Energía Nuclear

Uso de los Recursos Naturales y el Cuidado del Ambiente Historia

 Historia del Uso de los Recursos Naturales y el Cuidado del Ambiente

Las sociedades aprovechan los elementos naturales, como agua, minerales, animales y plantas, para satisfacer sus necesidades, por ejemplo para producir bienes de uso personal como calzados, muebles, automóviles, cerámicos, utensillos, etc. Así, los seres humanos van modificando y transformando la naturaleza para obtener alimentos, vivienda, vestimenta, etc.

En el campo, con la cría de ganado y el cultivo de plantas, y en las ciudades, con la construcción de edificios, caminos, etc. El ambiente es el resultado de la relación entre los elementos de la naturaleza y las transformaciones realizadas por las personas. Por ejemplo, una montaña es un elemento natural, pero si las sociedades construyen allí casas, caminos y puentes, se la considera un ambiente de montaña.

USO Y CONSERVACIÓN DE LOS RECURSOS NATURALES: La especie humana, aparecida hace aproximadamente 40.000 años atrás, ha sobrevivido principalmente como cazadora-recolectora nómada durante la mayor parte de ese tiempo.

Dos cambios culturales de gran importancia, la Revolución Agrícola (10.000 a 12.000 años atrás) y la Revolución Industrial (a fines del siglo XVIII) trajeron beneficios como el aumento de la tecnología, el suministro de alimentos, la obtención de mucha mayor energía, el aumento de la esperanza de vida, etc. Pero también tuvieron consecuencias negativas: se produjo un brusco aumento de la población y un crecimiento exponencial del uso de los recursos, de la contaminación y de la degradación del ambiente.

Nuestros primeros antecesores cazadores-recolectores (sociedades paleolíticas) lograron sobrevivir porque tenían un adecuado conocimiento del ambiente donde vivían, y entendían su íntima dependencia respecto ele la naturaleza.

Ellos aprendieron eficazmente a encontrar agua, a saber cuándo maduran los frutos y a conocer los movimientos de sus presas. Al mismo tiempo descubrieron una gran variedad de animales y plantas que les proveían alimento y a las que usaban como medicamentos. Estos hombres sólo empleaban, por un lado, la energía solar, y por el otro, su propia fuerza muscular.

En consecuencia, era escaso el impacto que causaban en el medio natural. Eran grupos humanos pequeños que poseían un comportamiento nómada y dependían de su propia fuerza física.

La Revolución Agrícola se produjo por un cambio gradual de los pequeños grupos nómadas cuando se establecieron en comunidades agrícolas, donde aprendieron a criar animales salvajes y a cultivar plantas silvestres para sobrevivir. Para preparar esos cultivos desmontaban pequeños sectores de bosque, derribando árboles y malezas, para luego quemar esa vegetación talada y utilizar las cenizas como abono.

Dichos cultivos eran de subsistencia, esto es, producían sólo lo necesario para comer ellos y sus familias. El trabajo era manual y usaban precarias herramientas de labranza, por lo cual hubo escaso impacto sobre el medio natural.

Más adelante, con la aparición del arado de metal tirado por animales domesticados, junto con el aumento de las parcelas cultivadas donde se abrían los suelos fértiles, la degradación se incrementó.

urbanizacion primitiva

La Revolución Urbana introdujo fuertes cambios culturales que aparejaron problemas ambientales, cuyas consecuencias se mantienen vigentes en la actualidad. La urbanización se originó en un grupo de agricultores con capacidad de producir alimento suficiente para mantener a sus familias, más un excedente que podía comercializar con otras personas. Estos grupos crecieron hasta convertirse en pueblos y ciudades, donde se centralizaron el comercio, los gobiernos y la religión, y el agua se transformó en un recurso económicamente valioso.

primeros asentamiento humanos

Empezó en esta etapa una verdadera contienda contra la naturaleza, donde la supervivencia de animales y plantas silvestres dejó de ser importante pues competían con el ganado y los cultivos; fueron eliminados o desalojados, ya no eran considerados recursos vitales para el hombre. Como consecuencia sobrevinieron guerras, sobrepoblación, contaminación y degradación ambiental.

La Revolución Industrial comenzó en Inglaterra a mediados del siglo XVIII y se extendió a los Estados Unidos en el siglo siguiente; la leña fue reemplazada por el carbón como combustible sustituto. El consumo promedio de energía por persona aumentó considerablemente y, por lo tanto, el poder de alterar y utilizar la Tierra para satisfacer las necesidades del crecimiento económico. El uso del carbón llevó a la invención de la máquina de vapor.

carbon y la maquina a vapor

Más adelante, el carbón fue reemplazado por el petróleo y el gas. Con el avance de la Revolución Industrial surgió la sociedad industrial avanzada, que se caracterizó por la intensa producción y el gran consumo de bienes motivados por la publicidad masiva para crear falsas necesidades o necesidades artificiales, alentando de esta manera lo que llamamos la “sociedad de consumo”.

maquina a vapor

Se produjo también un cambio en la utilización de materiales sintéticos en lugar de los naturales, con el correspondiente perjuicio al ambiente ya que los primeros se degradan muy lentamente y muchos son tóxicos para el hombre, los animales y las plantas. Conjuntamente con los beneficios que acompañaron a estas sociedades se intensificaron muchos problemas ambientales y aparecieron otros nuevos.

torre de petroleo

El uso desmesurado de combustibles fósiles fue el que generó un crecimiento económico vertiginoso, con la consecuente aparición de problemas ambientales graves. La industria de exploración y explotación de la “energía fósil” es la responsable de gran parte de la contaminación del aire y el agua del mundo.

Conquistar la naturaleza puede aparecer como una idea asociada al progreso, pero exacerbada por el proceso de industrialización. Es imprescindible revertir el uso irracional y abusivo de los recursos.

SINTESIS: Volviendo al inicio, decíamos que  las sociedades utilizan los recursos naturales para producir alimentos, ropa, calzados muebles, etc. La mayoría de las veces, las industrias no tienen: en cuenta los daños que generan en los ambientes al obtener los recursos naturales para fabricar sus productos.

El desarrollo sustentable consiste en una serie de acciones que tienen como objetivo lograr un equilibrio entre el desarro llo económico y el cuidado del ambiente. La idea principal en satisfacer las necesidades de las sociedades sin afectar los re cursos naturales y preservarlos para las generaciones futuras Para ello, es necesario que la sociedad y las industrias respeten los tiempos de la naturaleza.

Esto significa que al utilizar los recursos naturales se les debe conceder el tiempo necesario que se reproduzcan y se formen nuevamente. Si ese tiempo no se respeta, es posible que se agoten. Por ejemplo, realizar acti vidades de pesca solo en los períodos determinados para que los peces puedan reproducirse y no estén en peligro de extición. Lo mismo sucede con las plantas y otros animales.

Al mismo tiempo, las sociedades deben prac ticar un consumo responsable, que significa elegir productos teniendo en cuenta como has sido elaborados y cómo afectan al ambiente. Consiste en consumir y elegir lo indispensable y no comprar productos innecesarios, que tengan componentes contaminantes.

Realizar un consumo responsable requiere de un cambio en los hábitos, no muy diferente de los que ya se tienen. Por ejemplo, las bolsas de plástico se pueden reemplazar por una úni ca bolsa de tela y siempre llevar la misma para hacer las compras. De esta manera, se disminuye no solo la producción de plásticos, también los residuos de este material.

Ver: Basura Electrónica

Fuente Consultada: Espacio y Sociedades del Mundo Política, Economía, y Ambiente – Daguerre y Sassone – Edit. Kapeluz Biblioteca Polimodal

Desperdicios de Comida en el Mundo y Datos Alarmantes Huella

DESPERDICIOS DE COMIDA EN EL MUNDO
La Huella del Desperdicio

Desperdicios de Comida en el Mundo: Hoy el mundo vive la contraposición de niños muriendo de hambre por millones en el mundo, mientras en Europa se tirá a la basura anualmente el 50% de lo que se compra en alimentos. El autor del libro ‘Despilfarro’, Tristram Stuart, denuncia que 40 millones de toneladas de alimentos despilfarrados en los EEUU cada año, podrían alimentar a los 1.000 millones de personas que se van a la cama con hambre cada día. Si recogiera toda la comida despilfarrada en Gran Bretaña en un solo dia, podría ofrecer una comida a 60 millones de personas.

desperdicio de comida en el mundo

¿El desperdicio de comida aún comestible es algo cultural, típico de los paises ricos o bien es una práctica que se encuentra por todo el mundo?

Las personas tenemos el poder para producir los cambios necesarios si convertimos el desperdicio de comida en algo socialmente inaceptable.

¿Qué recomendarla a un ciudadano para evitar tanto desperdicio de alimentos? ¡Come lo que compras y compra lo que necesitas!

La solución es no producir más de lo necesario y no despilfarrar. Sin embargo, está claro que despilfarrar comida es el equivalente de sacar comida de las bocas de los pobres a escala global. Cuando compramos comida, por ejemplo, pan, estamos interactuando en el mercado global del trigo.

Las recientes subidas de precio de algunas materias primas como el trigo han sido provocadas en gran medida porque la demanda supera la oferta. Estas subidas de precio condenan a millones de personas al hambre.

Si nosotros, en los países ricos, despilfarráramos menos pan y, por lo tanto, compráramos menos trigo en el mercado mundial, quedaría más cantidad disponible para las personas en África y Asia que pasan hambre, y que compran el trigo en el mismo mercado mundial” dijo Stuart.

Si un supermercado u otro comercio de alimentación acaba teniendo excedentes de productos que van a caducar, deberían donarlos para que la gente pueda consumirlos, antes que despilfarrarlos.

Los paises ricos no invierten más en la agricultura de los países pobres.

En India hay montañas de frutas y de verduras que se están pudriendo simplemente porque faltan infraestructuras agrícolas. Hoy las ONG están dándose cuenta de que se puede aumentar la disponibilidad de alimentos en estos países invirtiendo cantidades de dinero relativamente pequeñas para crear infraestructuras, y asi asegurarse de que la comida llegue en condiciones a los consumidores y no se pudra.

Hoy 2 millones de personas que pasan hambre en España hoy como consecuencia de ia crisis económica. En este momento, se despilfarra más comida de la que podría ser consumida por todas ¡as personas hambrienta.

La producción agrícola mundial deberá aumentar en un 60 % de aquí a 2050 para satisfacer la demanda de una población mundial en crecimiento.

En la actualidad una gran parte de los alimentos producidos en el mundo se pierde. La expresión “pérdida de alimentos” se refiere a la disminución de la masa comestible de los alimentos en tres etapas de la cadena alimentaria ―producción, poscosecha y elaboración―, principalmente en los países en desarrollo.

Cada año un tercio de los productos que se producen en el mundo se pierden en los negocios o se desperdician en los hagares y restaurantes, esto no es solo una pérdida economica sino que todos los recursos naturales usados para el cultivo, la elaboración el envasado , el transporte y la comercializacion de los alimentos tambien se pierden.

desperdicios de comida

Si se vendiera al precio al consumidor los alimentos despilfarrado, el valor estimado es aproximadamente dos veces el producto bruto interno (PIB) de Noruega. No olvidemos que por otro lado esos alimentos desperdiciados lanzan a la atmósferá millones de gases de efecto invernadero generando verdaderos problemas ambientales, que mas tarde perjudicarán la producción de nuevos alimentos.

En el 28% de las tierra del mundo se producen cultivos que se desperdician, lo que equivale a toda la superficie de China, Mongolia y Kazajtán juntas y además toda el agua que se desperdicia es de unos 250 km³, volumen de agua que podría satisfacer la necesidad de agua de todo los habitantes del planeta.

Por otro lado conforme se expande la agricultura y la pesca, se sobreexplotan los recursos naturales y se pierden habitat marinos y forestales, junto con su biodiversidad.

Los alimentos desperdiciados despiden 3.300.000.000 (tres mil trescientos millones o 3,3 Gigatoneladas) de gases de efecto invernadero, y si suponemos que esos gases sean de un país, este se convertiría en el 3° país con mayor emisión del mundo.

Es fácil darnos cuenta que esto asi no puede continuar, en un planeta con cada vez mas personas y menos recursos, no podemos permitirnos tirar nuestros recursos naturales a la basura.

No olvidemos que los esfuerzos pequeños , pero en cantidad se suman, por ejemplo:

a) Los productores de alimentos deben invertir en una mejor tecnología de cosecha y almacenamiento para evitar pérdidas de alimentos.

b) Los minoritas de alimentos pueden reducir los precios de esas hortalizas imperfectas y donar los excedentes no vendidos a instituciones que atienden a los mas necesitados.

c) Los alimentos no utilizables como alimento humano deben utilizarse con pienso para los animales.

d) Los consumidores pueden ser compradores ma cuidadosos, cuidando los desperdicios en sus hogares para ser vueltos a consumir y también puede exigir porciones mas pequeñas en los restaurantes.

La pirámide del desperdicio de alimentos se basa en la basura y los encargados de las políticas pueden mejorar la capacidad de los productores, minoristasy consumidores para invertir la pirámide, por ejemplo crear capacidad en  los productores de alimentos para adoptar tecnologia post cosecha , revisar las fechas de caducidad de los alimentos para que no se desechen productos utilizables inútilmente, hacer campañas de concientización para alentar a los consumidores a aplicar medidas que estén a su alcance para frenar el desperdicio. Reducir los vertederos de basuras y convertir esos desechos en abono y biogas.

La solución viene con políticas nacionales, pero en fundamental el apoyo de los productores, industrias, comerciantes, familias y Ud., pues se requerirá la ayuda de todos los sectores para reducir la pérdida y el despilfarro de alimentos, para que todos los recursos naturales utilizados en la producción de alimentos terminen verdaderamente como recursos alimentarios y no como basura en los vertederos.

No olvidemos que para producir todos esos alimentos:

a) Se usó agua, (un bien escaso) para riego y lavado en volúmenes gigantes, aumentando la escasez.

b) Se talaron miles de Km² de bosques y erosionaron tierras.

c) Produjeron pérdidas de polinizadores, peces y otras biodiversidades.

Como se observa es importantísimo reducir el despilfarro de alimentos, porque la misma genera pérdidas económicas, ambientales y sociales. No todas las medidas son iguales y algunas son mejores que otras para la naturaleza y la sociedad.

EL PRINCIPIO DE LAS 3R: Cada persona tiene  la oportunidad y la capacidad de contribuir a mejorar nuestro espacio y nuestro mundo a partir de pequeñas acciones cotidianas. Por ello, es importante que busques, dentro de tu casa y oficina, aquellas oportunidades donde puedas:

Aplicar y transmitir el principio de las 3 erres puedes ser parte de la solución al problema de la basura.

Reducir tu consumo de energía (luz, gas, etcétera); de agua y de todo tipo de productos, especialmente aquellos que son contaminantes. Evitar todo aquello que de una u otra forma genera un desperdicio innecesario.

Reciclar los materiales susceptibles de ello, como plásticos, vidrio y cartón en puntos cercanos a tu casa. Volver a usar un producto o material varias veces sin tratamiento. Darle la máxima utilidad a los objetos sin la necesidad de destruirlos o deshacerse de ellos.

Reutilizar / Reusar: artículos como el papel y otros, antes de comprar dichos productos nuevamente. Utilizar los mismos materiales una y otra vez, reintegrarlos a otro proceso natural o industrial para hacer el mismo o nuevos productos, utilizando menos recursos naturales.

Ampliar En Este Sitio Sobre las 3R

CURIOSOS DATOS DEL MUNDO: POBLACIÓN, HAMBRE, EDUCACIÓN

UN MENSAJE DEL PAPA:

El Papa Francisco advirtió que en la actualidad puede hablarse de una tercera Guerra Mundial azuzada por intereses espurios como la codicia y permitida por la misma indiferencia que ya consintió atrocidades del pasado.

papa francisco

El pontífice dijo que la guerra es “una locura” alimentada por conceptos como “la avaricia, la intolerancia y la ambición de poder” que encuentran justificación en la ideología y que lo destruye y lo trastorna todo.

Es que en la “sombra” de la sociedad convergen “planificadores del terror”, o lo que es lo mismo, “estrategias de codicia de dinero y de poder” cuyo corazón está “corrompido”.

Aquí entran en juego los siete pecados capitales, que no deben ser entendidos como hechos religiosos sino como la trampa que envenena a la sociedad humana.

Es bueno tener convicciones pero cuando se exceden pasan a ser: La soberbia.

Es grato tener ambiciones, pero cuando es demasiada es: La avaricia.

Es buena la competencia que mide nuestro progreso pero no: La envidia.

Es útil la rebelión contra lo que nos oprime pero no: La ira.

Es placentera y humana la sexualidad pero no: La lujuria.

Es grata y necesaria la alimentación pero no: La gula.

Es una condición humana el placer del descanso pero no: La pereza.

UN VIDEO INTERSANTE DE LA F.A.O.

Historia de la Evolución del Uso De Energía Desde el Fuego

HISTORIA DEL DESCUBRIMIENTO Y  EVOLUCIÓN DEL USO DE LA ENERGÍA
DESDE EL FUEGO A LA ENERGÍA ATÓMICA

LAS ENERGIA PRIMARIAS: Una fuente de energía primaria es toda forma de energía disponible en la naturaleza antes de ser convertida o transformada, y ellas son: el petróleo, gas natural, el carbón, la madera o leña, caída de agua, la del sol o solar, la eólica, mareomotriz y nuclear.

Observa el siguiente cuadro, donde se indica la clasificación de las fuentes de energía:

cuadro clasificacion de las fuentes  de energía

PRIMEROS USOS DEL FUEGO: Una fuente de energía —el combustible al arder—- tiene un lugar muy especial en la historia del hombre. Efectivamente, muchos antiguos pueblos consideraron que el fuego era sagrado, y algunos, como los griegos, tenían leyendas que contaban cómo los hombres habían arrancado a los dioses el secreto del fuego. Según la leyenda griega, Prometeo robó fuego de la forja del dios Hefestos (Vulcano) y lo escondió en un tallo hueco de heno.

uso del fuego por el hombre

Si nos detenemos a pensar por un momento acerca de las otras fuentes de energía que usaron los hombres primitivos, podremos comprender por qué se consideró el fuego de este modo. Los hombres de la Edad de Piedra podían advertir la energía muscular de los animales en acción cada vez que iban de caza; no podían menos de observar la energía del viento, que lo mismo meneaba las hojas de los árboles que desgajaba sus ramas, y ellos deben haberse dado cuenta muchas veces de la energía del agua en movimiento al arremolinar pesados troncos corriente abajo. Pero la energía dejada en libertad cuando el fuego arde es mucho más difícil de notar.

Los primeros hombres que vieron en un bosque un incendio causado por el rayo, probablemente pensaron en el fuego sólo como un elemento destructor y deben haber pasado muchas generaciones hasta que el hombre se diera cuenta de que el fuego podía usarse para realizar trabajo útil. Además, la energía del viento y la del agua estaban allí a disposición del hombre para que las usara. Pero antes de que él pudiera usar el fuego tuvo que aprender a producirlo.

Durante miles de años la única manera de hacer fuego era golpeando dos piedras o pedernales para producir una chispa. Ése es el método que aún emplean ciertas tribus primitivas de Australia y de Sudamérica, y es muy parecido al que usaba la gente cuando se valía de cajas de yesca, hasta que se inventaron los fósforos, hace poco más de un siglo.   Efectivamente, aún utilizamos pedernales para encender cigarrillos o picos de gas. Con el tiempo la gente aprendió a producir fuego haciendo girar dos palitos juntos encima de algún combustible seco, en polvo, hasta hacer saltar una chispa.

Una vez que el hombre tuvo el fuego, pronto descubrió que le podía prestar dos servicios para los que era insustituible. Sobre todo, le suministró calor y luz, y aún hoy el fuego es nuestra mayor fuente de calor y de iluminación. Aun teniendo casas donde todo está electrificado, casi seguramente la electricidad que nos proporciona luz y calor proviene de generadores movidos por el vapor que produce la combustión del carbón. También el fuego podía realizar cosas que el viento, la energía muscular y el agua no eran capaces de hacer.

Podía producir cambios físicos y químicos en muchas clases de substancias. Aunque el hombre primitivo no se diese cuenta, el fuego en el cual él cocía su pan contribuía a transformar varias substancias químicas en la masa del almidón y a producir el anhídrido carbónico que hacía fermentar el pan.

El fuego con que cocía sus vasijas cambiaba las propiedades físicas de la arcilla y la hacía dura y frágil, en vez de blanda y moldeable. Aún hoy usamos el fuego para cambiar las propiedades físicas de las materias primas: al extraer el metal de sus minerales, en la fabricación del vidrio y del ladrillo y en otras muchas. También lo usamos para provocar cambios químicos: en la cocina, en la destilería, en el horneado y en infinito número de procesos industriales.

También hemos aprendido a hacer uso del poder devastador del fuego. Empleamos su tremendo calor destructivo, concentrado en un rayo del grosor de un lápiz, para perforar duros metales. Usamos la fuerza de poderosos explosivos, encendidos por una pequeña chispa, para despejar montañas de escombros, que de otro modo llevaría semanas de trabajo el acarj-ear, y frecuentemente utilizamos el fuego para destruir residuos que deben ser eliminados si queremos mantener sanos nuestros pueblos y ciudades.

HISTORIA DEL CALOR COMO ENERGÍA: El hombre dejó, al fin, de considerar el fuego como objeto sagrado, mas durante cientos de años siguió mirándolo como a cosa muy misteriosa.

La mayoría creía que el fuego quitaba algo de toda materia que quemaba. Veían que las llamas reducían sólidos troncos a un puñado de blandas cenizas y unas volutas de humo. Llenaban una lámpara de aceite, la encendían y descubrían que el aceite también se consumía.

Encendían una larga vela y en pocas horas apenas quedaba un cabo.

Solamente hace 200 años un gran francés, Lavoisier, demostró que el fuego, en realidad, agrega algo a aquello que quema. Hay un experimento muy simple para demostrar que esto es así. Tomamos una balanza sensible y colocamos una vela en un platillo, con un tubo de vidrio repleto de lana de vidrio, puesto justamente encima de aquélla para recoger el humo. En el otro platillo colocamos suficiente peso para equilibrar exactamente la vela, el tubo y la lana de vidrio. Si ahora prendemos la vela y la dejamos arder, descubrimos que el platillo de la balanza sobre la cual se apoya desciende gradualmente. Esto significa que lo que queda de vela y los gases que ha producido durante su combustión pesan más que la vela íntegra.

Lavoisier pudo ir más allá y demostrar qué es lo que se añade a las substancias cuando arden. Descubrió que es oxígeno del aire. Efectivamente, si colocamos un recipiente boca abajo sobre una vela prendida, la llama se apaga tan pronto como el oxígeno del recipiente ha sido consumido. Del mismo modo, el carbón no puede arder en una estufa, ni el petróleo dentro de un cilindro del motor de un auto, sin una provisión de oxígeno del aire.

calor como energia

Al calentar agua, el vapor puede generar trabajo, es decir movimiento

Pero muchas substancias se combinan muy lentamente con el oxígeno y sin producir ninguna llama. Una es el hierro. Si se expone el hierro al aire húmedo, aunque sólo sea por un día o dos, una fina capa de óxido se forma sobre su superficie, y es que el hierro se ha combinado con el oxígeno. En algunas partes del mundo, también los compuestos de hierro se combinan con el oxígeno, bajo el suelo, produciendo depósitos de color castaño rojizo.

Cuando las substancias se combinan con el oxígeno no siempre producen fuego, pero casi siempre originan calor. Y es el calor producido de este modo el que da a los hombres y animales toda su energía física, toda su fuerza muscular. En nuestros pulmones el oxígeno del aire pasa al torrente sanguíneo y es llevado por la sangre a las células de todas las partes del cuerpo, donde se combina con las partículas alimenticias para originar calor y energía. También produce anhídrido carbónico que expelemos al aire.

El peso del alimento que tomamos en un día no es muy grande ciertamente, y, por lo tanto, la cantidad de calor que producimos en un día tampoco lo es. Y no todo este calor lo convertimos en energía para el trabajo, porque parte de él lo consumimos en el propio cuerpo, para mantener nuestra temperatura y en otros procesos fisiológicos.

Cuando pensamos cuánto trabajo puede realizar un hombre en un día, pronto nos damos cuenta de que una pequeña cantidad de calor puede transformarse en una gran cantidad de trabajo. Así podríamos elevar un peso de 1 tonelada a 30 metros de altura, si transformáramos en trabajo todo el calor necesario para poner en ebullición 1 litro de agua. A grandes alturas, los aviadores no pueden obtener suficiente oxígeno del aire que los rodea, para que sus cuerpos produzcan el calor y la energía que necesitan.

Entonces se colocan una máscara de oxígeno y el ritmo de producción de calor y energía se acelera inmediatamente. De manera similar, en la soldadura, que requiere intenso calor, a menudo se mezcla oxígeno puro con el combustible, en lugar de utilizar el aire común.

LA ENERGIA EÓLICA:  Energía eólica, energía producida por el viento. La primera utilización de la capacidad energética del viento la constituye la navegación a vela . En ella, la fuerza del viento se utiliza para impulsar un barco.

La utilización de la energía eólica no es una tecnología nueva, se basa en el redescubrimiento de una larga tradición de sistemas eólicos empíricos. No es posible establecer con toda claridad el desarrollo histórico de los “sistemas de conversión de energía eólica”, sólo es posible identificar los importantes papeles que desempeña la energía eólica en el pasado.

La utilización de la energía del viento resulta muy antigua. La historia se remonta al año 3 500 a.C, cuando los sumerios armaron las primeras embarcaciones de vela, los egipcios construyeron barcos hace al menos cinco mil años para navegar por ei Nilo y más tarde por el Mediterráneo.

Después, los griegos construyeron máquinas que funcionaban con el viento. Así, desde la antigüedad éste ha sido el motor de las embarcaciones. Algunos historiadores sugieren que hace más de 3,000 años la fuerza del viento se empleaba en Egipto cerca de Alejandría para la molienda de granos. Sin embargo, la información más fehaciente de la utilización de la energía eólica en la molienda apunta a Persia en la frontera Afgana en el año 640 D.C.

balsa a vela energia eolica

Barcos con velas aparecían ya en los grabados egipcios más antiguos (3000 a.C.). Los egipcios, los fenicios y más tarde los romanos tenían que utilizar también los remos para contrarrestar una característica esencial de la energía eólica, su discontinuidad.

molino de viento

Uno de los grandes inventos a finale de la Edad Media, el molino de viento, muy usado en el campo argentino para extraer agua de la napa freática y darle de beber  a los animales.

parque eolico

Actualidad: Parque Eólico: Los generadores de turbina de los parques eólicos aprovechan la fuerza del viento para producir electricidad. Estos generadores dañan menos el medio ambiente que otras fuentes, aunque no siempre son prácticos, porque requieren al menos 21 km/h de velocidad media del viento.

ENERGÍA GAS NATURAL: Como gas natural se define la mezcla de hidrocarburos livianos en estado gaseoso, donde la mayor proporción corresponde al metano (CH4) en un valor que oscila entre el 80 al 95 %.

El porcentaje restante está constituido por etano (C2H6), propano, butano y superiores, pudiendo contener asimismo en proporciones mínimas, vapor de agua, anhídrido carbónico, nitrógeno, hidrógeno sulfurado, etc.
El gas natural proviene de yacimientos subterráneos que pueden ser de gas propiamente dicho o de petróleo y gas, según que en su origen se encuentre o no asociado al petróleo.

El gas natural procede generalmente de las perforaciones que se realizan en los yacimientos petrolíferos, de la descomposición de la materia orgánica con el tiempo.

En dichos yacimientos, el petróleo más liviano que el agua, suele flotar sobre lagos subterráneos de agua salada. En la parte superior se encuentra el gas, que ejerce enormes presiones, con lo cual hace fluir el petróleo hacia la superficie.

Ampliar: Gas Natural

LA ENERGÍA ELÉCTRICA: El fuego fue muy importante para el hombre primitivo, porque le capacitó para hacer cosas que con la energía del viento, del agua o del músculo no podía realizar. La humanidad no logró descubrir otra forma de energía capaz de realizar cosas completamente nuevas hasta hace 200 años, cuando comenzó a dominar la electricidad, la fuerza poderosa escondida en el rayo.

energia electrica

Hoy, con la radio, podemos oír a una persona que habla desde comarcas remotas; con la televisión podemos ver sucesos que ocurren a muchas millas de distancia; con cerebros electrónicos o computadoras podemos encontrar en pocos segundos las respuestas a complicadísimos problemas matemáticos. El viento, los músculos, el agua y el fuego no nos podrían ayudar a hacer ninguna de estas cosas; sólo la electricidad.

Varios siglos antes de Cristo, los griegos sabían que el ámbar, al cual llamaban elektron, atraía el polvo y trocitos de plumas después de frotarlo con lana seca, piel o paño. En tiempos de Shakespeare, muchos hombres de ciencia europeos sé interesaron en ésta extraña fuerza de atracción, y un inglés, Guillermo Gilbert, la llamó electricidad.

Alrededor de un siglo más tarde, otro investigador, llamado Guericke, descubrió que la electricidad originada rotando una bola de azufre contra la palma de su mano hacía saltar una chispita con un ruido marcado de chisporroteo. En realidad él había producido un relámpago y un trueno en miniatura.

La electricidad que parece estar contenida, en reposo, en una substancia y es súbitamente liberada, por contacto con otra substancia, se llama electricidad estática. Antes de que los hombres pudieran hacer uso de la electricidad, necesitaban que ésta fluyera de un modo constante y que se lograse controlar, es decir, obtener lo que hoy llamamos una corriente eléctrica.

El primer paso para descubrirla se dio por casualidad.   Más o menos a mediados del siglo xvin, un anatomista italiano, Luis Galvani, dejó las patas de unas ranas recién muertas en contacto con dos alambres, uno de bronce y otro de hierro. Notó que las patas de las ranas comenzaban a estremecerse y pensó que cierta energía animal quedaba en ellas todavía. Pero otro científico italiano, Volta, demostró que el estremecimiento se debía a que estos dos diferentes metales tomaban parte en la producción de electricidad.

volta cientifico creador de la pila

Volta, inventor de la pila eléctrica

Pronto Volta hizo la primera batería, apilando planchas de cobre y de cinc alternadamente una sobre la otra, y separadas sólo por paños empapados en una mezcla débil de ácido y agua. Dos alambres, uno conectado a la plancha de cobre de un extremo y el otro a la plancha de cinc del otro extremo, daban paso a una continua corriente de electricidad.

Las baterías generan electricidad por medio de cambios químicos y aun las más poderosas no producen corrientes lo bastante grandes para muchas necesidades actuales. Los modernos generadores en gran escala producen electricidad por medio de imanes que rotan rápidamente.

Oersted, un danés, y Ampére, un francés, hicieron la mayor parte del trabajo que llevó a descubrir las relaciones entre la electricidad y el magnetismo; pero fue un inglés, Miguel Faraday, quien primero usó un imán en movimiento para producir una corriente eléctrica. Esto ocurrió hace más de un siglo.

Pronto nuevos inventos dé un físico belga, llamado Gramme, y un hombre de ciencia nacido en Alemania, sir Guillermo Siemens, abrieron la nueva era de la energía eléctrica en abundancia. Tomás Edison, un inventor norteamericano, fabricó las primeras bombillas eléctricas y así dio difusión a los beneficios de la electricidad en la vida diaria.

Medimos la fuerza de un generador —la fuerza que pone a una corriente en movimiento— en unidades llamadas voltios, en honor de Volta. Medimos la intensidad de la corriente en amperios, en honor de Ampére. Los voltios, multiplicados por los amperios, nos indican cuánto trabajo puede realizar una corriente, y medimos éste en vatios, en honor de Jacobo Watt, famoso por su invento de la máquina de vapor.

Ampliar Sobre el Descubrimiento de la Electricidad

LA ENERGÍA ATÓMICA: Miles de años transcurrieron desde que se dominó el fuego hasta que se empezó a utilizar la electricidad. Sin embargo, solamente se necesitaron tres generaciones para que surgiese el uso de la energía atómica. Los más grandes hombres de ciencia tardaron más de un siglo en descubrir los secretos del átomo, y no podemos pretender abarcar esa historia completa en una página. Pero podemos dar una rápida ojeada y ver cómo algunos de ellos se lanzaron a esa labor.

Ya en la antigua Grecia había ciertos filósofos que creían que toda la materia está constituida por partículas tan pequeñas que no se pueden dividir. Dieron a estas partículas el nombre de átomos, de dos palabras griegas que significan “no susceptible de ser dividido”. Pero hasta hace poco más de 150 años había pocas pruebas, o ninguna, que apoyasen esta creencia.

Antes de 1800 los químicos conocían pocas substancias simples y puras, de la clase que ahora se llaman elementos, y no sabían mucho acerca de cómo combinar los elementos para formar compuestos. Pero en ese año, dos químicos ingleses, Carlisle y Nicholson, usaron una corriente eléctrica para descomponer el agua en dos elementos: hidrógeno y oxígeno. Con la electricidad pronto consiguieron los químicos una cantidad de otros elementos y pronto aprendieron que los elementos se combinan invariablemente en proporciones fijas según el peso.

centrales atomicas

Esto hizo que un químico inglés, Dalton, reviviera la teoría de los átomos. Él creía que cada elemento diferente está constituido por átomos distintos, y que cada uno de éstos tiene un peso especial. Pero poco después de que la gente comenzara a creer en la existencia de los átomos, o partículas indivisibles de materia, los hechos demostraron que los átomos pueden en realidad dividirse en partículas aún más pequeñas.

Primero Róntgen, un científico alemán, advirtió que ciertas substancias químicas pueden obscurecer una placa fotográfica aun cuando esté bien protegida. Había descubierto los rayos X, rayos hechos de partículas que no son átomos enteros. Más tarde, Madame Curie analizó un mineral llamado pechblenda, que emite rayos similares, y descubrió el elemento altamente radiactivo llamado radio. Las sales de radio emiten rayos sin desintegrarse aparentemente.

Marie Curie

Varios científicos, incluyendo a Rutherford y Soddy, estudiaron estos rayos y lograron descomponerlos en tres partes: rayos alfa, que poseen carga eléctrica positiva; rayos beta, o rayos de electrones, que conducen una carga negativa, y rayos gamma, o rayos X.

Más tarde, Rutherford bombardeó una lámina de oro con partículas alfa. Casi todas ellas atravesaron el oro, pero algunas rebotaron.

Esto le hizo suponer que los átomos de la lámina de oro no estaban contiguos, sino muy espaciados, como las estrellas en el cielo. También advirtió que hay gran espacio vacío dentro de cada átomo.

Madame Curie en el Laboratorio

Un danés llamado Niels Bohr encontró que en el centro de cada átomo hay partículas cargadas positivamente (protones) y partículas no cargadas (neutrones), apretadas para formar el centro o núcleo. A distancia del núcleo hay partículas mucho más pequeñas todavía, llamadas electrones, que poseen una carga de electricidad negativa. Estos electrones giran alrededor del núcleo, como los planetas alrededor del Sol.

Otón Hahn, un físico alemán, fue uno de los primeros en descubrir cómo liberar energía de los átomos por reacción en cadena, en la cual los neutrones de un átomo chocan con el núcleo de otro átomo y lo destruyen, liberando así más neutrones, que golpean a su vez los núcleos de otros átomos. Otro alemán, Max Planck, ya había descubierto cómo calcular la cantidad de energía liberada cuando se fisiona un átomo.

Planck y Borh

Los Físicos Planck y Ruthenford

Actualmente obtenemos energía no sólo dividiendo átomos pesados (fisión nuclear), sino también combinando átomos livianos (fusión nuclear).

CUADRO EVOLUCIÓN DEL CONSUMO A LO LARGO DE LA HISTORIA:

cuadro consumo de energia en la historia

Se observa que el consumo de energía va vinculado directamente con el desarrollo de las sociedades, y se pueden diferenciar dos fases: 1) preindustrial donde la energía utilizada era la propia muscular, mas la generada por el carbón, desechos orgánicos. hidraúlica y eólica y 2) la actual a partir de la energía del vapor de agua, la electricidad y el petróleo.

Ampliar: La Energía Atómica

Ampliar: Energía Mareomotriz

Ampliar: Energía Geotérmica

Fuente Consultada:
La Técnica en el Mundo Tomo I CODEX – Globerama – Editorial Cuántica

Propiedades de las Piedras Preciosas y sus Minerales

CARACTERÍSTICAS DE LAS GEMAS O PIEDRAS PRECIOSAS

La mayoría de las piedras preciosas o gemas son minerales que se han formado en lugares muy variados en el interior de la Tierra. Estos minerales poseen una composición química definida y una ordenación atómica, que hace que sus propiedades físicas y ópticas permanezcan constantes o varíen solamente dentro de estrechos límites. Algunas propiedades tales como densidad e índice de refracción pueden medirse con precisión y ser utilizadas para identificar un mineral.

Casi todo el relieve de la Tierra se forma con rocas, y éstas con minerales. Algunas, como el mármol, se componen de un solo mineral. Otras, como el granito, comprenden varios, que en el granito pulido se ven a simple vista.

Las rocas más antiguas tienen tres mil millones de años. Otras son más recientes porque han pasado por una serie de vicisitudes: al principio la roca es ígnea, es decir, sale fundida por algún volcán o grieta de la Tierra; luego, el tiempo y el clima la dfishacen en polvo y se va acumulando en forma de sedimentos donde, con los años, forma rocas sedimentarias; por último, las altas presiones y temperaturas transforman rocas sedimentarias (la tiza) en rocas “me-tamórficas” (el mármol).

Los minerales son los componentes de las rocas, es decir, sus unidades básicas. Son sustancias naturales de composición química característica y se conocen muchos centenares. Algunos son elementos puros, como el oro, el cobre, la plata, etc., que se presentan en estado nativo; pero la mayoría de ios minerales son compuestos. No suelen clasificarse entre los minerales ciertas sustancias (eí petróleo) que provienen de restos de plantas y animales.

La identificación de los minerales es de gran importancia para la búsqueda de yacimientos; también es un pasatiempo interesante para el que tiene algunas nociones fundamentales. Cada mineral posee una composición química definida y características físicas propias (dureza, brillo, transparencia, etc.) que permiten identificarlo: son como sus impresiones digitales. Su estructura suele ser cristalina, o sea que sus partículas elementales se disponen, como en un panal, en una “malla cristalina” bien ordenada.

Ciertos minerales no son cristalinos, como el ópalo (una variedad de cuarzo): se los llama amorfos. Hay minerales bastante fáciles de reconocer, pero otros exigen cierto número de pruebas para distinguirlos.

Idealmente las gemas deben ser duras y no verse afectadas por las temperaturas, presiones, polvos abrasivos y agentes químicos que encontramos en nuestra vida diaria. La mayoría son silicatos que incluyen a las esmeraldas aguamarinas, peridotos y amatistas, así como otras muchas de rareza exótica.

El rubí, zafiro, espinela y crisoberilo son óxidos. El diamante es la única gema compuesta por un solo elemento químico —el carbono—. La nefrita, jadeíta y lapislázuli son rocas, es decir, agregados de uno o más minerales.

Las plantas y animales son las fuentes de las gemas «orgánicas» más frágiles que han sido usadas como adorno desde los tiempos más antiguos. El azabache y el ámbar son madera y resina fosilizadas de árboles extinguidos, mientras las perlas, las conchas y los corales son estructuras de carbonato calcico formadas por animales acuáticos. Los marfiles son los colmillos y dientes de los mamíferos terrestres y marinos.

CRISTALOGRAFÍA
Al examinar la mayoría de los minerales, que son cristales, vemos con sorpresa que sólo hay seis grupos básicos o sistemas de cristales. Estas seis familias tienen cada una muchos hijos, aunque todos ellos con un “aire de parentesco”.

Los minerales suelen ser impuros; sus impurezas son, a veces, las responsables del color; el rojo del rubí se debe al cromo; el azul del zafiro al titanio: ambos son sólo corindón, un óxido de aluminio cuya masa de fondo es incolora.

Hay seis grandes sistemas de formas cristalinas, o sea seis grandes grupos de redes cristalinas: regular o cúbico, tetragonal, hexagonal, rómbico, monoclínico y triclínico.

La división se basa en el número de líneas imaginarias, o ejes de simetría, que pasan por el centro del cristal, su longitud relativa y los ángulos que forman. En el sistema cúbico, por ejemplo, los cristales poseen tres ejes de igual longitud y perpendiculares entre sí, característicos del cubo, en geometría. La sal común se compone de pequeños cubos.

El tamaño de los cristales varía enormemente; algunos son invisibles, mientras ciertos cristales de espodumento, silicato con aluminio y litio, pueden alcanzar varios metros. Rara vez se encuentra un espécimen perfecto, y sólo una larga experiencia permite reconstruir el cristal tipo, a partir de un fragmento. El tamaño de un cristal depende de la lentitud con que se ha formado, o sea, de la oportunidad de que gozaron las partículas de ubicarse en la trama inicial ya formada.

La estructura-cristalina determina muchas de las propiedades minerales que son importantes en el tallado y la identificación de las piedras preciosas Por ejemplo, los átomos pueden estar menos fuertemente enlazados en algunos planos del cristal, indicando la dirección en la que se rompe más fácilmente o los planos de exfoliación.

La dureza puede cambiar también con la dirección del cristal. La estructura cristalina afecta a la trayectoria de propagación de la luz a través de esa sustancia.

En todos los minerales, salvo en los del sistema cúbico y los minerales no cristalinos, la luz se refracta formando dos rayos que viajan a distintas velocidades y con diferentes trayectorias a lo largo de la estructura cristalina. En los minerales coloreados los rayos pueden ser absorbidos de forma diferente en el interior de la estructura y emerger en forma de dos o tres colores distintos o sombras del mismo color. Este efecto se denomina pleoavísmo.

Desde tiempos antiguos muchos materiales, naturales y artificiales, han sido utilizados enjoyas y otros objetos preciosos. Sin embargo durante siglos el término piedra preciosa ha significado un mineral natural descable por su belleza, valioso por su rareza y suficientemente resistente para proporcionar un placer duradero.

PESO ESPECÍFICO
Es un buen indicio; el del azufre es 2, el del corindón 4, el de la casiteria 7, etc. Se necesita un aparato especial para determinarlo; es imposible hacerlo en el campo, aunque puede distinguirse manualmente entre minerales livianos y pesados. Un trozo de talco (peso específico 2,8) parece mucho más liviano que uno de apatita (peso específico 3,2).

ESCALA DE DUREZA DE MOHS
Una característica fácil de determinar es la dureza. Se recurre a la prueba del rayado; un material más duro raya a otro más blando, y dos de igual dureza no se rayan entre sí. Hay una escala convencional de dureza, la escala de Mohs. Se divide en diez grados numerados, cada uno más duro que el anterior; los índices son: 1, talco (el más blando); 2, yeso; 3, calcita; 4, feldespato; 5, apatita; 6, ortoclasa; 7, cuarzo; 8, topacio; 9, corindón; 10, diamante.

La dureza de un mineral se determina encontrando el más blando de la serie que lo raye. Por ejemplo, la calcita raya la galena, pero esta última rayará el yeso, de manera que su índice de dureza estará entre 2 y 3. Las piritas de hierro, parecidas al oro, tienen una dureza entre el 6 y el 7, mientras la del oro verdadero se sitúa entre el 2 y el 3.

Las series de Mohs se venden comercialmente. El número 10, diamante, suele faltar, pero no tiene mayor importancia porque difícilmente se hallará un mineral más duro que el corindón (si se lo encuentra es posiblemente diamante). Puede determinarse aproximadamente la dureza de un mineral aun sin esa colección. La uña tiene una dureza Mohs de alrededor de 2,5; un lápiz, 3; el vidrio común alrededor de 5,5; y la hoja de un cortaplumas aproximadamente 6.

tabla dureza de las pidras preciosas

Para ser apreciada, una joya debe ser también resistente. A pesar de que la esmeralda y el zircón son más duras que el cuarzo, son, sin embargo, frágiles, es decir, se separan en láminas fácilmente. El diamante y el topacio están entre las mucha gemas que pueden partirse si caen o son golpeadas contra objetos duros y lo hacen entonces según planos en los que los enlaces atómicos son más débiles. Las gemas más resistentes son la jadeíta, la negrita y el ágata; todas ellas tienen sin embargo una dureza igual o menor que 7. Su resistencia deriva del tipo de su estructura, que consiste en una masa de fibras o granos interconectados entre sí, lo que las permite ser modeladas en formas de exquisitos cuencos e intrincadas esculturas.

LOS MINERALES Y LA LUZ
Algunos minerales son transparentes: permiten ver nítidamente a través de ellos. Otros son opacos: la
luz no los atraviesa. Hay grados intermedios, translúcidos, lechosos. Pero la mayoría de los minerales opacos dejará pasar algo de luz si se los convierte en láminas muy delgadas.

Existen minerales que muestran doble refracción, es decir, que un texto leído a través de. ellos se ve doble; aquí los citamos únicamente por la influencia trascendental que han tenido en el desarrollo de toda la óptica.

El color es una característica importante de los minerales, especialmente para identificar los metálicos, pues sólo presenta ligeras variantes. Pero en minerales como el cuarzo, el corindón y el granate, el color se debe principalmente a las impurezas y puede variar notablemente. Minerales como la turmalina tienen diferentes colores, variables según desde donde se los mire.

Los minerales en polvo pueden tener un color distinto del superficial: el talco es verde, pero una vez molido es blanco. Del mismo modo, la hema-tita es superficialmente gris o negra, pero en polvo es pardo rojiza. La ventaja de moler los minerales es que su color es más uniforme que el superficial variable. Para conocer qué color tiene un mineral en polvo basta frotar un trozo sobre porcelana áspera.

La razón por la cual el color del polvo es diferente al del sólido se debe a la reflexión. La reflexión del vidrio, por ejemplo, es blanca, de manera que si pulverizamos una botella de vidrio verde, el polvo se vuelve cada vez más blancuzco debido a que aumenta el número de superficies que reflejan luz blanca.

El lustre o brillo del mineral depende de la cantidad de luz que refleja o absorbe. Puede ser resinoso (similar al de la resina) como en el azufre, perlado como la mica, sedoso en minerales fibrosos como el crisotilo, vitreo como el cuarzo, adamantino (de diamante) o metálico. Hay minerales que no poseen brillo: son de superficie mate (p. ej. la caolinita). Una interesante característica de los minerales es el grado en que desvían la luz. Los rayos de ésta siempre se desvían cuando pasan de un medio a otro de diferente densidad.

Si colocamos en agua vidrio molido cuyo índice de refracción o capacidad para desviar la luz, sea igual al del agua, se volverá invisible; si el índice de refracción de la luz es algo bajo podemos añadirle sal común: poco a poco llegará el momento en que no se vean más los trozos de vidrio. Para reconocer diamantes y otras sustancias, a fin de distinguirlas de sus falsificaciones, se usan líquidos especiales muy refractivos como el sulfuro de carbono.

Hay sustancias que, al recibir rayos invisibles como los rayos X o los rayos ultravioleta, devuelven rayos visibles: este fenómeno se llama fluorescencia. Bajo la luz ultravioleta ciertos minerales exhiben hermosos colores, como los de uranio. Algunos poseen esa propiedad por sus impurezas u otros factores. Uno de los materiales fluorescentes más hermosos es el rubí, que emite un brillante resplandor rojo al ser sometido a la luz ultravioleta.

Esta propiedad del rubí ha dado origen a la invención del Láser, instrumento que revoluciona la óptica y las telecomunicaciones, y del que nos ocuparemos en una nota especial. La luz es una onda, un serpenteo, que se produce en todos los planos. Pero en ciertos casos se la puede polarizar, es decir, hacerla vibrar en un solo plano. Las características ópticas especiales de un mineral, una vez reducido a una fina lámina y visto a través de un microscopio de luz polarizada, pueden servir de guía para su identificación.

El valor comercial de una gema depende de la calidad del color, de la ausencia de manchas internas y del peso. El peso de una gema se mide en quilates (5 quilates = 1 gramo) y las gemas son normalmente vendidas por peso, a tanto por quilate. La densidad de un mineral gema varía de manera que un zafiro amarillo parecerá más pequeño que una citrina menos densa de peso similar. La densidad de las gemas se mide como peso específico, comparando el peso de la gema con el peso de un volumen igual de agua.

CLIVAJE Y FRACTURA
Las fracturas de un mineral son otro indicio para clasificarlo. Se llama clivaje la tendencia a partirse más fácilmente según ciertos planos, llamados planos de clivaje. El tipo de clivaje se define seeún el número de “planos” y sus ángulos relativos. Tomemos un ejemplo sencillo: la galena tiene clivaje cúbico; se observan tres planos de clivaje que forman ángulos rectos entre sí. Cuando se desmenuza un cristal de galena se obtiene una cantidad de pequeños y brillantes cubos. Uno de los tipos más interesantes es el clivaje basal o laminar, en el cual hay un solo plano, paralelo a la base del cristal, como en la mica, que se divide en finísimas Láminas u hojas.

Cuando un mineral no se rompe según planos determinados, se dice que se fractura. Todos los minerales pueden fracturarse, pero no es probable que lo hagan, si poseen un plano definido de clivaje. Hay ¡diferentes tipos de fractura, por ejemplo: fibrosa, concoidea, irregular, etc. Por ejemplo el crisotilo (mineral de amianto) forma fibras que pueden hilarse y tejerse. La fractura concoidea puede apreciarse en la obsidiana (vidrio volcánico).

ANALISIS A LA LLAMA: Existe un gran número de ensayos químicos para determinar la naturaleza de un mineral. El ensayo a la llama se basa en el color característico que el mineral imparte a ésta. Con los minerales de sodio (sal común, sulfato de sodio, bórax, etc.) la llama adquiere una intensa coloración amarillenta. Los de estroncio producen un hermoso color carmín; por eso se usa en los fuegos artificiales.

analiis de minerales a la llama

Los minerales de cobre la colorean de azul o verde, etc. Si se usa un mechero de Bunsen conviene recordar que, si no recibe suficiente aire, su (lama es amarillo brillante; pero si tiene suficiente oxígeno hay una zona interior oscura tan fría, que una cabeza de cerilla, perforada por un alfiler y suspendida en esta zona, no se enciende. El mineral debe colocarse en la zona azul violeta o cono exterior de la llama del mechero de Bunsen. Ésta llega a una temperatura suficiente para los metales alcalinos (minerales que contienen sodio, potasio, etc.); pero otros precisan Mamas más calientes.

ANÁLISIS ESPECTROQUÍMICO
Ld luz emitida o absorbida por un átomo es como su fotografía individual. Cada átomo tiene su propio espectro de rayos, que son de luz o de sombra, según el átomo las emita o las absorba. Pero de todos modos el espectro de un átomo es un método de análisis: para ello basta obligarlo a que emita luz. Actualmente se prefieren las chispas, más enérgicas.

ANÁLISIS CON MICROSCOPIO
Este es un método moderno. Por ejemplo, el zafiro y el rubí natural tienen líneas de acumulación hexagonales y burbujas angulares, mientras que en los sintéticos las líneas de acumulación son curvas y las burbujitas son esféricas. Los microscopios electrónicos permiten observar partículas ínfimas en las arcillas, definiéndolas claramente. Cada vez la industria se acerca más a los minerales sintéticos, como en el caso de los rubíes para los relojes.

Cuando se sumergen un diamante falso y uno genuino en un líquido que desvíe los rayos luminosos en la misma proporción que el diamante falso, sólo el diamante real quedará visible.

LA BELLEZA: La belleza del color combinada con una perfecta transparencia es el ideal de belleza de muchas gemas. Sin embargo, en ciertas ocasiones, las inclusiones de minerales pueden ser la atracción principal de algunas de ellas, produciendo el colorido similar al de las lentejuelas del cuarzo venturina y la piedra del sol, y reflejando los ojos de gato y estrellas que brillan desde algunos crisoberilos y zafiros.

La atracción de las más sutiles ágatas coloreadas y jaspes está ligada a la enorme variedad de modelos y texturas que se desarrollan cuando ese mineral crece: su crecimiento en bandas y los fragmentos minerales incorporados hacen que se asemejan a menudo a exóticos paisajes y jardines.

La mayoría de las gemas muestran muy poca belleza en estado bruto: su auténtico color y lustre se revelan solamente por la destreza del tallado y del pulido. La mayor belleza del diamante alcanza todo su esplendor con el tallado preciso y apropiado al tamaño de la piedra.

Cuando llevamos joyas nuestros movimientos crean unos continuos cambios, que resultan de la relación mutua entre las piedras preciosas y la luz que las atraviesa, añadiendo destellos y luces a su color. Los focos realzan la «vida» de los diamantes, rubíes y esmeraldas, mientras suaves luces aportan el brillo al ámbar y a las perlas.

Respecto a la rareza, las gemas pueden ser raras en uno o más aspectos. Muchas son variedades de materiales comunes, y su rareza reside en un color o transparencia excepcionales. El cuarzo y el feldespato juntos constituyen cerca de las dos terceras partes de la corteza terrestre, pero la mayoría de sus variedades son grises o cremas.

Muy poco cuarzo posee el bonito color y la intachable transparencia de una fina amatista y raramente el feldespato labradorita muestra la iridiscencia del arco-iris . Los minerales gemas son raros aun en sus yacimientos: los diamantes constituyen una mínima proporción de su roca madre, la kimberlita —alrededor de 5 g. en 100 T.—.

FINALMENTE EL TALLADO: Un diamantista hábil puede convertir un guijarro en bruto en una brillante y valiosa piedra preciosa. El conocimiento necesario para conseguir estas transformaciones se ha ido haciendo a lo largo de muchos siglos, y hoy día es posible seleccionar el tallado que ponga de manifiesto las cualidades de cada gema.

Cuando se elige la mejor talla para una piedra preciosa, el diamantista debe considerar la forma del material en bruto y la magnitud y posición de los posibles defectos, tales como las fracturas o inclusiones. También debe tener en cuenta las propiedades ópticas del mineral y sus características cristalinas: es difícil conseguir un buen pulido paralelo a las direcciones de exfoliación, y las gemas pleocroicas han de estar talladas con una determinada orientación para que puedan mostrar su más bello color.

Sin embargo el tallado es a menudo un compromiso entre alcanzar el máximo lucimiento de la belleza de la gema y obtener la piedra preciosa de mayor tamaño posible.

Partes y Facetas de una Talla Brillante

IMAGENES DE LAS GEMAS MAS UTILIZADAS EN JOYAS

Diamante

Gema: Rubí

Gema: Zafiro

Gema: Esmeralda

Gema: Ópalo

Mineral: Amatista

Gema: Ágata

Gema: Turmalina

Gema: Jade

ALGO MAS…
LAS PIEDRAS PRECIOSAS ARTIFICIALES

La fabricación de las piedras preciosas artificiales ha sido, desde la antigüedad, un constante empeño del hombre. Estos esfuerzos tuvieron en general muy poco éxito hasta que, a principios del siglo XX, se sintetizaron los primeros rubíes. Gracias al considerable avance tecnológico producido por la segunda guerra mundial y a los recientes avances en la física del estado sólido, se han conseguido, en este campo, considerables progresos.

La posibilidad de estudiar determinados procesos físicos en monocristales ha aumentado su importancia, y los cristales producidos artificialmente no sólo son utilizados en investigación sino que también han encontrado aplicaciones en la industria.

La importancia de las piedras preciosas se debe, principalmente, a su dureza y, en segundo lugar, a los cambios que determinan en su color y en sus propiedades físicas, en general, las trazas de impurezas. En uno de los métodos empleados ,el método de presiones ultraelevadas, es necesario utilizar, simultáneamente, grandes presiones y altas temperaturas, problema que fue parcialmente resuelto con el empleo de un material denominado pirofilita, que tiene la ventaja de que su punto dé fusión aumenta considerablemente con la presión.

La síntesis del diamante, efectuada por la General Electric estadounidense en 1955, se consiguió por este método, con el que pueden lograrse, en la zona de trabajo, presiones de unas 150.000 atmósferas a 3.500°C, siendo necesaria por tanto una prensa hidráulica de gran capacidad, que resulta difícil de construir. Este problema fue parcialmente resuelto con la introducción del yunque tetraédrico, el cual emplea cuatro émbolos, que ejercen la presión sobre las cuatro caras del yunque. Con esta disposición, es posible conseguir 80.000 atmósferas a bajo costo y con maquinaria fácil de construir. Además de diamantes, se han sintetizado, con este método, borazón (forma cúbica del nitruro de boro) y una variedad del granate.

Con el método de fusión a la llama, se obtienen rubíes de alta calidad. Su fundamento es muy sencillo: sobre uno de los extremos de una semilla de rubí (pequeño monocristal alargado, obtenido previamente) se va dejando caer alúmina finamente pulverizada, mientras se calienta con un soplete. El polvo de alúmina funde y cae sobre el extremo superior de la semilla, que se va retirando lentamente de la llama a medida que el cristal crece. De este modo, se pueden obtener con facilidad mono-cristales cilindricos de hasta 45 cm. de longitud.

Todos los procesos descritos están, naturalmente, automatizados: el flujo de polvo, la temperatura y posición de la llama, así como el desplazamiento vertical del monocristal. Uno de los inconvenientes principales de este método es que los cristales se encuentran sometidos a elevadas presiones internas, como resultado de la desigual distribución de temperaturas, por lo que es frecuente él agrietamiento espontáneo.

El método hidrotérmico ha demostrado ser extraordinariamente valioso en la producción de monocristales de cuarzo (y otras sustancias silíceas) que se obtienen por cristalización a partir de soluciones acuosas. Para ello se utiliza un autoclave de paredes gruesas, capaces de resistir unos 1.000 atmósferas y 500°C de temperatura.

Dentro del autoclave se encuentra la disolución acuosa de la sustancia de partida (por encima de 100°C la solubilidad en agua aumenta considerablemente), y suspendidas de su parte superior se sitúan las semillas. La solución se calienta por una plancha metálica adosada a la base del autoclave, con lo que se crea en su interior un gradiente de temperatura. La sustancia de partida se disuelve en el fondo y la solución asciende por confección.

En la región superior, más fría, la solución está sobresaturada y la sustancia cristaliza sobre las semillas. Este método presenta varias limitaciones, como pueden ser el elevado costo del instrumental necesario y la imposibilidad de observar el crecimiento, lo que impide que en un momento dado puedan regularse la temperatura y le velocidad de cristalización con el fin de controlar los sucesivos pasos del proceso.

Actualmente se han desarrollado procesos con el misme fundamento, pero que utilizan, en vez de agua, tundentes sólidos ce puntos de fusión relativamente altos, tales como los halogenuros y carbonatos alcalinos, y el óxido v el fluoruro de plomo.

Se han obtenido diamantes de 0,2 g. por el método de las presiones ultraelevadas, con el empleo adicional de catalizadores metálicos que aceleran la conversión directa del carbono en diamante. El color de los cristales obtenidos puede modificarse alterando las condiciones de crecimiento.

Las variedades más conocidas del corindón son el rubí y el zafiro. Como ya hemos indicado pueden obtenerse ambas piedras preciosas por el método de fusión a la llama. El cromo proporciona al corindón una tonalidad roja; el níquel, amarilla; el titanio, azul, y el vanadio, azul verdoso. Aunque los detalles son secretes, el proceso más apropiado para la síntesis de esmeraldas (BeO – Al2O3 – 6 SiO2) parece estar fundado en el método hidrotérmico, aunque no pueda descartarse la utilización de un fundente sólido, si tenemos en cuenta los éxitos obtenidos con este último procedimiento en la obtención de otros monocristales.

Ver: Las Rocas   –   Minerales Para La Industria    –   Minerales de la Tierra

Fuente Consultada
Revista TECNIRAMA N°6 Encilopedia de la Ciencia y la Tecnología – Como se identifican los minerales
Las Piedras Preciosas Geological Musseum Ciencias de la Naturaleza

Proceso de Fabricación de Ladrillos Comunes Propiedades

PROPIEDADES Y PROCESOS PARA LA FABRICACIÓN DE LADRILLOS

El uso de los ladrillos como un recurso, además de las piedras, para construir casas, data de los tiempos de las antiguas civilizaciones de Babilonia y Egipto. Durante miles de años, los ladrillos se han fabricado a mano, e incluso una pequeña proporción se produce así actualmente.

Podemos decir que el ladrillo es un material de uso universal para construcciones, aun en países donde abunda la piedra, por ser un material económico, resistente, de fácil manejo y transporte y que, por sus dimensiones y fácil corte, permite construir muros de espesores variables.

Los ladrillos se dividen en varias clases: adobes (ladrillo crudo); ladrillo común, ladrillo-prensado (de máquina), ladrillo hueco y ladrillo refractario.

Adobe:  Es un ladrillo crudo, hecho de tierra arcillosa y secado simplemente al aire libre a la sombra. Se emplea en países de clima seco y caluroso, por perjudicarlo la humedad y las heladas. Es el primitivo ladrillo que empleó la humanidad en lugares carentes de piedra blanda, fácil de labrar. Se ha encontrado esta clase de material en los antiquísimos monumentos de Judea (Palestina), Egipto y en las ruinas que se supone pertenecen a la Torre de Babel. También se encontró en varios antiguos monumentos de Grecia y Roma.

En la Europa meridional hasta hoy día. se emplea, a veces, esta clase de material en construcciones campestres. En nuestro país, sobre todo en las provincias del Norte y Oeste, es muy común su empleo con buenos resultados bajo el punto de vista de duración y conservación, teniendo la precaución de levantar los muros, externos de adobe sobre un zócalo de piedra o ladrillo cocido, que sobresalga unos 30 cm. sobre el terreno natural. Son frecuentes.

Los edificios, hasta de dos pisos, que cuentan con más de dos siglos de existencia y se encuentran en buen estado todavía. El tamaño del adobe es grande, generalmente de unos 40 cm. de largo por unos 20 cm. de ancho y hasta 10 cm. de espesor.

Esta clase de manipostería es muy económica por ser material barato y por usar, como mortero, la misma tierra amasada con agua, que ha servido para fabricar el adobe. Levantadas las paredes, se recubren con revoque de tierra con parte de arena fina y luego se blanquean con varias manos de cal, con lo que se obtiene una vista agradable y al mismo tiempo es un protector contra la humedad.

Las casas construidas de adobe son frescas en verano y abrigadas en invierno. El espesor mínimo de las paredes externas debe ser del largo del adobe. El coeficiente de trabajo a la compresión es de 2 Kg/cm2.

Ladrillo común. — Los ladrillos cocidos son una especie de piedras artificiales que se obtienen exponiéndolos a la acción del fuego, una vez hechos y secados a la sombra. Su color rojo es debido al óxido de hierro que generalmente se encuentra en las arcillas o tierras arcillosas, material que se usa. para la fabricación de ellos.

Las tierras arcillosas para la fabricación de los ladrillos suelen dividirse en dos clases: grasas y margas. Las primeras son bien plásticas y se prestan para moldear y las segundas son impuras, hasta llegar a no poder moldearse. Para hacer un buen ladrillo se precisa una tierra arcillosa ni muy grasa ni, muy magra. En general se elige una arcilla grasa, y se agrega una pequeña cantidad de arena silícica, pero no calcárea.

Un obrero ladrillero práctico por tacto reconoce las cualidades de la tierra para este objeto. Si no se tienen datos sobre la plasticidad de la tierra a emplearse, conviene fabricar algunos ladrillos de ensayo para ver el resultado.

La tierra se amasa con agua en canchas especiales, utilizando caballos para tal objeto o  con ayuda de máquinas. Una vez bien amasada la pasta, se da principio al moldeo con cajoncitos sin fondo de la forma del ladrillo (adoberas), trabajo que se hace a mano o con máquinas apropiadas. Un obrero práctico puede moldear de 4000 a 4500 ladrillos por día.

cancha de ladrillos comunes

El material se contrae mucho (alrededor de 20 %) por la cocción y, por lo tanto, las adoberas deben ser más grandes que el tamaño definitivo del ladrillo. Al sacarlos de los moldes, se disponen en hileras, en la sombra, para secarlos.

La cocción se efectúa en hornos improvisados al aire1 libre, formados por los mismos ladrillos crudos, dispuestos eri forma de pirámides truncadas, en el interior de las cuales se deja lugar para el combustible.

En la parte superior se deja un orificio para la salida del humo y otro abajo para la alimentación; el resto de la pirámide se tapa y se alisa con barro. Los adobes se apilan colocándolos de canto, y entre hilada cada hilada se pone una capa de carbonilla. Terminada la cochura se desarma el horno y, una vez enfriados los ladrillos, quedan listos para el uso.

horno de ladrillos comunes

La operación de la cocción se hace también en hornos circulares de fuego continuo, sistema Hoffman, los que permiten hacer la cocción sin interrupción, y descargar un compartimento, mientras que los demás funcionan. El tamaño de los ladrillos comunes, que se fabrican en el país, es de 26 ,5  a 27 cm. de largo por 13 cm. de ancho 5 a 5,5 cm. de espesor.

Ladrillo comun

Hay que distinguir tres clases de ladrillo común: ladrillo de 1a. (llamados de cal); ladrillo de 2a. (media cal); ladrillos requemados o vitrificados.

Los de 1a. son bien uniformemente cocidos sin vitrificaciones, de estructura compacta, sin núcleos calizos u otros cuerpos extraños; no serán friables (desmenuzables), de tamaño uniforme; darán por golpe un sonido claro; serán duros y de color rojo marrón. Ensayados por compresión, en probetas constituidas por dos medio ladrillos unidos con cemento portland. darán una resistencia de 90 Kg cm². a rotura.

Los de 2a. son de cocción defectuosa o irregular, de color rojo pálido, no son sonoros ai golpe y poco resistentes (40 Kg/cm2 a rotura). Esta clase de ladrillos no son aceptables y sólo podrían emplearse en obras económicas y de poca importancia.

Y finalmente los ladrillos requemados o vitrificados, los que solamente pueden ser empleados en las dos o tres primeras hiladas de las fundaciones. A pesar de ser muy duros, su defecto consiste en que no hacen buena liga ron los morteros.

TABLA N°1: Cantidad de ladrillos comunes y mezcla por cada m3 de albañilería efectiva

Espesor ladrillo Espesor real de la pared sin revoque Peso del millar
1/2 ladrillo 1 ladrillo 1 1/2 ladrillos
5cm. 442 ladrillos
0,28 m3. mezcla
415 ladrillos
0,3 m³. mezcla
408 ladrillos
0,32 m3, mezcla
Secos 2.250 Kg.
Mojados 2.600 Kg.
5,5cm. 410 ladrillos
0,29 m3. mezcla
387 ladrillos
0,32 m³. mezcla
380 ladrillos
0,33 m3. mezcla
Secos 2.500 Kg.
Mojados 2.900 Kg.
6 cm. 383 ladrillos
0,25 m3. mezcla
360 ladrillos
0,3 m³ mezcla
353 ladrillos
0,3 m3. mezcla
Secos 2.750 Kg.
Mojados 3.150 Kg.

TABLA N°2: Cantidad de ladrillos comunes y mezcla por cada m2 de albañilería efectiva

Espesor del ladrillo 1/2 ladrillo 1 ladrillo 1 1/2 ladrillos De canto
5,0 cm 55 ladrillos
0,034 m³. mezcla
110 ladrillos
0,083 m³ mezcla
165 ladrillos
0,13 m3. mezcla
26 ladrillos
0,007 m3. mezcla
5,5 cm. 52 ladrillos
0,032 m³. mezcla
103 ladrillos
0,08 m³ mezcla
155 ladrillos
0,125 m3. mezcla
26 ladrillos
0,007 m³ mezcla
6 cm. 43 ladrillos
0,032 m³ mezcla
96 ladrillos
0,076³ mezcla
144- ladrillos
0,121 m3. mezcla
26 ladrillos
0,007 m³ mezcla
Peso de la pared por m2 240 Kg. 280 Kg. 720 Kg. 125 Kg.

LA AUTOMATIZACIÓN: Sin embargo, como sucede en otros muchos campos, la necesidad de grandes cantidades y el alto coste del trabajo manual, ha obligado a esta industria a buscar procesos nuevos, mecanizados en gran parte. Un ejemplo característico es la fabricación de los ladrillos tipo fletton, que se describe aquí, aunque no todas las empresas utilizan técnicas idénticas.

El proceso de fabricación que a continuación detallamos toma, como elemento tipo, el ladrillo realizado con base arcillosa. Este material acredita la calidad del producto terminado y proviene de minas, casi siempre superficiales, donde la máxima profundidad de perforación no excede de 20 metros. Casi todos los países del mundo poseen arcillas que llenan las condiciones mínimas para la fabricación de ladrillos.

Antes de que se pueda extraer la arcilla es necesario quitar la capa de tierra que la cubre, por medio de una excavadora (dicha capa puede tener una profundidad de 4,5 a 9 metros). La arcilla se saca también con una maquinaria análoga, y con ella se llena una tolva, que, a su vez, sirve para cargar los vagones de ferrocarril. El tren conduce la arcilla desde la mina a la fábrica de ladrillos.

La primera etapa de la fabricación consiste en la molienda, mediante la cual los terrones de arcilla se desmenuzan en partículas menores de 3 mm. A continuación, se tamizan, para eliminar la materia de tamaño excesivo, y seguidamente se pasan a las prensas mediante un trasportador.

La arcilla se deja ligeramente seca (al contrario de como se utiliza, en otras técnicas de fabricación, es decir, con mucha agua). En las prensas, la materia prima se moldea en forma de ladrillos; en cada prensado la máquina produce dos ladrillos, mediante un doble juego de moldes.

En esta operación, es necesario ejercer una gran presión (aproximadamente, 4 toneladas por cm.2), a fin de asegurar que los ladrillos tengan la suficiente consistencia para colocarlos derechos en el interior del horno, sin que sea necesario un secado preliminar.

El trasporte del ladrillo crudo y plástico al horno presenta un problema de manipulación, puesto que es necesario apilar cuidadosamente grandes cantidades de ellos. Para resolverlo, se ha introducido una serie de cintas trasportado-ras, controladas electrónicamente, que apilan los ladrillos de tal forma que pueden trasportarse fácilmente al horno, mediante carretillas elevadoras.

COCIDO DE LA ARCILLA
Los ladrillos crudos se componen, básicamente, del mismo material que se extrajo del suelo. En el horno se someten a elevadas temperaturas para endurecerlos y modificarlos químicamente. Un horno puede tener 36 cámaras (en los de mayores dimensiones), y en cada una de ellas se pueden colocar hasta 40.000 ladrillos; allí permanecen, unos 18 días.

La operación consta de dos fases, la de secado y la de cocido. Durante -la primera fase, se elimina de la arcilla una gran cantidad de humedad y de gas (aproximadamente, 40 toneladas en cada cámara). A continuación, se aumenta la temperatura hasta unos 1.000°C y se mantiene así, 24 horas. Con esta operación, termina el cocido; entonces, se enfría el horno, se sacan los ladrillos y se almacenan hasta que se necesiten.

Las operaciones descritas anteriormente constituyen el proceso plástico duro, pero no es la única técnica que se utiliza para la fabricación de ladrillos. El procedimiento de corte por alambre es otro método que también sa utiliza mucho; con esta técnica se elabora, primero, una masa de arcilla blanda de dimensiones adecuadas (que se extrae de manera análoga a como sale la pasta dentífrica del tubo), y a continuación se va cortando en trozos con forma de ladrillo, mediante un alambre.

De hecho, con cualquier técnica que se utilice, el tamaño de la pieza de barro es algo mayor que el ladrillo que se quiere conseguir, para compensar el fenómeno de contracción que tiene lugar durante su cocido.

Los problemas surgen cuando se trata de establecer normas sobre el tamaño y calidad de los ladrillos. Por ejemplo, la “British Standards“, miembro de la Comisión de Normas Internacionales, que no es más que una organización que se propone coordinar los esfuerzos de productores y consumidores para la mejora, tipificación y simplificación de los materiales industriales, decidió que a partir de 1963, los ladrillos corrientes de arcilla para construcción debían tener en Inglaterra las medidas siguientes: 21,90 cm. por 10,47 cm. por 6,66 cm, ó 21,90 cm. por 10,47 cm. por 7,30 cm.

Sin embargo, a causa de la naturaleza de la materia prima y del proceso de fabricación, no es posible hacer todos los ladrillos exactamente iguales. A este respecto, existen unos límites de tolerancia que especifican que las dimensiones de los ladrillos pueden variar, como máximo, en un 1 % de las establecidas. Se pueden realizar medidas satisfactorias de comprobación, disponiendo una pila de varios ladrillos.

Otras pruebas consisten en medir su resistencia a la compresión (resistencia que ofrecen a la trituración), su capacidad de absorción de humedad, y los cambios de tamaño que experimentan en este fenómeno.

La mayoría de los problemas surgen cuando entran en conflicto las exigencias de tipificación de los consumidores, y las dificultades que encuentran los productores para lograr ladrillos de calidad y tamaño uniforme.

ARCILLA  PARA  LA FABRICACIÓN   DE  LADRILLOS
Los depósitos de arcilla se componen de partículas rocosas muy finas. La arcilla contiene minerales y sustancias pegajosas o coloidales que absorben agua y forman una masa plástica.

La mayoría de los tipos están constituidos de cantidades variables de óxido de aluminio y arena (bióxido de silicio); se formaron a partir de rocas de origen volcánico (ígneas) por acción química, a través del tiempo, sobre los feldespatos (silicatos de aluminio que contienen potasio, sodio y calcio) y los silicatos de hierro  y  magnesio.

Cuando la arcilla se calienta, pierde agua, se seca y se contrae. El grado de contracción depende de la cantidad de agua que contiene; una contracción excesiva puede indicar que la arcilla no es adecuada para la fabricación de ladrillos ni para la manufactura de objetos cerámicos.

Por ello, se realizan, en este sentido, pruebas exhaustivas para determinar la calidad de las arcillas. La contracción se puede reducir, hasta cierto punto, mezclando la arcilla con arena o material cocido.

No teda el agua que existe en un ladrillo crudo se elimina en las primeras etapas del horneado, puesto que parte se combina químicamente con otras sustancias para formar silicatos. El propósito de la cocción es producir la suficiente vitrificación para unir las restantes partículas que no se han fundido.

En muchas arcillas, se presentan también pequeñas cantidades de carbono orgánico y de azufre (este último, frecuentemente, como sulfuro ferroso). El carbón se quema en el horno y el sulfuro de hierro se oxida, con lo que el ladrillo adquiere un color rojizo. El hecho de que exista una cierta proporción de carbono en la arcilla, permite reducir a un mínimo el consumo de carbón y,  por tanto, se ahorra combustible.

Ladrillos prensados (de máquina).—Se distinguen de los ladrillos comunes por el mayor cuidado en la elección y preparación del material, por su esmera, fabricación y por ser sometidos a gna compresión mecánica durante la elaboración,  lo que las hace más resistentes.

Su tamaño es de 23 x 11 x 6.5 cm. El peso del mular es de 2.600 Kg. secos y de 2.800 Kg. mojados. Resistencia a rotura: 120 Kg cm2.Esta clase de ladrillos se emplea, usando morteros cernenticios, para construir pilares bases de columnas, cámaras de cloacas y en general cuando se necesita una pared de mucharesistencia a la compresión.

También se emplean en muros externos sin revoque, sino con loma de juntas (albañilería aparente). Por ej. en fábricas, depósitos, chalets, etc. o como revestimiento de muros de ladrillo común.

El ladrillo prensada debe responder a las siguientes exigencias: tener estructura compacta; estar uniformemente y bien cocido sin vitrificación; carecer de núcleos calizos u otros cualquiera, tener superficies tersas sin alabeos ni hendiduras y aristas vivas; no ser friable y de forma muy regular y sonoro al golpe.

El espesor del mortero en las juntas tro debe ser mayor de 1.cm, El peso de esta clase de albañilería es de 1.800 Kg/m3.


Fuente Consultada
TECNIRAMA N°86 La Enciclopedia de la Ciencia y la Tecnología (CODEX)
EL Calculista de Estructuras Hierro-Madera-Hormigón Tomo II – Simón Goldenhorm

Amianto Aplicaciones, Propiedades y Riesgos de Cancer

El amianto o asbesto es conocido por el hombre desde hace por lo menos 2.500 años. A causa de su singular resistencia al fuego, se atribuían a esta sustancia propiedades mágicas. Se dice que el emperador Carlomagno demostró sus poderes sobrenaturales arrojando al fuego un mantel de amianto que recuperó intacto. La resistencia al fuego es la propiedad que más llamaba la atención de los antiguos, pero no es la única cualidad del amianto, que ha probado ser enormemente apto en aplicaciones industriales.

Es un excelente aislante del calor, del sonido y de la electricidad, y su naturaleza fibrosa permite que se pueda trabajar para elaborar telas para trajes, etc. Mezclado con otros materiales como el cemento proporciona un excelente material de construcción. El amianto es flexible, resistente a los ácidos y a los álcalis y no se deteriora  con el  tiempo.

Amianto

Hablar solamente de “amianto” no es precisar mucho, pues el amianto no es una sustancia única. Hay muchas variedades de él, y cada variedad posee en distinto grado las propiedades ya indicadas.

El valor comercial del amianto depende grandemente de dos cualidades: su incombustibilidad y su singular estructura fibrosa. La última permite separarle en fibras o filamentos que, en la variedad usada con más frecuencia, poseen una gran resistencia a la tracción y son muy flexibles.

Podemos decir que las principales propiedades del amianto son:

Incombustibilidad.
Elevado aislamiento térmico.
Elevado aislamiento acústico.
Resistencia a altas temperaturas.
Resistencia al paso de electricidad.
Resistencia a la abración.
Resistencia al ataque de microorganismos.

Debido a estas especiales características, el amianto se ha usado para una gran variedad de productos manufacturados, principalmente en materiales de construcción (tejas para recubrimiento de tejados, baldosas y azulejos, productos de papel y productos de cemento con asbesto), productos de fricción (embrague de automóviles, frenos, componentes de la transmisión), materias textiles termo-resistentes, envases, paquetería y revestimientos, equipos de protección individual, pinturas, productos de vermiculita o de talco. El amianto también está presente en algunos alimentos.

YACIMIENTO Y ORIGEN
El amianto, tal como se encuentra en la naturaleza, es una roca, tan sólida y densa como el granito. Se encuentra subterráneamente en vetas delgadas, incluidas en rocas que tienen una composición química parecida.

Incluso hoy día no hay una idea clara de cómo el amianto se formó en la corteza terrestre. La teoría más generalizada es la de que la roca subterránea se transformó por la acción del agua caliente, que contenía sales disueltas y anhídrido carbónico. Al producirse grietas en la roca, éstas se llenaron de agua, y, durante largos períodos de tiempo, ocurrieron reacciones químicas, que dieron lugar a capas gelatinosas que eventualmente cristalizaron para formar el mineral, fibroso y estrechamente empaquetado, que hoy día conocemos.

VARIEDADES   DE   AMIANTO
El nombre de amianto, en una acepción amplia, puede darse a todo mineral natural capaz de ser manejado o transformado en fibras. Hay, por lo menos, treinta tipos distintos de minerales que forman lo que se llama el grupo asbestiforme, y que tienen grandes semejanzas, pero solamente seis poseen importancia comercial.

En orden de importancia, son:   el crisotilo  o  amianto blanco,  la crocidolita o amianto azul, la amosita, antofilita, tremolita y actinolita. Se dividen en dos grupos principales: los amiantos de crisotilo (o serpentina) y los amiantos anfibólicos.

Las diferencias entre los distintos tipos provienen de la roca o matriz donde el amianto se encuentra. Desde el punto de vista químico, son complicados silicatos de magnesio que, generalmente, contienen uno o varios de los siguientes metales: sodio, aluminio, hierro y calcio.

CRISOTILO
Es la variedad más importante de mineral de amianto, y constituye el 80 ó 90 por ciento de la producción mundial. Se encuentra principalmente en Canadá, en la U.R.S.S. y en Rodesia del Sur. Su color varía desde el blanco puro hasta el verde grisáceo, dependiendo de las impurezas que contenga.

El crisotilo no se altera a temperaturas de hasta 450 ó 500 °C, en que empieza a perder agua estructural. Sus fibras resisten la acción de los álcalis, pero no la de los ácidos, y los ácidos minerales  fuertes  las  disuelven  completamente.

Crisolito o Amianto Blanco

Algunas fibras de crisotilo tienen hasta ocho centímetros de longitud, aunque la mayoría están por debajo de los cuatro centímetros. Son fuertes y flexibles, trabajándose con facilidad, probablemente a causa de las cantidades de talco que se encuentran en ellas.

Estas propiedades, juntamente con su resistencia, longitud, y mala conductividad eléctrica (gran resistencia al paso de la corriente), lo hacen muy adecuado para la manufactura de amianto textil. Cuando se muele la roca, el amianto se descompone en fibras, y la parte de roca adyacente se pulveriza.

De esta forma, ambos se separan fácilmente. Frotando la superficie de la roca, pueden obtenerse fibras extremadamente finas, que, de hecho, son haces de fibras todavía más finas, las cuales pueden separarse a mano. Incluso esas fibras pueden subdividirse a su vez.

Con el microscopio electrónico han podido medirse los diámetros de las fibras más finas, que son del orden de dos millonésimas a veinte millonésimas de centímetro. Las fibras que se usan en la práctica son mucho  más  gruesas.

Los  estudios  modernos  con  el  microscopio electrónico sugieren que. las fibras de crisotilo son huecas, a pesar de que los tubos pueden estar rellenos de material menos cristalino, pero con la misma composición química. Esto serviría de explicación al hecho de que las fibras sean suaves, elásticas y absorbentes. Su resistencia a la tensión es muy grande; por término medio, del orden de la de una cuerda de acero para piano del mismo diámetro, aunque se han obtenido valores de resistencia doble.

AMIANTOS ANFIBÓLICOS
Los amiantos que derivan de este grupo se diferencian de los del crisotilo por su mayor riqueza en sílice, hierro, aluminio, sodio y calcio. Sin embargo, contienen menos magnesio. Cada uno de ellos incluye dos o más de esos metales en diferentes proporciones. La crocidolita, que tiene un color azul peculiar, y la amosita, que varía desde el blanco al pardo amarillento, son las variedades más importantes. Ambos son silicatos de hierro; el primero contiene dos tipos de hierro y sodio, y el segundo, hierro ferroso y magnesio.

La crocidolita posee magníficas propiedades de resistencia al calor, semejantes a las del crisotilo. Los amiantos anfibólicos son más ásperos al tacto y, por’consiguiente, más difíciles de trabajar, y menos aptos para la fabricación de tejidos, a pesar de que sus fibras son más largas y que su resistencia a la tracción es grande (mayor que la de las cuerdas de acero para piano). La propiedad más importante de la crocidolita es su resistencia al ataque por los ácidos.

La crocidolita se encuentra principalmente en Sudáfrica, pero también hay grandes yacimientos en Bolivia y en Australia. La amosita se encuentra solamente en Sudáfrica. La resistencia a la tensión es mediana, pero, para algunas aplicaciones, su resistencia al calor resulta superior a la del crisotilo o la crocidolita. Sus fibras pueden tener hasta 30 centímetros de largo, y se usa principalmente para la fabricación de aislantes térmicos. Dado que la amosita es menos flexible y tiene menor resistencia a la tracción que el crisotilo y la crocidolita, sus aplicaciones son bastante limitadas.

Las fibras de los amiantos anfibólicos no sólo son más largas que las del amianto blanco, sino también más gruesas (de 400 a 100 milésimas de centímetro, en vez de dos millonésimas de centímetro). Son sólidas, y, por lo tanto, duras y elásticas, pero quebradizas.

Riesgos del amianto: Existe el riesgo de contraer determinadas enfermedades específicas provocadas por la inhalación de fibras de amianto: asbestosis, cáncer pulmonar y mesotelioma de pleura y/o peritoneo, además de una irritación crónica de la dermis.

Está compuesto por fibras microscópicas que pueden permanecer en suspensión en el aire el tiempo suficiente para que representen un riesgo respiratorio. Cuando el contacto es prolongado puede provocar son enfermedades del aparato respiratorio. El cáncer de pulmón es la más mortal de las enfermedades que afectan a las personas expuestas al amianto.

Otra enfermedad respiratoria es la asbestosis es una enfermedad asociada directamente a la exposición al amianto. Consiste en el desarrollo de una fibrosis pulmonar tras la inhalación de asbesto que con el tiempo dificultad para respirar.

MINERÍA Y TRATAMIENTOS
La mayoría de las rocas que contienen los minerales del amianto se explotan relativamente cerca de la superficie, por lo que esta minería resulta relativamente económica y sencilla, en comparación -con la minería profunda. Con frecuencia, las explotaciones están al descubierto.

A veces, sin embargo, se practican túneles en el frente de la roca, y el mineral se saca en vagonetas. El mineral bruto, con grandes cantidades de ganga, se pica o se dinamita de la roca, de forma parecida a como se hace con el carbón, y se separa provisionalmente a mano. La roca acompañante se tira y el material se lleva al grupo separador donde se extraer; las fibras largas.

Éstas forman el 3 % del mineral extraído, y son susceptibles de ser tejidas. El resto se tritura y se pasa por tamices. Los residuos se aventan para recuperar las pequeñas cantidades de amianto que puedan quedar. La producción de fibra es pequeña: una tonelada de fibra por cada ocho o hasta treinta toneladas de roca triturada.

La fibra de amianto separada por los tamices se lleva a un molino que funciona como un mortero, y a continuación se pasa a un molino de alta velocidad, donde las fibras se separan aún más.

APLICACIONES DEL AMIANTO
Las fibras largas usadas para tejer reciben un tratamiento más cuidadoso para separar las longitudes desiguales, los fragmentos de roca y las fibras no abiertas. A continuación se cardan, se bobinan y se tejen o trenzan. Generalmente se refuerzan con alguna fibra vegetal o, en algunos casos, con finos hilos de metal.

El tejido de amianto tiene muchas aplicaciones industriales. Se usa en revestimientos aislantes de muchas clases, para juntas y protecciones de calderas. Para estos revestimientos, la cubierta exterior de tejido de amianto se rellena de fibra suelta del mismo material. Los revestimientos están solamente extendidos y tensados, de forma que pueden quitarse fácilmente cuando hay que hacer reparaciones o para su manejo.

Los trenzados de amianto tienen usos muy variados en la industria para empaquetamientos y juntas, especialmente para máquinas de vapor y para bombas. Su resistencia al calor y su larga duración les hace excelentes para tales aplicaciones. Otra aplicación de relieve es en los frenos y embragues, donde las propiedades importantes son las de la resistencia y no alteración por el calor. La lisura del amianto permite que la pieza giratoria encaje sin vibración ni desgaste. La mayoría de las camisas anti-fricción se fabrican con tejido de amianto o se moldean con fibras o resina de este material.

Las fibras cortas de amianto son la mayor parte de las obtenidas en la mina y se usan para hacer tableros y objetos prensados. Hay una demanda creciente de fibrocemento (cemento con fibras de amianto) en la industria, especialmente en la de la construcción. Se usa para cubiertas de tejados y paredes, para edificar depósitos y hangares, así como para compartimientos. Los productos de fibrocemento moldeado se usan en la construcción de canales, desagües, tuberías, depósitos, tubos para cables y acequias.

Los tubos subterráneos de fibrocemento de gran diámetro se fabrican con destino a aprovisionamientos de aguas, cloacas y drenaje. La fibra de amianto puede también esparcirse sobre objetos, especialmente si se desea protección contra el fuego. Cuando la fibra se mezcla con un líquido, cada haz de fibras absorbe cierta cantidad de éste. Esta propiedad hace posible el pegarla sobre estructuras de acero, por ejemplo, o sobre la parte inferior de los pisos, para evitar que las llamas puedan extenderse a otras habitaciones.

El amianto de usa también mucho en el aislamiento del sonido. El amianto esparcido o pegado en las superficies es especialmente útil. Como material absorbente del sonido, se usa en las salas de cine o de conciertos, para eliminar las superficies que reflejan el sonido produciendo eco.

El amianto esparcido se aplica también a superficies frías donde, de otra forma, se acumularía la humedad. El amianto esparcido disminuye el enfriamiento de la capa de aire próxima a la superficie (por ejemplo, en un techo) y, de esta manera, evita la condensación.

El uso de amianto fue absolutamente prohibido en España en diciembre de 2001, si bien algunas de sus variedades se prohibieron antes como el amianto azul en 1984 y el amianto marrón en 1993.

Fuente Consultada:
TECNIRAMA La Enciclopedia de la Ciencia y la Tecnología Fasc. N°56
Sitio web español: http://www.amianto.com.es/

Anticongelantes: Uso de Etilenglicol Baja Punto de Congelamiento

ETILENGLICOL: PARA BAJAR EL PUNTO DE CONGELAMIENTO DEL AGUA

En los climas intensamente fríos, los automóviles pueden sufrir averías si no se toman medidas para protegerlos. El radiador y el bloque de los cilindros (bloque del motor) son las partes afectadas en primer lugar. Si el agua que contiene el bloque de los cilindros llega a congelarse, éste se parte, del mismo modo que los conductores de agua cuando el líquido que contiene se hiela. El hielo es menos denso que el agua y, por tanto, cuando éste se congela, convirtiéndose en hielo, ocupa un volumen mayor.

En el radiador de un automóvil, el agua está encerrada en un espacio limitado. El metal no puede dilatarse; de hecho, se contrae cuando disminuye la temperatura. Así, cuando el agua se congela, el sistema refrigerante está sometido a una presión interior, puesto que aquélla se expande, haciendo lugar para el hielo; el bloque de los cilindros o el radiador no pueden soportar esta tensión y se rompen.

Estas roturas son costosas, pues la dificultad de la reparación obliga a sustituir las piezas. Una vez que se ha roto el bloque, el sistema de refrigeración del motor deja de funcionar y, si se usa el coche en estas condiciones, el motor se sobrecalienta, expulsando chorros de vapor de agua.

Por esto, resulta muy importante que el agua del sistema de refrigeración no se congele, aunque la temperatura externa descienda por debajo de O° C. Hay que añadir alguna sustancia que rebaje el punto de congelación. En otras palabras, al agua de refrigeración debe añadírsele un anticongelante.

Cuando se añade al agua un poco de sal, el punto crioscópico (punto de congelación) baja ligeramente. Si añadimos más sal, dicho punto sigue descendiendo.

La adición de una impureza tiene, pues, el efecto de hacer descender el punto de congelación. Aunque con sal se puede conseguir este efecto perfectamente, no se usa nunca como anticongelante por su fuerte poder corrosivo, que atacaría rápidamente el metal del radiador. Normalmente, se usa el compuesto orgánico etilénglicol.

Éste es muy eficaz para disminuir el punto de congelación del agua de refrigeración. Al contrario que la sal, no es nada corrosivo y, por tanto, puede usarse sin peligro de dañar el radiador. Los anticongelantes que compran los automovilistas contienen, fundamentalmente, etilénglicol, junto con un pequeño porcentaje de otros compuestos químicos, que actúan como inhibidores (antioxidantes), protegiendo de la corrosión el interior del radiador.

Los antioxidantes son muy necesarios, porque la misma agua es un agente corrosivo que puede atacar la superficie metálica, si no lo evitamos. Aunque se podría usar el mismo glicol indefinidamente, los antioxidantes tienden a perder su eficacia.

Por tanto, es aconsejable usar anticongelante nuevo cada invierno, para impedir la corrosión del radiador.El anticongelante se mezcla con agua y, una vez diluido, se vierte en el radiador. Una solución con un 25 % de glicol en volumen tiene un punto crioscópico de — 12,8° C, y es la adecuada porque no resulta fácil que la temperatura descienda por debajo de este punto. Este tipo de mezcla, naturalmente, no se puede usar dentro del Círculo Polar Ártico, donde la temperatura desciende, con frecuencia, por debajo de —12,8° C.

Se necesita, por tanto, un líquido cuyo punto de congelación sea mucho más bajo. A medida que se va aumentando la proporción de glicol, el punto crioscópico desciende hasta un cierto límite, desde el que empieza a subir nuevamente. El punto de congelación más bajo que puede obtenerse con una mezcla de etilénglicol y agua es — 44° C. Se trata del punto crioscópico de una mezcla al 50 % de glicol y agua.

Para las condiciones extremas del Ártico se añade una pequeña cantidad de éter de glicol. Así se consigue que el punto descienda hasta — 68° C. Casi todos los sistemas de refrigeración de los automóviles que -circulan actualmente pueden ser vaciados o llenados por sus dueños, pero la tendencia moderna es que estén precintados y que su contenido sea renovado solamente cada dos años.

El radiador se llenará y precintará en la fábrica, usando una mezcla más concentrada que las habituales. Se utiliza una mezcla al 50 % de glicol y agua, que hace descender el punto crioscópico hasta — 44° C. De este modo, los autos pueden funcionar en cualquier país. Los antioxidantes plantean problemas, pero se están llevando a cabo investigaciones para prolongar su período de actividad. Con mejores antioxidantes, no sería necesario cambiar el anticongelante tan frecuentemente.

En el gráfico se observa: A medida que se va añadiendo más etilénglieol al agua, el punto crióscopico desciende gradualmente. El refrigerante del radiador puede elaborarse de tal forma que siga estando liquido por debajo de O°C. Esto no se puede conseguir indefinidamente. Cuando se añade mucho glicol, el punto crioscópico se eleva de  nuevo, como se vé en la línea roja de la derecha.
grafico etilenglicol

Fuente Consultada
Revista TECNIRAMA N°113 Enciclopedia de la Ciencia y la Tecnología

Subproductos Derivados del Petroleo Etileno Destilación y Refinación

Aunque el petróleo es importante como fuente de lubricantes y carburantes para los motores de combustión interna, los subproductos de las refinerías se utilizan como el punto de partida para la obtención de nuevas sustancias. Rápidamente, estos subproductos se han convertido en las principales materias primas para la obtención de una amplia gama de compuestos orgánicos complejos y, en particular, de los polímeros.

Hasta hace quince años, las principales fuentes de compuestos orgánicos eran el alquitrán de hulla y el alcohol etílico, obtenido por la fermentación de melazas. Cuando las compañías de petróleo más importantes comenzaron a trasportarlo crudo para su refinación posterior cerca de los centros, consumidores, en vez de refinarlo en los campos petrolíferos, se pudo disponer de los subproductos del petróleo en gran cantidad.

Desde un punto de vista económico, esta fue una situación ideal. Por un lado, las refinerías producían hidrocarburos gaseosos (con moléculas que contienen uno, dos, tres o cuatro átomos de carbono), de los cuales había una demanda limitada en aquella época.

Por otra parte, varios productos nuevos estaban en etapa de desarrollo y necesitaban materias primas económicas. Así, pues, los subproductos del petróleo se convirtieron en materiales de partida para muchos otros procesos.

Debido a la interdependencia entre las refinerías y las plantas químicas que utilizan sus productos, gran parte de los procesos iniciales se realiza en fábricas que dependen de las compañías de petróleos y de las empresas de productos químicos.

MATERIAS PRIMAS
Los elementos básicos con los que se obtiene gran número de compuestos son los hidrocarburos gaseosos, que son separados de los componentes sólidos y líquidos del petróleo crudo cuando éste se destila.

También se producen en gran cantidad durante la operación del craqueo catalítico. En este proceso, el gasóleo (fracción de petróleo con un punto de ebullición más alto que la gasolina) se vaporiza, se mezcla con vapor de agua y se hace circular por un catalizador caliente.

Las moléculas más grandes del gasóleo se rompen, para formar moléculas más pequeñas. Entre los compuestos más importantes que se obtienen por este procedimiento figuran el etileno, el propileno, el butileno y el butadieno. Sus moléculas no están saturadas (es decir, tienen dobles enlaces débiles), y algunos se utilizan para obtener hidrocarburos de cadena ramificada de peso molecular mayor, que se añaden a la gasolina para mejorarla (le dan un mayor índice de octano). Como hay una superproducción de gasóleo, no es difícil producir cantidades suficientes de estos compuestos no saturados para atender cualquier demanda.

Antes de que los gases se puedan utilizar en las plantas químicas, deben separarse. Esto se hace por destilación fraccionada, que se efectúa a presiones altas y baja temperatura, con lo cual los hidrocarburos se licúan.

Casi todos los gases que provienen de la planta de destilación son hidrocarburos saturados (es decir, los átomos de la molécula están unidos por enlaces sencillos fuertes). El propano y el butano se utilizan, principalmente, como gases trasportables. Éstos se licúan fácilmente a presiones moderadas y se envasan. Las garrafas o bidones de propano y butano se utilizan mucho, sobre todo en los lugares donde no hay gas de alumbrado.

Sin embargo, el metano (gas natural) es importante como materia prima. Este hidrocarburo (CH4), en sí, es poco reactivo, pero se puede convertir en alcohol metílico (CH3-OH), que tiene muchas aplicaciones. Esta conversión tiene lugar en dos etapas. Primero, el metano, mezclado con vapor de agua y anhídrido carbónico, se pasa sobre un catalizador caliente de níquel. Se forma una mezcla de monóxido de carbono e hidrógeno en las proporciones adecuadas. Cuando se comprime la mezcla, se obtiene alcohol metílico.

El alcohol metílico es un disolvente importante como tal, pero grandes cantidades de él se convierten en formaldehído (CHaO) por una reacción de oxidación. El formaldehído se usa en la preparación de varios fármacos, pero la mayor parte del producto se utiliza en la fabricación de plásticos de fenol-formaldehído (por ejemplo, la bakelita),

REFINACIÓN  DEL PETRÓLEO: En la refinería, la primera operación a la que se somete el petróleo crudo es la “destilación”. Ésta separa el petróleo en seis “fracciones”, la mayoría de las cuales sufre un tratamiento posterior. La gasolina destilada contiene gran proporción de parafinas de cadena lineal, que producen el picado o detonación cuando se quema aquélla en el motor del coche.

Este efecto se puede disminuir añadiendo a la gasolina parafinas de cadena ramificada e hidrocarburos cíclicos. Para producir estos compuestos cíclicos y ramificados se realizan tres procesos, que son: el craqueo, la polimerización y el “reforming”. Calentando a temperaturas elevadas los compuestos orgánicos, cuyas moléculas constan de muchos átomos, éstos se descomponen, dando compuestos de moléculas más pequeñas.

torre de destilación de petroleo

En el proceso de destilación primario se suministra petróleo crudo y se separan las distintas fracciones.

Este proceso, llamado “craqueo”, tiene lugar en las refinerías de petróleo, donde se rompen los aceites de alto punto de ebullición y se obtienen compuestos más volátiles, que se pueden añadir a la gasolina. Para facilitar estos cambios químicos se utilizan catalizadores, por lo cual el proceso se llama “craqueo catalítico”.

Además de dar compuestos adecuados para la destilación de gasolina, también se producen hidrocarburos gaseosos. Estos últimos (que contienen uno, dos, tres o cuatro átomos de carbono por molécula) se obtienen tanto en la etapa de destilación como en las del craqueo Catalítico.

Algunos de estos compuestos, especialmente los hidrocarburos no saturados propileno y butileno, se utilizan en reacciones de “polimerización”, para obtener hidrocarburos ramificados mayores, que, cuando se añaden a la gasolina, le confieren propiedades antidetonantes y elevan su índole de octano. Estos gases son también la materia prima para la industria petroquímica.

ETILENO
El etileno y los hidrocarburos superiores no saturados (propileno, butileno y butadieno) son mucho más reactivos que los hidrocarburos saturados, y por eso tienen muchas más aplicaciones como materias primas. Se obtienen, principalmente, en la planta de craqueo catalítico, donde, controlando con cuidado las condiciones de reacción (temperatura y presión) y la proporción de vapor añadido, se puede obtener un gran rendimiento en compuestos no saturados.

Como el etileno es un compuesto no saturado, resulta bastante reactivo. Toma parte en reacciones de adición (es decir, se le pueden añadir otras moléculas), y con facilidad forma polímeros, como el polietileno.

La mayor parte del etileno se usa en la fabricación de plásticos: polietileno, poliestireno, policloruro de vinilo (P.V.C.) y acrilonitrilo. El etileno también puede convertirse en alcohol etílico, que se emplea como disolvente.

El alcohol se oxida para dar acetaldehído y ácido acético, que, a su vez, se usan como materiales de partida para la fabricación de otros productos

También se utiliza el etileno en la fabricación de óxido de etileno, del cual se puede obtener etilénglicol, que se emplea como anticongelante en los sistemas de refrigeración de los automóviles. El etilénglicol es una materia prima utilizada en la fabricación de la fibra artificial llamada terilene.

La obtención de alcohol etílico a partir de etileno y agua es también un proceso catalítico en el que se usa ácido fosfórico como catalizador. En este proceso se obtiene, al mismo tiempo, éter dietílico en pequeña cantidad. Sólo un 5% del etileno que’entra en el reactor se convierte en alcohol etílico; por eso, el etileno se separa para reciclarlo, y el alcohol y el éter se separan por destilación fraccionada. El éter que se produce se utiliza como disolvente y anestésico.

La producción de plásticos y fibras artificiales que se derivan del etileno constituyen un tema demasiado extenso para describirlo aquí.

En casi todos los casos, la polimerización se realiza abriendo los dobles enlaces y utilizando las valencias libres para unir muchas moléculas entre sí. El polietileno se obtiene directamente del etileno, mientras que el cloruro de vinilo se produce a partir de etileno y cloro, antes de polimerizarlo.

El estireno, del cual se obtiene el poliestireno, también se consigue del etileno. Cada uno de esos plásticos tiene gran variedad de aplicaciones; algunos son buenos aislantes eléctricos, otros resisten el ataque químico. Unos son trasparentes, mientras que otros resultan traslúcidos u opacos.

En la actualidad, el propileno se utiliza principalmente para la obtención de otros compuestos orgánicos intermedios, como alcohol isopropílico, acetona y fenol, entre los más importantes; pero parece probable que en el futuro se utilicen cantidades mayores en la producción de un nuevo plástico: el polipropileno. Actualmente, la acetona se fabrica del propileno por medio de dos procedimientos diferentes. El primero consiste en obtener alcohol isopropílicoy luego oxidarlo a acetona.

En el proceso más reciente, el propileno reacciona con benceno para dar eumeno, que se oxida después y se descompone en fenol y acetona. La acetona es un disolvente muy importante y se utiliza en la producción de explosivos y adhesivos. El fenol es uno de los principales materiales de partida para la fabricación de gran número de plásticos y resinas; por ejemplo, el plástico fenol-formaldehído (bakelita)  y las epoxiresinas.

Cuando se unen cuatro moléculas de propileno, se obtiene una sustancia llamada isododeceno (CH2HE,), que se utiliza en la fabricación de varios detergentes de uso doméstico e industrial. Grandes cantidades de butadieno (CH2=CH—CH=CH2) y butileno (C4H8) se utilizan actualmente en la producción de varios tipos de caucho sintético y de plásticos.

Estos cauchos sintéticos se emplean en la fabricación de suelas de calzado y de neumáticos de automóvil. Durante el proceso de refinación del petróleo, también se obtiene gran número de compuestos inorgánicos. En el petróleo hay varios compuestos de azufre que deben eliminarse y que pueden ser una fuente de azufre para la producción de ácido sulfúrico.

El exceso de gas hidrógeno procedente de las refinerías se puede utilizar en la elaboración de amoníaco, que es un material esencial en la fabricación de varios fertilizantes.

tabla uso del petroleo

ALGO MAS SOBRE LOS USOS DEL PETROLEO:

El petróleo es una sustancia que las personas conocen y usan desde hace miles de años. Con el nombre de aceite de roca se empleaba, por ejemplo, para impermeabilizar todo tipo de embarcaciones, y en el antiguo Imperio babilónico (el actual Irak) ya se asfaltaban con él las calles principales. Sin embargo, sus utilidades eran escasas.

El primer pozo petrolero se perforó a mediados del siglo XIX, obteniendo como primer subproducto el queroseno, que sustituyó al aceite de ballena como combustible. A finales de ese mismo siglo aparecieron los primeros automóviles impulsados por gasolina, y la creciente demanda de coches con motor de combustión convirtió al petróleo en la principal fuente de energía en unas pocas décadas.

La industria petroquímica comprende la elaboración de todos aquellos productos que se derivan de los hidrocarburos, tanto del petróleo como del gas natural. Produce cientos de productos diferentes, con aplicaciones en casi todos los ámbitos de nuestra actividad:

•  Las fibras textiles artificiales, como el nailon. Presentan, sobre las fibras naturales, grandes ventajas, como resistencia ante el ataque de bacterias, hongos e insectos, se arrugan menos, se secan más rápidamente, etc.
•   Fertilizantes, herbicidas e insecticidas de todo tipo para la agricultura.
•   Colorantes, conservantes, antioxidantes y otros productos aditivos para la industria alimentaria.
•   Detergentes.
•   Envases y embalajes variados.

Todos los tipos de plástico son polímeros, es decir, materiales derivados del petróleo. Sus utilidades son incontables: carcasas para aparatos electrónicos (teléfonos, computadoras, televisores, etc.); film transparente para envolver alimentos; fibra óptica para comunicaciones; encapsulados y coberturas para material eléctrico; neumáticos, etc. Las aplicaciones del petróleo y sus derivados en nuestra vida diaria son muy numerosas.

CUADRO SOBRE EL USO DEL DERIVADO ETILENO:

cuadro uso del etileno

Fuente Consultadas:
Revista TECNIRAMA N°124 El Petróleo Como Materia Prima
La Enciclopedia del Estudiante Tomo 04 Tecnología e Informática Santillana

Cuadro sinoptico clasificacion de las rocas

Estudiar las rocas: Para  clasificarlas, se suelen utilizar criterios relacionados con la formación de las rocas. Así, distinguimos tres grandes grupos de rocas: ígneas, sedimentarias y metamórficas.
El primer y tercer grupo, a su vez, se engloban dentro ce las llamadas rocas endógenas, que son aquellas cuyo proceso de formación tiene lugar en el interior de la Tierra. Se forman por solidificación de una masa fundida, en el caso de las rocas ígneas, o por la transformación de las rocas existentes, en el caso de las rocas metamórficas.

En cuanto a las rocas sedimentarias, se consideran exógenas porque se han originado como producto de la transformac¡ón de materiales geológicos ya existentes de la corteza terrestre sobre los que actúan los procesos externos desencadenados por la meteorización, erosión, vansporte y sedimentación.

cuadro clasificacion de las rocas

Energía Geotermica Concepto y Técnicas de Producción

Hasta las mayores centrales de producción de energía creadas por el hombre quedan empequeñecidas por la principal fuente de energía de la Tierra, el Sol. Directa o indirectamente, el Sol proporciona casi toda la energía que necesitamos, porque él es quien calienta el planeta, y en último extremo, quien impulsa el viento y las olas. Incluso la energía química de las reservas mundiales de carbón, petróleo y gas, procede originariamente de plantas y algas, que obtuvieron a su vez su energía del Sol.

Cada  vez   se   necesita   más   energía   para mover toda la maquinaria del mundo, y el hombre busca continuamente nuevas fuentes de ella. Además de quemar carbón y petróleo, rompe los átomos de los elementos radiactivos (energía atómica), construye presas en los ríos (energía hidráulica) y convierte directamente el calor del sol (energía solar).

Incluso, las fuerzas de los vientos y los grandes movimientos de las mareas han sido aprovechados. Una nueva fuente de energía, llamada a tener gran importancia en el futuro, es el calor producido por la misma Tierra: la energía geotérmica. No se conocen con absoluta certeza las causas de este calor terrestre; pero no puede dudarse de su existencia.

En muchas partes del mundo hay volcanes que expulsan grandes cantidades de lava fundida; el vapor se escapa a través de grietas; hay conos volcánicos donde hierve la lava, y agua hirviente que sale a la superficie en forma de manantiales calientes o geiseres. Se calcula que la energía que disipa la Tierra excede la contenida en los combustibles convencionales. Lo único que hace falta es descubrir el procedimiento para utilizar la potencia geotérmica.

No es una novedad la utilización del calor terrestre. Los islandeses tienen una larga conducción de agua, procedente de manantiales termales, que terminan en sus casas y huertos. Las casas de 46.000 personas (la cuarta parte de la población de Islandia) están calentadas geotérmicamente. En Larderello, cerca de Pisa, en el norte de Italia, los gases calientes que  salen del suelo se han utilizado, desde comienzos de siglo, para producir electricidad.

Pero, hasta muy recientemente, la potencia geotérmica no se consideraba como una fuente de energía importante, sino, simplemente, como un suplemento de las otras grandes fuentes naturales.

Los “geiseres” son manantiales calientes, que expulsan agua y vapor sólo a intervalos. Junto a la superficie, hay un sistema de cámaras intercomunicadas, que están llenas de agua caliente. En la base, el agua llega a sobrecalentarse y su temperatura sube a más dé 100°C; pero, debido al peso de las capas superiores del líquido, no puede hervir. Lentamente, se eleva la temperatura del agua próxima a la superficie. Por fin, parte de ella hierve, convirtiéndose en vapor. Con ello, la presión desciende y el agua sobrecalentada hierve también; como consecuencia, se produce un violento surtidor de vapor, que puede alcanzar alturas considerables.

La Tierra intercepta cientos de miles de millones de megavatios de energía del Sol. Aunque la mayor parte de ellos es devuelta por irradiación al espacio y no resulta utilizable, la cantidad de energía solar absorbida por la Tierra en un solo año es todavía mucho mayor que la energía que se podría obtener de toda la reserva aprovechable de combustibles fósiles del mundo.

Bastaría con utilizar al máximo una fracción minúscula de esta energía solar para satisfacer nuestras necesidades actuales. El Sol seguirá brillando durante miles de millones de años; por ello, las formas de energía obtenidas diariamente de él reciben el nombre de energías renovables.

Tarde o temprano se agotarán las reservas mundiales de carbón y petróleo, pero abajo de nosotros hay otra fuente de energía virtualmente ilimitada. Se trata de la energía geotérmica, el calor del núcleo de la Tierra. La parte externa del núcleo, justo debajo de la corteza terrestre, se compone de magma, esa roca al rojo vivo que expelen los volcanes en erupción.

En muchas zonas volcánicas, la energía geotérmica brota a la superficie en forma de agua caliente o vapor, que puede usarse para accionar generadores de electricidad. En 1904 se inauguró en Larderello, Italia, una planta activada por energía geotérmica, pero la electricidad que produce satisface apenas las necesidades locales. Hoy, en Cornwall, Inglaterra, y en Los Alamos, Nuevo México, se investiga la forma de extraer la energía que se halla escondida en el centro del planeta.

tecnica para geotermia

Gambusinos del calor Cerca de Los Alamos (desierto de Nuevo México) se han hecho perforaciones por pares. La más profunda de ellas llega a 4.400 m, donde la temperatura de la roca es de 327°C. Se inyecta agua, bombeándola a alta presión, para romper la roca y formar fracturas que unan los pozos. Así, el agua impelida por uno de los barrenos se vuelve vapor, que se fuga por las fracturas hacia el otro barreno, de donde se devuelve a la superficie por bombeo. Si se perfecciona esta tecnología de “ardientes rocas secas”, el agua calentada servirá para generar electricidad a gran escala, sin dañar el ambiente.

Energía geotérmica: A unos 30 km por debajo de nuestros pies, la roca alcanza una temperatura de aproximadamente 900°C. Este calor proviene principalmente de la descomposición radiactiva gradual de los elementos en el interior de la Tierra. En sentido estricto esta fuente de energía no es renovable, pero es inmensa. En los 10 km superiores de la corteza terrestre, a profundidades accesibles con las técnicas actuales de perforación, hay energía suficiente para cubrir todas nuestras necesidades energéticas durante cientos de años.

En algunas partes del mundo, como Islandia, por ejemplo, la cantidad de calor geotérmico que llega a la superficie es notablemente superior a la de otros lugares y puede utilizarse directamente como método de calefacción doméstica. En otros países, se calientan bloques de pisos con agua caliente procedente de pozos de unos 2 o 3 km de profundidad.

Sin embargo, las mayores reservas de calor geotérmico se encuentran a una profundidad muy superior, a unos 6 km. Como a esa profundidad las rocas están secas, resulta más difícil y costoso extraer su calor, porque es necesario bombear agua hacia abajo para transportar posteriormente el calor hacia arriba.

En un proyecto experimental llevado a cabo en Cornualles, Inglaterra, tres perforaciones de 2 km de profundidad han sido interconectadas mediante un sistema de grietas, que permite bombear el agua desde una perforación a otra.

Existen proyectos para taladrar agujeros de hasta tres veces esa profundidad, pero incluso a las profundidades actuales el agua vuelve a la superficie lo suficientemente caliente como para producir el vapor que hace funcionar las turbinas. Algunas estimaciones sugieren que en Cornualles y otros lugares donde las rocas están más calientes a menores profundidades, proyectos de este tipo podrían llegar a generar una energía equivalente a diez mil millones de toneladas de carbón.

Soltando vapor:En Islandia,Italia y Japón, la energía geotérmica es liberada, por medios naturales, de
su asiento bajo la corteza. Desde la superficie se filtra el agua de lluvia  y se acumula en capas de roca porosa, donde el magma subyacente la calienta. El agua caliente  sube de nuevo a la superficie por entre las fisuras de la roca y brota en forma de fuentes termales, charcos de lodo, chorros de vapor o geiseres. La humanidad puede abastecerse de energía natural con ayuda de una tecnología sencilla. Más del 80% de las casas islandesas cuentan con sistemas de calefacción alimentados con agua caliente geotérmica entubada.

Fuente Consultada:
Guinnes Publishing Limited Fasciculo N°20
Actualizador Básico de Conocimientos Universales Océano Tomo I

Software para calcular esfuerzos en armaduras aporticadas

USO DEL SOFTWARE GALILEO
(solo para versiones de windows de 32 bits)

  1. Ingresa las cantidad de barras teniendo en cuenta las 3 barras que reemplazan a los vínculos externos (dos del apoyo fijo + una del móvil) – Ver Ejemplo Mas Abajo
  2. SIEMPRE las tres barras de los apoyos debes ingresarse ultima con numero de  nudo cero
  3. Ingresas los datos de cada barra indicando las coordenadas del nudo  inicial y final (la armadura se irà dibujando en la pizarra)
  4. Ingresas las cargas verticales y horizontales
  5. Calculas los esfuerzos en cada barra con solo picar en un botón
  6. Puede luego determinar corrimiento en cada nudo
  7. Puedes agregar las barras hiperestaticas en el caso que las hubiera
  8. Puede visualizar e imprimir los datos obtenidos

El programa tiene un mini manual de uso para consulta Para empezar haz el pórtico del ejemplo de abajo

tipos de armaduras

 esfuerzos de porticos alma calada

ejemplo de calculo de esfuerzos en porticos

software para calculo de esfuerzos

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar Software Descargar Complementos

Ver También: Resolver Un Pórtico Online

Volver a Ingeniería Civil

Calculo de la Dosificacion de Materiales Para Hormigones y Morteros

Calculo de la Dosificación de Materiales Para Hormigones y Morteros

compuesto de una mezcla de construcción

INTRODUCCIÓN: QUE SE MEZCLA?
Áridos:
La Arena:
Sirve para reducir las fisuras que aparecen en la mezcla, al endurecerse y dar volumen.

La Piedra: Se utiliza en la preparación de hormigones resistentes como para bases, columnas, losas, puede usarse canto rodado, que es la piedra de río o piedra partida (de cantera) o arcilla expandida.

El Cascote: Puede ser de ladrillo o de demolición de obras viejas. Se utiliza en hormigones pobres o de bajas resitencias para contrapisos y cimientos.

Aglomerantes:

La Cal y El Cemento: Los dos reaccionan en contacto con el agua, sufriendo un proceso que empieza por el fragüe. Hay mezclas que como aglomerantes llevan solamente cemento (se las llama concreto) y otras donde el aglutinante principal es la cal, a la que se le puede agregar un poco de cemento para reforzarla (cal reforzada). Las cales se venden en bolsas de 25 o 30 Kg. según la marca y el cemento en bolsas de 50 Kg.

Cemento de Albañilería: Es un producto que se puede usar en reemplazo de la cal reforzada.Se vende en bolsas de 30 o 40 Kg. según la marca, como Plasticor, Hidralit,Calcemit,etc.

Líquidos:
El Agua:
Dá plasticidad a la mezcla para que sea trabajable y provoca la reacción química que produce el fragüe.

El Hidrófugo: Es un producto químico que se agrega al agua para aumentar la impermeabilidad.
Existen varios productos de este tipo como cerecita, sika, etc. que se usan según indicaciones de cada fabricante.

Los Aditivos: Se agregan al agua estos aditivos, que son de todo tipo como aceleradores de fragüe, mejoradores plásticos, retardadores de fragüe, etc.

—- TABLA DE  MEZCLAS MAS HABITUALES —-

Hormigón
De Cascotes
Hormigón
De Piedra
Concreto Cal Reforzada
(1)
Cal Reforzada
(2)
Cal Reforzada
(3)
Cal Reforzada
(4)
Para Cimientos
y Contrapisos
Para Columnas,
Vigas,Losas…
Carpetas,Dinteles
Tomar Juntas…
 Paredes de
Ladrillo Común
Paredes de
Bloques Hormig.
Revoque Grueso Revoque Fino
1 CAL 1 CEMENTO 1 CEMENTO 1 CAL 1 CAL 1 CAL 1 CAL AEREA
1/8 CEMENTO 3 ARENA 3 ARENA 1/2 CEMENTO 1 CEMENTO 1/4 CEMENTO 1/8 CEMENTO
4 ARENA 3 PIEDRA   3 ARENA 6 ARENA 3 ARENA  2 ARENA
8 CASCOTES            
OTRA OPCIÓN
1 CEM. ALBAÑIL. 1 CEMENTO   1 CEM. ALBAÑIL. 1 CEM. ALBAÑIL.    
4 ARENA 3 ARENA   5 ARENA 5 ARENA
8 CASCOTES 3 CANTO ROD.          

Por ejemplo una mezcla 1:2:4 significa que cuando se van a mezclar los materiales, se debe colocar 1 balde cemento,2 de arena y 4 de piedra, es decir, se dosifica por volumen. Como luego de apisonar las mezclas sufren una merma se recurre al uso de unos coeficientes de aporte, que es un valor propio de cada material, y se usa para establecer con cierta exactitud la cantidad de materiales necesarios para a comprar para un determinado volumen de mezcla a fabricar.

VALORES DE LOS COEFICIENTES DE APORTE PARA CADA MATERIAL

Arena gruesa (naturalmente humeda) 0.63
Arena Mediana (naturalmente humeda) 0.60
Arena gruesa seca 0.67
Arena fina seca 0.54
Cal en pasta 1.00
Cal en polvo 0.45
Canto rodado o grava 0.66
Cascote de ladrillo 0.60
Cemento Portland 0.47
Cemento Blancos 0.37
Mármol granulado 0.52
Piedra partida (pedregullo) 0.51
Polvo de ladrillo puro 0.56
Polvo de ladrillo de demolición 0.53
Yeso París 1.40

(*):El cemento de albañilería no está en la tabla pero para mis calculo uso: 0.47 como el cemento
(*) Estos valores y método se han basado en el libro El Calculista de Simón Goldehorn

 EJEMPLOS DE COMO SE CALCULAN LOS MATERIALES POR M3

Ejemplo Uno:

Calcular un hormigón estructural: 1:3:3, que significa que se deben colocar 1 balde de cemento, mas 3 de arena, más 3 de piedra partida.

El volumen aparente de esta mezcla será 1+3+3=7 y siempre se estima un 9% de agua, es decir, para este caso el 9% de 7 es 0.63, por lo que el volumen aparente de esta mezcla será: 7+0.63=7.63 unidades (baldes, canastos, m3, etc)

Ahora para obtener el volumen real de la mezcla hay que recurrir a los coeficiente de aportes antes indicado y afectarlo a cada material interviniente, en este caso es:

Cemento 1 x 0.47=0.47

Arena     3 x 0.63=1.89

Piedra    3 x 0.51=1.53

El total es ahora: 0.47+1.89+1.53=3.89 y se le suma el agua (0.63), lo que dá: 4.52 unidades.

Entonces, ahora para calcular los materiales por m3 de mezcla es:

1m3 de cemento pesa 1400 Kg. que dividido este volumen real (4.52) dá: 310 Kg. es decir unas 6 bolsas por m3.

3m3 de arena dividido este volumen real es:0.67 m3 de arena

Y para los 3m3 de piedra partida es también 3/4.42= 0.67 m3.

Por lo tanto para hacer 1 m3 de hormigón 1:3:3 se deben mezclar:
309 Kg. de cemento (6 bolsas)
0.67m3 de arena
0.67m3 de piedra partida.

Ejemplo Dos:

Calcular una mezcla para mortero 1/4:1:3:1 significa: 0.25 de cemento,1 de cal en pasta hidratada,3 de arena y 1 de polvo de ladrillos.

Volumen aparente:0.25+1+3+1=5.25 + 9% de agua=5.72 unidades

Volumen real: 0.25 x 0.47 + 1 x 1 + 3 x 0.63 + 1 x 0.53 = 3.54 + 0.47 del agua= 4.012 unidades

Entonces es:

Cemento (0.25 x 1400)/4.012= 87 Kg.

Cal Hidraulica (1 x 600)/4.012=150 Kg.   (Para 1m3 de cal en pasta se usa unos 600Kg.)

Arena (3/4.012)= .75 (no hace falta el peso especifico porque la arena se vende por m3)}

Polvo ladrillo (1/4.012)=0.25 (idem. a la arena)

Entonces para esta mezclas es:
87 kg. de cemento,
150 Kg. de cal,
0.75m3 de arena y
0.25 m3 de polvo de ladrillos.

PESOS ESPECÍFICOS DE LOS MATERIALES DE CONSTRUCCIÓN (Kg./m3)

Arena seca 1450
Arena naturalmente humeda 1650
Arena muy mojada 2000
Cal viva en terrones 900-1100
Cal hidráulica viva, en polvo 850-1150
Cal en pasta 1300
Cemento Portland 1200-1400
Cemento Blanco 1100
Cemento fraguado 2700-3000
Escorias de Coque 600
Canto Rodado (Grava) 1750
Hormigón armado 2400
Hormigón de Cascotes 1800
Ladrillos Comunes 1350-1600
Ladrillos de Maquina 1580
Mampostería de Piedra 2250
Mármol 2700-2800
Mortero de Cal y Arena fraguado 1650
Mortero de Cemento, Cal y Arena fraguado 1700-1900
Nieve suelta 150
Nieve congelada 500
Papel en libros 1000
Polvo de ladrillos de demolición 1000
Porcelana 2400
Tierra arcillosa seca 1600
Tierra Humeda 1850
Tiza 1000
Yeso en polvo 1200

 

Proceso de Elaboración del Cemento Portland

Bajar Un Software Para Calcular Dosificaciones de Mezclas y Hormigones

ALGO MAS SOBRE EL HORMIGÓN….

HORMIGÓN: Mezcla de cemento, arena, grava o piedra triturada y agua. El cemento portland, que es el más importante componente del hormigón, puede adquirirse con facilidad, ya que existen numerosas fábricas que lo producen y lo distribuyen ampliamente. Por lo general, los otros componentes se hallan cerca del lugar de construcción.

El hormigón se prepara casi siempre en el mismo lugar de la obra. Después de mezclado, con una sustancia plástica a la que es posible darle con facilidad la forma que se desea. Sin embargo, después de fraguado adquiere una consistencia dura y resistente, por lo que soporta la acción del fuego y del agua, así como las inclemencias del tiempo y las presiones inertes y continuas.

Es por esto que se emplea mucho en la construcción de edificios, carreteras, pistas de aeropuertos, puentes, redes de alcantarillado y otras obras en las que los factores duración y resistencia son primordiales. Se usa también en la fabricación de partes prevaciadas, tales como bloques de construcción, y conductos para agua y desagüe. Se puede decir que el empleo del hormigón no tiene límites. Como quiera que se endurece al contacto con el agua, se utiliza en la construcción de muelles y espigones. Aun se emplea para hacer barcos durante contiendas bélicas prolongadas, cuando por lo general existe gran escasez de acero y mano de obra especializada. Los componentes del hormigón (cemento, arena, cascajo y agua) deben mezclarse en determinadas proporciones.

Durante la operación de mezcla, se produce una reacción química entre el cemento y el agua formando una pasta que al recubrir las partículas de arena y de cascajo hace que éstas se liguen entre sí y constituyan una masa sólida.

Para obtener una buena mezcla se deben seguir ciertas reglas. La más importante es no emplear mucha agua, puesto que la consistencia del hormigón se debe en gran parte a la fuerza adhesiva de la pasta formada por el cemento y el agua. Si se emplea esta última con exceso, la pasta de cemento resulta acuosa y débil. En cambio, si se ponen las cantidades adecuadas, la pasta liga bien el cascajo y la arena, resultando una masa fuerte y compacta.

El hormigón es muy resistente a la compresión, pero carece de elasticidad. En vista de que ciertas construcciones de hormigón (puentes, edificios, etc.) están sometidas tanto a esfuerzos de compresión como de tracción, se refuerza la masa de hormigón con barras o mallas de acero, para obtener un material de alta resistencia a la compresión y a la tracción. Este recibe el nombre de hormigón armado, y se emplea tanto en la construcción de partes simples como en obras de la magnitud de un rascacielos.

UNA CURIOSIDAD DEL TEMA…

“Hace unos dos mil años, los albañiles emplearon materiales, avanzadísimos entonces, en la enorme cúpula de hormigón que coronaba un nuevo templo de la capital del Lacio. Hoy, el techo del Panteón sigue entero. Se está endureciendo, ya que los compuestos de calcio de la estructura reaccionan gradualmente con el dióxido de carbono para formar caliza y otros minerales cuya resistencia supera la del hormigón.”

Basado en estas apreciaciones, el ingeniero estadounidense Roger H. Jones patentó en 1996 un método que permite acortar, desde miles de años hasta minutos, el proceso de endurecimiento, que podría afectar delgadas paredes o gruesas estructuras empleadas para depositar residuos radiactivos. La lentitud de la fragua del hormigón se debe a que el agua tapa los poros del material por donde entraría el dióxido de carbono.

Jones sometió una mezcla de hormigón y cemento Portland a la acción del dióxido de carbono a alta presión y registró lo que ocurría: el gas expulsaba el agua del material y modificaba su composición química. La resistencia del cemento Portland aumentaba en un 84%.

Otras investigaciones permitieron aplicar este método a otros materiales. Las experiencias demuestran que cuando la presión se eleva a 75 atmósferas y la temperatura a 31 °C, el dióxido de carbono tiene la densidad de un líquido, pero mantiene la compresibilidad de un gas. En este estado llamado supercrítico, el dióxido carece de tensión superficial y puede penetrar los poros y grietas de una sustancia sin encontrar resistencia.

Una aplicación posible sería tratar con dióxido de carbono a presión las cenizas producidas en las centrales de carbón, previa mezcla con silicato de sodio, óxido de calcio y agua. En un principio, la pasta obtenida es un material débil y soluble en agua, pero al hacerla reaccionar con el dióxido de carbono supercrítico se hace resistente, estable e insoluble en agua. Su resistencia es comparable al cemento mezclado con fibra de vidrio: se construyó un pequeño muro con una abertura cuadrada de 30 cm de lado que resistió un peso de 240 kilogramos.

Lo ideal sería instalar una planta de procesamiento de las cenizas cerca de una central térmica: de este modo se evitarían los vertederos de cenizas, se dispondría de electricidad barata para alimentar la planta y se podría aprovechar el calor desperdiciado en la chimenea.

El proceso elimina de la atmósfera un gas, que en exceso se considera contaminante ambiental y que además recicla las cenizas. También se ha demostrado que en el momento de tratar el cemento con el dióxido supercrítico pueden agregarse metales o plásticos y, de esta manera, mejorar la flexibilidad, la durabilidad o capacidad de conducción eléctrica.  Fuente: Investigación y Ciencia, N.° 245

Fuente Consultada:
Lo Se Todo Tomo I
Enciclopedia BARSA Tomo 8
QUÍMICA I Polimodal Alegría-Bosack-Dal Fávero-Franco-Jaul-Ross

Historia de la Siderurgia Minerales de Hierro Obtención del acero

El hierro es el metal dominante en la civilización industrial actual, y su consumo en el mundo crece de un modo exponencial con el transcurso de los años. En efecto: el hierro constituye el 95 por 100 de los minerales que se extraen en la Tierra, y gran parte de otros minerales se extraen para ser aleados con el hierro, como en el caso del cromo y el níquel. El desarrollo y perfeccionamiento de las técnicas siderúrgicas hizo posible la revolución industrial del siglo pasado. El perfeccionamiento en la obtención de aleaciones ha permitido el avance en la técnica espacial.

Si importante es el hierro desde el punto de vista geológico, ya que por su abundancia es el segundo de los metales de la Tierra, todavía lo es más si se atiende al aspecto económico, puesto que constituye, sin lugar a dudas, la base sobre la que se apoya nuestra civilización. El hierro ha ido desplazando a otros materiales, la madera, por ejemplo en ramos tan importantes como el de la edificación.

La cantidad de hierro contenido en la corteza terrestre es verdaderamente extraordinaria: alcanza, en promedio, un valor del 5,05%. A pesar del extraordinario tonelaje que esto representa, no es posible la explotación masiva con los medios técnicos disponibles en la actualidad. Ahora bien, si alguna causa geológica produce una concentración local, aparece un criadero metálico económicamente explotable. Como es natural, la rentabilidad varía a tenor de los progresos técnicos.

El descubrimiento de los metales y la primitiva metalurgia
Es difícil decir cómo, cuándo y dónde fueron descubiertos y utilizados por primera vez los metales. Seguramente su descubrimiento fue casual y, con toda probabilidad, simultáneo en muchos lugares.
Puede asegurarse que el hombre primitivo conocía el hierro meteórico, procedente de los espacios celestes, y el oro nativo, inoxidable por la acción del aire; pero los utilizaba sólo para hacer ornamentos, sin emplearlos en gran escala.

El primer descubrimiento de importancia práctica fue el del cobre, cuyos minerales se distinguían con facilidad por sus coloraciones verdes, azules y rojas, y que debían encontrarse en el suelo en bastante abundancia; hoy en día estos afloramientos han desaparecido debido al lento paso de los siglos.

Trozos de estos minerales, carbonates o sulfuros, puestos en el fuego se “reducían”, es decir, el azufre y el carbono se quemaban, y el metal, que quedaba puro, se fundía recogiéndose en pequeños bloques. Golpeados con piedras, se les podía dar con facilidad las formas apropiadas para los instrumentos necesarios, que resultaban de gran resistencia. Entonces se inició la búsqueda sistemática de estos minerales y la construcción de pequeños hornos, con lo que nació la primera metalurgia, que se convirtió desde su origen en un arte para especialistas.

Sin embargo, el uso del cobre puro se extendió poco debido a que en seguida sobrevino el descubrimiento del bronce, aleación formada aproximadamente por cuatro partes de cobre y una de estaño. Cómo se descubrió el mineral de estaño y su aleación con el cobre es imposible establecerlo. Probablemente fue una unión casual entre ambos metales en el lugar donde debían hallarse afloramientos vecinos. Pero la importancia reside en que, obtenido el primer bronce, el hombre se da cuenta que es mucho más resistente y fácilmente fusible que el cobre puro.

El descubrimiento y uso del hierro llegó mucho más tarde; el mineral del hierro —constituido sólo por óxidos— resiste temperaturas más altas que la necesaria para fundir el cobre. Durante muchos siglos no se obtuvo hierro fundido; aunque la iniciación de la edad del hierro se remonta a unos 1.000 años a. de C., hasta la época moderna no se pudo obtener fundido en forma de fundición, esto es, en unión de cierta cantidad de carbono; solamente a alta temperatura tiene lugar esta “carburación” del hierro, y la fundición se recoge líquida.

El mineral de hierro calentado, se reducía parcialmente y se ablandaba; entonces, forjándolo repetidamente se expulsaba la escoria, se completaba la reducción y quedaba en el hierro una pequeña cantidad de carbono; se obtenía, finalmente, lo que hoy llamamos acero, muchas veces en estado de gran pureza.

Con el proceso de la técnica se introdujeron en la primitiva metalurgia notables perfeccionamientos: del simple horno de pila protegido por piedras se pasó a los hornos verticales, llamados de cuba, en los que el mineral y el carbón de leña, en sustitución de la leña verde, se introducen alternativamente por la parte superior; se utilizó, después, la ventilación forzada mediante fuelles de piel accionados a mano; del bajo horno empleado hasta 1800, llamado “horno a la catalana”, se pasó gradualmente a los tipos que fueron los precursores de los actuales altos hornos.

La carburación del hierro, que se transforma en fundición, se verifica a temperaturas de 1600-1700° C; para que el horno pudiera alcanzarlas fue necesario aumentar sus dimensiones e introducir la “ventilación por agua”, en la que el paso de agua a gran velocidad dentro de un tubo vertical produce una fuerte corriente de aire. Carburado ya, se obtiene el hierro colado. Al principio se consideró la fundición como un producto de desecho, utilizable sólo para recipientes y tubos, pues es frágil y tiene menos resistencia que el acero; sin embargo, posteriormente se aprendió a eliminarle el exceso de carbono, convirtiéndola en acero.

Con todo, estamos solamente en el siglo XIX, en vísperas de la gran transformación industrial. También las técnicas de la fundición del bronce se remontan a la antigüedad y fueron rápidamente perfeccionadas, como lo demuestran los objetos prehistóricos y las admirables obras de arte de la edad clásica.

En la antigüedad clásica se conocía el plomo, fácil de fundir, con el cual se construían planchas para revestimientos y tubos; el cinc, sin embargo, no se conoció hasta el Renacimiento, ya que si no se toman precauciones especiales pasa directamente al estado de vapor; si después se enfría, se deposita en forma de diminutos cristales.

Este fenómeno recibe el nombre de “sublimación”, totalmente incomprensible para la mentalidad del hombre antiguo. El mercurio fue descubierto en estado nativo en pequeñas cantidades sin que fuera empleado; se conocía, sin embargo, su sulfuro, llamado cinabrio, usado como colorante y cosmético. En la Edad Media fue estudiado por los alquimistas, quienes descubrieron la amalgama que forma con los otros metales y sugirieron su empleo para la fabricación de espejos y productos farmacéuticos.

La metalurgia moderna
La época moderna, y en especial el siglo XIX, trajo el descubrimiento de numerosos metales que enriquecieron el escaso patrimonio de los antiguos y pasaron con rapidez, del estudio en el laboratorio químico, a las aplicaciones técnicas en las fábricas.

Bastará señalar el manganeso, níquel, cobalto y wolframio (conocido también con el nombre de tungsteno) que, unidos en porcentajes relativamente pequeños al acero, le confieren gran resistencia; se obtienen así los aceros especiales, entre los que se pueden destacar el acero al manganeso, al níquel, al cromo-níquel, el acero de corte rápido que contiene wolframio, así llamado porque con él se construyen herramientas para la elaboración en frío de los aceros corrientes, debido a que no pierde su dureza aunque se caliente al rojo; por este motivo puede girar rápidamente sobre otro acero sin que, al calentarse, se alteren sus propiedades.

Vemos, pues, que gracias al profundo estudio científico de la metalurgia, se está en condiciones de producir una vastísima gama de aceros con propiedades especiales y aptos para las más diversas aplicaciones.

Se suele decir que la edad del hierro prosigue aún hoy en día, pero ¡qué perfección en los materiales presenta respecto a las simples industrias de hace 200 e incluso 100 años!

El hierro —se le da este nombre, pero en realidad debiera decirse la fundición y el acero— domina todavía la técnica moderna en las construcción Bessemer-Thomas o, simplemente, Thomas. El horno Martín-Siemens es de reverbero, constituido por una cámara rectangular cerrada, de piso horizontal y cubierta por una bóveda baja.

La cámara está dividida en dos compartimentos por un tabique bajo, llamado altar; en un lado arde el combustible, y en el otro el material a tratar, que es hierro muy dulce (en general, trozos) y mineral en proporciones adecuadas.

Este se calienta tanto por los humos del combustible como por el calor que refleja la bóveda. A este tipo de horno, ideado por el francés Martín, el alemán Siemens le añadió un dispositivo para recuperar parte del calor que se escapa con los productos de la combustión. De aquí su nombre.

El acero puede obtenerse también mediante el horno eléctrico de arco o de inducción. Los aceros especiales se obtienen al crisol, es decir, en vasos cerrados de material refractario, a fin de preservar a los componentes de las impurezas que contienen los humos del horno.

La producción siderúrgica en el mundo
Desde la fundición, en todas sus variedades, hasta los aceros especiales ya mencionados (al cromo, al níquel, al manganeso, al cromo-níquel, al cromo-vanadio, al wolframio, etc.), la gama de los productos de la industria del hierro, llamada siderurgia, es extensísima y representa la base del sistema productivo de todos los países, constituyendo la denominada industria pesada.

Sin ésta no serían posibles las construcciones de maquinaria en general, ni las ferroviarias, automovilísticas, navales, aéreas y agrícolas. La siderurgia puede tomarse, por consiguiente, como un índice del potencial industrial de una nación. La cantidad de fundición y acero producidos anualmente alcanza cifras del orden de millones de toneladas. La mayor potencia siderúrgica son los EE.UU., seguidos por la Unión Soviética y, con menor producción, por Japón, República Federal de Alemania, Inglaterra y Francia.

La edad del hierro, iniciada hace cerca de 3.000 años, continúa, pues, en nuestros días. A pesar del descubrimiento de otros muchos metales, esté sigue siendo fundamental, pues ningún otro ha podido mejorar su resistencia y demás propiedades mecánicas; y algunos, que quizá las igualarían, son raros, y su producción industrial difícil y antieconómica.

El único que ha mantenido su importancia junto al hierro, en el transcurso del último siglo, es el aluminio. Este es el metal más abundante en la corteza terrestre (casi el doble que el hierro) y conduce el calor y la electricidad mejor que aquél. Su escasa densidad y la facilidad para producir aleaciones ligeras le hacen insustituible en la fabricación de las estructuras y revestimientos de los modernos aparatos de aviación así como en muchas otras industrias de todo tipo.

Sin embargo, los campos de aplicación del hierro y del aluminio están perfectamente delimitados, aunque ambos metales se emplean provechosamente unidos en producciones de todo género que abarcan una extensa gama, que comprende desde la industria pesada antes mencionada a los pequeños objetos de uso cotidiano.

alto horno

Imagen Alto Horno

Un alto horno, un horno de fundición, trabaja constantemente. El trabajo puede disminuir y aun cesar en otros departamentos de una fábrica de acero, pero el horno de fundición funciona sin interrupción alguna día y noche para producir los lingotes de hierro.

LOS MINERALES DE HIERRO…

Los minerales de hierro importantes son: magnetita, oligisto, limonita y siderita, los cuales pueden hallarse en muy diversos tipos de yacimientos. Cuando una masa de materiales fundidos —un magma— cristaliza, no todos sus componentes lo hacen simultáneamente, y se produce la concentración de determinados compuestos. Así, se han originado los yacimientos magmáticos.

La diferenciación puede haber ocurrido en el sitio donde se encuentra el mineral, o haber sobrevenido una inyección de él, como ocurre en el depósito de magnetita de Kiruna (Suecia), que es el mayor del mundo. En él, la gran masa de magnetita aflora a lo largo de 2.800 m con una anchura de 145 m. Se halla dentro del círculo polar ártico, en la Laponia sueca, y se le atribuye una longitud real de 160 kilómetros.

En otros casos, si bien el agente causante de la mineralización continúa siendo una masa de materiales fundidos, no es ella la única que colabora en la formación del yacimiento. En efecto, durante el proceso de consolidación se desprenden emanaciones gaseosas a elevada temperatura, las cuales, al actuar sobre las rocas próximas, producen reacciones que engendran la mineralización. De esta forma se originaron los yacimientos metasomáticos, como los de Cornwall e Iron Springs (Estados Unidos). En Cornwall (Pengilvania) la magnetita se halla en contacto con una diabasa que, durante el triásicó, cortó rocas sedimentarias del cámbrico.

También se encuentran yacimientos de mineral de hierro formados por transformación de otros minerales existentes (yacimientos por reemplazamiento). Los más característicos son los de Lyon Mountain (Nueva York), donde masas muy ricas en magnetita forman reemplazamientos en un gneiss granítico. La masa mayor tiene de longitud más de 1.500 metros y 6 de anchura. Dentro del mineral existen cavidades miarolíticas lo suficientemente grandes para que quepa en ellas un hombre. En Iron Mountain (Montana) se explota, a su vez, una masa de reemplazamiento de considerable tamaño, formada por hematites y magnetita.

Los yacimientos de hierro sedimentario representan la mayor parte de la producción y de los recursos identificables del mundo. Casi todas las menas proceden de sedimentación química, y el período de la historia de la Tierra durante el cual se depositaron los mayores sedimentos ricos en hierro datan de entre los 3,2 y los 1,7 mil millones de años de antigüedad. Estos sedimentos forman en el Lago Superior (Estados Unidos) bandeados muy finos, que consisten en una alternancia de mineral de hierro y sílice.

Los yacimientos residuales se forman donde hay meteorización y el hierro ferroso presente en una roca es oxidado hasta la forma férrica relativamente insoluble. Muchos constituyentes inútiles son arrastrados y permanece insoluble el hierro, que, poco a poco, es concentrado. El conocido yacimiento de Vizcaya aparece instalado en una capa de calizas cretácicas, en parte de las cuales el carbonato cálcico fue reemplazado por siderita; además, en la parte superior, la meteorización originó una concentración residual de oligisto y limonita.

magnetita Oligisto
Magnetita Oligisto
Limonita sidorita
Limonita Sidorita

AMPLIACIÓN: DEL HIERRO AL ACERO
El hierro obtenido en los altos hornos es una materia prima, no un producto acabado. Para ser útil tiene que ser convertido en hierro colado o en acero. El hierro colado se produce mediante la refundición de lingotes de hierro (hierro fundido en moldes y enfriado), ajustando cuidadosamente las proporciones de carbono, silicio y demás elementos que entran en la aleación.

Fuerte y resistente al desgaste, el hierro colado puede ser trabajado y es fácilmente moldeable en formas bastante complejas. Los moldes en los que se funde el hierro son cajas llenas de arena. La forma se graba en la arena y se vierte sobre ella la colada. Cuando la pieza de hierro ha solidificado, se saca y la arena se reutiliza para un nuevo molde.

La mayor parte del hierro tratado en los altos hornos se convierte en acero, reduciendo considerablemente su contenido de carbono. En 1857 el ingeniero inglés Henry Bessemer (1813-1898) descubrió una forma muy económica de eliminar el carbono del hierro fundido.

En el procedimiento Bessemer, se inyecta aire combinado con algo de carbono a través del hierro fundido, eliminando el monóxido de carbono y el dióxido de carbono. También se oxida parte del hierro, que entonces se combina con el silicio y el manganeso para formar la escoria. En tan sólo 15 minutos se convierten en acero varios centenares de toneladas de hierro. El convertidor entero gira sobre un eje, como una hormigonera, para verter el acero fundido.

En la década de 1860, un grupo de ingenieros inventó un proceso mucho más lento y más controlable: el procedimiento de horno de solera. En este procedimiento se utiliza gas de carbón de baja concentración para calentar hierro fundido en un horno poco profundo. Los cambios químicos son los mismos que en el convertidor Bessemer, pero el procedimiento tiene la ventaja de que se puede añadir chatarra de hierro a la mezcla. Con este método se tarda unas doce horas en producir acero, lo que permite un control muy exacto de la composición final.
Actualmente, tanto el procedimiento Bessemer como el procedimiento de solera han sido sustituidos en la mayor parte de los países por un proceso que combina las ventajas de los dos.

En el procedimiento LD (abreviatura de Linz-Donawitz), se insufla un chorro de oxígeno casi puro a través de una lanza sobre la superficie del hierro fundido. El proceso es rápido y puede absorber hasta un 20% de chatarra, a la vez que produce un acero de muy alta calidad. La adición de cal al oxígeno permite convertir en acero hierro con un mayor contenido en fósforo; este último procedimiento se denomina horno básico de oxígeno.

Para los aceros más caros, incluidas las aleaciones y los aceros inoxidables, se utilizan hornos de arco eléctrico (ver fotografía). El calor lo proporcionan tres electrodos de carbono introducidos en una mezcla de chatarra con los elementos» de adición propios de cada aleación. El silicio si manganeso y el fósforo se eliminan e! carbono se elimina al añadir de hierro, que reacciona exactamente igual que en un alto horno. El hecho de que los hornos de arco eléctrico puedan fundir cargas constituidas en su totalidad por chatarra es una gran ventaja en los países desarrollados, donde el acero reciclado representa una gran proporción de la producción total.

Tipos de acero
El acero se vende en forma de planchas fundidas, enrollado en láminas, en tiras, en barras (para clavos, tornillos y alambre) o en vigas (para edificios, puentes y otras utilizaciones propias de la construcción). Las características del acero se pueden modificar con ciertos procedimientos, como el tratamiento por calor y las aleaciones, a fin de que resulte adecuado para usos específicos. El factor más importante en cualquier acero es el contenido de carbono.

Los aceros con alto contenido de carbono son más duros y fuertes, pero también más quebradizos y no se pueden soldar. Para que la soldabilidad sea adecuada, el contenido de carbono debe ser inferior al 0,2%. Las características precisas de cualquier tipo de acero dependen también del tratamiento por calor, que determina su micro-estructura.

El acero puede endurecerse calentándolo al rojo vivo —en torno a los 850°C— y apagándolo entonces con agua, pero también en ese caso resulta quebradizo. Es posible conservar la dureza en gran parte y reducir la fragilidad mediante una segunda cocción a temperatura más baja —unos 250°C—, seguida del enfriamiento del acero a temperatura ambiente. Este acero recibe el nombre de acero templado.

La aleación del acero con otros elementos, además del carbono, también es importante. El acero que contiene un 3% de níquel, por ejemplo, es extraordinariamente duro y se utiliza para ruedas dentadas y ejes que deben soportar grandes esfuerzos. Los aceros que contienen hasta un 13% de manganeso tienen bordes muy duros, y se emplean para hacer determinadas maquinarias como las excavadoras y taladradoras.

El molibdeno se alea con algunos aceros para reducir su fragilidad. Los aceros inoxidables, que contienen en torno a un 14% de cromo y a veces también níquel, no se oxidan debido a la formación en su superficie de una capa impermeable de óxido. En la actualidad, estos aceros son muy empleados para la realización de cuberterías y fregaderos de cocina, así como para el revestimiento de edificios.

hierro moldeado

El acero fundido (izquierda) es moldeado en formas básicas y estandarizadas, como barras y planchas, antes de ser laminado o convertido en productos para la venta. En el pasado, todo metal fundido pasaba siempre por una etapa intermedia de lingotes antes de ser recalentado y laminado. Sin embargo, el desarrollo del sistema de fundición continuo ha permitido verter directamente el metal fundido en una máquina especial para producir barras o planchas.

chatarra autos

La disponibilidad de chatarra reciclable es un factor importante a la hora de determinar el proceso más adecuado para la fabricación de acero, in una economía desarrollada típica, la chatarra disponible es tanta que cualquier objeto nuevo fabricado con acero puede estar constituido por chatarra reciclada hasta en un 50%: los automóviles nuevos llevan otros viejos en su interior. En las economías en desarrollo, donde hay menos acero viejo, se usa una proporción mucho menor de chatarra. No toda la chatarra procede de productos que han llegado al final de su existencia. En las propias fábricas de acero se el material que no alcanza el nivel requerido. Por otra parte, los recortes de la industria vuelven a las acerías para su reprocesamiento.

Petróleo               Carbón              Gas natural

Fuente Consultada:
Natura Las Reservas Económicas Naturales
Biblioteca Temática UTEHA – El Mundo Que Nos Rodea

Las reservas de energia en paises de America Petroleo, Gas Natural y Carbon

En 2005 los países del hemisferio occidental produjeron 25% del petróleo mundial y consumieron 36%. Los tres países de América del Norte (Estados Unidos, Canadá y México) produjeron aproximadamente el doble de petróleo que los demás países americanos y consumieron alrededor de cinco veces más del mismo que el resto del hemisferio combinado.

En gas natural, la producción y el consumo en el hemisferio occidental en 2005 fueron más o menos iguales: 32% en el primer caso y 33% en el segundo. En este renglón la producción y el consumo en el resto del hemisferio fueron de entre 16 y 17% de los de América del Norte. La mayor parte del gas natural del hemisferio se mueve por gasoducto, y por consiguiente poco se puede importar de países de otros ámbitos. Si, como se espera, aumenta el comercio de gas natural licuado (GNL), este se volverá una mercancía global que podría importarse de fuera del hemisferio.

reservas de petroleo en el mundo

La cooperación energética es extensiva entre los tres países norteamericanos. Expertos de cada país se reúnen con periodicidad bajo la égida del North Americai Energy Working Group (Grupo de Trabajo de Energía de América del Norte) para evaluar sus perspectivas y necesidades individuales y colectivas. Canadá es el mayor ex portador de petróleo, gas natural y electricidad a Estados Unidos.

En años recientes México ha llegado al segundo lugar en la exportación de petróleo a su vecino del norte sin embargo, es importador de gas natural su red eléctrica está mucho menos integra da a la estadounidense que la de Canadá. La mayoría de las exportaciones canadienses de petróleo provienen hoy día de las arenas bituminosas del país, y existe confianza en que los suministros futuros provengan de ese vasto recurso.

Por el contrario, las reservas probadas de petróleo de México, dados los niveles actuales de producción, durarán sólo unos 10 años, y la exploración y nueva producción están limitadas por la falta de fondos en Pemex y el veto constitucional a la participación privada en proyectos de petróleo y en la mayoría de los de gas.

En contraste con América del Norte, la cooperación energética es limitada entre países del resto del hemisferio, sobre todo por animosidades políticas; el caso más notable es entre Bolivia y Chile, que data de la época en que Bolivia perdió acceso al mar tras ser derrotada en la Guerra del Pacífico, hace unos 125 años. La incapacidad de generar cooperación sostenida en temas energéticos en América latina refleja añejos fracasos en generar acuerdos duraderos en materia de comercio e integración económica.

Otra diferencia entre América del Norte y el resto del hemisferio es que ni Estados Unidos ni Canadá tienen una compañía petrolera nacional, en tanto que estas son ubicuas en otras partes. Estas empresas de ningún modo son iguales: Pemex y Petrobras (la firma brasileña) tienen estructuras diferentes y Petrobras tiene muchos proyectos conjuntos con compañías independientes y con otras paraestatales; Pemex no. La firma estatal venezolana, Petróleos de Venezuela SA. (PDVSA), opera hoy en forma muy diferente de como lo hacía antes de que Hugo Chávez llegara a la presidencia del país.

La situación energética en cada nación del hemisferio es única. Algunas recurren mucho a la energía hidroeléctrica para generar electricidad, otras al carbón, y otras al petróleo y el gas natural. La energía nuclear no se ha desarrollado mucho en el hemisferio. El etanol desempeña un papel más importante como combustible para el transporte en Brasil que en cualquier otro país de la zona.

ESTADOS UNIDOS. La producción petrolera fue de 6,8 millones de barriles diarios en 2005, más que en cualquier otro país del hemisferio, pero el consumo fue de 20,6 millones; la diferencia se cubrió con importaciones de 13,5 millones de barriles diarios (incluyendo derivados) El consumo representó 25% del total mundial. Alrededor de la mitad de las importaciones de petróleo y derivados procede ahora de países del hemisferio occidental.

La producción de gas natural en 2005 fue de 525.700 millones de metros cúbicos y el consumo fue de 633.500 millones, más que cualquier otro país. El consumo estadounidense de gas natural en 2005 representó 23% del total mundial. Cerca de 85% de las importaciones de gas de ese año provino de Canadá. Las importaciones de GNL fueron de casi 15% de todo lo que se entrega por oleoducto, y 75% procede de Trinidad y Tobago. El Grupo de Trabajo de Energía de América del Norte ha concluido que Estados Unidos, y América del Norte en su conjunto, tendrán que depender en el futuro más que hoy día de las importaciones de GNL.

La posición dominante de Estados Unidos en petróleo y gas lo convierte en el foco del análisis energético hemisférico, al tiempo que su creciente dependencia de las importaciones de petróleo y derivados se ha vuelto fuente de cada vez mayor preocupación interna. Esta inquietud se traduce en el discurso político nacional como la necesidad de lograr “independencia” energética, lo cual no es factible en el futuro previsible y tal vez no lo sea nunca, a menos que se produzcan importantes innovaciones tecnológicas. Esta independencia tampoco es factible en el hemisferio en las circunstancias actuales. Estados Unidos genera alrededor del 50% de su electricidad a partir del carbón, lo cual crea considerables gases de invernadero, en particular dióxido de carbono. Otro 20% de la electricidad del país es generado por energía nuclear.

La mayoría de las importaciones petroleras se utiliza en el transporte, y ello explica el actual énfasis en la producción de biocombustibles, en especial etanol, para suplir la gasolina.

 CANADÁ. Las reservas probadas de petróleo de Canadá ascienden a 179.000 millones de barriles, las segundas en volumen detrás de las de Arabia Saudita, pero con una salvedad: el grueso de sus reservas es de petróleo no convencional, que puede extraerse de las arenas bituminosas de la Cuenca Sedimentaria del Oeste de Canadá (CSOC). Esta producción es de aproximadamente un millón de barriles diarios y se proyecta que se elevará a 3,5 millones hacia 2025. Este recurso hace de Canadá el proveedor más importante para Estados Unidos y también el más seguro en el hemisferio, y tal vez en el mundo a causa de la amistad y cooperación sustanciales entre ambos países. Más de 99% de las exportaciones de petróleo crudo de Canadá se envía a su vecino del sur.

La producción de las arenas bituminosas se logra con un alto costo ambiental, pues se contaminan enormes volúmenes de agua en los que se realiza la extracción de bitumen, además de que se liberan grandes cantidades de gases de invernadero. El país tiene 1,59 billones de metros cúbicos de reservas probadas de gas (56 billones de pies cúbicos), concentrados en la cuenca.

MÉXICO. Las reservas probadas de petróleo de México son de unos 14.000 millones de barriles, la mayoría crudos pesados ubicados frente a la costa del Golfo de Campeche, en el sudeste. Cantarell, el yacimiento que ocupa el segundo lugar del mundo en términos de producción, aportó 63% de la producción mexicana en 2004, pero ha ido declinando en más de 20% entre enero de 2006 y principios de 2007; a principios de 2007 produjo 1,6 millones de barriles diarios en comparación con 2 millones en 2005. Se hace un gran esfuerzo por moderar el descenso mediante la inyección de grandes cantidades de nitrógeno en el campo y perforando horizontalmente para extraer petróleo de una superficie mayor.

México produjo un promedio de 3,8 millones de barriles diarios de petróleo en 2005, pero a esta tasa de producción, combinada con el descenso en Cantarell, las reservas probadas durarán quizá 12 años —a menos que se den nuevos hallazgos—, de las cuales se han encontrado algunas de poca importancia en años recientes. El gobierno impone un fuerte gravamen a los ingresos brutos de Pemex para financiar alrededor de 35% del presupuesto federal. Esto ha sido necesario porque otras recaudaciones fiscales ascienden a sólo 11% del PIB, en un presupuesto equivalente a un 18% de este. A causa de esta alta carga fiscal, Pemex ha operado con pérdida neta en años recientes; tuvo una modesta ganancia en 2006 a causa de los altos precios del petróleo. Es incapaz de financiar exploraciones en aguas profundas del Golfo de México, donde hay elevadas perspectivas de nuevos descubrimientos; debido a esta escasez de fondos, carece de experiencia en perforación en aguas profundas, en contraste con Petrobras, que tiene gran experiencia en esa actividad.

La Constitución mexicana confiere a Pemex un monopolio sobre la exploración y la producción de petróleo y no permite el financiamiento accionario privado en estas actividades.

Las reservas probadas de gas natural del país son de 0,41 billones de metros cúbicos y si bien la producción de 2005 fue significativa, de 39.500 millones de metros cúbicos, México debe importar gas natural para hacer frente al creciente consumo. Pemex es el mayor consumidor de gas natural del país.

VENEZUELA. Las reservas probadas de petróleo de Venezuela a finales de 2005 eran de 79.700 millones de barriles, las mayores del hemisferio. Serían más altas (hasta 270.000 millones más) si el país lograra contar con el bitumen recuperable de la faja petrolera del Orinoco en la misma forma en que Canadá incluye su petróleo no convencional de sus arenas bituminosas. Sin embargo, Venezuela no ha llegado tan lejos como Canadá en la explotación de este recurso, aunque sin duda esos vastos depósitos serán importantes en el futuro. La producción petrolera es de 3,1 millones de barriles diarios (cifra de PDVSA) en 2005. Ese año Venezuela suministró 1,3 millones de barriles diarios a Estados Unidos, con lo cual ocupó el cuarto lugar en importancia entre los proveedores de ese país (detrás de Canadá, México y Arabia Saudita). Pese a la fricción política entre ambas naciones, cerca de 70% de las exportaciones petroleras venezolanas se destina a Estados Unidos. Hay dos razones para ello: la capacidad de las refinerías estadounidenses de manejar el petróleo crudo pesado venezolano, y el costo relativamente bajo de envío, lo cual es evidente en comparación con lo que se remite a China.

Los altos precios mundiales del petróleo ofrecen ingresos sustanciales a Hugo Chávez, el presidente de Venezuela, para ocupar un papel preponderante en América latina y en la escena mundial. Venezuela ofrece precios reducidos a países del Caribe, entre ellos Cuba, y ha adquirido bonos para ayudar a Ecuador y Argentina.

Ha propuesto la construcción de un megaducto para enviar gas natural a Argentina, vía Brasil, a un costo que probablemente rebasaría los 25.000 millones de dólares; el futuro de esta propuesta es incierto, por razones económicas, y también porque Venezuela no produce gas suficiente para enviarlo por tal conducto. Sus reservas probadas de gas son altas, de 4,32 billones de metros cúbicos, pero la producción en 2005 fue relativamente modesta, de 28.900 millones. En 2006 tomó medidas para obtener la propiedad mayoritaria de seis proyectos en la cuenca del Orinoco que antes pertenecían en su mayor parte a seis firmas privadas.

BRASIL. A finales de 2005, Brasil contaba con 11.800 millones de reservas probadas de petróleo. La producción y el consumo en ese año fueron más o menos iguales: la producción fue de 1,7 millones de barriles diarios, y el consumo, 1,8 millones. Sólo en años recientes dejó de ser importador de petróleo, en parte por el aumento de producción y en parte por el uso extendido del etanol como combustible para motores de automóviles.

Hoy día el etanol puede suministrar 40% del combustible para autos en el país. La mayoría de los vehículos son de consumo flexible, capaces de funcionar con cualquier mezcla de gasolina y etanol; la mezcla actual contiene 23% de etanol, el cual en el país sudamericano se elabora a partir de la caña de azúcar. El gobierno estadounidense subsidia directamente la producción de etanol, lo cual ocurrió también en Brasil durante muchos años, pero ya no. Estados Unidos cobra un derecho de 54% por galón <3.785 litros) más 2,5% de impuesto de importación ad valorem al etanol brasileño, pese a que Brasil es su proveedor más importante de este combustible. Brasil también realiza investigación en biodiésel fabricado a partir de semillas oleaginosas que se pueden encontrar en la parte nordeste del país, rezagada económicamente. A finales de 2005 Brasil tenía 0,31 billones de metros cúbicos de reservas probadas de gas. Su producción para ese año fue de 11.400 millones de metros cúbicos, y su consumo, de 20.200 millones.

La diferencia fue cubierta en gran parte con importaciones de Bolivia, la cual nacionalizó en 2006 las productoras extranjeras de gas, incluidas las instalaciones propiedad de Petrobras, y también elevó los precios del gas natural. Ha habido hallazgos recientes de depósitos aparentemente grandes de gas en las sondas de Campos, Santos y Espíritu Santo. La perforación en la sonda de Santos fue profunda, hasta de 3.500 metros. La capacidad de Petrobras de emprender perforaciones en aguas profundas merece subrayarse porque es precisamente una habilidad que Pemex no ha desarrollado. Brasil prevé contar con la infraestructura completa para llevar el gas de la sonda de Santos al estado de San Pablo en unos cinco años, y reducir la necesidad de importaciones de Bolivia. Además construye dos plantas para la regasificación de GNL Petrobras es una paraestatal emisora de acciones que se venden en las bolsas de valores, pero el gobierno posee la mayoría de acciones ordinarias. A diferencia de Pemex, Petrobras debe satisfacer tanto a accionistas privados como al gobierno de Brasil.

Aproximadamente 80% de la electricidad del país se produce con energía hidroeléctrica, lo cual necesita el respaldo de plantas generadoras termoeléctricas que requieren importaciones de gas natural y diésel durante los períodos de secas.

 ARGENTINA. Las reservas probadas de petróleo de Argentina ascienden a 2.300 millones de barriles (finales de 2005). La producción fue modesta en 2005, 725.000 barriles diarios, y el consumo fue de 421.000 barriles diarios. Las reservas de gas natural a finales de 2005 fueron de 0,50 billones de metros cúbicos. La producción de ese año fue de 45.600 millones de metros cúbicos, y el consumo, de 40.600 millones, más o menos suficiente para el uso interno pero poco para exportar. De hecho, en 2004 Argentina canceló un contrato para enviar gas natural a Chile, aunque siguió remitiendo un poco durante más o menos un año. El gas natural dio energía a cerca del 55% de la producción eléctrica del país y petróleo para 30% en 2005. En 1997 Argentina ocupó el tercer lugar entre los mayores usuarios de gas natural en el mundo, detrás de Estados Unidos y Rusia. Ha cerrado un contrato para importar grandes cantidades de gas de Bolivia una vez que la infraestructura de esta se haya instalado.

La estatal argentina, Yacimientos Petrolíferos Fiscales (YPF), fue privatizada en 1993, durante la presidencia de Carlos Menem; la nueva empresa se llama hoy Repsol-YPF. En 2004 se fundó una nueva paraestatal, Energía Argentina S.A. (Enarsa), sin capital pero con la autoridad para vender nuevos contratos de concesión costera a empresas privadas de petróleo y gas y colaborar en proyectos conjuntos.

BOLIVIA. La importancia de Bolivia en el campo energético se deriva de sus hallazgos relativamente recientes de gas natural. Las reservas probadas de gas a finales de 2005 ascendían a 0,74 billones de metros cúbicos, segundas en volumen en América del Sur, después de las de Venezuela. La producción en ese año fue de 10.400 millones y casi toda se destinó a la exportación. La mayor parte de los descubrimientos ocurrió en la década de 1990, durante el gobierno del presidente Gonzalo Sánchez de Lozada, y fueron seguidos por contratos extranjeros con la paraestatal boliviana, Yacimientos Pe trolíferos Fiscales Bolivianos (YPFB), y la instalación de gasoductos para exportación, en especial Gasbol, que va de Río Grande, al sur de Santa Cruz, en Bolivia, a San Pablo y Porto Alegre, en Brasil, país que ha desempeñado un papel importante para Bolivia al generar 18% de su PIB en 2005.

A partir de 2000, el nacionalismo político creció y se enfocó abiertamente en el papel del gas natural, pero sobre todo en la división de la energía nacional. Hubo manifestaciones callejeras bajo el lema “No al gas”, y dos presidentes, Sánchez de Lozada y luego su vicepresidente y sucesor, Carlos Mesa, fueron obligados a renunciar. Evo Morales fue elegido presidente en diciembre de 2005 y en mayo del año siguiente se nacionalizaron las compañías energéticas extranjeras. En 2007 Brasil accedió a pagar precios más altos por el gas boliviano, y también decidió acelerar la construcción de infraestructura para transportar gas natural de la son-da de Santos a San Pablo y dos instalaciones para regasificar GNL.

Aquí es apropiada una mención a Chile porque demuestra los problemas de la cooperación en asuntos energéticos en América del Sur. Antes de la elección de Morales, una evaluación realizada por empresas extranjeras del ramo proponía llevar gas boliviano a un puerto chileno en el que se transformaría en GNL para envío a las costas occidentales de México y Estados Unidos. La propuesta se rechazó porque el puerto estaba en Chile. Bolivia no vende gas natural a Chile y advierte a otras naciones de no reenviar gas boliviano a ese país. Argentina, como se dijo antes, rescindió un contrato para enviar gas natural a Chile. Perú, como se indicará más adelante, tiene la mayor parte de su gas comprometido para uso interno y para embarques de GNL a México y Estados Unidos. Chile está rodeado de países con gas natural, pero ahora construye una instalación de regasificación para comprar GNL de Asia.

PERÚ. El énfasis actual en Perú está puesto en el gas natural más que en el petróleo. A finales de 2005, el país contaba con 1.100 millones de barriles de reservas probadas de petróleo. La producción en 2005 fue de 111.000 barriles diarios, y el consumo, de 139.000. Las reservas probadas de gas natural a finales de ese año eran de 0,55 billones de metros cúbicos, pero la producción en Camisea, el mayor hallazgo gasífero del país, está apenas en preparación. La expectativa es que Perú será exportador de hidrocarburos en 2007. Su tasa de éxito es de 75% en recientes exploraciones de gas, así que las perspectivas futuras son prometedoras.

Camisea se ubica en la delicada zona selvática del país y ha habido considerable presión, tanto de organismos internos como foráneos, para imponer estrictos controles ambientales. El Banco Interamericano de Desarrollo también insistió en previsiones sociales que beneficien a la población local y condicionó su apoyo financiero a que se tomen medidas sociales y ambientales, postura que fue reforzada por otras entidades financieras que prestan apoyo, como el Banco Mundial, la Corporación Andina de Fomento y el Banco Nacional de Desarrollo de Brasil. Dichas previsiones consisten en destinar aproximadamente 40% de las regalías e impuestos pagados por los operadores de Camisea directamente a los municipios de la zona del proyecto, lo cual abre nuevos terrenos en los contratos sobre gas natural. El gobierno peruano no tuvo que endeudarse para invertir en Camísea.

La primera prioridad para el uso del gas extraído de Camisea será satisfacer las necesidades internas peruanas. También existe un contrato gubernamental con un consorcio de compañías energéticas extranjeras para producir GNL, que se enviará a las costas occidentales de México y Estados Unidos. El desempeño en dos variables clave 1 —por encima y más allá de la extracción exitosa de gas— será crucial para la percepción futura de Camisea: serán eficaces las salvaguardas ambientales a la luz de algunos fracasos iniciales, y será cierto que los fondos designados se distribuirán directamente entre los municipios cercanos?

ECUADOR. Las reservas probadas de petróleo a finales de 2005 eran de 5.100 millones de barriles, terceras en volumen en América del Sur (detrás de Venezuela y Brasil). La producción en ese año fue de 541.000 barriles diarios, y el consumo, de 148.000. Como puede observarse en estas cifras, el país exporta una gran proporción de su producción. Sus reservas de gas natural son bajas y no es un productor significativo.

Ecuador es un país turbulento en términos políticos. Ha tenido por lo menos siete presidentes en los 10 años pasados (sin contar un triunvirato que duró unas horas y un presidente que fue depuesto después de un día). Un contrato con Occidental Petroleum se anuló en 2006 y todavía no hay un veredicto sobre la compensación que se pagará. ExxonMobil abandonó Ecuador y en 2005 EnCana, gran compañía energética canadiense, vendió sus activos a una empresa china.

COLOMBIA. Las reservas probadas de petróleo del país a finales de 2005 eran de 1.500 millones de barriles. Su producción de ese año fue de 549.000 barriles diarios, y el consumo, de 230.000. Las reservas de gas natural a finales de 2005 eran de 0,11 billones de metros cúbicos; la producción, de 6.800 millones de metros cúbicos, y el consumo, también de 6.800 millones. A finales de 2005 tenía reservas probadas de carbón de 6.600 millones de toneladas cortas.

En la década de 1920 Colombia era exportadora de petróleo; en la de 1970 se volvió importadora, pero ahora puede satisfacer su demanda interna con producción propia y deja un modesto residuo para la exportación. Se encuentra ubicada en una región prometedora en hallazgos petroleros, al lado de Venezuela y Ecuador, pero ha tenido menos éxito que sus vecinos. Existe preocupación de que pueda volver a ser importadora y, en consecuencia, sE otorgan términos favorables a los inversionistas. Alrededor de 80% de sus sondas se dimentarias permanece sin explorar. La paraestatal Empresa Colombiana de Petróleos (Ecopetrol) se fundó en 1951 y tiene buena fama de eficiencia. En 2006 se privatizó 20% de la firma.

Durante mucho tiempo, Colombia ha tenido un problema grave en la explotación de petróleo y gas a causa de la destrucción de ductos por la guerrilla y de la violencia y secuestros dirigidos a menudo contra extranjeros que trabajan en el sector energético.

TRINIDAD Y TOBAGO. Las reservas probadas de petróleo a finales de 2005 eran de 800 millones de barriles. Ese año la producción fue de 171.000 barriles diarios. La mayor sombra que proyecta este país en el hemisferio es por su producción de gas natural y sus exportaciones de GNL A finales de 2005 contaba con reservas probadas de gas de 0,55 billones de metros cúbicos y la producción de ese año ascendió a 29.000 millones. Sus reservas de gas representan menos de 1% de las del planeta, pese a lo cual se ha vuelto un importante proveedor de GNL a Estados Unidos; como se indicó antes, suministra a ese país 75% de sus importaciones de ese energético. Esta situación es muy prometedora para la nación caribeña silos expertos en energía de las tres naciones norteamericanas son precisos, a saber, es probable que las tres tengan que apoyarse en mayores importaciones de GNL en el futuro.

Trinidad y Tobago es un pequeño país con una población de 1,3 millones de habitantes, que ha sacado el mayor partido a sus recursos de petróleo y gas, los cuales generan alrededor de 40% del PIB y 50% del ingreso del gobierno; también han generado industrias internas que consumen energía, como las del amoníaco, el metanol y el aluminio para fundición. Estas actividades han producido considerable daño ambiental, problema que debe atenderse.

CONCLUSIONES. La cooperación en asuntos energéticos es mucho mayor en América del Norte que en América del Sur. Los mejores contrastes son la relación de colaboración entre Canadá y Estados Unidos y la postura antagónica de Bolivia y Chile. Muchos de los problemas irreconciliables con naciones del hemisferio surgen del nacionalismo defensivo, como las turbulentas relaciones de Ecuador con las compañías petroleras foráneas y la negativa de México a permitir la inversión privada en la exploración y producción petroleras. Bolivia estaba dispuesta a enemistarse con Brasil al intervenir por la fuerza en las operaciones de Petrobras para nacionalizarlas. La política energética también sufre por la agitación política en los países, como el derrocamiento de dos presidentes en Bolivia a causa de las ventas de gas natural a extranjeros, y por el desacuerdo en el Congreso en torno a los impuestos a las compañías energéticas foráneas en Ecuador. El presidente de Venezuela declara con regularidad que se propone reducir las ventas de petróleo a Estados Unidos, pero no lo lleva a cabo en la amplitud que proclama porque no existen mercados alternativos que puedan manejar el crudo pesado de su nación. El origen de estas discordancias no es un misterio, pero todas tienen costos económicos para los países involucrados.

Sólo dos de los 11 países analizados no tienen empresas energéticas estatales: Estados Unidos y Canadá. Esas compañías no son iguales en ninguna forma. Petrobras ha desarrollado un historial envidiable, en tanto Pemex ha sido incapaz de actuar como una tipica compañía petrolera porque el gobierno central la priva de los fondos necesarios para la exploración y producción normales. Las otras firmas estatales varían considerablemente; PDVSA se encuentra bajo mayor control político que Ecopetrol en Colombia. Por último, existe a menudo una diferencia patente entre los objetivos de los discursos y las acciones concretas para alcanzarlos. Varios presidentes estadounidenses han proclamado el objetivo de la independencia energética, pero se niegan a elevar las normas de eficiencia de combustible. El presidente Chávez anuncia un proyecto para construir un megaducto de Venezuela a Argentina, y bien puede ser que el objetivo real sea el anuncio en sí, porque nada se ha hecho por llevarlo a cabo. Las autoridades mexicanas están hoy de acuerdo en que deben explorar las prometedoras aguas profundas del Golfo de México, pero hasta ahora no han hecho nada por hacer de ello una realidad. El hemisferio no ha sido más capaz de integrar su política energética y cada uno de esos fracasos acarrea costos considerables.

Director de la cátedra William E. Simon de Economía Política en el Center for Strategic and International Studies.

Fuente Consultada: Revista Veintitrés Internacional Junio 2007.

 

Problemas Ambientales en Argentina Agentes Contaminantes

PROBLEMAS MEDIOAMBIENTALES DE ARGENTINA-AGENTES CONTAMINANTES
AGUA-RESIDUOS-AIRE-SUELOS-DEFORESTACIÓN

La calidad de vida de la población empeora día a día. Muchas son las causas que provocan esta situación pero, en gran medida, es producto del deterioro en que se encuentra el ambiente. Después de la década del 50, comenzaron a estudiarse medidas para detener ese deterioro en los países desarrollados. Hoy, todo el mundo sabe que si no se cuida el ambiente, el futuro de las generaciones venideras estará muy comprometido. Países ricos y pobres padecen los problemas ambientales aunque de diferente forma. Por otro lado, es seguro que las mejores posibilidades de solucionarlos las tienen los primeros. Estos problemas ambientales afectan ciudades, áreas rurales, países, regiones y al planeta en general, en distinta escala.

emision de humo al medio ambiente

PRINCIPALES PROBLEMAS AMBIENTALES DE ARGENTINA Y EL MUNDO

Los principales expertos sobre los problemas medioambientales que afectarán a nuestras vidas. Esta es la conclusión. La escasez de agua, la degradación de la calidad del aire y los suelos, el crecimiento y disposición de los residuos y la producción de energías contaminantes son los problemas ambientales más graves que afectarán a la población en los próximos 10 años. Al menos, ésa es la principal conclusión de un grupo de expertos y representantes de organizaciones dedicadas al estudio y seguimiento de la cuestión ambiental.

Con el cambio climático como telón de fondo, el paisaje ha comenzado a variar y esos nuevos trazos podrían ser irreversibles, aún más, podrían agravarse si no se toman medidas con urgencia.

Un informe del Banco Mundial, reafirma la gravedad de la situación. Las conclusiones cruzan variables políticas, económicas y ambientales e indican que el proceso se ha desatado y la productividad agrícola empezará a caer en América Latina entre un 12 y un 50 por ciento en las próximas décadas. El deterioro de los suelos por sobreexplotación y utilización exagerada de agroquímicos es una de las razones. Aquí, un recorrido por los temas medioambientales que más preocupan.

EL AGUA

El 71 por ciento de la superficie del planeta  está cubierto por agua. Apenas el 2,5 por ciento es agua dulce, pero no toda puede ser consumida porque más del 70 por ciento de esa agua dulce está congelada en los polos. Es decir, que con menos del 1 por ciento del total del agua existente hoy se deben satisfacer las necesidades de 6.600 millones de personas que habitan el planeta. Según cifras de las Naciones Unidas, en la próxima década, unos 2.700 millones de personas vivirán en zonas con escasez de agua.

La diputada nacional y licenciada en economía Fernanda Reyes agrega que a la alarmante y continua degradación del agua, hoy se le suma una distribución inequitativa: hay millones de personas sin acceso a agua segura para sus necesidades elementales. “Se trata de un bien escaso y lamentablemente se lo usa sin control”, y cita el ejemplo de los millones de litros que utiliza la minería a cielo abierto en provincias como Catamarca o San Juan.

“La expansión irracional y sin control de la frontera agrícola, junto con el efecto de la desertificación, están provocando la pérdida o modificación del habitat de miles de personas por la degradación de la biodiversidad con lo que se acentúan los efectos del cambio climático global”, explica Reyes.

Por otro lado, el incremento de la duración de los períodos de sequía y lluvias es una de las consecuencias más perniciosas de los cambios en el clima. Esto representa la mayor preocupación del especialista en meteorología Osvaldo Canziani, quien preside uno de los grupos de trabajo del Panel de Expertos sobre Cambio Climático de Naciones Unidas (IPCC, por sus siglas en inglés). Según menciona se está gestando una especie de revolución por el recurso hídrico, habida cuenta de que se ha duplicado el consumo de agua desde principios del siglo XX hasta 1940, y que se ha multiplicado dos veces más a fines del siglo. Esto está indicando que todos debemos informarnos de qué manera podemos darle una solución posible.

“El agua es un elemento vital que probablemente generará en un futuro no muy lejano negocios de trillones de dólares. Hoy una botella de agua es un elemento muy valioso para países con escasez, aunque cualquiera de nosotros puede despreciarla al abrir la canilla y dejarla correr libremente”, afirma Canziani, quien recibió, junto con sus colegas, el Premio Nobel de la Paz 2007.

LOS RESIDUOS

El mal manejo de los desechos afecta a casi todas las ciudades de Argentina y de Latinoamérica. La mayoría de los grandes ríos y lagos está contaminado por la basura domiciliaria, las cloacas y la actividad industrial o minera. Por lo menos, en la Argentina, hay más de 2.000 basurales a cielo abierto sin ningún tipo de control.

La directora Ejecutiva de la Fundación Ambiente y Recursos Naturales (FARN), María Eugenia Di Paola, explica que la basura —su tratamiento y disposición— será un problema a resolver en la década que viene. Di Paola, quien es experta en derecho de los Recursos Naturales e hizo un máster en derecho Ambiental, expresa que, en primer término, hace falta revertir el modelo de contaminación imperante por uno diferente, que i dé prioridad a la restauración y prevención. “Esto implica trabajar p en la gestión integral de los residuos que incluyen el re-ciclado, revalorización y reutilización de los elementos que consumimos”.

Para la especialista será notable el impacto de las actividades productivas en el agua, el aire y el suelo. “Producir la menor contaminación de estos recursos será fundamental para lograr el equilibrio de los ecosistemas. La clave está en el trabajo que, tanto en el nivel público como privado y ciudadano, pueda hacerse en las cuencas hídricas y atmosféricas. Hay que garantizar que el agua y la riqueza que encierra la tierra puedan perdurar y mantener la calidad porque lo que estará en juego es la salud de la población”.

EL AIRE Y EL SUELO

La superficie cultivada en América Latina se duplicó en los últimos 10 años. La agricultura intensiva y la utilización de productos químicos degradó los suelos hasta dejarlos, en algunas zonas como La Pampa o Santa Fe, inutilizados para cualquier tipo de producción.

Definitivamente, la deforestación indiscriminada cambió el paisaje y, en consecuencia, ha generado variaciones en las condiciones climáticas y ha restado posibilidades para la oxigenación necesaria. Di Paola propone cambiar el paradigma de las actividades productivas. “El sector privado debe adaptarse, integrando en su planificación y forma de trabajo al ambiente y al desarrollo sostenible. En la región, un ejemplo del desafío que se presenta es el de la agricultura sustentable —rotación de los suelos, evitar los fertilizantes químicos, proteger y mejorar la calidad del suelo, el aire y el agua para satisfacer las necesidades actuales y futuras del mundo— frente al avance de la frontera agrícola sin la debida planificación”.

ENERGÍAS CONTAMINANTES

La desaceleración en la utilización de energías contaminantes llevará varios años; los autos y la producción todavía se sostienen con los combustibles fósiles.

Los equipos técnicos de FARN alertan sobre la inminente escasez del petróleo y sus derivados. Señalan como alternativa las energías  renovables y apuntan que hace falta una modificación de la matriz energética mundial.“La dependencia de los combustibles deberá cambiar por dos razones: es un recurso no renovable y uno de los principales productores de dióxido de carbono”, dice Di Paola.

EL CALENTAMIENTO GLOBAL

Canziani señala que la temperatura global seguirá aumentando cada año y a consecuencia de esto, la Argentina sufrirá cada vez más tormentas fuertes, granizadas y el aumento del nivel del mar. “América del Sur contribuye al efecto invernadero del mundo con un cinco por ciento, y la mitad de ese porcentaje es a causa de la deforestación”, explica el científico.

Sergio Jellinek, director de Comunicación del Banco Mundial para América Latina y el Caribe, dice que “los países y ciudadanos de América Latina, en particular los que viven en condiciones de extrema pobreza, son altamente vulnerables a los efectos del cambio climático”, y cita las principales conclusiones del estudio que e] organismo acaba de presentar sobre la materia.

En un escenario sin cambios, es decir sin una acción decidida por partí de los gobiernos, el sector privado y  sociedad civil, los impactos más críticos del cambio climático en Amé rica Latina y el Caribe serían lo siguientes:

* En México, entre 30 por ciento y 85 por ciento de los establecimientos rurales podrían enfrentar la pérdida total de su productividad económica en 2100.

* Los desastres naturales resultantes de fenómenos climáticos (tormentas, sequías e inundaciones) tendrán un costo promedio de 0,6 por ciento del PBI en los países afectados.

* Varios glaciares andinos desaparecerán dentro de los próximos 20 años lo que afectará el suministro de agua de 77 millones de personas en el año 2020.

* El riesgo de dengue, paludismo y otras enfermedades infecciosas aumentaría en algunas zonas.

“Hay que entender que los países industrializados cargan una responsabilidad histórica por las actuales concentraciones de gases de efecto invernadero que causan el cambio climático. Por lo tanto, un compromiso concertado que involucre a América Latina debe estar basado en la idea de que una mejor gestión ambiental debe ir de la mano con el crecimiento económico”, expresa Jellinek.

Los desafíos que la humanidad tiene por delante en esta materia posiblemente sean los más grandes del siglo. Para llegar a buen puerto hace falta un compromiso que involucre no sólo a los Estados, las empresas y las organizaciones de la sociedad civil. Es la hora de la responsabilidad individual. Reconocerlo nos hará bien.

PARA SABER MAS…
¿Dónde están los árboles?: deforestación

La destrucción de los bosques y las selvas, para usar el suelo en otras actividades, lleva al proceso de deforestación. Esto compromete la existencia de las especies vegetales, animales y del suelo mismo; también altera el clima, porque tanto las selvas como los bosques lo regulan. La fotosíntesis que realizan los vegetales interviene en el equilibrio de los gases de la atmósfera: una hectárea de selva consume anualmente casi cuatro toneladas de dióxido de carbono y devuelve dos toneladas de oxígeno.

Con el fin de obtener alimentos, materias primas y energía, o realiza una explotación forestal, el hombre, desde épocas antiguas, fue talando beques y selvas de manera irracional. Originó así uno de los problemas que deben enfrentar en la actualidad los países desarrollados y subdesarrollados. Millones de hectáreas de bosques se deforestan anualmente por tala o quema.

Esto ocurre, sobre todo, en áreas tropicales donde los suelos tiene una cubierta vegetal delgada y las excesivas lluvias no permiten la acumulación de los materiales que le dan fertilidad (son suelos muy débiles, que se pierden fácilmente). Los pueblos agricultores que realizan estas prácticas con el tiempo tienen que abandonar el lugar porque el suelo ya no produce. Es bien sabido que para generar un centímetro de suelo se necesitar cien años.

Pero la deforestación continúa y en cada segundo que pasa desaparecer. del planeta tres mil metros cuadrados de bosques.
La consecuencia más significativa de la deforestación es la pérdida de ‘.i biodiversidad o diversidad biológica, que es el número de especies de plantas, animales y microorganismos existentes en el planeta. Esto pone en peligro el funcionamiento y el equilibrio natural de los ecosistemas. Las áreas de bosques y selvas tropicales encierran la mayor biodiversidad de la Tierra y actualmente corren serio riesgo de desaparecer. Casi cinco millones de kilómetros cuadrados de áreas territoriales o marinas, correspondientes a países desarrollados, se encuentran bajo protección. Pero todavía esos niveles siguen siendo insuficientes. Algunos científicos sostienen que dentro de cien años se perderán alrededor del 50% de las especies existentes en el planeta.

Si queremos conservar nuestros recursos forestales y que resulten renovables, son necesarias políticas de control y manejo basadas en el conocimiento de los ecosistemas. Lamentablemente, en los países subdesarrollados, los estudios forestales son elementales o no existen; y si se dictan leyes sobre el tema, probablemente no se cumplen. Las empresas madereras destruyen los recursos sin tener en cuenta las consecuencias futuras. La tala no respeta el tiempo que necesita una variedad para regenerarse, se desequilibran las comunidades de árboles y, muchas veces, son reemplazadas por otras de poco valor que crecen sobre suelos dañados. Sólo una gestión forestal sostenible, que equilibre objetivos ambientales, económicos y sociales, podrá servir de solución para este problema.

Los suelos se pierden: erosión
Los procesos erosivos se deben a la acción combinada de los agentes naturales (el viento, la lluvia y los cambios de temperatura) sobre la superficie de la Tierra. En muchas oportunidades, estos procesos provocan la pérdida del suelo. En las regiones áridas o semiáridas, es muy común la erosión eólica (producida por el viento), y en las regiones húmedas, la hídrica (ocasionada por el agua). Pero no sólo los agentes naturales son los causantes de la erosión de los suelos; las prácticas agrícolas inadecuadas, el sobrepastoreo, la explotación forestal, la deficiente utilización del agua y la urbanización también alteran o destruyen la cubierta vegetal protectora del suelo y aceleran estos procesos.

La deforestación y la erosión degradan los suelos, sobre todo en la regiones secas, y originan la desertización: transforman los suelos fértiles en desiertos.
También provocan desertización la tala excesiva de árboles para la obtención de leña, como ha ocurrido en la región del Sahel, en África. La salinización de los suelos es otra de las causas de desertización. En este último caso, se trata de un proceso que concentra en la superficie terrestre las sales que quedan por la evaporación del agua producida por las temperaturas elevadas; esto ocurre, por ejemplo, en las regiones áridas de Australia, Estados Unidos, Egipto, Pakistán, Siria e Irak.

La tercera parte del planeta está ocupada por desiertos, y a cada segundo que pasa desaparecen mil toneladas de suelo fértil. Según estimaciones de las Naciones Unidas, para el año 2000 un tercio de las tierras cultivables se habrá transformado en desiertos. Si esto no se detiene, ¿qué ocurrirá con las posibilidades de alimentación de la humanidad?

Para evitar todos estos procesos hay que implementar métodos de conservación de suelos. Algunos de ellos son: el aporte de materia orgánica obtenida de fertilizantes naturales o químicos; el cultivo en contorno, es decir, aprovechando las pendientes del terreno (como lo hacían los incas en los Andes peruanos) o la incorporación de plantas regeneradoras del suelo en la rotación de los cultivos. Estas plantas fijan y protegen el suelo durante la fase de crecimiento, y cuando se las entierra con el arado aportan materia orgánica.

Agricultura sustentable
Las prácticas agrícolas pueden generar la pérdida de fertilidad, la erosión y hasta la destrucción de los suelos, con el consecuente deterioro del medio ambiente.

La población mundial crece día a día y en muchos lugares del planeta el problema de la desnutrición es alarmante. Teniendo en cuenta que la agricultura es la base de la alimentación, es imperioso revertir la forma en que esa actividad se practica. Se trata, entonces, de realizar una agricultura sustentable, integrada, que tenga en cuenta el medio, y permita usar los recursos con más eficiencia.

Una de las formas de hacerlo es mediante la disminución del uso de los fertilizantes químicos, los plaguicidas y los insecticidas. Todos permitieron el aumento de la producción de alimentos, pero su uso desmedido provoca serias alteraciones en los sistemas naturales y en la salud de la población que los consume. Para revertir esta situación, se plantea su uso moderado y la valorización de los procesos naturales: uso de abonos naturales, como el estiércol, y otros que también permiten disminuir los costos, sobre todo en los países menos desarrollados.

La práctica de una agricultura altamente tecnificada le ha permitido a los países desarrollados obtener grandes ganancias, pero ha comprometido la fertilidad de los suelos. Esta situación los ha llevado a desarrollar una agricultura sustentable, más allá de los intereses de las empresas agroquímicas que imponen sus productos en el mercado.

Una agricultura sustentable supone: uso de los productos de desecho y el reciclado de nutrientes; prácticas de conservación de los suelos, del agua y demás recursos, y el conocimiento de las limitaciones que puede imponer el clima o el relieve del lugar.

Esta práctica sólo traerá beneficios reales si se implementa dentro de programas de política ambiental, y con el esfuerzo de las comunidades, los gobiernos y las organizaciones no gubernamentales (ONG).

cuadro de problemas medioambientales

ASPECTOS A RECORDAR PARA COMPRENDER LOS CONJUNTOS AMBIENTALES

1. Acerca de la relación entre la sociedad y la naturaleza La relación entre las sociedades y la naturaleza siempre es desigual, ya que las sociedades tienen diferentes estilos de desarrollo y la base natural del planeta no presenta las mismas condiciones para el desarrollo de actividades económicas a lo largo de todos los continentes.
2. Acerca del tapiz vegetal natural y el implantado: Cada vez es más difícil encontrar conjuntos ambientales que se basen en el tapiz vegetal natural u original. Por ejemplo; en el área de espacios cultivados en clima templado de la Argentina, el tapiz vegetal originario antes de que llegaran los colonizadores europeos era de pasturas, pero la acción humana ha implantado gran cantidad de árboles y cultivos que no eran originarios del lugar.
3. Acerca de los centros urbanos: Los centros urbanos son los ambientes con mayor nivel de modificación o, según algunos autores, de artificialización, de la naturaleza. Allí, no obstante, sigue lloviendo, sigue habiendo cursos de agua superficiales o subterráneos y continúan soplando los vientos.
4. Acerca de los actores sociales: Para entender cómo son y cómo funcionan los ambientes es necesario entender a los diferentes actores sociales que están implicados en su construcción: los empresarios, el Estado, las Organizaciones No Gubernamentales ambientalistas, los trabajadores y la gente en general.
5. Acerca de los Estados fuertes y los Estados débiles: Algunos ambientes son más saludables que otros. Por ejemplo, el ambiente de las grandes urbes latinoamericanas es mucho más nocivo para la salud de la gente que los ambientes de las ciudades centroeuropeas. Esto tiene que ver con el papel que cumplen los Estados en su relación con los demás actores sociales. Los Estados más débiles tienden a descuidar los aspectos de salubridad de los ambientes en los que intervienen.
6. Acerca de las escalas de análisis: El análisis de un conjunto ambiental siempre requiere estudiar lo que pasa en ese lugar, en vinculación con lo que pasa fuera de él. Por ejemplo: el deterioro del suelo por la utilización que realizan las comunidades campesinas en el sur de México tiene que ver con su atraso. Esta situación de extrema pobreza se entiende contextualizando a esos campesinos en la sociedad, la economía y la política de México. De la misma manera, la contaminación de los ambientes costeros en Uruguay requiere entender el movimiento de las corrientes marinas en relación con el crecimiento de las algas, además de los factores sociales que originaron ese problema.

7. Acerca del tiempo histórico: Los conflictos y las negociaciones entre los distintos sectores sociales varían a lo largo del tiempo. También hay sociedades con mayores posibilidades de realizar proyectos políticos, sociales y ambientales autónomos, en los que ninguna otra sociedad las obliga a realizar lo que no desean. Las sociedades “hacen” su historia y son responsables de sus acciones a través del tiempo. Una de las maneras en que se refleja el paso del tiempo histórico es en cómo aprovecharon o desperdiciaron las posibilidades que les brindaba la naturaleza.

Mirar un mapa de grandes conjuntos ambientales no es otra cosa que mirar un aspecto del estado de las distintas sociedades en un momento dado de la Historia. Es muy probable que el mapa de los grandes conjuntos ambientales de América Latina dentro de quinientos años sea muy distinto al que se observa en esta doble página. Al igual que este mapa de ambientes, que es muy distinto al mapa de ambientes de hace quinientos años, cuando llegaron los primeros colonizadores y empezaron a modificar aceleradamente la naturaleza… y a las^sociedades aborígenes que en ella vivían, punto de partida de este libro.

El deterioro ambiental en la selva paranaense
Para conocer el estado actual de deterioro ambiental en la Argentina y caracterizar los procesos de degradación, en el año 1986 la Fundación para la Educación, la Ciencia y la Cultura (FECIC) convocó a técnicos de distintas instituciones para trabajar en el tema. En 1988 se publicó el documento “El Deterioro del Ambiente en la Argentina” (PROSA: Centro para la Promoción de la Conservación del Suelo y del Agua).

Este documento se refirió especialmente a la degradación de los suelos de la provincia de Misiones. La erosión hídrica, considerada de moderada a grave, abarcaba el 9% de la superficie, o sea, 260.000 ha del territorio de esa provincia. Las áreas más afectadas eran las del centro-sur: departamentos de Oberá, L. Alem y San Javier, en los que el cultivo de la yerba mate es muy importante. Estimaciones de ese mismo informe señalaban que unas 400.000 ha o más del bosque nativo estaban sufriendo una degradación de mediana a intensa, al igual que unas 100.000 ha de pastizales. La degradación más acentuada afectaba a los bosques provinciales en la zona del Alto Paraná y del Alto Uruguay.

La selva paranaense, por su heterogeneidad, es un sistema de alta complejidad ambiental. Hasta el siglo XVI, su dinámica estuvo regulada por factores físicos y por la propia biocenosis -conjunto de especies distintas, libres, parásitas o simbióticas, todas indispensables para la supervivencia de la comunidad-, incluidas las poblaciones indígenas allí asentadas. En la etapa de conquista y de colonización europeas, se evidenciaron los primeros impactos a la orilla de los ríos, en los campos abiertos y en las áreas de borde, consecuencia de los emplazamientos humanos, de las actividades agrícolas y ganaderas y de las expediciones de exploración, la caza de esclavos y la recolección de yerba mate.

A partir del siglo XIX, el poblamiento y el modelo de desarrollo adoptado produjeron una importante reducción de las áreas selváticas. La expansión agrícola y el obraje forestal son las responsables de este cambio y de la degradación de los montes remanentes. En Misiones, se empobreció la masa arbórea antes que la cobertura boscosa, como consecuencia de la inadecuada explotación forestal.

En los últimos cien años desapareció el 90% de la selva original, y el futuro de este sistema se encuentra seriamente comprometido a corto plazo, salvo las 500.000 ha que se hallan protegidas.

Debería ponerse en marcha una planificación integral para un buen uso del suelo mediante la zonificación, según las aptitudes ecológicas y la viabilidad económica. Y deberían ordenarse los sistemas agrícolas, silvícolas y acuáticos a lo largo del tiempo para obtener un verdadero desarrollo sustentable.

Fuente: “La conservación de los recursos naturales y el hombre en la selva paranaense”, por Pablo
Laclau. Boletín Técnico N° 20. Fundación Vida Silvestre Argentina, Fondo Mundial para la Naturaleza

Fuente Consultada:
Selecciones de Reader Digest Abril 2009 – Podes Suscribirte A Su Publicación!

Sociedad, Espacio y Cultura De La Antigüedad Al Siglo XV Amézola-Dicroce-Ginestet-Semplici

Plataforma Petrolera Funcionamiento Caracteristicas La Vida en el Mar

Existen grande construcciones civiles de acero a las que no se les puede negar valores formales de notable interés y una incidencia excepcional sobre la transformación del paisaje (que por fortuna no siempre es degradación). En este aspecto, la plataforma de barrenado de la BP en el mar del Norte entra, sin duda,, dentro de la categoría de estas realizaciones.

Plataforma Petrolera Funcionamiento Caracteristicas La Vida en el MarCuando, pocos minutos después de las 7 de la tarde del miércoles 3 de julio de 1974, en aguas de Gran Bretaña, el Graythorp I de la BP fue situado en aguas profundas, a 110 millas de Aberdeen, se asistió a un gran acontecimiento en el campo de la ingeniería marina. Para los pocos privilegiados que siguieron el acontecimiento, la instalación de esta estructura constituyó una visión verdaderamente espectacular.

La historia de estas plataformas está estrechamente vinculada, como es natural, a la otra historia, relativamente reciente, de la exploración y explotación de los yacimientos petrolíferos existentes en los fondos marinos. Los hidrocarburos líquidos (petróleo) y gaseosos (metano) constituyen la principal fuente de nuestra civilización industrial. Pero las reservas de “oro negro” de los yacimientos terrestres hasta ahora conocidos se encuentran en vías de rápido agotamiento.

Y de ello se saca una conclusión a todas luces evidente: si no se encuentran y se explotan nuevos yacimientos, la colosal maquinaria de la civilización industrial se quedará sin “carburante” dentro de cuarenta o cincuenta años como máximo. Por otra parte, de momento no parece muy probable que la nueva fuente de energía, la nuclear, pueda sustituir totalmente a los hidrocarburos en tan breve espacio de tiempo; de ahí la necesidad absoluta de intensificar las exploraciones de nuevos yacimientos.

Y en este aspecto ya no queda otro recurso que efectuarlos en el fondo de los mares y de los océanos, ya que la superficie terrestre ha sido explorada con tal fin a todo lo largo y a lo ancho de las zonas accesibles. Así empezó, en la última posguerra, la era de las exploraciones de hidrocarburos llamadas off-shore, término inglés, hoy día de uso internacional, que podría traducirse por “costa afuera”.

Las exploraciones off-shore se realizan en franjas de mar costeras, donde los fondos son más idóneos para este fin y las comunicaciones con tierra firme más fáciles. En la práctica, la técnica actual de las exploraciones off-shore permite la prospección de casi toda el área de las “plataformas continentales”, entendiendo con este término el “zócalo”, el ligero declive, en el que una tierra emergida se hunde gradualmente en el mar.

Es una zona muy amplia, calculada en 28 millones de km2. Sólo una parte de ella (7 millones de km2) ha sido explorada hasta ahora con tales fines. Sin embargo, ya en 1970, los hidrocarburos extraídos del fondo del mar constituían el 20 % del total mundial. La primera plataforma de perforación fue instalada en 1947 en el golfo de México. Pero el acontecimiento más importante de estos últimos años en Europa, respecto a la citada exploración de hidrocarburos en los fondos marinos y que ha llamado la atención de la opinión pública mundial es, sin duda alguna, el realizado en el mar del Norte.

Tras el “boom” del metano de Groninga, Holanda, los geólogos empezaron a sospechar que también bajo las tempestuosas aguas del mar del Norte pudieran ocultarse yacimientos de metano y de petróleo. Y si el depósito de gas de Groninga estaba considerado como el más importante hasta ahora conocido en el mundo occidental, la certeza de que pudiera ocurrir otro tanto en el mar del Norte dependía de los resultados de las exploraciones de los expertos de todo el mundo que allí se habían reunido.

El mar del Norte cubre casi por entero un banco continental formado por un espesor considerable de roca sedimentaria, y es precisamente en este tipo de roca, que a lo largo de los tiempos llenó las cuencas sedimentarias formadas por depresiones de corteza terrestre de muchos kilómetros de longitud y de profundidad, donde se encuentran los hidrocarburos líquidos y gaseosos. En Holanda y en la vecina Alemania se ha hallado no sólo metano, sino también yacimientos petrolíferos de pequeña y mediana categoría. Por lo tanto, la posibilidad de que pudieran encontrarse también bajo el mar del Norte constituía una hipótesis muy bien fundamentada.

La explotación de los eventuales yacimientos del citado mar podría permitir a Gran Bretaña, entre otras ventajas, y relativamente en breve tiempo, una autonomía casi total desde el punto de vista de la producción energética. Así, pues, se realizaron profundos estudios sobre la concreta estructura geológica de esta cuenca, estudios que permitieron clasificarla como una zona petrolífera en potencia. Geográficamente, el mar del Norte está dividido en dos zonas: la parte meridional, más bien estrecha, donde las condiciones del mar son menos favorables, y la septentrional, más ancha y abierta sobre el Atlántico.

Vista Aerea de una Plataforma Petrolera en México

La variabilidad extrema de las condiciones atmosféricas hace notablemente difícil, en cualquier parte de dicho mar, establecer las previsiones meteorológicas, a pesar de que en estos últimos años se hayan conseguido notables progresos en las previsiones a largo plazo. Añádase a esto que, si el medio marino era poco conocido, la naturaleza de los fondos marinos lo era aún mucho menos, lo que forzosamente había de plantear graves problemas a la estabilidad de las instalaciones y a la colocación de las conducciones.

En consecuencia, las instalaciones debían ser proyectadas de modo que hicieran frente a este conjunto de condiciones ambientales negativas. El término “plataforma”, con el cual habitualmente se denominan las susodichas instalaciones da, sin embargo, una idea falsa de estos colosos marinos que de planos no tienen nada.

El aspecto imponente de estas obras, y en particular de la Graythorp I de la BP, es excepcional; la estructura tubular de acero sobre la que se instalan una serie de equipos de gran complejidad, establece un parentesco, también formal, con la tradición de la ingeniería ochocentista; pero, por otra parte, la perfección y novedad técnica de las maquinarias, su diseño y su distribución, que tiene en cuenta la explotación en mayor escala y más funcional del espacio disponible, hacen de ellas unas de las más avanzadas realizaciones de la tecnología y la arquitectura modernas.

Como la perforación de un pozo en el fondo del mar no difiere técnicamente, por lo menos en la operación de excavación propiamente dicha, de lo que se hace con el mismo fin en tierra firme, el problema nuevo, hoy por cierto brillantemente resuelto, consistía en establecer las condiciones técnicas para la perforación partiendo de la superficie del mar y actuando a través del diagrama de decenas o cientos de metros de agua. Para esto era preciso crear artificialmente sobre la superficie marina una zona que pudiera contener todas las máquinas para la perforación, además del personal empleado en los trabajos.

Se trata, por tanto, de verdaderos pueblos situados en medio del mar. El equipo completo de estas plataformas comprende: por un lado, perforadoras dirigidas eléctricamente, bombas tubulares, depósitos para materiales químicos, máquinas para la producción primaria, que comprenden divisores de gas-petróleo y bombas de emisión con motor de turbina, instrumentos de refrigeración para la producción condensada y generadores de energía, con un total de 10 MW; por otro, los laboratorios, las cocinas, los locales de descanso, la sala cinematográfica y los depósitos de víveres, piezas todas ellas con aire acondicionado.

También hay una o más estructuras en forma de torre que más tarde serán las torres de perforación, con mesas giratorias, grandes válvulas, la pila para el limo y, finalmente, la zona de aterrizaje para los helicópteros. Toda esa formidable maquinaria se ha estructurado de forma que ocupe el menor espacio posible.

Por otra parte, era evidentemente necesario que las turbinas no descargasen en la zona de perforación, que la antena de radio estuviera dirigida hacia tierra firme y que la zona ocupada por los aposentos estuviera situada en el lugar más tranquilo posible; al mismo tiempo, la situación de cada parte individual debía tener en cuenta que la distribución de las cargas se realizaría de forma uniforme sobre toda la estructura de sustentación.

La división Menck de la Koehring Co. construyó, para la Graythorp I, el taladro más grande del mundo hasta entonces realizado; pesa 255 toneladas, tiene una potencia de golpe de 87.500 mkg y su golpe máximo es de 1,25 m, con una capacidad de 35 percusiones por minuto. Él proyecto final de toda la plataforma se realizó teniendo en cuenta las circunstancias ambientales, las cargas y las condiciones del subsuelo bajo la superficie del mar y además sufrió, respecto al original, muchos cambios; en efecto, al principio se establecieron 36 pozos y dos taladros, pero consideraciones sucesivas sobre el abastecimiento y los depósitos hicieron que se descartara esta primera hipótesis, ya que, por una parte, la limitación de espacio no permitía tener a bordo suficientes suministros y por otra el mal tiempo en el mar del Norte hacía imposible el aprovisionamiento de materiales de barrenado.

El actual proyecto es de 27 pozos y un solo taladro, ya que hay un depósito suficiente para la estiba del crudo extraído en 30 días de perforación. La eficacia, tanto de ésta como de las demás plataformas, y, por lo tanto, la posibilidad de desarrollar las funciones esenciales para las cuales han sido realizadas, se ven amenazadas por un enemigo implacable y multiforme, representado por la corrosión a la que se ven sometidas las estructuras de acero. El agua de mar constituye ya en sí un temible enemigo del acero, como de la mayor parte de los metales, incluso de los más nobles que el hierro; y el hecho de que además esta agua esté casi totalmente contaminada, en distinta medida, por productos más o menos nocivos, contribuye a empeorar en gran manera la situación.

La ejecución de todas las tareas, incluso de las más sencillas, requiere siempre condiciones meteorológicas favorables. Las inmersiones, en efecto, se ven obstaculizadas a menudo por el estado de la superficie del mar y por la turbulencia de las mareas; no es posible sumergirse cuando la altura de las olas supera los dos metros, y éstas son unas condiciones precisamente muy habituales en el mar del Norte durante la estación invernal, que dura unos siete meses.

La visibilidad del fondo, en verano, varía entre 9 y 12 metros si el tiempo es bueno; en invierno, a causa de la acción de las mareas sobre las arenas y sobre el limo, esta visibilidad puede reducirse a pocos centímetros, determinando una situación que hace casi imposible cualquier actividad.

Por ello no son raros los retrasos notables en el cumplimiento de las distintas tareas y, a menudo, durante el invierno, los hombres rana deben esperar inactivos durante semanas enteras antes de que una pausa en las tempestades les permita reanudar sus habituales trabajos. Las condiciones en que se ven obligados a trabajar estos hombres rana no son más que un aspecto de la vida que se desarrolla sobre estas plataformas; su tripulación, por completo masculina, está formada por unas 40 ó 70 personas, y está obligada a permanecer en la instalación durante un mes aproximadamente.

Esta permanencia suele verse prolongada a menudo, y a veces durante bastantes días, por las imprevistas condiciones atmosféricas en el mar del Norte, sujetas a cambios tan repentinos que escapan virtualmente a toda previsión meteorológica, haciendo imposible, incluso durante largos períodos, los transportes y los aprovisionamientos regulares. Debido a ello deben utilizarse tipos de buques especiales, capaces de servir a las plataformas en alta mar y de permitir también el intercambio del personal de mantenimiento.

Como vemos, la vida de los servidores de esos monumentales “edificios” anclados en medio del mar es tan admirable como las mismas construcciones.


Hundimiento Plataforma Petrolera-Golfo de México

Historia de los Primeros Plasticos Resumen Caracteristicas y Usos

Consideremos una cantidad de alfileres de gancho y pensemos en las diversas formas distintas en que pueden ser encadenados. Podemos formar una cadena larga, o varias cadenas unidas, o cadenas ramificadas, etc. Es fácil ver que hay cientos de formas de constituir una cadena.

Los animales y las plantas no se ocupan de encadenar alfileres de gancho, pero en cambio construyen moléculas semejantes a cadenas utilizando moléculas mucho más pequeñas. La planta del algodón produce el algodón, la oveja produce la lana, el gomero la goma.

El algodón, la lana y la goma han sido fabricados por el animal o la planta a partir de moléculas simples. Los materiales plásticos son el resultado del intento del hombre de imitar a la naturaleza. El primer plástico, la seda artificial, era una imitación directa de la forma en que el gusano de seda fabrica su hilo. Esta seda artificial no fue un gran éxito y no poseía la misma estructura que la seda natural.

La moderna industria del plástico rara vez trata de fabricar copias exactas de las fibras y resinas naturales. Su objetivo es llenar los vacíos dejados por la naturaleza, empleando la idea original de construir moléculas largas a partir de otras pequeñas. Las moléculas plásticas están destinadas a trabajos para los cuales no se encuentran materiales naturales realmente adecuados. A veces resulta que lo más satisfactorio es una mezcla de lo artificial con lo natural.

Desde que Friedrich Wohler logró por primera vez en el mundo la primigenia síntesis orgánica de la urea, las investigaciones se encaminaron hacia el descubrimiento de nuevos plásticos. El nylon, logrado mediante resinas sintéticas, se difundió por todo el mundo y reemplazó con ventajas a telas de algodón, lana y seda.

Los progresos experimentados por la petroquímica permitieron plásticos económicos, de gran durabilidad, y así se introdujeron en el hogar. Pero lo más sorprendente es que reemplazó partes averiadas del ser humano. Riñones elaborados mediante una simple hoja de celofán, dedos de la mano, huesos del cráneo, mandíbulas, narices, y hasta caderas completas pueden sustituir cómodamente a las naturales

PODRÍASE denominar el siglo XX como el de la era del plástico. Si bien esta aseveración es exacta, porque adquiere el mayor desarrollo y se inventan nuevos productos con múltiples aplicaciones hasta avanzar raudamente sobre el terreno de la medicina, lo cierto es qué fue Friedrich Wohler, el primer científico que logró la síntesis orgánica de la urea y, cuarenta años después.

Wesley Hyatt logró obtener el celuloide, que por muchos años se constituyó en el primero y único plástico de la historia. Las investigaciones prosiguieron con cierta lentitud en la búsqueda de nuevos materiales semejantes y de mejor calidad, hasta que en 1800 Kahlbaum logró en el laboratorio el metacrilato de metilo.

En 1909, el belga Leo H. Baekeland, sobre la base del fenol y del formaldehído, logró la baquelita, un plástico que tuvo su auge durante muchos años, a principios de este siglo.

Ya próxima a desencadenarse la Segunda Guerra Mundial, se logró fabricar el nylon mediante el empleo de resinas sintéticas. Carothers fue el descubridor de esta extraordinaria fibra, con la que se empezó a fabricar distintas telas para reemplazar al algodón y a la lana, con resultados favorables y con un rendimiento económico.

Wesley Hyatt logró obtener el celuloide

Al estallar la conflagración bélica, la necesidad de contar con materiales imprescindibles para hacer frente a la guerra acució el ingenio de los técnicos e investigadores para la producción de plásticos destinados a las más variadas aplicaciones, especialmente para la comunicación, radares, estructuras de barcos, aviones, telas de aislamiento, conductores eléctricos, etc.

El plástico fue entrando luego en los hogares, pues muchos implementos que hasta entonces se fabricaban de metal o de madera fueron reemplazados por el plástico.

La mayoría de los plásticos que pudieron obtenerse se lograron a través del carbón, del petróleo y de subproductos: el fenol, el benceno, el acetileno o el etileno, necesarios para obtener los plásticos, se preparan también a partir del carbón o del petróleo, pero éste último hidrocarburo resulta más apropiado para lograr esta transformación.

Los primeros plásticos, obtenidos a partir de materia prima vegetal, datan de 1862. En concreto, se trató químicamente la celulosa con ácido nítrico obteniéndose nitrato de celulosa, más conocido como celuloide. Con él se fabricaron objetos decorativos mangos de utensilios domésticos o cuellos de camisa, por citar algunos ejemplos. En 1909 se encontró una nueva materia prima, el alquitrán de hulla, con el que se obtuvo la baquelita, un plástico ampliamente utilizado como aislante en los mecanismos eléctricos, enchufes, interruptores. Desde principios del siglo XX se experimentó a gran velocidad y los científicos empezaron a comprender los mecanismos que regulan las reacciones químicas que dan lugar a es nuevos materiales: así comenzó su producción y utilización masiva.

El hallazgo más importante representó el estireno, juntamente con el propileno y el butileno, productos de la petroquímica, de costo económico y fundamental para la industria del plástico. Con el correr de los años se fueron perfeccionando las técnicas para lograr plásticos a precios reducidos, y que pueden ser adquiridos en forma masiva.

Un desarrollo extraordinario ha tomado el polietileno, también conocido como politeno, de un color blanco cera. Es sumamente resistente al agua y a todos los agentes químicos, es muy flexible, fácil de teñir y ha resultado ser el mejor aislante eléctrico, aun para las corrientes de alta frecuencia. Esto ha permitido acrecentar la sensibilidad de los radares y es muy empleado en los cables coaxiles. (imagen abajo)

El poliestireno, derivado también del petróleo, es otra de las conquistas más extraordinarias en materia de plásticos. Se debe ello a su transparencia y a su sonoridad metálica. Ha resultado ser de bajo costo; no absorbe el agua, se trabaja fácilmente por inyección, lo que ha permitido la fabricación de importantes piezas en la industria, que no exigen gran resistencia a los choques o al calor.

Además, con este material tan dúctil se inició la elaboración de numerosos implementos de uso diario en el hogar, como vasos, tazas, ensaladeras, platos, etc., así también como accesorios para heladeras, artefactos para la radio y la televisión. De igual manera, se ha podido reemplazar al vidrio transparente, liviano, menos costoso e irrompible. Por otra parte, no se altera ni impide el pasaje de la luz. Por su extraordinaria resistencia mecánica, su uso se generalizó en la fabricación de ce-terminadas piezas para aviones y lanchas.

Este material tan noble se introdujo también en la odontología, pues se fabrican dientes de esta naturaleza dé gran resistencia química, inalterables, irrompibles y fáciles de trabajar, Además puede ser coloreado y fabricar con este producto imitación de joyas, agradables, ce gran brillo y de aceptación en la joyería.

Es bueno destacar que uno de los progresos más sobresalientes en este campo lo ha constituido la fibra de vidrio poliesteres, que se puede trabajar a baja temperatura y sin mayor presión, y cuya propiedad mecánica ha resultado ser superior a la de muchas aleaciones, frecuentemente comprable a la del acero. Los fuselajes de no pocos aviones, las cabinas, las palas de los helicópteros, así como cierto tipo de embarcaciones, usan hoy este material.

Las bondades demostradas por los distintos materiales plásticos, entre los que se incluye el nylon, su producción en gran escala y su costo muy inferior a otros elementos indispensables en la vida de los seres humanos, ha facilitado su introducción en todas las áreas de la actividad cotidiana. No sólo reemplazó a la seda en la fabricación de medias, enaguas, combinaciones, trajes, sino que, y este fue lo más asombroso y que representa el avance más espectacular del siglo, es su audaz introducción en el terreno de la medicina, para sustituir en el hombre partes afectadas o para hacerle recuperar su fisiología alterada.

Y es así como un órgano tan complicado como es el riñón pudo ser reemplazado por una sencilla hoja de celofán, en su exclusiva actividad de excretar los productos líquidos innecesarios y tóxicos del organismo humano. Esta sustitución se practica cuando el cirujano se ve en la imperiosa necesidad de .trabajar directamente sobre el riñon enfermo, sin suspender la corriente sanguínea que normalmente se purifica a través de su pasaje.

Un porcentaje bastante apreciable de la estructura ósea humana puede ser sustituido por materiales plásticos. Y desde los dedos de la mano, mandíbulas, narices, partes del cráneo y hasta una cadera completa pueden ser reemplazados por piezas totalmente construidas en acrílicos.

Las extraordinarias intervenciones quirúrgicas del corazón y de los vasos también se han visto favorecidas por estos materiales sintéticos. Estos maravillosos productos comenzaron a emplearse con todo éxito, porque no reaccionaban en el organismo humano. El silastic fue el primer material sintético de una gran ductilidad. La osadía de los cirujanos no se detuvo ante ningún problema de reparación quirúrgica. Hay pacientes que aún viven cómodamente con cuarenta y hasta cincuenta centímetros de aorta plástica.

El ivalón y el dacrón empezaron a completar órganos deteriorados. El emparchamiento del corazón por defectos congénitos, como el agujero de Botal no obturado embriogénicamente, fue obliterado con material sintético. Los tubos plásticos milimétricos sustituyeron arterias y venas dañadas o esclerosadas. La colocación de válvulas plásticas empezaron a sustituir a las naturales afectadas por distintas dolencias y que provocaban insuficiencia cardíaca. Antes, el individuo atacado de dolencias valvulares moría irremediablemente en muy poco tiempo. La sangre se encontraba impedida de salir del órgano cardíaco.

La extracción de la válvula afectada, generalmente calcificada, sustituida por una de plástico, empezó a dar resultados altamente satisfactorios. Operaciones de este tipo ya son de rutina en los grandes centros quirúrgicos. El avance más notable lo representa el reemplazo por tiempo determinado del ventrículo izquierdo dañado, por uno semejante de plástico, creado por el cirujano argentino Dr. Domingo Liotta.

APLICACIONES EN LA AERONÁUTICA
Los plásticos acrílicos han alcanzado su mayor empleo en el campo de la aeronáutica. Poco tiempo antes de la segunda guerra mundial, este tipo de plásticos fue empleado en la construcción de ventanas, en reemplazo del vidrio y de otros materiales menos estables. Ello fue posible gracias a su transparencia, su gran resistencia al choque y su ligero peso. Su fácil maleabilidad ha hecho que se lo emplee en torres de observación y los técnicos han encerrado la antena de radio con plásticos acrílicos, pues se ha comprobado que no interfieren con las ondas. Estos plásticos transmiten la luz con una eficiencia que oscila entre el 90 y el 93 por ciento, mientras que el vidrio, lo hace con un máximo del 83 por ciento. Asimismo, su peso específico es de 1,2 siendo el del vidrio 2,5. Como su resistencia al impacto es muy buena, se obtiene una mayor visibilidad al no exigir marcos robustos.

Características:

Los plásticos se han hecho prácticamente imprescindibles en la sociedad moderna, debido, sobre todo, a las siguientes propiedades y características.

Seguridad e higiene. No producen cortes como el vidrio o productos nocivos como, por ejemplo, los metales al oxidarse.

Resistencia, ligereza y durabilidad. Aguantan muy bien los impactos, no se corroen por acción como los metales y son mucho menos pesados.

Economía. En general, el plástico es mucho más barato que los materiales a los que se sustituye, tanto en la fabricación a partir de la materia prima como del producto acabado.

Adaptabilidad. Con pequeñas modificaciones, conseguidas al utilizar ciertas sustancias ;_e se añaden a la composición básica, los llamados aditivos, el mismo material sirve para diferentes aplicaciones.

Reciclables y reutilizables. Siempre y cuando los consumidores tomemos conciencia fe ello y separemos la basura en origen, facilitando su recogida selectiva.

Plásticos y sus usos
Polietileno: aislamiento eléctrico, bolsas, sacos de dormir
Poliestireno: vasos para líquidos calientes, cintas de vídeo, aislante térmico, «corcho blanco».
Cloruro de polivinilo, PVC: impermeables, tuberías, cortinas de baño, discos, cajas.
Plexiglás: ventanillas de aviones, lentes de contacto.
Teflón: recubrimiento antiadherente de utensilios de cocina, tapicerías.
Poliuretano: cojines, colchones, gomaespuma.
Policarbonato: sustrato para CD.
Baquelita: aislante eléctrico, enchufes, tapas de ollas, lacas y barnices.

EVOLUCIÓN DE LOS PLÁSTICOS:
Debido a sus diferentes propiedades, algunos plásticos se emplean para fabricar objetos sólidos al tiempo que otros son convertidos en hilados y tejidos. El nilón puede emplearse para fabricar objetos sólidos como ruedas de engranajes, pero dado que puede ser convertido en hilos finísimos encuentra mucho uso en la industria textil.

Acetato de celulosa es el nombre del plástico con el cual se hizo la primera seda artificial. Se lo obtiene de dos sustancias químicas: celulosa (pulpa de madera) y ácido acético (el vinagre es ácido acético diluido). Aunque no se lo emplea más para fabricar seda, todavía posee muchos usos. Disolviéndolo en acetona y convirtiéndolo en rollos se fabrican las películas de seguridad (no inflamables). Mediante el proceso de moldeado por inyección puede servir para fabricar objetos tales como palos de golf y lapiceras de bolilla. La resina es calentada hasta ablandarla y luego es inyectada a presión en un molde, donde se endurece. El moldeo por inyección se utiliza en el caso de los termopltisticos, que son los plásticos que se ablandan con el calor y funden a temperaturas relativamente bajas.

Con la caseína, un constituyente de la leche, pueden fabricarse botones y peines. Una masa de caseína puede recibir una forma adecuada, y colocada en una solución de formaldehído, endurece. La caseína y el formaldehído se unen para formar una gran molécula plástica (galalita). La baquelita no es un termoplástico. Es un plástico termoendurecido.

Cuando durante el proceso de moldeo a estos plásticos se les aplica calor y presión, su constitución cambia, y después que el artículo queda terminado no volverá a ablandarse aunque se le aplique calor, porque el nuevo material después del proceso posee un punto de fusión mucho más alto. Por ese motivo no se emplea el moldeo por inyección, sino por compresión.

Cuando se moldea la baquelita, la resina y el aserrín (que actúa como relleno, que da “cuerpo” al objeto) son ubicados en un molde caliente. Se aplica presión y el objeto, que puede ser un gabinete de radio o un cenicero, es retirado del molde. Las moléculas grandes de baquelita están compuestas por formaldehído y ácido carbónico, una sustancia química derivada del carbón. Hay que aclarar que muchos plásticos tienen su origen en el carbón y el petroleo.

La acción del formaldehido sobre la úrea produce un plástico similar a la bakelita, en su composición, pero a su diferencia, es de color blanco y por consiguiente se le puede agregar colores brillantes. Algunas de las sustancias que se usan para la obtención de la úrea provienen del carbón.

El poliestireno, un plástico transparante (mas que el vidrio); acetato de polininilo, un plástico empleado en pinturas,nilón, etc., todos son fabricados con sustancias químicas provenientes del carbón. Algunas de las sustancias químicas utilizadas en la fabricación del Perspex, Terylene y politeno provienen del petróleo. El politeno (o polietileno) es uno de los plásticos más conocidos. Se lo emplea para fabricar muchos artículos de uso diario, como vasos, baldes, bolsitas, etc.

Ahora se lo emplea para construir cañerías para agua, con la ventaja de que.es liviano y fácil de manejar. Como es resistente a los ácidos e irrompible, los frascos de politeno son muy útiles para almacenar productos químicos. Pero si le colocamos algo muy caliente, el politeno se funde, porque es un termoplástico.

Basta esto para deducir que los artículos de politeno se moldean por inyección. Politeno o polietileno significa muchas moléculas de etileno unidas. El etileno es un gas muy reactivo que se obtiene por craqueo o calentamiento fuerte del petróleo, y si se dan las condiciones favorables, sus moléculas reaccionan entre sí, formando moléculas de gran tamaño. Las condiciones ideales resultaron difíciles de encontrar, porque al principio la instalación explotaba continuamente.

Los plásticos con moléculas semejantes a largas cadenas, en lugar de masas voluminosas, son aptos para fibras textiles, sogas, alfombras, etc. El plástico líquido, por ejemplo, nilón fundido, es forzado a pasar a través de un disco con numerosos agujeros de pequeño tamaño. Los numerosos filamentos que salen del otro lado del disco se solidifican al enfriarse; las hebras son lavadas y secadas. Por lo general se las hace pasar a través de una máquina onduladora que enrula la fibra, dándole volumen.

A veces esta fibra ondulada es cortada en trozos pequeños que luego son hilados para obtener un tejido peludo, o bien pueden ser tejidos sin este proceso previo. Algunas de estas fibras artificiales pueden ser plegadas permanentemente. Esto ocurre en los termoplásticos. El calor hace que las fibras se doblen en los pliegues, y al enfriarse se mantienen así.

Prensa de moldeo por inyección. Se fabrican artículos con resinas termoplásticas . El émbolo empuja el plástico pulverizado dentro de la cámara de calentamiento, donde se ablanda. Luego es forzado a introducirse en el molde. El objeto es retirado al enfriarse.

LOS RELLENOS
Con materiales fenólicos el relleno más frecuentemente empleado es el aserrín, conocido en este caso con el nombre de harina de madera. Debido a su bajo peso específico, se obtiene un mayor’ número de piezas por kilogramo de material. Otras propiedades que adquiere el plástico debido a la presencia del aserrín son: baja conductibilidad térmica, fácil moldeo y superficies de buen aspecto. Al mismo tiempo los plásticos que contienen en su composición harina de madera, experimentan notables variaciones de volumen y su resistencia al impacto es mediana.

Los rellenos de algodón dan al material una mejor resistencia a los choques. Si en lugar de algodón se emplean trapos como relleno, la resistencia se hace aún mayor. Los elementos y piezas fabricados con plásticos fenólicos si tienen algodón como relleno pueden ser lustrados muy fácilmente.

En general un aumento en la resistencia de un plástico se obtiene a expen sas de alguna otra propiedad. Así, los plásticos fenólicos poseen poca fluidez cuando se los fabrica con rellenos de trapos. Utilizando rellenos de amianto las resinas fenólicas adquieren una marcada resistencia al calor. El valor elevado del peso específico del amianto, reduce el número de piezas quepueden obtenerse por unidad de peso del material. El amianto disminuye la fluidez del material, retardando el moldeado en forma sensible. También este lipo de relleno le da gran resistencia a los ácidos.

Para reducir el peso específico de los plásticos suele emplearse como relleno la sílice, que se obtiene a partir de las algas diatomeas. La sílice le comunica buenas propiedades eléctricas y disminuye la absorción de agua. Los materiales que tienen mica como constituyente, adquieren una buena resistencia eléctrica, pero al mismo tiempo se convierten en poco aptos para ser trabajados a máquina, y son muy quebradizos.

El grafito como relleno, mezclado con amianto, aserrín y trapos, mejoran el moldeado, pues el grafito actúa como lubricante. La conductibilidad térmica de estos plásticos es escasa. El grafito se emplea con materiales fenólicos para moldear ruedas pequeñas, cojinetes y otras piezas.

TRABAJADO Y ACABADO DE LAS PIEZAS PLÁSTICAS
Los plásticos moldeados eliminan en su mayor parte, las operaciones de moldeado y acabado. En ellos deben quitarse las rebabas y marcas que quedan en las piezas como consecuencia del moldeo. En las piezas moldeadas por inyección, suelen quedar marcas que pueden quitarse mediante un limado a mano. El terminado se realiza con cintas abrasivas, las cualesse adaptan en forma adecuada a las piezas medianas y grandes. El carbure de silicio, fijado con una resina sintética, constituye un cinta abrasiva muy recomendada.

Un estudio detenido previo al moldeo contribuye a la disminución de las operaciones. En general todos los plásticos son malos conductores del calor, por lo cual, el calor desarrollado por fricción con las herramientas debe eliminarse mediante refrigeración por aire o refrigerantes líquidos.

Algunos materiales se ablandan por efecto del calor desarrollado, adquiriendo una consistencia gomosa y las herramientas se cubren de una capa de resina quemada. Cuando se trata de perforar una pieza de acrílico o de acetato de celulosa, una baja velocidad de rotación reduce al mínimo la producción de calor, y empleando agua como refrigerante el material no se ablanda. Cuando se desean hacer agujeros de pequeño diámetro en plásticos vinílicos, la perforación se realiza con velocidades de 4 a 6 mil revoluciones por minuto.

LA MADERA LAMINADA Y LOS PLÁSTICOS
El empleo de las resinas, como medio para unir y reforzar elementos de madera, constituye, un campo muy amplio de aplicación de los materiales plásticos. El uso de prensas con platos múltiples permite una gran rapidez en el proceso de encolado, que logra acelerarse aún más, estabilizando las colas.

Las resinas sintéticas han reducido a unos pocos minutos una operación que duraba días, de modo que el factor tiempo en la industria moderna del plástico compensa el mayor costo de la materia prima. El procedimiento exige personal experto pues los factores que intervienen son muchos, tales como presión, temperatura, grado de humedad y tiempo. Ensamblando entre si varios paneles se obtienen grandes piezas continuas.

CALENTAMIENTO DE LOS PLÁSTICOS
La transmisión del calor a través de una masa plástica es en general lenta. Se ha generalizado el uso de corriente de alta frecuencia para calentar material plásticos Los plásticos actúan como dielétricos de un condensador en el cual se acumula la energía eléctrica, distribuyéndose uniformemente en todo el volumen del material, cualquiera sea su extensión. Una paite de la energía deforma las moléculas, que recobran su posición inicial, mande se descarga.

La deformación de las moléculas produce fricciones entre ellas, que se deben a la resistencia que ofrecen a cualquier cambio. Como resultado de las fricciones entre moléculas se produce calor. Si dentro del material se produce variación del campo eléctrico en forma alternativa, una gran parte de la energía eléctrica se transforma en calor. Cuando mayor es la frecuencia de la corriente, mayor es la cantidad de calor producido. Debe cuidarse que el plástico al cual se aplica este método de calentamiento, tenga un factor de potencia no muy bajo.

Ello significa que la cantidad de energía eléctrica no convertida en calor, tome valores razonables, pues de lo contrario, el método resulta antieconómico. Es el caso del politeno. Pueden emplearse voltajes relativamente bajos, con lo que queda salvada la seguridad del personal, al mismo tiempo que se evita la perforación del material, especialmente cuando se trata de láminas delgadas. Este sistema de calentamiento es ventajoso con materiales que exigen rapidez y elevadas temperaturas.

PLÁSTICOS EN ESPUMA
Para la obtención de este tipo de plásticos se mezclan los disocianatos con compuestos polihidróxidos juntamente con grandes cantidades de carga como harina de madera. La reacción se realiza bajo presión y calor. Los productos obtenidos con temperaturas de 150 grados centígrados y con 8 minutos de moldeo, poseen propiedades ventajosas, con respecto a los plásticos fenólicos. Adquieren notable resistencia al arco, aun humedecidos, elevada resistencia eléctrica y alcalina, gran resistencia al choque y muy buena flexibilidad.

PUNTO DE REBLANDECIMIENTO
En los lermoplásticos, una característica de gran importancia es el punto de reblandecimiento, que es la temperatura a la que se inicia su deformación térmica. Si se eleva la temperatura por encima de este punto, el material se ablanda en forma progresiva hasta alcanzar su punto de fusión en que el material se licúa totalmente. En la mayoría de los casos el punto de reblandecimiento no es fijo sino que posee una marcada fluctuación. Esta particularidad suele presentarse en los materiales amorfos. La fluidez en frío es el grado de deformación que experimenta el material debido a su propio peso. Al aumentar la temperatura este efecto se acentúa.

Los materiales cuya fluidez en frío es muy grande son muy poco empleados. Existen varias sustancias plásticas que sufren variaciones importantes de volumen debido a las fuerzas que soportan. Burn ha realizado experiencias sobre fluidez en frío de algunos plásticos. Midió el porcentaje de decrecimiento en la altura de un cubo de 12 mm., sometido durante 24 horas a 100°C entre dos platos con una carga de 450 kilogramos. Obtuvo para los plásticos fenólicos 0,4 por ciento, para los vinílicos 1 a 32 por ciento y para el poliestireno, de 1 a 22 por ciento.

Fuente Consultada:
LA RAZÓN 75 AÑOS – 1905-1980 Historia Viva – Los Plásticos
La Enciclopedia del Estudiante Tomo 07 Física y Química Los Plásticos
Revista TECNIRAMA La Enciclopedia de la Ciencia y La Tecnología N°28

Recursos Naturales de Santiago del Estero Produccion Agropecuaria Ganaderia

PRINCIPALES RECURSOS NATURALES DE SANTIAGO DEL ESTERO:
Santiago del Estero
Introducción

El Producto Bruto Geográfico (PBG) provincial representa alrededor del 0,8% del PBl nacional, ya que es una de las provincias de menor desarrollo relativo del país. El PBG provincial está conformado en un 7% por el sector primario, 15% por el secundario y 78% por el terciario.

Dentro de este último, el 24% corresponde al sector público. La contribución del sector público provincial en el valor agregado supera la duplicación del promedio nacional (11 %). La estructura productiva de la provincia se basa en la producción primaria, especialmente en los sectores agria-ganadero y forestal, dentro de los cuales se destacó, durante la última década, la actividad algodonera.

La expansión experimentada en ese periodo, la constituyó en la principal actividad productiva no solo por la magnitud de su valor agregado, sino también por su importancia en el comercio exterior provincial y sus eslabonamientos con el sector industrial. Sin embargo, en los últimos años, dicha actividad está siendo desplazada por la creciente importancia del cultivo de la soja.  El sector manufacturero provincia! tiene escaso desarrollo y la principal actividad industrial es si desmotado de algodón. El valor agregado agropecuario está generado, en su mayor parte, por un reducido número de actividades. Entre estas las de mayor importancia son: algodón, soja, maíz, hortalizas (principalmente la cebolla) y la ganadería.

Producción agropecuaria y agroindustrial

La agricultura de esta región está totalmente condicionada por la disponibilidad del recurso hídrico, ya que gran parte de la provincia es semiárida, lo que implica que la demanda de agua solo es satisfecha por la captación de aguas superficiales o de pozo para riego.

En la provincia se diferencian las siguientes áreas de agricultura bajo riego, de acuerdo con el estudio de Moscuzza et al. (2003):

• El sistema del río Dulce, que abarca casi 300.000 ha, cuya producción se concentra cultivos frutihortícolas de gran importancia dentro del país, especialmente melón, cetolt5; batata, sandía, tomate, zapallo, lechuga, y con menor relevancia, algodón, alfalfa. El maíz, sorgo y pasturas. El área es, desde el punto de vista agrícola, económicamente activa, pero no puede extender su superficie cultivada ya que la cantidad de agua utilizadas para riego es limitada. La unidad económica está determinada en 25 has.

Zona de riego del río Sedado: el área explotada es de casi 20.000 has y se desarrollan cultivos de algodón, alfalfa y maíz.

Zona de riego del ría Horcones y Urueña: los ríos del área se caracterizan por ser estacionarios, por lo que solo tienen caudales aprovechables en periodos cortos que, la mayoría de las veces, favorecen a los cultivos estivales. Los principales cultivos de esta zona son el poroto y el garbanzo y, desde hace algunos años, se ha expandido el cultivo de soja. La superficie con explotación bajo riego se calcula en unas 4.000 has.

Subzona de riego con aguas surgentes que se encuentra entre los 120-450 m de profundidad.  Las unidades de producción ocupan más de 100 has. Los principales cultivos son: soja,  sorgo granífero, girasol, comino y cultivos forrajeros.

El área de agricultura de secano comprende la región sudeste de la provincia (límite con Santa Fe) y parte de la zona norte. Donde se dan precipitaciones estivales, se produce sorgo forrajero y  granífero, además se cultiva maíz, girasol y cultivos forrajeros. En donde las precipitaciones son menores, nos encontramos con cultivos de doble propósito, como el sorgo granífero, que en buenas condiciones climáticas se cosecha y si no se utiliza como pastura para el ganado, ;;

ALGODÓN

La expansión experimentada a mediados de la década del noventa, producto del fuerte aumentó de los precios internacionales, transformó a este cultivo en la principal actividad económica de la provincia de Santiago del Estero es la segunda provincia productora de algodón país, luego del Chaco.

La mayor parte de la producción algodonera se localiza en la zona oriental de la provincia, bajo condiciones de secano. Las nuevas explotaciones radicadas en esta zona tuvieron su  origen en la expansión de los productores chaqueños. En la región central se realiza el cultivo riego con mejores rendimientos en relación con los rendimientos promedio de la provincia.

Las inversiones en nuevas plantas o maquinaria incrementaron la capacidad de desmote provincial en los últimos años en un 30% aproximadamente. Aunque la mayor parte de la producción de algodón sale de la provincia ya sea en bruto o como fibra, en la provincia existen tres líricas de hilados de algodón. En 2004 se exportó fibra de algodón por un valor de casi 3 millones de dólares e hilados de algodón por casi 8,4 millones de dólares.

SOJA

Su cultivo se localiza principalmente en el área de secano y ha experimentado un significativo crecimiento en los últimos años: entre 1993 y 2004 la superficie sembrada se multiplicó casi por nueve, alcanzando casi 710.000 has sembradas, es decir el 57% de la superficie cultivada en la provincia.

La tendencia ha sido la de sustituir algodón por soja, por lo que la soja se transformó en si principal cultivo de la provincia. Los rendimientos promedio se acercan a los 2.000 Kg./ha y están un poco por debajo del promedio nacional. Santiago del Estero no cuenta con plantas procesadores de soja; por lo tanto, la producción se destina a la exportación o a otras provincias para su industrialización, especialmente, Santa Fe. La soja fue el principal producto de exportación de la provincia, que en 2004 alcanzaron a los 67,2 millones de dólares.

CEREALES

El maíz es el tercer cultivo en importancia provincial, con casi el 10% del área sembrada total. Las exportaciones en 2004 fueron de 34,5 millones de dólares, constituyéndose en el segundo producto de exportación de la provincia.

Los rendimientos están en el orden de los 4.000 Kg./ha en la zona de riego y en los 3.000 Kg./ha en secano, siendo el promedio nacional para la presente década de 4.400 Kg./ha.

La superficie sembrada con trigo tuvo un fuerte incremento desde fines de la década de! noventa, pasando de superficies no superiores a las 40.000 has en 1999, hasta llegar a las 184.000 has en 2004. E! trigo es el tercer producto de exportación con 26,5 millones de dólares en 2004.

El cultivo de sorgo en la provincia representó, en el 2004, el 6% del total de la superficie sembrada provincial, alcanzando un volumen de, aproximadamente, 240.000 toneladas. Esta actividad se desarrolla en forma conjunta con la ganadería, debido a su utilización como alimento para ganado. La producción se destina, en su mayor parte, al mercado interno para su uso como forraje y como insumo en la producción de alimentos balanceados y, en menor medida, para la exportación.

HORTALIZAS

Como se explicó, la producción hortícola se desarrolla en el área de riego de! río Dulce, culos departamentos de La Banda, Robles y Capital. Los principales cultivos son, entre otros, cebolla, batata, cucurbitáceas (zapallos, sandía y melón), tomate y maíz dulce. Normalmente, la producción se destina a los mercados locales y al Mercado Central.

La disponibilidad de riego y las condiciones climáticas de la zona permiten que buena parte de estos productos lleguen al Mercado Central como “primicia” (es decir, se comercializa antes que la mayor parte de la oferta, lo que le da una ventaja). La principal hortaliza que se produce en la provincia es la cebolla y la provincia aporta aproximadamente el 17% de la producción nacional.

GANADERÍA

Predomina la ganadería vacuna y, en menor medida, la caprina. La explotación ganadera se concentra principalmente en la franja oriental de la provincia, donde las condiciones climáticas son más favorables para su desarrollo. A principios de la presente década, las existencias bovinas fueron de alrededor de un millón de cabezas, lo que significa el 45% de las existencias vacunas del NOA.

En su gran mayoría, las explotaciones están dedicadas a la cría y su destino principal son las ventas de ganado en pie a otras provincias y, en menor medida, a la exportación.

Mapa Económico de Santiago del Estero

Fuente Consultada:
ARGENTINA , una visión actual y prospectiva desde la dimensión territorial
Juan Alberto Roccatagliata
Trabajo de Albina L. Lara.

LOS PAÍSES PETROLEROS La Explotacion Mundial del Petroleo

LOS PAÍSES PETROLEROS
La Explotación Mundial del Petróleo

Aquellos países que posean recursos del combustibles fósiles en sus subsuelos, es decir cuenten en sus territorios con estructuras geológicas favorables para la explotación petrolera, son los denominados países petroleros. Los mismos poseen abundantes recursos lo que hace que su rendimiento sea positivo, debido a los bajos costos de extracción del petróleo y además por la baja proporción de impurezas que tiene.

Estados Unidos y Rusia cuentan con los pozos más antiguos que son explotados, con una producción media y con costos relativamente altos. En cambio, los casos a los que nos referimos, son yacimientos puestos en marcha recientemente y lo que se extrae del mismo día a día es superior a los de los dos países mencionados anteriormente.

El Medio Oriente es el lugar que concentra las mayores reservas del mundo, es por esto que allí se sitúan los principales productores y exportadores del petróleo del mundo. Ellos junto a otros importantes productores constituyeron hacia 1960, la OPEP (Organización de Países Exportadores de Petróleo). El objetivo principal de esta estructura es proteger los intereses de los países y juntos enfrentar correctamente a aquellos otros que forman parte del mercado del petróleo. Por ejemplo, una de sus primeras decisiones como grupo fue orientarse hacia evitar nuevas bajas en el precio del recurso llevadas a cabo por las empresas que hasta el momento dominaban el mercado mundial.

Actualmente, los países que integran la organización son: Arabia Saudita, Argelia, Emiratos Árabes Unidos, Indonesia, Irak, Irán, Kuwait, Libia, Nigeria, Qatar y Venezuela. Los mismos poseen alrededor del 80% de las reservas de petróleo del mundo, realizando el 43% de la producción total y el 51% de las exportaciones de petróleo.

Sin embargo, cabe aclarar que México, Rusia y Noruega no forman parte de la OPEP pero son productores y exportadores de este combustible fósil.

cuadro petroleo en el mundo

Reservas de Petroleo en el Mundo

Los 10 principales productores de petróleo (1978)

1.URSS
Ei gigante soviético era el mayor productor de petróleo del mundo, con casi 12 millones de barriles por día.

2. Estados Unidos
Los 9 millones de barriles diarios convertían la potencia norteamericana en el segundo productor de crudo mundial.

3. Arabia Saudita
El país árabe seguía de muy cerca a EE.UU. y alcanzaba casi su misma producción, a pesar de caer ese año.

4. Irán
Producía más de 5 millones de barriles diarios. La interrupción de la producción en 1979 provocará una crisis energética. Los 3 millones de barriles diarios hacían del rival de Irán otro importante actor en la economía internacional.

6.Venezuela
El país latinoamericano era un productor notable y miembro de la OPEP, con casi 2,5 millones de barriles diarios.

7. Kuwait
Producía más de 2 millones de barriles diarios y oscilaba entre el sexto y el séptimo puesto del ranking mundial.

8. China
La producción de petróleo del país asiático era de alrededor de 2 millones de barriles diarios.

9. Nigeria
Con casi 2 millones de barriles diarios seguía teniendo una producción notable, a pesar de que ésta había disminuido.

10. Emiratos Árabes Unidos
Se acercaba a Nigeria en la cantidad de barriles y estaba siempre entre los mayores productores.

Los países del Golfo Pérsico

A pesar de ser heterogéneo, el mundo árabe posee un rasgo común, y es su cultura modelada por el Islam. Esta junto a la lengua árabe, se desarrollan por el extenso territorio árido y abundante de recursos energéticos como el petróleo y en menor cantidad de gas.

Los países del Golfo presentan características diferentes en cuanto a sus actividades económicas que realizan. Pero lo que se rescata es una modernización económica fundada en la explotación petrolera y los enormes recursos financieros que la misma les proporciona.

Actualmente este “oro Negro”, posee un lugar primordial en la economía mundial, ya que se pueden obtener una gran variedad de productos derivados de el, como ser plásticos, combustibles, productos farmacéuticos, cauchos, sintéticos, entre otros. Generando una revolución en los medios de transporte de mercancías y personas y lo más importantes creando millones de puestos de trabajo.

Hasta el año 1973, el consumo de este recurso había crecido enormemente, hasta que en ese mismo año estalla la “crisis del Petróleo”. A consecuencia del mismo, las diferentes naciones desarrolladas debieron intensificar la búsqueda de nuevos yacimientos y mejorar la utilización de este recurso.

La importancia del petróleo en Medio Oriente, se explica a través de la cantidad de reservas existentes en esta región, algo así como más de la mitad del total de reservas mundiales, con una duración estimada de 100 años. A tal punto que su importancia estratégica es fundamental.

Sin lugar a dudas que se dieron condiciones naturales favorables para la formación de yacimientos de petróleo en esta área del Golfo Pérsico. Por ejemplo una de las condiciones fue una larga y continua sedimentación en las áreas del antiguo mar de Thetis, que originó la formación de petróleo sobre rocas de diferentes edades y naturaleza, entre otras.

Por otra parte, el desarrollo de esta actividad petrolera trajo consecuencias económicas para la región. Por ejemplo, fue necesaria la creación de infraestructura para llevar a cabo dicha actividad, construyéndose oleoductos, estaciones de bombeo, terminales de carga, carreteras, ferrocarriles y puertos.

Pero lo más importante de las consecuencias que se produjeron, fue el gran crecimiento de la riqueza generado por este recurso. Tal es así que las enormes sumas ingresadas en los países árabes fueron destinados a la compra de material militar, ya que la posesión de este recurso produjo numerosos conflictos en la región; se concretaron proyectos nacionales, comos ser refinerías propias; el desarrollo de numerosas ramas industriales y proyectos agrarios, entre otros.

Entre los mayores compradores de petróleo se destaca Europa Occidental, porque consume más de la mitad de la producción mundial. Otro es Japón, que importa un 15% de la producción de todo el mundo. Y lo más curioso es la situación de Estados Unidos, ya que importa petróleo y exporta productos elaborados a partir de él.

Como mencionábamos anteriormente, los países del Golfo cuentan con abundantes recursos financieros, provenientes de la extracción, refinación y posterior exportación del petróleo. Sin embargo, estos capitales no son distribuidos equitativamente entre la población de la región; porque se evidencia en la existencia de miseria en las extensas áreas rurales desérticas, en contraposición de las prosperas y modernas ciudades del Golfo.

Profesora de Geografía: Claudia Nagel
Fuente: Geografía Mundial y los desafíos del SXXI. Editorial Santillana. Geografía Mundial, Editorial Puerto de Palos.

El fin del eter de Aristoteles Quintaesencia llena el espacio Quinto

Durante el siglo XIX la idea de que la luz era un fenómeno ondulatorio estaba bastante afirmada. Las ondas que pueden observarse habitualmente a nivel macroscópico siempre son perturbaciones de algún medio material: las ondas de sonido son oscilaciones de las moléculas de aire, las ondas en un estanque son oscilaciones de las moléculas de agua, las ondas en una soga son oscilaciones de las moléculas que componen la soga, etc.

Por ese motivo resultó natural suponer que existía un medio material necesario para la propagación de las ondas luminosas. A este medio se lo llamó éter. Esta palabra ha tenido muchos usos a través del tiempo en explicaciones sobre la naturaleza, cuando se necesitaba postular la existencia de algún fluido que hiciera posible algún proceso (se ha hablado alguna vez de cierto éter que conduciría las sensaciones de una parte a otra del cuerpo humano).

El éter lumínico, de existir, debía tener propiedades muy particulares: ser lo suficientemente tenue como para llenar todos los espacios, incluso el interior de los cuernos transparentes o traslúcidos, y ser lo suficientemente rígido como para poder transmitir ondas de altísima frecuencia como las que conforman la luz. Los años pasaban y nadie podía diseñar una experiencia en la que se manifestara claramente la presencia del éter.

Si el éter llenaba también el espacio interestelar a lo largo de todo el Universo, esto hacía surgir una pregunta: ¿El mar de éter estaba fijo en el espacio y a través de éste se movían los astros sin perturbarlo, o cada planeta arrastraba el éter como si friera una atmósfera? La sistema de referencia absoluto respecto del cual se moverían todos los otros cuerpos. Y como la luz se propagaría a velocidad c en el éter estacionario, desde un cuerpo en movimiento, como la Tierra, se vería que la luz se mueve a distintas velocidades según lo haga en la misma dirección del movimiento terrestre, en sentido contrario o perpendicularmente.

Cuando el haz de luz viaja en la misma dirección y sentido que la Tierra, su velocidad relativa a ésta es c — y. Cuando viaja en una sentido contrario, su velocidad vista desde la Tierra es c + y.

En 1887, el físico Albert A. Michelson (1852-1931) diseíió un interferómetro y, junto con el químico Edward W Morley (1838-1923), realizó un experimento que debía mostrar la diferencia en las velocidades, vistas desde la Tierra, de dos rayos que se mueven en direcciones diferentes. Se usaban dos rayos provenientes de la misma fuente (para asegurar la coherencia), y luego de desplazarse en direcciones perpendiculares, se los hacia interferir.

La clave del experimento residía en que el patrón de interferencia debía cambiar si se rotaba el aparato con respecto a la dirección del movimiento de la Tierra.

El aparato original tenía muchos espejos para aumentar el camino recorrido por los rayos hasta unos 10 m, y así aumentar el efecto de interferencia. El dispositivo descansaba sobre una gran piedra que flotaba en mercurio.

El experimentador iba observando el patrón de franjas mientras hacía rotar lentamente la piedra. Hicieron miles de mediciones en diferentes puntos de la órbita terrestre y nunca notaron ni siquiera el mínimo corrimiento en el patrón de franjas. La orientación de los rayos de luz con respecto al movimiento de la Tierra no parecía afectar el movimiento de aquéllos. Algunos años más tarde, Michelson también investigó interferométricamente la posibilidad de que la Tierra arrastrara con ella al éter y demostró que esto tampoco era posible. La teoría del éter fue abandonada.