Impacto Ambiental

Tipos de Habitat de Vida La Temperatura y la Civilización

LOS AMBIENTES DE VIDA DEL PLANETA – RELACIÓN VIDA – TEMPERATURA

Es posible que si escuchamos a una persona afirmar en una reunión que los animales más pequeños, e incluso las plantas, tienen un “domicilio” y hasta una “dirección”, lo tomemos por un poeta o por alguien que no se encuentra en sus cabales. Sin embargo, esta afirmación no tiene nada de falsa. Al contrario: muchos científicos y naturalistas dedican su vida para conocer más acerca de este tema. Es claro .. . ellos no hablan de “domicilio” y “dirección”, sino, de habitat, término que proviene del latín (habitatio-nis) y que significa habitación.

En ecología, habitat es el conjunto de las condiciones físico-geográficas en que desarrolla su vida una especie. En realidad, lo podemos identificar con el ambiente que le es propio a cada planta, a cada animal e, incluso, a cada ser humano.

Cada especie posee un habitat particular. Este ambiente lo componen diversos factores, que en parte son elementos vivos y en parte elementos muertos. Los ecólogos han clasificado a estos componentes ambientales en edáficos, climáticos y bióticos.

Los edáficos son los que se refieren al suelo, el  que de acuerdo con su localización geográfica puede poseer distintos componentes minerales, mayor o menor proporción de arena o de limo o de cantos rodados (que hacen variar sus posibilidades de retener el agua recibida de las precipitaciones y deshielos, y su consistencia) e incluso, diferencias en la cantidad de material orgánico (humus) incorporado. En relación con los suelos, los habitat más “codiciados” son los que cuentan con una gruesa capa de humus, buena capacidad para retener el agua de lluvias, muchos minerales y pocas rocas de mediano o gran tramaño.

El aspecto climático se refiere a las variaciones meteorológicas que afectan a un sitio determinado. Los elementos que lo componen son la temperatura, la presión, las precipitaciones y las radiaciones cósmicas. Tamibén influyen, indirectamente, la distancia entre el punto estudiado y el océano, la altura sobre el nivel del mar y la proximidad de factores extraños como fuentes termales o volcanes.

Por supuesto, tendrá más “in-quilinos” aquel habitat que posea un clima cálido y húmedo, porque allí las condiciones de vida son más fáciles. Por último, resulta de especial importancia el factor biótico (de bios — vida).

No es posible lograr un cuadro real que refleje la existencia de cualquier especie si no colocamos en él a todos los otros vegetales o animales que están asociados con ella. Por otra parte, existe una relación dominante de unas familias sobre otras. Donde no hay vegetales no pueden existir animales herbívoros. Donde faltan éstos, no pueden prosperar los carnívoros.

El habitat habla del lugar donde se vive, es decir, un área física, una parte específica de la superficie terrestre.

De acuerdo con este concepto, puede ser acuático, aéreo o terrestre. Para cada caso, la evolución biológica ha dotado a cada criatura viviente de las “armas” necesarias para desenvolverse exitosamente en su medio. Los topos tienen uñas poderosas, los peces aletas en forma de remo y los pájaros alas que les permiten volar. Para alcanzar estas herramientas perfeccionadas la naturaleza empleó siglos en probar y seleccionar, generación tras generación, cada uno de los adelantos aplicados.

Recordemos, asimismo, que el habitat puede tener dimensiones muy dispares. Puede ser tan grande como un mar o una pradera, intermedio como un bosque o una laguna, o pequeño como un tronco de árbol podrido o el intestino de un mamífero.

Después de la Primera Guerra Mundial, un grave problema que, es su momento, se intensificó día a día afectó a la humanidad entera: la vivienda. Sobre este tema, evidentemente, la ecología tiene mucho que decir. Cuando una población aumenta (trátese de heléchos, de ratas o de personas) se van haciendo cada vez más difíciles de satisfacer las necesidades de mantener un habitat determinado. No olvidemos que al comienzo habíamos dicho que habitat era equivalente a domicilio.

El hombre extendió, con hélices, motores y ruedas, su ambiente; pero, al mismo tiempo, debió someterse a los efectos de sus propios avances. Su “habitat privado”, la vivienda, paulatinamente se reduce a departamentos cada vez más pequeños, única solución para dar cabida a las nuevas generaciones, más numerosas que las anteriores.

SOL Y SOMBRA

En el fondo de nuestro jardín podremos realizar una interesante experiencia. Si observamos detenidamente las partes del suelo en las que una pared o arbusto dan sombra permanente, descubriremos que las hierbas crecen allí con menos densidad que en otros sitios. En cambio, notaremos que en esa zona la humedad es mucho mayor y que la tierra es menos granulosa y más compacta. Si tenemos paciencia, podremos comprobar asimismo que, mientras en las zonas donde da el sol predominan los insectos, aquí son más abundantes los gusanos.

En fin… dos mundos distintos se desarrollan a pocos centímetros de distancia. Todos los factores que componen el habitat interactúan de tal manera que llegan a constituir unidades casi independientes, con fisonomía propia. El suelo compacto, la humedad, la vegetación y la microfauna se “entremezclan” al pie de la pared umbría para dar origen a un habitat con rasgos particulares que lo identifican. Al lado, la influencia solar crea las condiciones para que se desenvuelvan con comodidad otras especies diferentes.

EL POTENCIAL BIÓTICO: ¿Qué posibilidades habrá de que en el tiempo en que uno se va de vacaciones, las hormigas, libres de toda persecución, acaben con los rosales del jardín? En las condiciones ambientales óptimas que implica un jardín sin depredadores ni insecticidas, es muy probable que las hormigas salgan triunfantes.

El potencial biótico es justamente eso, la capacidad de una población para prosperar en un medio óptimo. Lo que medimos, en este caso, es su velocidad de crecimiento cuando no hay obstáculos ni límites que la detengan. Mientras una pareja humana podría originar una descendencia de. 200.000 individuos en cien años, una mosca, qon su compañera, podría llegar en un año a la “considerable” cifra de un tres seguido de . . .¡cincuenta y cinco ceros!

Como vemos, el potencial biótico varía para cada especie. Y gracias a Dios existen controles naturales para algunos animales, porque de lo contrario viviríamos inundados de insectos, a tal punto que el sol se nos haría invisible.

Lo que impide que cierto grupo de animales o vegetales crezca en forma desmedida es la suma de los factores físicos, químicos y biológicos que hay en el am biente. Y que influyen, en diversa forma, para alterar las condiciones óptimas de desarrollo.

Una familia humana tipo, en la actualidad, no tiene por lo general más de tres vástagos, porque un número mayor de hijos haría difícil el mantenimiento del núcleo. Es un factor económico el que constituye el límite. Algunos peces, en cambio, son “regulados” por animales de mayor tamaño que se los comen, “recortando el excedente” como la tijera lo haría con un trozo de género que la modista quiere adecuar a un molde.

Todas estas maravillas sólo pueden producirse en un marco multifacético como es nuestra Tierra, donde siempre hay lugar para algo asombroso o inesperado.

LA TEMPERATURA Y LA CIVILIZACIÓN

Es un hecho interesante de destacar el que casi todas las grandes civilizaciones hayan florecido allí donde el clima no es ni muy cálido ni muy frío. Parece ser que el género humano necesita, para su progreso, el estímulo de una temperatura templada, pues tanto el frío riguroso como el calor excesivo han frustrado, de alguna manera, su desarrollo.

Así la raza negra, sofocada por el calor bochornoso de su tierra nativa, avanzó poco en agricultura, artes y ciencias, hasta la época en que los descubrimientos y colonizaciones la pusieron en contacto con los pueblos europeos. El clima en que vivía no era propicio para la actividad y la empresa, pero sí para proveerle de alimentos y ropas sin mayor esfuerzo.

En el extremo opuesto, la gente de las tierras árticas, esquimales y lapones, ha quedado atrás en la marcha general del progreso, porque la inclemencia de su clima no retribuía el enorme esfuerzo que demanda la subsistencia.

El hombre de los trópicos es, entonces, semejante al hombre rico, que no se aficiona al trabajo porque no tiene la coacción de la necesidad para hacerlo; mientras que el hombre de las tierras frías se asemeja al muy pobre, que tampoco hace mucho porque sus esfuerzos no parecen ser retribuidos.

Muchos aspectos del clima —lluvias, visibilidad, cambios de las estaciones, temperatura media del año— y las variaciones de duración del día y de la noche afectan las condiciones de vida, pero sobre todo este factor parece tener la mayor influencia en el aliento o desaliento del empeño humano. Aquellos que han estudiado el problema han llegado a la conclusión que cualquier temperatura, entre 0° y 22°, es favorable al progreso, y que una temperatura media de 10° es la ideal.

Vemos abajo un mapa con las temperaturas del planeta.

mapa de mundo con temperaturas por regionesn

Es bien destacable que la zona amarilla incluye a muchas de las más importantes ciudades del mundo, como ser Londres, Nueva York, París, Chicago, Tokio y Berlín. Aunque los climas de estas ciudades no son iguales, todos ellos comparten una temperatura media anual, entre los 5o y los 15°. También están, dentro del área amarilla, dos grandes civilizaciones de la antigüedad: la cretense y la romana. Dentro del área anaranjada, floreció la antigua civilización griega y más tarde las de Rusia y España, mientras que en el área de color castaño se desarrollaron las de los incas, China e India.

Dentro de la zona anaranjada florecieron, en la antigüedad, las civilizaciones egipcia y maya, pero ambas cesaron hace mucho de extender una considerable influencia sobre el resto del mundo. Dentro del área roja hubo dos tempranas civilizaciones: la de la India y la de la Mesopotamia. De esto se desprende que no es absoluta la conclusión según la cual los climas muy cálidos o muy fríos sean incompatibles con el progreso humano; pero sí podemos afirmar que no lo favorecen.

El hombre es ahora dueño de su ámbito como nunca lo fue en el pasado. Hoy se elevan ciudades en las zonas árticas y cerca del ecuador, en Latinoamérica y en Indonesia.

Es fácil ver por qué la civilización fue más lenta en desarrollarse en el hemisferio sur. Son comparativamente pocas las zonas al sur del ecuador que gocen de una temperatura cercana a la ideal. Además, la gran extensión de los océanos Pacífico e Indico aisla una región de otra y dificulta extremadamente todo contacto.

HABITAT Y LA VIDA DEL MUNDO ANIMAL EN EL MUNDO:
Sabemos que el factor geográfico tiene un importante papel en la conformación de las civilizaciones, en la distribución de las razas humanas, en las lenguas que la gente habla y aun en las religiones que profesan. Si el ambiente geográfico significa tanto en su conducta, no es de maravillarse que’ sea por lo menos igualmente importante en el mundo animal.

La zoogeografía estudia la distribución de los animales sobre la superficie de la tierra, distribución no sólo en sentido horizontal, sino también vertical, porque algunos viven en la alta montaña, otros en las zonas llanas y otros en las profundidades abisales.

Basados en las últimas enseñanzas de la ciencia, vamos a dar una noción clara de la delimitación de las diferentes regiones.

Muchas circunstancias determinan las áreas dentro de las que varios animales terrestres viven normalmente. No pueden cruzar con facilidad anchas barreras de agua que dividen una región de otra; es raro que logren atravesar una cadena de montañas altas; muy pocas veces cruzan las vastas tierras desérticas.

La mayoría de los animales se nutre de una clase limitada de alimentos. Si son herbívoros, no pueden sobrevivir mucho tiempo en regiones donde las plantas necesarias no crecen. Si son carnívoros, viven sólo donde sus presas puedan hacerlo también en cantidades suficientes.

De manera que, aunque no es posible dibujar una línea de demarcación en el mapa del mundo y declarar que sólo ciertos animales viven a un lado de ella, y otros muy diferentes al otro lado, es posible dividir el mapa en unas pocas regiones principales e indicar, con certeza, que cada una tiene su fauna característica, es decir, una vida animal que le es propia.

mapa de habitat del mundo

El mapa superior de la lámina está dividido en siete regiones:

A)   Oceanía (Australia e islas vecinas).
B)   América Central, del Sur e islas del Caribe, que los zoólogos llaman región neo-tropical.
C)   La región tropical, que incluye casi toda África, junto con Madagascar y parte de Arabia, se caracteriza por la. presencia de gran número de mamíferos con pezuñas: viven juntos en manadas y entre ellos encontramos jirafas, cebras, leones, el elefante africano (que es el animal terrestre más grande que hoy existe), el rinoceronte y el búfalo africano.
D)   India, S.E. de Asia, con sus guirnaldas insulares.
E)   Una gran extensión de tierra que cubre la mayor parte de Asia, casi toda Europa y parte N. de África, llamada la región paleártica: viven el caballo, el pequeño oso castaño, el camello, el alce y el ciervo
E)  La región neártica que incluye la mayor parte de América del Norte.
G) Las   tierras   árticas,   alrededor  del  polo norte.

Los animales nativos de la India o S.E. de Asia; son ellos el elefante de la India, más pequeño, de lomo más recto, orejas más pequeñas y más manso que el africano; el tigre, el orangután y el búfalo acuático de la India.

Los animales que viven en las tierras árticas; son el oso polar, el reno y el zorro ártico. El reno, ya muy domesticado, provee a los lapones de leche, carne y piel, y suele servir de bestia de carga.

Es también posible hacer una distribución vertical de los animales, aunque, naturalmente, por la facilidad de desplazamiento, los límites son menos precisos que aquellos que se demarcan para los vegetales. Por ejemplo, en los Alpes, el ciervo no traspasa el límite de los vegetales, mientras que la gamuza se aventura hasta la zona de las nieves eternas.

Los geólogos saben que Australia y algunas de las islas que la rodean han estado separadas de las grandes extensiones de tierra del mundo, por muchos millones de años. La vida animal, durante tanto tiempo, no ha evolucionado de la misma manera ni al mismo tiempo que en otros lugares. Cuando el hombre blanco se estableció por primera vez allí, se vio sorprendido por los animales raros que halló, seres por completo diferentes de los que existían en el Viejo Mundo.

El canguro, por ejemplo, a pesar de que mide casi 1,50 m. de largo, tiene hijuelos que al nacer no alcanzan a más de 5 cm. Estos pequeños pasan no corto período de su desarrollo dentro de una especie de bolsa ventral en el cuerpo materno, el marsupio, y permanecen allí hasta que están suficientemente desarrollados, como para comenzar una existencia independiente.

Aún más destacable es el ornitorrinco, aunque es mamífero y, por tanto, alimenta a sus pequeños con leche, es un animal ovíparo; en cierto sentido podemos considerarlo como un fósil viviente, o sea, un representante de ciertos animales que debieron abundar hace mucho tiempo, cuando los mamíferos hicieron por primera vez su aparición en la tierra.

Los otros animales que se hallan en la parte superior de la lámina son: el dingo (especie de perro salvaje, nativo de Australia); el kiwi neozelandés o ápterix (pájaro sin cola y con alas no desarrolladas); un pez con pulmones y el equidna (especie de oso hormiguero con el cuerpo cubierto de espinas).

América del Norte tiene muchos que son comunes en Europa y Asia. Sus representantes propios son ciertos tipos de zorros, el bisonte americano (a menudo llamado búfalo) y osos negros algo parduscos. Estos últimos, además del oso pardo de Alaska, son los más grandes y temidos de todos los osos, y hoy rara vez se los encuentra fuera de los grandes parques nacionales, donde se los preserva de la caza.

Los animales oriundos de América Central y América del Sur incluyen armadillos; osos hormigueros de lengua muy larga; perezosos; llamas; jaguares o yaguares y otros pocos mamíferos desdentados.

La llama fue el único animal que los pueblos aborígenes de América lograron domesticar antes de la llegada del hombre blanco. Los dos animales que en la lámina están asentados sobre una base de color verde claro, viven en el extremo norte de Canadá y Alaska; son el zorro negro y el anta, el más grande de la familia de los ciervos.

En las grandes extensiones heladas de la Antártida no hay animales terrestres, pues, a excepción de algunas zonas aisladas, los vegetales no crecen en cantidad suficiente como para alimentarlos. Pero en la franja costera de la Antártida habita un mamífero, el lobo marino, que es el miembro más grande de la familia de las focas. Hay también pingüinos, en grandes cantidades. Han perdido su posibilidad de volar, pero son buenos nadadores. Al vivir en una región donde no hay materiales para fabricar sus nidos, colocan los huevos arriba de sus pies, y tanto los machos como las hembras comparten la tarea de incubarlos.

No todos los animales están confinados para siempre a una sola región de la tierra. A menudo el hombre ha llevado ciertas especies de una región a otra. Las ratas viajan por todas las partes del mundo en las bodegas de los barcos. El cangrejo chino, trepado a los buques, ha sido llevado a varios estuarios de Europa.

El conejo, trasladado de Europa a Australia, se multiplicó de manera tan sorprendente que se ha convertido en una terrible plaga. Y los caballos salvajes, que por muchos años vagaron por las pampas de América del Sur, eran los descendientes de aquéllos que los conquistadores españoles trajeron a estas tierras.

Fuentes Consultadas:
Enciclopedia Ciencia Joven Fasc. N°8 Edit. Cuántica – Los Habitat del Mundo –
El Mundo en el Tiempo Tomo III Globerama Edit. CODEX

Consumo de Agua en el Mundo Huella Hídrica, Tablas y Mapa

CONCEPTO DE HUELLA HÍDRICA – HISTORIA DEL CONSUMO DEL AGUA POTABLE

HISTORIA: Cualquiera sea la actividad del hombre que consideremos, siempre el agua ocupará una parte esencial en ella. Si observamos su búsqueda de energía comprobamos que la primera fuente natural de energía que dominó fue la de las corrientes y caídas de agua. Cuando pensamos en el hombre como agricultor vemos que una de sus tareas más importantes es asegurar que sus tierras estén bien irrigadas y desaguadas. Aun en el transporte vemos que los barcos que navegan en mares y ríos tienen un papel dominante.

Todo esto no es extraño, pues más de siete décimos (70%) de toda la superficie del globo está cubierta de agua hasta una profundidad media de unos 4 kilómetros. Si multiplicamos el número de kilómetros cuadrados que forman las siete décimas partes del globo terrestre por 4, comprobamos que nuestro planeta contiene más de 1.000 millones de kilómetros cúbicos de agua.

Sin embargo, excepto como ruta para los barcos y ambiente vital para los peces, la gran abundancia de agua en mares y océanos es de poca utilidad directa para el hombre. No la puede usar para calmar su sed y la de sus animales domésticos o para irrigar sus campos. Para todos estos propósitos debe conformarse con la cantidad mucho menor que pasa de la superficie de los océanos al aire como vapor de agua, luego corre por los aires en forma de nubes y cae como lluvia o nieve. Y aún de esta cantidad, relativamente pequeña, la mayor parte, y con mucho, busca su camino en los ríos y vuelve al mar antes que el hombre la haya usado.

Así, aunque en un sentido el agua es extraordinariamente abundante, en otro aspecto es excepcionalmente escasa. En muchas regiones cálidas y secas, incluyendo partes de España, ex Yugoslavia y África del Norte, la poca lluvia que cae sobre la tierra se cuela rápidamente a través de una capa muy gruesa de suelo poroso antes de ser detenida por otra impermeable, de roca, profundamente situada por debajo de la superficie.

En tales regiones es necesario perforar profundos pozos hasta la roca, y los aguateros que transportan la valiosa agua de estos pozos a aldeas distantes la pueden vender tan fácilmente como se venden helados, en otras partes, en un caluroso día de verano. Aun en clima como el nuestro, no es extraño para la gente que vive en distritos con pobre provisión de agua el recoger el agua de lluvia de los techos en barriles y usarla para cualquier fin en el que la absoluta pureza no sea realmente indispensable.

Pero en regiones donde las lluvias no son demasiado escasas y especialmente en las que tienen un subsuelo calcáreo, generalmente es posible asegurarse una provisión de agua constante cavando un pozo no muy profundo.

El agua se puede elevar del pozo en baldes o, siempre que el nivel del agua (la napa) no esté a más de unos 10 metros bajo tierra, por medio de una simple bomba aspirante.  En regiones muy secas, donde el nivel del agua puede estar mucho más profundo, o en cualquier parte donde un pozo tenga que proveer grandes cantidades de agua, se pueden usar bombas más poderosas.

A veces ocurre que el agua queda apresada profundamente bajo tierra entre dos capas de roca impermeable de forma de casquete. Perforando a través de la capa superior, cerca de su punto más bajo, donde hay gran presión de agua, es posible producir un pozo artesiano.  La presión causa un constante fluir de agua, que sube a la superficie.

Para proveer las vastas cantidades de agua que consumen grandes pueblos y ciudades, los pozos y fuentes no son suficientes. Los romanos fueron los primeros en dar una excelente solución al problema, cuando derivaron el agua abundante de los ríos y arroyos de montaña y la transportaron a pueblos distantes por medio de acueductos.

CONCEPTO DE HUELLA HÍDRICA: La huella hídrica es un indicador que define el volumen total de agua dulce usado para producir los bienes y servicios producidos por una empresa, o consumidos por un individuo o comunidad. Mide en el volumen de agua consumida, evaporada o contaminada a lo largo de la cadena de suministro, ya sea por unidad de tiempo para individuos y comunidades, o por unidad producida para una empresa. Se puede calcular para cualquier grupo definido de consumidores (por ejemplo, individuos, familias, pueblos, ciudades, departamentos o naciones) o productores (por ejemplo, organismos públicos, empresas privadas o el sector económico).

concepto de huella hidrica

La tarea de suministrar agua potable a las poblaciones fue muy ardua ya en tiempos de los romanos, pero no lo era entonces casi nada si la comparamos con la de la actualidad. Primeramente, hay ahora muchos más pueblos y ciudades y, además de esto, no pocos de ellos son más grandes que las mayores ciudades de la antigüedad, porque los modernos métodos de transporte han capacitado a las zonas urbanas para crecer en una extensión antes imposible.

Lo que hace que el problema resulte aún más formidable es el hecho de que cada persona usa mucha más agua hoy, diariamente, que en tiempos pasados. Cuando la gente tenía que molestarse en obtener agua levantándola de los pozos, en baldes, cuidaba naturalmente mucho más de no derrocharla que nosotros que conseguimos toda la que deseamos con tan sólo abrir un grifo. Pero no son solamente el descuido y derroche los que han aumentado el consumo del agua. Otra causa importante es el continuo progreso del nivel medio de higiene.

Hace 400 años no se habían inventado los inodoros y hace ciento existían exclusivamente en las casas de los ricos; hoy cada casa usa probablemente más de 50 litros diarios de agua en el lavatorio. Hace poco más de 400 años ni siquiera los palacios poseían cuarto de baño; sin embargo, actualmente, la gran mayoría de las familias de la clase trabajadora, en los países más adelantados, tiene cuarto de baño en su hogar, y cada una de ellas seguramente consume centenares de litros de agua por semana. Además, la industria moderna gasta agua en abundancia.

De manera que no es de extrañar que los 5 ó 10 litros de agua por persona que bastaban para las necesidades diarias de nuestros antecesores ya no sean suficientes hoy para nosotros. En la moderna Bruselas, cada persona usa un promediode 160 litros de agua diariamente.

En Londres, la cantidad es de alrededor de 210 litros, en Estocolmo 245, en París 265 y en Nueva York llega a 440 litros. Aun la más pequeña de estas ciudades —Estocolmo— tiene una población de casi mas de un millón de almas, lo cual significa que necesita unos 250 millones de litros diarios. Nueva York, con su enorme población y su elevado consumo de agua por persona, necesita algo más de 4.400 millones de litros. ¿De dónde proceden tan vastas cantidades de agua?.

Pocas veces están al alcance mismo del sitio en que se las necesita y muy frecuentemente deben ser obtenidas de ríos, lagos o fuentes distantes y transportadas por gigantescas cañerías a plantas de potabilización cercanas a la ciudad que las consume.

Allí el agua ha de ser purificada y pasada a través de filtros. Éstos consisten en tanques enormes, que contienen, generalmente, primero una capa de pedregullo y arena gruesa, y luego, encima de ésta, una de arena fina. La arena filtra la mayor parte de las impurezas sólidas, pero no deja el agua libre de bacterias. De modo que ésta pasa a continuación a depósitos donde la acción de la luz del sol y el aire contribuyen a destruir los microorganismos. Generalmente se agrega también cierta cantidad de cloro, que actúa como germicida.

Cuando el agua está completamente purificada se la bombea a torres de agua, de modo que finalmente llegue a todas las casas de la ciudad con una presión uniforme. Sólo a partir del siglo XX el hombre ha tenido tan colosales exigencias de provisión de agua, y éstas nunca se hubieran satisfecho de no haberse tomado medidas para impedir que los ríos llevaran todo su caudal de agua al mar, como siempre.

Hoy, a lo largo de los cursos superiores y medios de muchos grandes ríos, los ingenieros han construido vertederos para controlar la corriente del agua. De modo que, excepto en épocas de muy prolongada sequía, las autoridades encargadas del suministro de agua pueden casi siempre conservar la cantidad suficiente como para satisfacer las necesidades de las poblaciones.

La Organización Mundial de la Salud (OMS) recomienda utilizar 50 litros de agua por día y por persona, pero en la Argentina se calcula un consumo de entre 500 a 613 litros diarios.   Así, el consumo de agua limpia es diez veces mayor a lo sugerido por la OMS y las causas más habituales de este derroche son “pérdidas en las canillas, dispendio en la higiene personal o limpieza de ropas y lavado de vehículos, vajillas, frutas y verduras, regado de plantas y jardines y el uso de desagües como vertederos”.

MAPA DEL CONSUMO DE AGUA EN EL MUNDO – m³/año/persona –

mapa de consumo de agua en el mundo

TABLA DE CONSUMO FAMILIAR APROXIMADOS:

1 Lavado de Auto 500 l.
2 Ducha de 10 minutos 70-150l.
3 Descarga Inodoro 20-25 l.
4 Lavado de Manos 3 l.
5 Lavarropa 100 l.
6 Consumo Familiar 4 Personas 1200 l.

TABLA DE CONSUMO INDUSTRIAL APROXIMADOS:

1 Cemento por Kg. 30 l.
2 Harina por Kg. 0,5 l.
3 Azúcar por Kg. 2 l.
4 Lana por Kg. 0,7 l.
5 Papel por Kg. 0,5 l.
6 Cerveza por litro 10 l.
7 Gaseosa por litro 5 l.
8 Pescado por Kg. 6 l.
9 Acero por Kg. 500 l.
10 Un automóvil 35.000 l.

Nuevas estadísticas sobre la  disponibilidad y la utilización de los recursos hídricos informan que que sector agrícola consume el 92% del agua.  Analizar el consumo globalmente, aseguran, ayudará a los gobiernos a establecer medidas para elaborar sus planes hídricos nacionales y gestionar mejor los limitados recursos hídricos. EEUU, India y China son los países que más agua gastan. Entre los tres consumen el 38% de los recursos hídricos del planeta

8 CONSEJOS PARA EL AHORRO DE AGUA

tabla con consejos para el ahorro de agua potable

LA DEPURACIÓN DEL AGUA: Quizás uno de los elementos más importantes para el desarrollo de la civilización actual sea algo tan simple como el agua. Ella es la base de las operaciones industriales; es requerida, también, como bebida fundamental. Y resulta indispensable para lograr una adecuada higiene, tanto en lo que hace al aseo personal como a la limpieza de habitaciones, veredas y edificios.

Constituye la base de los servicios sanitarios. De acuerdo con las más actualizadas tablas de valores, cada ser humano utiliza, en promedio, unos 125 litros diarios de agua. Esta cifra aumenta considerablemente si nos referimos a las ciudades, especialmente las europeas. En Los Ángeles, por ejemplo, se consume individualmente un promedio de 350 litros por día.

Veamos cuál es el método empleado para purificar este líquido. Baste calcular que sólo París necesita por día más de 2.500 millones de litros de agua potable. Todo el sistema sanitario de una ciudad se basa en obras de ingeniería, consistentes en tuberías y canalizaciones de distintos diámetros.

Desde ríos, a veces muy distantes, se hace llegar el agua a plantas de potabilización que, generalmente, se instalan cerca del núcleo urbano.

Allí el agua pasa por varias piletas, en las que las impurezas mayores se depositan en el fondo por un proceso mecánico de sedimentación. Luego el agua pasa a otras piletas que actúan como filtros gracias a la acción depuradora de la arena fina y el pedregullo que hay en su fondo.

En otras piletas el agua se somete a un nuevo proceso, ahora de orden químico, que consiste en el agregado de agentes germicidas como el cloro, el ozono, etc., que eliminan todo vestigio de parásitos y otros microorganismos nocivos. Ya en este momento el agua, transparente como un cristal, está preparada para ser bombeada a presión en las tuberías que lallevarán porlaciudad. En algunos casos se envía a torres elevadas para que su distribución se produzca sin inconvenientes.

Luego de la acción germicida, de los filtros y de las piletas de decantación, el agua está lista para ser sometida a todos los usos imaginables. Ya servidas, las aguas tienen que ser eliminadas de algún modo. Una de las formas más comunes es restituirlas a los ríos de donde se extrajeron -aunque aguas abajo-, o en el océano, si es que éste se encuentra próximo. Para poder cumplir esta tarea sin contaminar las cuencas hidrográficas o marinas, debe volver a someterse al agua a un nuevo proceso de purificación.

tratamiento de agua potable

A: Planta Potabilizadora
B: Planta Potabilizadora Por Ósmosis Invertida

Ampliar Este Tema

RETENER EL AGUA PARA PRODUCIR ENERGÍA: Hay todavía una razón más en la actualidad para construir diques y represas en los ríos: contener el agua de manera que se la pueda usar en un fluir constante y uniforme para producir energía hidroeléctrica.

Antiguamente, los habitantes de la Mesopotamia usaban ruedas de agua primitivas, accionadas por los ríos o arroyos, para obtener agua para la irrigación. Durante la Edad Media, en muchas partes de Europa se empezaron a usar ruedas mucho mejor ideadas para impulsar diversas clases de máquinas simples en los molinos.

Cerca de las caídas de agua de poco caudal, en lugares montañosos, construyeron molinos equipados de ruedas con cangilones. Éstas eran ruedas con paletas bastante livianas, que la fuerza del agua, al caer, hacía girar a considerable velocidad. Por medio de una serie de engranajes, cada uno con ún número diferente de dientes, este veloz movimiento podía disminuirse a una velocidad apropiada para la lenta y pesada maquinaria colocada adentro del molino. Cerca de ríos anchos, en regiones llanas, construyeron molinos con ruedas y paletas de distinta disposición, movidas lentamente por la corriente. Por medio de una serie de engranajes, este lento movimiento podía acelerarse a la velocidad requerida.

Todo esto representaba un gran adelanto en la conquista de la energía hidráulica, pero conservaba aún dos enormes inconvenientes. Primero, se podía sólo hacer uso de la energía mecánica del agua eii movimiento construyendo molinos en el lugar en que se encontraba y no donde era más conveniente hacerlo. Segundo, el natural fluir del agua variaba con las épocas y la cantidad de energía disponible variaba con ella. Después de lluvias prolongadas, en las caídas de agua y los ríos el caudal de agua llegaba al máximo y movía las ruedas a una velocidad excesiva, que amenazaba con destruirlas. Después de una sequía prolongada, las ruedas apenas giraban.

No hubo indicación alguna de cómo se podría subsanar el primer inconveniente, hasta comenzado el siglo XIX. Fue cuando el científico inglés Faraday descubrió que un imán que se movía rápidamente podía provocar el fluir de una corriente eléctrica a través de un cable. Aquí, entonces, había un medio de transformar energía mecánica —la clase de energía necesaria para mover el imán con rapidez— en energía eléctrica.

En ese tiempo, cuando la era de la máquina de vapor llegaba a su punto más alto, la obvia manera de poner el imán en movimiento era usar un motor de vapor. De modo que los imanes de los generadores de las primitivas usinas que surgieron años más tarde se accionaban con vapor y así es como funcionan hoy la mayoría de los generadores.

Pero no hay nada que impida que los imanes de los generadores funcionen por las caídas de agua, y en efecto así es como se mueven en las modernas usinas hidroeléctricas. De este modo la energía mecánica del agua en movimiento se transforma en energía eléctrica, la cual puede ser transportada en cables hacia donde haga falta. En los hogares y fábricas de cualquier sitio esta energía eléctrica puede convertirse nuevamente en energía mecánica por medio de motores, en los cuales la corriente eléctrica pone en movimiento un imán.

El otro problema era cómo asegurarse que el agua diera una producción de energía constante. Aquí surgió, precisamente, la necesidad de construir diques y represas. Cuando se construye un dique a través de un río, las aguas del curso superior son contenidas para formar un lago artificial. Éste sirve como enorme depósito desde el cual se puede dejar correr el agua hacia los generadores, a través de cañerías o túneles, a una velocidad constante durante todo el año.

En terrenos montañosos, el agua que cae de grandes alturas hace girar veloces ruedas Pelton, no muy diferentes de las ruedas de antaño, para impulsar a los generadores. En terreno llano, un volumen mayor de agua que cae de una altura menor hace girar las ruedas de turbina, que se parecen también mucho a las de la Edad Media.

Fuente Consultada:
El Triunfo de la Ciencia El Agua en el Mundo Globerama Tomo III Edit. CODEX

Microorganismos en el Ciclo del Nitrogeno Insectos y Bacterias

Todos los seres vivos, ya sean plantas o animales, dependen, en última instancia, de los nitratos y otros compuestos del suelo. Estas sustancias, indispensables para la formación de las proteínas, son la base de toda la materia viva. Las plantas pueden tomar el nitrógeno del suelo solamente en forma de nitratos o nitritos, pero no absorber las moléculas más complicadas del tipo de las prosternas o los aminoácidos que forman éstas.

Los animales adquieren los compuestos nitrogenados, necesarios para la formación de las proteínas, de las plantas que les sirven de alimento o de otros animales que forman, a su vez, parte de su dieta. Pero, en todo caso, este ciclo, termina en las plantas, que están en la base de toda cadena de alimentación. Si el nitrógeno existente en la Tierra se consumiera en la formación de proteínas anímales o vegetales, en los seres vivos o en sus restos, la vida cesaría, porque, bloqueado, sería inaccesible para las plantas.

Afortunadamente, en la naturaleza existen organismos cuya actividad es la descomposición de los restos orgánicos, que se trasfor-man en sustancias que contienen nitrógeno en forma mineral (nitratos y nitritos), y las plantas pueden absorberlo disuelto en agua. La serie de mecanismos mediante los cuales las sustancias nitrogenadas vuelven al suelo o a otros animales constituye lo que se llama ciclo del nitrógeno.

Algo parecido ocurre con el ciclo del anhídrido carbónico (CO2), necesario para la fotosíntesis de las plantas, que se libera constantemente en la respiración de los animales. De no mediar la actividad de un sinnúmero de organismos que se ocupa de la descomposición de restos orgánicos, una parte del carbono quedaría bloqueada en los restos animales y vegetales. En este proceso se desprende CO2, que va a la atmósfera, quedando otra vez a disposición de los vege,-tales, que lo incorporan en nuevas sustancias.

El proceso es análogo al de la respiración, y, con frecuencia, tiene lugar en el suelo, donde se descomponen numerosos restos vegetales y animales (en gran parte, microscópicos), por la acción de organismos de pequeño tamaño, en su mayoría imperceptibles a simple vista. Por tanto, puede hablarse de una respiración del suelo, que varía en intensidad según el contenido de restos (la llamada materia orgánica del suelo) y las condiciones de vida para los microorganismos.

Es particularmente sensible en los suelos de algunos bosques, donde se acumulan grandes cantidades de hojas caídas y las condiciones de humedad son favorables a la proliferación de los seres que actúan en la descomposición de los restos.

Actualmente, el ciclo del CO2 está en “equilibrio; es decir, las cantidades de carbono que fijan las plantas igualan las que se desprenden en la respiración y otros procesos; por tanto, las sustancias que contienen carbono -no se acumulan en grandes cantidades.

Pero no siempre ha ocurrido esto; los grandes yacimientos de carbón que se explotan en la actualidad son un testimonio de épocas geológicas pasadas (período carbonífero) en las que la fijación de carbono predominaba grandemente sobre la producción de CO2. El ciclo de nitrógeno tiene gran importancia en la economía de la naturaleza, ya que éste es, en sí, el elemento que con más frecuencia limita la producción vegetal y, con ello, el mecanismo que pone en marcha la vida.

El ciclo del nitrógeno corre a cargo de lo que podemos llamar Departamento de recogida de basuras de la naturaleza, que emplea un número enorme de obreros para eliminar los cadáveres y los excrementos. Prueba de la eficacia de ese Departamento es el hecho de que sea tan difícil encontrar animales muertos o, incluso, esqueletos en el campo.

MICROORGANISMOS
Las bacterias y otros microorganismos, entre los que se encuentran los protozoos y los hongos, desempeñan un papel importante en el ciclo del nitrógeno. Ellos son los que llevan finalmente a cabo la descomposición y mineralización de los restos más pequeños o más resistentes.

Las bacterias, por ejemplo, tienen a su cargo la demolición y mineralización progresiva de los restos vegetales de más difícil digestión para los organismos de gran tamaño, a causa de su abundancia de celulosa y otras sustancias todavía más inatacables, como las que componen el corcho o las cubiertas impermeables de las hojas.

Cuando se añade a la tierra un abono orgánico insuficientemente descompuesto, es decir, rico en celulosa (por ejemplo, cuando se entierra la paja del trigo directamente), se comprueba que las plantas sembradas en él tienen síntomas de falta de nitrógeno.

Este hecho paradójico se debe a que el alimento celulósico, proporcionado en gran cantidad a las bacterias, las hace proliferar enormemente, de forma que acaparan todo el nitrógeno, que entra a formar parte de las proteínas de sus organismos y queda fuera del alcance de las plantas. Al cabo de algún tiempo, cuado estas bacterias mueren, sus proteínas van siendo alteradas por la acción de otras bacterias y de procesos puramente químicos, que forman compuestos de nitrógeno asimilables por las plantas.

El fenómeno que primero aparece (causa del hambre de nitrógeno que sufren las plantas) es característico de la incorporación al suelo de restos vegetales insuficientemente descompuestos. Sin embargo, si esos restos se hubieran sometido previamente a la acción de microorganismos que los destruyeran (como los que se encuentran en los estercoleros y montones de abono orgánico, antes de su incorporación al suelo), no habría insuficiencia de nitrógeno.

El hombre se beneficia de la acción de las bacterias y otros microorganismos (capaces de convertir los restos vegetales y animales, y las basuras, en materiales inofensivos e, incluso, útiles) por medio de plantas industriales adecuadas que trasforman dichos residuos en abonos orgánicos. Por tanto, esto constituye una contribución del hombre a devolver al suelo sustancias útiles, de la misma forma que lo hacen los basureros de la naturaleza.

En algunas circunstancias, la actividad de las bacterias está dificultada por las condiciones del medio (por ejemplo, en los suelos demasiado ácidos); son los hongos microscópicos los que intervienen entonces en la descomposición final de los restos.  Las hijas o filamentos de estos hongos pueden verse fácilmente en las capas de humus o tierra vegetal, de color oscuro, del suelo de los bosques o de los brezales.

La humedad o la sequedad excesivas, así como la acidez demasiado grande del medio, son causas dp la lentitud del proceso de descomposición. En realidad, los microorganismos nunca actúan solos, sino que están asociados a una numerosa fauna microscópica, y también a otros animales de mayor tamaño, cuya acción es más espectacular.

Entre ellos se encuentran los animales devoradores de carroña, sin el concurso de los cuales, la Tierra estaría cubierta de cadáveres animales en distintos  estados  de descomposición.

INSECTOS
Los basureros de gran tamaño dejan fragmentos pequeños de la piel y de los huesos, que son atacados después por distintos coleópteros, quienes se alimentan de esas materias. Los más interesantes coleópteros basureros son los escarabajos enterradores y los que se alimentan del estiércol. Los cadáveres de animales pequeños, como los ratones y topos, atraen rápidamente la atención de los escarabajos enterradores.

Estos insectos, que tienen color negro y anaranjado, o negro solamente, son capaces de enterrar el cadáver de un ratón, en un suelo arenoso, en pocos minutos. Generalmente, trabajan en parejas y entierran los cadáveres extrayendo las partículas de tierra que hay debajo de ellos; tienen la cabeza ensanchada y la usan como pala en el trabajo de excavación.

Una vez enterrado, el cadáver sirve de alimento a los coleópteros y a sus larvas. Los adultos ponen sus huevos sobre el cadáver, lo que asegura el alimento para las crías. Al permanecer bajo el suelo, el cuerpo está húmedo y la acción de las bacterias es más rápida que si hubiese quedado en la superficie.

Durante el verano, es necesario proteger la carne y el pescado de los contactos de las moscas, cubriéndolos de alguna forma. En la naturaleza, sin embargo, esas moscas son útiles al poner sus huevos sobre los restos animales, ya que las larvas contribuyen a su descomposición y desmenuzamiento, acelerando su vuelta al suelo.

Los insectos que se posan en un cadáver en las distintas etapas de su descomposición, para poner en él sus huevos, suelen ser distintos. No se trata solamente de coleópteros y moscas, sino también de polillas, algunas de las cuales se alimentan de materias córneas, como la piel y los pelos, y otras, de sustancias grasas.

Por el estudio de las larvas que se alimentan de carroña, es posible determinar, con los datos de su desarrollo y sus clases, la época en que ocurrió la muerte del animal. Este procedimiento se ha aplicado en medicina legal, para conjeturar la fecha de las defunciones, en el caso de cadáveres humanos descubiertos accidentalmente o en el curso de una investigación. Se han distinguido hasta 10 tipos distintos de fauna, que se escalonan en el tiempo, conocidas con el nombre de brigadas de la muerte.

Antes que los excrementos del ganado vacuno se hayan enfriado, son visitados por moscas y coleópteros, que se alimentan allí y colocan sus huevos. Las larvas se desarrollan rápidamente, absorben los materiales en descomposición y dejan tan sólo restos vegetales, que. a su vez, son un alimento apreciado por otros coleópteros. Los insectos de la familia de los escarabeidos son enterradores de estiércol muy conocidos.

El escarabajo sagrado de Egipto, o gran escarabajo pelotero, forma grandes bolas de estiércol, que traslada rodando hasta llegar a un lugar adecuado para enterrarlas. Algunos escarabajos adultos se alimentan de estiércol (coprófagos); otros lo utilizan solamente para poner huevos.

Escarabajo Pelotero

El pequeño escarabajo enterrador de estiércol hace un túnel, cuyo fondo rellena con esta materia, antes de colocar allí sus huevos. Lo mismo hace el minotauro, escarabeido caracterizado por unos pequeños cuernos en la cabeza. Menos conocido es el trabajo de las legiones de insectos, ácaros y gusanos, que trabajan los restos entre la hojarasca y la materia orgánica del suelo.

Escarabajo Enterrador

Escarabajos   enterradores   se   ocupan   del   cadáver   ás   un   ratón.
En   un   suelo   arenoso,   el   cuerpo   es enterrado   rápidamente.

Numerosos colémbolos (diminutos insectos saltadores del mantillo) tienen a su cargo la demolición fina de los últimos restos vegetales, así como los ácaros, aunque entre éstos hay depredadores (que capturan presas vivas). Las lombrices se ceban en los restos orgánicos reducidos a su mínima expresión y mezclados íntimamente con el suelo.

El resultado final de este proceso, con la cooperación de bacterias y hongos, así como protozoos, que pueden contener en su interior bacterias simbiontes, es desmenuzar finalmente los restos orgánicos y asegurar su mineralización, es decir, la trasformación en sustancias útiles a los vegetales, que vuelven a incorporarlos, entonces, al ciclo vital de la naturaleza.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología TECNIRAMA Fasc. N°108 (CODEX) Los Basureros de la Naturaleza

Regiones Mas Afectadas Por el Cambio Climático del Mundo Mapa

MAPA DEL IMPACTO EN EL MUNDO DEL CALENTAMIENTO GLOBAL

mapa impacto climatico

Efectos sobre la biodiversidad, incluyendo el riesgo o la extinción del 35% de las especies terrestres para el año 2050, la pérdida de la mayoría de los arrecifes de coral tropicales y el 30% de las comunidades de coral de los arrecifes restantes.

Estas consecuencias actúan de manera diferente en distintas partes del mundo. Y el efecto del cambio climático muchas veces se suma a otras presiones y amenazas que sufren los ecosistemas naturales como producto de la acción del hombre, aumentando aún más su fragilidad.

A continuación, se presentan ejemplos de los impactos que el cambio climático traerá en diferentes regiones del planeta, en un escenario de aumento de la temperatura media global de apenas 2° C.

1-Delta del río Mekong Tailandia, Vietnam, Camboya, Laos, Myanmar, Tíbet y la provincia de Yunnan (China): inundaciones masivas e incremento de la salinidad en los sistemas de agua dulce, incluyendo impactos en las más grandes pesquerías de aguas continentales del mundo, que proporcionan bienes a alrededor de 60 millones de personas.

2-Cáucaso Armenia, Azerbayán, Georgia, porción norte del Cáucaso de la Federación Rusa, noreste de Turquía y parte del noroeste de Irán: amenaza de sequías, Inundaciones, incendios forestales y resurgimiento de la malaria en poblaciones altamente dependientes de la agricultura y de los bosques.

3-Este de los Himalayas Nepal: el retroceso de los glaciares, combinado con la fragmentación del habitat, provoca deslizamientos de tierras, Inundaciones y restricciones en el acceso al agua dulce.

4-Costa este de África Kenya, Tanzania y Mozambique: escenarlo de 2° C: los manglares estarán en peligro por el aumento del nivel del mar, combinado con la expansión de la agricultura, la deforestación y la producción de leña y el crecimiento de áreas urbanas. Los arrecifes de coral y las pesquerías se verán amenazadas por el aumento de las temperaturas y del nivel del mar, la acidificación, la sobrepesca Industrial y las prácticas destructivas de las pesquerías costeras.

5-Andes del Norte Colombia, Ecuador, Perú: estrés hídrlco para comunidades Indígenas y pequeños granjeros, y para la fuente de agua del río Amazonas.

6-Cuenca central del río Yangtzé China: inundaciones masivas sobre viviendas. Afectarán a más de 400 millones de personas.

7-Cuenca del río Danubio 19 países Incluyendo Hungría, Rumania, Bulgaria, Ucrania y Moldavia: millones de personas que habitan en la cuenca de los ríos, y que dependen principalmente de la agricultura para su subsistencia, sufrirán severos impactos por las inundaciones.

8-Gran Chaco Sudamericano La Argentina, Bolivia, Paraguay y una pequeña parte de Brasil: Inundaciones y desertlflcaclón asociadas a la deforestación en el oeste de la región, debido al avance de la frontera agropecuaria, Las poblaciones rurales y las comunidades indígenas deberán desplazarse.

9-Arrecife mesoamericano México, Bellce, Guatemala y Honduras: aumento del nivel del mar, blanqueamiento de los arrecifes de coral por el aumento de la temperatura y de la acidificación, pérdida de las atracciones turísticas y de la productividad de la pesca, de las cuales dependen los habitantes.

10-Triángulo de Coral Indonesia, Filipinas, Malasia, Papua Nueva Guinea, islas Salomón y Timor-Leste: 100 millones de personas, beneficiadas directamente por los recursos costeros (las pesquerías, fundamentalmente) están seriamente amenazadas por el blanqueamiento de coral, el desarrollo costero y las Inundaciones en las zonas bajas.

11-Océano Austral Rodea todo el continente antartico: disminución del hielo marino del 10 al 15% y, en algunas áreas, del 30%. Se reducen algunas especies que dependen del hielo, como por ejemplo el krill. Este crustáceo se alimenta del plancton que se cría bajo las capas de hielo y constituye la base de la cadena alimentaria de muchas especies del océano Austral.

12-Donaña España: Incremento de la desertificación mayor que el promedio global. Impactos Intensos, como disminución de lluvias y aumento masivo de los ritmos de evaporación.

13-Sundarbans Oeste del golfo de Bengala: habitat muy amenazado por la Inundación de los ríos y el aumento del nivel de mar, que afectará elhogar de cuatro millones de personas y del 10% de la población de tigres de Bengala que aún existen.

14-Altai-Sayan Rusia, Mongolia, Kazajastán y noroeste de China: el calentamient registrado de 1,5° C en los últimos 60 años, el derretimiento masivo de glaciares, las inundaciones catastróficas y las sequías prolongadas impactan en la población, que es altamente dependiente de la agricultura.

15-Cuenca del río Ruaha Tanzania: escasez de agua, particularmente en la temporada seca, que también incrementará ¡a inseguridad alimentaria, el cólera y otras enfermedades infecciosas.
15-Fifi Defensas naturales, arrecifes y manglares se verían seriamente amenazados por el cambio climático y otras presiones.

isla malé

88.000 son los habitantes de Male (foto), la capital de Maldivas, cuyas vidas serán afectadas por el aumento del nivel del mar. El 80% de las islas se sitúa apenas un metro por encima del nivel del mar.

Fuente Consultada: Cuadernillo Calentamiento Global de la Fundación Vida Silvestre junto a Clarín

La lluvia Ácida Causas y Consecuencias Efecto Como se produce la LLuvia?

La Lluvia Ácida Causas y Consecuencias

El hombre, a través de sus actividades, perturba el medio ambiente e interfiere en la precipitación de dos maneras fundamentales: con la construcción de ciudades y con el vertido de contaminantes a la atmósfera. Respecto a la contaminación atmosférica, uno de sus efectos más destructivos es la lluvia ácida, así denominada por la elevada acidez del agua precipitada.

La lluvia acida es un problema ecológico que no respeta fronteras. La contaminación atmosférica que la causa es arrastrada por los vientos dominantes, desde las zonas industriales hasta montañas, lagos y bosques. Ni siquiera el Ártico está libre de tal contaminación.

¿De dónde proviene el ácido? Ya no hay duda de que la mayor parte se origina en automóviles, hogares, fábricas y plantas de energía. Siempre ha existido un poco de ácido en la lluvia alimentada por volcanes, pantanos y el plancton de los océanos; pero los científicos saben que ha aumentado abruptamente en los últimos 200 años. El hielo formado antes de la Revolución Industrial y atrapado en los glaciares resultó tener una acidez moderada, de origen natural.

La lluvia se vuelve acida principalmente por la presencia de dos elementos químicos: azufre y nitrógeno. El azufre se encuentra en la hulla y el petróleo. Al quemarse forma bióxido de azufre, que se mezcla con las gotas de agua en las nubes y se convierte en ácido sulfúrico. Como resultado de la combustión, el nitrógeno forma óxidos que se transforman en ácido nítrico al reaccionar con las moléculas de agua. Una parte de ambos ácidos cae donde se originan, mientras que el resto puede recorrer cientos de kilómetros.

La lluvia Ácida Causas y Consecuencias

La acidez de las precipitaciones está determinada por la concentración de iones de hidrógeno presentes en el agua; se expresa en términos de valor del pH, según una escala de O a 14, donde el valor 7 indica solución neutra (el agua destilada, por ejemplo), los valores inferiores, soluciones ácidas (manzanas, vinagre, zumo de limón), y los superiores, soluciones básicas (lejía, cal, amoniaco). Cada descenso del. pH en una unidad supone un aumento diez veces mayor en la acidez.

La lluvia ya es de por sí ligeramente ácida, pues contiene dióxido de carbono (también lo son la nieve, la niebla y las formaciones de hielo). Se considera lluvia ácida aquella que tiene un pH inferior a 5,6.

Existen diversas fuentes naturales de lluvia ácida: entre otras, los compuestos de azufre que resultan de las erupciones volcánicas, los manantiales termales y las fumarolas, y una cantidad considerable de óxidos de nitrógeno y azufre, producto final del metabolismo de diversos grupos bacterianos. A pesar de estos contaminantes naturales del aire, el pH del hielo glacial llega a casi 5,0, lo que significa que las emisiones naturales de los compuestos ácidos no son el origen principal de la lluvia ácida, sino las actividades de las sociedades humanas, .especialmente las más desarrolladas. 

La combustión de carburantes fósiles

La combustión de carburantes fósiles (petróleo, gas y carbón) por fábricas, centrales eléctricas, hogares y vehículos libera dióxido de azufre y óxidos de nitrógeno. Estos’ gases no sólo ejercen un efecto nocivo sobre las cosechas, los árboles y los edificios del entorno más inmediato, sino que atraviesan largos recorridos transportados por el viento. Durante el trayecto, los rayos solares los transforman en sulfatos y nitratos. Una vez secos, estos contaminantes se resisten a caer al suelo, y tan sólo la lluvia y la nieve logran extraerlos de la atmósfera. Así, son absorbidos por las nubes y convertidos en ácido sulfúrico y nítrico, ambos solubles en agua, que se depositan a continuación, disueltos en la lluvia, la nieve o la niebla, sobre las plantas, los árboles, los lagos y los ríos, los mares y los suelos. 

Efectos de la lluvia ácida sobre el terreno, las aguas dulces y el medio urbano

El fenómeno de la lluvia ácida (incluida también la nieve, las nieblas y los rocíos ácidos) tiene consecuencias negativas sobre el medio ambiente, porque no sólo afecta a la calidad del agua, sino también a los suelos, a los ecosistemas y, de modo particular a la vegetación: bastan 0,01-0,02 ppm de ácido (que corresponden a 10-20 mm./m3 en la atmósfera) para matar los líquenes; por su parte, las coníferas no sobreviven a concentraciones mayores de 0,07-0,08 ppm.

Los efectos de la lluvia ácida sobre el terreno dependen en gran medida del tipo de suelo sobre el que se deposita. Si el terreno es una formación de origen calcáreo, los ácidos serán rápidamente absorbidos por el carbonato cálcico que compone esta clase de suelos. Por el contrario, si la superficie de depósito es de composición arcillosa o granítica, las consecuencias son más graves, dado el enorme poder de disolución que tiene este tipo de agua de lluvia, que acaba alterando el pH medio del terreno1 originando una acidificación general. Al filtrarse en la tierra, los ácidos destruyen los nutrientes esenciales del suelo, tales como el magnesio, el calcio y el potasio, que alimentan a las plantas y los árboles. estos se vuelven ralos y descoloridos, y mueren.

Las regiones montañosas sometidas a precipitaciones de lluvia o nieve ácidas están, a menudo, compuestas por granito y otras rocas ígneas, que producen suelos delgados carentes de los agentes químicos capaces de neutralizar los ácidos presentes en esta clase de precipitaciones. 

Otro efecto de la lluvia ácida es el aumento de la acidez en las aguas dulces, como consecuencia del incremento de metales pesados muy tóxicos (plomo, aluminio, mercurio, cinc y manganeso), que provocan la ruptura de las cadenas tróficas y del proceso reproductivo de los peces, condenando a los ríos y lagos a una lenta pero implacable disminución de su fauna. Los lagos tienen un pH casi neutro, debido a que minerales como el calcio, liberados en sus aguas a través del suelo, neutralizan la lluvia natural. Sin embargo, este mecanismo amortiguador puede no ser suficiente para absorber el incremento de acidez de aquélla.

Los efectos de la lluvia ácida sobre el medio urbano son, por una parte, la corrosión de edificios, la degradación de las piedras de las catedrales y otros monumentos históricos y, por otra, las afecciones del aparato respiratorio en los seres humanos.                       

Las regiones del mundo que más sufren los efectos de la lluvia ácida son aquellas       dotadas de suelos sensibles, esto es, que carecen del porcentaje necesario de neutralizantes, sobre todo en áreas situadas dentro o cerca de grandes agentes contaminantes. También en ámbitos no industrializados, como áreas remotas de China, donde el carbón se utiliza para calefacción, cocina y depuración de agua, o en zonas de África donde se queman arbustos para propiciar el crecimiento de los pastos, se producen los   mismos efectos. Los contaminantes atraviesan largos recorridos  transportados por  el viento 

En virtud de los desplazamientos de las masas de aire, los contaminantes alcanzan zonas alejadas cientos de kilómetros del lugar donde han sido emitidos. Por esta razón, surge la necesidad de saber hacia dónde se dirigen las nubes contaminantes originadas en un país. Se han elaborado con este fin programas modelo, aplicados a distancias variables, que contemplan: ciclos convectivos, lluvias, nubes y el efecto del suelo. Pronostican variables de vientos, temperatura del aire, humedad relativa, superficie del mar, diferencias de presiones, etc.

Los métodos normalizados más empleados en el análisis de SO2 son los siguientes: método del peróxido de hidrógeno, método del yodo, método gravimétrico, método yodo-tiosulfato, métodos espectrofotométricos, métodos calorimétricos, etc. Se ha podido constatar, por un lado, que Gran Bretaña y Alemania son los grandes exportadores de SO2, al provocar lluvias ácidas en otros países de la UE. Por otro lado, se sabe que la acidez de las lluvias, en general, es mayor en los meses de primavera y verano, y no coinciden estas épocas con los meses en los cuales las cantidades emitidas de contaminantes son mayores (meses de invierno). Por último, también se ha comprobado que el transporte de contaminantes por las corrientes de aire es muy importante, ya que los efectos de lluvia ácida que sufre un país se deben, en su mayor parte, a las emisiones provocadas por otros países.

La lucha contra la lluvia ácida

Desde los años ochenta, se ha producido una toma de conciencia sobre la necesidad de controlar y paliar, en la medida de lo posible, los efectos perniciosos que sobre el medio natural ejercen las sociedades humanas. Las inversiones se han concentrado en impulsar el desarrollo de las llamadas energías limpias (solar y eólica, fundamentalmente), y la implantación de controles más rigurosos para limitar la liberación a la atmósfera de agentes contaminantes.

Los países industrializados han movilizado gran cantidad de recursos económicos para reducir las emisiones ácidas. En 1993, la UE acordó reducir las emisiones de óxidos de azufre en un 40% para el año 1998 y en un 60% para el 2003, y las de óxidos nitrosos, en un 30% para 1998. Otra de las medidas acordadas a partir del año 1993 fue la de instalar catalizadores en los coches de nueva fabricación, para conseguir la reducción de las emisiones de los mencionados gases. Uno de los progresos más significativos ha tenido lugar en las cámaras de producción de las centrales termoeléctricas, un causante esencial de las emisiones de ácidos a la atmósfera: se han incorporado técnicas que reducen e incluso eliminan la emisión de los óxidos de nitrógeno y azufre, que son recuperados y reutilizados como abono.

¿CÓMO SE MIDE LA ACIDEZ?

Los ácidos destruyen casi todo lo que alcanzan; son solubles en agua y su fuerza se mide por el pH (potencial de nitrógeno). La escala del pH abarca valores desde 1 hasta 14. El 1 indica acidez extrema y el 7 neutralidad; el 14 se da en líquidos de gran alcalinidad (lo opuesto a la acidez). El pH se determina con un medidor especial o papel indicador. Un ácido fuerte como el sulfúrico hace que el papel se coloree de rojo, uno neutro lo pone verde, y los líquidos muy alcalinas le dan una coloración púrpura.

LIQUIDO COLOR DEL INDICADOR PH
Acido Sulfúrico Concentrado Rojo 1.0
Jugo de Limón Rojo 2.3
Vinagre Rosa 3.3
Lluvia Zonas Industriales Rosa 4.3
Lluvia Normal Naranja 5.5
Lluvia Destilada Verde 7.0

 

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23).

Las Erupciones Volcanicas Mas Fuertes de la Historia Mas Famosas y Grandes

Grandes Erupciones Volcánicas

La lava cae y se desplaza llevando consigo todo lo que encuentra a su paso. Esto sucede en forma pausada e ininterrumpida, arrasando ciudades enteras, poblaciones, bosques y miles de vidas humanas. Uno de los ejemplos más famosos fue la erupción del monte Vesubio en el año 79 a: C.; que eliminó del planeta a dos ciudades y dos culturas, las de Pompeya y Herculano. Ya en el siglo XX, la erupción del monte Pelee destruyó en pocos minutos la ciudad de Saint Pierré en Martinica y mató al instante a casi toda su población. Detalles de algunas de las erupciones más relevantes

Erupciones Volcánicas

Erupciones Volcánicas

Vesubio año 79 d. C.
El año 79 d. C., el volcán Vesubio entró en erupción violenta y repentinamente, arrasando con nubes de cenizas calientes el romano centro comercial de Pompeya y enterrando bajo lodos volcánicos la pequeña ciudad residencial de Herculano, Hasta esta erupción los romanos habían considerado al Vesubio como un volcán extinguido: .no se tenía constancia de erupciones, y su cono, que había sufrido una fuerte erosión, estaba densamente poblado de vegetación, que incluía extensos viñedos en la parte inferior de sus laderas. El año 63 tuvo lugar un violento terremoto local, que produjo diversos daños en las ciudades que rodeaban al Vesubio. Los terremotos continuaron sucediéndose durante varios años; hoy esos fenómenos serían interpretados como indudables avisos de una próxima actividad volcánica.

La población local de aquella época no cayó en la cuenta de esta relación, quizá porque consideraban como absolutamente cierto que el volcán estaba extinguido. De esta forma la gran nube que surgió de la montaña alrededor del medio día del 24 de agosto constituyó para ellos un «shock» que los dejó estupefactos. La erupción es descrita con gráficos detalles por Punió el Joven en su carta a Tácito, que es probablemente el primer informe de una erupción volcánica realizado por un testigo ocular. Los detalles de este relato se han visto confirmados por el análisis de las rocas producto de la erupción, y de acuerdo con ellos parece que durante esta erupción tuvieron lugar muchos fenómenos que han podido ser observados en erupciones posteriores.

Se ha dicho con frecuencia que Pompeya quedó sepultada por depósitos de cenizas aéreas, mientras Herculano lo fue por una avalancha de lodo. Sin embargo, investigaciones recientes sugieren que los depósitos de coladas de lodo en Herculano pudieran ser de ignimbrita, y es probable que otras ciudades cercanas al Vesubio fueran también destruidas por nubes ardientes. Algunos pasajes de las cartas de Punió son asombrosamente similares a descripciones de nubes ardientes hechas por testigos modernos. Las extensas excavaciones llevadas a cabo en Pompeya  nos dan una clara idea de la belleza y prosperidad de esta zona antes de la erupción.

Las excavaciones en Herculano  se ven muy retrasadas por el hecho de haberse construido la ciudad de Resina exactamente encima de los restos de la ciudad romana. Una parte del borde exterior de una gigantesca caldera sobrevive en la parte norte del Vesubio recibiendo el nombre de Monte Somma; su formación se atribuye comúnmente a esta erupción del año 79. En el lado sur un nuevo cono volcánico, conocido como Gran Copo, se ha formado en épocas posteriores a la formación de la caldera.

¿La Atlántida?
Una enorme erupción, que tuvo lugar alrededor del año 1470 a. C. en la Isla de Thera, destruyó completamente una civilización, dando origen posiblemente a la leyenda de la Atlántida. La isla se colapso a causa de la erupción, formándose una inmensa caldera de 80 kilómetros cuadrados, inundada por el agua del mar y rodeada de escarpadas paredes de cenizas volcánicas.

El cataclismo arruinó la próspera civilización minoica, centrada durante la tardía Edad del Bronce en la isla de Creta, isla que fue devastada en su mayor parte por enormes olas y enterrada bajo espesas capas de cenizas. Las leyendas griegas aluden a esta tragedia, pero tanto la erupción como la civilización minoica cayeron en el olvido, hasta que investigaciones arqueológicas llevadas a cabo en este siglo las sacaron a la luz.

Un viajero griego, Solón, visitó Egipto probablemente el año 590 a. C., y allí oyó hablar a los historiadores egipcios de un desastre que en los tiempos antiguos destruyó el pueblo de Keftiu, situado «lejos hacia el Oeste», acabando con el comercio que existía entre ambos pueblos. Así nació la idea de unas islas perdidas en el mar, que Platón convirtió, alrededor del año 380 a. C., en la épica saga de la Atlántida.

Krakatoa en 1883
El Krakatoa es un volcán del mismo tipo que el de Thera. Ambos tenían una larga historia de pequeñas erupciones que fueron progresivamente formando grandes conos volcánicos, compuestos de basaltos y andesitas, seguidas por gigantescas erupciones que constituyeron auténticos cataclismos y provocaron el colapso del edificio volcánico, para a continuación volverse a formar lentamente un nuevo cono volcánico.

La última gran erupción del Krakatoa es lo suficientemente reciente como para estar bien documentada. Los efectos de la erupción se extendieron por todo el mundo. La explosión final, el domingo 27 de agosto de 1883, se oyó a 4,700 km. de distancia.

La onda expansiva y las olas marinas producidas por dicha explosión dieron la vuelta al globo; originales puestas de Sol, producidas por la presencia de finas arenas en la atmósfera, se pudieron observar incluso en Londres, y grandes islas flotantes de pumita fueron arrastradas por las corrientes de los océanos durante meses. La mayor parte de las 36.000 víctimas fueron debidas, sin embargo, a los tsunamis provocados por la explosión. Estos tsunamis, olas de hasta 35 metros de altura, arrasaron las costas de Java y Sumatra.

Valle de las Mil Chimeneas en 1912
El Valle de las Mil Chimeneas surgió en Alaska, en las cercanías del volcán Katmai, durante una erupción de este último. Tres grandes explosiones, que se pudieron oír a 950 km. de distancia, señalaron el comienzo de una erupción de coladas de cenizas calientes, que cubrieron el valle, alcanzando en algunos puntos espesores de más de 200 m. Las coladas de cenizas mantuvieron su calor durante muchos años; el agua subterránea, que se había filtrado hasta alcanzar esas zonas, se calentó lo suficiente como para escapar a la superficie en forma de innumerables fumarolas, las «Diez Mil Chimeneas».

Las cenizas aéreas afectaron a un área mucho mayor: el más próximo asentamiento humano de tamaño apreciable, Kodiak, a 160 km. del volcán, permaneció envuelto en una sofocante oscuridad durante dos días. El magma de esta erupción se acumuló inicialmente en una cámara magmática bajo el mismo volcán Katmai, pero no fue expulsado a la superficie por su cráter sino que a través de fisuras alcanzó un salidero alejado 10 km. de la cima del volcán originando un nuevo volcán, Novarupta. Al vaciarse la cámara magmática se produjo la fragmentación y el hundimiento de la cima del Katmai, formándose una caldera de 6 km. de diámetro y 800 m. de profundidad.

Nacimiento del Paricutín en 1943
Durante muchos años una pequeña fosa existente en un valle de una zona agrícola de México intrigó a los habitantes del valle, por su persistencia en reaparecer al poco tiempo de haber sido rellenada con tierra. El día 20 de febrero de 1943, un poco después de las cuatro de la tarde, se abrió a través de dicha fosa una grieta, por la que escapaba una pequeña columna de cenizas grises.

A las 24 horas, la lava estaba fluyendo de la base de un cono de escorias basálticas de 50 metros de alto, que se había formado durante este tiempo sobre la fisura. En unos pocos meses el nuevo volcán forzó a sus habitantes a desalojar Paricutín, localidad situada a 3 km. del volcán, y en junio de 1944 la capital del distrito, la ciudad de Para ngaricutiro, había sido completamente destruida por la lava. En septiembre de ese mismo año, la lava cubría ya una superficie de 25 km2, y las nuevas coladas se iban apilando sobre las antiguas.

Al cabo de dos años el volcán Paricutín alcanzó su máxima altura, 500 metros, y el ritmo de la erupción comenzó a declinar, hasta que, exactamente en su noveno aniversario, la erupción cesó bruscamente. El Paricutín ha sido el primer volcán que ha podido ser observado científicamente desde su nacimiento.

Destrucción de St. Fierre, Martinica, en 1902
La ciudad de St. Fierre y sus 30.000 habitantes fueron prácticamente borrados del mapa en unos pocos segundos, a las 7,50 de la mañana del día 8 de mayo de 1902, por una «nube ardiente» surgida del cercano volcán de Monte Peleé. El volcán había estado emitiendo cenizas y gases desde el 23 de abril, hasta el punto que los animales se desplomaban moribundos en las calles, a causa de los gases venenosos provenientes del volcán.

A pesar de esto no se había dado orden de evacuar la ciudad, pues era inminente la celebración de unas importantes elecciones en las que sólo se podía votar en su propio distrito. La actividad explosiva se incrementó en el cráter durante los días 5, 6 y 7 de mayo, dando lugar a coladas de lodos, que ocasionaron algunas víctimas
en las cercanías del volcán. La nube ardiente del 8 de mayo surgió repentinamente de una hendidura en la pared del cráter desplazándose ladera abajo a lo largo del valle de la Riviére Blanche; pasado St. Fierre giró bruscamente a la derecha internándose en el mar y dejando el valle de la Riviére Blanche cubierto de espesos y sofocantes depósitos de ignimbrita.

El frente de la nube lo constituía una onda de gases calientes y cenizas suspendidas que se expandía rápidamente en dirección a St. Fierre desvastando completamente la ciudad. La temperatura del gas que formaba la ola frontal era lo suficientemente elevada como para fundir el vidrio y determinados metales; dejó tras ella solamente una fina capa de ceniza que cubría el terreno como una ligera capa de nieve. El 14 de mayo, una semana después de la erupción, aún se desprendían volutas de humo de las brasas en que se habían convertido las ruinas de la ciudad. En los meses siguientes el volcán continuó expulsando nubes ardientes, aunque normalmente fueron menos violentas que la primera.

Este ciclo eruptivo, que presenta en primer lugar una fase de actividad gaseosa con desprendimiento de cenizas, seguido por una nube ardiente con gran desprendimiento de gases, y que termina con la formación de un domo y un pitón, es un proceso típico que se repite en muchos volcanes.

COMO ACTUAR FRENTE A LAS ERUPCIONES VOLCÁNICAS:

Entre 50 y 60 volcanes entran en erupción cada año: de 20 a 30 producen a veces flujos letales de lava y la misma cantidad generan explosiones más violentas, que crean nubes de ceniza asfixiantes. También existe la posibilidad de que haya emanaciones de lodo e inundaciones.

Qué hacer. Pronóstico de erupción
1. Manténgase informado. Escuche la radio, mire televisión o use Internet para obtener información actualizada.
2. Preste atención a las advertencias oficiales. Esté preparado para evacuar el lugar. Planifique qué llevará, adonde irá y cuáles son las rutas más seguras para llegar allí. Siga de inmediato todas las órdenes de evacuación emitidas por las autoridades. Si no es necesario evacuar el lugar, igualmente es fundamental contar con suministros de agua, comida y baterías.
3. Prepare un equipo de supervivencia. Debe incluir gafas de seguridad y mascarillas (tapabocas) desechables para cada persona además de los artículos habituales.

Caída de cenizas
1-Protéjase. Si se encuentra afuera cuando empiece a caer la ceniza, póngase ropa para cubrirse lo más posible y, si tiene un paraguas, ábralo para protegerse de las partículas filosas de roca. De ser posible, póngase gafas y una máscara. Si no tiene una máscara, átese una bufanda o un pañuelo humedecido en agua sobre la boca y la nariz. Use anteojos en lugar de lentes de contacto.

2. Busque refugio. Si puede, resguárdese dentro de un edificio o un auto. Si se encuentra de vacaciones cuando empiecen a caer las cenizas, quédese adentro (a menos que haya algún riesgo de que el techo colapse) y mantenga todas las ventanas bien cerradas. Cierre las entradas de aire y chimeneas con cartón y cinta adhesiva.

3. Prevenga los daños estructurales.’ Si está de vacaciones y se está alojando en un departamento o en un lugar con techo con poca inclinación, limpie periódicamente el techo para quitar las cenizas y evitar que colapse por el peso. Cuando las cenizas se mezclan con agua, se vuelven más pesadas y se pueden solidificar como cemento.

4. Evite viajar. No maneje a menos que sea esencial o que le indiquen que debe evacuar el lugar. Si está manejando, hágalo lentamente y evite levantar cenizas ya que podrían afectar el motor. Use los faros y cerciórese de que haya líquido de parabrisas. Use mucha agua para mantener el parabrisas despejado.

Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima

Los Efectos Nocivos sobre la Naturaleza
Accion del Hombre Sobre el Clima


Efecto Invernadero
Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima
Agujero Ozono
Los efectos nocivos sobre la naturaleza Accion del hombre sobre el clima
Lluvia Ácida

Muchos de los problemas ambientales que azotan a la sociedad moderna son el resultado de la interferencia humana en la forma como funcionan los ecosistemas. Los primeros habitantes humanos del planeta se mantuvieron con la energía que fluía del Sol y producían desechos que regresaban fácilmente a los ciclos de los nutrimentos. Sin embargo, conforme aumentó la población y la tecnología, el ser humano comenzó a actuar con mayor independencia de estos procesos naturales.

Hemos extraído de la tierra sustancias como plomo, arsénico, cadmio, mercurio, petróleo, uranio, que son extrañas a los ecosistemas naturales y tóxicas para muchos de los organismos en ellos.

En las fábricas se sintetizan sustancias que antes nunca se encontraban en la tierra: plaguicidas, solventes y una gran variedad de otras sustancias químicas industriales dañinas para muchas formas de vida.

La revolución industrial, que empezó a mediados del siglo XIX, dio como resultado un aumento tremendo del uso de energía producida por combustibles fósiles —en lugar de luz solar— para conseguir calor, luz, transporte, industria e incluso en la agricultura.

El hombre como transformador de la naturaleza
El hombre no sólo es miembro Integrante de la naturaleza, también se encuentra, en cierto sentido, por encima de ella. No es que sea su amo: ¡sería mucho decir! ¡Pero es su transformador! Tan pronto el hombre primitivo pasó de la mera recolección de los productos de la naturaleza virgen y de la caza de animales salvajes al cultivo de ciertas plantas y a la cría de animales, se inició su intervención transformadora sobre la naturaleza.

Se roturaron, entonces, o se destruyeron por el fuego, los montes, se regularon las aguas, se fundaron poblados cercanos en número creciente, se abrieron caminos. A medida que aumentan en cantidad, los hombres necesitan mayor superficie para sus cultivos: el paisaje natural se transforma en paisaje civilizado y, entre nosotros, ¡en estepa civilizada!

El bosque desaparece progresivamente, las turberas se hacen laborables; en su lugar aparecen tierras de labranza, prados y campos de pastoreo. En la actualidad sólo el 27% de la superficie de Alemania está cubierta de bosques en lugar del 60 al 75% de otros tiempos. Se prescribe al río por donde debe correr, al lago hasta qué altura debe crecer.

Las poblaciones van creciendo, se transforman en ciudades y aun en grandes ciudades; como consecuencia, la red de comunicaciones se hace más ceñida e invade una superficie cada vez mayor. Y además hay que eliminar los desechos de las grandes aglomeraciones humanas que contaminan las corrientes de agua.

La provisión de agua potable debe obtenerse directamente de las grandes reservas de las capas subterráneas; esto y el arrastre, cada vez más rápido, del sedimento en los cursos de agua rectificados, bajan el nivel de las aguas. La tierra se deseca; Europa se convierte en una estepa; se construyen Instalaciones de riego artificial. Se intenta prevenir el peligro de un descenso demasiado grande de las aguas provocado por aquellas mismas alteraciones o, como se dice, mejoramientos  y la contaminación demasiado intensa de los cursos de agua, sobre todo en las regiones industriales, por medio de la construcción de inmensos embalses.

Así nacen presas y lagos en lugares originariamente sólo surcados por arroyos y ríos. Canteras y yacimientos de carbón excavan profundas heridas en la superficie de la tierra; en el interior de ella, las cavidades de las minas adquieren una extensión gigantesca, y la ganga de los minerales forma en las laderas montañas.

Los establecimientos de la gran industria con sus chimeneas humeantes nublan el cielo de regiones enteras, y donde antes cubrían el paisaje verdegueantes bosques, hoy lo reviste una red de hilos eléctricos.

Vida y Mundo Circundante, August F. Thienemann. EUDEBA

Actualmente sabemos que la naturaleza es finita en sus recursos y que hemos llegado cerca de sus límites por las modificaciones descontroladas de los ambientes, alejándonos del equilibrio natural hacia un punto sin retorno, generando una maraña de problemas relacionados con la energía y el alimento. El hombre debe reflexionar antes de actuar sobre la naturaleza, para no seguir produciendo desequilibrios que la perjudiquen y comprometan los recursos naturales indispensables, y a la vez su bienestar y supervivencia, a tal punto que su existencia sea sobrevivir en un planeta hostil fabricado por él.

Lo múltiple y lo único
El estudio de la ecología nos enseña la interdependencia de todas las partes del planeta Tierra en relación sistémica: el sustrato geofísico, la atmósfera y el clima, las plantas y los animales. También es evidente que la Tierra depende del Sol como fuente de energía y de la Luna para sus mareas: el sistema es abierto y forma parte del Cosmos. Debido a esta interdependencia total de toda la miríada de componentes de un todo, no es arbitrario comparar la totalidad del sistema mundial con un organismo individual. Aceptamos la naturaleza sistémica de un individuo porque sabemos que existe una interdependencia evidente de los distintos órganos.

Si vemos a todo el planeta de esta manera, vacilaremos antes de efectuar cambios importantes y fundamentales en componentes determinados rápidamente y sin pensarlo….

…..Por esta razón ya no es una misteriosa paradoja ver a la naturaleza, a la vez, como lo múltiple y lo único. Los componentes del mundo natural son innumerables, pero constituyen un único sistema vivo. No hay escapatoria para nuestra interdependencia con la naturaleza; estamos entretejidos en la urdimbre más estrecha con la Tierra, el mar, el aire, las estaciones, los animales y todos los frutos de ella. Lo que afecta a uno afecta a todos; somos parte de un todo mayor: el cuerpo del planeta. Debemos respetar y amar su expresión múltiple si queremos sobrevivir.

Ecología humana: “El ecosistema humano”
Pasado, presente y futuro
Autor: Bernard Campbell
Biblioteca Científica Salvat (1985)

Fuente Consultada: Educación Para La Salud Liserre de Telechea – Cazado