La Eugenesia

Etapas en la Digestión de los Alimentos Cuerpo Humano

Etapas en la Digestión de los Alimentos

Sahemos que los alimentos realizan en nuestro organismo importantísimas funciones: aportan los elementos necesarios para la formación y desarrollo de los innumerables compuestos orgánicos que lo integran y suministran las calorías necesarias para la vida, en una serie de procesos químicos que se efectúan, muchos de ellos, en la intimidad de las células.

Pero nosotros no ingerimos sustancias simples, capaces de ser asimiladas inmediatamente a nuestros tejidos, sino que, por el contrario, nuestros alimentos son cuerpos compuestos, formados por una serie de elementos agrupados de distinta manera, como sucede con el pan, la carne, etc.

Ahora bien, este pan, esta carne, no se incorporan a nuestro cuerpo según se ven, sino que son desmenuzados, desintegrados paulatinamente hasta sus componentes más simples, que, entonces sí, son absorbidos e incorporados a nuestros propios tejidos, adonde son llevados por la corriente sanguínea.

Todos estos procesos de orden físico-químico, que llevan a la destrucción de la materia constitutiva de los alimentos hasta sus componentes básicos asimilables y su ulterior absorción, constituyen, en resumen, la digestión.

Ésta se lleva a cabo en el aparato digestivo, por medio de un conjunto de compuestos, casi todos ellos fermentos, que forman parte de los jugos digestivos elaborados por una serie de glándulas, que los vuelcan con sus secreciones, a lo largo del citado aparato, desde la boca hasta el intestino. Este proceso es común a los tres principales componentes de los alimentos: grasas, hidratos de carbono y las denominadas proteínas.

¿QUÉ ES  EL ALIMENTO?
Es necesario recordar que los alimentos se componen de tres clases de sustancias fundamentales:
1) hidratos de carbono o glúcidos: azúcares, almidón, celulosa, etc., contenidos sobre todo en los vegetales, en el pan y en las pastas;
2)
grasas o lípidos: contenidos en la manteca, aceites, etc.;
3) proteínas o prótidos: se encuentran en la carne, huevos, quesos, etc. Se hallan, además, sustancias inorgánicas, agua y sales minerales, necesarias a nuestro organismo.

ESQUEMA DEL APARATO DIGESTIVO

Etapas en la Digestión de los Alimentos

ETAPAS DE LA DIGESTIÓN

1) DIGESTIÓN BUCAL. Los dientes trituran los alimentos, mientras las glándulas salivales vuelcan su secreción, la saliva, en la boca. Esta saliva, por medio de un fermento, la tialina, transforma el almidón en un azúcar simple, la maltosa. Además embebe los alimentos y lubrica la mucosa bucal.

2) DE LA BOCA AL ESTÓMAGO. El alimento masticado, que origina la formación del bolo alimenticio, es deglutido y, por medio del esófago, llega hasta el estómago.

3) LA DIGESTIÓN GÁSTRICA. El jugo gástrico segregado por las glándulas de la mucosa del estómago posee dos integrantes fundamentales en la digestión: el ácido clorhídrico y la pepsina.

corte esquematico del estómago

El primero disuelve ciertos elementos (fibras conjuntivas, nucleoproteínas, etc.) y crea un medio cuya acidez favorece la acción de la segunda, que es un poderoso fermento   actuante   sobre   las   proteínas,   desdoblándolas en cuerpos más simples: peptonas y albumosas. La acción de aquéllos resulta favorecida por los movimientos que el estómago imprime a la masa alimenticia permitiendo primero su mezcla y, luego, su progresión hacia el intestino.

 4) DEL ESTÓMAGO AL INTESTINO. Después de un tiempo, que varía entre 1 y 6 horas, según los alimentos, se ha completado la digestión gástrica y el bolo alimenticio ha sido transformado en una papilla blanquecina llamada quimo. El estómago, entonces, contrayéndose, lo envía hacia el intestino, pasando a través de un anillo muscular a modo  de válvula,   llamado píloro   (válvula gastrointestinal).
 5) LA DIGESTIÓN INTESTINAL. Cuando el quimo llega a la primera porción del intestino, el duodeno, se inicia la digestión intestinal, mediante la acción de tres jugos, que son los siguientes:

1) Jugo duodenal o intestinal: es producido por las células de la pared del duodeno y posee varios fermentos: erepsi-na, que actúa sobre las peptonas desdoblándolas en aminoácidos; lipasa, que desdobla las grasas; maltasa, que tranforma la maltosa en glucosa; invertasa, que desdobla la sacarosa en fructosa y glucosa.

2) Jugo pancreático: segregado por el páncreas y llevado al duodeno por los conductos pancreáticos (de Wirsung y de Santorini), este importantísimo jugo digestivo actúa sobre los tres tipos de sustancias que componen los alimentos, por medio de cuatro fermentos que son:
a) tripsina: actúa sobre las peptonas y albumosas, transformándolas en aminoácidos asimilables;
b) lipasa, desdobla las grasas, ayudada por la bilis y las transforma en ácidos grasos y glicerina, fácilmente absorbibles por el intestino;
c) amilasa, completa la acción de la saliva y jugo intestinal, desdoblando el almidón en glucosa;
d) maltasa: desdobla la maltosa en glucosa.

3) Bilis: segregada por el hígado y almacenada en la vesícula biliar, cuando llega al intestino cumple importantes funciones: emulsiona las grasas, favorece la absorción de ciertos ácidos, excita los movimientos del intestino, etcétera.

 6) LA ABSORCIÓN INTESTINAL. Después de ser, como hemos visto, profundamente transformada, el quimo se convierte en una masa muy fluida, a la cual se le da el nombre de quilo. A medida que la digestión se va completando, las sustancias alimenticias, transformadas en otras capaces de ser utilizadas por el organismo, van siendo absorbidas por conducto de las vellosidades intestinales.

En toda la mucosa del intestino delgado, las vellosidades van absorbiendo el quilo, por medio de las células absorbentes que las recubren.

Las grasas pasan en parte a los vasos linfáticos y de éstos al conducto torácico que las conduce al sistema sanguíneo. En cambio, las proteínas, los azúcares y las sales penetran en los capilares; de allí pasan a la vena porta, que los conduce directamente hasta el hígado.

7) LA LABOR DE LAS BACTERIAS. En el intestino grueso es absorbida el agua; por otro lado, millones de bacterias atacan la celulosa de los alimentos vegetales, que no es alterada por los jugos digestivos, y la transforman, aunque en pequeña parte, en glucosa asimilable.
8) LA EXPULSIÓN. Finalmente la masa de sustancia, privada de todos los materiales alimenticios y de buena parte del agua, queda reducida a una pasta formada por desechos no digeribles, moco, sales y productos intestinales no asimilables, que es expulsada formando las materias fecales.

Fuente Consultada:
Enciclopedia Estudiantil Ilustrada de Lujo Tomo VII – La Digestión-


 

Concepto de Biotecnología Aplicaciones en la Salud Insulina Humana

Biotecnología: Historia, Aplicaciones en Medicina y Concepto
La técnica de lafermentación, en la cual microorganismos, como por ejemplo la levadura, convierten materias primas en productos útiles, se conoce desde los tiempos más remotos. A mediados del siglo XIX ya se producía alcohol industrial por fermentación, casi de la misma forma que la cerveza o el vino.

Y en la década de los 70, cuando el precio del petróleo crudo subió, el alcohol producido de esta forma pudo competir en algunas circunstancias con el “oro negro”. En Estados Unidos y Brasil se han construido grandes fábricas de fermentación para convertir en combustible materias vegetales, como el maíz.

La biotecnología moderna tiene sus orígenes desde hace al menos de cuarenta años, aunque tal vez haya comenzado a gestarse en el momento en que Watson y Crick describieron la estructura del ADN y, más audaces aún, arriesgaron hipótesis sobre cómo se duplicarían nuestras células o las de todo organismo vivo. Muchos años después, en 2005, Watson declaró: “En 1953, con F. Crick, creíamos que estábamos contribuyendo a una mejor comprensión de la realidad. No sabíamos que estábamos contribuyendo a su transformación”.

cadena de adn biotecnologia

Esta joven tecnología se basa en “manejar” la información genética (IG), es decir, se puede tomar un fragmento de ADN (gen) de los cromosomas de un organismo, eligiendo el que tiene los datos para fabricar una determinada proteína (por ejemplo, insulina humana), y colocarlo en otra especie (bacterias, levaduras, células vegetales, etc.) para reproducirlo y obtener dicha proteína y, fundamentalmente, producirla de manera industrial. “Manejar” la IG, además, significa controlar que un gen no funcione o que funcione, se “exprese” o no se “exprese”.

Explicación breve: La información genética que poseen los seres vivos está contenida en las moléculas del ácido desoxirribonucleico (ADN) (material de los cromosomas que están en el núcleo de cada célula). Las moléculas de ADN están formadas por una doble cadena de subunidades llamadas nucleótidos. Cada nucleótido consta de un grupo fosfato, un azúcar (deso-xirribosa) y ademas uno de los cuatro grupos químicos denominados bases nitrogenadas: Adenina (A), Guanina (G), Timina (T) y Citosina (C), la secuencia de los cuales siendo la que determina la información. Esta información está organizada en unidades discretas denominadas genes, consistentes en un segmento de ADN que contiene una información concreta, transcrita en una molécula de ácido ribonucleico (ARN) -en la mayoría de los casos de ARN mensajero-, que, posteriormente, se traducirá en una proteína. Cada especie contiene en todas sus células un conjunto de genes, característicos de especie, que se encuentran distribuidos en una, pocas o en algunos casos muchas moléculas de ADN denominadas cromosomas. Desde el año 1953 en que J. Watson y F. Crick describieron la estructura molecular del ADN, los biólogos moleculares han ido, paulatinamente, poniendo a punto técnicas que posibilitan la manipulación de los genes. El objeto de estas manipulaciones era, por un lado, obtener genes purificados por aislamiento bien a partir de los cromosomas, bien por síntesis “in vitro”, y, por otro, introducir estos genes en células receptoras, con lo que se consigue que se expresen, o sea, que funcionen de modo que se transcriban dando lugar al ARN correspondiente, y se sintetice así la proteína codificada por el gen introducido. En definitiva, lo que se pretende es que las células receptoras adquieran propiedades genéticas que antes no poseían. El conjunto de los trabajos destinados a lograr dichos objetivos constituye el campo de la ingeniería genética.

PRIMERAS APLICACIONES: Desde la época de Pasteur y, más cercanamente, a partir de la producción industrial de antibióticos y vacunas, se habla de “producciones biológicas” o “microbiología industrial” (fermentaciones para producir alimentos y bebidas, por ejemplo).

Sus productos y sus tecnologías no son para nada despreciables: pensemos en las vacunas contra el sarampión, la poliomielitis o la meningitis; en todos los antibióticos que usamos; las gamma globulinas en general y las específicas (antiRh, antihepatitis, etc.); los diagnósticos para detectar portadores del virus del sida o de la enfermedad de Chagas u otras enfermedades infecciosas, o los test de embarazo. No sólo son de gran utilidad médica, sino que permitieron crear una muy fuerte industria biológico-farmacéutica.

Mediante la fermentación se puede producir también cierto número de ácidos. El vinagre (ácido acético diluido) es uno de los ejemplos más importantes. El ácido cítrico, muy usado en comidas y bebidas, se producía originariamente a partir de frutas cítricas, hasta que dominó el mercado un proceso de fermentación desarrollado por la compañía estadounidense Pfizer en la década de los 20. Pfizer todavía produce la mitad de las 250.000 toneladas de ácido cítrico que se utilizan anualmente. Otros productos químicos que se pueden fabricar mediante la fermentación son la glicerina, la acetona y el glicol de propileno.

La fermentación ha demostrado también su utilidad en la industria farmacológica. Tras el descubrimiento del antibiótico de la penicilina en 1928 ), durante la década de los 40 se desarrollaron métodos de fermentación a gran escala para producir el fármaco comercialmente. En la actualidad, se fabrica de esta forma un gran número de medicamentos, así como otros productos bioquímicos; por ejemplo, enzimas (catalizadores bioquímicos), alcaloides, péptidos y proteínas.

La técnica de la ingeniería genética ha aumentado de forma considerable la gama de productos posibles. Alterando la estructura genética de un microorganismo se le puede obligar a producir una proteína muy distinta de la que produciría naturalmente. Por ejemplo, si la parte corta del ADN responsable de la producción de la hormona del crecimiento en los humanos, se inserta en células de cierta bacteria, la bacteria producirá la hormona humana mientras crece.

Y entonces estará en condiciones de ser extraída y utilizada para tratar a niños que de otro modo no crecerían correctamente. Los mismos métodos se pueden emplear con objeto de producir insulina para diabéticos. También las ovejas han sido tratadas genéticamente para que produzcan en su leche un agente coagulante para la sangre humana.

El Lic. Alberto Diaz dice en su libro “Biotecnología por todos lados”

“La genética es el estudio de la herencia y sus mecanismos; fue utilizada de manera empírica a lo largo de la historia para obtener mejores “razas” de animales y variedades vegetales para la alimentación humana. Pero desde la década de 1950 las investigaciones en ciencias de la vida fueron muy intensas y llegaron a desentrañar los mecanismos moleculares de replicación o duplicación de macromoléculas, y a determinar estructuras de proteíñas, sus biosíntesis y el código genético, lo que llevó a entender y poder dominar la información genética.

Con estos antecedentes, el nacimiento de la ingeniería genética, a principios de la década de 1970, permitió transferir “genes” (información genética contenida en una secuencia de moléculas químicas perfectamente conocidas) de una especie a otra, sobre lodo a bacterias, pero también a células animales y plantas, para ser usados en la fabricación de nuevos productos para la salud 0 la alimentación, o en nuevos materiales, lo que sentó las bases de una nueva industria.”

La importancia de esta tecnología es que permite modificar : nanismos, células o tejidos insertando o sacando los genes que se desea usar. Como los genes tienen la información para las diversas proteínas que se encuentran en las células, es posible hacer que un organismo seleccionado produzca una determinaba proteína o metabolito (molécula) y que adquiera una característica deseada.

Si se compara la manipulación genética que los criadores de animales y de plantas vienen realizando desde hace miles de años, la diferencia más importante que esa modificación tiene con la ingeniería genética es que esta última permite el pasaje de genes específicos (los que se han seleccionado) en menor tiempo y, también, posibilita la transmisión de información de una especie a otra (inserción de genes de microorganismos en plantas, de humanos en animales, de humanos en bacterias, etc.). Básicamente, esta última característica es la que hace que sea tan apreciada por algunos y muy rechazada por otros.”

El primer biofármaco (es decir un fármaco biológico fabricado por la biotecnología) que llegó a venderse en los mercados internacionales fue la insulina humana.. Las novedades que trajo la tecnología del ADNr para su uso en la industria farmacéutica se pueden ver en el cuadro de abajo que con adaptaciones, se aplica al resto de los sectores productivos.

Logros e importancia industrial y científica de la biotecnología

  • Fabricar proteínas humanas para usar como medicamentos.
  • Fabricar proteínas humanas a escala industrial; para ello, sólo se requiere contar con las estructuras industriales indispensables y con la bacteria (o célula u organismo) que contenga el gen necesario.
  • Fabricar proteínas humanas con medianos o bajos costos de producción.
  • Seguridad y/o bioseguridad en la elaboración, es decir, que esté libre de contaminantes (virus, priones).
  • Recursos humanos: gente educada (no sólo que no Insulte) y formada en estas nuevas tecnología.
  • Facilita la Investigación blomédica con las nuevas moléculas (interleuqulnas, células madre, eritropoyetina, AcMc, receptores celulares, etc.).

“La insulina es utilizada para el tratamiento de la diabetes desde hace unos ochenta años, pero hasta 1982 se la fabricaba a partir del páncreas de los cerdos y de los bovinos (cosa que se sigue haciendo y no está nada mal). Sería maravilloso poder producir insulina humana en cantidades que no dependieran de la existencia de cabezas de ganado con que cuente un país, con la ventaja de que, al ser humana (la misma especie), la resistencia a los tratamientos será muy baja o inexistente, a lo que se agrega que se trata de un producto más seguro, ya que no se introduce el riesgo de un posible virus o partícula infecciosa animal.

Hoy en día cualquier biólogo puede poner un gen heterólogo (de otra especie) en una bacteria o en células animales o vegetales y fabricar un “transgénico” que podrá producir insulina u otra proteína para tratamientos terapéuticos o para estudios e investigaciones.También, obtener proteínas que sirvan para vacunar o para generar enzimas destinadas a fabricar mejores jabones para la limpieza de la ropa o de la vajilla. Pero, en verdad, ¿cualquier biólogo puede hacerlo?

Una cosa es hacer un experimento en el laboratorio de enseñanza o de investigación y otra es hacer un medicamento a escala industrial y venderlo en todo el país. Para que esto fuera exitoso se necesitó una colaboración muy estrecha entre universidades y nuevas empresas de biotecnoloría, las cuales luego tuvieron que negociar con las grandes productoras y comercializadoras de medicamentos, la gran industria irmacéutica internacional. Hoy ese modelo sigue funcionando riendo exitoso también en la Argentina.”

PRINCIPALES BIOFÁRMACOS EN EL MERCADO ACTUAL

Producto Empresa (Laboratorio) Indicación Año Salida a Venta

HEMODERIVADOS Kogenate (rFactorVIll) Genentech-Miles Hemofilia A 1992


TROMBOLÍTICOS Activase (rTPA) Genentech Infarto agudo 1987


HORMONAS EH Lilly Diabetes mellitus 1982
Humulin (rh Insulina)


ERITROPOYETINA (EPO)
Epogen (rh EPO) Amgen-J&J Anemia 1989


INTERFERONES
Roferón A (rh IFN alfa2a) Roche Oncología 1986
(tricoleucemla)
Intrón A (rh IFN alfa2b) Schering Plough Oncología 1986
(tricoleucemia)


VACUNAS
Recombivax HB Merck &Co. Hepatitis B 1986
Gardasil y Cervarix Glaxo SK y Merck Cáncer cervical 2007
por Papilloma virus


FACTORES
Neupogén (rh G-CSF) Amgen Inmunodeficiencia 1991


AcMc OKT3 Ortho Biotech Trasplantes (evita rechazo) 1986
Herceptín Genentech Cáncer de mama 1999
metastásico

CD30 Seattle Genetics inc. Linfoma de Hodgkin 2011


Inmunoglobulina Rare Disease Therap. Picadura de escorpión 2011
Antiveneno


ETICA DE LA MANIPULACIÓN GENÉTICA
Problemas Actuales

En la actualidad, el sector comercial (dedicado a la producciónde aliemntos) se ha convertido en el motor del desarrollo de las ciencias aplicadas. Muchas empresas han aportado grandes sumas de capital para financiar proyectos de investigación cuyos resultados pueden proporcionarles beneficios nada desdeñables.

Nos guste o no, éste es el sistema actual y la agricultura no es ajena a la situación. Algunas compañías especializadas en la comercialización de semillas, abonos y demás productos agrícolas han debido enfrentarse a agresivas campañas contra la introducción de variedades modificadas genéticamente. Una de las más importantes, Monsanto, ha sufrido los ataques de numerosos grupos de activistas que han llegado a destruir campos de cultivo experimentales.

El problema, pese a lo que pueda parecer a simple vista, no es nuevo: hace casi dos siglos, en 1815, un grupo de trabajadores textiles ingleses, capitaneados por un tal Ned Ludd, entraron por la fuerza en una fábrica para destruir los telares mecánicos que acababan de instalarse. El triste suceso dio lugar a una corriente de pensamiento contraria al desarrollo tecnológico que, en homenaje a su primer héroe, se llamó ludismo, por lo que aquellos que se oponen a la aplicaión de la biotecnología, le llama: bioludista. Como puede verse, las nuevas tecnologías no siempre son aceptadas de buen grado.

Manipulación genética
En rigor, ¿qué debe tenerse en cuenta a la hora de hablar de alimentos modificados genéticamente? Para empezar, se debe partir del hecho que, desde el origen de la agricultura, el ser humano a intentado obtener mejores variedades mediante procedimientos de selección y cruce que, sin saberlo, entrañaban importantes cambios en la estructura genética de las especies.

En la actualidad, las técnicas empleadas, por muy artificiales que puedan parecer, son tan naturales como las antiguas -aunque un poco más sofisticadas-, si bien permiten obtener resultados con mayor rapidez y seguridad. Las nuevas técnicas de manipulación genética pueden acelerar el proceso y eliminar en buena parte el azar, lo cual redunda en una selección mucho más cuidadosa de los rasgos que se desean potenciar. Aun así, el producto final -sea fruta, verdura, legumbre o grano- no guardará demasiadas diferencias en comparación con otras variedades obtenidas por procedimientos tradicionales.

A lo largo de varios siglos, granjeros y agricultores han recurrido a la selección y el cruce para mejorar las características de las plan-las. La naturaleza evoluciona con una enorme lentitud: los cambios se desarrollan a lo largo de millones de años y el ser humano no po-día permitirse aguardar tanto tiempo.

La configuración de un fenotipo determinado altera el genoma de una planta, a la que se obliga a evolucionar en una dirección concreta. Una tarea de estas características depende en buena parte de la capacidad del granjero o el agricultor, quien debe escoger los mejores ejemplares y mantenerlos en un entorno favorable para que se reproduzcan de manera satisfactoria. Por desgracia, no siempre se obtienen li is resultados deseados y a menudo, la introducción de nuevas carac-lerísticas en una variedad se convierte en una tarea casi imposible.

I,a ingeniería genética permite llegar a extremos insospechados. Gracias a las modernas técnicas de manipulación, por ejemplo, es posible insertar genes nuevos en un genoma antiguo o completamente ajeno.

En la actualidad, el método principal para introducir genes nuevos en el genoma de plantas se basa en el empleo de bacterias como transmisores.

El Agrobacterium tumefaciens es una bacteria patógena que causa tumefacciones cancerosas en algunas especies vegetales al transferir parte de su ADN al de su anfitrión. Una vez dentro de la célula huésped, el nuevo segmento de ADN se desplaza al núcleo, donde se integra en el genoma.

La expresión de los genes nuevos (en condiciones naturales, los oncogenes que producen cáncer) da lugar a un crecimiento celular descontrolado y el consiguiente tumor. La ingeniería genética se ha valido de este mecanismo natural sustituyendo los genes cancerosos por otros que se consideran más interesantes. De ese modo, la bacteria, al transferir parte de su ADN, los inoculará en el núcleo de la célula.

Una vez insertados, los transgenes pueden dotar a las plantas de nuevas características, como la resistencia a herbicidas o patógenos, o bien la capacidad de producir determinadas sustancias que actúen como fármacos o incrementen las características nutritivas de la planta. Hasta hace relativamente poco, se pensaba que sólo los Agrobacterium eran capaces de desarrollar el proceso que se conoce como transferencia horizontal de genes. En la actualidad, se ha descubierto que existen otras bacterias capaces de hacerlo.

Y eso, más o menos, viene a ser todo: una bacteria que causa tumoraciones en las plantas inyecta sus propios oncogenes en el genoma de la planta receptora. En lugar de ello, los seres humanos hemos encontrado la manera de sustituir esos genes cancerígenos por otros que no sólo mantienen viva a la planta, sino que pueden resultar beneficiosos en un futuro inmediato. ¿Hasta qué punto puede considerarse este método como antinatural? ¿Cabe pues considerar los alimentos modificados genéticamente como un producto artificial?

La ciencia nos ha permitido alejarnos de nuestros antepasados homínidos así como del resto de los primates. Con todo, no cabe duda de que, si alguien quiere comportarse como un mono, nadie se lo prohibe. Algunos de los sectores más radicales del ecologismo predican precisamente la vuelta a la naturaleza. Sin embargo, no estaría de más explicar a algunos de sus representantes que un déficit grave de betacaroteno puede causar una ceguera irreversible a un niño de diez años pero que, gracias a la biotecnología, se ha desarrollado una variedad de arroz que evita el problema.

Fuente Consultada:
Guinness Publish Limited Fascículo N°21 – La Nación
Biotecnología Por Todos Lados Alberto Díaz – Editorial Siglo XXI
Las Mentiras de la Ciencia Dan Agin

Modelos de Vida Sacrificadas y de Coraje Injusticias de la Vida

La Chica de Qatif – Una Condena Brutal I
Adriana Macias – Otro Ejemplo de Superación Humana
Amina Lawal – Una Condena Brutal II
Ramon Sampedro – Una Atroz Espera
Qian Hongyan – La Nena “Pelota de Basquet”
Dede Koswura – “El Hombre Árbol
Mario Capechi – De Mendigo a Premio Nobel
Joseph Merrick – El Hombre Elefante
Pistorius Oscar – El Atleta Sin Piernas
Nguyen Thi Phuong Envejecimiento Prematuro

EJEMPLOS DE VIDA: Coraje

“El coraje es el precio que exige la vida para garantizar la paz.”
AMELIA EARHART

El coraje consiste en descubrir la fuerza interior y el valor que se requieren siempre que uno ha de enfrentarse al peligro, a la dificultad o a cualquier oposición. El coraje es la energía que subyace en todas las grandes acciones y la chispa que enciende los primeros pasos del bebé hacia su crecimiento. Reside en las profundidades de cada uno de nosotros, listo para entrar en el juego en esos momentos en que necesitas progresar rápidamente o abrirte paso frente a lo que parecen barreras infranqueables. Es la fuerza intangible que te empuja hacia delante en tu viaje.

Se necesita valor para aceptar la idea de que lo que haces con tu vida depende de ti, y también para obrar conforme a tus necesidades. Puedes aprender cómo acceder a tu coraje cavando muy hondo dentro de ti y accionando cualquier conexión espiritual que te sostenga. ¿Qué te mueve a actuar? Para algunos es la creencia en un poder superior, para otros puede ser la meditación o una música inspiradora, y para algunos otros quizá la gran literatura pasajes de obras espirituales. Independientemente de cual sea tu conexión con la fuente divina, cultívala, pues tendrás que recurrir a ella en esos momentos en los que .el coraje sea necesario.

Hay veces, por supuesto, en que tal vez seas incapaz de localizar esa reserva de valentía almacenada en tu interior. En esos casos es cuando necesitas buscar el apoyo de los seres queridos que te rodean. Tú puedes tomar prestado de estas personas, que creen ciegamente en ti, el ánimo que necesitas para superar los momentos de amnesia temporal en los que te has olvidado de tus propias habilidades y de tu tenacidad.

El coraje se aprende en el momento que, impulsado por la fe, entras en acción. Recuerdo cuando aprendí a bucear siendo una niña. Durante semanas estuve sentada en el borde del trampolín de la piscina municipal intentando hacer acopio del coraje necesario para hundir la cabeza en el agua. Mi padre estuvo al lado de la escalera durante tres sábados dándome ánimos para hacerlo. Él me enseñaba una y otra vez cómo tenía que hacerlo, pero yo aún tenía miedo. Era un temor sin sentido, porque yo sabía que no me haría daño y además tampoco me importaba mucho si lo hacía mal. Supongo que simplemente tenía ese miedo que sobrecoge a menudo a los humanos cuando están a punto de sumergirse, ya sea en sentido metafórico o I itera I, en lo desconocido.

Finalmente llegó el día en que me di cuenta de que podía mentalizarme a mi gusto y recibir el apoyo incondicional de mi padre, pero que en última instancia era yo quien tenía que decidirme y lanzarme al agua. Subí la escalera una vez más, permanecí de pie en ese borde del trampolín que ya me era tan familiar, recé una pequeña oración y me tiré. No fue una inmersión perfecta, pero era indiscutiblemente una inmersión. No sonaron trompetas celestiales anunciando la gloria de mi logro, pero en aquel momento aprendí la valiosa lección del coraje, que ha permanecido en mí desde entonces.

¿Cuáles son los miedos de tu camino? Sácalos a la luz para que pierdan su poder sobre ti. Lo único que hacen los temores, tanto los reales como los imaginarios, es impedir tu desarrollo. Destiérralos para que puedas aprender la lección del coraje y crear una vida acorde con tus deseos.

Fuente Consultada: El Juego de la Vida Chérie Carter Scott

Inventos de Edison Bombilla Eletrica Fonografo Historia y Evolución

Thomas Alva Edison es uno de los más famosos inventores de América: perfeccionó el telégrafo, el teléfono, inventó el mimeógrafo, aportó al cine y la fotografía, para, finalmente, gravar su nombre en el primer fonógrafo. Fue responsable de importantes cambios en la ciencia.

Sus inventos creados han contribuido a las modernas luces nocturnas, películas, teléfonos, grabaciones y CD’s. Edison fue realmente un genio. Edison es famoso por su desarrollo de la primera ampolleta eléctrica.

El fonógrafo de tinfoil fue la invención favorita de Edison. Hacia 1877, inventó la “máquina que habla” por accidente, mientras trabajaba en telegrafía y telefonía; pero el fonógrafo no salió a la venta sino hasta 10 años después. También trabajó en una máquina para grabar mensajes telegráficos automáticamente.

La primera demostración práctica, coronada con un éxito completo, tuvo lugar en Menlo Park, el 21 de octubre de 1879, y dio paso a la inauguración del primer suministro de luz eléctrica de la historia, instalado en la ciudad de Nueva York en 1882, y que inicialmente contaba con 85 abonados.

Para poder atender este servicio, Edison perfeccionó la lámpara de vacío con filamento de incandescencia, conocida popularmente con el nombre de bombilla, construyó la primera central eléctrica de la historia (la de Pearl Street, Nueva York) y desarrolló la conexión en paralelo de las bombillas, gracias a la cual, aunque una de las lámparas deje de funcionar, el resto de la instalación continúa dando luz.

La Primer Llamada Telefonica de la Historia Bell Inventor

La Revolución Industrial popularizó tanto los avances científicos como sus aplicaciones técnicas; el ferrocarril, la electricidad, el teléfono o las vacunas consiguieron que en la mentalidad de las sociedades europea y americana se estableciese el ideal de progreso continuado y una fe ciega en las posibilidades de la ciencia y la técnica: las exposiciones universales fueron un ejemplo de esta actitud.

Los propios científicos se convirtieron en propagandistas del progreso con la creación de instituciones y sociedades dedicadas a esta tarea, como la Royal Institution, fundada por Rumford en Londres (1 799) y animada por científicos como Davy y Faraday. Pronto se iniciará también una colaboración internacional plasmada en la celebración de congresos como los de estadística (1853), química (1860), botánica (1864) y medicina (1867).

Otro hecho interesante que hay que destacar es el de la conversión de la actividad científica en un acontecimiento de amplias repercusiones sociales, es decir, en un fenómeno sociológico. Las aplicaciones de la física en la industria, o de la biología en la medicina, provocaron el cambio de actitud de la sociedad frente a los avances científicos. Los gobiernos que desde el siglo XVI impulsaron la fundación de universidades y academias, iniciarán, a partir del despotismo ilustrado y por influencia de los enciclopedistas, una actuación que se podría calificar de «política científica».

Estas acciones supondrán la extensión de la enseñanza superior, cambios en los planes de estudio y realización de tareas científico-técnicas fomentadas y financiadas por las monarquías del Antiguo Régimen. Academias, observatorios y expediciones científicas se prodigarán en Europa durante el siglo de las Luces.

Una derivación del telégrafo que finalmente tuvo un efecto igual de grande fue el teléfono. Patentado en Estados Unidos en 1876 por Alexander Graham Bell, y perfeccionado por el inventor Tomás Alva Edison, el teléfono pronto se asentó. En 1884, la compañía de Bell puso en funcionamiento la primera línea de larga distancia entre Boston y Nueva York. Las redes de cables, parte vital para las comunicaciones, fueron desarrolladas en varias naciones. Marcar los números sin recurrir a la operadora aceleró el proceso telefónico y, poco después, la mayoría de las grandes ciudades contaron con sus propias redes.

El teléfono en una exposición: Es casi seguro que Bell no se diese cuenta de la inmensa trascendencia de su invento, pero lo cierto es que en el mes de julio de 1876, se celebró en Filadelfia una gran exposición con motivo de la conmemoración de la independencia de Estados Unidos.

Es muy posible que Bell no pensara llevar su invento a dicha exposición, puesto que tal vez consideraba que el aparato, compuesto por un receptor harto rudimentario, un transmisor y un hilo que hacía vibrar la membrana metálica, que Bell ya había patentado con el nombre de teléfono, no era digno de figurar en una exposición de tanto prestigio.

Pero intervino el amor. Efectivamente, Bell fue a la estación de Boston a despedir a su amada que, junio con su padre, se marchaba a Filadelfia. El joven subió a un vagón, incapaz de contener los impulsos de su enamorado corazón, y así llegó a la capital di Pennsylvania. Luego, pidió por carta a Watson que le enviase el aparato, y logró exponerlo en un rincón

Durante varios días nadie se acercó a conocer su invento. Pero de pronto se produjo el milagro. El mismo  día en que la Comisión se disponía a conceder los diversos premios establecidos, un personaje con gran séquito, nada menos que el emperador Pedro, del Brasil, se acercó a la mesa de Bell. Lo cierto era que el emperador había conocido al joven Bell cuando éste enseñaba a los sordomudos en su país. Tan pronto como el Emperador reconoció a Bell, lo abrazó, con gran asombro de todos los presentes y, como es natural, todos se interesaron por el inventor y su invento.

El propio Emperador, después de oír unas palabras a través del receptor, exclamo:
—Este aparato habla!

Estas palabras cambiaron por completo la vida y la fortuna de Alexander Graham Bell. La aludida Comisión estudió el aparato, y de aquella exposición surgieron dos cosas importantísimas en la vida de Bell: su boda con su amada y la intervención de su suegro en las patentes del joven, todo lo cual tuvo como epílogo la producción del teléfono en serie, su perfeccionamiento y su propagación por todo el mundo.

Sólo hubo una amargura en medio de su triunfo:
Bell, que había dedicado gran parte de su juventud a enseñar a vocalizar y hablar a los sordomudos, jamás consiguió que su linda esposa, sordomuda también, llegase a hablar y a oír a su marido, ni por teléfono ni de viva voz.

ANTECEDENTES DE LA ÉPOCA: Las ventajas materiales constantemente crecientes y a menudo espectaculares, generadas por la ciencia y la tecnología, dieron lugar a un aumento de la fe en los beneficios de esta rama del saber y el hacer humanos. Aun la gente ordinaria que no entendía los conceptos teóricos de la ciencia estaba impresionada por sus logros.

La popularidad de los logros científicos y tecnológicos condujo a la extendida aceptación del método científico, basado en la observación, el experimento y el análisis lógico, como único camino a la verdad y a la realidad objetivas. Esto, a su vez, minó la fe de mucha gente en la revelación y la verdad religiosas. No es por accidente que el siglo XIX llegó a ser una época de creciente secularización, que de manera particular se manifiesta en el crecimiento del materialismo o la creencia de que todo lo mental, espiritual o sentimental era, sencillamente, una excrecencia de las fuerzas físicas.

La verdad había de encontrarse en la existencia material concreta de los seres humanos, no como la imaginaban los románticos, en las revelaciones obtenidas por destellos del sentimiento o de la intuición.

La importancia del materialismo fue asombrosamente evidente en el acontecimiento científico más importante del siglo XIX, el desarrollo de la teoría de la evolución orgánica mediante la selección natural. Sobre las teorías de Charles Darwin podría construirse un cuadro de los seres humanos como seres materiales, que eran parte sencillamente del mundo natural.

Primera Asociacion Internacional de Trabajadores del Mundo

La Primera Internacional y la Comuna

La expansión del sistema capitalista a través de la industrialización progresiva del continente generalizó las condiciones de vida de los obreros, pero también sus reivindicaciones. Al mismo tiempo, la actuación coordinada de los diferentes gobiernos contra los opositores políticos redundaba en la necesidad de la cooperación más allá de la diversidad nacional.

La toma de conciencia por parte de la clase trabajadora fue más rápida que la manifestación práctica de esa doble realidad. Los primeros intentos organizativos sucumbieron a causa de las numerosas tendencias socialistas y la represión gubernamental. La recuperación del asociacionismo obrero tras las revoluciones de 1848 creó nuevas expectativas gracias a la aportación marxista. Ambos factores condujeron a la fundación de la Asociación Internacional del Trabajadores (AIT) en 1864, conocida históricamente como la Primera Internacional.

Como decíamos antes, en 1864 se fundó en Londres la Asociación Internacional de Trabajadores, formada por sindicatos ingleses y franceses de obreros especializados, buscando en ella más una asistencia mutua de tipo sindical que un programa de acción política de tipo colectivista, a pesar de que Marx fue su principal impulsor y quien redactó el mensaje inaugural: “La Internacional es prohibida en la mayor parte de los países y aunque divisiones internas entre anarquistas y marxistas le restan mucha fuerza, aun así consiguió cierta extensión, no solamente en Europa, sino también en Estados Unidos”.

Los antecedentes más cercanos acerca de una organización internacional de trabajadores se encuentran en la Liga de los justos (1826), convertida a instancias de Marx en Liga de los Comunistas. Otros precursores fueron la británica Fraternal Democrats y la belga Association Démocratique. El último paso está representado por la International As

ESTATUTO DE LA PRIMERA INTERNACIONAL

Art. 1°: Se establece una asociación para procurar un punto central de comunicación y de corporación entre los obreros, de diferentes países, que aspiran al mismo objetivo, a saber: el concurso mutual, el progreso y la total liberación de la clase obrera.

Art. 2°: El nombre de esta asociación será: Asociación Internacional de Trabajadores.

Art. 3°: En 1865 tendrá lugar, en Bélgica, la reunión de un Congreso General. Este Congreso deberá dar a conocer a Europa las comunes aspiraciones de los obreros, concluir el reglamento definitivo de la Asociación Internacional, examinar los mejores medios para asegurar el éxito de su trabajo y elegir el Consejo General de la Asociación. El Congreso se reunirá una vez al año.

Art. 4°: El Consejo General radicará en Londres y constará de obreros que representan a las diferentes naciones que formen parte de la Asociación Internacional. (…)

En París, en 1871, se produjo una insurrección obrera que consiguió controlar la ciudad durante más de un mes.

La Comuna fue una sublevación espontánea contra los elementos conservadores que habían triunfado en las elecciones, a pesar de haber sido los responsables de la derrota, los sufrimientos del asedio de la ciudad y la capitulación frente a los prusianos.

El manifiesto de la Comuna fue un auténtico proyecto para crear un Estado socialista formado por municipios comunes— libres y autónomos, federados entre sí a nivel nacional e incluso internacional. Se adoptó la bandera roja como enseña, se decreté la separación de la Iglesia y el Estado, y se realizó una avanzada legislación social que reglamentaba el trabajo.

La Comuna de París tendría una enorme resonancia en el mundo, tanto entre el dividido movimiento obrero, que por primera vez veía la realización práctica de sus programas, como entre las burguesías y los gobiernos europeos, que se disponían a tomar medidas represivas en previsión de hechos similares.

La Comuna, totalmente aislada y sin ningún apoyo exterior, fue aplastada después de una terrible represión del ejército francés; se calcula que el número de ejecuciones ascendió a unas 20 mil. Con ello también la Internacional en el Congreso de La Haya, de 1872, entró definitivamente en crisis, tanto por los enfrentamientos internos como por su fracaso en acudir en ayuda de la Comuna de París o en no haber logrado evitar la guerra franco-prusiana, que fue un preludio del fracaso similar del movimiento obrero europeo de 1914.

La fundación. La Primera Internacional surgió de la colaboración entre las clases obreras británica y francesa, en consonancia con la mayor industrialización de sus respectivos países. El sindicalismo británico practicaba una acción reformista sin ninguna referencia al socialismo. Las corporaciones de oficios (trade-unions) sólo agrupaban a los obreros cualificados, interesados en ampliar los derechos políticos y sindicales.

Logros cientificos Siglo XIX Teoria Electromagmetica de Maxwell

La caída del principio de “libre competencia”, bajo la aplastante tendencia a la concentración de la producción y los capitales en la segunda fase de la Revolución Industrial, supuso también una transformación importante en el desarrollo del quehacer científico y en la elaboración de las nuevas técnicas. Durante el proceso de la industrialización, el desarrollo científico y técnico no conocía más ritmos que el de un progreso lineal constante. Sin embargo, la producción científica caminaba dentro de los márgenes de una cierta autonomía, pero siempre bajo la tutela del empresario capitalista emprendedor.

El estímulo económico de la libre competencia repercutía, sin duda, en el campo de la investigación. Por otra parte, las fuertes crisis cíclicas del capitalismo industrial, fundamentalmente de superproducción, forzaban a condicionar la técnica a una continua depuración. Había un hilo común que iba de estas crisis de superproducción, a través de la caída de los precios y el desempleo que produce el maquinismo, hasta la caída del nivel de consumo de las clases trabajadoras.

JAMES C. MAXWELL En la historia de la ciencias  hay algunos científicos virtualmente desconocidos para el gran público, aunque sus logros sean casi tan importantes como los de los de Einstein, Darwin y Newton. Éste es el caso del físico escocés James Clerk Maxwell.

Los científicos profesionales, y los físicos en particular, lo reconocen como uno de los más inteligentes e influyentes que hayan vivido nunca, pero fuera de los círculos científicos su nombre apenas es conocido.

Maxwell nació en Edimburgo, en 1831, el mismo año en que Faraday logró su máximo descubrimiento, la inducción electromagnética, en 1831. Descendiente de una antigua familia de nobles blasones, Maxwell era un niño prodigio. En 1841 inició sus estudios en la Academia de Edimburgo, donde demostró su excepcional interés por la geometría, disciplina sobre la que trató su primer trabajo científico, que le fue publicado cuando sólo tenía catorce años de edad.

A pesar de que su madre murió cuando tenía ocho años, tuvo una infancia feliz. A una edad temprana ya demostró ser una promesa excepcional, sobre todo en matemáticas. Cuando tenía quince años, sometió un escrito sobre matemáticas a la Royal Society de Edimburgo, que asombró a todos los que lo leyeron. Al año siguiente tuvo la suerte de conocer al físico de setenta años William Nicol, que también vivía en Edimburgo.

Nicol había hecho un trabajo importante utilizando cristales para investigar la naturaleza y la conducta de la luz, y las conversaciones adolescentes de Maxwell con él hicieron que sintiera un interés por la luz y otras formas de radiación que le duró toda la vida.

Estudió matemáticas con sobresaliente en Cambridge y se graduó en matemáticas en 1854; siendo estudiante, tuvo la experiencia intelectual que definió su vida: la lectura de las Investigaciones experimentales en electricidad de Faraday. Todavía estudiaba cuando realizó una gran contribución al desarrollo del tema con un brillante escrito titulado Sobre las líneas de fuerza de Faraday.

Más tarde fue asignado a la cátedra de filosofía natural en Aberdeen, cargo que desempeñó hasta que el duque de Devonshire le ofreció la organización y la cátedra de física en el laboratorio Cavendish de Cambridge. Tal labor lo absorbió por completo y lo condujeron a la formulación de la teoría electromagnética de la luz y de las ecuaciones generales del campo electromagnético.

En 1856, a los veinticinco años, fue nombrado profesor en el Marischal College de Aberdeen; y en 1860 se trasladó al Kings College de Londres como profesor de filosofía natural y astronomía. Fue en esa época de la mudanza a Londres cuando realizó su primera gran contribución al avance de la física.

En tal contexto, Maxwell estableció que la luz está constituida por ondulaciones transversales del mismo medio, lo cual provoca los fenómenos eléctricos y magnéticos. Sus más fecundos años los pasó en el silencioso retiro de su casa de campo. Allí maduró la monumental obra «Trealise on Electricity and Magnetism» (1873).

James Clerk Maxwell falleció en Cambridge, el 5 de noviembre de 1879.

ALGO MAS…

1-Formuló la hipótesis de la identidad de la electricidad y la luz.

2-Inventó un trompo para mezclar el color y un oftalmoscopio, instrumento que permite ver el interior del ojo de una persona viva, o de un animal. Experimentalmente demostró que la mezcla de dos determinados pigmentos de pintura constituía un proceso diferente a la mezcla de los mismo colores de luz. Sus principios fundamentales sobre la mezcla de colores se emplea en la actualidad es la fotografía, la cinematografía y la televisión.

3-Maxwell corrigió a Joule, Bernouilli y Clausius que habían sostenido que propiedades de los gases como la densidad, la presión, le temperatura eran debidas a que un gas está compuesto de partículas de movimiento rápido y velocidad constante. Maxwell demostró que la velocidad no es constante y que varía de acuerdo con la curva de frecuencia en forma de campana que se conoce como ley de Maxwell. Sus descubrimientos han servido de fundamento a las teorías de las física del plasma. Maxwell inventó la mecánica estadística para analizar las velocidades moleculares de los gases.

Leyes de la Herencia de Mendel Historia de sus Experiencias

Historia de las Experiencias de Mendel y El Auge de la Genética

A partir de 1856  y después de nueve años de trabajo, en que estudió la reproducción en 28.000 plantas de guisantes, Mendel presentó en 1865 sus resultados a la citada sociedad de historia natural. La comunicación, en la que establecía las leyes de la herencia, fue publicada al año siguiente en los anales de la sociedad. ¿Cómo pudo pasar inadvertida durante treinta y cuatro años? Es un enigma de la historia de la ciencia. Una de las razones pudo consistir en que Mendel no se preocupó de publicar sus trabajos en alguna revista científica de amplia difusión. Pero también hay que tener en cuenta, sobre todo, que sus descubrimientos contradecían radicalmente las ideas que entonces se tenían sobre la herencia: según Mendel, los determinantes genéticos de los caracteres provenientes de los padres no se «mezclaban» en sus descendientes, cuando la teoría más común era la de la herencia por mezcla. En otras palabras: la obra de Mendel era prematura en relación a los conocimientos prácticos y teóricos de su época.

Mendel tuvo la fortuna de contar, en su propio monasterio, con el material necesario para sus experimentos. Comenzó sus trabajos estudiando las abejas, coleccionando reinas de todas las razas, con las que llevaba a cabo distintos tipos de cruces.

Entre 1856 y 1863 realizó experimentos sobre la hibridación de plantas. Trabajó con más de 28.000 plantas de distintas variantes del guisante oloroso o chícharo, analizando con detalle siete pares de características de la semilla y la planta: la forma de la semilla, el color de los cotiledones, la forma de la vaina, el color de la vaina inmadura, la posición de las flores, el color de las flores y la longitud del tallo.

Sus exhaustivos experimentos tuvieron como resultado el enunciado de dos principios que más tarde serían conocidos como «leyes de la herencia». Sus observaciones le permitieron acuñar dos términos que siguen empleándose en la genética de nuestros días: dominante y recesivo. Factor e hibrido son, asimismo, dos de los conceptos establecidos por Mendel de absoluta vigencia en la actualidad.

El descubridor de Mendel: Después de realizar sus estudios en Viena,Tschermak decidió adquirir experiencia en agricultura y trabajó en la granja Rotvorwerk, cerca de Friburgo (Sajonia). Luego retomó sus estudios de botánica en la universidad de Halle y se doctoró en 1896. En la primavera de 1898, Tschermak comenzó a estudiar la reproducción del guisante en el jardín botánico de Gante, y luego en Esslingen, cerca de Viena.

En 1900, con la intención de publicar sus resultados, encontró las huellas de los trabajos de Mendel y reconoció con sorpresa que éstos ya exponían e incluso sobrepasaban sus investigaciones personales. Eminente genetista de plantas, Tschermak aplicó seguidamente las leyes de la herencia de Mendel al desarrollo de nuevas plantas y logró perfeccionar los híbridos trigocenteno y un híbrido de avena de crecimiento rápido resistente a las enfermedades.

UN RECONOCIMIENTO TARDÍO
Mi las dos ponencias sobre sus descubrimientos ante la Asociación de ciencias naturales de Brünn en febrero y marzo de 1865, ni el texto publicado en el volumen y de las actas de la asociación fueron objeto de comentarios. Sin duda, esta indiferencia del mundo científico se explica por el carácter insólito del pensamiento mendeliano, que podía parecer «antibiológico», sobre todo en 1865; por el corte”secular que separaba, a los ojos de los naturalistas, los problemas de la herencia de aquellos de la hibridación, y quizás también por el aspecto aparentemente «inmutable» de las conclusiones del autor, en una época marcada por la repercusión de El origen de las espicies.

El propio Mendel, elegido en 1868 superior de su convento, abandonó hacia 1870 sus investigaciones sobre la hibridación, limitó sus observaciones a la meteorología y consagró sus fuerzas, hasta su muerte, en los asuntos de su comunidad. Murió siendo totalmente desconocido el 6 de enero de 1884. Debieron transcurrir treinta y cuatro años para que se reconociera el verdadero alcance de sus descubrimientos.

En 1900, tres botánicos europeos, Cari Correns, Erich Tschermak von Seysenegg y Hugo de Vries, obtuvieron en forma independiente resultados similares a los de Mendel y, al investigar en la literatura sobre el tema, sacaron a la luz sus trabajos, asegurando al padre de la genética un tardío reconocimiento.

EL AUGE DE LA GENÉTICA
EL descubrimiento de las leyes de Men-del siguió una verdadera floración de investigaciones sobre genética. De entrada, desde 1902, Lucien Cuénot (1866-1951), en Francia, y William Bateson (1861-1926), en Gran Bretaña, demostraron que dichas leyes eran válidas también para el reino animal (hasta entonces, tanto en los trabajos de Mendel como en los de H. De Vries, C. E. Correns y E. Tschermak, habían sido establecidas sólo para los vegetales). Paralelamente, el biólogo norteamericano W. S. Sutton (1877-1916) y el alemán T. Boveri (1862-1915), al advertir que los cromosomas se distribuyen en la reproducción exactamente igual que lo hacen los genes, dedujeron que aquéllos son el soporte físico de éstos (aunque hubo que esperar a los trabajos de T. H. Morgan, en la década de 1910, para que esta hipótesis se aceptara sin reticencias). En 1909, el biólogo danés W. L. Johannsen (1857-1927) fue el primero en usar el término gen, diferenciando genotipo y fenotipo, y al año siguiente el norteamericano E. M. East (1879-1938) demostró que los caracteres sujetos a variación continua (como el tamaño) están controlados por varios genes a la vez. Entre tanto, el matemático británico G. H. Hardy (1877-1947) y el biólogo alemán W. Weinberg (1862-1937) determinaron la más fundamental de las leyes de la genética de poblaciones (principio de Hardy-Weinberg), que permitió a los matemáticos y biólogos posteriores plantear, sobre bases sólidas, un análisis genético de la evolución de las especies.

La Seleccion Natural Mediante El Uso de un Arma Biologica Natural

Si un parásito matase a todos los huéspedes a los cuales encuentra, entonces también él perecería. Existen al menos dos estrategias que pueden adoptar los parásitos para asegurar su permanencia, y ambas dependen de su propio estilo de vida.

Por un lado, si el parásito es muy rápido para multiplicarse y pasar a otro huésped y si, al mismo tiempo, hay una cantidad infinita de nuevos huéspedes no infectados donde anidar, el parásito puede mantener un estado de alta virulencia generación tras generación. Sin embargo, la realidad es que si este tipo de parásitos tuviera el suficiente éxito, se haría cada vez más difícil encontrar una cantidad ilimitada de nuevos huéspedes no infectados.

Lo lógico en este caso es que la población huésped disminuya, y por lo mismo la “comida” potencial del parásito también disminuirá. Por ello, el mantenimiento de un estado de alta virulencia termina siendo contraproducente para el propio parásito. Así, si cualquiera de los preceptos mencionados no se cumple, al parásito no le queda otro camino que atenuar su virulencia.

En este caso cuenta con la complicación de que el huésped también tendrá tiempo para combatirlo, por lo que los parásitos deberán utilizar este tiempo para cambiar y adaptarse también a las nuevas respuestas del huésped. Por lo mismo, casi todas las relaciones de coevolución, con el tiempo, terminan en la atenuación de las respuestas entre predador y presa. Para ilustrarlo veamos una serie de desventuras ocurridas en Australia.

Los diseñadores de políticas ambientales australianas no les temían a los riesgos y por ello se embarcaron en un proyecto que, para controlar un desbalance grave del equilibrio ecológico, implicó una serie de peligros que no se tuvieron en cuenta y generaron nuevos desequilibrios. No hubo conejos en Australia hasta 1859, cuando un señor inglés importó apenas una docena de estos encantadores animalitos desde Europa, para distraer a su esposa y agraciar su hacienda. Los conejos se reproducen muy rápido, apenas un poco más rápido de lo que tardamos en reconocer el problema que generan. Y ese “apenas” es más que suficiente.

En poco más de un lustro (1865), el mencionado caballero había matado a un total de 20.000 conejos en su propiedad y calculó que quedaban todavía otros 10.000. En 1887, en Nueva Gales del Sur solamente, los australianos mataron 20 millones de conejos. Llegado el siglo XX aparecieron nuevas herramientas de combate contra las plagas. En la década de 1950, la vegetación de Australia estaba siendo consumida por hordas de conejos. En ese año el gobierno trató de hacer algo para detener a los simpáticos animalitos. En Sudamérica, los conejos locales están adaptados a un virus con el que conviven desde hace mucho tiempo. este se transmite cuando los mosquitos que toman la sangre de un conejo infectado lo depositan sobre un conejo sano, ya sea por deposición o por la nueva picadura. Este agente infeccioso, denominado virus de la mixomatosis, provoca sólo una enfermedad leve en los conejos de Sudamérica, que son sus huéspedes normales.

La mixomatosis ha generado una de las mayores catástrofes ecológicas de la historia y el desmantelamiento de las cadenas tróficas en el ámbito mediterráneo, donde el conejo era la base de la alimentación de rapaces y carnívoros. De nuevo el responsable de esta catástrofe fue el ser humano al ser introducida la enfermedad en Francia en 1952, desde donde se extendió por toda Europa. Dicha enfermedad se había llevado a Australia anteriormente para erradicar el conejo allí, que era plaga.

Sin embargo, es mortal para el conejo europeo, que fue el que se implantó en Australia. Así que en Australia se liberaron en el campo una gran cantidad de conejos infectados con el virus de la mixomatosis, esperando que [os mosquitos autóctonos hicieran el trabajo de esparcir el agente infeccioso. En un comienzo, los efectos fueron espectaculares y la población de conejos declinó de manera constante: llegó a ser menos del 10% de la población original, cuando comenzó el tratamiento en gran escala. De esta manera se recuperaron zonas de pastura para los rebaños de ovejas, de los cuales depende en gran medida la economía de Australia.

Sin embargo, en poco tiempo aparecieron evidencias de que algunos conejos eran más resistentes a la enfermedad. Como estos conejos eran los que más se reproducían, sus crías también resultaron resistentes al virus de la mixomatosis. Cuando el fenómeno se estudió en forma global, se observó que no sólo los conejos se volvían más resistentes, sino también que el virus iba atenuando su virulencia generación tras generación. Así, había ocurrido un doble proceso de selección. El virus original había resultado tan rápidamente fatal que el conejo infectado solía morir antes de que tuviese tiempo de ser picado por un mosquito y, por lo tanto, de infectar a otro conejo; la cepa del virus letal, entonces, moría o desaparecía junto con el conejo. Por otra parte, en la preparación original de virus debería de haber algunos más atenuados.

En las condiciones de muy alta mortalidad de los conejos, las cepas virales de efectos más atenuados tenían una mejor probabilidad de sobrevivir, dado que disponían de mejores oportunidades y, fundamentalmente, de más tiempo para encontrar un nuevo huésped. De tal manera, la selección comenzó a operar en favor de una cepa menos virulenta del virus. Por su parte, un conejo que sobrevive a una infección inicial queda “protegido” como si hubiera sido vacunado, por lo que no vuelve a enfermarse fácilmente. Además es probable que los sobrevivientes hayan sido los que más resistencia intrínseca tuvieron al virus original. De esta manera su descendencia también debía ser más resistente, por lo que cuando estos conejos comenzaron a proliferar, todos los conejos australianos fueron adquiriendo resistencia al virus de la mixomatosis. Hace poco tiempo, como resultado de la rápida coevolución, la relación huésped-parásito se estabilizó, por lo que los conejos volvieron a multiplicarse, y regeneraron la población existente antes del comienzo del ataque.

En definitiva, se utilizó un arma biológica tremendamente activa, pero las consecuencias distaron mucho de ser las esperadas. De hecho, no se contuvo la proliferación de los conejos y se mantuvo el riesgo del desequilibrio ambiental comenzado hace 150 años, y; por el contrario, se generó una adaptación de los animales, se los tomó más fuertes para resistir a una plaga como el virus de la mixomatosis A pesar de las enseñanzas que debieron haber quedado después de este tremendo fracaso, hace poco tiempo se intentó nuevamente en Australia repetir la metodología para eliminar Los conejos con un nuevo patógeno cuya dinámica poblacional se desconocía casi por completo. Es obvio que hay gente a la que le encantan los riesgos. El problema es cuando al asumirlos se involucra a demasiadas personas, o, como en este caso, a un ecosistema completo.

satira a darwin
Portada en una revista, publicado con ironía la teoría de Darwin

A lo largo de la evolución, y mediante el proceso de selección natural, los organismos de las distintas especies han ido adquiriendo modificaciones morfológicas, fisiológicas y comportamentales con las cuales han logrado responder y adaptarse a las características Particulares de su medio.

ESTRATEGIA ADAPTATIVA DE PLANTAS Y ANIMALES
FACTOR EFECTOS ADAPTACIONES DE LAS PLANTAS ADAPTACIONES DE LOS ANIMALES
Escasez de Agua Deshidratación.
Estrés hídrico.

Reducción de la superficie foliar, por la que las plantas transpiran: espinas.Esclerofilia (hojas duras, coriáceas o revestidas con ceras o quitina, que las protegen de la radiación intensa y de la desecación)

Plantas con metabolismoCAM (los estomas de las hojas sólo se abren de noche para captar el CO2, con lo que se evita la pérdida de agua que se produciría si los estomas se abrieran durante las horas de mayor radiación solar).

• Piel estratificada, con varias capas de células (por ejemplo, en los vertebrados).• Productos de excreción concentrados, como el ácido úrico o le urea en lugar del amoníaco.

• Elevada reabsorción intestinal de agua en las heces.

• Obtención de agua metabólica a partir de la oxidación del hidrógeno de los alimentos.

Temperatura Temperaturas altas: deshidratación desnaturalización de las enzimas.
Temperaturas bajas: cristalización del agua en los tejidos, retardo del metabolismo.
Las mismas que para la escasez de agua. Al calor y al frío: cambios comportamentales (mayor actividad diurna durante el invierno y mayor actividad nocturna o crepuscular durante períodos cálidos); regulación social de la temperatura: vida en grupos, sobre las ramas de los árboles o en cuevas; vida subterránea.
Escasez de Alimentos, baja disponibilidad de nutrientes Crecimiento y desarrollo deficientes.Inanición. Plantas carnívoras, como respuesta a la escasez de nitrógeno en pantanos, bosques con suelos empobrecidos, etcétera.Asociación con bacterias fijadoras ; de nitrógeno en leguminosas: nódulos radiculares. Asociación con hongos (micorrizas) en distintas plantas. Almacenamiento en cuevas y guaridas, como en las hormigas y otros insectos sociales.Acumulación de reservas en la grasa corporal.
Salinidad •  Efecto osmótico: tendencia de los tejidos a perder agua en ambientes muy salinos (medio hipertónico), y a ganar agua e hincharse en ambientes poco salinos (medio hipotónico).•  Efecto iónico: toxicidad en plantas (especialmente por Cl y Na4). Secreción de iones a través de glándulas especializadas.Suculencia: planta de aspecto globoso; incorporan agua para diluir la concentración de sales. Vida marina (medio hipertónico): beben agua de mar y luego secretan el exceso de sales a través de las branquias y las glándulas de la sal; producen una orina concentrada.Agua dulce (medio hipotónico): no beben agua y absorben sales a través de la piel y las branquias; producen una orina diluida.

Fuente Consultada:
Ahí viene la plaga Colección: “Ciencia que ladra….” Mario Lozano

LA SELECCION ARTIFICIAL: LA ACCIÓN DEL HOMBRE EN LA SELECCIÓN DE LAS MEJORES ESPECIES

En su célebre obra, Darwin hace una serie de consideraciones acerca de las variaciones que aparecen en muchas especies de plantas y animales domésticos. Llegó a la conclusión de que, evidentemente, todas las especies de plantas y animales domésticos proceden de especies silvestres. La explicación era sencilla el hombre no ha sido siempre agricultor y ganadero, ya que sabemos que en tiempos remotos vivía exclusivamente de la caza y de la pesca, o de la recolección de frutos (etapa de cazador-recolector), forma de vida que conservan actualmente algunas tribus remotas de Nueva Guinea o de la Amazonia.

En algún momento en la historia, el ser humano eligió determinadas especies de animales que le eran particularmente útiles como alimento y comenzó a criarlas en cautiverio. Estos primeros intentos constituyeron el comienzo de la ganadería, que más tarde se iría perfeccionando hasta llegar a nuestros días.

Al observar las actuales especies de animales domésticos, inmediatamente se advertirá que la variación que se presenta entre los individuos es mucho mayor que la que aparece en el mismo animal en estado silvestre. Darwin fue un profundo conocedor de muchas especies de animales domésticos, y él mismo, durante una larga etapa de su vida, se dedicó en el campo a la cría de palomas.

En el caso de la paloma, Darwin llegó a la conclusión de que todas las razas domésticas procedían de la paloma de las rocas, Cotumba livia.

Si bien ésta presenta características muy constantes en cuanto al tamaño, el color, la forma de las alas, el pico y la cola, etc., el número de variaciones observado en las razas domésticas es sumamente elevado.

Otro ejemplo examinado por Darwin es el caballo, un animal de gran utilidad para el hombre, que ha sido sometido a un largo proceso de selección artificial desde hace miles de años. Así, mediante cruzas controladas se han obtenido muchísimas razas de caballos que son diferentes tanto por su aspecto como por su capacidad.

Dos ejemplos son los pura sangre y los percherones. Los caballos de pura sangre son altos, de cascos pequeños y patas delgadas y musculosas. Son notablemente veloces y, por eso, son los típicos caballos de carrera. Por otro lado, los percherones son caballos de poca alzada, grandes cascos y patas cortas y fuertes. No pueden tener gran velocidad, pero son caballos muy fuertes y resistentes, lo que los hace muy aptos como animales de tiro.

Las variaciones que se dan en los cereales, las frutas y las hortalizas cultivadas son incluso más notables que las de los animales, si se comparan con las correspondientes especies silvestres.

A pesar de la posible influencia de las condiciones ambientales y de las costumbres, Darwin asignó a la acción humana el papel fundamental en la variabilidad de las especies domésticas de plantas y animales.

Desde la época de los faraones egipcios, el ser humano eligió las semillas de plantas más robustas y los animales mejor dotados para utilizarlos como reproductores en la agricultura y en la ganadería. De esta forma, consiguió mejorar las razas.

Lo que hace el hombre es “seleccionar” aquellos individuos que presentan espontáneamente variaciones interesantes que pueden transmitirse a la descendencia. En los cereales, por ejemplo, elegirá las semillas de mayor tamaño o más robustas, ya que sabe que di-chas semillas normalmente darán origen a plantas jóvenes mejores que las semillas de plantas raquíticas o que han dado menos frutos. Estos mismos ejemplos podrían ampliarse a todos los animales y plantas domésticos.

Evidencias aportadas por la selección artificial
La cruza de animales de cría o de plantas cultivadas para obtener individuos con ciertas características deseables fue una práctica implementada por el hombre desde la época en que abandonó la caza y la recolección como principal forma de subsistencia y se estableció en un sitio por un período más prolongado.

En esta práctica, llamada selección artificial, el criador de animales tales como perros, gatos, vacas, ovejas, caballos, palomas, u otras especies selecciona entre los progenitores a los individuos cuyas características se ajustan a lo que busca, y aparta a los otros posibles progenitores. Como la descendencia puede presentar características no deseadas, el criador vuelve a seleccionar en cada generación los individuos que se ajustan a sus preferencias. De este modo, resulta que las características de los descendientes aparecen fuertemente diferenciadas de las de los ancestros.

Este proceso le ha permitido al hombre obtener una gran variedad de razas de perros, tan diferentes en tamaño y aspecto como un gran danés, un ovejero alemán o un chiguagua. Asimismo, es notable la diversidad de razas de los diferentes tipos de ganados vacuno, ovino, lanar, en muchos casos muy distintos de sus parientes ancestrales que podrían encontrarse en estado salvaje.

De la misma forma, se han obtenido muchas plantas cultivadas, tanto alimenticias como ornamentales, con notables diferencias con respecto a sus estados originales.
Esta práctica llamó poderosamente la atención de Darwin y le aportó una de las evidencias más importantes para sustentar sus hipótesis.

La selección artificial continua era lo suficientemente poderosa como para provocar cambios observables en tiempos relativamente cortos. Dados los largos períodos de la historia evolutiva, la selección natural parecía una explicación adecuada para la aparición de nuevas especies.

Fuente Consultada:
Biología y Ciencias de la Tierra La Selección Natural Capitulo: 15

La Eutanasia Sólo Dios puede quitar la vida? La etica y moral

EUTANASIA: Muchas confesiones religiosas, como la cristiana y la judía, creen que Dios dá la vida y por lo tanto sólo a El corresponde la potestad de quitarla. En este contexto, la eutanasia sería considerada como rechazo a la soberanía de Dios. Desde otro punto de vista, sin embargo se califica de injusta la utilización de un argumento religioso para decidir política y públicamente sobre un tema tan trascendental y complejo como éste.

Ver Testamento Publico de Ramón Sampedro

Algunos antecedentes históricos

La civilización griega fue la primera en emplear la palabra euthanasia, para quienes significaba una buena muerte (tahanatos).  La misma era aprobada por el estado, ya que los gobernadores contaban con veneno para todo aquel que deseaba morir, otorgándoles a su vez una autorización oficial: «Quien no desee vivir debe exponer los motivos al Senado y una vez lo haya recibido, puede quitarse la vida. Si existencia te resulta odiosa, muere; si el destino te es adverso, bebe cicuta. Si la pena te abruma, abandona la vida. Dejad que el infeliz relate su desgracia, dejad que el magistrado le proporcione el remedio para que él mismo pueda ponerle fin». Esto sucedía básicamente en Atenas, Quíos y Massalia.

Sin lugar a dudas, que Grecia era una sociedad que aceptaba la eutanasia como práctica ideada hacia un buen morir, con la finalidad de evitar la mala vida. Sin embargo, esta práctica tiene sus defensores y detractores desde la antigüedad, hasta nuestros días. Por ejemplo, desde épocas muy remotas quienes defendían a la eutanasia eran Sócrates y Platón, quienes se aferraban a la idea de que una enfermedad dolorosa y que llevara a un alto sufrimiento, sería una buena razón para dejar de vivir.

Heródoto era un médico, y profesor de Hipócrates, condenado por el filósofo en la República por «fomentar las enfermedades e inventar la forma de prolongar la muerte» y agrega «por ser maestro y de constituir enfermiza; ha encontrado la manera, primero de torturarse a sí mismo, y después al resto del mundo».  Pese a ello, hay quienes se oponían a esta práctica condenándola, por ejemplo grupos como los pitagóricos, aristotélicos y epicúreos.

No obstante, Grecia no fue la única que permitía este tipo de práctica. En Roma, se creía que un enfermo Terminal podía suicidarse porque poseía motivos suficientes y valederos para hacerlo.  Por lo que sólo se penalizaba al suicidio ilógico y sin relación al padecimiento de una enfermedad. Entonces la ideología romana era que vivir notablemente significaba por lo tanto morir de la misma manera. Tal es así que hasta los aristócratas prisioneros se les concedía frecuentemente evitar ser ejecutados mediante la opción del suicidio. Imaginémoslos a través de las palabras de Séneca el estoico: «Hay una gran diferencia entre un hombre que prolonga su vida o su muerte. Si el cuerpo ya no sirve para nada, ¿por qué no debería liberarse al alma atormentada? Quizá sería mejor hacerlo un poco antes, ya que cuando llegue ese momento es posible que no pueda actuar».

Este hecho comenzó a girar radicalmente cuando el suicidio es castigado con la negación de una “cristiana sepultura” a la persona que violentaba contra su propio vida. Hecho que tomó su impulso cuando en el mundo occidental dominó la religión cristiana. Si una persona padecía alguna enfermedad y su sufrimiento era muy intenso, no se podía pensar en la mínima posibilidad de un alivio piadoso. Es por esto que este rechazo llega a marcar influencia en la esfera de la legislación civil. Por ejemplo, la víctima era partícipe de un entierro degradante y un posterior abandono en la vía pública, tras la expropiación de sus bienes. Cabe aclarar que no se realizaban excepciones, aunque haya sido una persona que sufriera una enfermedad incurable.

Según esta posición, las funciones de la Iglesia y del Estado son usurpadas por el suicida. Tal es así que el suicidio- contrario al quinto mandamiento cristiano, “no matarás”, fue bien definido hacia el siglo IV por San Agustín, como “detestable u abominable perversidad”.  ¿Por qué dice esto? Porque Dios es el que concede la vida y también los sufrimientos, entonces como cristianos la obligación es soportarlos. Y es la Iglesia quien con su poder regla las costumbres y las prácticas de la sociedad. Entonces, estas nociones son en la Edad Media la muestra de toda su dominación.

Sin embargo, este dominio de la Iglesia se fue debilitando como producto de un renovado Interés por el individualismo, hecho que se dio en el Renacimiento cambiando la concepción del suicidio, tema en cuestión hasta el momento.  Esto favoreció a flexibilizar y complejizar todas aquellas decisiones morales referidas a la vida y la muerte. Desde aquí se comenzó a hablar de una eutanasia voluntaria, como lo hizo Tomás Moro en su obra titulada Utopía, en 1516, donde el autor describía este hecho con autorización oficial inserto en una sociedad ideal. Por otra parte, Montaigne, también escribió sobre el tema plasmado en cinco ensayos y concluyendo en que la eutanasia es una elección personal y racional bajo algunas circunstancias.  Ya que el consideraba que el suicidio era un acto justificado, mientras que en la escala de la naturaleza, el hombre tenga dignidad y habilidad para valorarse a sí mismo.

Actualmente, “el debate es entre dos concepciones de la autonomía individual. “Los que quieren legalizar la eutanasia afirman que este derecho [a la muerte] es ilimitado y es exigible por el individuo frente a la sociedad y los médicos”. En cambio, los contrarios a la eutanasia “sostienen que la preocupación por el bien común exige poner límites a una reivindicación individual que, si se reconociera por ley, daría paso a un derecho a la muerte incompatible con las fuentes morales de la democracia”. Estos, conscientes de la función simbólica que tienen las leyes, “se niegan a convertir la justicia en un calco de meros deseos individuales y no separan el derecho de una reflexión filosófica sobre la condición humana. La política, lejos de reducirse al arte de conquistar y conservar el poder, supone que las decisiones se articulen según valores comunes“. (La Eutanasia, una solución anticuada; en http://www.condignidad.org/eutanasia-anticuada)

La posición de la Iglesia católica ante la eutanasia

La institución que actualmente rechaza y combate a la eutanasia, es la Iglesia católica, la cual ha realizado una serie de declaraciones al respecto a través de la Comisión Permanente Episcopal: “Respetamos sinceramente la conciencia de las personas, santuario en el que cada uno se encuentra con la voz suave y gente del amor de Dios. No juzgamos el interior de nadie.

Comprendemos también que determinados condicionamientos psicológicos, culturales y sociales pueden llevar a realizar acciones que contradicen radicalmente la inclinación innata de cada uno a la vida, atenuando o anulando la responsabilidad subjetiva. Pero no se puede negar la existencia de una batalla jurídica y publicitaria, con el fin de obtener el reconocimiento del llamado ‘derecho a la muerte digna’, es esta postura pública la que tenemos que enjuiciar y denunciar como equivocada en sí misma y peligrosa para la convivencia social. Una cosa son la conciencia y las decisiones personales y otra lo que se propone como criterio ético legal para regular las relaciones entre los ciudadano”.

La Iglesia católica considera que el aprecio por toda vida humana fue un progreso introducido por el cristianismo, lo que supone que se vive en la actualidad es un retroceso.  Un retroceso que hay que colocar en lo que el Papa denomina “cultura de la muerte”.

De esta manera, la Iglesia considera a la eutanasia  como aquella actuación cuyo objeto es causar la muerte a un ser humano para evitarles sufrimientos, bien a petición de éste, bien por considerar que su vida carece de calidad mínima para que merezca el calificativo de digna. Esta práctica convertiría a la eutanasia en una forma de homicidio, pues implica que un hombre da muerte a otro, ya mediante un acto positivo, ya mediante la omisión de la atención y cuidados debidos.

De la eutanasia, así entendida, el Papa Juan Pablo II enseña solemnemente: ‘De acuerdo con el Magisterio de mis Predecesores y en comunión con los Obispos de la Iglesia católica, confirmo que la eutanasia es una grave violación de la Ley de Dios en cuanto eliminación deliberada y moralmente inaceptable de una persona humana’.

La batalla política sobre la eutanasia

Actualmente, la eutanasia se transformó en una problemática que conjuga un dilema jurídico y moral. Un dato certero es el que demuestra el aumento, en los últimos años, del número de asociaciones pro-eutanasia, desplegando una intensa actividad divulgativa y reivindicativa a favor del derecho individual de las personas para elegir sobre su propia vida. Al mismo tiempo, estas asociaciones se ven combatidas por la “cruzada a favor de la vida” encabezada por las organizaciones religiosas.

Diversas asociaciones han luchado contra los que defienden la posibilidad de elegir una muerte digna. Los argumentos que legitiman a estos grupos oscilan entre el respeto a la voluntad divina hasta el miedo a crear lagunas jurídicas que proporcionen impunidad a posibles asesinatos. Los debates sobre la eutanasia generalmente terminan siendo dominados por prejuicios morales, religiosos, emocionales, etc.

Sin cuestionar los diferentes puntos de vista, cabría preguntarse: ¿se le puede aplicar la eutanasia o asesoramiento en su suicidio a un enfermo terminal, que considere que su vida no es razón suficiente para soportar un dolor intratable, la pérdida de dignidad o la pérdida de importantes facultades, y que pide repetidamente ayuda para morir, siendo consciente y sin estar en capacidad de fingir una depresión?.

La problemática de la eutanasia conjuga y enfrenta diversos posicionamientos frente a los derechos humanos. En este sentido, numerosas asociaciones pro eutanasia han comenzado una campaña de concientización de la sociedad, para que ésta reconozca el derecho de cada individuo a decidir sobre su propia vida. Por otro lado, otro sector de la sociedad, encabezado por las asociaciones religiosas, se oponen drásticamente a la legalización de la eutanasia. En la actualidad, la eutanasia se ha convertido en una ardua batalla de carácter político.

 Formas de aplicación de la eutanasia

La eutanasia pasiva hace referencia a la muerte natural, es un termino que muchas veces es utilizado de forma errónea por  los medios de comunicación. La misma se produce cuando se suspende el uso de los instrumentos que apoyan la vida o aquellos suministros de medicamentos, de tal forma que se produzca la muerte que no contraría la ley natural.

Por el contrario, la eutanasia activa supone la intervención directa que ocasiona la muerte del paciente poniendo fin a su sufrimiento. En general, los defensores de esta opción, coinciden en la necesidad de que existan condiciones previas que permitan realizarla como la solicitud directa por parte del paciente o enfermo terminal de querer poner fin a su vida, la imposibilidad de la medicina para salvarle, la incapacidad de los fármacos para evitar su dolor y sufrimiento y el consentimiento de médicos y familiares, entre otras.

 Con respecto a ello, se ha expresado anteriormente cuales son las posiciones de los detractores religiosos en cuanto a este tema. Sin embargo, más allá de estos grupos, los detractores de la eutanasia, en su lucha por impedir su aprobación legal, argumentan que al estar el suicidio asistido y/o la eutanasia disponibles,  esto daría lugar a que algunos sujetos presionaran a sus familiares para que acepten morir, poniendo de relieve la dificultad de establecer controles estrictos para probar la influencia de otros sobre la decisión del paciente. Otras personas desearán morir porque sufren de depresión clínica, invalidando esta condición una decisión consciente.

El suicidio asistido se relaciona vagamente con la eutanasia, éste se produce cuando alguien le da información y los medios necesarios a un paciente para que pueda terminar fácilmente con su propia vida.

Eutanasia: ¿Derecho a morir?
En este tiempo de penumbra ética en que nos ha tocado vivir, la eutanasia (literalmente, buena muerte) aparece como una alternativa cada vez más aceptable por la sociedad mundial. Con el devenir de los años el permisivismo será todavía mayor. Por ello viene bien escuchar alguna voz autorizada en la materia, como la del Dr. Luis Aldo Ravaioli.

“El médico, profesional de la vida, no puede ser el brazo ejecutor de los designios homicidas. Y esto no es un problema de religión o de creencias, es un compromiso serio que abarca a todos los hombres de buena voluntad. Todos estamos llamados a respetar y tutelar la vida humana.

No hay hombres de buena voluntad, creyentes o no creyentes, que puedan negarse a respetar la vida humana, particularmente cuando el medio ambiente ejerce una presión en contrario. El respeto por los derechos del hombre y por la ética objetiva, así lo exigen. Este es el compromiso de las profesiones sanitarias, es un compromiso solemne que dignifica a la medicina y a los médicos. Más allá de las concesiones legales, aunque inmorales, y del permisivismo social, los hombres honrados deben defender la vida, tutelarla y promoverla.

La eutanasia, sea eugénica, piadosa, positiva, negativa, directa, voluntaria, involuntaria, suicidio, suicidio asistido, etc.. constituye siempre un atentado contra el hombre y la sociedad, contra el orden natural y el revelado. No es una práctica médica, hablando con propiedad, ya que la esencia de la medicina no consiste en matar o dejar morir.

Estas acciones son un retraso científico y un retroceso histórico, un anacronismo primitivo injustificable e insostenible. La valoración ética de la eutanasia es negativa e instrínsecamente mala.

Ninguna sociedad mejoró, ninguna ciencia progresó, ningún hombre fue más bueno, ni ningún problema se resolvió, aceptando la idea de que hay vidas que no deben tutelarse, de que hay vidas sin dignidad ni trascendencia”.
Para terminar, un buen consejo para los pacientes, del Dr. John Wilke, de la Universidad de Cincinnati: “Si no le pueden aliviar el dolor, no pida usted la eutanasia. Cambie de médico, porque el suyo es incompetente”

Fuente: Diario “El Colono” Edición N°2048

Fuente Consultada:
Basado en La Gran Enciclopedia Universal (Espasa Calpe) – Wikipedia

Mujer Envejece Rapidamente Joven Vietnamita con Aspecto de Abuela

Joven Vietnamita Envejece Rápidamente

Una joven vietnamita Nguyen de 26 años sufre una extraña enfermedad desde el 2008. A la edad de 23 años se le hinchó la cara y la piel se le puso flácida pero era demasiado pobre para buscar tratamiento. Nguyen Thi Phuong, afirma que la transformación puede haber surgido por una alergia de por vida a los mariscos. Entre otras enfermedades, se dice que podría ser Lipodistrofia, raro síndrome que provoca una capa de tejido graso debajo de la superficie de la piel a desintegrarse mientras que la propia piel continúa creciendo a un ritmo alarmante.

No tiene cura y deja a las víctimas con pliegues sueltos de piel en el cuerpo, así como rostros arrugados y las características de mucha gente espera.

En los medios se ha publicado que la joven se casó en el 2006, a la edad de 21 años con su novio Tuyen, quien tenía 28. Actualmente, él sigue a su lado y ha declarado que no la ha dejado de amar por su apariencia física.

“Me casé con Phuong cuando era una hermosa mujer, la he seguido a través de su enfermedad y nunca se ha sorprendido en absoluto”, expresó el esposo.

Nguyen dijo que el amor de su marido es la razón por la que es capaz de perseverar ante la adversidad. Ella dijo: “Todavía me ama como antes a pesar de que me veo vieja y fea. Con él, me siento más segura para vivir y trabajar.”

La pareja explica que fue precisamente por la falta de dinero que no acudieron con médicos especialistas; Tuyen es carpintero, mientras Thi Phuong trabaja en una fábrica de procesamiento de castaña de cajú, por lo que no pueden pagar los estudios.

Joven Vietamita con Aspecto de Abuela

El 2 de octubre, los médicos de Nguyen Dinh Chieu Hospital provincia de Ben Tre dijeron que examinarían a Phuong de forma gratuita y la enviarán al Hospital Dermatología Ho Chi Minh, para diagnosticar su condición.

El Dr. Hoang Phuong visitó esta semana en su casa en la provincia del delta del Mekong de Ben Tre, donde dijo que era probable que ella tenía la mastocitosis. Dijo que frente a Phuong todavía se hincha y se pica con diarreas frecuentes, que son signos comunes de la enfermedad. Aunque dijo que debería haber más pruebas para verificar su diagnóstico inicial y encontrar alguna otra enfermedad que pueda tener.

Fuente Via: dailymail.co.uk.

Biografia y Obra de Dimitri Mendeleiev La Tabla de los Elementos Quimicos

Biografia y Obra de Dimitri Mendeleiev
La Tabla de los Elementos Químicos

Historia: Ordenando los elementos:

Biografia y Obra de Dimitri MendeleievDe vez en cuando llega un científico que sugiere una nueva manera de pensar. Cuando esto ocurre, decimos que la ciencia tiene un nuevo paradigma, un nuevo modelo del mundo natural.

El paradigma que dio sentido a la química y que todavía sustenta el armazón de la ciencia es la tabla periódica, que tiene sus orígenes en el trabajo del químico ruso Dmitri Mendeleyev.

Mendeleyev nació en Tobolsk, Siberia occidental, en 1834, y era el más joven de 14 hijos. Su padre era director de la escuela secundaria local, pero quedó ciego el mismo año en que nació Mendeleyev. Su madre era la hija de un empresario, y volvió a abrir una de las fábricas de su padre para apoyar a su familia. El joven Dimitri no tenía ningún interés por aprender, pero un tutor privado le inspiró el amor por la ciencia.

Cuando tenía trece años murió su padre y ardió la fábrica de su madre. Esta, al no quedarle ya ninguna razón para permanecer en Siberia y deseando mejorar la educación de su hijo, viajó 2.000 kilómetros/1.300 millas hasta Moscú con Dimitri y una hija mayor que él. En Moscú se le negó la entrada en la universidad; así que viajaron otros 650 kilómetros/400 millas hasta San Petersburgo, donde un amigo de su padre le consiguió una beca para estudiar ciencia en el Instituto Pedagógico Central, adjunto a la universidad. Su madre y su hermana murieron un año después, y él fue admitido en el hospital del instituto aquejado de tuberculosis. Le dieron dos años de vida, pero sobrevivió.

Tras una larga estancia en el hospital, se convirtió en maestro y conferenciante no pagado de la Universidad de San Petersburgo, dependiendo de las cuotas de los estudiantes privados. Cuando tenía veintidós años, obtuvo una beca para estudiar en el extranjero. Primero fue a París y después a Heidelberg, donde tuvo la suerte de conocer a Bunsen y a Kirchhoff, directores de las investigaciones que sentarían los cimientos de la espectroscopia.

En septiembre de 1860 viajó a Karlsruhe, Alemania, para asistir al Primer Congreso Internacional de Química, que se celebró para sellar una disputa sobre qué sistema era mejor para llegar a los pesos de los elementos individuales. A él acudieron 140 de los químicos más eminentes del mundo, y los discursos que oyó le despertaron un interés que le duró el resto de su vida.

En 1860, la química todavía estaba confusa. En los cincuenta años desde que Dalton perfilase su teoría atómica, varios químicos, sobre todo Berzelio, construyeron sobre los cimientos que puso él, pero todavía no existía un consenso general sobre los aspectos más básicos de esta ciencia. La confusión era tal que existían 20 fórmulas diferentes para describir compuestos bastante simples.

Una contribución significativa a la regularización del tema fue hecha por el químico inglés Edward Frankland. Nacido en Lancashire, en 1825, era aprendiz de farmacéutico que había estudiado química por cuenta propia, con tan buenos resultados que logró un doctorado por la Universidad de Marburgo en Alemania, y se convirtió en profesor de química en el Owens College de Manchester. En 1852 había introducido el concepto de valencia: la idea de que los átomos de cada elemento individual tenían una capacidad específica propia para combínarse con los átomos de otros elementos, y que esto determinaba las proporciones en las que se unían para formar compuestos. El hidrógeno tiene una valencia 1 y el oxígeno una valencia 2, así que un átomo de oxígeno se combinará con dos átomos de hidrógeno para formar una molécula de agua, que se escribe 1120. De forma semejante, un átomo de carbono, que tiene una valencia 4, se combinará con dos átomos de oxígeno, que tiene valencia 2, para formar una molécula de anhídrido carbónico o CO2. Por tanto, la valencia se convirtió en una herramienta útil para el trabajo diario de los químicos… pero el motivo de que los elementos poseyeran esa propiedad no quedaría claro hasta cinco décadas después.

Una contribución importante a la comprensión de los elementos fue la de otro portavoz en la conferencia, el italiano Stanislao Cannizzaro. Hijo de un magistrado, nació en Palermo, Sicilia, en 1826. Tuvo una carrera pintoresca, que incluía el destierro en París por su participación en una insurrección contra el rey de Nápoles en 1848. Más tarde pudo volver a Italia, y en el momento que se celebró la conferencia era profesor de química en Génova. En 1858había publicado un folleto en el que establecía por primera vez la distinción crucial entre átomos y moléculas.

El libro de texto de Mendeleyev

Los discursos de Cannizzaro en Karlsruhe tuvieron un efecto poderoso en Mendeleyev. Este volvió a Rusia convencido de la verdad de la afirmación de Cannizzaro, de que la única medida racional del peso de un elemento era la del peso de sus átomos individuales. Esta seguridad inspiraría sus investigaciones futuras.

En su vuelta a San Petersburgo, en 1861, obtuvo un puesto de profesor en el Instituto Técnico, y rápidamente se convirtió en un evangelista de las últimas ideas en química, casi desconocidas en Rusia. Al descubrir que no existía ningún libro de texto ruso sobre química orgánica (la química de los compuestos que forman la base de la materia viviente), decidió escribir uno… y lo terminó en dos meses.

En 1866, cuando tenía treinta y dos años, se convirtió en profesor de química de la universidad. Poco después empezó a escribir un libro de texto titulado Los principios de la química, cuyo primer volumen apareció en 1868. Fue un libro que se traduciría a muchos idiomas y que se convirtió en el texto estándar para dos generaciones de estudiantes. Estaba escribiendo el segundo volumen cuando hizo el descubrimiento que ordenó los elementos y aseguró su fama.

El sueño de Mendeleyev

Hacía tiempo que se sabía que ciertos elementos compartían propiedades similares, y los químicos habían empezado a preguntar-se si sería posible clasificarlos tal como Linneo había clasificado a los animales. En 1864, el químico inglés John Newlands atrajo atención al hecho de que, silos elementos se colocan según el orden de sus pesos atómicos, la tabla resultante mostraba una periodicidad, lo que significaba que algunas características similares se repetían a intervalos regulares. Expresó esa idea en una regla que llamó la ley de los octavos, dado que esas características similares parecían repetirse cada ocho lugares de la tabla. Pero cuando anunció su «descubrimiento» en una reunión de químicos, fue ridiculizado.

Mendeleyev era consciente del trabajo de Newlands, pero no le gustaba la manera en que lo expresaba. En particular, detestaba la forma en que algunos elementos parecían haber sido metidos con calzador para mantener la impresión de periodicidad. Cuando empezó el segundo volumen de su libro de texto, intentó encontrar algo que le proporcionara un armazón para entender la relación de un elemento con otro pero que le librara de los defectos que percibía en el esquema de Newlands. Estaba convencido de que la química no podría ser una verdadera ciencia hasta que se identificasen unos principios fundamentales subyacentes en la práctica.

El principio organizativo de su libro era agrupar los elementos según sus propiedades compartidas. En febrero de 1869 ya había escrito dos capítulos del segundo volumen y estaba ponderando el siguiente grupo de elementos sobre el que debía escribir. Se encontraba bajo una gran presión. Sus reflexiones sobre la clasificación de los elementos le daban la sensación de que el principio que buscaba estaba casi a su alcance. Había escrito los nombres y los pesos de los elementos conocidos en una serie de tarjetas que reestructuraba una y otra vez, poniendo a prueba su paciencia. Las circunstancias le obligaban a realizar un viaje y temió que si no encontraba la solución antes de partir, perdería la concentración y

perdería su oportunidad. Durante tres días y gran parte de sus respectivas noches luchó con el problema, hasta quedar atontado por la falta de sueño. El día en que se suponía que debía partir, se durmió sobre su escritorio. Mientras dormía, su cerebro continuó barajando las tarjetas y, cuando despertó, comprendió que tenía lasolución.

La tabla periódica

El secreto que el inconsciente de Mendeleyev había vislumbrado mientras dormía, era que los elementos podían colocarse en filas horizontales en orden ascendente según su peso atómico, y en columnas verticales según sus características químicas… dejando huecos allí donde las pautas parecían requerirlos.

Publicó estas ideas en un escrito titulado Relación entre las propiedades de los elementos y su peso atómico.Este contenía su ley periódica, que señalaba que si los elementos conocidos se listaran según un orden de peso atómico ascendente:

1. Mostrarían una pauta repetitiva de valencias ascendentes y descendentes (la proporción en que se combinan con otros elementos).

2. Formarían grupos que muestran una pauta recurrente de otras características.

Una consecuencia del descubrimiento de Mendeleyev fue que pudo recolocar 17 elementos en la tabla basándose en sus propiedades químicas, implicando que sus pesos atómicos aceptados eran incorrectos. También fue capaz, gracias a los huecos de su tabla, de postular la existencia de tres elementos hasta entonces desconocidos e incluso prever sus propiedades.

La reacción inicial al escrito de Mendeleyev fue tan precavida como la que habían recibido los anteriores intentos de ordenar los elementos, pero cuando se descubrió que los pesos atómico s aceptados de algunos elementos eran realmente incorrectos, sus ideas comenzaron a ser tomadas en serio. Y quince años después, los tres huecos de su tabla se rellenaron gracias al descubrimiento del galio (1875), el escandio (1879) y el germanio (1886), y todos ellos poseían las características que había predicho. Aunque no fue el primero en sugerir que era posible colocar los elementos en un orden que mostrara su periodicidad, Mendeleyev, a diferencia de sus predecesores, demostró que había una lógica subyacente que dictaba su tabla.

En 1876, tras muchos años de matrimonio infeliz, se divorció de su primera esposa. Según la ley rusa no podía volver a casarse durante siete años, pero se había enamorado de una preciosa estudiante de arte de origen cosaco. Incapaz de esperar, se casó con ella y fue acusado de bigamia, pero el zar se negó a castigarlo, diciendo: «Mendeleyev tiene dos esposas, pero Rusia sólo tiene un Mendeleyev». Este segundo matrimonio fue feliz. Tuvieron dos hijas y dos hijos a los que amó, y años de trabajo productivo en un estudio amueblado con los dibujos de sus héroes hechos por su esposa: Newton, Faraday y Lavoisier.

La física tras la química:

Desde que fue creada, la tabla de Mendeleyev se ha visto modificada. La versión moderna (véase la página 146) refleja el conocimiento adquirido desde su época. También contiene 109 elementos, comparados con los 63 que él conocía. Pero su tabla sigue siendo reconocible porque descubrió la relación fundamental entre los elementos, aunque no tenía la más mínima idea de cómo se unían sus átomos.

Los elementos del 1 (hidrógeno) al 92 (uranio) son naturales, ingredientes básicos de los que está hecho el mundo, el resto es creación del hombre. Todos los elementos están formados por unas partículas elementales sumamente pequeñas llamadas protones, neutrones y electrones. Todos los átomos de todos los elementos tienen un núcleo compuesto de protones y neutrones, y alrededor de éste giran los electrones como los planetas giran alrededor del Sol. Así como el Sol contiene la mayoría de la masa del sistema solar, el núcleo contiene la mayoría de la masa del átomo. Y así como los planetas están separados del Sol por inmensos espacios vacíos, las órbitas de los electrones están separadas del núcleo central por inmensos espacios vacíos. Lo que determina el peso atómico de un elemento es el número de neutrones y protones que contiene el núcleo (un protón pesa 1,836 veces más que un electrón), pero son el número y la disposición de los electrones los que determinan las propiedades químicas de un elemento, porque cuando los átomos se combinan, los que se unen son sus electrones.

Los números de la tabla periódica son números atómicos y representan el número de protones del núcleo. También corresponden al número de electrones que giran en torno al núcleo, porque cada átomo contiene el mismo número de protones que de electrones. Los electrones tienen una carga negativa, que es equilibrada por la carga positiva de los protones. El peso atómico de un elemento depende del número total de protones y neutrones en el núcleo, y tiende a aumentar a medida que crece el número atómico, pero algunos elementos tienen versiones múltiples, los llamados isótopos. Por ejemplo, el uranio natural (de número atómico 92) tiene dos versiones: el uranio 235, con 92 protones y 143 neutrones, por tanto con un peso atómico de 235; y el uranio 238, con 92 protones y 146 neutrones, y un peso atómico de 238 (igual a 238 átomos de hidrógeno).

Las columnas verticales son llamadas «grupos»: son familias de elementos con propiedades similares. Así, la columna de la derecha contiene los gases «nobles» o «inertes»: el helio, el neón, etc. También suelen ser llamados gases «perezosos» (argos es «perezoso» en griego), porque son lentos para combinarse con otros elementos. Esto los hace útiles para llenar globos aerostáticos (el helio es más seguro que el hidrógeno) y lámparas fluorescentes (el argón).

LOS ÁTOMOS Y LA ORDENACIÓN PERIÓDICA DE LOS ELEMENTOS
La idea de que la materia estaba constituida por unos noventa tipos de unidades fundamentales no acababa de convencer a los científicos.. Hemos visto cómo durante el siglo XIX se iban acumulando pruebas, procedentes de varias fuentes, de que el átomo no era tan simple como una minúscula bola de billar, y que para explicar las interacciones entre los átomos, era necesario que éstos tuvieran una estructura más complicada.

En 1815, William Prout sugirió que todos los átomos estaban formados por átomos de hidrógeno, y como prueba
de su hipótesis adujo el hecho de que todos los pesos atómicos conocidos hasta entonces eran, aproximadamente, números enteros. La hipótesis de Prout ganó inmediatamente muchos adeptos, cuyo entusiasmo disminuyó cuando Jean Seats demostró, con exactas medidas, que el cloro tenia un peso atómico de 35,46.

Los intentos de relacionar las propiedades químicas de los elementos con sus. pesos atómicos prosiguieron entonces con renovado ardor, pero no tuvieron éxito hasta después de 1860, cuando John Newlands tabuló los elementos, ordenándolos según sus pesos atómicos, y observó que existía cierta regularidad en las propiedades químicas de los elementos, que se repetían por octavas. De este modo, enunció su ley, denominada Ley de las octavas y la relacionó con la escala musical, proporción que los científicos de su época acogieron con ironía.

Entre 1868 y 1870, una serie de trabajos de J. L. Meyer y D. Mendeleiev establecieron claramente los principios del “sistema periódico de los elementos”. La Tabla Periódica sistematizó inmediatamente la química inorgánica, hizo posible la predicción de las propiedades de elementos aún desconocidos, y puso de manifiesto la existencia de una regularidad estructural de la constitución atómica.

Estudios más finos revelaron ciertas anomalías en la disposición de los elementos, según sus pesos atómicos. Por ejemplo, cuando William Ramsay descubrió los gases nobles (1894-1897), encontró que el argón tenía un peso atómico de 39,88, que era evidentemente mayor que el del potasio (39,10), mientras éste ocupaba un lugar posterior al argón en la Tabla Periódica.

Tales excepciones indicaban que se desconocían ciertos hechos fundamentales, relativos a la estructura atómica. La respuesta iba a ser encontrada como resultado de experimentos realizados en un campo ajeno a la química: las descargas eléctricas a través de gases.

Ver: Naturaleza de la Materia

Teoria Herencia Genética Leyes de Mendel Fenotipo Genotipo Historia

Leyes de Mendel- Teoría Herencia Genética 

Gregor Mendel, considerado el padre de la genética, fue un monje austriaco cuyos experimentos sobre la transmisión de los caracteres hereditarios se han convertido en el fundamento de la actual teoría de la herencia. Las leyes de Mendel explican los rasgos de los descendientes, a partir del conocimiento de las características de sus progenitores.

Teoria Herencia Genética

 Suele pasar en muchas oportunidades que un acontecimiento, en el momento en que se produce, no es considerado relevante y sólo logra serlo con el paso del tiempo. Éste es el caso del monje Gregor Mendel, un adelantado que descubrió de qué forma se heredan los caracteres. Realizadas a mediados del 1800, sus investigaciones a partir de la hibridación de plantas de arveja mediante la polinización artificial recién fueron valoradas a comienzos del siglo XX. Hoy, las leyes de Mendel son el fundamento de la genética moderna.

Gregor Mendel nació el 22 de julio de 1822 en Heizendorf (hoy Hyncice, República Checa), en el seno de una familia campesina. Dificultades familiares y económicas le obligaron a retrasar sus estudios. Fue un hombre de contextura enfermiza y carácter humilde y retraído.

El entorno sociocultural influyó en su personalidad científica, principalmente el contacto directo con la naturaleza, las enseñanzas de su padre sobre los cultivos de frutales y la relación con. diferentes profesores a lo largo de su vida, en especial el profesor J. Scheider, experto en pomología.

El 9 de octubre de 1843 ingresó como novicio en el convento de Brünn, conocido en la época por su gran reputación como centro de estudios y de trabajos científicos. Después de tres años, al finalizar su formación en teología, fue ordenado sacerdote, el 6 de agosto de 1847. En un principio fue inducido por su superior a dedicarse al campo de la pedagogía, pero él eligió un camino bien distinto.

En 1851 ingresó en la Universidad de Viena, donde estudió historia, botánica, física, química y matemáticas, para graduarse y ejercer como profesor de biología y matemáticas.

Durante su estancia allí llegó a dar numerosas clases como suplente, en las materias de matemáticas, ciencias naturales y ciencias generales, con excelente aprobación entre los estudiantes. Sin embargo, una vez finalizados sus estudios, no logró graduarse, por lo que decidió regresar al monasterio de Abbot en 1854. De naturaleza sosegada y mentalidad matemática, llevó una vida aislada, consagrado a su trabajo.

Más adelante fue nombrado profesor de la Escuela Técnica de Brünn, donde dedicó la mayor parte de su tiempo a investigar la variedad, herencia y evolución de las plantas, especialmente de los guisantes, en un jardín del monasterio destinado a los experimentos. Sus aportaciones al mundo de la ciencia son consideradas hoy como fundamentales para el desarrollo de la genética.

Hacia el final de su vida, en 1868, Mendel fue nombrado abad de su monasterio, donde murió el 6 de enero de 1884 a causa de una afección renal y cardiaca.

Mendel tuvo la fortuna de contar, en su propio monasterio, con el material necesario para sus experimentos. Comenzó sus trabajos estudiando las abejas, coleccionando reinas de todas las razas, con las que llevaba a cabo distintos tipos de cruces. Entre 1856 y 1863 realizó experimentos sobre la hibridación de plantas.

Trabajó con más de 28.000 plantas de distintas variantes del guisante oloroso o chícharo, analizando con detalle siete pares de características de la semilla y la planta: la forma de la semilla, el color de los cotiledones, la forma de la vaina, el color de la vaina inmadura, la posición de las flores, el color de las flores y la longitud del tallo.

Sus exhaustivos experimentos tuvieron como resultado el enunciado de dos principios que más tarde serían conocidos como «leyes de la herencia». Sus observaciones le permitieron acuñar dos términos que siguen empleándose en la genética de nuestros días: dominante y recesivo. Factor e hibrido son, asimismo, dos de los conceptos establecidos por Mendel de absoluta vigencia en la actualidad.

En 1865 Mendel expuso ante la Sociedad de Historia Natural de Brünn una extensa y detallada descripción de los experimentos que había llevado a cabo y de los resultados obtenidos. A pesar de su importancia, y de que su trabajo fue distribuido entre las principales sociedades científicas de su

tiempo, pasó totalmente inadvertido. Al año siguiente, en 1866, publicó su obra fundamental en un pequeño boletín divulgativo de su ciudad, bajo el título Ensayo sobre los híbridos vegetales. En ella expuso la formulación de las leyes que llevan su nombre. Este ensayo contenía una descripción del gran número de cruzamientos experimentales gracias a los cuales habla conseguido expresar numéricamente los resultados obtenidos y someterlos a un análisis estadístico.

A pesar de esta detallada descripción, o quizás por ese mismo motivo, su obra no tuvo respuesta alguna entre la comunidad científica de su época. De hecho, Mendel íntercambió correspondencia con uno de los más eminentes botánicos del momento, Carl Nágeli, aunque éste no pareció muy impresionado por su trabajo. Sugirió a Mendel que estudiara otras plantas, como la vellosina Hieracium, en la cual Nágeli estaba muy interesado.

Mendel siguió su consejo, pero los experimentos con Hieracium no fueron concluyentes, dado que no encontró normas consistentes en la segregación de sus caracteres, y empezó a creer que sus resultados eran de aplicación limitada. Su fe y su entusiasmo disminuyeron, y debido a la presión de otras ocupaciones, en la década de 1870 abandonó sus experimentos sobre la herencia. No fue hasta mucho después de la muerte de Mendel, en 1903, cuando se descubrió que en Hieracium se da un tipo especial de partenogénesis, que produce desviaciones de las proporciones fenotípicas y genotípicas esperadas.

Tuvieron que pasar treinta y cinco años para que la olvidada monografía de Mendel saliera a la luz. En 1900 se produjo el redescubrimiento, de forma prácticamente simultánea, de las leyes de Mendel por parte de tres botánicos: el holandés Hugo de Vries en Alemania, Eric Von Tschermak en Austria y Karl Erich Correns en Inglaterra. Asombrados por el sencillo planteamiento experimental y el análisis cuantitativo de sus datos, repitieron sus experimentos y comprobaron la regularidad matemática de los fenómenos de la herencia, al obtener resultados similares. Al conocer de forma fortuita que Mendel les había precedido en sus estudios, estuvieron de acuerdo en reconocerle como el descubridor de las leyes que llevan su nombre.

El británico William Bateson otorgó un gran impulso a dichas leyes, considerándolas como base de la genética (hoy llamada genética clásica o mendeliana), término que acuñó en 1905 para designar la «ciencia dedicada al estudio de los fenómenos de la herencia y de la variación de los seres».

En 1902, Boyen y Sutton descubrieron, de forma independiente, la existencia de un comportamiento similar entre los principios mendelianos y los cromosomas en la meiosis. En 1909 el danés Wilhelm Johannsen introdujo el término «gen» definiéndolo como «una palabrita.., útil como expresión para los factores únitarios… que se ha demostrado que está en los gametos por los investigadores modernos del mendelismo». Sin embargo, no fue hasta finales de la década de 1920 y comienzos de 1930 cuando se comprendió el verdadero alcance del trabajo de Mendel, en especial en lo que se refiere a la teoría evolutiva.

Mendel desconocía por completo la naturaleza de los «factores hereditarios». Años más tarde, el descubrimiento
de los cromosomas y del mecanismo de la división célula” arrojó luz sobre cómo se produce la herencia
de los caracteres.

Los cruces de arvejas: Para observar la existencia de reglas en la transmisión de las características de una generación a la siguiente, eligió hacer sus famosos cruzamientos a partir de la especie Pisum sativum por diversos motivos: su costo era muy bajo, tenía diferentes variedades dentro de la misma especie y, lo más importante, le permitiría realizar muchos experimentos en poco tiempo, ya que esta planta tiene un período de generación muy corto y un alto índice de descendencia. En total, hizo 287 cruces mediante la polinización artificial entre 70 diferentes variedades puras. En total, utilizó unas 28 mil plantas.

El esquema consistió en cruzar dos variedades puras diferentes en uno o más caracteres para autofecundar luego esta primera generación de vastagos, y así sucesivamente.

De esa forma, notó que al mezclar dos guisantes, un carácter o variación propia de uno de ellos -lo que se conoce como alelo- no aparecía en la siguiente generación. Además, al cruzar a esos híbridos resultantes en la primera generación, es decir, los descendientes, corroboró que el carácter antes citado volvía a aparecer. Así pues, las plantas hijas nuevas mostraban una distribución regular: la cuarta parte heredaba la característica de la variedad pura que había actuado como “abuela”; la otra cuarta parte, la de la planta “abuelo”, y la mitad adquiría la característica común de los “padres”.

La ventaja de Mendel para plantear sus leyes de herencia fue aplicar las matemáticas a la biología. Al expresar mediante relaciones numéricas las reglas de transmisión de las características de una generación a otra, pudo predecir con precisión los resultados de los distintos cruzamientos.

Las leyes de Mendel

Las leyes de Mendel explican y predicen cómo van a ser las características de un nuevo individuo, partiendo de los rasgos presentes en sus padres y abuelos. Los caracteres se heredan de padres a hijos, pero no siempre de forma directa, puesto que pueden ser dominantes o recesivos. Los caracteres dominantes se manifiestan siempre en todas las generaciones, pero los caracteres recesivos pueden permanecer latentes, sin desaparecer, para ‘surgir y manifestarse en generaciones posteriores.

Los principios establecidos por Mendel fueron los siguientes:

— Primera ley de Mendel o ley de la uniformidad. Establece que si se cruzan dos razas puras para un determinado carácter, los descendientes de la primera generación son todos iguales entre sí e iguales (en fenotipo) a uno de los progenitores.

— Segunda ley de Mendel o ley de la segregación. Establece que los caracteres recesivos, al cruzar dos razas puras, quedan ocultos en la primera generación, reaparecen en la segunda en proporción de uno a tres respecto a los caracteres dominantes. Los individuos de la segunda generación que resultan de los híbridos de la primera generación son diferentes fenotipicamente unos de otros; esta variación se explica por la segregación de los alelos responsables de estos caracteres, que en un primer momento se encuentran juntos en el híbrido y que luego se separan entre los distintos gametos.

Tercera ley de Mendel o ley de la independencia de caracteres. Establece que los caracteres son independientes y se combinan al azar. En la transmisión de dos o más caracteres, cada par de alelas que controla un carácter se transmite de manera independiente de cualquier otro par de alelos que controlen otro carácter en la segunda generación, combinándose de todos los modos posibles.

LO ESENCIAL DE SU TEORÍA:

PRINCIPIO DE LA UNIFORMIDAD Cuando se cruzan dos razas puras, los descendientes de la primera generación serán todos iguales entre sí e iguales a uno de los progenitores.

PRINCIPIO DE LA SEGREGACIÓN Dice que los individuos de la segunda generación no son uniformes porque los caracteres de los padres segregan, y se dan estas proporciones: 1/4 de los descendientes manifiesta el carácter de un progenitor; 1/4 el de otro y la mitad restante se compone por híbridos.

PRINCIPIO DE LA COMBINACIÓN INDEPENDIENTE Cuando se cruzan dos individuos que difieren en dos caracteres, los genes se heredan independientemente unos de otros y se combinan de todas las maneras posibles.

Después de Mendel
Los trabajos de Mendel, si bien se publicaron en 1865, fueron completamente olvidados durante 35 años. En 1900, tres investigadores, Correns, De Vries y Tschermack llegaron, de forma independiente, a las mismas conclusiones que Mendel. En un ejemplo de honradez científica, decidieron que el honor del descubrimiento corresponde a su predecesor. De no ser asi, probablemente Mendel hubiera desaparecido de la historia de la Ciencia.

Los genetistas actuales reconocen que Mendel, además de escoger el material biológico más adecuado, supo concentrar su atención en los fenómenos parciales y no en la totalidad de los caracteres (lo que le habría confundido), así con clasificar los caracteres y establecer relaciones entre ellos.

El hecho de que Mendel realizase todos sus descubrimientos sin conocer la existencia del ADN y los cromosomas, ni el proceso de la división celular, ni qué sucede durante la fecundación con el material hereditario, agrega mérito a sus logros.

Los cromosomas y su papel en la herencia
En 1902, Sutton y Bovery observaron la relación entre los cromosomas y la herencia y propusieron que las partículas hereditarias (hoy llamadas genes) se encuentran en los cromosomas, dispuestas una a continuación de otra. Esta fue la primera forma  de la teoría cromosómica de la herencia, demostrada por Morgan en los años veinte pasado siglo.

Treinta años más tarde se descubrió que el material hereditario está formado exclusivamente por ácido desoxirribonucleico o ADN (excepto en algunos virus, en los que es ARN). Este material hereditario se encuentra localizado dentro del núcleo de las células asociado a proteínas, formando la cromatina. Solo en el momento de la división celular, la cromatina se condensa y se empaqueta, permitiendo entonces la observación de los cromosomas.

Se denomina gen a una porción más o menos larga de ADN (de un determinado cromosoma) que contiene la información para sintetizar una determinada proteína responsable de un carácter. En el núcleo de cada una de nuestras células hay aproximadamente 25.000 genes. En una célula díploide, como las que forman el organismo humano, hay dos juegos de cromosomas idénticos: los cromosomas de cada pareja se denominan cromosomas homólogos.

¿ Cómo comprobar las leyes de Mendel ?

1. Consigue agar o gelatina sin sabor, 1 banano, 4 frascos de boca ancha (del mismo tamaño), 1 caja de petri, gasa, 1 gotero, algodón, horno u olla de presión, alcohol, agua, pincel delgado y suave, estereoscopio o lupa.

2. Esteriliza tres frascos lavándolos e introduciéndolos en un horno o en una olla a presión en seco —o en un autoclave— a una temperatura de 350°C durante 40 minutos.

3. Preparación del tapón: se elabora con algodón envuelto en gasa, de tal manera que se ajuste bien a la tapa del frasco; se amarra y se esteriliza con el frasco.

4. Disuelve 3 mi de agar en 40 mi de agua o 1 paquete de gelatina sin sabor en 40 mi de agua. Macera un banano en 40 mi de agua. Agita las preparaciones en un recipiente y caliéntalas hasta hervir.

5. A la mezcla se le agrega un fungicida para eliminar los hongos; suele utilizarse ácido propiónico al 94% en cantidad de 1 mi, o en su defecto, puede remplazarse por 1 mi de ácido acético (vinagre).

Luego la mezcla se coloca en los frascos esterilizados (a una altura aproximada de 2 cm), teniendo la precaución de evitar al máximo la contaminación. Se tapona y se deja enfriar durante 36 horas. El frasco está listo para recibir las moscas.

Para conseguir las moscas, se deja una fruta como banano o naranja en la ventana de cualquier habitación. Allí llegará la Drosophila melanogaster atraída por el olor.

• Enumera las razones por las cuales se prefiere a la mosca de la fruta para las experiencias de genética.

6. Para examinar apropiadamente las moscas que has conseguido, deben estar anestesiadas con éter y ubicadas en el recipiente para su observación. Sigue con atención el siguiente procedimiento, teniendo en cuenta estas precauciones:

• Cerciórate de que no haya ninguna llama en el cuarto, pues el éter es muy inflamable.
• El cuarto debe estar ventilado.

7. Golpea suavemente el fondo del frasco que contiene las moscas, para obligarlas a ir al fondo, quitando rápidamente el tapón del frasco de cultivo e invierte éste sobre el extremo abierto del frasco para eterizar. Golpeas suavemente, sobre la mesa de trabajo, el fondo del frasco para eterizar, así obligas a pasar las moscas a este último recipiente. Tu compañero o compañera de trabajo debe impregnar el algodón, que servirá de tapón, con unas gotas de éter.

Fuente Consultada: Enciclopedia Investigemos – Ciencia Integrada Tomo 3

LAS LEYES DE MENDEL: La validez de las leyes de Mendel sólo se confirmó hacia 1900 (16 años después de la muerte de Mendel). Varios botánicos obtuvieron resultados similares con experimentos de hibridación de plantas. Sin embargo, aunque las leyes de Mendel quedaron confirmadas, en un gran número de casos aparecieron excepciones. En aquel momento, la técnica del microscopio hizo grandes progresos y, estudiando la división de las células, se descubrieron los cromosomas.

Éstos tienen una estructura filiforme y se encuentran presentes en el núcleo de las células. Cada célula tiene un número fijo de cromosomas, y cada cromosoma puede aparearse con otro semejante. Las células del cuerpo humano contienen 23 pares; las células de una mata de guisantes, 7 pares. En los cromosomas pueden residir los factores de Mendel, y de hecho se ha demostrado experimentalmente. Los factores que llamamos “genes” son unas nucleoproteínas muy complicadas. Un cambio químico de poca importancia puede trasformar el factor grande en pequeño al modificar una nucleoproteína.

Cada gene se encuentra en un punto determinado de un cromosoma. En cada célula tenemos dos cromosomas apareados y, por tanto, dos genes para controlar un carácter. Si se trata de dos factores pequeños, o de dos grandes, el carácter es homozigótico (puro); si los factores son distintos, el carácter será heterozigótico(impuro).

Al formarse las células sexuales, los cromosomas sufren un fenómeno llamado “miosis”. Durante la miosis, los pares de cromosomas se separan; a cada una de las células sexuales (gametos) corresponde uno de los cromosomas del par. Esto es, exactamente, lo que estableció Mendel en su Segunda Ley: sólo uno de los factores de un determinado par puede encontrarse en un gameto. Son iguales todos los gametos de un individuohomozigótico; pero los de un individuo heterozigótico son de los dos tipos, en número igual.

Mendel tuvo la suerte de elegir caracteres como la forma y el color de las semillas, que se encontraban localizados en distintos cromosomas. Con “genes” ligados (es decir, que se encuentran en el mismo cromosoma) los resultados hubieran sido distintos. Al obtener, únicamente, semillas lisas y amarillas, o rugosas y verdes, porque LA y rv no se hubieran separado, Mendel no hubiese podido establecer su Tercera Ley. Esto ocurre con muchos caracteres, debido al enorme número de genes que hay en cada cromosoma. Los genes ligados son la causa de una excepción importante a la tercera Ley de Mendel.

Los genes ligados pueden, sin embargo, separarse y esto ocurre con cierta frecuencia en el llamado entrecruzamiento. Este fenómeno consiste en la ruptura de dos cromosomas (durante la miosis), que se vuelven a unir por distinto sitio.

Como se observa en la figura, cuanto más separados están dos genes en un cromosoma, más probabilidades hay de que se separen por entrecruzamiento. Haciendo un estudio estadístico de la frecuencia con que se separan dos genes, que normalmente se encuentran en un mismo cromosoma, se diseña un “mapa genético” de un cromosoma determinado. El entrecruzamiento es un importante origen de la variación en los seres vivos.

cromosomas

Si “L” y “A” (y “r” y “v”) están ligados normalmente, al separarse los cromosomas aparecerán juntos.

mendel y las leyes


Si los cromosomas se rompen y se vuelven a unir, “L” y “A” y “r” y “v” pueden separarse cuando los cromosomas se dividen para producir gametos.

El Hombre Arbol Enfermedad Extraña Historia y Curacion

El Hombre Árbol Enfermedad Extraña Historia

Dede Koswura es un campesino de 35 años que vive en Indonesia que padece una terrible y extraña enfermedad, por lo que le crecen especies de verrugas en la cara y en las extremidades. Las manos le han desaparecidos formando con macizos de unos 30 cm. de diámetro. Parece que todo comenzó cuando tuvo un accidente y se lastimó una rodilla. A partir de ese momento la pesadilla se inició naciéndole brotes orgánicos  a modo de raíces, lo que ajeno a su lastimoso aspecto, no le permite realizar ningún tipo de actividad laboral.

Por si fuera poco su mujer lo abandonó, y además perdió también su trabajo. Dede vive en la extrema pobreza y está acompañado de sus dos hijos (tambien abandonados por su madre), su único trabajo era el de desfilar para los turista en una feria ambulante, al igual que hiciera en otro momento el ‘Hombre Elefante’ de David Lynch, lo que era objeto de burlas por parte de sus vecinos.

El Dr. Anthony Gaspari (dermatólogo) de la Universidad de Marylan llegó hasta su pueblo y le propuso una cirugía junto a un tratamiento que le permitirá en corto plazo recuperar su vida normal. Según estudios de otros casos, la posibilidad de padecer esta enfermedad es de “menos de 1 entre 1.000.000”. El dermatólogo  que examinó a Dede y concluyó que el descomunal brote verrugoso es consecuencia de la combinación de un papilomavirus humano (HPV) y de una anomalía genética que impide al cuerpo combatir la infección.

El Gobierno de Indonesia inicialmente prohibió que el ‘hombre árbol’, sea trasladado a EE.UU. por médicos de ese país para recibir tratamiento contra la insólita enfermedad, porque aducían que esta gente del campo no desean que sean llevados lejos de su pueblo, y menos para analizar su sangre. De todas maneras Dede  recibió una serie de cirugías que permitió que mejorase  su aspecto físico y tenga otra oportunidad para comenzar una vida  normal.

Anthony Gaspari estuvo siempre muy  obsesionado por esta  extraña enfermedad, por lo que realizó una serie de gestiones para tratar de curar a Dede. Gracias a los injertos que le realizó podrá mover mejor los dedos. El “hombre árbol” esta de muy buen animo, y ya está pensando en buscar trabajo, iniciar una vida normal, y hasta también desea volver a enamorar.

UN VIDEO DE YOUTUBE

La Evolución Genetica del Siglo XX La Clonacion Animal ADN Genes

LA CLONACIÓN: La clonación es el proceso científico mediante el cual se crea, a partir de una célula de un individuo, otro idéntico al anterior. La clonación reproduce de modo perfecto los aspectos fisiológicos y bioquímica de una célula en todo un individuo.

Esto es posible porque mediante un proceso de reproducción artificial se aportan los genes necesarios en la célula. Esto genes son los que determinan las características del nuevo individuo, a diferencia lo que ocurre en la reproducción sexual, donde el individuo es resultado de un proceso de fecundación y de la aportación genética de una célula de la madre y una célula del padre.

En el campo de la ingeniería genética, clonar supone realizar, in vitro; es decir, en las condiciones de un laboratorio, el aislamiento y multiplicación de una porción de material genético o ADN.

En griego, klon tiene el significado de rama o brote. Se ha tener en cuenta que la donación existe en la naturaleza de forma paralela a la reproducción sexual. Los primeros organismos se reproducían de manera asexual, dando lugar a unos descendientes idénticos a sus padres, por tanto, según, la definición anterior, eran en realidad clones de sus progenitores.

La reproducción sexual es un avance que tiene lugar en el curso de la evolución de los seres vivos, con él fin de aportar nuevas soluciones genéticas. Con estas nuevas combinaciones que se producen como consecuencia del intercambio de material genético del padre y de la madre se consiguen nuevos individuos que presentan una mayor capacidad de adaptación al medio exterior cambiante y que afrontan, de manera más eficaz la selección natural.

La comunidad científica lleva muchos años estudiando la idea de obtener seres viables a partir de la clonación de células somáticas o no sexuales. Los fracasos miles hicieron pensar, en un primer momento, que el problema radicaba en el tipo células del individuo originario. Una célula de un individuo adulto, si es usada en ese tipo de experimentos, es incapaz de llevar a cabo la secuencia de acciones necesarias para el desarrollo.

Por eso se empezaron a utilizar células embrionarias, que conservan la totipotencia o capacidad de desarrollarse y, posteriormente, diferenciarse en los distintos tipos funcionales de los que consta un ser adulto. Esto es debido a la diferenciación, si no completa, muy avanzada, en el caso de una célula de un adulto.

El primer experimento de donación en vertebrados lo realizaron los científicos Briggs y King en los primeros años de la década de los cincuenta, en ranas. En los años setenta, el equipo del científico Gurdon obtuvo colecciones de sapos espuela perfectamente iguales entre sí, mediante la técnica de la inserción de los núcleos de las células de las fases larvarias tempranas en óvulos que previamente habían si despojados de sus núcleos. Este ensayo, sin embargo, fracasaba si el material genético era aportado por una célula de un individuo adulto.

En los años noventa se obtuvo la clonación de un mamífero. En 1996, el grupo de los científicos Wilmut y Campbell logró donar dos ovejas, llamadas Megan y Mora, por transferencia de núcleos de embriones. También se ha descrito la producción de monos Rhesus. En estos últimos experimentos se usaron células embrionarias, que permitieron el nacimiento de un individuo de esta especie, que fue llamado Tetra.

De todos los ensayos que se han desarrollado durante la década de los noventa se deduce la utilización de varias técnicas: Una de ellas, para la obtención de terneros ciánicos, constante en la fecundación in vitro de un óvulo de una vaca con el espermatozoide de un toro. En el desarrollo embrionario del óvulo se separan cada una de las células embrionarias, y gracias a su capacidad intacta de diferenciación, dan lugar a un nuevo individuo.

Antes de la especialización funcional de estas células, sus núcleos se transfieren a los óvulos fecundados, privados de núcleos, de otras vacas. Estos óvulos se implantan posteriormente en el útero de varias madres, y si el desarrollo del óvulo y el consiguiente embarazo tienen éxito, se obtienen terneros clónicos iguales entre sí, pero no a la madre. En la práctica se han utilizado varias madres: las que aportan el material genético, las que proporcionan los óvulos y las madres «de alquiler», donde se desarrolla el nuevo Individuo. En realidad no son iguales a la madre, porque la unión del óvulo con el espermatozoide supone una ciertoveja dollya combinación de ambos materiales genéticos.

Uno de los mayores éxitos hasta la fecha corresponde al equipo del doctor lan Wilmut del Instituto Roslin de Edimburgo. En este trabajo se obtuvo una oveja por donación a partir de una célula ya diferenciada de un adulto.

El resultado fue la Oveja Dolly El método consistía en tomar el óvulo de una oveja, eliminar su núcleo, cambiar éste por el núcleo de una célula adulta e implantar este óvulo en una tercera oveja. Por tanto, Dolly tiene un padre y tres madres. Aunque esta técnica posee aún un elevado porcentaje de fracasos, uno de los datos más interesante que se pueden desprender de estos experimentos es que se ha conseguido, a nivel de laboratorio, reprogramar de alguna manera el material genético de una célula adulta para que, ésta se desarrolle y se diferencie para dar lugar a un nuevo individuo.

Otro hallazgo científico fundamental correspondió, en 1997, a un equipo de la Universidad de Massachusetts y a una empresa de biotecnología. En estos experimentos se obtuvo la donación de un bovino a partir de los clones obtenidos d células del tejido conectivo.

Esta técnica es intermedia entre las dos anteriores, pues las células que se utilizan no son embriones, sino células adultas diferenciadas, pero no con el grado de diferenciación de una célula de un individuo adulto. En el año 1998, en Francia, nació una vaca de nombre Marguerita, a partir de células musculares fetales, por tanto, células que, si bien presentan la dotación genética necesaria para la mayor parte de las estructuras del organismo, no están totalmente especializadas. En ese mismo año, en Japón, nacieron terneros donados a partir de células de los intestinos de una vaca, en los óvulos, pertenecientes a otras vacas, a las que se les había eliminado el núcleo.

 clonacion 2

Problemas éticos de la clonación

La donación plantea interesantes expectativas, además de problemas éticos, tanto en la sociedad como en la comunidad científica, donde existen sectores a favor de la utilización de estas técnicas y sectores en contra. En España, los científicos del Comité de expertos sobre Bioética y Clonación, prevén que hasta dentro de unos años no será posible la aplicación de técnicas seguras de donación, y descartan, por el momento, cualquier posibilidad de donación de seres humanos; limitan el uso de estas técnicas al tratamiento y curación de enfermedades genéticas, a la creación de nuevos fármacos —gracias a los animales transgénicos— y a la realización de xenotrasplantes, es decir, trasplantes en el hombre de órganos de animales con una dotación genética muy semejante, como es el caso del cerdo.

En este foro se discute la irresponsabilidad que supondría en la actualidad la aplicación de estos métodos de donación en seres humanos. Se tiene la certeza de que los niños que pudieran desarrollarse gracias a estas técnicas presentarían deformaciones, tales como dos cabezas, dos corazones, ausencia de manos o pies o bien un número anómalo de extremidades.

Los propios «padres» de la oveja Dolly sugieren la serie encadenada de trastornos genéticos que podrían derivarse: códigos genéticos que determinen trastornos muy graves, cómo el, envejecimiento prematuro, cáncer y afecciones neurológicas acerca de las cuales hay, hoy día, conocimientos precisos.

Los problemas éticos surgen en torno a la cuestión de la capacidad de acceso a estas técnicas por parte de personas influyentes y con grandes recursos económicos, que podrían utilizar este instrumento científico como herramienta para su propia perpetuación.

En el caso de los animales, se ha planteado la posibilidad de la creación de poblaciones que, si bien pueden reportar a la humanidad productos de mayor calidad, serían completamente homogéneas y podrían extinguirse muy fácilmente ante una epidemia.

En la actualidad se usan animales transgénicos que, gracias a las técnicas de donación, constituirían una fuente inagotable de órganos para el trasplante en humanos. Por otro lado, aunque es más ficticia su consecución, estas especies podrían ser utilizadas para el tratamiento de múltiples enfermedades en humanos.

clonacionCLONACIÓN

En octubre de 2000 nada en el departamento de Ciencias de la Salud de la Universidad de Oregón el mono Rhesus llamado AND cuyo nombre derivaba de inserted DNA (ADN introducido»). ANDi nació tras recibir material genético extra y de esa manera se convertía en el primer primate no humano del mundo genéticamente modificado. El proceso de modificación del ADN puede permitir a los científicos desarrollar nuevos tratamientos médicos para una amplia gama de enfermedades.

En muchos aspectos la manipulación genética presenta un dilema sobre lo brillante o lo oscura de la misma. En la sociedad hay muchos grupos que piensan que este tipo de ciencia nunca se debió haber desarrollado y que sus usos se deberían restringir; otros piensan que los beneficios sobrepasan a los inconvenientes y muchos otros no aceptan la manipulación genética, pero tienen opiniones variadas sobre las aplicaciones específicas de ésta. Muchos de los aspectos éticos se representan en los siguientes tres impactos:

REFLEXIONES ÉTICAS SOBRE LA MANIPULACIÓN GENÉTICA

Social 

Existen objeciones respecto a que algunos usos pueden ser indeseables desde el punto de vista social; por ejemplo, a finales de la década de los ochenta se comercializó la hormona del crecimiento bovino, creada mediante manipulación genética. Algunas personas se oponen por tres razones.

En primer lugar piensan que la hormona alteraría drásticamente la composición de la leche; se hizo la investigación y se comprobó que los cambios son menores. En segundo lugar, es probable que la alta producción aumente la infección en las ubres de las vacas. Esto no solo sería perjudicial para las vacas, ya que aumentaría el uso de antibióticos y su resistencia por parte de las bacterias. En tercer lugar, ya existe una saturación de leche en el mercado de Europa y América: muchos granjeros se oponen al uso de esta hormona puesto que su uso bajaría el precio de la leche.

Liberación de organismos al ambiente

Este caso se puede sintetizar en tres preguntas: ¿Qué pasaría si los organismos liberados se dispersaran más allá del sitio donde fueron esparcidos? ¿Qué pasaría si se establecieran y se reprodujeran? ¿Podrían estos organismos producir cambios masivos en el ambiente? A esto los ingenieros genéticos responden: la humanidad ha practicado la ingeniería genética durante milenios, en la naturaleza todo el tiempo ocurre. La ingeniería genética es simplemente una versión más rápida y precisa.

Identificación del genoma humano          

La compañía Celera Genomics anunció recientemente que ha completado la secuenciación del genoma humano. El estudio muestra que el ser humano tiene 100 000 genes. La manipulación correcta de estos genes, corregirá la malformación de algunos de éstos y por lo tanto la cura de enfermedades genéticas, como podrían ser la diabetes, la obesidad, el cáncer, el alcoholismo, la enfermedad de Alzheimer, la depresión, la arteriesclerosis, el síndrome de Down, la hemofilia, el daltonismo, entre otras.

Ventajas de la clonación: La clonación es una técnica de laboratorio que puede reproducir copias exactas de un tejido, de un órgano o de un organismo completo, a partir de su ADN. Te vamos a contar algunas de sus ventajas:

• La posibilidad de producir un órgano salvando así la vida de un paciente que requiera de dicho órgano.

• La propagación de animales en extinción, manteniendo de esta manera el equilibrio-ecológico.

• La multiplicación de las células nerviosas,, que eventualmente permitirían que los paralíticos que alguna vez sufrieron ruptura de la médula espinal pudieran nuevamente caminar.

• Mantener y explotar, en buena medida, ciertas calidades en determinadas plantas y animales, de acuerdo con la conveniencia de alimentación en el ser humano.

• Producir medicamentos de avanzada en la curación de enfermedades como el cáncer, la diabetes, la hepatitis, etc.

Legislación española

España es uno de los países pioneros en el establecimiento de un conjunto de leyes que delimiten las pautas de actuación en los temas relacionados con la donación. Existen Cuatro artículos en el Código penal cuyo texto es el siguiente:

—Artículo 159: «(…) los que, con finalidad distinta a la eliminación o disminución de taras o enfermedades graves, manipulen genes humanos de manera que se altere el genotipo serán castigados con penas de dos a seis años de prisión».

—Artículo 160: «Entre tres y siete años de prisión es l& pena para aquellos que utilicen la ingeniería genética para producir armas biológicas o exterminadoras de la especie humana».

—Articulo 161: «Serán castigados con la pena de prisión de uno a cinco años quienes fecunden óvulos humanos con cualquier fin distinto de la procreación humana».

—Artículo 162: «(…) será castigado con la pena de prisión de dos a seis años quien Practique la reproducción asistida a una mujer sin su consentimiento».

La Clonacion Humana y Animal Definicion Celulas Clonadas

LA CLONACIÓN: La clonación es el proceso científico mediante el cual se crea, a partir de una célula de un individuo, otro idéntico al anterior. La clonación reproduce de modo perfecto los aspectos fisiológicos y bioquímica de una célula en todo un individuo. Esto es posible porque mediante un proceso de reproducción artificial se aportan los genes necesarios en la célula.

Esto genes son los que determinan las características del nuevo individuo, a diferencia lo que ocurre en la reproducción sexual, donde el individuo es resultado de un proceso de fecundación y de la aportación genética de una célula de la madre y una célula del padre.

En el campo de la ingeniería genética, clonar supone realizar, in vitro; es decir, en las condiciones de un laboratorio, el aislamiento y multiplicación de una porción de material genético o ADN.

En griego, klon tiene el significado de rama o brote. Se ha tener en cuenta que la donación existe en la naturaleza de forma paralela a la reproducción sexual. Los primeros organismos se reproducían de manera asexual, dando lugar a unos descendientes idénticos a sus padres, por tanto, según, la definición anterior, eran en realidad clones de sus progenitores.

La reproducción sexual es un avance que tiene lugar en el curso de la evolución de los seres vivos, con él fin de aportar nuevas soluciones genéticas. Con estas nuevas combinaciones que se producen como consecuencia del intercambio de material genético del padre y de la madre se consiguen nuevos individuos que presentan una mayor capacidad de adaptación al medio exterior cambiante y que afrontan, de manera más eficaz la selección natural.

La comunidad científica lleva muchos años estudiando la idea de obtener seres viables a partir de la clonación de células somáticas o no sexuales. Los fracasos miles hicieron pensar, en un primer momento, que el problema radicaba en el tipo células del individuo originario. Una célula de un individuo adulto, si es usada en ese tipo de experimentos, es incapaz de llevar a cabo la secuencia de acciones necesarias para el desarrollo.

Por eso se empezaron a utilizar células embrionarias, que conservan la totipotencia o capacidad de desarrollarse y, posteriormente, diferenciarse en los distintos tipos funcionales de los que consta un ser adulto. Esto es debido a la diferenciación, si no completa, muy avanzada, en el caso de una célula de un adulto.

El primer experimento de donación en vertebrados lo realizaron los científicos Briggs y King en los primeros años de la década de los cincuenta, en ranas. En los años setenta, el equipo del científico Gurdon obtuvo colecciones de sapos espuela perfectamente iguales entre sí, mediante la técnica de la inserción de los núcleos de las células de las fases larvarias tempranas en óvulos que previamente habían si despojados de sus núcleos. Este ensayo, sin embargo, fracasaba si el material genético era aportado por una célula de un individuo adulto.

En los años noventa se obtuvo la clonación de un mamífero. En 1996, el grupo de los científicos Wilmut y Campbell logró donar dos ovejas, llamadas Megan y Mora, por transferencia de núcleos de embriones. También se ha descrito la producción de monos Rhesus. En estos últimos experimentos se usaron células embrionarias, que permitieron el nacimiento de un individuo de esta especie, que fue llamado Tetra.

De todos los ensayos que se han desarrollado durante la década de los noventa se deduce la utilización de varias técnicas: Una de ellas, para la obtención de terneros ciánicos, constante en la fecundación in vitro de un óvulo de una vaca con el espermatozoide de un toro. En el desarrollo embrionario del óvulo se separan cada una de las células embrionarias, y gracias a su capacidad intacta de diferenciación, dan lugar a un nuevo individuo.

Antes de la especialización funcional de estas células, sus núcleos se transfieren a los óvulos fecundados, privados de núcleos, de otras vacas. Estos óvulos se implantan posteriormente en el útero de varias madres, y si el desarrollo del óvulo y el consiguiente embarazo tienen éxito, se obtienen terneros clónicos iguales entre sí, pero no a la madre. En la práctica se han utilizado varias madres: las que aportan el material genético, las que proporcionan los óvulos y las madres «de alquiler», donde se desarrolla el nuevo Individuo. En realidad no son iguales a la madre, porque la unión del óvulo con el espermatozoide supone una ciertoveja dolly, clonacion animala combinación de ambos materiales genéticos.

Uno de los mayores éxitos hasta la fecha corresponde al equipo del doctor lan Wilmut del Instituto Roslin de Edimburgo. En este trabajo se obtuvo una oveja por donación a partir de una célula ya diferenciada de un adulto.

El resultado fue la Oveja Dolly El método consistía en tomar el óvulo de una oveja, eliminar su núcleo, cambiar éste por el núcleo de una célula adulta e implantar este óvulo en una tercera oveja. Por tanto, Dolly tiene un padre y tres madres.

Aunque esta técnica posee aún un elevado porcentaje de fracasos, uno de los datos más interesante que se pueden desprender de estos experimentos es que se ha conseguido, a nivel de laboratorio, reprogramar de alguna manera el material genético de una célula adulta para que, ésta se desarrolle y se diferencie para dar lugar a un nuevo individuo.

Otro hallazgo científico fundamental correspondió, en 1997, a un equipo de la Universidad de Massachusetts y a una empresa de biotecnología. En estos experimentos se obtuvo la donación de un bovino a partir de los clones obtenidos d células del tejido conectivo.

Esta técnica es intermedia entre las dos anteriores, pues las células que se utilizan no son embriones, sino células adultas diferenciadas, pero no con el grado de diferenciación de una célula de un individuo adulto.

En el año 1998, en Francia, nació una vaca de nombre Marguerita, a partir de células musculares fetales, por tanto, células que, si bien presentan la dotación genética necesaria para la mayor parte de las estructuras del organismo, no están totalmente especializadas. En ese mismo año, en Japón, nacieron terneros donados a partir de células de los intestinos de una vaca, en los óvulos, pertenecientes a otras vacas, a las que se les había eliminado el núcleo.

 clonacion 2

Problemas éticos de la clonación

La donación plantea interesantes expectativas, además de problemas éticos, tanto en la sociedad como en la comunidad científica, donde existen sectores a favor de la utilización de estas técnicas y sectores en contra. En España, los científicos del Comité de expertos sobre Bioética y Clonación, prevén que hasta dentro de unos años no será posible la aplicación de técnicas seguras de donación, y descartan, por el momento, cualquier posibilidad de donación de seres humanos; limitan el uso de estas técnicas al tratamiento y curación de enfermedades genéticas, a la creación de nuevos fármacos —gracias a los animales transgénicos— y a la realización de xenotrasplantes, es decir, trasplantes en el hombre de órganos de animales con una dotación genética muy semejante, como es el caso del cerdo.

En este foro se discute la irresponsabilidad que supondría en la actualidad la aplicación de estos métodos de donación en seres humanos. Se tiene la certeza de que los niños que pudieran desarrollarse gracias a estas técnicas presentarían deformaciones, tales como dos cabezas, dos corazones, ausencia de manos o pies o bien un número anómalo de extremidades.

Los propios «padres» de la oveja Dolly sugieren la serie encadenada de trastornos genéticos que podrían derivarse: códigos genéticos que determinen trastornos muy graves, cómo el, envejecimiento prematuro, cáncer y afecciones neurológicas acerca de las cuales hay, hoy día, conocimientos precisos.

Los problemas éticos surgen en torno a la cuestión de la capacidad de acceso a estas técnicas por parte de personas influyentes y con grandes recursos económicos, que podrían utilizar este instrumento científico como herramienta para su propia perpetuación.

En el caso de los animales, se ha planteado la posibilidad de la creación de poblaciones que, si bien pueden reportar a la humanidad productos de mayor calidad, serían completamente homogéneas y podrían extinguirse muy fácilmente ante una epidemia.

En la actualidad se usan animales transgénicos que, gracias a las técnicas de donación, constituirían una fuente inagotable de órganos para el trasplante en humanos. Por otro lado, aunque es más ficticia su consecución, estas especies podrían ser utilizadas para el tratamiento de múltiples enfermedades en humanos.

clonacion

En octubre de 2000 nada en el departamento de Ciencias de la Salud de la Universidad de Oregón el mono Rhesus llamado AND cuyo nombre derivaba de inserted DNA (ADN introducido»). ANDi nació tras recibir material genético extra y de esa manera se convertía en el primer primate no humano del mundo genéticamente modificado. El proceso de modificación del ADN puede permitir a los científicos desarrollar nuevos tratamientos médicos para una amplia gama de enfermedades

PRIMEROS PASOS HACIA LA CLONACIÓN:

Ian Wilmut (1944): Es conocido por estar a cargo del equipo que realizó por primera vez la clonación de un  mamífero a partir de células adultas: la oveja Dolly. Previamente, el profesor Wilmut había sido parte del equipo que logró el primer nacimiento de un ternero a partir de un embrión congelado y más tarde del que llevó a cabo la primera clonación a partir de células embrionarias, los corderos Megan y Morag. Estos experimentos abrieron las puertas a la clonación terapéutica y al estudio sobre las posibles vías de cura de distintas enfermedades.

Ian Wilmut

La  clonación
A lo largo de la historia de la humanidad existieron descubrimientos científicos, experimentos y teorías, que llegaron a hacer eco más allá de sus límites planteando incluso un debate ético y moral en la sociedad. Esto ocurrió cuando el científico inglés Ian Wilmut presentó públicamente a la oveja Dolly, con sus siete meses de vida. No se trataba de un animal más, sino del primer clon de un mamífero a partir de células adultas.

El procedimiento, que se realizó en el Instituto Roslin de Edimburgo (Escocia), en 1996, estuvo a cargo de Wilmut, acompañado por Keith Campbell y un equipo compuesto por otras once personas, y consistió en la fusión de un óvulo con la célula mamaria de una oveja adulta, lo que dio como resultado la creación de una réplica genética del animal original: la oveja Dolly. Este descubrimiento revolucionó tecnologías, investigaciones y hasta maneras de pensar.

Un año antes, el mismo equipo encabezado por Wilmut había sido el responsable del nacimiento de los corderos Megan y Morag, a partir de la clonación de células embrionarias por primera vez en la historia. Si bien no tuvo una gran repercusión en el público en general, este acontecimiento convulsionó a la comunidad científica. Cuando se conoció popularmente la existencia de la oveja Dolly, las reacciones fueron de todo tipo.

Ética y controversia
Mientras muchos consideraban que se trataba de un avance gigante en la historia, otras personas afirmaban que el hombre estaba abusando de la ciencia y comenzaron a creer que se trataba del paso previo a la clonación humana. El profesor Wilmut en todo momento sostuvo que sus experimentos tenían como único objetivo colaborar con la búsqueda de soluciones para enfermedades humanas, especialmente las neurológicas.

En 2002, la Cámara de los Lores británica aprobó la clonación embrionaria de seres humanos para la investigación médica, no así con fines reproductivos. En 2005, el profesor Wilmut recibió por parte de la Autoridad Británica de Fertilidad Humana y Embriología (HFEA, por sus siglas en inglés) una licencia para clonar embriones humanos con el objetivo de estudiar la enfermedad de las neuronas motoras.

Dos años más tarde comunicó su decisión de dejar de emplear esta técnica, para enfocar sus investigaciones en nuevos procedimientos japoneses en los que se crean células madre a partir de fragmentos de piel sin la necesidad de utilizar embriones humanos. (Fuente Consultada: Gran Atlas de la Ciencia- Genética – National Geographic – Clarín)

En muchos aspectos la manipulación genética presenta un dilema sobre lo brillante o lo oscura de la misma. En la sociedad hay muchos grupos que piensan que este tipo de ciencia nunca se debió haber desarrollado y que sus usos se deberían restringir; otros piensan que los beneficios sobrepasan a los inconvenientes y muchos otros no aceptan la manipulación genética, pero tienen opiniones variadas sobre las aplicaciones específicas de ésta. Muchos de los aspectos éticos se representan en los siguientes tres impactos:

REFLEXIONES ÉTICAS SOBRE LA MANIPULACIÓN GENÉTICA
Social

Existen objeciones respecto a que algunos usos pueden ser indeseables desde el punto de vista social; por ejemplo, a finales de la década de los ochenta se comercializó la hormona del crecimiento bovino, creada mediante manipulación genética. Algunas personas se oponen por tres razones.

En primer lugar piensan que la hormona alteraría drásticamente la composición de la leche; se hizo la investigación y se comprobó que los cambios son menores. En segundo lugar, es probable que la alta producción aumente la infección en las ubres de las vacas. Esto no solo sería perjudicial para las vacas, ya que aumentaría el uso de antibióticos y su resistencia por parte de las bacterias. En tercer lugar, ya existe una saturación de leche en el mercado de Europa y América: muchos granjeros se oponen al uso de esta hormona puesto que su uso bajaría el precio de la leche.

Liberación de organismos al ambiente 

 

 

Este caso se puede sintetizar en tres preguntas: ¿Qué pasaría si los organismos liberados se dispersaran más allá del sitio donde fueron esparcidos? ¿Qué pasaría si se establecieran y se reprodujeran? ¿Podrían estos organismos producir cambios masivos en el ambiente? A esto los ingenieros genéticos responden: la humanidad ha practicado la ingeniería genética durante milenios, en la naturaleza todo el tiempo ocurre. La ingeniería genética es simplemente una versión más rápida y precisa.
Identificación
del genoma humano
La compañía Celera Genomics anunció recientemente que ha completado la secuenciación del genoma humano. El estudio muestra que el ser humano tiene 100 000 genes. La manipulación correcta de estos genes, corregirá la malformación de algunos de éstos y por lo tanto la cura de enfermedades genéticas, como podrían ser la diabetes, la obesidad, el cáncer, el alcoholismo, la enfermedad de Alzheimer, la depresión, la arteriesclerosis, el síndrome de Down, la hemofilia, el daltonismo, entre otras.

Ventajas de la clonación: La clonación es una técnica de laboratorio que puede reproducir copias exactas de un tejido, de un órgano o de un organismo completo, a partir de su ADN. Te vamos a contar algunas de sus ventajas:

• La posibilidad de producir un órgano salvando así la vida de un paciente que requiera de dicho órgano.

• La propagación de animales en extinción, manteniendo de esta manera el equilibrio-ecológico.

• La multiplicación de las células nerviosas,, que eventualmente permitirían que los paralíticos que alguna vez sufrieron ruptura de la médula espinal pudieran nuevamente caminar.

• Mantener y explotar, en buena medida, ciertas calidades en determinadas plantas y animales, de acuerdo con la conveniencia de alimentación en el ser humano.

• Producir medicamentos de avanzada en la curación de enfermedades como el cáncer, la diabetes, la hepatitis, etc.

Legislación española

España es uno de los países pioneros en el establecimiento de un conjunto de leyes que delimiten las pautas de actuación en los temas relacionados con la donación. Existen Cuatro artículos en el Código penal cuyo texto es el siguiente:

—Artículo 159: «(…) los que, con finalidad distinta a la eliminación o disminución de taras o enfermedades graves, manipulen genes humanos de manera que se altere el genotipo serán castigados con penas de dos a seis años de prisión».

—Artículo 160: «Entre tres y siete años de prisión es l& pena para aquellos que utilicen la ingeniería genética para producir armas biológicas o exterminadoras de la especie humana».

—Articulo 161: «Serán castigados con la pena de prisión de uno a cinco años quienes fecunden óvulos humanos con cualquier fin distinto de la procreación humana».

—Artículo 162: «(…) será castigado con la pena de prisión de dos a seis años quien Practique la reproducción asistida a una mujer sin su consentimiento».