una temperatura mayor; el frío, menor. ¿Cómo se determina la temperatura? Comparando el nivel térmico de un cuerpo con el de otros en condiciones dadas, los cuales se toman como términos de referencia para establecer una escala termométrica.

La temperatura de un cuerpo, entre estrechos límites, es perceptible por nuestros sentidos, por lo que se denominó también grado de calor sensible, expresión imperfecta e incompleta. Ahora podemos advertir mejor la diferencia entre las expresiones “calor” y “temperatura”. Un cuerpo puede contener mayor cantidad de calor que otro, y sin embargo tener menos temperatura. La cantidad de calor necesaria para elevar en una unidad (grado), la temperatura de la unidad de masa de un cuerpo, se llama calor específico, y se establece mediante el empleo de una unidad denominada caloría.

VISIÓN MICROSCÓPICA DE LA TEMPERATURA  Una característica de la materia es la movilidad incesante de sus átomos y moléculas en todas direcciones y sentidos, con las velocidades más variadas.

Esas velocidades se intercambian por interacciones entre las moléculas, sea por choques, sea por atracciones; pero si un cuerpo está a una determinada temperatura, entonces la velocidad promedio de sus moléculas también está determinada: podrán las moléculas intercambiar velocidades entre sí, una veloz transformarse en lenta por un choque, o a la inversa; pero el promedio no cambia si la temperatura no cambia.

Hay, entonces, una relación entre temperatura y velocidad promedio de las moléculas: si la temperatura sube, la velocidad media de las moléculas aumenta, y recíprocamente.

Pero hay otra cuestión: si tenemos a una misma temperatura moléculas de diferentes sustancias, como ocurre con el aire (mezcla de oxígeno y de nitrógeno, y de otros gases en pequeñas cantidades) las moléculas de oxígeno tienen su propia velocidad media a esa temperatura; y las de nitrógeno tienen, a la misma temperatura, su velocidad media propia, diferente de la del oxígeno.

Y aquí viene lo importante: las velocidades medias son diferentes, así como son diferentes las masas de las moléculas; pero… a una misma temperatura todas las moléculas de todas las sustancias tienen una misma energía cinética media. Es decir que la temperatura de un cuerpo es una medida del promedio de las energías cinéticas de sus moléculas, y recíprocamente.

particulas solido particulas liquido particulas gas
En los sólidos, las partículas están muy juntas y ordenadas; solo pueden realizar pequeños movimientos de vibración en torno a una posición de equilibro. En los líquidos, las fuerzas entre partículas son menos intensas y las partículas tienen cierta libertad para moverse. En los gases, las partículas pueden moverse libremente en todas las direcciones.

De acuerdo con la teoría emético-molecular de la materia, los cuerpos esa formados por partículas (moléculas, átomos e iones) que están en continuo  movimiento. Es decir, a nivel microscópico, las partículas que forman la materia que nos rodea (átomos, moléculas, iones) se mueven constantemente y tiene” portante, cierta energía cinética.

• En un sólido, los átomos guardan sus posiciones realizando solamente movimientos de vibración y rotación.

• En los fluidos (gases y sólidos), las partículas están libres y, portante, pueden desplazarse también por el recipiente.

La cantidad de energía cinética media que tienen las partículas de un cuerpo se refleja en su temperatura.

Un aumento en la temperatura de cualquier cuerpo (sólido, líquido o gas nos informa de un aumento en la agitación de las partículas del mismo.

• Cuando las partículas se mueven deprisa, el cuerpo se encuentra a temperatura elevada.

• Cuando las partículas se mueven más despacio, el cuerpo se encuentra a baja temperatura.

La temperatura es una magnitud relacionada con la energía cinética media que tienen las partículas de un cuerpo. La unidad de temperatura en el SI (sistema internacional)  es el kelvin (K).

Cuando decimos que un sólido o un líquido está más caliente que otro realmente estamos indicando que las partículas que forman uno de ellos se están moviendo más deprisa que las del otro.

Equilibrio térmico
La medida de la temperatura como magnitud física adquiere sentido a pan de la idea de equilibrio térmico. Un sistema físico se encuentra en equilibrio térmico con el ambiente que lo rodea si no Intercambia energía con él, lo cual Implica que ambos se encuentran a la misma temperatura. Si no lo están, es porque llevan en contacto menos tiempo del necesario para que se alcance el equilibrio, pero si los dejamos juntos el tiempo suficiente, acabarán por alcanzar la misma temperatura, llamada
temperara de equilibrio.

MEDIR LA TEMPERATURA: La forma más frecuente de determinar estados térmicos es mediante un termómetro de mercurio. Los más comunes entre estos instrumentos consisten en un pequeño volumen de mercurio encerrado en un tubo capilar de vidrio con un ensanchamiento en un extremo (bulbo del termómetro).

La parte interior del tubo no ocupada por mercurio está vacía. Como se ve en la figura hay dos formas diferentes de termómetros de esta clase. Al calentarse el mercurio se dilata, y el nivel de la columna en el capilar aumenta de altura.

A cada altura corresponde un determinado estado térmico del termómetro. Se lo pone en contacto con hielo en fusión ya nivel de la parte superior de la columna de mercurio se señala una marca y se le asigna el cero. Se coloca entonces el termómetro en los vapores que produce agua destilada en ebullición  cuando la presión atmosférica es la normal: 760 mm. (más adelante veremos la razón de esta exigencia).

En verdad es menester tomar otras precauciones; pero no las consignamos por razones de simplicidad en la exposición. Se señala el nivel de la columna en estas condiciones y se le asigna el número 100. El intervalo entre ambas señales (0 y 100) se divide en 100 partes iguales (de igual volumen) y se asigna un número entero entre 1 y 99 a cada una de las nuevas señales. Cada uno de los intervalos entre dos señales corresponde a un calentamiento del termómetro de 1°C: un grado centígrado de la escala de mercurio que, de este modo, queda definida.

La graduación se puede prolongar, si se desea, por arriba de 100°C y por debajo de 0°C, lo que se hace con mucha frecuencia. Hay termómetros para ámbitos más o menos grandes. Con los termómetros descritos sólo se puede tener una escala entre —39°C y + 357°C. Para temperaturas más bajas se usan otros líquidos, y para temperaturas más altas es menester recurrir a dispositivos diferentes o utilizar termómetros de mercurio con gas en la parte no ocupada con mercurio (termómetros “a presión”). El grado centígrado se puede también dividir y se pueden tener 1/10 y hasta 1/100 de grado centígrado en termómetros muy especiales.

La escala que acabamos de describir es la escala centígrada o Celsius. Existen las de Reamur y la de Fahrenheit, cuyas correspondencias con la centígrada aparecen en la Fig. 10. 6. En la práctica se usan las tres escalas, aun cuando la más utilizada es la centígrada. Para ciertos fines se utilizan la Reamur en Alemania y la Fahrenheit en los EE.UU.. de Norte América.

Para distintos fines existen termómetros con diversas características: termómetros de máxima (por ejemplo los clínicos: para “tomar la temperatura de pacientes”) y de mínima; termómetros de alcohol, termómetros diferenciales, etc. También existen, aun cuando basados en la dilatación de sólidos o en otros fenómenos, termómetros registradores (termógrafos).

Como hemos dicho, si un termómetro se pone en contacto durante un tiempo suficiente con un cuerpo, ambos adquieren el mismo estado térmico. El del termómetro está determinado por la temperatura que en él se lee. Por lo tanto, también queda definido, por esa misma temperatura, el estado térmico del cuerpo del cual se determina, de esta manera, la temperatura.

termometros clasicosTermómetros comunes de vidrio, a mercurio.
a) Es un termómetro macizo. Está fabricado con un tubo de vidrio de diámetro interior capilar y exterior bastante grande (tubo de paredes gruesas). La escala está grabada sobre el mismo tubo. Es un tipo de termómetro robusto, esto es, resistente a golpes moderadamente fuertes.

b) Termómetro con un tubo capilar de paredes delgadas, fijo sobre una escala plana construida sobre una lámina de vidrio opaco o material cerámico del tipo de la porcelana. Todo ello se halla dentro de un tubo de paredes delgadas y de diámetro exterior grande. Son termómetros más frágiles que los anteriores; pero son, en general, mucho más exactos.

Termómetros diversos.
a) De máxima y b) de máxima y mínima. En este último, cuando asciende la temperatura el índice i asciende arrastrado por el mercurio; pero cuando la temperatura desciende queda retenido en la posición de temperatura máxima por el alcohol que está sobre el mercurio.

Análogamente, el índice queda retenido en la posición de temperatura mínima. Una vez hechas las lecturas, un imán permite poner los índices en contacto con el mercurio, c) Termómetro clínico (de máxima).

El estrangulamiento impide que el mercurio que ha llegado en I a su altura máxima, descienda, quedando, cuando la temperatura desciende, como se ve en II. Para hacer que las dos porciones de mercurio se reúnan nuevamente se da al termómetro unas sacudidas bruscas.

termometros de maxima y minima

Aunque la escala de temperaturas centígrada (o de Celsius) se utiliza ahora casi universalmente en los laboratorios científicos, la escala de Fahrenheit todavía tiene una gran aplicación en ingeniería, en países de procedencia sajona.

Durante muchos años los informes meteorológicos del Reino Unido expresaban la temperatura en grados Fahrenheit, pero a partir de 1962 la Oficina Meteorológica tomó la determinación de usar la escala centígrada.

Momentáneamente, hasta que se acepte universalmente el uso de la escala centígrada, se presentarán muchos casos en los que será necesario convertir las temperaturas de una escala a otra. Este caso se presenta cuando es necesario aplicar los ensayos de laboratorio para resolver problemas de ingeniería.

ESCALA TERMOMÉTRICAS: Se toman por acuerdo como puntos fijos el punto de fusión del hielo y el punto de ebullición del agua. Una escala termométrica vendrá definida por los valores de temperatura asignados a los dos puntos, aceptando una variación lineal de la magnitud termométrica con la temperatura.

Escala Celsius o centígrada
La escala Celsius o centígrada asigna el valor cero al punto de congelación o solidificación del agua y el valor 100 al punto de ebullición de la misma a la presión de una atmósfera. Cada unidad, debido a la variación lineal con la temperatura, será 1/100 del intervalo y se llama grado Celsius o centígrado (°C).

Escala Kelvin o absoluta
La escala absoluta o termodinámica utiliza como unidad de medida de temperatura el kelvin (K), cuyo valor coincide exactamente con el de 1°C, ya que el intervalo entre los puntos fijos también se divide en 100 unidades. Sin embargo, se asigna el valor 273 al punto de fusión del hielo y, portante el valor 373 al punto de ebullición del agua. En consecuencia, la relación entre la temperatura medida en Kelvin y la medida en grade; centígrados es la siguiente:

T (K) = t (°C) + 273

es decir, se trata de la misma escala que la centígrada pero desplazada hacia abajo en 273 unidades.
La importancia de la escala absoluta radica en que es posible demostrar que el cero absoluto de temperatura se corresponde con la ausencia total de energía cinética interna del cuerpo considerado, es decir, con la Inmovilidad total de sus partículas.

Escala Fahrenheit
Otra escala de temperaturas, muy utilizada en Norteamérica fuera de los ambientes científicos es la escala Fahrenheit. En esta escala se efectúan 180 divisiones en el intervalo definido por los puntos fijos, asignando a estos puntos los valores 32 y 212, respectivamente. La relación entre la temperatura expresada en grados centígrados y la correspondiente en grados Fahrenheit.

t (°F) = 1,8 t (°C) + 32

La escala absoluta correspondiente a la Fahrenheit, es decir, con unidades ¡guales, es la escala Rankine, cuyos puntos fijos son 491,69 y 671,67. Evidentemente, el intervalo en ambos cas:: es de 180 unidades. La relación entre la temperatura expresada en °F y °R es la siguiente:

t(°R) = t(°F) +491

EXPLICACIÓN: La conversión se realiza fácilmente recurriendo a la aritmética elemental, pero cuando no se exige una precisión grande y es necesario realizar gran numero de conversiones, se pueden usar varias tablas de mano que dan el valor directamente.

Las escalas de temperaturas se basan en un método de comparación entre una temperatura determinada y unos puntos de referencia. Los dos datos más importantes son la temperatura de fusión del hielo (que constituye el punto fijo inferior) y la temperatura de ebullición del agua a la presión atmosférica (punto fijo superior) En la escala centígrada, al punto fijo inferior se le da el valor 0°C, mientras que el punto fijo superior es 100°C.

La escala, entre estos dos puntos, se divide en 100 intervalos o grados. Por su parte la escala Fahrenheit se extiende desde 32°F, que es el punto inferior, a 212°F., o punto superior, de tal forma que el número de grados entre ellos es de 180.

El número de divisiones entre los puntos fijos de las dos escalas proporciona la clave para realizar las conversiones. Cien divisiones de la escala centígrada equivalen a 180 divisiones de la escala Fahrenheit. Utilizando una relación más simple, 5 divisiones de la escala centígrada equivalen a 9 divisiones de la escala Fahrenheit.

Puesto que todas las conversiones se deben realizar utilizando como dato el punto fijo inferior, es decir, todas las temperaturas se miden con relación a este nivel, se presenta una complicación, derivada de los distintos valores que se han asignado a los dos puntos inferiores en las dos escalas.

Por tanto, si se convierte una temperatura de la escala centígrada a la escala Fahrenheit, el número equivalente de divisiones en esta escala sobre el punto fijo inferior se calcula multiplicando primero el valor de la escala centígrada por 9/5 (1,8). Pero, puesto que el punto fijo inferior tiene en la escala Fahrenheit el valor 32, se debe añadir esta cifra al resultado del primer cálculo. Por el contrario, si una temperatura en grados Fahrenheit se quiere pasar a grados centígrados, en primer lugar hay que restar 32 de la cifra original.

Así se averigua el número de divisiones en que excede el valor Fahrenheit del nivel del punto fijo inferior; a continuación, esta cifra se multiplica por 5/9. El resultado de este cálculo proporciona la temperatura en grados centígrados.

ALGUNAS TEMPERATURAS

Reacción termonuclear del carbono 5 X 108
Reacción termonuclear del helio 108
Interior del Sol 107
Corona solar 106
Onda de choque en el aire para Mach 20 2.5 X 104
Nebulosas luminosas 104
Superficie solar 6 X 103
Fusión del wolframio 3.6 X 108
Fusión del plomo 6.0 X 102
Solidificación del agua 2.7 X 10s
Ebullición del oxígeno (1 atm) 9.0 X 101
Ebullición del hidrógeno (1 atm) 2.0 X 101
Ebullición del helio (He4)  (1 atm) 4.2
Ebullición del He3   a la presión baja que se puede alcanzar 3.0 X 10-1
Desmagnetización adiabática de sales paramagnéticas 10-3
Desmagnetización adiabática de núcleos 10-6

Fuentes Consultadas:
Elementos de Física y Química – Prelat
Enciclopedia del Estudiante Tomo 7 Física y Química
Revista TECNIRAMA N°70

El Petroleo,su formación y explotacion Caracteristicas Oro Negro

El Petróleo,su formación y explotación

Desde el descubrimiento del fuego por nuestros antecesores, la energía de la combustión se ha estado aprovechando de diferentes maneras. La energía que se ibera en la combustión proviene del cambio químico que se produce cuando el combustible se combina con el oxígeno (bajo ciertas condiciones de temperatura) para formar otros compuestos.

Con la invención de la máquina de vapor , el calor obtenido de la combustión del carbón se pudo aprovechar para generar movimiento, Desde ese momento hasta ahora las cosas no han cambiado mucho seguimos utilizando el calor de la combustión para generar movimiento, que luego generara electricidad en una red extensa de distribución de energía, para generar finalmente otros movimientos (lavarropas, licuadora, ventilador), o simplemente calor (tostadora, cafetera, calefactor), en nuestros domicilios alejados de donde se produce la combustión.

El Petroleo,su formación y explotacion

Equipo Para Extraer Petroleo

En las centrales térmicas se quema gas o gasoil para calentar el agua y obtener vapor a muy altas temperaturas. El vapor pasa a través de una turbina y, al hacerla girar genera electricidad. Las centrales de combustión de gas son más eficientes, pero tardan alrededor de 24 hs en llegar al régimen de rendimiento adecuado.

Como el consumo diario de energía tiene horas “pico” en las que la red debe recibir más energía, y por otra parte tiene horas de poco consumo, las centrales de gas proveen la energía básica de consumo diario, pero no pueden abastecer las horas de alto consumo. Para ello se encienden las centrales de gasoil, que llegan a un régimen de rendimiento menor que las de gas, pero en pocas horas.

El gas natural se encuentra en algunos yacimientos petrolíferos y el gasoil es un derivado del petróleo. También logramos el movimiento de los automóviles gracias a la energía de la combustión de las naftas, que son otro derivado del petróleo.

En el siglo XVIII, cuando se empezó a utilizar el carbón como fuente de energía para todo tipo de movimiento de máquinas, y en especial la máquina de vapor, se produjo un aumento tan grande en la producción de artículos manufacturados (especialmente en el ramo textil), que se inició lo que se conoce como  “la revolución industrial”.

Más adelante se encontró que el petróleo era mucho más eficaz en la combustión. Poco petróleo era capaz de proveer la misma cantidad de energía que proveía mucho carbón. Esto hizo que el petróleo fuera el combustible más buscado.

El petróleo es material orgánico proveniente de organismos que vivieron en tiempos muy remotos. El material orgánico quedó sepultado por capas de sedimentos de modo que debemos buscarlo en las capas subterráneas. Esas capas pueden incluso estar actualmente cubiertas por el mar. Por eso la prospección petrolífera también incluye las zonas de la plataforma submarina.

El Petróleo, líquido oleoso bituminoso de origen natural compuesto por diferentes sustancias orgánicas. También recibe los nombres de petróleo crudo, crudo petrolífero o simplemente ‘crudo’. Se encuentra en grandes cantidades bajo la superficie terrestre y se emplea como combustible y materia prima para la industria química.

Las sociedades industriales modernas lo utilizan sobre todo para lograr un grado de movilidad por tierra, mar y aire impensable hace sólo 100 años. Además, el petróleo y sus derivados se emplean para fabricar medicinas, fertilizantes, productos alimenticios, objetos de plástico, materiales de construcción, pinturas y textiles, y para generar electricidad.

En la actualidad, los distintos países dependen del petróleo y sus productos; la estructura física y la forma de vida de las aglomeraciones periféricas que rodean las grandes ciudades son posibles gracias a un suministro de petróleo abundante y barato. Sin embargo, en los últimos años ha descendido la disponibilidad mundial de esta materia, y su costo relativo ha aumentado. Es probable que, a mediados del siglo XXI, el petróleo ya no se use comercialmente de forma habitual.

CARACTERÍSTICAS Todos los tipos de petróleo se componen de hidrocarburos, aunque también suelen contener unos pocos compuestos de azufre y de oxígeno; el contenido de azufre varía entre un 0,1 y un 5%. El petróleo contiene elementos gaseosos, líquidos y sólidos. La consistencia del petróleo varía desde un líquido tan poco viscoso como la gasolina hasta un líquido tan espeso que apenas fluye. Por lo general, hay pequeñas cantidades de compuestos gaseosos disueltos en el líquido; cuando las cantidades de estos compuestos son mayores, el yacimiento de petróleo está asociado con un depósito de gas natural.

Existen tres grandes categorías de petróleo crudo: de tipo parafínico, de tipo asfáltico y de base mixta. El petróleo parafínico está compuesto por moléculas en las que el número de átomos de hidrógeno es siempre superior en dos unidades al doble del número de átomos de carbono. Las moléculas características del petróleo asfáltico son los naftenos, que contienen exactamente el doble de átomos de hidrógeno que de carbono. El petróleo de base mixta contiene hidrocarburos de ambos tipos.

SU FORMACIÓN:El petróleo se origina de una materia prima formada principalmente por detritos de organismos vivos acuáticos, vegetales y animales, que vivían en los mares, las lagunas o las desembocaduras de los ríos, o en las cercanías del mar. Se encuentra únicamente en los medios de origen sedimentario. La materia orgánica se deposita y se va cubriendo por sedimentos; al quedar cada vez a mayor profundidad, se transforma en hidrocarburos, proceso que, según las recientes teorías, es una degradación producida por bacterias aerobias primero y anaerobias después. Estas reacciones desprenden oxígeno, nitrógeno y azufre, que forman parte de los compuestos volátiles de los hidrocarburos.

A medida que los sedimentos se hacen compactos por efectos de la presión, se forma la “roca madre”. Posteriormente, por fenómenos de “migración”, el petróleo pasa a impregnar arenas o rocas más porosas y más permeables (areniscas, calizas fisuradas, dolomías), llamadas “rocas almacén”, y en las cuales el petróleo se concentra y permanece en ellas si encuentra alguna trampa que impida la migración hasta la superficie donde se oxida y volatiliza, perdiendo todo interés como fuente de energía.

Una vez formado el petróleo, éste fluye hacia arriba a través de la corteza terrestre porque su densidad es menor que la de las salmueras que saturan los intersticios de los esquistos, arenas y rocas de carbonato que constituyen dicha corteza. El petróleo y el gas natural ascienden a través de los poros microscópicos de los sedimentos situados por encima. Con frecuencia acaban encontrando un esquisto impermeable o una capa de roca densa: el petróleo queda atrapado, formando un depósito. Sin embargo, una parte significativa del petróleo no se topa con rocas impermeables, sino que brota en la superficie terrestre o en el fondo del océano. Entre los depósitos superficiales también figuran los lagos bituminosos y las filtraciones de gas natural.

Localización de los yacimientos

Paradójicamente, los lugares donde hay petróleo están, por lo general, situados a bastante distancia de las zonas de consumo. Los oleoductos son muy numerosos y el tráfico marítimo muy denso. Las tres zonas con mayor producción mundial son Oriente Medio, la antigua URSS y EE.UU., que producen el 70% del crudo en el mundo.

Oriente Medio: Es el primer productor mundial de petróleo con más del 30% de la producción. En esta zona se dan unas condiciones óptimas para la explotación, por la abundancia de anticlinales, fallas y domos salinos que crean grandes bolsadas de petróleo, además su situación costera y en pleno desierto, facilita la construcción de pipe-lines (éstos pueden ir perfectamente en línea recta durante miles de kilómetros), y puertos para desalojar el crudo. Arabia Saudí es le país de mayor producción en esta zona con el 26% de la producción total.

 EE.UU: Aunque tiene una producción muy alta, no es suficiente para satisfacer su consumo interno, por lo que se ve obligado a importar. La zona de los Apalaches fue la primera en ser explotada y actualmente ya casi no queda petróleo, por lo que ahora las explotaciones se centran en las zonas de California, Kansas, Oklahoma, costa del Golfo de México, Texas, Luisiana y la zona central de las Rocosas.

Antigua URSS: Comenzó a producir petróleo en 1870. Actualmente los países que la formaban extraen suficiente crudo como para cubrir sus necesidades, e incluso para exportar. Los yacimientos más importantes se encuentran en el Cáucaso, Asia central, entre el Volga y los Urales, Siberia y Sajalín.

 China: A pesar de que empezó a extraer su petróleo hace muy poco tiempo -en 1952-, consiguió desde 1970 el suficiente como para autoabastecerse y exportar en pequeñas cantidades. Los yacimientos están muy alejados de los centros de consumo y de los puertos.

 Venezuela: Comenzó su explotación de crudo en 1914 a manos de la compañía Shell. Fue uno de los países más importantes (el 2?) hasta 1960 cuando se vio superado por la antigua URSS y Oriente Medio. Sus yacimientos más importantes se emplazan en la zona del Orinoco.

 El ciclo del petróleo

La tarea de exploración y prospección debe iniciarse por la búsqueda de una roca cuya formación se haya realizado en medio propicio, dicha roca debe ser lo suficientemente porosa para almacenar una cantidad rentable de líquido, el tercer requisito es la localización de las trampas que hayan permitido la concentración de petróleo en puntos determinados de ella. Los procedimiento de investigación se inician con el estudio de bibliografía y cartografía del sector, seguido luego por sondeos geológicos.

Los pozos petrolíferos son perforados por rotación de una herramienta llamada “trépano” que se asemeja a una gran broca, este método ha reemplazado casi completamente al de percusión. En las explotaciones submarinas el método de perforación es el mismo pero éste se instala en grandes barcazas o en plataformas si los fondos no son muy profundos. En cualquier caso aunque es un proceso muy costoso, éste se ve enormemente encarecido cuando la explotación es en el mar. Para obtener productos de características precisas y utilizar de la manera más rentable posible las diversas fracciones presentes en el petróleo necesario efectuar una serie de operaciones de tratamiento y transformación que, en conjunto, constituyen el proceso de refino o refinación de petróleos crudos.

 Primeramente se realiza un análisis en laboratorio del petróleo a refinar -puesto que no todos los petróleos son iguales, ni de todos pueden extraerse las mismas sustancias-, a continuación se realizan una serie de refinaciones “piloto” donde se realizan a pequeña escala todas las operaciones de refino. Después de estudiar convenientemente los pasos a realizar, se inicia el proceso.

La operación fundamental es la destilación fraccionada continua, en la que el petróleo es calentado a 360?C e introducido en unas columnas de platillos, donde se separan los productos ligeros y los residuos. Esta operación sólo suministra productos en bruto, que deberán ser mejorados para su comercialización. Los productos derivados del petróleo alimentan no sólo a otras industrias, sino, sobre todo a los consumidores industriales o privados (butano, fuel-oil para calefacciones, aceites para motores, gasolina y gasóleo, etc.). Las operaciones de almacenamiento, venta y reparto requieren, pues, una potente organización técnica y comercial.

Al principio resultaba más económico situar las refinerías junto a las explotaciones petrolíferas, mientras que ahora, los progresos realizados en la técnica de los oleoductos han dado lugar a una evolución que conduce a instalar las refinerías cerca de los grandes centros de consumo.

LA INDUSTRIA PETROQUÍMICA
El petróleo no es hoy solamente el principal producto energético, sino la materia prima más importante para la industria química, pues del petróleo se obtiene el 90 por ciento de las materias con que dicha industria elabora plásticos, abonos artificiales, caucho sintético, fibras químicas, detergentes, insecticidas y medicinas.

Desde que en 1868 el americano John W. Wyatt inventara el celuloide, indignado por el elevado precio de las bolas de billar de marfil, las cifras de producción de las materias sintéticas han aumentado ininterrumpidamente. Esta revolución técnica apenas tiene paralelo en la historia de la humanidad.

El desarrollo de las técnicas petroquímicas parte del hecho de que las moléculas de hidrocarburos se unen entre sí formando largas cadenas elásticas. Mediante el aprovechamiento de esta reacción química (polimerización) se han creado cada vez más sustancias orgánicas a partir de los hidrocarburos obtenidos del carbón, del gas natural y hoy principalmente del petróleo, sustancias que no solamente resultan más baratas que las inorgánicas (sobre todo los metales), sino que también reúnen todas las propiedades requeridas. Especial importancia tienen los termo-plásticos, materiales moldeables mediante el calor.

Los termoplásticos (dos tercios de la producción mundial de plásticos) han experimentado un desarrollo espectacular, y apenas hay campo en el que no encuentren aplicación. Entre otros muchos productos, el cloruro de polivinilo se utiliza para fabricar revestimientos de suelos, cuero artificial, esponjas sintéticas, discos y juguetes infantiles; el poliestireno, para vajillas, muebles, material de embalaje y de aislamiento; y las poliolefinas (polietileno y polipropileno), para artículos de uso doméstico, piezas de aparatos y máquinas, tubos y hojas. En pocas palabras, no es posible ya concebir un mundo sin plásticos. También desempeñan un importante papel en la fabricación de prótesis, dientes artificiales o válvulas cardíacas. Los aspectos negativos residen principalmente en la difícil eliminación de los residuos.

La industria de los plásticos consume anualmente unos 15 millones de toneladas de petróleo, es decir, sólo un 4 por ciento de la producción de crudos.

Producción mundial  

Si bien algunos yacimientos petrolíferos fueron explotados desde la antigüedad, podemos considerar que el verdadero punto de partida de la industria del crudo fue la perforación de un pozo, realizada en Titusville (Pennsylvania) en 1859.

En 1880, la producción mundial, localizada casi por completo en EE.UU. era inferior al millón de t. y sólo se utilizaba el queroseno, desaprovechándose los demás productos de la destilación.

Entre 1885-1900 se fueron sustituyendo los aceites vegetales por los del petróleo en calidad de lubricantes, a fines de dicho período, la producción mundial era de 20 millones de t. La producción siguió incrementándose hasta los 200 millones de t. y el 20% del consumo energético mundial en 1929 por nuevos descubrimientos en México, Venezuela y Oriente medio. Pero no es hasta la Segunda Guerra Mundial que el petróleo comienza a ser realmente imprescindible en la economía mundial, por el aumento de las necesidades energéticas derivado de una casi constante expansión económica, la importancia del sector automovilístico, y años más tarde del sector petroquímico. Así el petróleo cubría en 1958 el 38% de las necesidades energéticas mundiales y el 45% en 1976.

 Hasta comienzos de la década de los setenta, el abastecimiento del petróleo no pareció constituir un problema, ya que la demanda crecía más o menos paralela al descubrimiento de nuevos pozos, y los precios se mantenían bajos. Pero en esa época, sin embargo, comenzó una lenta pero firme subida de los mismos, que pasó a ser brusca en 1973-1974, volvió a ser suave, y se disparó, nuevamente, en 1979.

Aunque siempre se ha inculpado a los países árabes de esta subida de los precios (que, por otra parte, habían recibido compensaciones muy bajas por su petróleo), hay que tener en cuenta los intereses de las grandes multinacionales del petróleo, y del gobierno de EE.UU. que favoreció esta subida de los precios (al menos hasta que no superaron ciertos límites) para disminuir su dependencia energética y penalizar las economías competidoras.

En estos momentos existe el problema del agotamiento de las reservas de petróleo, pues al ritmo actual de consumo las reservas mundiales conocidas se agotarían en menos de 40 años. Por ello, los países desarrollados buscan nuevas formas de energía más barata y renovable como la energía solar, eólica, hidroeléctrica…, mientras que los países productores de petróleo presionan para que se siga utilizando el petróleo pues si no sus economías se hundirían.

Aún así, a medio plazo, la situación no parece tan alarmante, pues hay que tener en cuenta que los pozos no descubiertos son sustancialmente más numerosos que los conocidos, en zonas no exploradas como el mar de China, Arafura, mar de Bering, o la plataforma continental Argentina podrían encontrarse grandes reservas.

LA BÚSQUEDA CIENTÍFICA DEL PETRÓLEO. Algunas veces los estratos que contienen petróleo están cerca de la superficie terrestre, pero generalmente los depósitos se encuentran a profundidades de un kilómetro o más. Los primeros pozos fueron poco profundos y eran perforados casi al azar, guiándose los buscadores por las manifestaciones espontáneas de petróleo que aparecían en la superficie.

Hoy la búsqueda del petróleo depende de muy cuidadosos estudios científicos, realizados por geólogos, geofísicos y paleontólogos. No es posible asegurar con toda exactitud si existe petróleo en una región, pero los geólogos, estudiando los tipos de rocas y la forma en que se encuentran dispuestos los estratos pueden señalar si hay o no posibilidad de que existan depósitos; igualmente los paleontólogos, estudiando los fósiles extraídos en las perforaciones, pueden señalar si las rocas subyacentes pertenecen a formaciones propensas a contener petróleo.

Los geólogos buscadores de petróleo emplean distintos me dios para conocer la disposición de los estratos de las rocas a grandes profundidades. Uno de estos métodos es el empleo del sismógrafo, o sea, el mismo instrumento que se emplea para registrar los terremotos. El sismógrafo es tan sensible que puede registrar los pasos de una hormiga. Los geólogos perforan un pequeño pozo y depositan una carga explosiva.

Cuando se produce la explosión, las ondas viajan hacia el interior de la litosfera, en la forma en que sugiere el diagrama. Las ondas son reflejadas con mayor violencia por las rocas más duras, y regresan a la superficie en un tiempo más breve desde los estratos menos profundos que desde los situados a mayor profundidad. Igualmente las ondas varían de acuerdo con la naturaleza e inclinación de los estratos. Todas estas variaciones las registra el sismógrafo por medio de los teléfonos que aparecen colocados sobre la superficie.

El sismógrafo revela el tiempo transcurrido entre la explosión y el retorno del eco en los distintos lugares donde se instalaron los teléfonos. Estos datos, que son tomados en distintas áreas de la región estudiada, sirven a los geólogos para determinar si a grandes profundidades existen domos, anticlinales y trampas en las cuales pueda haber petróleo depositado. Si el informe es favorable, indica la posibilidad de que haya petróleo, pero no la seguridad; a veces son perforados numerosos pozos en una región, a enorme costo, sin resultada positivo alguno.

LA PERFORACIÓN DE LOS POZOS:
El petróleo solamente puede ser hallado por medio de un procedimiento bastante costoso: la perforación de pozos. En algunos yacimientos, el petróleo se encuentra relativamente cerca de la superficie; en otros, puede hallarse a bastante profundidad. A medida que la perforación alcanza mayor profundidad, el coste aumenta. La perforación se controla a medida que avanza; pero en tanto el taladro no penetre en una capa petrolífera, nada se sabe. Fuera de los campos petrolíferos muy extensos, solamente un pozo entre siete produce petróleo en cantidad comercial.

La técnica de la perforación de los pozos ha ido evolucionando durante el transcurso de los tiempos. Los primeros pozos petrolíferos eran perforados como si se tratara de pozos corrientes de agua, levantando y dejando caer alternativamente un pesado martillo, que fracturaba el terreno. Antes de comenzar su pozo, Drake levantó una torre de madera, en cuya cúspide colocó una polea que funcionaba por medio de una cuerda.

Esta torre, que en inglés se denomina derrick, se utilizaba para introducir y extraer los martillos de perforación del pozo. La verdadera perforación se realizaba mediante una especie de martillo bastante pesado que era alzado y bajado alternativamente por medio de una palanca formada por una gran viga de madera fijada a un perno.

Actualmente la perforación se realiza por medio de un taladro rotativo, colocado en el extremo de una larga transmisión de acero, compuesta por varias secciones o ejes de perforación que tienen una longitud de 27 a 36 metros, empalmándose uno tras otro a medida que la perforación se hace más profunda.

La extremidad superior de los ejes de perforación está adaptada a un eje cuadrado de acero, que a su vez se hace girar por medio de la rotar y, para transmitir el movimiento a los citados ejes de perforación inferiores y a la broca, que gira en el fondo del pozo. A través de los ejes, se bombea un fluido especial para remover los restos producidos por la broca.

Estos residuos, una vez elevados a la superficie por el mismo barro que sale al exterior, son recogidos para obtener informaciones geológicas. El barro sirve también como refrigerante de la broca, reviste las paredes del pozo y con su peso impide posibles escapes de gas. Cuando el pozo alcanza la capa productiva, se retiran los ejes y la cabeza de perforación del agujero, mientras el peso del barro impide que el petróleo irrumpa en la superficie.

En el mismo terreno se cimenta la columna de tubos de revestimiento y se introduce en el agujero un tubo de pequeño diámetro a través del cual surgirá el petróleo. En la cabeza del tubo se fija, por último, un aparato llamado árbol de Navidad, compuesto por una serie de válvulas que sirven para distribuir el petróleo a las diferentes tuberías que lo conducen a los depósitos. Una vez han sido colocados el tubo y el “árbol de Navidad” en su sitio, se procede, por lo general, a desmontar el derrick.

EL REFINADO Y SUS PROCEDIMIENTOS

Tal como se encuentra en el subsuelo, el petróleo es sencillamente una materia bruta que, antes de utilizarse, ha de ser sometida a varios procedimientos. Estos procedimientos se designan con el nombre genérico de refinado y sirven para transformar el petróleo crudo en un centenar de productos diferentes.

Este apreciado líquido está constituido por una mezcla de diferentes compuestos cuyas moléculas están formadas por carbono e hidrógeno. Por esta razón a estos componentes del petróleo se les denomina hidrocarburos.

Existen diversas clases de petróleo crudo con características físicas variadísimas: algunas veces es pesado y denso; otras, ligero y claro como la gasolina. Hay tipos de petróleo negro, marrón, verde y amarillo.

La primera operación a realizar para el refinado del petróleo crudo, es la destilación, que sirve para separar las moléculas que lo componen en varias categorías, según su forma y peso.

El petróleo crudo, una vez calentado en el horno tubular, pasa a la torre de fraccionamiento, donde se transforma en vapores. Dado que la temperatura decrece del fondo a la parte alta de la torre, los diversos vapores se condensan a diferentes alturas, haciendo así posible la separación del petróleo crudo en sus diversos componentes. Mientras los aceites combustibles se condensan en los receptáculos inferiores, el petróleo de calefacción e iluminación se condensa en lo alto. Los vapores de gasolina se sitúan en la cabeza de la torre y se licuan en un condensador.

Cada componente sale de la torre a un nivel diferente y es conducido a otros aparatos para ser sometido a nuevos procesos de refinamiento que lo preparan para su ulterior uso.

La necesidad de obtener de un solo producto crudo una gran cantidad de productos subsidiarios más apreciados (especialmente la gasolina), ha obligado a los industriales a desarrollar diversos procedimientos: el cracking, que permite obtener gasolina partiendo de fracciones más pesadas; la hidrogenación, con la que se obtiene por otros medios un resultado final análogo al cracking, y la polimerización, que permite obtener gasolina partiendo de los gases o de hidrocarburos ligeros.

La OPEP

La organización de países exportadores de petróleo fue creada en 1960, con sede en Viena. Nació como producto de unas reuniones en Bagdad entre los países árabes productores y exportadores y Venezuela para intentar hacer frente a las maniobras de baja de precios producidas por los grandes trusts. En su fundación participaron Irán, Kuwait, Arabia Saudí, Qatar, Iraq, Venezuela, Libia e Indonesia. Posteriormente han ingresado Argelia, Nigeria, Emiratos Árabes Unidos, Ecuador y Gabón, con lo que esta organización controla el 90% de la exportación mundial de petróleo.

Aunque en sus comienzos no tuvo la fuerza suficiente para hacer frente a la política de las multinacionales, a partir de 1971 decidió nacionalizar las empresas de explotación situadas en su territorio, y en 1973 inició importantes subidas en los precios (Confert La crisis del petróleo). A partir de entonces, la OPEP ocupó el primer plano de la actividad económica mundial, porque sus decisiones en materia de precios afectan directamente a las economías occidentales. Así los países de la OPEP incrementaron de forma importante sus recursos financieros, lo que les permitió desarrollar ambiciosos planes de industrialización (Arabia Saudí, Irán, Venezuela, etc.), entrar en el capital de empresas europeas o americanas e incluso crear un importante fondo de ayuda a países subdesarrollados en dificultades.

Sin embargo, en los últimos años, esta organización a ido perdiendo progresivamente el poder de decisión que tenía antaño.

Los múltiples usos del petróleo
El petróleo es una de las más importantes fuentes de energía, hasta el punto de que con él se cubre casi un tercio de la necesaria en nuestros días.

Los combustibles líquidos presentan particulares ventajas sobre los sólidos, ya que fluyen por los oleoductos y pueden ser fácilmente transportados y utilizados. No existiendo para ellos el problema de la eliminación de residuos, producen una notable cantidad de energía en relación a su peso. Por ejemplo: un kilogramo de gasolina produce un 25 por ciento de energía potencial más que la producida por un kilogramo de carbón y un 250 por ciento más que un kilogramo de leña. Gracias a estas características, el petróleo es el combustible ideal para todos los medios de transporte: impulsa los automóviles, aviones, autobuses, camiones, tractores, buques y cuantos otros puedan darse.

También los ferrocarriles utilizan cada día más las locomotoras provistas de motor “Diesel”, que quema petróleo, con lo cual el coste del transporte resulta mucho más económico, la tracción más suave y las reparaciones menos frecuentes.

Hoy día, con la ayuda de las máquinas agrícolas a motor, cualquier agricultor puede dar en una hora treinta veces más rendimiento que hace cien años con el trabajo manual. El petróleo es utilizado también en la agricultura para el tratamiento del tabaco y para secar el heno con la ayuda de una estufa. Algunas sustancias, igualmente derivadas del petróleo, se utilizan para rociar las hortalizas y defenderlas de los insectos nocivos y de los parásitos.

Para alimentar las instalaciones de fuerza motriz que producen la energía destinada a mover las máquinas de las industrias, se utilizan combustibles derivados del petróleo. El aceite pesado, quemado en los hogares de las centrales termoeléctricas, produce el vapor necesario para mover los grandes turboalternadores que generan la electricidad con que se iluminan las casas y las calles de muchas ciudades.

La industria y los modernos medios de transporte utilizan motores, y éstos necesitan lubricante. Sin aceite lubricante y sin grasas, todas las máquinas del mundo se pararían pronto debido al excesivo recalentamiento. Los lubricantes derivados del petróleo son de muchos tipos y cada uno de ellos sirve para un uso especial.

El petróleo se utiliza también para otros muchos usos. Produce el alquitrán para pavimentar las calles, cubrir las terrazas de las casas e impermeabilizar cientos de artículos. Sirve para preparar la cera para la fabricación de velas, el papel encerado y el papel carbón. Con petróleo se fabrican también el caucho artificial y algunas sustancias plásticas sintéticas dotadas de propiedades muy útiles. Las cremas, lociones, barras de labios, perfumes, tónicos para el cabello, etc., contienen algún ingrediente derivado del petróleo.

El petróleo se utiliza igualmente para tratar los tejidos de lana, fabricar barnices, cera para el suelo y para adobar el cuero. Echemos una mirada a nuestra casa: el petróleo forma parte, por ejemplo, del barniz de nuestros muebles; la tinta de los diarios que leemos contiene petróleo, como asimismo las materias plásticas con que están hechos el teléfono, el automóvil y algunos enseres de cocina. Otro tanto puede decirse de los insecticidas que nos libran de moscas y mosquitos. Parte de los alimentos que comemos, seguramente han sido madurados artificialmente o conservados por medio del petróleo. La mayor parte de ellos han crecido con ayuda de máquinas agrícolas y han sido transportados por medio de camiones movidos por petróleo.

Conclusión : El petróleo es una materia prima mineral no renovable que necesita de millones de años para su creación; los yacimientos más importantes se encuentran en Oriente Medio, la antigua URSS y EE.UU. La importancia del petróleo no ha dejado de crecer desde sus primeras aplicaciones industriales a mediados del siglo XIX, y es él el responsable de las dos últimas guerras en Oriente Medio.

 Todo el proceso que envuelve al preciado líquido negro, desde el estudio de los yacimientos hasta el refinamiento pasando por la extracción, es extremadamente costoso y requiere alta tecnología de la que tan sólo disponen las grandes industrias del sector (Shell, British Petroleum, etc.)

 Por último, los países exportadores de petróleo se agruparon en 1960 para defenderse de las grandes multinacionales y para fijar el precio del petróleo, aunque recientemente haya perdido la fuerza que tenía en los años de la crisis.

PARA SABER MAS…
La energía alternativa

Después de la segunda crisis del petróleo de 1979, se emprendieron esfuerzos para encontrar fuentes alternativas de energía en los países avanzados. Pese a los considerables ahorros en el consumo de petróleo en los años entre 1979 y 1982, y el descenso relativo de los precios, el ímpetu siguió hasta finales de la década de los 80. Para complementar las tradicionales fuentes hidráulicas, de combustibles minerales, turba, madera y de energía nuclear, las nuevas alternativas incluían la conversión directa de la energía solar, la biomasa, la energía geotermal y la extracción de calor de los océanos, y el uso de energía de las mareas, así como el regreso a la tradicional energía eólica.

Muchas de éstas implicaban enormes programas de capital. Por tanto, la investigación y el desarrollo de las energías renovables habían sido emprendidos por gobiernos o con el apoyo gubernamental, por la friolera de 7.000 millones de dólares estadounidenses entre los 21 países miembros del Organismo Internacional de la Energía entre 1977 y 1985 inclusive. Los gobiernos también facilitaron subsidios, concesiones tributarias, préstamos baratos y otros incentivos.

La energía solar directa, por ejemplo la procedente del calentamiento del agua y del espacio, es ahora competitiva en cuanto al precio en muchos países y su uso se está ampliando. La energía eólica ha demostrado ser viable, aunque sólo para unidades pequeñas. La biomasa, en dos formas (los desperdicios o las cosechas especialmente cultivadas) se utiliza de modo creciente ya sea a través de la combustión o la conversión en combustibles líquidos o gaseosos.

En esta conversión se han utilizado el azúcar y el maíz. El excedente de azúcar de la CEE podría proporcionar cerca del 2 por ciento de las necesidades de petróleo de los países y existe un amplio potencial en otros excedentes agrícolas, así como en las cosechas especialmente plantadas.

Entre los programas a gran escala se encuentran los proyectos de las mareas en Gran Bretaña y Francia. Para sacar la energía de los océanos o de los estratos más profundos de la Tierra se necesitará mucha investigación costosa, pero finalmente ello puede resultar competitivo.

Por André Estévez Torres

Ampliar Este Tema: Ver Carbón y Petróleo

Fuente Consultada: Enciclopedia Encarta y un Trabajo de  Andrés Estévez Torres

Cantidad de Calor Concepto de Caloria Equivalente Mecanico Joule

CONCEPTO DE CANTIDAD DE CALOR, CALORÍA, EQUILIBRIO TÉRMICO Y EL EQUIVALENTE MECÁNICO

INTRODUCCIÓN ELEMENTAL: Cuando dos sistemas a diferentes temperaturas se ponen en contacto, la temperatura final que alcanzan ambos sistemas tiene un cierto valor comprendido entre las dos temperaturas iniciales. Esta es una observación común.

El hombre ha tratado desde hace mucho de encontrar una interpretación a fondo de tales fenómenos. Hasta principios del siglo XIX, se explicaban estos fenómenos admitiendo que en todos los cuerpos existía una sustancia material, llamada calórico. Se creía que un cuerpo a elevada temperatura contenía más calórico que otro a baja temperatura. Cuando los dos cuerpos se ponían en contacto, el cuerpo rico en calórico comunicaba algo de esa sustancia al otro, hasta que ambos cuerpos alcanzaban la misma temperatura.

La teoría del calórico podía describir muchos procesos, tales como la conducción del calor o la mezcla de sustancias en un calorímetro, de una manera satisfactoria. Sin embargo, el concepto de calor como sustancia, cuya cantidad total permanecía constante, a la larga no pudo resistir la prueba de los experimentos. No obstante, todavía describimos muchos cambios de temperatura comunes como el paso de “algo” de un cuerpo que está a mayor temperatura al que se encuentra a menor temperatura, y a este “algo” le llamamos calor.

Una definición útil pero no operacional, es la siguiente: Calor es aquello que se comunica entre un sistema y su medio ambiente como resultado únicamente de la diferencia de temperaturas

A la larga se llegó a entender que el calor es una forma de la energía y no una sustancia. La primera prueba conclúyeme de que el calor no podía ser una sustancia fue dada por Benjamín Thompson (1753-1814), un norteamericano que más tarde llegó a ser Conde Rumford de Baviera. En una memoria presentada ante la Royal Society  en 1798 escribió:

Yo…estoy persuadido, de que el hábito de conservar los ojos abiertos a todo lo que ocurre en el curso ordinario de las cosas de la vida ha conducido, como si fuera por accidente, o en las excursiones juguetonas de la imaginación. ..a dudas útiles y a esquemas valiosos de investigación y mejora, más a menudo que las más intensas meditaciones de los filósofos, en las horas que expresamente se dedican al estudio. Fue por accidente que me vi conducido a hacer los Experimentos de los cuales voy a dar cuenta.

Rumford hizo su descubrimiento mientras estaba supervisando la perforación de cañones para el gobierno bávaro. Para impedir que se sobrecalentara, el alma del cañón se conservaba llena de agua. El agua se reponía conforme se iba evaporando durante el proceso de taladrado. Se aceptaba que era calórico lo que tenía que proporcionarse al agua para ponerla a hervir.

La producción continua de calórico se explicaba admitiendo que cuando una sustancia se subdividía en partículas más y más finas, que es lo que ocurre al taladrar, su capacidad para retener calórico se hacía cada vez más escasa, y que era el calórico desprendido de esta manera lo que motivaba que el agua hirviera. Sin embargo, Rumford observó en experimentos específicos, que el agua hervía aun cuando los útiles para taladrar quedaban tan embotados que ya no cortaban ni subdividían la materia.

Escribió después de eliminar por los experimentos todas las interpretaciones posibles del calórico:

…al razonar sobre este asunto, no debemos olvidar el tener en consideración esta circunstancia tan notable, que la fuente de Calor generado por rozamiento, en estos Experimentos, parecía evidentemente ser inagotable… me parece extremadamente difícil, si no totalmente imposible, formarse una idea clara de alguna cosa capaz de ser excitada v comunicada en la forma como el calor era excitado y comunicado en estos Experimentos, como no sea el MOVIMIENTO.

Aquí tenemos el germen de la idea de que el trabajo mecánico gastado en el proceso de taladrado era el responsable de la creación  del calor. La idea no fue claramente expresada, sino hasta mucho tiempo después, por otros investigadores. En lugar de la continua desaparición de energía mecánica y la continua creación de calor, no obedeciendo ninguna a ningún principio de conservación, se vio entonces todo el proceso como una transformación de energía de una forma en otra, conservándose la energía total.

Aun cuando el concepto de energía y de su conservación parece autoevidente hoy en día, era una idea novedosa todavía en los años de 1850 y había escapado a mentes tales como las de Galileo y Newton. En la historia subsecuente de la física, esta idea de conservación condujo a los hombres a nuevos descubrimientos. os primeros pasos de su historia fueron notables por muchos conceptos. Diversos pensadores llegaron a este gran concepto aproximadamente al mismo tiempo; al principio, todos ellos o fueron recibidos fríamente o no se les hizo caso.

El principio de la conservación de la energía fue establecido independientemente por Julius von Mayer (1814-1878) en Alemania, James Joule (1818-1889) en Inglaterra, Hermann von Helmholtz (1821-1894) en Alemania, y L. A. Colding (1815-1888) en Dinamarca.

Fue Joule quien demostró experimentalmente que al convertir una cantidad dada de energía mecánica en calor, siempre se produce la misma cantidad de calor. Así fue definitivamente establecida la equivalencia del calor y la energía mecánica como dos formas de energía.

Helmholtz fue quien primero expresó claramente la idea de que no sólo el calor y la energía mecánica son equivalentes sino que todas las formas de energía lo son, y que no puede desaparecer una cantidad dada de una forma de energía sin que aparezca una cantidad igual en alguna de las otras formas.

Conde Rumford

Rumford, un norteamericano, fue el fundador de la Royal Institucion de Londres.
Por otra parte, la Smithsonian Institution en Washington debe su origen a un inglés.

Temperatura y cantidad de calor. Su diferenciación mediante ejemplos: Para calentar 10 Kg. de agua desde 20°C hasta 100°C, por ejemplo, hace falta quemar una cantidad mayor de gas que para calentar 2kg de agua entre las mismas temperaturas. Si se dispone del mismo “fuego” en ambos casos, el calentamiento de los 10 Kg. requerirá más tiempo durante el cual, claro está, se consumirá mayor cantidad de gas. También se puede utilizar un mechero que consuma mayor cantidad de gas en la unidad de tiempo.

Si tenemos un fósforo encendido, podemos con él producir la ignición de un papel. Con 5 Kg. de agua a 50°C podemos calentar en unos cuantos grados una pieza de cobre de 10 Kg. Pero no podemos con ella encender un trozo de papel ni con el fósforo calentar apreciablemente la masa de cobre. Observaciones de este tipo han llevado a la conclusión de que en los fenómenos térmicos la temperatura desempeña un papel importante; pero hay algo más que no puede ser caracterizado por ella. Esta conclusión unida a otras ha llevado a admitir que, cuando un cuerpo dado se enfría, pierde (entrega o cede) una cantidad de calor y que cuando se calienta, recibe (absorbe o toma) una cantidad de calor.

Por razones que no es del caso exponer aquí, ha sido necesario admitir que la cantidad de calor que intercambia un cuerpo cuando su temperatura varía, es proporcional a la masa del cuerpo y a la diferencia entre las temperaturas final e inicial del calentamiento o enfriamiento.

La constante de proporcionalidad depende del material que forma el cuerpo, como veremos enseguida. Si un cuerpo (o varios) se enfría (o enfrían) en contacto con otro (u otros) que se calienta (o calientan) y no se produce cambio alguno en el estado de los cuerpos ni otras transformaciones, fuera de los calentamientos y enfriamientos, la cantidad de calor que pierden los cuerpos que se enfrían es igual a la cantidad de calor que reciben los cuerpos que se calientan. Todo sucede como si la cantidad de calor intercambiada saliese de los cuerpos que se enfrían y pasase íntegramente a los cuerpos que se calientan.

¿Qué es el calor? A nivel microscópico, como ya lo hemos explicamos cuando hablamos de temperatura, todas las moléculas de un sistema físico se encuentran en continuo movimiento; en el caso de los sólidos se trata de una vibración en torno a una posición de equilibrio y en el de los gases es un movimiento aleatorio.

Este movimiento de las partículas tiene asociada una energía cinética, que debe clasificarse en dos tipos diferentes: la correspondiente al movimiento del sistema en su conjunto y la que corresponde al movimiento de unas partículas con respecto a otras. La suma de las energías cinéticas de todas las partículas de un cuerpo es llamada energía interna o térmica, y su aumento o disminución lo apreciaremos a través de la temperatura.

El calor es una forma de energía, y la energía calórica de un cuerpo es la suma de las energías cinéticas de sus moléculas. Esta interpretación permite formarnos una imagen clara de lo que ocurre cuando ponemos en contacto dos cuerpos con diferentes temperaturas: pasa energía de las moléculas de uno a las del otro, mediante la interacción de choques o de atracciones, hasta que las energías cinéticas medias se igualan (o sea, se igualan las temperaturas). Así se comprende que los gases de la llama de un fósforo tengan temperatura mayor que una olla de agua caliente, pero menor cantidad de calor, o sea, menor cantidad de energía.

Cantidad de calor : La Caloría
La unidad de cantidad de calor Q se define cuantitativamente en  función de un cierto cambio producido en un cuerpo durante un proceso especificado. Así, si se eleva la temperatura de un kilogramo de agua de 14.5 a 15.5°C calentándolo, decimos que se ha agregado al sistema una kilocaloría (Kcal.).

La caloría (= 10-3 Kcal.) se usa también como unidad de calor. (Entre paréntesis, la “caloría” que se usa para medir el contenido de energía de los alimentos es en realidad una kilocaloría.) En el sistema inglés de unidades de ingeniería la unidad de cantidad de calor es la British thermal unit (Btu), que se define como la cantidad de calor necesaria para elevar la temperatura de una libra de agua de 63 a 64°F.

Las temperaturas de referencia se estipulan porque, en la vecindad de la temperatura ambiente, hay pequeñas variaciones en la cantidad de calor necesaria para producir una elevación de un grado según sea el intervalo de temperatura escogido. No tomaremos en cuenta esta variación para la mayoría de los fines prácticos. Las unidades de cantidad de calor están relacionadas como sigue: 1.000 Kcal. = 1.000 cal = 3.968 Btu = 4186 joules.

En base a la definición anterior si tenemos una masa de agua de 450 g de la cual sabemos que se calienta de 15°C a 30°C. Por cada gramo y por cada grado centígrado, esa masa de agua toma una caloría. Como las cantidades de calor son proporcionales a la masa de los cuerpos que se calienta y a la diferencia de temperatura (final menos inicial), en el ejemplo dado el agua habrá tomado 1 cal g-1 C-1 X 450 g X (30 —15) °C = 675 cal. (Hacemos notar que el cal es el símbolo de caloría.)

Si la misma masa de agua se hubiese enfriado de 30°C a 15°C hubiese cedido esa misma cantidad de calor. El resultado del cálculo sería -675 cal, pues la diferencia entre paréntesis hubiese sido (15—30). Si el calentamiento del agua se hubiese producido en contacto con un cuerpo de masa m cuya temperatura hubiese variado entre ti y 30° (la temperatura final es la misma, ya que suponemos que el agua y el cuerpo llegan a un equilibrio térmico), el cuerpo en cuestión hubiese cedido al agua (él hubiese perdido, entregado) una cantidad de calor dada por la expresión de proporcionalidad:

Q – c . m . (ti-30)

Q es el símbolo general para cantidades de calor. Ahora bien, la masa de agua es el único cuerpo que se calentó y la cantidad de calor calculada para el calentamiento del agua es la misma que entregó el cuerpo al enfriarse. Por esta causa dijimos que estábamos en presencia de una manera de medir cantidades de calor.

La constante de proporcionalidad, c, que aparece en la última fórmula no es otra cosa que el calor específico del cuerpo o material de que se trate. Su definición es la cantidad de calor necesaria para aumentar en 1°C la temperatura de 1 g del material que forma el cuerpo. Si comparamos esta definición con la de caloría, veremos que el calor específico del agua es 1 cal/g (grado C).

El calor específico de una sustancia, ce, es la cantidad de calor necesaria para elevar un grado la temperatura de un kilogramo de dicha sustancia. Se mide en J/(kg . K) en el SI. También se puede expresar en cal/(Kg . °C).

La cantidad de calor necesaria para que una masa m de una sustancia aumente su temperatura desde T1, hasta T2 se expresa entonces así: Q = m . ce . (T2 — T1) = m. ce. ▲T

(▲T): se lee delta T , es la variación de la temperatura, y equivale a la temperatura final menos la temperatura inicial.

TABLA DE CALORES ESPECÍFICOS

Sustancia  c.e. (Cal./Kg./°C) c.e. (J./Kg./°K)
Aluminio 210 878
Cobre 90 375
Hierro 110 460
Plomo 30 125
Mercurio 30 125
Plata 60 250
Latón 90 375
Vidrio 160 667
Arena 200 835
Hielo 500 120
Agua Pura 1000 4180
Agua de Mar 940 3900
Alcohol Etílico 550 2400
Glicerina 580 2420
Trementina 420 1750
Aceite 400 1670
Vapor de Agua 460 1920
Carbono 121 500
Wolframio 32 135

Para pasar de (cal./Kg./°C) a Kcal. se multiplica por 1000. Lo mismo si se quiere pasar de Kg. a gr. se divide por 1000. También de Cal. a Joule (J.) divide por 0,24. Si divide para el aluminio los 210 por 0,24
se obtiene en Joule, 878.

EJEMPLOS:

• ¿Que cantidad de calor se necesita para elevar la temperatura de 50 gr. de cobre desde 18°C. hasta 98°C?

▲T=98-18 = 80°C

El calor específico del cobre es de 0,09 cal./gr./° C. La masa m = 50 gr., el calor específico s = 0,09 = 9:100 cal./gr./° C, la variación de temperatura es  = 80° C. La cantidad de calor es Q = m x s x t = 50 X 9:100 x 80 = 360 calorías.

De la definición de caloría (cantidad de calor que se necesita para elevar la temperatura de 1 g. de agua en 1° C), se deduce que el calor específico del agua es de 1,00 cal./gr.° C. Éste es el mayor calor específico de todas las sustancias ordinarias. Es, por ejemplo, unas 5 veces mayor que el calor específico de la arena. Para producir el mismo aumento de temperatura, el agua absorbe una cantidad de calor 5 veces mayor que una masa igual de arena. Esto explica por qué el mar tarda más en calentarse, durante el día, que una playa de arena; y por qué la arena de la playa se enfría más rápidamente al llegar la noche.

• ¿Cuánto calor es necesario para aumentar en 25 °C (a temperatura de 3 Kg. de agua?
Suponemos que no hay cambios de estado:

formula cantidad de calor

La cantidad de calor pedida depende únicamente de la masa y del aumento de temperatura, para el caso del agua.


• Introducimos una barra de aluminio, de 0,2 Kg., a 80 °C en un vaso con 0,25 Kg. de agua a 20 °C. Calcular la temperatura final, suponiendo que no hay pérdidas de calor con el ambiente.

Cuando se alcance el equilibrio térmico ambos estarán a la misma temperatura. El aluminio cede calor (Qc) y disminuye su temperatura:

formula cantidad de calor

El agua absorbe calor (Qa) y aumenta su temperatura:

formula cantidad de calor

Si no hay pérdidas de calor se cumple que: el calor cedido (negativo) por la barra de aluminio es igual al absorbido (positivo) por el agua.

Un bloque de cobre de 75 g, se saca de un horno, y se echa en un depósito de vidrio de 300 g que contiene 200 g de agua. La temperatura del agua se eleva de 12 a 27°C. ¿Cuál era la temperatura del horno?

Este es un ejemplo de dos sistemas que se encontraban originalmente a diferentes temperaturas y que alcanzaron el equilibrio térmico después de ponerse en contacto. No interviene energía mecánica, sólo hay un intercambio de energía calorífica. Por consiguiente:

formula cantidad de calor

El subíndice C representa al cobre, G al vidrio y W al agua. La temperatura inicial del cobre es Tc, la temperatura inicial del agua del depósito es Tw, y la temperatura final de equilibrio es Te. Sustituyendo los valores dados, con Cc=0.093 cal/g C, Cg = 0.12 cal/g C°, y Cw = 1.0 cal/g C°, obtenemos:

Equivalente mecánico del calor
Si el calor no es sino otra forma de la energía, cualquier unidad de energía puede ser una unidad de calor. La caloría y el Btu se originaron antes de que fuera aceptado generalmente que el calor es energía. Fue Joule quien primero midió cuidadosamente el equivalente en energía mecánica de la energía calorífica, esto es, el número de joules equivalente a 1 caloría, o el número de pies-libras equivalente a 1 Btu.

El tamaño relativo de las “unidades caloríficas” y de las “unidades mecánicas” se puede encontrar efectuando experimentos en los cuales una cierta cantidad medida de energía mecánica se convierte completamente en una cantidad medida de calor. Joule usó originalmente un aparato en el cual unas pesas que caían hacían girar un conjunto de aspas en un recipiente con agua  La pérdida de energía mecánica se calculaba conociendo los pesos y las alturas

aparato de Joule

 Aparato de Joule para medir el equivalente mecánico del calor.
Las pesas que caen hacen girar las aspas que agitan el agua en el recipiente, elevándole su temperatura

de las cuales caían y la ganancia de energía calorífica, determinando el equivalente en agua del conjunto y su elevación de temperatura. Joule deseaba demostrar que se obtendría la misma cantidad de energía calorífica al consumir una cierta cantidad dada de trabajo independientemente del método seguido para producir el trabajo.

cientifico jouleProducía calor agitando mercurio; frotando entre sí anillos de hierro en un baño de mercurio; convirtiendo energía eléctrica en calor en un alambre sumergido en agua; y de otras formas. Siempre coincidía la constante de proporcionalidad entre la cantidad de calor producido y la cantidad de trabajo ejecutado dentro de su error experimental de 5%.

Joule no disponía de los termómetros exactamente comparados que tenemos en la actualidad, ni podía hacer correcciones tan seguras de las pérdidas de calor del sistema como es posible hacerlo ahora.

Sus experimentos originales son notables no sólo por la habilidad e ingenio que mostró sino también por la influencia que tuvieron para convencer a los hombres de ciencia de todas partes, de lo correcto del concepto de que el calor es una forma de la energía.

Los resultados aceptados son:

1 kcal = 1 000 cal = 4 186 joules,
1 Btu = 252.0 cal = 777.9 pies Ib;

esto es, cuando se convierten en calor 4 186 joules de energía mecánica, elevan la temperatura de 1 Kg. de agua de 14.5 a 15.5°C.

En calorimetría moderna las cantidades de calor se miden casi siempre la función de la energía eléctrica proporcionada a un baño de agua al hacer pasar una corriente por una resistencia que se encuentra dentro del baño; raras veces se miden observando la elevación de temperatura de un baño de agua. Así pues, la unidad práctica lógica de calor es el joule (1 joule = 1watt-seg) y de hecho es la que se adoptó como unidad internacional aceptada jara el calor por la Novena Conferencia General de Pesas y Medidas (1948). De hecho, en la práctica moderna de los laboratorios, la caloría (o la kilocaloría) si se usa mucho ni se necesita. Sin embargo, está profundamente metida en !a literatura científica. Para permitir el seguir usando esta unidad familiar —-pero para reconocer la importancia práctica del joule— a menudo se define una nueva kilocaloría, la kilocaloría termoquímica: 1 Kilocaloría=4184.0vjoules (exactamente)

Medida del color específico del aluminio, por el método de las mezclas. El aluminio se calienta en agua hirviendo, y luego se sumerge en el agua fría del calorímetro. El calor ganado por el agua fría y el calorímetro puede calcularse, y es igual a Q, el calor cedido por la masa m de aluminio. El calor específico s del aluminio puede deducirse de la ecuación Q= m . s . ▲T(observación: en este ejemplo s=ce el calor específico del material)

MEDIDA DEL CALOR ESPECÍFICO DE UN SÓLIDO
Este experimento ofrece un ejemplo del llamado “método de las mezclas”. Está basado en el hecho de que el calor que pierde un cuerpo caliente lo gana un cuerpo más frío. El experimento será correcto si se toman las precauciones necesarias para que no haya pérdidas de calor fuera del aparato.

calorimetro metodo de las mezclas

La parte principal del aparato es el “calorímetro”, un recipiente de cobre con paredes de poco grosor (el cobre tiene un bajo calor específico y, por lo tanto, una pequeña capacidad para absorber calor) que debe estar muy bien pulido, para evitar las pérdidas de calor por radiación.

El calorímetro se coloca sobre un soporte de corcho (un mal conductor de! calor), en el interior de un recipiente mayor, que sirve de protección contra los cambios en la temperatura exterior. Normalmente, e! calorímetro se cierra con una tapadera que lleva un termómetro, esencial para todos los experimentos de medidas de calor. A través de la tapadera pasa también una varilla de cobre, con la que puede removerse el contenido de’, calorímetro.

Supongamos que queremos calcular el calor específico del aluminio por el método de las mezclas. Se pesa la muestra de aluminio, así como e! calorímetro vacío con su agitador. Luego se llena el calorímetro con agua hasta la mitad, y se pesa de nuevo, para calcular la masa de agua que contiene, por la diferencia entre las dos pesadas. El aluminio se calienta, sumergiéndolo en un vaso con agua en ebullición.

La temperatura de! agua hirviendo será la temperatura inicial del aluminio. Mientras se calienta el aluminio, se mide la temperatura del agua fría en el calorímetro. Luego, el aluminio caliente se transfiere muy rápidamente al calorímetro (procurando no llevar agua caliente con él).

El agua del calorímetro se agita, para igualar la temperatura del agua, y se anota la temperatura más alfa que alcance el termómetro. Antes de averiguar el calor específico (s) del aluminio, hay que realizar las siguientes medidas. Con ellas, y el calor específico del cobre y del agua, que son factores conocidos, no necesitamos más datos.

Masa del aluminio = 10 gr.
Masa del calorímetro vacío = 50 gr.
Masa del agua en el calorímetro = 80 gr.
Temperatura Inicial del aluminio = 99,5° C.
Temperatura inicial del calorímetro = 17,5° C.
Temperatura final del aluminio y del calorímetro = 19,5° C.
Calor específico del cobre = 0,09 cal./gr./° C.
Calor específico del agua = 1 cal./gr./° C.

Utilizando estos datos, se hacen los siguientes cálculos:
Disminución de temperatura de los 10 gr. de aluminio = 99,5—19,5 = 80°C.

Por tanto, e! calor perdido por el aluminio es Q= m .c. ▲T = 10 . s . 80 — = 800 x s calorías.

Elevación de temperatura de! calorímetro de cobre = 19,5 – 17,5 = 2°C.

Por lo tanto, la cantidad de calor Q ganada por e! calorímetro es: Q=m. s. ▲T=50 . 0,09 X 2 = 9 calorías.

Como la elevación de temperatura de! agua del calorímetro es también 19,5— 17,5 = 2°C, la cantidad de calor ganada por 80 gr. de agua es Q=m. s. ▲T = 80 . 1 . 2 = 160 calorías.

Así, la cantidad total de calor ganada por el agua y el calorímetro es de 160 + 9 = 169 calorías.

Ahora bien, las 800 X s calorías perdidas por el aluminio son iguales a las 169 cal. que ganan el agua y el calorímetro. Luego 800 X s = 169.

Dividiendo ambos miembros de la ecuación por 800, tenemos:

Calor específico del aluminio s = 169/800 = 0,21 cal./gr./° C

Fuente Consultada:
Revista TECNIRAMA N° 54
FÍSICA I
RESNIK-HOLLIDAY
Elementos de Física y Química Maiztegui-Sabato

Enciclopedia del Estudiante Tomo 7 Físico-Química

El Cuarzo Propiedad Piezoléctrica Usos del Cuarzo Propiedades Fisicas

El Cuarzo Propiedad Piezoléctrica
Usos del Cuarzo

El cuarzo es un mineral duro, muy abundante en la naturaleza y que presenta numerosas variedades. Una de ellas, el sílex, al comienzo de la historia del hombre, conformado groseramente a base de golpearlo contra otras piedras, se usó como utensilio y como arma durante más de medio millón de años.

Más tarde el pulimento, a base de frotar entre sí dos piedras, mejoró el acabado de las piezas y, si bien se unieron al sílex otros tipos de piedras, aquél siguió siendo el más empleado. Utensilios, armas, cuentas de collares, sellos grabados, estatuillas, amuletos, copas, medallones, camafeos, bajorrelieves de todas las épocas y estilos, fabricados en todas las variedades de cuarzo, llenan innumerables vitrinas en todos los museos del mundo.

El Cuarzo Propiedad Piezoléctrica Usos del CuarzoLas variedades de cuarzo utilizadas en la Antigüedad no estaban cristalizadas y pasaron muchos años antes de que llegaran a manos del hombre las primeras variedades cristalizadas, procedentes de los Alpes.

Plinio intentó explicar el origen de esos cristales totalmente transparentes, diciendo que era agua cristalizada a la baja temperatura que reinaba en las altas cumbres siempre nevadas. Esta agua ya no podía volver a adquirir su primitivo estado líquido, y la denominó cristal de roca.

La variedad más apreciada como gema es la amatista, que presenta coloración violácea con una tonalidad ligeramente rojiza. La amatista transparente y de color uniforme se emplea en joyería y alcanza notable valor. Entre los ejemplares más conocidos destacan las tres grandes amatistas (una de 343 qt) conservada en el Museo Británico. Abunda en Brasil y México.

El cuarzo ahumado es de color pardo y se encuentra en grandes cristales, como el existente en el museo de Berna, que pesa 100 Kg. y fue hallado en los Alpes suizos; los ejemplares transparentes y de color uniforme se tallan en brillante y constituyen gemas muy apreciadas.

El cristal de roca, variedad incolora y transparente, tiene poco valor, excepto cuando lleva inclusiones que le producen iridiscencia; así la denominada “cabellera de Venus”, con finas agujas de rutilo de color amarillo reunidas en penacho.

La carneola, variedad criptocristalina, de color rojo intenso uniforme, suele tallarse de diversas formas para su empleo en joyería. Más apreciadas son las coloraciones anaranjadas de la sardónica, o la coloración verde oscura del heliotropo con manchas rojas. La crisoprasa se halla en forma de concreciones de color verde claro con puntos blanquecinos.

El efecto piezoeléctrico del cuarzo queda de manifiesto tallando una lámina perpendicular al eje ternario del cristal. Si se recubren sus caras con una sustancia conductora y se unen a un voltímetro muy sensible, se observará que, al ejercer una fuerza, aparece una corriente eléctrica.

Desde siempre, la variedad más apreciada es el ágata, de estructura zonada en capas de diverso color y espesor, en que suelen alternar capas grises con otras de diversos colores. El ónice presenta capas de colores claros y oscuros, a veces grises y negros. Los caldeos y babilonios tallaban copas, vasos, sellos y camafeos; actualmente se fabrican con él ceniceros, joyeros y sobre todo gemas de fantasía, pues se la considera una piedra semipreciosa.

También la industria se beneficia de las extraordinarias propiedades físicas del cuarzo. Por su resistencia a los ácidos se emplea para preparar instalaciones, cápsulas, serpentines y objetos diversos de laboratorio e industriales. Fundido a 1.700 ºC y luego sobre enfriado, se transforma en un producto denominado vidrio de sílice, que se emplea en óptica y electrónica, así como en lámparas de arco.

Pero son principalmente sus propiedades piezoeléctricas las que le han dado un mayor campo de aplicación en la técnica moderna.

El cuarzo, sometido a presiones, desarrolla cargas eléctricas, que pueden ser recogidas y son el fundamento del pick-up, donde recoge presiones que transforma en corriente eléctrica.

También se utiliza como resonador en toda técnica que requiere oscilaciones determinadas, precisas y constantes. Recuérdense los relojes de cuarzo de reciente introducción en el mercado. La necesidad de cuarzo sin defectos de cristalización y sin maclas ha llevado a un grado de gran perfección la obtención, en hornos especiales, de cuarzo artificial, que es el que actualmente se emplea en la industria.

Historia de la Siderurgia