La Física Moderna

Cientificos Mas Importantes de la Historia y Sus Descubrimientos

GRANDES CIENTÍFICOS DE LA HISTORIA Y SUS OBRAS

Los primeros intentos de estudiar el mundo desde un punto de vista científico datan del antiguo Egipto y Babilonia. Sin embargo es a los griegos a quienes debemos las bases de muchos de nuestros pensamientos científicos; la geometría, la astronomía y la química fueron estudiadas frecuentemente de una manera amplia aunque, a veces, las conclusiones a que llegaron fueron desacertadas. Aristóteles creía (erróneamente) que la Tierra era el centro del Universo y que toda la materia estaba formada de cuatro elementos:  tierra, aire, fuego y agua.

Durante la edad media la química se hizo importante aunque no se la conocía por tal nombre. Los alquimistas, dedicados a cosas tales como producir oro de otros metales, realizaron individualmente muchos descubrimientos importantes, aunque poco contribuyeron a nuestro conocimiento de la naturaleza de la materia. La visión del Universo fue alterada radicalmente por las ideas de Copérnico (quien demostró que el centro del sistema solar era el Sol).

El siglo XVII vio un gran florecimiento de la investigación científica. Newton formuló sus leyes del movimiento y de la gravitación universal; en 1662 se fundó en Londres la Royal Society y se crearon en Europa muchos otros cuerpos de científicos organizados, los cuales allanaron el camino para el acercamiento a la ciencia moderna. Ésta ha evolucionado rápidamente a través de los siglos XVIII y XIX, hasta llegar al profesionalismo especializado de hoy. A continuación figuran muchos de los más grandes científicos.

CIENTÍFICOS FAMOSOS
Adrián,  Edgardo   (1889-       )   Inglés,  fisiólogo.  Renombrado por sus trabajos sobre el cerebro, el sistema nervioso y la función de los nervios.

Agassiz, Juan Luis Rodolfo  (1807-1873)   Suizo, naturalista. Una autoridad en peces, para los cuales, propuso  una  nueva  clasificación.  También  estudió  los glaciares.

Ampére, Andrés María (1775-1836) Francés, matemático. Estudió la electricidad y el magnetismo. Dio su nombre a la unidad de corriente eléctrica.

Appleton, Eduardo Víctor (1892-       ) Inglés, físico, investigó el comportamiento de las ondas de radio de largo alcance, especialmente su reflexión en la atmósfera superior.

Aristóteles (384-322 a. C.) Griego, filósofo. Hizo una clasificación del conocimiento y muchos estudios en. el campo de la metereología, biología y geología.

Arquímedes (287-212 a. C.)  Griego, matemático. Estableció  el principio  de Arquímedes,  dedujo la ley de las palancas e inventó el tornillo de Arquímedes y la polea compuesta o polipasto.

Baekeland, León  Hendrik   (1863-1944)   Belga,  químico. Descubrió  el primer  plástico  termo-endurecido de uso práctico. Esto llevó a la producción de la baquelita.

Baeyer, Adolfo de (1835-1917) Alemán, químico. Realizó investigaciones acerca de los compuestos del cacodilo; descubrió la eosina, la galeína y la ceruleína. Es también conocido por su teoría de la asimilación del ácido carbónico por las plantas. Premio Nobel de química en 1905.

Becquerel,  Antonio Enrique   (1852-1908).  Francés; descubrió la radiactividad mientras usaba sales de uranio.   También estudió la fosforescencia, la luz y el magnetismo.

Berzelius, Juan Jaoobo (1779-1848). Sueco, químico. Descubrió varios elementos, sugirió el uso de la primera letra de los nombres de los elementos como símbolos químicos y creó la primera tabla segura de pesos atómicos.

Black, José (1728-1799). Inglés, químico. Redescubrió el anhídrido carbónico, al que llamó “aire fijado”. Es también conocido por sus teorías sobre el calor latente y sobre el calor específico.

Blackett, Patricio Maynard Stuart (1897-       ). Inglés, físico.   Con la cámara de Wilson fotografió la división de un núcleo del nitrógeno) por una partícula alfa, en un protón y un núcleo de oxígeno.

Bohr Níels (1885- ). Dinamarqués, físico. Extendió grandemente la teoría de la estructura atómica al inventar un método explicativo del espectro de los elementos y su posición en la tabla periódica. Ayudó al desarrollo de la teoría cuántica.

Boussingault, Juan Bautista (1807-1887). Francés, biólogo. Explicó las diferencias básicas entre la nutrición animal y vegetal y demostró que las plantas obtienen nitrógeno de los nitratos del suelo y no de la atmósfera.

Boyle, Roberto (1627-1691). Inglés, químico. Figura destacada en la química del siglo XVII. Sus investigaciones cubrieron un campo muy amplio, incluso la neumática; es mejor recordado por la ley que lleva su nombre.

Bragg, Guillermo Enrique (1862-1942). Inglés, físico. Famoso por su trabajo sobre la estructura de los cristales y los átomos; aplicó el espectrógrafo de rayos X, que desarrollaron juntos él y su nijo G. L. Bragg.

Bragg,  Guillermo Lorenzo   (1890-       ).  Inglés,  físico. Trabajó con su padre  Sir G. E. Bragg en la estructura de los cristales.

Brahe, Tycho  (1546-1601). Dinamarqués, astrónomo. Hizo  muchas  observaciones  exactas  de los  planetas y  del  Sol.   Éstas  dieron  la  base  para las  leyes  de Kepler.

Brown, Roberto  (1773-1858). Inglés, botánico.   Fue el primero en observar los movimientos de las partículas suspendidas en un líquido.   En su honor, se llamó a este fenómeno “movimiento browniano”.

Buffon, Jorge Luis (1707-1788). Francés, naturalista. Dedicó su vida a describir y clasificar plantas. Notorio por su trabajo monumental, Historia Natural.

Bunsen, Roberto Guillermo Eberardo (1811-1899). Alemán, químico. Con Kirchhoff descubrió el análisis espectral. Es recordado por su invento del mechero de Bunsen, aunque hizo inventos y descubrimientos más importantes.

Cannizzaro, Estanislao (1826-1910). Italiano, químico. Aplicó la hipótesis de Avogadro para la determinación de los pesos atómicos; experimentó en química orgánica y descubrió la reacción que luego llevó su nombre.

Cavendish, Enrique (1731-1810). Inglés, físico y químico. Descubrió el hidrógeno y demostró que cuando éste se quema se produce agua. Realizó la primera’ determinación exacta del peso de la Tierra.

Chadwick, Jaime  (1891-       ). Inglés, físico. Trabajó en la  desintegración  nuclear y   en la  dispersión  de partículas alfa.   El bombardeo de berilo con éstas lo llevó al descubrimiento del neutrón.

Cockcrobt, Juan Douglas (1897- ). Inglés, físico. Trabajó en la transmutación del núcleo atómico mediante el uso de partículas atómicas aceleradas. Consiguió desintegrar el núcleo de litio, con protones de alta velocidad.

Copérnico, Nicolás (1473-1543). Polaco, astrónomo. Descubrió que el Sol es el centro del sistema solar. Comprendió que las estrellas están a una enorme distancia de la Tierra pero pensó que estaban fijadas en una esfera.

Crookes, Guillermo  (1832-1919). Inglés,  químico y físico. Inventó el tubo de Crookes y sugirió la verdadera naturaleza de los rayos catódicos.   Descubrió el talio y estudió la radiactividad.

Curie, María Sklodowska (1867-1934). Nació en Polonia y se radicó en Francia, química. Con su esposo separó el polonio de los minerales uraníferos; luego descubrieron  el radio.

Curie, Pedro (1859-1906). Francés, físico y químico. Trabajó en cristalografía, magnetismo y piezoelectricidad.    Ayudó   al   descubrimiento   del   radio   y   del polonio.

Cuvier, Jorge Leopoldo (1769-1832). Francés, naturalista. Trabajó en anatomía comparativa y propuso una clasificación completa del reino animal. Estableció la paleontología como una ciencia separada.

Darwin, Carlos Roberto (1809-1882). Inglés, naturalista. Como resultado de sus observaciones, mientras viajaba alrededor del mundo, propuso la teoría de la evolución. Ésta fue publicada en su libro El origen de las especies.

Davy, Hunfredo (1778-1829). Inglés, químico. Famoso por su invento de la lámpara de seguridad.  Experimentó con el gas hilarante,  aisló el sodio y otros metales reactivos y dio nombre al cloro.

Dewar, Jaime (1842-1923). Inglés, químico. Importante por sus investigaciones sobre el comportamiento de la materia a bajas temperaturas; fue el primero en licuar hidrógeno; inventó el vaso Dewar de vacío.

Eddington, Arturo Stanley (1882-1944). Inglés, químico.   Hizo notables contribuciones a la astrofísica, especialmente  sobre la  estructura  de las   estrellas, y calculó la edad del Sol.

Ehrlich, Pablo (1854-1915). Alemán, bacteriólogo. Descubrió que los microbios absorben colorantes en forma selectiva. Mediante la combinación de colorantes con productos químicos venenosos trató de matar los microbios patógenos.

Einstein, Albert (1879-1955). Nació en Alemania, físico matemático. Escribió la Teoría general de la relatividad para rectificar ideas fundamentales sobre la gravitación, relacionando masa con energía; demostró que el espacio y el tiempo eran conceptos inseparables. Ha realizado trabajos apreciables en la teoría  cuántica.

Faraday,  Miguel   (1791-1867).  Inglés,  físico  y  químico. Descubrió el principio de la inducción electromagnética usado en la dínamo.  También licuó cloro y formuló las leyes de la electrólisis.

Fermi, Enrique    (1901-1954).   Italiano,   físico.   Hizo notables contribuciones a la física nuclear por su investigación sobre substancias radiactivas artificiales y energía  atómica.

Fischer, Emilio Armando (1852-1919). Alemán, químico. Trabajó durante muchos años en la estructura de los hidratos de carbono y proteínas. Fabricó artificialmente algunas substancias naturales como la fructosa y la cafeína.

Flamsteed, Juan (1646-1719). Inglés, astrónomo. Primero en obtener el título de Astrónomo Real en Gran Bretaña, es famoso por haber inventado la proyección cónica de los mapas; realizó muchos adelantos en la mejora de los métodos de observación de las estrellas.

Fleming,   Alejandro    (1881-1955).   Inglés,   bacteriólogo. Renombrado por su descubrimiento  de la  penicilina.

Florey, Howard Gualterio (1889- ). Inglés, patólogo. Con Chain aisló una forma pura y estable de penicilina, adaptable al uso medicinal.

Franklin,   Benjamín   (1706-1790).   Norteamericano, hombre de estado y físico. Fue el primero en probar la  naturaleza   eléctrica   de  los   relámpagos   e   inventó el pararrayos.

Fraunhofer, José de (1787-1826). Alemán, físico. Fue suyo el primer estudio preciso de las líneas oscuras en el espectro del Sol, llamadas líneas Fraunhofer.

Galeno, Claudio (aproximadamente de 130-200). Griego, médico; autor fecundo de obras sobre anatomía y fisiología. Sus trabajos permanecieron en uso durante muchos años.

Galilei, Galileo (1564-1642). Italiano, matemático y astrónomo. Construyó el primer telescopio astronómico práctico, con el cual estudió la superficie de la Luna, la Vía Láctea, el Sol, y muchos de los planetas.

Galvani, Luis (1737-1798). Italiano, físico. Renombrado por su descubrimiento de la electricidad animal (galvanismo). Demostró que tocando el nervio que conduce a un músculo de la pata de la rana, éste se contrae.

Gauss, Carlos Federico   (1777-1855). Alemán, matemático. Ganó gran reputación por su trabajo en las teorías del magnetismo y de los números.

Gay-Lussac, José Luis  (1778-1850). Francés, químico y físico. Notorio por su ley de las proporciones definidas y por sus otros adelantos en química.

Gilbert, Guillermo (1544-1603). Inglés, físico. El padre del magnetismo, descubrió su ley básica, es decir, que polos iguales se repelen. Concibió que la Tierra en sí, actúa como un imán.

Golgi, Camilo (1843-1926). Italiano, histólogo. Descubrió el aparato Golgi, una red nerviosa en la mayor parte de las células; desarrolló muchas técnicas de coloración para el estudio de la estructura del sistema nervioso.

Graham,   Tomás   (1805-1869).   Inglés,   químico.   Famoso por su trabajo en la difusión de los gases. Formuló la Ley de Graham.

Guericke, Otón de (1602-1686). Alemán, físico. Inventó la bomba neumática; alcanzó la obtención de vacío y creó también un aparato para la producción de electricidad mediante la fricción de una esfera de sulfuro.

Haeckel, Ernesto Enrique (1834-1919). Alemán, biólogo. Sostuvo la teoría de Darwin y realizó importantes estudios sobre las medusas, corales y esponjas. Realizó las primeras tentativas para hacer el árbol genealógico del reino animal.

Halley, Edmundo (1656-1742). Inglés, astrónomo. Mejor conocido por sus observaciones del cometa que lleva su nombre. También trabajó sobre el magnetismo terrestre los vientos y el movimiento de las estrellas.

Harvey, Guillermo (1578-1657). inglés, médico. Llegó  a  la  fama   por   su   descubrimiento   de  la   circulación de la sangre.

Heisenberg, Werner Carlos (1901- ). Alemán, físico. Notorio por su trabajo sobre estructura atómica, fundó la mecánica cuántica. También formuló el principio de incertidumbre.

Herschel,  Federico  Guillermo   (1738-1822).  Nació en  Alemania,  astrónomo. Desarrolló  un  nuevo   tipo de telescopio reflector. Descubrió  Urano y  dos  de sus satélites.

Hertz, Enrique  (1857-1894). Alemán, físico.  Probó experimentalmente la existencia de las ondas de radio  y  demostró  su   semejanza  con  la  radiación  luminosa.

Hooke, Roberto  (1635-1703). Inglés, físico. Trabajó en  matemáticas,  presión  atmosférica y  magnetismo; también estudió el microscopio y telescopio.

Hooker, José Dalton   (1817-1911). Inglés, botánico. Notable por su libro Genera Plantarium que escribió con Bentham y que contiene un nuevo e importante sistema de clasificación de las plantas.

Hopkins, Federico Gowland (1861-1947). Inglés, bioquímico.  Sus investigaciones sobre las proteínas y vitaminas fueron de gran importancia. Su trabajo llevó al descubrimiento de los aminoácidos esenciales.

Humboldt,  Federico  de   (1769-1859).   Alemán,  geógrafo. Exploró América del Sur y Asia Central; hizo muchas observaciones de los fenómenos naturales.

Hunter, Juan (1728-1793). Inglés, cirujano y anatomista. El principal cirujano de su época. Hunter fundó la cirugía científica, donde introdujo muchas técnicas quirúrgicas.

Huxley, Tomás Enrique (1825-1895). Inglés, biólogo. Sostenedor de la teoría de Darwin, Huxley trabajó sobre los vertebrados (especialmente el hombre) y métodos de enseñanza científica.

Huygens, Cristian (1629-1695). Holandés, astrónomo y físico. Descubrió la naturaleza de los anillos de Saturno y uno de sus satélites. Formuló su teoría ondulatoria de la luz e inventó el reloj de péndulo.

Jenner, Eduardo (1749-1823). Inglés, médico. Descubrió   un  método   para   prevenir  la  viruela   por  inoculación.

Joliot,  Juan  Federico   (1900-1958).  Francés,   físico. Con  su  esposa Irene Joliot Curie bombardeó  boro con partículas alfa y produjo la primera substancia radiactiva artificial.

Joule, Jaime Prescott (1818-1889). Inglés, físico. Famoso por su determinación de la equivalencia mecánica del calor y sus investigaciones en electricidad y magnetismo. La unidad de energía tomó su nombre.

Kelvin, Guillermo Thompson (1824-1907). Inglés, matemático y físico. Inventó el galvanómetro de espejo, la balanza Kelvin y el electrómetro de cuadrante. Introdujo la escala Kelvin de temperatura absoluta.

Kepler, Juan (1571-1630). Alemán, astrónomo. Sus tres leyes del movimiento de los astros son de gran importancia para la astronomía, y proveyeron las bases de la investigación de Newton sobre la gravitación.

Koch, Roberto (1843-1910). Alemán, bacteriólogo. Descubrió los organismos que causan el ántrax, la tuberculosis y el cólera. Desarrolló también nuevas técnicas de coloración y nuevos métodos de cultivo de bacterias.

Lamarck, Juan Bautista (1744-1829). Francés, naturalista. Muy famoso por su teoría de la evolución (lamarquismo) en la cual la herencia de los caracteres adquiridos —se sostenía— explicaba el origen de las especies.

Laplace, Pedro Simón, de (1749-1827). Francés, matemático. Resolvió  muchos  de los problemas matemáticos del sistema solar.  Dedujo la ley que gobierna el campo magnético que rodea a una corriente.

Lavoisier, Antonio Lorenzo (1743-1794). Francés, químico. Descubrió la naturaleza de la combustión y, finalmente, refutó la teoría del flogisto. También descubrió que los animales necesitan oxígeno para vivir.

Leeuwenhoek, Antonio de (1632-1723). Holandés, óptico. Con lentes simples hizo muchos descubrimientos importantes, observaciones de microbios, corpúsculos de sangre y tejidos animales.

Liebig, Justo de (1803-1873). Alemán, químico. Mejor conocido por su invento del condensador ds Liebig. Es importante por sus trabajos en agricultura, nutrición de las plantas y química orgánica.

Linneo, Carlos (1707-1778). Sueco, botánico. Muy conocido por su trabajo sobre clasificación de animales y plantas. Escribió el Systema Naturae.

Lister, José (1827-1912). Inglés, cirujano. Introdujo los antisépticos en la ciencia médica y más tarde la cirugía aséptica.

Lovell, Alfredo Carlos Bernardo (1913- ). Inglés, astrónomo. Profesor de astronomía de la Universidad de Manchester, trabajó en varios problemas, especialmente en la exploración de las ondas de radio provenientes del espacio.

Lyell, Carlos (1797-1895). Inglés, geólogo. Autor de muchos trabajos de geología, Lyell sostuvo la teoría de que los cambios ocurridos en la corteza de la Tierra en el pasado, se debieron a las mismas causas que los cambios que están teniendo lugar ahora.

Malpighi,  Marcelo   (1628-1694).  Italiano,  médico  y anatomista.   Descubrió los capilares entre las arterias y venas y estudió la embriología de los animales y plantas, anatomía de las plantas  e  histología de los animales.

Manson, Patricio (1844-1922). Inglés, médico. Famoso por sus investigaciones de la medicina tropical, fue el primero en demostrar que los insectos son portadores de algunos de los organismos causantes de enfermedades.

Maxwell, Jaime Clerk (1831-1879). Inglés, físico. Famoso por sus investigaciones matemáticas que condujeron al descubrimiento de las trasmisiones radiales.

Mendel,  Gregorio Juan  (1822-1884). Austríaco, naturalista.  Famoso  por su  trabajo   sobre  la  herencia, pionero del estudio  de sus leyes fundamentales.   Su trabajo forma la base  del mendelismo.

Mendeleiev, Demetrio Ivanovich  (1834-1907). Ruso, químico.  Es   famoso   por   su  formulación   de   la  ley periódica basada en los pesos atómicos.

Michelson, Alberto Abraham (1852-1931). Norteamericano, físico. Determinó la velocidad de la luz y realizó estudios prácticos de las corrientes del éter. Inventó también un interferómetro para el estudio de las líneas del espectro.

Millikan, Roberto Andrews (1868-1935). Norteamericano,  físico.  Determinó   el  valor   de  la   carga   del electrón por medio de un famoso experimento en el que usó gotas de aceite.

Newton, Isaac (1642-1727). Inglés, matemático. Notorio por su trabajo sobre la gravedad. Descubrió las tres leyes básicas del movimiento y la relación entre los colores y la luz. Sus trabajos sobre óptica, problemas matemáticos y astronomía han sido de inmensa importancia.

Oersted, Juan Cristian (1777-1851). Dinamarqués, físico. Precursor de la investigación del electromagnetismo, descubrió el principio básico de que un alambre que lleva una corriente eléctrica es rodeado por un campo magnético.

Ohm, Jorge Simón (1787-1854). Alemán, físico. Se dio su nombre a la unidad de resistencia eléctrica y su ley es de fundamental importancia en electricidad.

Pasteur, Luis (1822-1895). Francés, bacteriólogo.  Sus experimentos sobre fermentación destruyeron el mito de la generación espontánea.  Fundó la ciencia de la bacteriología y descubrió la inmunidad artificial.

Pavlov, Juan Petsovich (1849-1936). Ruso, patólogo. Es notorio por su trabajo sobre la fisiología de la digestión, y los reflejos condicionados.

Planck Max Carlos Ernesto Luis (1858-1947). Alemán, físico. Desarrolló la teoría de los cuantos y también trabajó en termodinámica y óptica.

Priestley, José (1733-1804). Inglés, químico. Descubridor .del oxígeno, no llegó a concebir la verdadera I unción de éste en la combustión y le dio el nombre de “aire desflogistado”. También descubrió el amoníaco, el óxido de nitrógeno, el monóxido de carbono y el anhídrido sulfuroso.

Ramón y Cajal, Santiago (1852-1934). Español, histólogo. Es sobresaliente su trabajo sobre el sistema nervioso. Hizo importantes descubrimientos acerca de la estructura y forma de las células nerviosas, especialmente en el cerebro y la espina dorsal.

Ray, Juan (1627-1705). Inglés, naturalista. El más grande entre los primeros naturalistas ingleses, fue principalmente un botánico y señaló la diferencia entre las monocotiledóneas y las dicotiledóneas.

Roentgen, Guillermo Conrado (1845-1923). Alemán, físico. Su descubrimiento de los rayos X revolucionó ciertos aspectos de la física y la medicina.

Ross,  Ronaldo   (1857-1932).   Inglés,  médico.   Probó que la hembra del mosquito Anopheles transporta el parásito causante de la malaria.

Rutherford, Ernesto (1871-1937). Inglés, físico. Descubridor de los rayos alfa, beta y gamma emitidos por sus substancias radiactivas. Famoso por su teoría sobre la estructura del átomo, fue el primero en realizar la trasmutación de un elemento.

Scheele, Carlos Guillermo (1742-1786). Sueco, químico. Descubridor del oxígeno, el cloro y la glicerina, y sintetizó algunos compuestos orgánicos.

Schleiden, Matías Santiago (1804-1881). Alemán, botánico. Con Schwann desarrolló la “teoría celular”.

Schrodinger, Erwin (1887). Austííaco, físico. Especialmente notorio por su trabajo en la mecánica ondulatoria.

Schwann, Teodoro  (1810-1882). Alemán, anatomista. Desarrolló,  con Schleiden, la “teoría celular” trabajando en tejidos animales. Descubrió la enzima pepsina.

Simpson, Jaime Young (1811-1870). Inglés, médico. Famoso por su descubrimiento de las propiedades anestésicas del cloroformo; fue el primero en usar anestésicos en cirugía.                                        ,

Smith, Guillermo (1769-1839). Inglés, geólogo. Demostró que es posible determinar la edad de las rocas mediante el estudio de los fósiles contenidos en ellas.

Soddy, Federico (1877-1956). Inglés, físico y químico. Célebre por su descubrimiento de los isótopos y por el  trabajo  realizado  ulteriormente  sobre  éstos.  Con Rutherford   presentó  la   teoría   de  la  desintegración espontánea.

Stores, Jorce Gabriel (1819-1903). Inglés, matemático y físico. Descubrió cómo determinar la composición química del Sol y las estrellas por sus espectros. Formuló también la ley de Stokes de la viscosidad.

Thomson, J. J. (1856-1940). Inglés, físico. Conocido por su determinación del e/m (carga del electrón dividido su masa), y su descubrimiento de que los rayos, catódicos consisten en electrones, o sea, partículas cargadas negativamente.

Torricelli, Evangelista (1608-1647). Italiano, físico. Inventó el barómetro de mercurio y construyó un microscopio simple.

Urey, Haroldo Clayton  (1893-       ). Norteamericano, químico. Fue el primero en aislar agua pesada y de tal manera, en descubrir el deuterío. Es una autoridad en isótopos.

Van’t Hoff, Santiago Enrique  (1852-1911). Holandés, físico.   Su nombre se asocia a una ley relativa al equilibrio  de las reacciones  químicas.  Notable también por sus investigaciones en presión osmótica.

Vesalio, Andrés (1514-1564). Belga, anatomista. Visto como el padre de la anatomía moderna, hizo írmenos descubrimientos mediante concienzudas disecciones. Mucho de su trabajo está contenido en su libro De Corporis Humani Fabrica.

Volta, Alejandro (1745-1827). Italiano, físico. Desarrolló la teoría de las corrientes eléctricas e inventó la primera batería. La unidad de presión eléctrica es conocida como “voltio” en recuerdo de su nombre.

Wallace, Alfredo Kussel (1823-1913). Inglés, naturalista. Con Darwin, publicó un ensayo sobre la teoría de la evolución. La línea Wallace, línea imaginaria, separa las áreas de la fauna asiática de la australiana.

Wegener,   Alfredo   Lotario    (1880-1930).   Alemán, geólogo. Famoso por su tesis sobre el desplazamiento de los continentes.

Wilson, Carlos Thomson Rees (1869-1959). Inglés, físico. Famoso por su invento de la cámara de niebla, la cual ha probado ser de un valor inestimable en los estudios atómicos.

IMÁGENES

CIENTIFICOS

grandes cientificos del mundo

Fuente Consultada:Enciclopedia Juvenil Técnico-Cientifica Editorial Codex Volumen II – EntradaCientificos

Biografia de Ramon Cajal Santiago y Su Obra Científica Premio Nobel

Biografía de Ramón Cajal Santiago y Su Obra Científica

Santiago Ramón y Cajal nace en Petilla de Aragón el 1 de mayo de 1852, hijo de Justo Ramón y Antonia Cajal. Toda su niñez y adolescencia van a estar marcados por los continuos cambios de residencia entre las distintas poblaciones del Alto Aragón, traslados motivados por la profesión de médico que ejercía su padre. Su formación se inició en Valpalmas, donde acudió a la escuela local, aunque de hecho su primer maestro fue su propio padre, que le enseñó a leer y a escribir, le inició en la aritmética, en geografía y en francés.

En el año 1860 su padre es nombra do médico en Ayerbe, y toda la familia se traslada a dicha localidad. Allí se convirtió en un pésimo estudiante y se acentuaron sus travesuras al verse más desatendido por su padre. Por estos motivos le enviaron a estudiar el bachillerato al colegio de los Escolapios de Jaca en 1861.

El régimen de terror imperante en dicha institución hizo sus padres cambiar de opinión y le mandaron a estudiar al instituto de Huesca. Durante estos años y por orden expresa de su padre, compagina los estudios con el trabajo en una barbería.

ramon y cajal santiago cientifico

Santiago Ramón y Cajal (1852-1934): histólogo español obtuvo el Premio Nobel de Fisiología y Medicina en 1906. Pionero en la investigación de la estructura fina del sistema nervioso, Cajal fue galardonado por haber aislado las células nerviosas próximas a la superficie del cerebro.  En 1892 se instaló en Madrid y fue nombrado catedrático de histología de la universidad de Madrid, donde trabajó y prolongó su labor científica hasta su muerte.

En 1873, ganó por oposición una plaza de Sanidad Militar y al siguiente año fue destinado a Cuba con el grado de capitán. Se doctoró en Madrid en 1877. En 1879 fue, por oposición, director de Museos Anatómicos de la Universidad de Zaragoza; catedrático de Anatomía en la Universidad de Valencia (1883).

Fruto de sus trabajos fue el Manual de Histología y técnica micrográfica (1889). Catedrático de Histología en la Universidad de Barcelona (1887), dio a conocer poco después sus grandes descubrimientos sobre las células nerviosas. En 1892 obtuvo la cátedra de Histología normal y Anatomía patológica de la Universidad de Madrid.
El Gobierno español creó el Laboratorio de Investigaciones Biológicas y la revista Trabajos de Laboratorio, que substituyó a la Revista trimestral de Micrografia, publicada por él desde 1897, y le encomendó la dirección de ambos.
Entre 1899 y 1920 dirigió el Instituto Nacional de Higiene; en 1906 compartió con C. Golgi el premio Nobel de Medicina por sus investigaciones acerca de la estructura del sistema nervioso. Además de la obra citada, deben mencionarse entre las fundamentales las siguientes; Textura del sistema nervioso del hombre y de los vertebrados (1899-1904), Estudios sobre degeneración y regeneración del sistema nervioso (1913-14), Reglas y consejos sobre investigación biológica.
clase de disección dada por Ramón Cajal
SOBRE SU TRABAJO CIENTÍFICO:
Teoría de la neurona
1889: De todas las células, las nerviosas parecen las más complejas, y de todos los órganos y sistemas de órganos, el cerebro y el sistema nervioso parecen los más complejos. Además, de todas las partes del cuerpo humano, el cerebro y el sistema nervioso son, o deberían ser, los más interesantes, puesto que determinan nuestra condición de humanos.
Waldeyer-Hartz (véase 1888) fue el primero en sostener que el sistema nervioso estaba constituido por células separadas y por sus delicadas extensiones. Estas últimas, señalaba, se aproximaban entre sí pero no llegaban a tocarse y mucho menos a juntarse, de modo que las células nerviosas permanecían separadas. Llamó a las células nerviosas neuronas, y su tesis de que el sistema nervioso está compuesto por neuronas separadas es la llamada teoría de la neurona.
El histólogo italiano Camillo Golgi (Í843 o 1844-1926) había ideado quince años antes un sistema de tinción con compuestos de plata, que ponía al descubierto la estructura de las neuronas con todo detalle. Utilizando esa tinción, pudo demostrar que la tesis de Waldeyer-Hartz era correcta.
En efecto, mostró que en las neuronas se operaban complejos procesos, pero que los de una no afectaban a los de sus vecinas, pese a estar muy próxima a ellas. Los delgados espacios que las separaban se llaman sinapsis (es curioso que esta palabra derive de la griega que significa «unión», pues a simple vista parece que se unen, pero en realidad no es así).

Santiago Ramón y Cajal (1852-1934) perfeccionó la tinción de Golgi, y en 1889 desentrañó la estructura celular del cerebro y del bulbo raquídeo con detalle, fundamentando sólidamente la teoría de la neurona. Por sus trabajos sobre la teoría de la neurona, Golgi y Ramón y Cajal compartieron el premio Nobel de medicina y fisiología en 1906.

En 1904 concluye su gran obra Textura del sistema nervioso del hombre y de los vertebrados. Dos años después, en 1906, recibe junto al histólogo italiano Golgi el premio Nobel de Fisiología y Medicina.
 
SUS OBRAS: Su labor incesante durante toda su vida se ve plasmada en otras obras como Estudios sobre degeneración y regeneración del sistema nervioso (1913-14), Manual técnico de anatomía patológica (1918) y la creación de nuevos métodos como el del formal urano para la tinción del aparato endoneuronal de Golgi y la técnica del oro sublimado.
En 1922 se jubila como catedrático y le es concedida la medalla de Echegaray. Durante sus últimos años sigue publicando nuevas obras como Técnica micrográfica del sistema nervioso y ¿Neuronismo o reticulismo?, considerada como su testamento científico.
Su vida concluyó en Madrid el 17 de octubre de 1934 pero su obra siguió y sigue viva gracias a la creación de la institución científica que lleva su nombre.
ramon y cajal
En 1952 se rindió un homenaje a don Santiago en «Hipócrates Sacrum» en Montpellier; sus discípulos, doctor Turchini y doctor Paulís, muestran una abundante ilustración sobre la vida de Ramón y Cajal.
A pesar de la natural aversión que Ramón y Cajal sentía por la relación social, su extraordinaria popularidad y prestigio mundiales le obligaron a frecuentar los círculos selectos, políticos, intelectuales y distinguidos de la época. Tuvo ocasión así de relacionarse con las personalidades más destacadas de la nación: José Echegaray, Menéndez y Pelayo, Benito Pérez Galdós,  José Canalejas, conde de Romanones, Pelayo, Maura, Silvela y tantos otros
SU OBRA DURANTE LA PRIMERA GUERRA MUNDIAL
En 1914 el cruel estallido de la Primera Guerra Mundial conmovió a toda Europa. Aunque España guardó neutralidad, en su interior se vivía una política muy agitada. Pero ajenos, o casi ajenos, a los tristes acontecimientos europeos y españoles, don Santiago y sus colaboradores continuaban sin desfallecer sus investigaciones en el laboratorio. Las dificultades eran mayores que en tiempos pasados.
Trabajaban aislados, porque la guerra había roto toda comunicación entre los sabios europeos. Desconocían, pues, cuantos adelantos científicos se producían en el mundo. Los materiales y el equipo, que debían importarse, habían elevado excesivamente su costo y aumentado las dificultades de obtención.
También la cuestión de imprenta había elevado sus precios hasta hacerlos prácticamente inasequibles a las posibilidades del laboratorio. Todo eran problemas para don Santiago. No obstante, el tesón y la voluntad hicieron milagros y el equipo de investigadores logró varios descubrimientos importantes.
Una vez terminada la guerra y restablecida la comunicación en el mundo científico, Ramón y Cajal sufrió las mayores tristezas. Los que eran sus mejores amigos, admiradores y seguidores de su obra, habían muerto. Así, van Gebuchten, Waldeyer, Retzius, Ehrlich, Krause y Edinger. Sólo quedaban algunos científicos americanos interesados en sus investigaciones, pero no conocían el español.
Y entonces puso rápidamente manos a la obra, para remediar aquel error de previsión suyo. Hizo que se tradujesen al alemán, francés e inglés los trabajos más importantes suyos y de sus colaboradores, aunque tuvo que pasar por la amarga decepción de que, en general, sus trabajos quedaban desconocidos, pues eran varios los científicos que se atribuían descubrimientos hechos por él años antes.
UN GRAN CURIOSO PRECOZ:
Las continuas travesuras de Santiaguo tenían la virtud de acabar la paciencia del maestro, y no era para menos. Como castigo solía mandarlo al «cuarto oscuro», habitación casi subterránea habitada por abundantes ratas. A los demás chicos este castigo les horrorizaba, pero al indómito Santiaguo le servía para preparar con calma y tranquilidad las travesuras del día siguiente.
Fue en una de aquellas solitarias estancias en el «cuarto oscuro» cuando descubrió lo que él creyó algo nuevo, el principio de la cámara oscura. Pero se trataba de un descubrimiento físico ya hecho por Leonardo de Vinci. El cuarto tenía un solo ventanuco que daba a la plaza del pueblo, en la que batía el sol. Un día, estaba Santiagué mirando distraídamente el techo, cuando se dio cuenta de que el rayo de luz que penetraba por la rendija del ventanuco proyectaba en el techo, cabeza abajo y con sus propios colores, las personas, carretas y caballerías que pasaban por el exterior.
Quiso ensanchar la rendija y las figuras se desdibujaron y hasta se desvanecieron. Entonces la hizo más estrecha con la ayuda de papeles y observó que cuanto más pequeña era la rendija más vigorosas y detalladas se hacían las figuras. El descubrimiento le dio qué pensar y acabó por convencerse, con sus infantiles conclusiones, de que la física era una ciencia maravillosa.
A partir de aquel día Santiagué sacó el máximo provecho de sus castigos, pues se dedicó a calcar sobre papel las vivas y coloreadas figuras que llegaban hasta su prisión para aliviar su soledad. No es de extrañar que si hasta entonces el «cuarto oscuro» no había sido para él un castigo penoso, menos lo fuese desde que hizo su descubrimiento, llegando a tomar verdadero cariño a su cárcel y sus sombras brillantes.
monumento de ramon y cajal
La gloria se hizo piedra en este monumento de Victorio Macho. La fuente de la vida y de la muerte mezclan sus aguas, mientras los ojos del sabio quieren escudriñar el hondo misterio que les junta.
Fuente Consultada:
Gran Enciclopedia Universal Espasa Calpe Tomo 32 Entrada: Ramón y Cajal
Celebridades Biblioteca Hispania Ilustrada Edit. Ramón Sopena
Historia y Cronología de la Ciencia y Los Descubrimientos Isaac Asimov

 

Historia de la Evolución del Uso De Energía Desde el Fuego

HISTORIA DEL DESCUBRIMIENTO Y  EVOLUCIÓN DEL USO DE LA ENERGÍA
DESDE EL FUEGO A LA ENERGÍA ATÓMICA

LAS ENERGIA PRIMARIAS: Una fuente de energía primaria es toda forma de energía disponible en la naturaleza antes de ser convertida o transformada, y ellas son: el petróleo, gas natural, el carbón, la madera o leña, caída de agua, la del sol o solar, la eólica, mareomotriz y nuclear.

Observa el siguiente cuadro, donde se indica la clasificación de las fuentes de energía:

cuadro clasificacion de las fuentes  de energía

PRIMEROS USOS DEL FUEGO: Una fuente de energía —el combustible al arder—- tiene un lugar muy especial en la historia del hombre. Efectivamente, muchos antiguos pueblos consideraron que el fuego era sagrado, y algunos, como los griegos, tenían leyendas que contaban cómo los hombres habían arrancado a los dioses el secreto del fuego. Según la leyenda griega, Prometeo robó fuego de la forja del dios Hefestos (Vulcano) y lo escondió en un tallo hueco de heno.

uso del fuego por el hombre

Si nos detenemos a pensar por un momento acerca de las otras fuentes de energía que usaron los hombres primitivos, podremos comprender por qué se consideró el fuego de este modo. Los hombres de la Edad de Piedra podían advertir la energía muscular de los animales en acción cada vez que iban de caza; no podían menos de observar la energía del viento, que lo mismo meneaba las hojas de los árboles que desgajaba sus ramas, y ellos deben haberse dado cuenta muchas veces de la energía del agua en movimiento al arremolinar pesados troncos corriente abajo. Pero la energía dejada en libertad cuando el fuego arde es mucho más difícil de notar.

Los primeros hombres que vieron en un bosque un incendio causado por el rayo, probablemente pensaron en el fuego sólo como un elemento destructor y deben haber pasado muchas generaciones hasta que el hombre se diera cuenta de que el fuego podía usarse para realizar trabajo útil. Además, la energía del viento y la del agua estaban allí a disposición del hombre para que las usara. Pero antes de que él pudiera usar el fuego tuvo que aprender a producirlo.

Durante miles de años la única manera de hacer fuego era golpeando dos piedras o pedernales para producir una chispa. Ése es el método que aún emplean ciertas tribus primitivas de Australia y de Sudamérica, y es muy parecido al que usaba la gente cuando se valía de cajas de yesca, hasta que se inventaron los fósforos, hace poco más de un siglo.   Efectivamente, aún utilizamos pedernales para encender cigarrillos o picos de gas. Con el tiempo la gente aprendió a producir fuego haciendo girar dos palitos juntos encima de algún combustible seco, en polvo, hasta hacer saltar una chispa.

Una vez que el hombre tuvo el fuego, pronto descubrió que le podía prestar dos servicios para los que era insustituible. Sobre todo, le suministró calor y luz, y aún hoy el fuego es nuestra mayor fuente de calor y de iluminación. Aun teniendo casas donde todo está electrificado, casi seguramente la electricidad que nos proporciona luz y calor proviene de generadores movidos por el vapor que produce la combustión del carbón. También el fuego podía realizar cosas que el viento, la energía muscular y el agua no eran capaces de hacer.

Podía producir cambios físicos y químicos en muchas clases de substancias. Aunque el hombre primitivo no se diese cuenta, el fuego en el cual él cocía su pan contribuía a transformar varias substancias químicas en la masa del almidón y a producir el anhídrido carbónico que hacía fermentar el pan.

El fuego con que cocía sus vasijas cambiaba las propiedades físicas de la arcilla y la hacía dura y frágil, en vez de blanda y moldeable. Aún hoy usamos el fuego para cambiar las propiedades físicas de las materias primas: al extraer el metal de sus minerales, en la fabricación del vidrio y del ladrillo y en otras muchas. También lo usamos para provocar cambios químicos: en la cocina, en la destilería, en el horneado y en infinito número de procesos industriales.

También hemos aprendido a hacer uso del poder devastador del fuego. Empleamos su tremendo calor destructivo, concentrado en un rayo del grosor de un lápiz, para perforar duros metales. Usamos la fuerza de poderosos explosivos, encendidos por una pequeña chispa, para despejar montañas de escombros, que de otro modo llevaría semanas de trabajo el acarj-ear, y frecuentemente utilizamos el fuego para destruir residuos que deben ser eliminados si queremos mantener sanos nuestros pueblos y ciudades.

HISTORIA DEL CALOR COMO ENERGÍA: El hombre dejó, al fin, de considerar el fuego como objeto sagrado, mas durante cientos de años siguió mirándolo como a cosa muy misteriosa.

La mayoría creía que el fuego quitaba algo de toda materia que quemaba. Veían que las llamas reducían sólidos troncos a un puñado de blandas cenizas y unas volutas de humo. Llenaban una lámpara de aceite, la encendían y descubrían que el aceite también se consumía.

Encendían una larga vela y en pocas horas apenas quedaba un cabo.

Solamente hace 200 años un gran francés, Lavoisier, demostró que el fuego, en realidad, agrega algo a aquello que quema. Hay un experimento muy simple para demostrar que esto es así. Tomamos una balanza sensible y colocamos una vela en un platillo, con un tubo de vidrio repleto de lana de vidrio, puesto justamente encima de aquélla para recoger el humo. En el otro platillo colocamos suficiente peso para equilibrar exactamente la vela, el tubo y la lana de vidrio. Si ahora prendemos la vela y la dejamos arder, descubrimos que el platillo de la balanza sobre la cual se apoya desciende gradualmente. Esto significa que lo que queda de vela y los gases que ha producido durante su combustión pesan más que la vela íntegra.

Lavoisier pudo ir más allá y demostrar qué es lo que se añade a las substancias cuando arden. Descubrió que es oxígeno del aire. Efectivamente, si colocamos un recipiente boca abajo sobre una vela prendida, la llama se apaga tan pronto como el oxígeno del recipiente ha sido consumido. Del mismo modo, el carbón no puede arder en una estufa, ni el petróleo dentro de un cilindro del motor de un auto, sin una provisión de oxígeno del aire.

calor como energia

Al calentar agua, el vapor puede generar trabajo, es decir movimiento

Pero muchas substancias se combinan muy lentamente con el oxígeno y sin producir ninguna llama. Una es el hierro. Si se expone el hierro al aire húmedo, aunque sólo sea por un día o dos, una fina capa de óxido se forma sobre su superficie, y es que el hierro se ha combinado con el oxígeno. En algunas partes del mundo, también los compuestos de hierro se combinan con el oxígeno, bajo el suelo, produciendo depósitos de color castaño rojizo.

Cuando las substancias se combinan con el oxígeno no siempre producen fuego, pero casi siempre originan calor. Y es el calor producido de este modo el que da a los hombres y animales toda su energía física, toda su fuerza muscular. En nuestros pulmones el oxígeno del aire pasa al torrente sanguíneo y es llevado por la sangre a las células de todas las partes del cuerpo, donde se combina con las partículas alimenticias para originar calor y energía. También produce anhídrido carbónico que expelemos al aire.

El peso del alimento que tomamos en un día no es muy grande ciertamente, y, por lo tanto, la cantidad de calor que producimos en un día tampoco lo es. Y no todo este calor lo convertimos en energía para el trabajo, porque parte de él lo consumimos en el propio cuerpo, para mantener nuestra temperatura y en otros procesos fisiológicos.

Cuando pensamos cuánto trabajo puede realizar un hombre en un día, pronto nos damos cuenta de que una pequeña cantidad de calor puede transformarse en una gran cantidad de trabajo. Así podríamos elevar un peso de 1 tonelada a 30 metros de altura, si transformáramos en trabajo todo el calor necesario para poner en ebullición 1 litro de agua. A grandes alturas, los aviadores no pueden obtener suficiente oxígeno del aire que los rodea, para que sus cuerpos produzcan el calor y la energía que necesitan.

Entonces se colocan una máscara de oxígeno y el ritmo de producción de calor y energía se acelera inmediatamente. De manera similar, en la soldadura, que requiere intenso calor, a menudo se mezcla oxígeno puro con el combustible, en lugar de utilizar el aire común.

LA ENERGIA EÓLICA:  Energía eólica, energía producida por el viento. La primera utilización de la capacidad energética del viento la constituye la navegación a vela . En ella, la fuerza del viento se utiliza para impulsar un barco.

La utilización de la energía eólica no es una tecnología nueva, se basa en el redescubrimiento de una larga tradición de sistemas eólicos empíricos. No es posible establecer con toda claridad el desarrollo histórico de los “sistemas de conversión de energía eólica”, sólo es posible identificar los importantes papeles que desempeña la energía eólica en el pasado.

La utilización de la energía del viento resulta muy antigua. La historia se remonta al año 3 500 a.C, cuando los sumerios armaron las primeras embarcaciones de vela, los egipcios construyeron barcos hace al menos cinco mil años para navegar por ei Nilo y más tarde por el Mediterráneo.

Después, los griegos construyeron máquinas que funcionaban con el viento. Así, desde la antigüedad éste ha sido el motor de las embarcaciones. Algunos historiadores sugieren que hace más de 3,000 años la fuerza del viento se empleaba en Egipto cerca de Alejandría para la molienda de granos. Sin embargo, la información más fehaciente de la utilización de la energía eólica en la molienda apunta a Persia en la frontera Afgana en el año 640 D.C.

balsa a vela energia eolica

Barcos con velas aparecían ya en los grabados egipcios más antiguos (3000 a.C.). Los egipcios, los fenicios y más tarde los romanos tenían que utilizar también los remos para contrarrestar una característica esencial de la energía eólica, su discontinuidad.

molino de viento

Uno de los grandes inventos a finale de la Edad Media, el molino de viento, muy usado en el campo argentino para extraer agua de la napa freática y darle de beber  a los animales.

parque eolico

Actualidad: Parque Eólico: Los generadores de turbina de los parques eólicos aprovechan la fuerza del viento para producir electricidad. Estos generadores dañan menos el medio ambiente que otras fuentes, aunque no siempre son prácticos, porque requieren al menos 21 km/h de velocidad media del viento.

ENERGÍA GAS NATURAL: Como gas natural se define la mezcla de hidrocarburos livianos en estado gaseoso, donde la mayor proporción corresponde al metano (CH4) en un valor que oscila entre el 80 al 95 %.

El porcentaje restante está constituido por etano (C2H6), propano, butano y superiores, pudiendo contener asimismo en proporciones mínimas, vapor de agua, anhídrido carbónico, nitrógeno, hidrógeno sulfurado, etc.
El gas natural proviene de yacimientos subterráneos que pueden ser de gas propiamente dicho o de petróleo y gas, según que en su origen se encuentre o no asociado al petróleo.

El gas natural procede generalmente de las perforaciones que se realizan en los yacimientos petrolíferos, de la descomposición de la materia orgánica con el tiempo.

En dichos yacimientos, el petróleo más liviano que el agua, suele flotar sobre lagos subterráneos de agua salada. En la parte superior se encuentra el gas, que ejerce enormes presiones, con lo cual hace fluir el petróleo hacia la superficie.

Ampliar: Gas Natural

LA ENERGÍA ELÉCTRICA: El fuego fue muy importante para el hombre primitivo, porque le capacitó para hacer cosas que con la energía del viento, del agua o del músculo no podía realizar. La humanidad no logró descubrir otra forma de energía capaz de realizar cosas completamente nuevas hasta hace 200 años, cuando comenzó a dominar la electricidad, la fuerza poderosa escondida en el rayo.

energia electrica

Hoy, con la radio, podemos oír a una persona que habla desde comarcas remotas; con la televisión podemos ver sucesos que ocurren a muchas millas de distancia; con cerebros electrónicos o computadoras podemos encontrar en pocos segundos las respuestas a complicadísimos problemas matemáticos. El viento, los músculos, el agua y el fuego no nos podrían ayudar a hacer ninguna de estas cosas; sólo la electricidad.

Varios siglos antes de Cristo, los griegos sabían que el ámbar, al cual llamaban elektron, atraía el polvo y trocitos de plumas después de frotarlo con lana seca, piel o paño. En tiempos de Shakespeare, muchos hombres de ciencia europeos sé interesaron en ésta extraña fuerza de atracción, y un inglés, Guillermo Gilbert, la llamó electricidad.

Alrededor de un siglo más tarde, otro investigador, llamado Guericke, descubrió que la electricidad originada rotando una bola de azufre contra la palma de su mano hacía saltar una chispita con un ruido marcado de chisporroteo. En realidad él había producido un relámpago y un trueno en miniatura.

La electricidad que parece estar contenida, en reposo, en una substancia y es súbitamente liberada, por contacto con otra substancia, se llama electricidad estática. Antes de que los hombres pudieran hacer uso de la electricidad, necesitaban que ésta fluyera de un modo constante y que se lograse controlar, es decir, obtener lo que hoy llamamos una corriente eléctrica.

El primer paso para descubrirla se dio por casualidad.   Más o menos a mediados del siglo xvin, un anatomista italiano, Luis Galvani, dejó las patas de unas ranas recién muertas en contacto con dos alambres, uno de bronce y otro de hierro. Notó que las patas de las ranas comenzaban a estremecerse y pensó que cierta energía animal quedaba en ellas todavía. Pero otro científico italiano, Volta, demostró que el estremecimiento se debía a que estos dos diferentes metales tomaban parte en la producción de electricidad.

volta cientifico creador de la pila

Volta, inventor de la pila eléctrica

Pronto Volta hizo la primera batería, apilando planchas de cobre y de cinc alternadamente una sobre la otra, y separadas sólo por paños empapados en una mezcla débil de ácido y agua. Dos alambres, uno conectado a la plancha de cobre de un extremo y el otro a la plancha de cinc del otro extremo, daban paso a una continua corriente de electricidad.

Las baterías generan electricidad por medio de cambios químicos y aun las más poderosas no producen corrientes lo bastante grandes para muchas necesidades actuales. Los modernos generadores en gran escala producen electricidad por medio de imanes que rotan rápidamente.

Oersted, un danés, y Ampére, un francés, hicieron la mayor parte del trabajo que llevó a descubrir las relaciones entre la electricidad y el magnetismo; pero fue un inglés, Miguel Faraday, quien primero usó un imán en movimiento para producir una corriente eléctrica. Esto ocurrió hace más de un siglo.

Pronto nuevos inventos dé un físico belga, llamado Gramme, y un hombre de ciencia nacido en Alemania, sir Guillermo Siemens, abrieron la nueva era de la energía eléctrica en abundancia. Tomás Edison, un inventor norteamericano, fabricó las primeras bombillas eléctricas y así dio difusión a los beneficios de la electricidad en la vida diaria.

Medimos la fuerza de un generador —la fuerza que pone a una corriente en movimiento— en unidades llamadas voltios, en honor de Volta. Medimos la intensidad de la corriente en amperios, en honor de Ampére. Los voltios, multiplicados por los amperios, nos indican cuánto trabajo puede realizar una corriente, y medimos éste en vatios, en honor de Jacobo Watt, famoso por su invento de la máquina de vapor.

Ampliar Sobre el Descubrimiento de la Electricidad

LA ENERGÍA ATÓMICA: Miles de años transcurrieron desde que se dominó el fuego hasta que se empezó a utilizar la electricidad. Sin embargo, solamente se necesitaron tres generaciones para que surgiese el uso de la energía atómica. Los más grandes hombres de ciencia tardaron más de un siglo en descubrir los secretos del átomo, y no podemos pretender abarcar esa historia completa en una página. Pero podemos dar una rápida ojeada y ver cómo algunos de ellos se lanzaron a esa labor.

Ya en la antigua Grecia había ciertos filósofos que creían que toda la materia está constituida por partículas tan pequeñas que no se pueden dividir. Dieron a estas partículas el nombre de átomos, de dos palabras griegas que significan “no susceptible de ser dividido”. Pero hasta hace poco más de 150 años había pocas pruebas, o ninguna, que apoyasen esta creencia.

Antes de 1800 los químicos conocían pocas substancias simples y puras, de la clase que ahora se llaman elementos, y no sabían mucho acerca de cómo combinar los elementos para formar compuestos. Pero en ese año, dos químicos ingleses, Carlisle y Nicholson, usaron una corriente eléctrica para descomponer el agua en dos elementos: hidrógeno y oxígeno. Con la electricidad pronto consiguieron los químicos una cantidad de otros elementos y pronto aprendieron que los elementos se combinan invariablemente en proporciones fijas según el peso.

centrales atomicas

Esto hizo que un químico inglés, Dalton, reviviera la teoría de los átomos. Él creía que cada elemento diferente está constituido por átomos distintos, y que cada uno de éstos tiene un peso especial. Pero poco después de que la gente comenzara a creer en la existencia de los átomos, o partículas indivisibles de materia, los hechos demostraron que los átomos pueden en realidad dividirse en partículas aún más pequeñas.

Primero Róntgen, un científico alemán, advirtió que ciertas substancias químicas pueden obscurecer una placa fotográfica aun cuando esté bien protegida. Había descubierto los rayos X, rayos hechos de partículas que no son átomos enteros. Más tarde, Madame Curie analizó un mineral llamado pechblenda, que emite rayos similares, y descubrió el elemento altamente radiactivo llamado radio. Las sales de radio emiten rayos sin desintegrarse aparentemente.

Marie Curie

Varios científicos, incluyendo a Rutherford y Soddy, estudiaron estos rayos y lograron descomponerlos en tres partes: rayos alfa, que poseen carga eléctrica positiva; rayos beta, o rayos de electrones, que conducen una carga negativa, y rayos gamma, o rayos X.

Más tarde, Rutherford bombardeó una lámina de oro con partículas alfa. Casi todas ellas atravesaron el oro, pero algunas rebotaron.

Esto le hizo suponer que los átomos de la lámina de oro no estaban contiguos, sino muy espaciados, como las estrellas en el cielo. También advirtió que hay gran espacio vacío dentro de cada átomo.

Madame Curie en el Laboratorio

Un danés llamado Niels Bohr encontró que en el centro de cada átomo hay partículas cargadas positivamente (protones) y partículas no cargadas (neutrones), apretadas para formar el centro o núcleo. A distancia del núcleo hay partículas mucho más pequeñas todavía, llamadas electrones, que poseen una carga de electricidad negativa. Estos electrones giran alrededor del núcleo, como los planetas alrededor del Sol.

Otón Hahn, un físico alemán, fue uno de los primeros en descubrir cómo liberar energía de los átomos por reacción en cadena, en la cual los neutrones de un átomo chocan con el núcleo de otro átomo y lo destruyen, liberando así más neutrones, que golpean a su vez los núcleos de otros átomos. Otro alemán, Max Planck, ya había descubierto cómo calcular la cantidad de energía liberada cuando se fisiona un átomo.

Planck y Borh

Los Físicos Planck y Ruthenford

Actualmente obtenemos energía no sólo dividiendo átomos pesados (fisión nuclear), sino también combinando átomos livianos (fusión nuclear).

CUADRO EVOLUCIÓN DEL CONSUMO A LO LARGO DE LA HISTORIA:

cuadro consumo de energia en la historia

Se observa que el consumo de energía va vinculado directamente con el desarrollo de las sociedades, y se pueden diferenciar dos fases: 1) preindustrial donde la energía utilizada era la propia muscular, mas la generada por el carbón, desechos orgánicos. hidraúlica y eólica y 2) la actual a partir de la energía del vapor de agua, la electricidad y el petróleo.

Ampliar: La Energía Atómica

Ampliar: Energía Mareomotriz

Ampliar: Energía Geotérmica

Fuente Consultada:
La Técnica en el Mundo Tomo I CODEX – Globerama – Editorial Cuántica

Conceptos Básicos de Electrostática Cargas Eléctricas

EXPERIMENTO CON CARGA ELÉCTRICAS EN LA ELECTROSTÁTICA

La palabra electricidad, empleada para designar la causa desconocida que daba a los cuerpos frotados la propiedad de atraer a otros, deriva, justamente, de elektron, nombre que en griego significa ámbar. Pero la voz electricidad, no usada por los griegos, fue introducida por Guillermo Gilbert (1540-1603), médico de cámara de la reina Isabel de Inglaterra. La soberana le acordó una pensión permanente para que se dedicara a la investigación científica sin preocupaciones económicas.

Gilbert Guillermo

Gilbert Guillermo, Médico

William Gilbert (1544-1603), físico y médico inglés conocido sobre todo por sus experimentos originales sobre la naturaleza de la electricidad y el magnetismo. Nació en Colchester, Essex, y estudió en el Saint John’s College de la Universidad de Cambridge. Comenzó a practicar la medicina en Londres en 1573 y en 1601 fue nombrado médico de Isabel I.

El doctor Gilbert, que fue el primero en estudiar sistemáticamente los fenómenos eléctricos, descubrió que otras substancias, entre ellas el vidrio, también adquirían por frotamiento la propiedad de atraer trocitos de cuerpos muy livianos. Esto puede comprobarse acercando pedacitos de papel a los dientes de un peine de material resinoso, seco, después de peinarse con él repetidas veces.

Si a una esferita de corcho, de médula de saúco o de girasol, suspendida de un hilo de seda, se acerca una barra de vidrio frotada, la esferita, por ebfenómeno de inducción electrostática, es atraída por la barra y repelida después del contacto. Lo mismo ocurre si se hace el experimento con una barra de ebonita.

Si se carga la esferita de un péndulo eléctrico o electrostático, así se llama el aparatito descripto más arriba, tocándolo con una barra de vidrio electrizada, y otro con una de ebonita en las mismas condiciones, se comnrobará. al acercarlas, aue se atraen; pero si ambas se tocan únicamente con la barra de vidrio, o con la de ebonita, en lugar de atraerse, al acercarlas se repelen.

pendulo electrostático

De estos hechos y otros análogos se sacaron las siguientes conclusiones:

a) Existen dos estados eléctricos opuestos, o como se dice ordinariamente, dos clases de electricidad, que se ha convenido en denominar vitrea o positiva y resinosa o negativa;

b) Electricidades de distinto nombre, o de signo contrario, se atraen; y del mismo nombre, o de igual signo, se rechazan y

c) Un cuerpo que no manifiesta acciones eléctricas se dice que está en estado neutro. La electrización de un cuerpo por frotamiento, vidrio por ejemplo, y los dos estados eléctricos o las dos clases de electricidad se explican así: el vidrio se electriza positivamente cuando se frota con una franela porque pierde electrones que los gana ésta, que se carga por ello negativamente. Como los electrones que pierde un cuerpo los gana el otro, se comprende por qué la carga eléctrica que aparece en ambos es igual; pero de nombre contrario.

Los cuerpos que como el vidrio, la ebonita, el lacre, la porcelana, etc., se electrizan por frotamiento y conservan durante bastante tiempo su estado eléctrico, son malos conductores de la electricidad; los que no se electrizan por frotamiento como, por ejemplo, los metales y el carbono, son buenos conductores de la electricidad. A los malos conductores se les denomina también aisladores.

cargas electricas

cuadro electoestática

En realidad, todos los cuerpos se electrizan por frotamiento, como se comprueba frotando un cuerpo conductor que se sostiene con un mango aislador. Lo que ocurre en ambos casos es lo siguiente: en un cuerpo mal conductor o aislador. el vidrio por ejemplo, las cargas eléctricas quedan localizadas en el lugar frotado; en un buen conductor no, pues deja pasar el estado eléctrico o la electricidad de un modo instantáneo a través del mismo y a otros conductores o lugares vecinos que estén en comunicación con él.

Conviene tener presente que la primera condición que se requiere para que un cuerpo sea mal conductor de la electricidad aislador de la misma, es que esté muy seco. Los electricistas no tienen miedo de tocar los cables que conducen la electricidad si están situados sobre madera bien seca, que es un aislador; en cambio no los tocan si están colocados sobre metales otro material conductor; inclusive la madera húmeda, pues b electricidad pasaría a tierra a rravés del cuerpo humano, que es un buen conductor, produciendo trastornos que pueden ocasionar la muerte.

Existen máquinas eléctricas que producen electricidad por frotamiento, que actualmente sólo tienen interés histórico y didáctico. Ellas se fundan en el hecho, ya explicado, según el cual cuando dos cuerpos se frotan entre sí, uno de ellos se electriza positivamente y el otro negativamente.

La primera máquina electrostática de frotamiento fue inventada por Otto de Guericke. Consistía en una esfera de azufre que giraba alrededor de uno de sus diámetros y se electrizaba frotándola con la mano. En la obscuridad despedía cierta luz acompañada de ruido.

El término electrostática se emplea para designar la parte de la física que estudia la electricidad estática, es decir, la que está en estado de equilibrio sobre los cuerpos —que se ha tratado en este artículo— para diferenciarla de la electricidad en movimiento, es decir, de la corriente eléctrica.

El Atomo Para Niños y Principiantes Explicación Sencilla

PARA NIÑOS: PARTÍCULAS Y ESTRUCTURA DEL ÁTOMO

La naturaleza nos muestra una multitud de objetos distintos formados por diferentes materiales, cuando vamos de paseo vemos correr el agua de un río, las piedras de grandes montañas, la tierra en los caminos, y seguramente vamos viajando sobre un automóvil que está construído con diversos y distintos materiales como: acero, plástico, tela, cuero, goma, etc. Pero bien,…esos materiales ¿de que están hechos?,….esa pregunta también se la hicieron hace unos 2500 años en Grecia Antigua, grandes hombres dedicados a la ciencia , como Thales de Mileto, Empédocles y Demócrito, todos ellos vivieron entre 600 y 400 antes de Cristo y aquí te los presento:

thales, empédocles y demócrito

Cada uno de ellos, y también otros pensadores mas, tenían su propia teoría o forma de explicar los elementos que constituían la materia, por ejemplo para Thales era el Agua, para Empédocles era no solo el Agua, sino también la Tierra, el Fuego y el Aire, es decir los cuatro elementos fundamentales.

Pero un día llegó el señor Demócrito de una ciudad griega llamada Abdera, y afirmó que para saber la composición de la materia, deberíamos ir cortándola por mitad sucesivamente. Imagina una hoja de papel que la rompemos una y otra vez obteniendo en cada corte trozos más y más pequeños, ¿hasta dónde podrá continuar el proceso?.

Según su idea, de dividir constantemente un cuerpo de cualquier material, obtendríamos un trozo cada vez mas pequeño, hasta obtener una porción mínima que seria imposible volver a cortarla es decir, esa porción seria INDIVISIBLE.  A esta partícula la llamó átomo (palabra que en griego significa precisamente “no divisible”) y a su postura se la llama atomismo.

Ciertamente, estas conjeturas no estaban respaldadas por ningún tipo de experimentación y se debatían sólo en el ámbito del pensamiento abstracto que tanto amaban los griegos en sus fogosas discusiones.

atomo democrito

Imagina que deseas conocer como está formada la manzana, para ello (según Demócrito) debes cortar indefinidamente la misma hasta llegar a una mínima porción “atómica”, y ese es el elemento fundamental con la que está consituída la fruta.

El mundo material, el mundo que nuestros sentidos conocen está formado por gases, como el oxígeno de aire que respiramos en este momento o el hidrógeno, de líquidos, como el agua o el alcohol, de sólidos, como el hierro o el azúcar, o de las hojas, flores y frutos de un árbol, todos no son más que diferentes agrupaciones de un número inmenso de pequeñísimos de esos corpúsculos llamados átomos.

Los átomos son muy poco diferentes los unos de los otros, por ejemplo hay átomos del material HIERRO, átomos de OXIGENO, átomos de COBRE, átomos de CARBONO, etc. En la naturaleza hay 103 elementos conocidos, entre naturales y artificiales (porque los ha hecho el hombre en el laboratorio, hoy puede haber algunos más).

Despúes de muchos años de experimentos e investigaciones los físicos del siglo XX pudieron penetrar dentro de “esa porción indivisible”,  y observaron que además existían otras partículas aún más pequeñas que los átomos y que eran las partes constituyentes del mismo.

La forma de dibujar un átomo, es la siguiente:

esquema de un átomo

Los científicos notaron que el átomo tiene en su centro casi una “esferita” que en su interior contiene dos partículas llamada: PROTONES Y NEUTRONES.

Por otro lado también observaron que alrededor de ese núcleo, giraban a gran velocidad otras partículas más pequeñas que las del núcleo y las llamaron: ELECTRONES.

Las partículas ELECTRÓN Y PROTÓN, tienen una carga eléctrica, en el primero la carga es NEGATIVA y el segundo la carga eléctrica es POSITIVA. Los NEUTRONES no poseen carga y el nombre deriva de la palabra “neutro”.

El atómo está equilibrado eléctricamente, es decir por ejemplo, que si hay 10 electrones girando (10 cargas negativas), también ese átomo tiene 1o protones en su núcleo (10 cargas positivas)

En el esquema de abajo, vemos el átomo de HELIO, material con que están hechas las estrellas. Tiene dos protones y dos electrones. La cantidad de neutrones es variable, aqui también tiene dos.

composicion del atomo: protones, neutrones, electrones

¿Que es lo que hace que un material sea Hierro, otro Helio y otro por ejemplo Oro?…LA CANTIDAD DE PROTONES contenidos en el núcleo, cantidad que se denomina: NÚMERO ATÓMICO, en el caso del esquema: Na=2

A la suma de la cantidad de protones mas neutrones la llamamos: NUMERO MÁSICO, y en el caso que nos ocupa es: Nm=2+2=4.-

Esos mas de 100 elementos que forman la naturaleza, fueron agrupados en una tabla para ser estudiados y se la llama: Tabla Periódica de los Elementos Químicos o también Tabla de Mendeleiev

tabla de mendeliev

Ampliar Esta Tabla

Observa que cada elemento (químico) tiene una ubicación, y el orden es por el Número Atómico de cada elemento: primero es el HIDRÓGENO, con un protón, le sigue el HELIO con dos protones, luego el LITIO con tres protones, el BERILIO con cuatro protones, y asi hasta el último elemento N° 103 , llamado LAWRENCIO. Hay otros números en columna a la derecha, que luego veremos y nos muestra las capas y subcapas de los electrones. Los colores de los grupos es para diferenciar los tipos de elementos, entre alcalinos, lantánidos, no metales, metales ,etc. cada uno con sus propias características, como el brillo, conductividad electrica, etc.

estructura atomo de hidrógeno

LAS MEDIDAS DEL ÁTOMO:

Para los seres humanos es muy díficil imaginar distancias tan pequeñas, como es de la partículas atómicas, pero podemos decir que esas partículas, tienen un diámetro medio de unas diez millonésimas de milímetro, se necesitarían más de diez millones de ellas colocadas en línea recta para tener un milímetro de longitud.

1 mm.= 10.000.000 de partículas

El núcleo, que es parte predominante, es decir, la mas grande, de forma esférica, que posee un radio de unos  0,0000000000001 centímetros, UN UNO CON TRECE CEROS, como se puede ver es una medida sumamente chica para poder imaginarla. El diámetro de los electrones es aún mas pequeño.

Respecto al peso de esas partículas, no vamos a dar números, pero es un UNO CON VEINTIOCHO CEROS de gramo, y el peso del protón es 1836 veces el peso del eléctrón. A este concepto le llamamos MASA DE LA PARTÍCULA.

Dijimos que los electrones giran muy rapidamente alrededor del nucleo, en una trayectoria circular, y el radio de esa circuferencia es de UN UNO CON 11 CEROS de metro, 0,00000000001 m. Para las dimensiones del átomo esa medida es grande, porque esa medidas es 25.000 veces mas grande que el radio del núcleo.

Para llevarlo a una escala “mas humana”, piensa que si el nucleo tiene la medida de una moneda, el radio del electrón seria de unos 250 metros.

Presentamos un esquema aproximado de las dimensiones a modo de aclarar un poco mas la idea, pero como consejo solo trata solo de recordar que un átomo mide 10.000.000 veces que 1 metro.

ESQUEMA medidas del atomo

NIVELES DE ENERGIA DE LOS ELECTRONES

Debemos aclarar que esas partículas son tan pequeñas que no pueden observarse, y cuando enviamos un rayo de luz para intentar verla, esa partícula cambia de posición en el mismo instante, entonces es imposible hablar de la posición exacta en el espacio que rodea al núcleo. Como consecuencia nació a principio del siglo XX una nueva física, conocida como física cuántica, que recurre a la PROBABILIDAD  de encontrar o “ver” un electrón en la región que rodea al núcleo de un átomo.

A partir de ese concepto hablamos de la CERTEZA de que un electrón se encuentre girando en cierta área que rodea al núcleo. Existen varias áreas o regiones de giro, y cada una le corresponde lo que llamamos NIVEL DE ENERGIA, para cada nivel hay un NÚMERO MAXIMO de electrones que pueden girar. Hay una fórmula muy simple que permite determinar la cantidad de electrones por nivel de energía o CAPA, y es la siguiente: 2.n².

Observa como se calcula el número de electrones por cada nivel en el esquema de abajo, usando la fórmula anterior.

niveles de energia de los electrones

Y finalmente cada nivel tiene un subnivel o subcapa que también permite que en esa zona giren electrones, a cada subnivel se lo llama. s , p , d , f, y el máximo de electrones es de 2, 6, 10 y 14 respectivamente.

Puedes observar la tabla siguiente:

tabla de subniveles de energia atomica

Resumiendo lo antedicho, podemos concluír que:

Entonces para el nivel es el 1, sabemos que solo puede contener 2 electrones, por lo que el nivel 1 tiene una subcapa llamada s, que permite 2 electrones.

Para el nivel 2, la cantidad de electrones es de 8, por lo que tendrá dos capas, la s y la p, con 2 y 6 electrones, es decir 8 en total.

Para el nivel 3 , la cantidad de electrones es de 18, entoces tendra tres capas, s, p y d , con 2, 6 y 10  electrones y l suma es 18.

En la tabla siguiente lo podemos analizar mas fácil, para tres capas.

tabla de capas y subcapas de los atomo

Entonces veamos por ejemplo ahora el átomo de NIQUEL, que según la tabla de los elementos nos indica que tiene 28 protones, entonces el numero de electrones también será de 28, y estarán ubicados de la siguiente manera:

En el NIVEL 1, tendrá 2 en la subcapa s , + NIVEL 2 con 8 en dos cubcapas ( s, p)  + NIVEL 3 con 18 en tres subcapas (s,p,d), cuya suma es de 28 electrones.

AMPLIACIÓN SOBRE LA ENERGÍA NUCLEAR: Los átomos de un elemento tienen siempre el mismo número atómico, pero pueden poseer distinto número de masa, por contar con un número diferente de neutrones; tales átomos se denominan isótopos.

El edificio del átomo, centro de enormes fuerzas que se ejercen entre cargas opuestas, no presenta una estabilidad ilimitada. El núcleo puede desintegrarse y liberar energía atómica, más correctamente energía nuclear, pues el proceso tiene lugar directamente en el núcleo del átomo.

Los fenómenos que conducen a la liberación de tal energía son la fisión y la fusión de núcleos. La fisión, traducción fonética de la voz inglesa fission, significa escisión, división o partición de la masa de un núcleo pesado en dos fragmentos, que originan los núcleos de otros dos átomos más livianos y de pesos atómicos más o menos iguales, y la fusión, unión de dos núcleos de átomos livianos para formar el núcleo de uno más pesado.

En ambos casds, la liberación de cantidades extraordinarias de energía se debe a la transformación de cierta cantidad de masa de los núcleos de los átomos originales de energía. Esta se determina por medio de la fórmula:

E = m.c², establecida por Albert Einstein.

En ella, E es la energía liberada, m la masa transformada y c la velocidad de la luz. Gracias a dicha transformación, destrucción o aniquilamiento de la masa o materia se puede, de una pequeña cantidad de ella, obtener una cantidad enorme de energía. Así, de la fisión de 1 kilogramo de uranio puede obtenerse una cantidad de energía equivalente a la que produce la combustión de 2.500 toneladas de carbón.

Las aplicaciones de la energía nuclear son numerosas. La bomba atómica o bomba A y la bomba de hidrógeno o bomba H se pueden emplear para excavar grandes canales, demoler rocas, etc. Los reactores nucleares sirven para producir energía eléctrica, así como para propulsar buques. También se utilizan piara obtener isótopos artificiales que tienen aplicaciones en medicina, agricultura e industria.

Fuente Consultada:
CIENCIA JOVEN Diccionarios Enciclopedico Tomo V – El Átomo y su Energía-

Científicos Premio Nobel de Física Mas Influyentes

GRANDES FÍSICOS CONTEMPORÁNEOS

Como una extraña ironía, estado normal en el ánimo de la historia, lo que fuera la preocupación principal de los especulativos filósofos griegos de la antigüedad, siguió siendo la preocupación fundamental de los experimentados y altamente tecnificados hombres de ciencia del siglo XX: el elemento constitutivo de la materia, llamado átomo desde hace 25 siglos.

Fue prácticamente hasta los inicios de la presente centuria que la ciencia empezó a penetrar experimentalmente en las realidades atómicas, y a descubrir, de nuevo la ironía, que el átomo, llamado así por su supuesta indivisibilidad, era divisible. Mas aún, ya empezando la presente década, el abultado número de partículas subatómicas elementales descubiertas, hace necesario sospechar que están constituidas por alguna forma de realidad aún menor.

Y a pesar de que en nuestra escala de dimensiones cotidianas la distancia que separa al electrón más externo del centro del átomo es absolutamente insignificante, en la escala de la física contemporánea es inmensa, tanto que recorrerla ha tomado lo que llevamos de siglo, la participación de varias de las más agudas inteligencias de la humanidad y cientos de millones de dólares en tecnología, equipos y demás infraestructura.

En su camino, no obstante, muchos han sido los beneficios obtenidos por el hombre con el desarrollo de diversas formas de tecnología, aunque también se han dado malos usos a las inmensas fuerzas desatadas por las investigaciones. Pero por encima de todo ello, ha prevalecido un común estado del intelecto- el afán por conocer.

El Premio Nobel de Física ha seguido de cerca este desarrollo, y por lo tanto hacer un repaso suyo es recorrer la aventura de la inteligencia, con las emociones y asombros que nunca dejará de producirnos el conocimiento científico.

Por Nelson Arias Avila
Físico PhD, Instituto de Física de la Universidad de Kiev

Albert Einstein cientifico fisico nobel
1. Albert Einsten (1879-1955)
Considerado el padre de la física moderna y el científico más célebre del siglo XX.
Año: 1921 “Por sus servicios a la física teórica, y en especial por el descubrimiento de la
ley del efecto fotoeléctrico”.

Realizó sus estudios superiores en la Escuela Politécnica Federal Suiza en Zurich y terminó su doctorado, en 1905, en la Universidad de Zurich. Trabajó, entre 1902 y 1909, en la Oficina de Patentes de Berna; de allí pasó a ocupar el cargo de profesor adjunto en el Politécnico de Zurich. Más tarde ejerció también la docencia en la Universidad de Berlín y en la de Princeton; dictaría, además, innumerables conferencias en universidades de Europa, Estados Unidos y Oriente. Ocupó los cargos de director del Instituto de Física de Berlín y miembro vitalicio del Instituto de Estudios Avanzados de Princeton. En 1905 formuló la “teoría de la relatividad”, la cual amplió en 1916 (“teoría general de la relatividad”). En 1912 formuló la “ley de los efectos fotoeléctricos”. A partir de 1933 se dedicó al estudio de los problemas cosmológicos y a la formulación de la teoría del campo unificado, la cual no pudo culminar exitosamente. Además de su indiscutible aporte a la ciencia, Einstein realizó una labor prominente a favor de la paz y el humanitarismo.

Max Planck cientifico fisico nobel

2. Max Planck (1858-1947)
Recibió el Nobel en 1918 por su descubrimiento de la energía cuántica. Fundador de la física cuántica.
Año: 1918 “Como reconocimiento a los servicios que prestó al progreso de la física con
el descubrimiento
de la cuantificación de la energía”.
El principio de la termodinámica fue el tema de la tesis doctoral de Max Planck, en 1879. Había estudiado matemáticas y física en la Universidad de Munich y en la de Berlín, con científicos afamados de la época. Fue profesor e investigador de la Universidad de Kiel y profesor de física teórica en la Universidad de Berlín; así mismo, se desempeñó como “secretario perpetuo” de la Academia de Ciencias. Sus investigaciones más importantes están relacionadas con la termondinámica y las leyes de la radiación térmica; formuló la “teoría de los cuantos”, la cual se constituyó en la base de la física cuántica. Fue uno de los primeros en entender y aceptar la teoría de la relatividad y contribuyó a su desarrollo. Trabajó con bastante éxito también en las áreas de la mecánica y la electricidad.

Bardeen cientifico fisico nobel

3. John Bardeen (1908-1991)
Año: 1956 Único físico en ser premiado dos veces con el Nobel (1956 y 1972).
Destaca su desarrollo del transmisor.

Marie Curie cientifico fisico nobel
4. Marie Curie (1867-1934)
Física, química y Nobel de ambas disciplinas. Estudió junto con su marido el fenómeno de la radiactividad.
Año: 1903 “Como reconocimiento al extraordinario servicio que prestaron por sus investigaciones conjuntas sobre los fenómenos de radiación descubiertos por el profesor Henri Becquerel”

Madame Curie estudió física y matemáticas en París. Sus aportes a la física y a la química (cuyo Nobel también obtuvo en 1911) se inician con los estudios que desarrolló -en compañía de su marido Pierre- sobre los trabajos y observaciones de Henri Becquerel respecto de la radiactividad: Marie descubrió que la radiactividad es una propiedad del átomo; además descubrió y aisló dos elementos radiactivos: el polonio y el radio, en 1898 y 1902 respectivamente. En 1906 se constituyó en la primera mujer catedrática en La Sorbona, al ocupar la vacante tras la muerte de Pierre. Tres años más tarde publicó su “Tratado sobre la radiactividad” y en 1944 comenzó a dirigir el Instituto de Radio en París. Murió de leucemia, contraída probablemente en sus experimentos, al exponerse a la radiación.

Rontgen cientifico fisico nobel
5. Wilhelm Conrad Róntgen (1845-1923)
Primer galardonado con el Nobel de Física, en 1901, por su descubrimiento de los rayos X.
Año: 1901: “Como reconocimiento a los extraordinarios servicios que prestó a través del descubrimiento de los rayos X, que posteriormente recibieron su nombre”.
Sus aportes al campo de la física abarcan campos diversos desde investigaciones relacionadas con el calor específico, hasta los fenómenos de la capilaridad y la comprensibilidad; se interesó igualmente por el área de la radiación y la polarización eléctrica y magnética. El mayor reconocimiento de la comunidad científica internacional lo obtuvo cuando trabajaba en los laboratorios de la Universidad de Wurzburgo: allí, el 8 de noviembre de 1895, descubrió los que él mismo llamó “rayos X”, porque desconocía su naturaleza (también conocidos en la época como “rayos Róntgen”).

Marconi cientifico fisico nobel
6. Guglielmo Marconi (1874-1937)
Nobel en 1909, junto con Ferdinad Braun, por su contribución al desarrollo de la telegrafía inalámbrica.
Año: 1909: “Como reconocimiento a sus contribuciones para el desarrollo de la telegrafía inalámbrica”.
Aunque Marconi estudió en Liverno y Bolonia, su formación en el campo de la física y la ingeniería -en las cuales se destacó- fue poco académica. El conocimiento acerca de la producción y recepción de las ondas electromagnéticas –descritas por Hertz– causaron en Marconi una fascinación especial, sobre todo por su convencimiento de que las ondas en cuestión podían utilizarse en las comunicaciones: sus experimentos desembocaron en el nacimiento de la telegrafía sin hilos; inventó, además, la sintonía, el detector magnético, la antena directriz, el oscilador giratorio, las redes directivas y colaboró con sus trabajos a perfeccionar los instrumentos de microondas.

Enrico Fermi cientifico fisico nobel
7. Enrico Fermi (1901-1954)
Año: 1938: Galardonado en 1938. Sus investigaciones en radiactividad lo llevaron a
descubrir las reacciones nucleares.

Millikan cientifico fisico nobel
8. Robert A. Millikan (1868-1953)
Año: 1923: Determinó el valor de carga del electrón y trabajó en los efectos fotoeléctricos.
Recibió el Premio en 1923.

dirca cientifico fisico nobel
9. Paul A. M. Dirac (1902-1984)
Año: 1933: Uno de los fundadores de la mecánica y electrodinámica cuántica. Recibió el Nobel en 1933
junto a Erwin Schródinger.

cientifico fisico nobel Ernst Ruska
10. Ernst Ruska (1906-1988)
Año: 1986: Premio Nobel en 1986 por su investigación en óptica electrónica.
Diseñó el primer microscopio electrónico.

Fuente Consultada:
Revista TIME Historia del Siglo XX El Siglo de la Ciencia

Orígenes de la Ciencia Moderna y La Filosofía Renacentista

Orígenes de la Ciencia Moderna: Filósofos y Científicos

Si la primera parte del siglo XVII es un período de crisis en todos los campos, crisis que prolongan las conmociones del Renacimiento, en la segunda mitad del siglo se proyectan las tentativas de solución.

A la anarquía, a las luchas políticas y sociales, responde el ideal absolutista, el cual alcanza la perfección histórica con Luis XIV, que inspira tanto a los soberanos españoles como a los Estuardo, al emperador como a los pequeños príncipes alemanes.

Al caos y la confusión, nacidos de las ruinas del viejo sistema aristotélico como consecuencia de los trabajos y las investigaciones de Bacon y Galileo, se opone la tentativa de Descartes, buscando un nuevo método científico para elaborar una doctrina racional de conjunto del universo.

El ser humano siempre quiso saber qué ocurrió al principio de todo y, en consecuencia, no tuvo reparo en intentar ver más allá para encontrar la luz. Fue el italiano Galileo Galilei (1564-1642) quien preparó el camino de la ciencia moderna y supo convertir el catalejo del holandés Hans Lippershey (1570-1619) en un telescopio refractor para la observación de los cuerpos celestes en 1609, justo el mismo año en que el astrónomo alemán Johannes Kepler (1571-1630) presentaba sus primeras dos leyes del movimiento elíptico planetario en el libro Astronomía nova.

El físico y matemático inglés Isaac Newton (1642-1727), inventor del primer telescopio de reflexión en 1668, sentó las bases de la ciencia moderna con sus descubrimientos en óptica clásica (la naturaleza de la luz blanca o luz del Sol por medio de un prisma de cristal) y la mecánica clásica (la formulación de las tres leyes del movimiento y la ley de la gravitación universal). Además desarrolló el cálculo infinitesimal en el campo de la matemática pura.

Ya en la segunda década del siglo XX, el físico alemán Albert Einstein revolucionó el sistema del mundo newtoniano con la teoría general de la relatividad y dos predicciones fundamentales: la curvatura del espacio-tiempo alrededor de un cuerpo y el llamado efecto de arrastre de marco, por el que la Tierra, en su rotación, curva el espacio-tiempo. Poco después, el universo fue visto como un todo en expansión gracias a la teoría del Big Bang o Gran Explosión, que se ha establecido como la teoría cosmológica más aceptada.

En filosofía Descartes se lo considera como fundador de la filosofía moderna, quien tendrá una gran influencia después de su muerte (1650). A la copiosidad barroca del arte durante este período de transición, el clasicismo quiere imponer las reglas universales del buen gusto y de la mesura.

En todos los aspectos, tanto en el orden económico, con el mercantilismo estatal, como en el orden militar, en el que los ejércitos disciplinados por la monarquía absoluta quieren reemplazar a las bandas de mercenarios y a los condottieros, todavía dominantes en el trascurso de la Guerra de los Treinta Años, se pueden discernir los esfuerzos hacia el orden y la estabilización.

El triunfo no será más que aparente: detrás de las armoniosas fachadas clásicas y las magnificencias del arte oficial, aparecen, desde finales del siglo, otras crisis, otras con tradicciones que anuncian el período revolucionario de la «Ilustración».

DESCARTES Y EL FUNDAMENTO DEL RACIONALISMO
Renato (René) Descartes (1596-1650) pertenecía a la pequeña nobleza; después de haber cursado sólidos estudios eligió la carrera de oficial del ejército, sirviendo primeramente en Holanda, bajo las órdenes de Mauricio de Orange, y en Baviera, al comienzo de la Guerra de los Treinta Años.

No cesaba de meditar y trabajar en las matemáticas; en Alemania, en un cuchitril al lado de una estufa, tuvo la célebre «iluminación» que le reveló las ideas directrices de su filosofía. Después de una permanencia en Italia, se estableció en Holanda (1629), donde el pensamiento   podía   desenvolverse   más   libremente. Residió allí veinte años, interrumpidos por breves estancias en Francia, enteramente   consagrados   a   la   ciencia   y   a   la filosofía.

Filósofo René Descartes

 En el año 1637 apareció el «Discurso del Método», escrito en francés y no en latín como era costumbre en la época para este género de obras. Rápidamente célebre, admirado por la princesa Isabel, hija del Elector Palatino, fue invitado a Estocolmo por la reina Cristina, la cual le exigía que se levantara todos los días a las cinco de la mañana para enseñarle filosofía.  ¡Su actividad de reina no le debaja libre otros momentos! El duro clima sueco fue la causa de la pulmonía que llevó a la tumba a Descartes   a  los  cincuenta  y  cuatro  años.

Trató de sistematizar todos los conocimientos de su tiempo, de crear una ciencia universal explicando los fenómenos de la naturaleza por medio del razonamiento matemático. Sabio en todo, hizo investigaciones de óptica, creó la geometría analítica, se interesó por la fisiología.

Su método comenzó por la duda radical, la «tabla rasa» de las ideas recibidas, la repulsa del principio de autoridad, para comenzar a partir de la primera certeza resumida en la célebre fórmula: «Pienso, luego existo». Se ajusta a cuatro reglas esenciales:

1)no aceptar nunca, más que ideas claras y distintas, que la razón tenga por verdaderas;

2)dividir las dificultades en tantas partes como sean necesarias para resolverlas (análisis);

3)partir de lo simple para, llegar a lo complejo (síntesis);

4)examinar todo por completo para estar seguro de no omitir nada.

No es cuestión de examinar aquí al detalle una obra que aborda los problemas universales de las ciencias y de la filosofía. A pesar de que Descartes intentó demostrar que las ideas de perfección y de infinito no pudieron ser puestas en el hombre, imperfecto y limitado, más que por Dios, sus explicaciones rigurosamente deterministas del universo, del hombre y de sus pasiones, podían excluir la divinidad y por ello rápidamente se hizo sospechoso (a pesar del entusiasmo de Bossuet) a los ojos de ciertos teólogos.

Y es verdad que inspiró directamente a los materialistas del siglo siguiente. Pascal lo vio muy claro cuando escribió en sus «Pensamientos»: «No puedo perdonar a Descartes; hubiera querido poder prescindir de Dios en toda su filosofía; pero no pudo evitar hacerle dar un papirotazo, para poner al mundo en movimiento. Después de esto, Dios no sirve para nada».

Los contemporáneos se apasionaron por sus teorías sobre el pensamiento y la extensión, los torbellinos, la materia sutil, los animales-máquinas, etc… Por su tentativa de reconstrucción total de las leyes del universo, basándose en algunos principios, se ligaba al espíritu de ordenación del absolutismo. Por su método, principalmente la duda sistemática, abría el camino al pensamiento libre, aunque se defendía siempre de ser ateo. El cartesianismo iba a tener importantes derivaciones.

SPINOZA Y LEIBNIZ Entre los espíritus cultivados se mantenía numeroso contacos , por medio de los libros, viajes y las correspondencias. La lengua  francesa  se extendía  y  sustituía  al latín como lengua erudita, y las Provincias Unidas  eran  un punto  de  confluencia  de ideas.

Los grandes centros intelectuales se desplazaban:  primero fue Italia,  hasta comienzos del siglo xvn, después Francia, y, al final del siglo, los Países Bajos e Inglaterra, donde Newton y Locke iban a coronar los  progresos científicos  y filosóficos.

Las ciudades holandesas que habían albergado a Descartes, con sus universidades, sus imprentas, su burguesía mercantil activa y cosmopolita, y su liberalismo, eran favorables a la floración de las nuevas ideas. En Amsterdam   nació   Spinoza (1632-1677), descendiente de judíos portugueses emigrados. La audacia y la originalidad de su pensamiento, influido por Descartes, le indispuso con  su  ambiente  tradicional (su padre quería hacerle rabino), siendo arrojado de la sinagoga.

Excluido del judaísmo, quedó desde entonces libre e independiente, rechazando las cátedras de la universidad, porque temía verse obligado a abdicar de su independencia; prefería ganarse la vida en La Haya puliendo lentes. En este caso tampoco podemos dar más que una breve reseña de su filosofía, expuesta en varias obras (entre ellas el «Tratado teológico político» y la «Etica»). Siendo, a su manera, un místico panteísta, rechazaba toda religión revelada y denunciaba las incoherencias y las contradicciones del Antiguo Testamento, el cual, según él, no había sido dictado por Dios, sino hecho por judíos deseosos de mostrar su historia y su religión bajo cierto aspecto, en relación con las necesidades históricas.

Lo mismo que Descartes, intentó dar, sin dejar de criticar los puntos de su teoría, una vasta explicación del mundo basada en la mecánica y las matemáticas, obedeciendo a una rigurosa lógica de las leyes de la necesidad, en la que asimilaba a Dios con la sustancia infinita, con la Naturaleza. Negaba la existencia de un Dios personal y del libre albedrío. «Nosotros creemos ser libres porque ignoramos las cosas que nos gobiernan. Si se pudiera tener una idea absoluta del orden general que rige la Naturaleza, se comprobaría que cada cosa es tan necesaria como cada principio matemático».

Quería analizar las pasiones y los sentimientos «como si se tratara de líneas, de superficies, de volúmenes».

Alemania produjo otro gran genio en la persona de Leibniz (1646-1716), nacido en Leipzig, agregado al servicio del Elector de Maguncia y después al del duque de Hannover. Pasó cerca de cuatro años en París, donde trató de disuadir a Luis XIV de intervenir en Alemania. Independientemente de Newton, inventó el cálculo infinitesimal (1684).

Su compleja filosofía está basada en la teoría de las «mónadas», elementos, átomos de las cosas, todas diferentes, creadas por Dios, que es la mónada suprema y quien ha regulado el universo dentro de una armonía preestablecida, agrupando las cadenas infinitas de las mónadas y su movimiento. Diferentes, incompletos, frecuentemente contradictorios, rebasados hoy, pero llenos de intuiciones geniales, todos estos sistemas tienen un punto común: una explicación total, rigurosa, científica, de la Naturaleza y de sus fenómenos, de Dios, de la sustancia, del alma, etc..

En un siglo, los progresos son considerables: el pensamiento humano no se inclina ya ante los dogmas y las tradiciones recibidas, sino que busca libremente por medio de su crítica descubrir las leyes que rigen el universo, como ya lo habían intentado los grandes filósofos griegos.

PRINCIPIOS DE LA CIENCIA MODERNA
Muchos pensadores eran, al mismo tiempo que sabios, matemáticos notables. Paralelamente a su obra filosófica y religiosa, Blas Pascal (1623-1662) establecía las bases del cálculo de probabilidades, demostraba la densidad del aire según las hipótesis de Galileo y de Torricelli, inventaba el barómetro, exponía las propiedades del vacío y de los fluidos, así como las de las curvas.

Otros investigadores, igualmente científicos, profundizaron en los descubrimientos hechos a comienzos del siglo: en medicina, después del inglés Harvey, médico de los Estuardo (muerto en 1657), que había construido una teoría revolucionaria sobre la circulación de la sangre y el papel del corazón, el bolones Malpighi (1628-1694), gracias a los progresos del microscopio, analizaba el hígado, los ríñones, los corpúsculos del gusto, las redecillas de las arteriolas, y comenzaba el estudio de la estructura de los insectos.

El holandés Leuwenhoek descubría los erpermatozoides y los glóbulos rojos de la sangre. Los dos chocaban todavía con los prejuicios tenaces de las universidades, en las que reinaba el aristotelismo que había rechazado los descubrimientos de Harvey. Moliere, en su «Enfermo Imaginario», hará, por otra parte, una cruel sátira de los médicos retrógrados.

cientifico del renacimiento

Biografía
Copérnico
Biografía
Johanes Kepler
Biografía
Tycho Brahe
Biografía
Galileo Galilei

El mundo de lo infinitamente pequeño comienza a entreabrirse, aunque aún no sean más que tanteos en química y fisiología. Redi, médico del gran duque de Toscana, abordaba el problema de la «generación espontánea». Suponía que los gusanos no nacen «espontáneamente» de un trozo de carne en descomposición, sino de huevos que ponen moscas e insectos.

Sin embargo, la mayoría de la gente creía todavía en esta generación animal o vegetal, partiendo de pequeños elementos reunidos. El mismo Redi descubría las bolsas de veneno de la víbora, pero otros aseguraban que el envenenamiento era producido por los «espíritus animales» de la víbora que penetraban en la llaga hecha por la mordedura.

La ciencia comenzaba también a ocuparse de las máquinas: Pascal, Leibniz construían las primeras máquinas de calcular. Cristian Huygens (1629-1695) aplicaba a los relojes el movimiento del péndulo. Miembro de la Academia de Ciencias de París, pensionado por Luis XIV, tuvo que regresar a Holanda, su país natal, después de la Revocación del Edicto de Nantes.

Realizó importantes trabajos matemáticos, estudió la luz, presintió su estructura ondulatoria, desempeñó un papel decisivo en astronomía, tallando y puliendo los cristales de grandes lentes, lo que le permitió descubrir un satélite de Saturno, la nebulosa de Orion, así como el anillo de Saturno. Su ayudante, Dionisio Papin construyó la primera máquina de vapor en la que un émbolo se movía dentro de un cilindro (1687). Los ingleses iban a sacar aplicaciones prácticas para extraer el agua de las minas por medio de bombas. Por último, a finales de siglo, Newton formulaba las leyes de la gravitación universal.

“DIOS DIJO: HÁGASE NEWTON Y LA LUZ SE HIZO”

Esta cita del poeta Alexandre Pope muestra bien claro el entusiasmo que levantó el sistema de Newton, publicado en 1687 con el nombre de Philosophiae Naturalis Principia Mathematica. Isaac Newton (1642-1727), alumno y después profesor de matemáticas de la Universidad de Cambridge, terminó su carrera como «inspector de Monedas» y presidente de la Real Sociedad; fue también miembro del Parlamento.

físico ingles Newton

Isaac Newton

A la edad de veintitrés años lanzó las bases del cálculo diferencial, necesario para investigaciones profundas y mejoró su técnica, mientras que Leibniz llegaba a los mismos resultados por un método diferente. Los dos sabios fueron mutuamente acusados de plagio, a pesar de que sus investigaciones eran independientes aunque casi simultáneas.

Las anotaciones de Leibniz eran, por lo demás, más eficaces y los franceses las adoptaron. La invención del cálculo diferencial  e  integral que se funda en la acumulación de las diferencias infinitamente pequeñas, había de permitir resolver los problemas que planteaban las matemáticas del espacio, con sus cambios de tiempo, de lugar, de masa, de velocidad, etc.. Newton se dedicó entonces a estudiar las cuestiones que sus predecesores habían dejado sin solución: ¿por qué los astros describen curvas en lugar de desplazarse según un movimiento rectilíneo? Se dice que fue la caída de una manzana lo que puso en marcha los mecanismos de su reflexión.

Necesitó veinte años para dar las pruebas de sus teorías sobre el movimiento y la gravitación universal, las cuales iban a ser unánimemente admitidas hasta Einstein.

Albert Eisntein

En el espacio vacío, los cuerpos ejercen una atracción mutua; la fuerza de atracción es tanto mayor cuanto menor es la distancia entre dos cuerpos y mayor la masa del cuerpo que ejerce la atracción, o, dicho de otro modo, esta fuerza es directamente proporcional al producto de las  masas  e  inversamente proporcional  al cuadrado de las distancias. Newton extendía a todo el universo los fenómenos que entonces se creían reservados a la Tierra, siendo el cielo teatro de misterios inaccesibles, como lo creía la Edad Media.

Obtuvo una formulación matemática, gracias al cálculo infinitesimal, y consiguió una comprobación en el estudio del movimiento y de la velocidad de la Luna. Estableció, igualmente, que a cada acción se opone igual reacción. Las teorías de Newton chocan con las de Descartes, el cual explicaba la interacción de los astros por medio de los famosos «torbellinos» que agitaban continuamente la «materia sutil» continua, en la que flotaban los cuerpos. A la publicación de «Principia» siguieron numerosas polémicas.

Los cartesianos afirmaban que este principio de atracción era un retroceso a las «cualidades» ocultas de Aristóteles y, a pesar de los argumentos newtonianos, que demostraban la imposibilidad de concebir el espacio celeste lleno de materia, incluso siendo muy fluida, se continuó negando durante largo tiempo la teoría de la gravitación, como lo hicieron Huygens, Leibniz, Fontenelle, Cassini, Réaumur y otros, hasta la confirmación cada vez más brillante que aportaron las experiencias en el transcurso del siglo XVIII. Newton aplicó también su genio al estudio de la luz, explicando por qué los rayos del sol se descomponen en diferentes colores a través de un prisma. Al margen del análisis espectral, hizo numerosos descubrimientos ópticos.

La fe de Newton permaneció viva. Su sistema no eliminaba la exigencia de una causa primera, de un agente todopoderoso «capaz de mover a su voluntad los cuerpos en su sensorium uniforme e infinito para formar y reformar las partes del universo». La ciencia aceptaba a Dios, que debía crear ininterrumpidamente el movimiento, sin el cual todo se pararía poco a poco por degradación de la enegría. Newton murió a la edad de ochenta y cuatro años, rodeado de inmenso respeto, después de haber abierto un campo ilimitado a los descubrimientos de física y matemáticas.
Fuente Consultada:
Enciclopedia de Historia Universal HISTORAMA Tomo VII La Gran Aventura del Hombre

Fuerzas en un Plano Inclinado Descomposicion del Peso

DESCOPOSICIÓN DE UN PESO SOBRE UN PLANO INCLINADO

EL PLANO INCLINADO: este tipo de máquina simple se utiliza muy a menudo para cargar o descargar cuerpos pesados sobre una plataforma, por ejemplo cuando queremos cargar el acoplado de un camión. No es lo mismo levantar el peso total del cuerpo verticalmente, que hacerlo sobre una superficie inclinada, pues al colocar el peso sobre dicha superficie aparecen nuevas fuerzas en juego que ayudaran a realizar el trabajo. Estas fuerzas pueden observarse en la figura de abajo, que pronto vamos a estudiar su valor, y que logicamente dependen del peso del cuerpo.

Antes vamos a decir que también ayuda a bajar los cuerpo, pues si soltaríamos el objeto sobre la vertical del acoplado de un camión el mismo caería al piso con todo su peso y tendría grandes posibilidades de romperse, en cambio, al soltarlo sobre el plano inclinado una fuerza que tiene la dirección del plano y con sentido hacia abajo lo llevará lentamente hasta el piso. Hay que aclarar que entre el objeto y el plano hay una fuerza de rozamiento (que no está dibujada) con sentido contrario al moviento, es decir hacia arriba, entonces para moverse la fuerza Px deberá ser mayor a la de rozamiento. (ya lo estudiaremos).

Sigamos ahora con el caso mas simple , sin rozamiento, y analicemos las dos fuerzas que aparecen, que resultan de la descomposición del peso P en dos direcciones, una paralela al plano, llamada Px y otra perpendicular, llamada Py. Como se observa, y Ud. debería analizarlo, el ángulo de inclinacion del plano que se llama @ , es el mismo que existe entre el peso P y Py. (se puede estudiar aplicando la teoría de triángulos semejantes).

Al descomponerse el peso P en dos direcciones perpendiculares, es como si P desapareciera para siempre, y de aqui en mas solo trabajaremos con sus componentes Px y Py. Para obtener el valor de ambas fuerzas usaremos la figura de abajo y aplicaremos trigonometría, las famosas funciones seno y coseno.

Para hallar las omponentes observemos la descoposción gráfica y aparece un triángulo rectángulo que llamalos ABO, en donde el ángulo B=90°, O=@ (inclinación del plano), entonces según las reglas de la trigonometría podemos escribir lo siguiente:

sen(@)=Px/P ====> Px=P. sen(@)=m.g.sen(@)=Px , la componente sobre el eje x

cos(@)=Py/P ====> Py=P. cos(@)=m.g.cos(@)=Py , la componente sobre el eje y

Resumiendo podemos decir, que para obtener el valor de las componentes de las fuerzas en que se descompone un peso sobre un plano inclinado solo debemos tener como datos: el peso P y el angulo de inclinación @. Si no tenemos dicho ángulo podemos usar como alternativa (y en la mayoría de los casos en así) las dimensiones del plano, y obtener directamente el seno y coseno de @.

Podemos escribir que: sen(@)=h/L (longitud inclinada) y cos(@)=l/L y listo. Hallando la función inversa arco seno o arco coseno, podemos calcular el valor del ángulo, pero generalmente no hace falta.

La fuerza Px no llevará el cuerpo hacia abajo, hasta el piso, pero bien que pasa con la fuerza Py hacia abajo normal al plano?….como en cuerpo no se mueve en esa dirección significa que hay algo que lo evita y justamente es la reacción en la superficie de contacto, pues aparece por la 3° ley de Newton una reacción que es de igual magnitud a Py, pero de sentido contrario, y que se anulan entre si, y no hay movimiento en ese sentido.

Oberva la figura de abajo, la fuerza color verde, es la reacción del plano.

Ejemplo: el peso de una caja es de 1200 Newton y se apoya sobre un plano que tiene 3 m. de largo y asciende 1,75 m. Determine el valor de las componentes del peso sobre el plano.

1) Tenemos el peso en Newton, que es 1200 y por lo tanto: m.g=1200

2) No tenemos el ángulo pero sabemos que: sen(@)=1,75/3= 0,58 y que cos(@)=l/L=l/3, nos falta l.

Para calcular l, usamos el teorema de Pitágoras, pues l=es el cateto mayor del triángulo, y dá: 2,44 m, ósea cos(@)=2.44/3=0,813

Ahora hallamos: Py=1200 . 0,81=976 Newton y Px=1200 . 0,58=700 Newton

A la fuerza de 976 N la absorbe el plano, de lo contrario se rompe el material y la otra hacia abajo de 700 moverá el bloque hasta el piso, o si lo debemos cargar, habría que empujarlo hacia arriba con una fuerza de 700 N., ósea, 500 N menos que si quisieramos levantarlo verticalmente, sin usar el plano.

TEORÍA SOBRE PLANO INCLINADO: Una máquina tiene por objeto utilizar ventajosamente energía para producir trabajo. En general, la máquina proporciona un modo más fácil de hacer el trabajo, pero en ningún caso se puede conseguir de la máquina más trabajo que el que se le, suministra. Oros post en este sitio sobre palancas y poleas han demostrado que es posible, en comparación, levantar grandes pesos mediante la aplicación de fuerzas pequeñas.

El plano inclinado es otro medio para levantar un gran peso con facilidad. Es especialmente útil para cargar barriles y toneles, puesto que se pueden rodar hacia arriba por la pendiente. Este método se usa, actualmente, para cargar barriles de cerveza en carros y camiones de reparto, pero hace tiempo se utilizó mucho más ampliamente. El plano inclinado debe de haber sido una de las pocas máquinas que el hombre tenía en la antigüedad. Por ejemplo, los primitivos egipcios utilizaron las pendientes en gran escala para la construcción de las pirámides.

Se requiere una fuerza mayor para mover la carga en un plano con fuerte ángulo de inclinación que en otro menos inclinado. Sin embargo, el trabajo total que se requiere para levantar la carga a una misma altura es el mismo, cualquiera que sea el ángulo de inclinación del plano. Por otra parte, se ha de realizar un trabajo adicional para vencer las fuerzas de fricción entre la carga y el plano, y éstas son menores cuanto mayor sea el ángulo de inclinación del plano con la horizontal.

El cociente de velocidad de cualquier máquina se obtiene dividiendo la distancia a lo largo de la cual se traslada la fuerza aplicada (o esfuerzo) por la altura a la cual se eleva la carga. Como en las otras máquinas, el cociente de velocidad de un plano inclinado se calcula a partir de sus dimensiones.

Por lo tanto, si no hubiera resistencia debida a rozamientos, una carga de 100 Kg. se podría subir por el pleno con un esfuerzo de 25 Kg. Pero en la práctica sería de 35 Kg. a 45 Kg., según la naturaleza de las superficies.

La distancia que recorre la fuerza aplicada es la distancia a lo largo del plano, mientras que la distancia a la cual se eleva la carga es la altura a la que se encuentra. Puesto que las fuerzas de fricción, o rozamiento, tienen un efecto mucho mayor en el rendimiento del plano inclinado que en otras máquinas (especialmente poleas), se gana muy poco intentando calcular la ventaja mecánica (carga/esfuerzo) a partir de consideraciones teóricas.

Es más conveniente encontrar experimentalmente la ventaja mecánica, y utilizarla como un medio de calcular la magnitud de las fuerzas de rozamiento.

Los rodillos del plano disminuyen el rozamiento, haciendo mas fácil la subida al camión.

La fricción por la acción de rodar que se experimenta al cargar barriles (y otros objetos de sección circular) es pequeña si se compara con la fricción de deslizamiento que se debe vencer cuando se empujan cajas (o se tira de ellas) por un plano inclinado. Por esta razón, el plano inclinado se ha utilizado durante muchos años para cargar barriles.

Recientemente, sin embargo, el trabajo adicional necesario para cargar cajas se ha reducido considerablemente, mediante el empleo de planos inclinados provistos de rodillos metálicos. En este caso, los rozamientos se han reducido al cambiar la fricción de deslizamiento por fricción de rodadura.

Fuente Consultada:
Revista TECNIRAMA N°48 Enciclopedia de la Ciencia y La Tecnología -Plano Inclinado-

Espectro de la Luz Concepto Básico Espectro de Emisión

CONCEPTO DE ESPECTRO DE LA LUZ Y SU APLICACION EN ASTRONOMIA

Cuando se impregna un hilo muy fino de platino con determinadas sales y se pone sobre la llama del mechero, dicha llama adquiere unas coloraciones que sor características del elemento metálico que forma parte de la sal. Así, todas las sales de sodio dan coloración amarillenta, mientras que las sales de cobre proporcionan a la llama un color azul-verdoso. También cuando hacemos pasar un rayo de luz por un prisma de vidrio podesmo descomponer a dicho rayo en varios colores, que dependerán de que material emite ese rayo de luz.

Llamamos espectro visible de emisión de un elemento, al conjunto de colores característicos que emite dicho elemento cuando se altera por el calor o por una descarga eléctrica.

Espectro de Luz Visible

La luz solar, o la emitida por un arco eléctrico, parecen blancas, pero un examen más detenido de esta luz blanca revelará que, en realidad, se compone de una mezcla de rayos de diferentes colores. A veces, en días de sol radiante, es posible ver un espectro de luces de diferentes colores sobre la pared opuesta a una ventana.

Con cuidado, será posible ubicar la fuente de estas luces de colores y con toda seguridad se encontrará que se debe a que un rayo de luz blanca ha sido descompuesto, por refracción en algún borde de vidrio o cristal —el borde de un espejo, tal vez el de un ornamento  de  cristal.

Un efecto similar puede ser observado en una habitación a oscuras si se dirige un delgado haz de luz blanca hacia un prisma triangular. Si se interpone una pantalla blanca en el camino del haz emergente, se advertirá una serie de bandas de colores. Con un dispositivo tan rudimentario las imágenes de color se superponen.

Se puede obtener un espectro más satisfactorio de la luz blanca dirigiendo hacia el prisma un haz de rayos paralelos y enfocando los haces emergentes sobre la pantalla. Para esto se requieren, por lo menos, dos lentes convexas.

Esquema Básico de Espectrógrafo

El primer químico que hizo uso este fenómeno con fines analíticos fue el alemán. Bunsen, quien, en colaboración con Kirchhoff, ideó un dispositivo para analiza: los colores emitidos por las sales de los elementos. Este aparato recibe el nombre de espectroscopio y consiste básicamente en un prisma en el que la luz, procedente de la llama, se dispersa.

La fuente luminosa se ubica en el foco de la primera lente, de modo  que   el   haz   de   luz   blanca   quede compuesto de rayos paralelos. La pantalla se ubica en el foco de la segunda lente. Mediante este dispositivo perfeccionado, las bandas de luz de color se separan y es posible distinguir los componentes de la luz blanca: violeta, índigo, azul, verde, amarillo, anaranjado y rojo.

El prisma puede separar los componentes de la luz blanca debido a que éstos poseen distintas longitudes de onda. De las formas visibles de movimiento ondulatorio, la luz violeta es la de menor longitud de onda y es la más desviada al pasar por el prisma. La luz roja posee la longitud de onda mayor de todo el espectro visible y es la menos refractada (desviada).

El fenómeno de descomposición de la luz en los siete colores del arco iris recibe el nombre de dispersión de la luz , y el conjunto de colores se denomina espectro visible de la luz blanca. Cada una de las luces que componen la luz blanca recibe el nombre de luz monocromática, pues es luz que no se descompone en otras.

Bien sigamos,a hora calentando una sustancia suficientemente, lo que se pondrá en estado de incandescencia. El color de la luz emitida es siempre característico para cada elemento presente, una especie de huella digital. Ésta es la base del ensayo a la llama que se emplea en química analítica para identificar los constituyentes de una mezcla.

El sodio emite una luz intensamente amarilla (el color de las luces que a veces se utilizan para iluminación urbana), el potasio da un color lila y el calcio, luz color anaranjado. También los gases dan luces de colores característicos si se los encierra en un tubo sellado a muy baja presión y se los conecta a una fuente de alta tensión.

Es conocida la luz roja emitida por el neón, que se utiliza en letreros luminosos y faros. Las luces de color emitidas por sólidos o gases a alta temperatura pueden ser estudiadas más detenidamente por medio de un espectroscopio .

En este aparato la luz es descompuesta en sus componentes y se ve que los diferentes elementos dan espectros constituidos por series de lineas de longitud de onda característica para cada elemento. Tan bien definidas están estas líneas espectrales que sirven para identificar elementos presentes (análisis espectral) en muestras minúsculas o para detectar impurezas infinitesimales.

En todos los casos observados, la luz procedente de la llama está formada po: un conjunto de rayas luminosas cuyo color y disposición son característicos del elemento químico de la sal que se está analizando. Así, por ejemplo, toda.; las sales de sodio, ya sean cloruros, sulfatos, carbonatos, etc., producen dos líneas amarillas muy intensas.

Este tipo de análisis o identificación tambié” puede realizarse con elementos gaseosos encerrados en tubos de descarga eléctrica en los que se ha practicado el vacío. Llamamos espectro visible de emisión de un elemento, al conjunto de colores característicos que emite dicho elemento cuando se altera por el calor o por una descarga eléctrica.

Ejemplo de Algunos espectros de emisión.

(Arriba) Espectro del hidrógeno. (Centro) Espectro del mercurio. (Abajo) Espectro de la luz blanca de la lámpara de arco de carbón.

En general, el espectro emitido por sustancias sólidas o líquidas en estadc incandescente produce un espectro continuo. Por el contrario, el espectro emitido por sustancias gaseosas es un espectro de rayas o discontinuo.

De igual forma que se analiza la luz o energía emitida por una sustancia, también puede analizarse la luz o energía que dicha sustancia absorbe. Al iluminar una sustancia con un conjunto de radiaciones aparecerán en el espectroscopio todas las radiaciones, excepto las absorbidas por la sustancia en cuestión.

El espectro resultante se denomina espectro de absorción. En el espectro de absorción aparecen rayas oscuras en las mismas zonas en que aparecían las rayas luminosas en el espectro de emisión. Esto significa que las sustancias emiten las mismas radiaciones que absorben.

APLICACIONES DE ESTE FENÓMENO EN LA ASTRONOMIA:

La luz procedente de cada estrella es originada por incontable número de átomos; unos producen una determinada .ongitud de onda, y otros otra distinta. Por consiguiente, el istrofísico necesita un instrumento capaz de descomponer la luz con exactitud en sus diferentes longitudes de onda, o sea en colores. Una forma de conseguirlo es haciendo pasar la luz procedente de una estrella a través de un prisma de cristal. Pero, un solo prisma separa muy poco los colores, no siendo en realidad suficiente para suministrarnos todos los resultados que necesitamos.

Debemos descomponer la luz en miles de colores o de longitudes de onda diferentes, y para conseguirlo se precisan instrumentos especiales. Algunos de ellos, incluyendo el espectroscopio y el espectrógrafo, se describen más adelante.
Cuando la luz de una estrella incide en el ocular de un telescopio, pasa a través de una delgada rendija antes de llegar al instrumento que la descompone en los distintos colores. Cada, color aparece como una estrecha raya, pues cada uno de ellos ha sido enmarcado por la delgada rendija. Desde el punto de vista del astrofísico, una de las cuestiones más importantes es que para cada color en particular la raya se proyecta en un lugar determinado y no en otro cualquiera.

El conjunto completo de rayas —denominado espectro de la estrella— puede ser fotografiado y medida la posición exacta de las rayas. De esta manera el astrofísico conoce la clase de átomos que precisamente’contiene una estrella. Por este método ha sabido que el Sol y todas las demás estrellas que vemos brillar en el firmamento están constituidos precisamente por la misma clase de átomos que encontramos en la Tierra.

Pero el astrofísico no se conforma con saber cuáles son las diversas clases de átomos presentes en una estrella; también quiere   conocer  las  proporciones  relativas   de   cada  sustancia.

Por ejemplo, si las rayas espectrales indican que una estrella contiene simultáneamente hidrógeno  y oxígeno, quiere saber cuál es más abundante y en qué proporción. Puede conocerlo midiendo la intensidad de las distintas rayas. Supongamos que hay I o veces más de hidrógeno que de oxígeno en una estrella; deberíamos esperar, por lo tanto, que llegasen más radiaciones de los átomos de hidrógeno que de los de oxígeno, lo cual se traduce en que el hidrógeno debería producir rayas más intensas que el oxigeno.

Y esto es lo que sucede en la realidad. Así, al medir la intensidad de las rayas, el astrofísico puede deducir que el hidrógeno es 10 veces más abundante que el oxígeno, pero no puede asegurar cuántas toneladas de cada gas contiene la estrella en cuestión.

La medición de la> intensidad de las rayas espectrales indica al astrónomo la composición de las capas superficiales del Sol y de otras estrellas. Así se sabe que el Sol contiene 10 veces más hidrógeno que helio. Los científicos saben también que estas dos sustancias son conjuntamente unas mil veces más abundantes que la totalidad de los restantes elementos.

Las capas superficiales de las estrellas varían considerablemente de unas a otras, pero en un gran número de ellas el hidrógeno y el helio son los principales constituyentes.

Fuente Consultada:
Revista N°32 TECNIRAMA Enciclopedia de la Ciencia y La Tecnologia – Los Espectros –
Secretos del Cosmos Colin A. Roman Colecciones Salvat N°2
Físico-Química Secundaria Santillana Escudero-Lauzurica-Pascual-Pastor

Historia del Descubrimiento de los Elementos Químicos

Hablar del descubrimiento de elementos antes de Juan Dalton (1766-1844) resultaría contradictorio, pues sólo después de los trabajos de este hombre de ciencia comenzó a definirse dicho concepto. Sin embargo hoy se tienen por tales muchas de las sustancias que ya eran conocidas antes del advenimiento de Cristo. Los metales sólidos, como el oro, la plata, el hierro, el estaño, el cinc, el cobre y el plomo, por ejemplo, ya fueron refinados por los pueblos de antaño, que apreciaban su utilidad o su valor decorativo.

El carbono (en forma de carbón de piedra), el azufre y el metal líquido mercurio también eran usados en aquellas épocas, aunque sin saber que eran elementos, es decir, sustancias básicas de que está hecho el universo. Cuando se contemplaban desde el punto de vista químico, sólo se los consideraba como meros ejemplos de la numerosa cantidad de sustancias que los alquimistas podían utilizar en sus experimentos.

Es cierto que el oro poseía un valor excepcional y gran parte del trabajo de los antiguos investigadores consistía en fútiles esfuerzos por obtenerlo a partir de otros metales más baratos. Pero no se tenía el concepto de cuál era su colocación en el cuadro general, porque ni aun remotamente se tenía idea de que tal cuadro existiese.

El primer elemento descubierto en los tiempos antiguos fue el arsénico. Aunque los griegos ya conocían varios compuestos de éste, probablemente fue Alberto Magno, en el siglo xm, el primero en afirmar que contenía una sustancia de tipo metálico. Químicos posteriores lo consideraron algo así como un metal “bastardo” o semimetal y le aplicaron el nombre de Arsenicum Rex.

En 1604 aparecieron ciertos trabajos, atribuidos a un monje benedictino llamado Basilio Valentine, en los que se describía el antimonio. Se decía que Valentine los había escrito alrededor de 1470, pero la obra fue “editada” por Tholde, un fabricante de sal de La Haya, y hay dudas acerca de si Valentine fue escritor.

Las obras que se le atribuyen también mencionan el bismuto, y si aceptamos que puede haberlas escrito, podríamos considerarlo su descubridor. Sin embargo, en 1556, medio siglo antes de su publicación, el bismuto había sido descripto por un médico alemán, Jorge Agrícola, en un libro sobre metales.

El aumento de la actividad química a partir del siglo XVIII produjo, como era de esperar, rápido progreso en el descubrimiento de nuevas sustancias. Puede explicarse en parte la falta de progreso antes de esa época por la enorme influencia del filósofo griego Aristóteles.

Durante más de mil años su errónea teoría acerca de la existencia de cuatro “elementos” (tierra, aire, fuego y agua) había detenido toda posibilidad de progreso en la química. Si bien en muchos campos del conocimiento dicho filósofo dejó importantes contribuciones, su influencia en la química, durante tanto tiempo indiscutida, resultó ser un grave impedimento para su adelanto.

OTROS DESCUBRIMIENTOS
El fósforo fue el siguiente elemento descubierto. Se le debe al alemán Henning Brand (1669). Medio siglo después, Jorge Brandt, un sueco, descubrió el cobalto. Esta conquista anunció la llegada de la Edad de Oro del descubrimiento de elementos.

En el mismo año (1735) Ulloa descubrió el platino. En los cincuenta años subsiguientes se registraron no menos de diez elementos, entre los cuales cabe mencionar: el níquel (Cronstedt), el hidrógeno (Enrique Cavendish), el flúor (Scheele), el nitrógeno (Daniel Ruthenford), el cloro (Scheele), el molibdeno (Hjelm), el telurio (Von Reichenstein) y el tungsteno (d’Elhujar).

Es interesante recordar la historia del descubrimiento del oxígeno, aunque sólo sea para ilustrar la forma a veces imprevista en que progresa la ciencia. José Priestley, científico notable en muchos campos, consiguió aislar oxígeno calentando óxido rojo de mercurio y demostró que una vela ardía en él con gran brillo y que un ratón podía vivir respirándolo. Hasta aquí sus observaciones eran correctas; pero cuando trató de aplicar estos nuevos hechos a la teoría tradicional de la combustión, se encontró con serias dificultades.

De acuerdo con el pensamiento corriente en aquella época, se suponía que una vela que ardía producía una sustancia denominada flogisto. El aire común, se decía, contenía cierta cantidad de flogisto y podía absorber más de él; luego ya no podía contribuir a la combustión. Priestley llamó a este gas “aire deflogisticado” porque en él la combustión era más violenta y duraba más tiempo que en el aire y porque debía deducirse que, al comenzar, no contenía nada de flogisto.

Años más tarde, Lavoisier explicó la verdadera naturaleza del proceso de la combustión y el papel que en ella desempeña el oxígeno. Al mismo tiempo que Priestley trabajaba en Inglaterra, Carlos Scheele efectuaba experimentos similares en Suecia.

Aunque descubrieron el oxígeno casi al mismo tiempo, un retraso de tres años en la publicación de sus trabajos hizo que Priestley se llevara la mayor parte del éxito. En realidad, la situación es aún más complicada: Juan Mayow, de la Real Sociedad, parece que había obtenido los mismos resultados un siglo antes, aunque rara vez se lo menciona.

La lista que acompaña este artículo nos da una cronología de los elementos y los nombres de sus descubridores. (Para simplificar sólo se indica el nombre del descubridor más generalmente aceptado, aunque en muchos casos tanto éste, como la fecha, están sujetos a discusión.)

NOTAS SOBRE LOS ELEMENTOS: Se llama elemento químico al componente que se encuentra en todas las sustancias simples. Por ejemplo, el componente de la sustancia simple denominada azufre, es el elemento azufre. Un elemento no puede descomponerse en otro. Asi, del azufre, no se obtiene más que azufre. *Si se combinan dos elementos simples, como el azufre y el hierro, obtenemos, al calentarlos, un compuesto qoe se llama sulfuro de hierro. *Los nombres de los elementos suelea tomarse de sus propiedades u orígenes: así hidrógeno, significa engendrador de agua; cloro quiere decir de color verdoso; fosfora significa portador de luz; el germanio designóse así en honor de Alemania; el galio por Francia; el magnesio por una región de Tesalia; el uranio por el planeta Urano; telurio por la Tierra, y helio por el Sol.

CINCO ELEMENTOS IMPORTANTES
Humphry Davy, que con tanto éxito trabajó en muchas ramas de la química y la física, también descubrió cinco elementos (potasio, sodio, bario, boro y calcio) entre 1807 y 1808. Un poco antes, en 1805, Juan Dalton, trabajando en Manchester, dio a conocer su teoría atómica que sirvió para enfocar el problema de los elementos. Dalton afirmó que los elementos químicos están compuestos por diminutas partes indivisibles (átomos) que conservan su individualidad eñ todas las reacciones químicas.

También decía que los átomos de un determinado elemento son idénticos entre sí y de forma diferente a los de otros elementos. Finalmente afirmó que la combinación química es la unión de átomos en cierta proporción establecida. El trabajo de este hombre de ciencia constituye la primera explicación comprensible acerca de qué son los elementos y cómo se comportan. Durante los siglos XIX y XX fueron descubriéndose nuevos elementos.

Un grupo especialmente interesante, el de los gases inertes —que no se combinan químicamente con otros— fue descubierto hace unos sesenta años. Guillermo Ramsay, un químico escocés, ayudó a individualizar el neón, criptón, xen helio y argón. Por la misma época, en 1898, Pedro y Marie Curie consiguieron aislar el radio y el polonio, ambos elementos intensamente radiactivos, con lo que se abrió el camino a la investigación actual en física nuclear. Sólo alrededor de 90 de los elementos químicos que han sido descubiertos se encuentran la naturaleza.

El resto son artificiales, y generalmente se ot nen “bombardeando” átomos e inyectándoles partículas nucleares complementarias. Cambia así la estructura del núcleo y con ello la identidad del átomo. En algunos casos estos nuevos elementos sólo duran una fracción de segundo. Sin ninguna duda los descubridores de elementos artificiales que han logrado más éxitos son los estadounidenses Glenn T. Seaborg (imagen) y A. Ghio Entre ambos han contribuido al descubrimiento de nada menos que de otros nueve.

Glenn T. Seaborg

Ver Una Tabla de Elementos Químicos Moderna

CRONOLOGÍA APROXIMADA DE LOS ELEMENTOS DESCUBIERTOS

Elemento: Año Descubridor
Carbono
Cobre Conocidos a.C.
Oro Conocidos a.C.
Hierro Conocidos a.C.
Plomo Conocidos a.C.
Mercurio Conocidos a.C.
Plata Conocidos a.C.
Azufre Conocidos a.C.
Estaño Conocidos a.C.
Cinc CConocidos a.C.
Arsénico Siglo XIII Alberto Magno
Bismuto 1556 Mencionado por Jorge Agrícola
Antimonio 1604 Mencionado en obra atribuida a Basilio Valentine del siglo anterior
Fósforo 1669 Brand
Cobalto 1735 Brandt
Platino 1735 Ulloa
Níquel 1751 Cronstedt
Hidrógeno 1766 Cavendish
Flúor 1771 Sebéele
Nitrógeno 1772 Rutherford
Cloro 1774 Sebéele
Manganeso 1774 Gahn
Oxígeno 1774 Priestley, Sebéele
Molibdeno 1782 Hjeim
Telurio 1782 Von Reichenstein
Tungsteno 1783 d’Elhujar
Titanio 1789 Gregor
Uranio 1789 Klaproth
Circonio 1789 Klaproth
Estroncio 1790 Crawford
Itrio 1794 Gadolin
Cromo 1797 Vauquelin
Berilio 1798 Vauqueüiit
Niobio 1801 Hatchett
Tantalio 1802 Eckberg
Cerio 1803 Klaproth
Paladio 1803 Wollanston
Sodio 1803 WolloBstoa
Iridio 1804 Tenaant
Osmio 1804 Tetinani
Potasio 1807 Davy
Sodio 1807 Davy
Bario 1808 Davy
Boro 1808 Davy
Calcio 1808 Davy
Yodo 1811 Courtois
Cadmio 1817 Stromeyer
Litio 1817 Arfedson
Setenio 1817 Berzelius
Silicio 1823 Berzelius
Aluminio 1825 Oersted
Bromo 1826 Balard
Torio 1822 Berzelius
Magnesio 1830 Liebig, Bussy
Vanadio 1830 Sefstrom
Lantano 1839 Mosander
Erbio 1843 Mosondp»
Terbio 1843 Mosander
Ratenio 1845 Claus
Cesio 1861 Bunsen, Kirchoff
Subidlo 1861 Bunsen, Kirchoff
Talio 1861 Crookes
Indio 1863 Reich, Richter
Galio 1875 Boisbaudran
Iterbio 1878 Marignac
Hoinvio 1879 Cleve
Samaría 1879 Boisbaudran
Tulio 1879 Cleve
Neodimio 1885 Welsbach
Praseodimio 1885 Welsbach
Disprosio 1886 Boisbaudran
Gadolinio 1886 Marignac
Germanio 1886 Winkler
Argón 1894 Rayleigh, Ramsay
Helio 1895 Ramsay
Criptón 1898 Ramsay, Travers
Neón 1898 Ramsay, Travers
Polonia 1898 P. y M. Curie
Radio 1898 P. y M. Curie, Be
Xenón 1898 Ramsay, Travers
Actinio 1899 Debierne
Radón 1900 Dorn
Europio 1901 Demarcay
Luteeio 1907 Welsbach, Urbain
Protactinio 1917 Hahn, Meitner
Hafnio 1923 Coster, Hevesy
Renio 1925 Noddack, Tacke
Tecnecio 1937 Perrier, Segre
Francio 1939 Perey
Astatino 1940 Corson y otros
Neptunio 1940 McMillan, Abelso»
Plutonio 1940 Seaborg y otros
Americio 1944 Seaborg y otros
Curio 1944 Seaborg y otros
Prometió 1945 Glendenin, Marisd
Berkelio 1949 Thompson, Ghi Seaborg
Californio 1950 Thompson y otros
Einstenio 1952 Ghiorso y otros
Fermio 1953 Ghiorso y otros
Mendelevio 1955 Ghiorso y otros
Nobelio 1958 Ghiorso y otros
Lawrencio 1961 Ghiorso y otros

Fuente Consultada:
Revista TECNIRAMA N°22 Enciclopedia de la Ciencia y La Tecnología -Descubridores Químicos-

Concepto de Fuerza Centrífuga Aplicaciones Prácticas

Si se hace girar con rapidez un balde parcialmente lleno de agua, con los brazos extendidos alrededor del cuerpo, el contenido no se derrama, aun cuando el balde esté volcado sobre un costado. El principio responsable de este fenómeno es conocido por los físicos con el nombre de fuerza centrifuga.

Al mismo tiempo que se hace girar el balde, el agua tiende a permanecer dentro de éste, presionada hacia el fondo (es decir, hacia afuera con respecto a quien hace girar el balde) o al centro de giro por la fuerza centrífuga. Este es un ejemplo bastante directo de como se origina esta fuerza, aunque hay muchas otras aplicaciones más prácticas.

Sabemos, según las leyes de los cuerpos en movimiento, enunciadas por Isaac Newton, que las fuerzas siempre se originan por pares, siendo cada una de las mismas de igual valor y sentido contrario. La fuerza que se necesita para mantener un cuerpo que gira dentro de su trayectoria, evitando que se vaya hacia afuera, se conoce como fuerza centrípeta y es igual pero de sentido contrario a la fuerza centrífuga.

Fuerza centrífuga en un balde girando. El agua no sale del balde porque es empujada hacia el exterior o fondo.

En el caso del ejemplo mencionado, esta fuerza centrípeta se manifiesta como el esfuerzo realizado por el brazo para sostener el balde. Podemos ver, bastante fácilmente, cómo estas fuerzas se relacionan con la velocidad a la cual el objeto se mueve dentro de su órbita. Un ejemplo emocionante lo constituye, en el espec táculo circense, un motociclista que da vueltas dentro de una gran esfera de malla metálica.

Cuando su máquina se mueve lentamente, el motociclista no puede subir muy alto, pero a velocidades mayores la fuerza centrífuga que tiende a lanzarlo hacia afuera es tan grande, que puede trepar verticalmente hasta la cúspide de la esfera y girar sin perder contacto con la “pista”, a pesar de desplazarse “cabeza abajo”.

La inclinación que se observa en las curvas de las vías férreas obedece al mismo principio: la fuerza centrífuga que impulsa hacía afuera al tren cuando éste toma la curva, es contrarrestada por la fuerza centrípeta que se manifiesta cuando el costado de las ruedas presiona sobre los rieles. Este esfuerzo se reduce considerablemente inclinando las vías en un cierto ángulo, de modo que el riel exterior (el más alejado del centro de la curva) esté a mayor altura que el interior.

Otro ejemplo parecido lo constituye aquella famosa primera pista de Avus, en Alemania, donde ya en el año 1937, los promedios de velocidad establecidos por los coches de carrera llegaban a 261 Km./h., con records hasta de 280 Km./h. Esto podía lograrse porque aquella pista tenía curvas construidas con un extraordinario peralte que llegaba a los 45 grados. De esta manera, se conseguía precisamente vencer la gran fuerza centrífuga que esas velocidades provocaban en los giros. Una idea de dicha fuerza la da el cálculo de que, en el momento de paso sobre la curva, los neumáticos debían soportar nada menos que 3 veces el peso de la máquina.

Peralte o Inclinacion de la Carretera

Los llamados trajes de presión, creados por los japoneses durante la segunda guerra mundial y adoptados luego por casi todas las demás fuerzas aéreas, constituyen una solución bastante aceptable al problema de la tremenda fuerza centrífuga a que está sometido el piloto en un combate aéreo. Este traje evita que, en los giros violentos, la sangre se desplace y se agolpe por centrifugación, con el consiguiente desvanecimiento y pérdida momentánea de la visión. Pero no siempre ¡a fuerza centrífuga resulta negativa; muchas veces el hombre se vale de ella para obtener provecho.

Un buen ejemplo de aplicación práctica de este principio lo tenemos en el aparato denominado centrifuga. Si tenemos una suspensión de un sólido en un líquido, o una mezcla de líquidos de diferentes densidades, es decir, que tienen relaciones diferentes de peso a volumen (por ejemplo crema y leche), y que han sido mezclados hasta formar una emulsión, podemos separarla si la dejamos reposar tiempo suficiente.

Una centrifugadora es una máquina que pone en rotación una muestra para –por fuerza centrífuga– acelerar la decantación o la sedimentación de sus componentes o fases (generalmente una sólida y una líquida), según su densidad. Existen diversos tipos, comúnmente para objetivos específicos.

La atracción que ejerce la gravedad sobre la leche es mayor que sobre la crema, menos densa, que va a la superficie. Este proceso se puede acelerar centrifugando la mezcla (estas centrifugadoras tienen la forma de un cuenco que gira rápidamente). De este modo la leche es impulsada más lejos del centro que la crema, la cual, por no ser tan densa, no sufre con tanta intensidad los efectos de la fuerza centrífuga que se origina.

También bombas centrífugas y turbinas centrífugas que trabajan con líquidos y aire, respectivamente, son un acierto mecánico. Debemos recordar que los turborreactores centrífugos reciben este nombre porque su alimentación de aire lo produce una turbina de ese tipo.

Bomba centrifugadora

En la fundición de metales, las inyectaras centrífugas son insustituibles por la precisión, seguridad y calidad de los colados. Este tipo de inyectora recibe el metal fundido por un tragadero central, y mantiene adosada una batería de matrices a su contorno. Girando a gran velocidad, el metal es centrifugado con gran presión, e inyectado al interior de las matrices.

RAZÓN POR LA CUAL LA TIERRA NO ES ATRAÍDA POR EL SOL

Esquema Sistema Tierra-Sol

Esto se debe a que, a pesar de la atracción gravitacional (fuerza de gravedad) la fuerza centrífuga tiende constantemente a empujar a la Tierra hacia afuera. En este caso, las dos fuerzas están equilibradas. La fuerza de gravedad entre el Sol y la Tierra actúa como una fuerza centrípeta, que tiende a atraer al planeta, que gira en su órbita, hacia el Sol. La fuerza centrífuga originada por el movimiento de rotación, tiende a empujar al planeta en sentido contrario, es decir, fuera del Sol., El resultado es que la distancia entre el Sol y la Tierra se mantiene constante, suponiendo que la velocidad del planeta también se mantenga igual (en realidad, la velocidad de la Tierra sufre pequeñas variaciones, con la consiguiente alteración en la distancia al Sol). El mismo principio se aplica a los satélites artificiales que se ponen en órbita para girar alrededor de la Tierra. La atracción de la gravedad equilibra las fuerzas centrífugas, y los satélites pueden moverse a distancia más o menos constante de la Tierra, “suponiendo que su velocidad sea también constante”. De todos modos, la velocidad se reduce gradualmente, a causa del rozamiento con la atmósfera, y los satélites tienden a caer hacia la Tierra.

Formula de la Fuerza Centrípeta:

Diagrama de un cuerpo girando, Fuerza Centrifuga

Ejemplo: si se toma una piedra de 2 Kg. de masa, atada a una cuerda y se la hace girar con un radio de 1,2 m. a razon de 2 vueltas por segundo. Cuanto vale la fuerza centrífuga que debe soportar la cuerda?.

La masa es de 2 Kg., el radio: 1,20 metro, pero nos falta la velocidad tangencial Ve, pues la del problema es la velocidad angular.

Para ello se sabe que dá dos vueltas en un segundo, entonces el recorrido es, dos veces el perímetro de la circunferencia por segundo. Podemos hallarlo asi: 3.14. 1.2. 2=7.53 m. cada vuelta , por dos es: 15,07 m. distancia que la masa recorre en 1 segundo, por lo tanto la velocidad tangencial es: 15,07 m/seg.

Aplicando la formula se tiene que Fc= ( 15,07 )². 2 /1,2² =454/1.44=315,27 Newton

Fuente Consultada:
Revista TECNIRAMA N°21 Enciclopedia de la Ciencia y La Tecnología -La Fuerza Centrífuga-

Propiedades de las Piedras Preciosas y sus Minerales

CARACTERÍSTICAS DE LAS GEMAS O PIEDRAS PRECIOSAS

La mayoría de las piedras preciosas o gemas son minerales que se han formado en lugares muy variados en el interior de la Tierra. Estos minerales poseen una composición química definida y una ordenación atómica, que hace que sus propiedades físicas y ópticas permanezcan constantes o varíen solamente dentro de estrechos límites. Algunas propiedades tales como densidad e índice de refracción pueden medirse con precisión y ser utilizadas para identificar un mineral.

Casi todo el relieve de la Tierra se forma con rocas, y éstas con minerales. Algunas, como el mármol, se componen de un solo mineral. Otras, como el granito, comprenden varios, que en el granito pulido se ven a simple vista.

Las rocas más antiguas tienen tres mil millones de años. Otras son más recientes porque han pasado por una serie de vicisitudes: al principio la roca es ígnea, es decir, sale fundida por algún volcán o grieta de la Tierra; luego, el tiempo y el clima la dfishacen en polvo y se va acumulando en forma de sedimentos donde, con los años, forma rocas sedimentarias; por último, las altas presiones y temperaturas transforman rocas sedimentarias (la tiza) en rocas “me-tamórficas” (el mármol).

Los minerales son los componentes de las rocas, es decir, sus unidades básicas. Son sustancias naturales de composición química característica y se conocen muchos centenares. Algunos son elementos puros, como el oro, el cobre, la plata, etc., que se presentan en estado nativo; pero la mayoría de ios minerales son compuestos. No suelen clasificarse entre los minerales ciertas sustancias (eí petróleo) que provienen de restos de plantas y animales.

La identificación de los minerales es de gran importancia para la búsqueda de yacimientos; también es un pasatiempo interesante para el que tiene algunas nociones fundamentales. Cada mineral posee una composición química definida y características físicas propias (dureza, brillo, transparencia, etc.) que permiten identificarlo: son como sus impresiones digitales. Su estructura suele ser cristalina, o sea que sus partículas elementales se disponen, como en un panal, en una “malla cristalina” bien ordenada.

Ciertos minerales no son cristalinos, como el ópalo (una variedad de cuarzo): se los llama amorfos. Hay minerales bastante fáciles de reconocer, pero otros exigen cierto número de pruebas para distinguirlos.

Idealmente las gemas deben ser duras y no verse afectadas por las temperaturas, presiones, polvos abrasivos y agentes químicos que encontramos en nuestra vida diaria. La mayoría son silicatos que incluyen a las esmeraldas aguamarinas, peridotos y amatistas, así como otras muchas de rareza exótica.

El rubí, zafiro, espinela y crisoberilo son óxidos. El diamante es la única gema compuesta por un solo elemento químico —el carbono—. La nefrita, jadeíta y lapislázuli son rocas, es decir, agregados de uno o más minerales.

Las plantas y animales son las fuentes de las gemas «orgánicas» más frágiles que han sido usadas como adorno desde los tiempos más antiguos. El azabache y el ámbar son madera y resina fosilizadas de árboles extinguidos, mientras las perlas, las conchas y los corales son estructuras de carbonato calcico formadas por animales acuáticos. Los marfiles son los colmillos y dientes de los mamíferos terrestres y marinos.

CRISTALOGRAFÍA
Al examinar la mayoría de los minerales, que son cristales, vemos con sorpresa que sólo hay seis grupos básicos o sistemas de cristales. Estas seis familias tienen cada una muchos hijos, aunque todos ellos con un “aire de parentesco”.

Los minerales suelen ser impuros; sus impurezas son, a veces, las responsables del color; el rojo del rubí se debe al cromo; el azul del zafiro al titanio: ambos son sólo corindón, un óxido de aluminio cuya masa de fondo es incolora.

Hay seis grandes sistemas de formas cristalinas, o sea seis grandes grupos de redes cristalinas: regular o cúbico, tetragonal, hexagonal, rómbico, monoclínico y triclínico.

La división se basa en el número de líneas imaginarias, o ejes de simetría, que pasan por el centro del cristal, su longitud relativa y los ángulos que forman. En el sistema cúbico, por ejemplo, los cristales poseen tres ejes de igual longitud y perpendiculares entre sí, característicos del cubo, en geometría. La sal común se compone de pequeños cubos.

El tamaño de los cristales varía enormemente; algunos son invisibles, mientras ciertos cristales de espodumento, silicato con aluminio y litio, pueden alcanzar varios metros. Rara vez se encuentra un espécimen perfecto, y sólo una larga experiencia permite reconstruir el cristal tipo, a partir de un fragmento. El tamaño de un cristal depende de la lentitud con que se ha formado, o sea, de la oportunidad de que gozaron las partículas de ubicarse en la trama inicial ya formada.

La estructura-cristalina determina muchas de las propiedades minerales que son importantes en el tallado y la identificación de las piedras preciosas Por ejemplo, los átomos pueden estar menos fuertemente enlazados en algunos planos del cristal, indicando la dirección en la que se rompe más fácilmente o los planos de exfoliación.

La dureza puede cambiar también con la dirección del cristal. La estructura cristalina afecta a la trayectoria de propagación de la luz a través de esa sustancia.

En todos los minerales, salvo en los del sistema cúbico y los minerales no cristalinos, la luz se refracta formando dos rayos que viajan a distintas velocidades y con diferentes trayectorias a lo largo de la estructura cristalina. En los minerales coloreados los rayos pueden ser absorbidos de forma diferente en el interior de la estructura y emerger en forma de dos o tres colores distintos o sombras del mismo color. Este efecto se denomina pleoavísmo.

Desde tiempos antiguos muchos materiales, naturales y artificiales, han sido utilizados enjoyas y otros objetos preciosos. Sin embargo durante siglos el término piedra preciosa ha significado un mineral natural descable por su belleza, valioso por su rareza y suficientemente resistente para proporcionar un placer duradero.

PESO ESPECÍFICO
Es un buen indicio; el del azufre es 2, el del corindón 4, el de la casiteria 7, etc. Se necesita un aparato especial para determinarlo; es imposible hacerlo en el campo, aunque puede distinguirse manualmente entre minerales livianos y pesados. Un trozo de talco (peso específico 2,8) parece mucho más liviano que uno de apatita (peso específico 3,2).

ESCALA DE DUREZA DE MOHS
Una característica fácil de determinar es la dureza. Se recurre a la prueba del rayado; un material más duro raya a otro más blando, y dos de igual dureza no se rayan entre sí. Hay una escala convencional de dureza, la escala de Mohs. Se divide en diez grados numerados, cada uno más duro que el anterior; los índices son: 1, talco (el más blando); 2, yeso; 3, calcita; 4, feldespato; 5, apatita; 6, ortoclasa; 7, cuarzo; 8, topacio; 9, corindón; 10, diamante.

La dureza de un mineral se determina encontrando el más blando de la serie que lo raye. Por ejemplo, la calcita raya la galena, pero esta última rayará el yeso, de manera que su índice de dureza estará entre 2 y 3. Las piritas de hierro, parecidas al oro, tienen una dureza entre el 6 y el 7, mientras la del oro verdadero se sitúa entre el 2 y el 3.

Las series de Mohs se venden comercialmente. El número 10, diamante, suele faltar, pero no tiene mayor importancia porque difícilmente se hallará un mineral más duro que el corindón (si se lo encuentra es posiblemente diamante). Puede determinarse aproximadamente la dureza de un mineral aun sin esa colección. La uña tiene una dureza Mohs de alrededor de 2,5; un lápiz, 3; el vidrio común alrededor de 5,5; y la hoja de un cortaplumas aproximadamente 6.

tabla dureza de las pidras preciosas

Para ser apreciada, una joya debe ser también resistente. A pesar de que la esmeralda y el zircón son más duras que el cuarzo, son, sin embargo, frágiles, es decir, se separan en láminas fácilmente. El diamante y el topacio están entre las mucha gemas que pueden partirse si caen o son golpeadas contra objetos duros y lo hacen entonces según planos en los que los enlaces atómicos son más débiles. Las gemas más resistentes son la jadeíta, la negrita y el ágata; todas ellas tienen sin embargo una dureza igual o menor que 7. Su resistencia deriva del tipo de su estructura, que consiste en una masa de fibras o granos interconectados entre sí, lo que las permite ser modeladas en formas de exquisitos cuencos e intrincadas esculturas.

LOS MINERALES Y LA LUZ
Algunos minerales son transparentes: permiten ver nítidamente a través de ellos. Otros son opacos: la
luz no los atraviesa. Hay grados intermedios, translúcidos, lechosos. Pero la mayoría de los minerales opacos dejará pasar algo de luz si se los convierte en láminas muy delgadas.

Existen minerales que muestran doble refracción, es decir, que un texto leído a través de. ellos se ve doble; aquí los citamos únicamente por la influencia trascendental que han tenido en el desarrollo de toda la óptica.

El color es una característica importante de los minerales, especialmente para identificar los metálicos, pues sólo presenta ligeras variantes. Pero en minerales como el cuarzo, el corindón y el granate, el color se debe principalmente a las impurezas y puede variar notablemente. Minerales como la turmalina tienen diferentes colores, variables según desde donde se los mire.

Los minerales en polvo pueden tener un color distinto del superficial: el talco es verde, pero una vez molido es blanco. Del mismo modo, la hema-tita es superficialmente gris o negra, pero en polvo es pardo rojiza. La ventaja de moler los minerales es que su color es más uniforme que el superficial variable. Para conocer qué color tiene un mineral en polvo basta frotar un trozo sobre porcelana áspera.

La razón por la cual el color del polvo es diferente al del sólido se debe a la reflexión. La reflexión del vidrio, por ejemplo, es blanca, de manera que si pulverizamos una botella de vidrio verde, el polvo se vuelve cada vez más blancuzco debido a que aumenta el número de superficies que reflejan luz blanca.

El lustre o brillo del mineral depende de la cantidad de luz que refleja o absorbe. Puede ser resinoso (similar al de la resina) como en el azufre, perlado como la mica, sedoso en minerales fibrosos como el crisotilo, vitreo como el cuarzo, adamantino (de diamante) o metálico. Hay minerales que no poseen brillo: son de superficie mate (p. ej. la caolinita). Una interesante característica de los minerales es el grado en que desvían la luz. Los rayos de ésta siempre se desvían cuando pasan de un medio a otro de diferente densidad.

Si colocamos en agua vidrio molido cuyo índice de refracción o capacidad para desviar la luz, sea igual al del agua, se volverá invisible; si el índice de refracción de la luz es algo bajo podemos añadirle sal común: poco a poco llegará el momento en que no se vean más los trozos de vidrio. Para reconocer diamantes y otras sustancias, a fin de distinguirlas de sus falsificaciones, se usan líquidos especiales muy refractivos como el sulfuro de carbono.

Hay sustancias que, al recibir rayos invisibles como los rayos X o los rayos ultravioleta, devuelven rayos visibles: este fenómeno se llama fluorescencia. Bajo la luz ultravioleta ciertos minerales exhiben hermosos colores, como los de uranio. Algunos poseen esa propiedad por sus impurezas u otros factores. Uno de los materiales fluorescentes más hermosos es el rubí, que emite un brillante resplandor rojo al ser sometido a la luz ultravioleta.

Esta propiedad del rubí ha dado origen a la invención del Láser, instrumento que revoluciona la óptica y las telecomunicaciones, y del que nos ocuparemos en una nota especial. La luz es una onda, un serpenteo, que se produce en todos los planos. Pero en ciertos casos se la puede polarizar, es decir, hacerla vibrar en un solo plano. Las características ópticas especiales de un mineral, una vez reducido a una fina lámina y visto a través de un microscopio de luz polarizada, pueden servir de guía para su identificación.

El valor comercial de una gema depende de la calidad del color, de la ausencia de manchas internas y del peso. El peso de una gema se mide en quilates (5 quilates = 1 gramo) y las gemas son normalmente vendidas por peso, a tanto por quilate. La densidad de un mineral gema varía de manera que un zafiro amarillo parecerá más pequeño que una citrina menos densa de peso similar. La densidad de las gemas se mide como peso específico, comparando el peso de la gema con el peso de un volumen igual de agua.

CLIVAJE Y FRACTURA
Las fracturas de un mineral son otro indicio para clasificarlo. Se llama clivaje la tendencia a partirse más fácilmente según ciertos planos, llamados planos de clivaje. El tipo de clivaje se define seeún el número de “planos” y sus ángulos relativos. Tomemos un ejemplo sencillo: la galena tiene clivaje cúbico; se observan tres planos de clivaje que forman ángulos rectos entre sí. Cuando se desmenuza un cristal de galena se obtiene una cantidad de pequeños y brillantes cubos. Uno de los tipos más interesantes es el clivaje basal o laminar, en el cual hay un solo plano, paralelo a la base del cristal, como en la mica, que se divide en finísimas Láminas u hojas.

Cuando un mineral no se rompe según planos determinados, se dice que se fractura. Todos los minerales pueden fracturarse, pero no es probable que lo hagan, si poseen un plano definido de clivaje. Hay ¡diferentes tipos de fractura, por ejemplo: fibrosa, concoidea, irregular, etc. Por ejemplo el crisotilo (mineral de amianto) forma fibras que pueden hilarse y tejerse. La fractura concoidea puede apreciarse en la obsidiana (vidrio volcánico).

ANALISIS A LA LLAMA: Existe un gran número de ensayos químicos para determinar la naturaleza de un mineral. El ensayo a la llama se basa en el color característico que el mineral imparte a ésta. Con los minerales de sodio (sal común, sulfato de sodio, bórax, etc.) la llama adquiere una intensa coloración amarillenta. Los de estroncio producen un hermoso color carmín; por eso se usa en los fuegos artificiales.

analiis de minerales a la llama

Los minerales de cobre la colorean de azul o verde, etc. Si se usa un mechero de Bunsen conviene recordar que, si no recibe suficiente aire, su (lama es amarillo brillante; pero si tiene suficiente oxígeno hay una zona interior oscura tan fría, que una cabeza de cerilla, perforada por un alfiler y suspendida en esta zona, no se enciende. El mineral debe colocarse en la zona azul violeta o cono exterior de la llama del mechero de Bunsen. Ésta llega a una temperatura suficiente para los metales alcalinos (minerales que contienen sodio, potasio, etc.); pero otros precisan Mamas más calientes.

ANÁLISIS ESPECTROQUÍMICO
Ld luz emitida o absorbida por un átomo es como su fotografía individual. Cada átomo tiene su propio espectro de rayos, que son de luz o de sombra, según el átomo las emita o las absorba. Pero de todos modos el espectro de un átomo es un método de análisis: para ello basta obligarlo a que emita luz. Actualmente se prefieren las chispas, más enérgicas.

ANÁLISIS CON MICROSCOPIO
Este es un método moderno. Por ejemplo, el zafiro y el rubí natural tienen líneas de acumulación hexagonales y burbujas angulares, mientras que en los sintéticos las líneas de acumulación son curvas y las burbujitas son esféricas. Los microscopios electrónicos permiten observar partículas ínfimas en las arcillas, definiéndolas claramente. Cada vez la industria se acerca más a los minerales sintéticos, como en el caso de los rubíes para los relojes.

Cuando se sumergen un diamante falso y uno genuino en un líquido que desvíe los rayos luminosos en la misma proporción que el diamante falso, sólo el diamante real quedará visible.

LA BELLEZA: La belleza del color combinada con una perfecta transparencia es el ideal de belleza de muchas gemas. Sin embargo, en ciertas ocasiones, las inclusiones de minerales pueden ser la atracción principal de algunas de ellas, produciendo el colorido similar al de las lentejuelas del cuarzo venturina y la piedra del sol, y reflejando los ojos de gato y estrellas que brillan desde algunos crisoberilos y zafiros.

La atracción de las más sutiles ágatas coloreadas y jaspes está ligada a la enorme variedad de modelos y texturas que se desarrollan cuando ese mineral crece: su crecimiento en bandas y los fragmentos minerales incorporados hacen que se asemejan a menudo a exóticos paisajes y jardines.

La mayoría de las gemas muestran muy poca belleza en estado bruto: su auténtico color y lustre se revelan solamente por la destreza del tallado y del pulido. La mayor belleza del diamante alcanza todo su esplendor con el tallado preciso y apropiado al tamaño de la piedra.

Cuando llevamos joyas nuestros movimientos crean unos continuos cambios, que resultan de la relación mutua entre las piedras preciosas y la luz que las atraviesa, añadiendo destellos y luces a su color. Los focos realzan la «vida» de los diamantes, rubíes y esmeraldas, mientras suaves luces aportan el brillo al ámbar y a las perlas.

Respecto a la rareza, las gemas pueden ser raras en uno o más aspectos. Muchas son variedades de materiales comunes, y su rareza reside en un color o transparencia excepcionales. El cuarzo y el feldespato juntos constituyen cerca de las dos terceras partes de la corteza terrestre, pero la mayoría de sus variedades son grises o cremas.

Muy poco cuarzo posee el bonito color y la intachable transparencia de una fina amatista y raramente el feldespato labradorita muestra la iridiscencia del arco-iris . Los minerales gemas son raros aun en sus yacimientos: los diamantes constituyen una mínima proporción de su roca madre, la kimberlita —alrededor de 5 g. en 100 T.—.

FINALMENTE EL TALLADO: Un diamantista hábil puede convertir un guijarro en bruto en una brillante y valiosa piedra preciosa. El conocimiento necesario para conseguir estas transformaciones se ha ido haciendo a lo largo de muchos siglos, y hoy día es posible seleccionar el tallado que ponga de manifiesto las cualidades de cada gema.

Cuando se elige la mejor talla para una piedra preciosa, el diamantista debe considerar la forma del material en bruto y la magnitud y posición de los posibles defectos, tales como las fracturas o inclusiones. También debe tener en cuenta las propiedades ópticas del mineral y sus características cristalinas: es difícil conseguir un buen pulido paralelo a las direcciones de exfoliación, y las gemas pleocroicas han de estar talladas con una determinada orientación para que puedan mostrar su más bello color.

Sin embargo el tallado es a menudo un compromiso entre alcanzar el máximo lucimiento de la belleza de la gema y obtener la piedra preciosa de mayor tamaño posible.

Partes y Facetas de una Talla Brillante

IMAGENES DE LAS GEMAS MAS UTILIZADAS EN JOYAS

Diamante

Gema: Rubí

Gema: Zafiro

Gema: Esmeralda

Gema: Ópalo

Mineral: Amatista

Gema: Ágata

Gema: Turmalina

Gema: Jade

ALGO MAS…
LAS PIEDRAS PRECIOSAS ARTIFICIALES

La fabricación de las piedras preciosas artificiales ha sido, desde la antigüedad, un constante empeño del hombre. Estos esfuerzos tuvieron en general muy poco éxito hasta que, a principios del siglo XX, se sintetizaron los primeros rubíes. Gracias al considerable avance tecnológico producido por la segunda guerra mundial y a los recientes avances en la física del estado sólido, se han conseguido, en este campo, considerables progresos.

La posibilidad de estudiar determinados procesos físicos en monocristales ha aumentado su importancia, y los cristales producidos artificialmente no sólo son utilizados en investigación sino que también han encontrado aplicaciones en la industria.

La importancia de las piedras preciosas se debe, principalmente, a su dureza y, en segundo lugar, a los cambios que determinan en su color y en sus propiedades físicas, en general, las trazas de impurezas. En uno de los métodos empleados ,el método de presiones ultraelevadas, es necesario utilizar, simultáneamente, grandes presiones y altas temperaturas, problema que fue parcialmente resuelto con el empleo de un material denominado pirofilita, que tiene la ventaja de que su punto dé fusión aumenta considerablemente con la presión.

La síntesis del diamante, efectuada por la General Electric estadounidense en 1955, se consiguió por este método, con el que pueden lograrse, en la zona de trabajo, presiones de unas 150.000 atmósferas a 3.500°C, siendo necesaria por tanto una prensa hidráulica de gran capacidad, que resulta difícil de construir. Este problema fue parcialmente resuelto con la introducción del yunque tetraédrico, el cual emplea cuatro émbolos, que ejercen la presión sobre las cuatro caras del yunque. Con esta disposición, es posible conseguir 80.000 atmósferas a bajo costo y con maquinaria fácil de construir. Además de diamantes, se han sintetizado, con este método, borazón (forma cúbica del nitruro de boro) y una variedad del granate.

Con el método de fusión a la llama, se obtienen rubíes de alta calidad. Su fundamento es muy sencillo: sobre uno de los extremos de una semilla de rubí (pequeño monocristal alargado, obtenido previamente) se va dejando caer alúmina finamente pulverizada, mientras se calienta con un soplete. El polvo de alúmina funde y cae sobre el extremo superior de la semilla, que se va retirando lentamente de la llama a medida que el cristal crece. De este modo, se pueden obtener con facilidad mono-cristales cilindricos de hasta 45 cm. de longitud.

Todos los procesos descritos están, naturalmente, automatizados: el flujo de polvo, la temperatura y posición de la llama, así como el desplazamiento vertical del monocristal. Uno de los inconvenientes principales de este método es que los cristales se encuentran sometidos a elevadas presiones internas, como resultado de la desigual distribución de temperaturas, por lo que es frecuente él agrietamiento espontáneo.

El método hidrotérmico ha demostrado ser extraordinariamente valioso en la producción de monocristales de cuarzo (y otras sustancias silíceas) que se obtienen por cristalización a partir de soluciones acuosas. Para ello se utiliza un autoclave de paredes gruesas, capaces de resistir unos 1.000 atmósferas y 500°C de temperatura.

Dentro del autoclave se encuentra la disolución acuosa de la sustancia de partida (por encima de 100°C la solubilidad en agua aumenta considerablemente), y suspendidas de su parte superior se sitúan las semillas. La solución se calienta por una plancha metálica adosada a la base del autoclave, con lo que se crea en su interior un gradiente de temperatura. La sustancia de partida se disuelve en el fondo y la solución asciende por confección.

En la región superior, más fría, la solución está sobresaturada y la sustancia cristaliza sobre las semillas. Este método presenta varias limitaciones, como pueden ser el elevado costo del instrumental necesario y la imposibilidad de observar el crecimiento, lo que impide que en un momento dado puedan regularse la temperatura y le velocidad de cristalización con el fin de controlar los sucesivos pasos del proceso.

Actualmente se han desarrollado procesos con el misme fundamento, pero que utilizan, en vez de agua, tundentes sólidos ce puntos de fusión relativamente altos, tales como los halogenuros y carbonatos alcalinos, y el óxido v el fluoruro de plomo.

Se han obtenido diamantes de 0,2 g. por el método de las presiones ultraelevadas, con el empleo adicional de catalizadores metálicos que aceleran la conversión directa del carbono en diamante. El color de los cristales obtenidos puede modificarse alterando las condiciones de crecimiento.

Las variedades más conocidas del corindón son el rubí y el zafiro. Como ya hemos indicado pueden obtenerse ambas piedras preciosas por el método de fusión a la llama. El cromo proporciona al corindón una tonalidad roja; el níquel, amarilla; el titanio, azul, y el vanadio, azul verdoso. Aunque los detalles son secretes, el proceso más apropiado para la síntesis de esmeraldas (BeO – Al2O3 – 6 SiO2) parece estar fundado en el método hidrotérmico, aunque no pueda descartarse la utilización de un fundente sólido, si tenemos en cuenta los éxitos obtenidos con este último procedimiento en la obtención de otros monocristales.

Ver: Las Rocas   –   Minerales Para La Industria    –   Minerales de la Tierra

Fuente Consultada
Revista TECNIRAMA N°6 Encilopedia de la Ciencia y la Tecnología – Como se identifican los minerales
Las Piedras Preciosas Geological Musseum Ciencias de la Naturaleza

Primeros Huevos de Dinosaurios Encontrados Fosilizados

IMPORTANCIA DEL DESCUBRIMIENTO DE LOS HUEVOS DE DINOSAURIOS

En 1923, un miembro de la expedición del Museo Americano de Historia Natural de Estados Unidos, dirigida por el doctor Roy Chapman Andrews, a la zona de areniscas rojas del desierto de Gobi, en Mongolia, encontró un nido completo de huevos de dinosaurio fosilizados.

Los huevos habían sido puestos a fines del período cretácico, hace unos 80 millones de años. Estaban enterrados cerca de la superficie, que había estado expuesta a los efectos de la erosión durante millones de años también. Los dinosaurios fueron animales dominantes —es decir, de gran importancia por su influencia sobre todas las restantes formas de vida— en la era Mesozoica. Se los divide en dos grandes órdenes, siendo, por una parte, parientes de los cocodrilos y, por otra, antecesores de los pájaros.

Los primeros representantes de los dinosaurios que aparecieron en escena eran de tamaño pequeño, pero, en conjunto, se observa en ellos una evolución gradual hacia dimensiones cada vez más gigantescas. Algunos constituyeron los mayores animales terrestres que han existido. Unos eran carnívoros y otros, la mayoría, herbívoros.

Los primeros dinosaurios se caracterizaron por ser bípedos (marchaban de pie sobre las patas posteriores). Sin embargo, se ha observado que a lo largo de su evolución muchos tendieron a adquirir la postura cuadrúpeda, sobre todo los herbívoros. Bastantes carnívoros conservaron la posición bípeda.

La clasificación que se ha hecho de los dinosaurios se basa en las afinidades de su esqueleto y de la estructura de los huesos con los reptiles o los pájaros. Aquellos que presentaban semejanzas con los reptiles se clasifican en el orden de los saurisquios.

huevos de dinosaurios hallados en Gobi Mongolia

El descubrimiento de los huevos de dinosaurio es uno de los raros hallazgos (como el de las impresiones de las membranas interdigitales momificadas) que nos ilustran sobre el modo de vida de estos seres. Quizá si los detalles de su biología estuviesen más claros, podrían conocerse las causas de la desaparición repentina de los dinosaurios, después de un período de florecimiento espectacular. Se ha pensado, fundamentalmente, en cambios climáticos que afectaron de tal modo a la flora, que las especies herbívoras, demasiado especializadas, no, pudieron adaptarse a un cambio de régimen alimenticio. La desaparición de los herbívoros trajo consigo la de los carnívoras que vivían a costa de ellos. La imposibilidad de los dinosaurios de evolucionar, y adaptarse a las cambiantes condiciones, parece radicar en la extremada especialización de su forma de vida. De hecho, es una regla; comprobada por el estudio de los fósiles, que las formas de animales se adaptan mejor a las condiciones cambiantes cuanto menos evolucionadas están, es decir, cuanto menos especializadas se hallan   en   una   forma   de  vida   determinada.

A pesar de los abundantes datos existentes sobre la morfología de los dinosaurios, nuestros conocimientos sobre su biología y costumbres se apoyan, en muchos aspectos, solamente en conjeturas. Se sabe que la médula espinal presentaba, en algunas formas, un ensanchamiento a la altura de la cintura pelviana (caderas), que podía tener un tamaño mayor que el del cerebro (ganglios cerebroides).

Este ganglio actuaría como un centro local de reflejos en las formas gigantes, dado el tiempo considerable que los reflejos habían de tardar en recorrer el largo camino existente entre el cerebro y las patas. Desde que se comenzó a estudiarlos, se supuso que estos antecesores de animales realmente ovíparos (que ponen huevos), fueron ovíparos también, pero no se tuvo una prueba material hasta dicho hallazgo de huevos fosilizados del Protoceratops, pequeño reptil antecesor de los dinosaurios cornúpetas a que nos hemos referido.

El mismo no presenta, sin embargo, traza de cuernos, pero sí el citado repliegue posterior de la cabeza. En una expedición previa a Mongolia ya se había encontrado parte de la cascara de un huevo, pero el descubrimiento, realizado después, del nido entero, en una zona desértica —a cientos de kilómetros de distancia de los habitantes más próximos— sobrepasó las esperanzas.

Por fin se había conseguido la prueba de que, al menos, algunos dinosaurios ponían huevos. Además, este dinosaurio (Protoceratops) los ponía (en cantidad de 15 o más) en un nido, de la misma forma que los ponen las tortugas y muchas aves actuales. Las rocas de color rojo ladrillo donde, se encontraron los huevos se componen de granos de arena fina y roja. Son blandas y se desmenuzan e, indudablemente, fueron formadas por la arena arrastrada por el viento. Mongolia debe de haber sido un desierto muy seco y cálido cuando el Protoceratops vivía.

Probablemente, los huevos fueron enterrados a demasiada profundidad por la arena movediza, de forma que los rayos solares no pudieron incubarlos. Poco a poco se fueron hundiendo cada vez más, a causa de la continua presión ofrecida por la gran carga de arena que soportaban encima y, a su vez, la arena que los rodeaba fue comprimiéndose y trasformándose en roca arenisca.

Entretanto, los huevos mismos fueron rellenándose de arena, al fosilizarse, y conservaron su estructura. Las condiciones de Mongolia resultaban ideales para la formación de fósiles, y de hecho el país es el lugar perfecto para buscarlos. Había muy poca humedad, y el aire, indudablemente, velaba por los restos animales, arrastrando la arena, que los enterraba en enseguida, lo que evitaría su descomposición. Además, desde que se extinguióle! Protoceratops, se ha sumergido uña pequeña extensión de Mongolia,, por lo que las rocas sedimentarias (rocas formadas bajo el agua) se han depositado sobre la arenisca sólo en contados lugares.

El Protoceratops vivía en condiciones desérticas. Sin embargo, debió de haber algunos ríos o lagunas cerca del nido, ya que se han encontrado fósiles de tortugas en los alrededores, y el esqueleto de la cola del Protoceratops hace pensar que este animal pasaba parte de su vida en el agua. Su pico córneo y la escasez de dientes sugieren que era herbívoro, y quizás arrancaba las hojas y las ramas de las plantas o arbustos del desierto.

Además de abandonar el agua para ir a comer, ponía sus huevos en hoyos que cavaba en la arena de las dunas. Colocaba los huevos en círculos, con el extremo más alargado dirigido hacia el centro del nido. La cascara era dura. Los huesos que se encontraron cerca del nido fueron después cuidadosamente conjuntados. Es curioso el hecho de haberse hallado cierta cantidad de esqueletos de jóvenes animales, próximos unos a otrosflo que hace pensar en la existencia de una especie de “colonia infantil”, o de un lugar de cría.

También se han encontrado esqueletos de adultos, que no tenían más qué unos dos metros de longitud. La placa o expansión de la cabeza que protege el cuello está muy desarrollada, y en ella van insertos los músculos de la mandíbula y de la cabeza.

El notable descubrimiento de parte del esqueleto de un dinosaurio con forma de avestruz, el Oviraptor (“ladrón de huevos”), en el nido del Protoceratops, hace pensar que dicho ser estaba realmente robando los huevos del nido. Por desgracia, sólo se ha conservado una pequeña parte de este esqueleto, pero es tan semejante al de otros dinosaurios con forma de avestruz, que el Oviraptor, probablemente, presentaba el aspecto que se le da en el grabado.

SIEMPRE SIGUIERON LOS DESCUBRIMIENTOS EN EL MUNDO

Huevos Hallados en China, Cuando Se Excavaba Para Una Zanja

La ciudad de Heyuan, en China, es conocida popularmente como “la ciudad de los dinosaurios”, debido a los constantes descubrimientos de fósiles en su territorio. Esta vez, unos obreros han descubierto 43 huevos de dinosaurio mientras instalaban un nuevo sistema de cañerías, y muchos están intactos.

Fuente Consultada:
Revista TECNIRAMA N° 67
Enciclopedia de la Ciencia y La Tecnología

Cálculo del Radio de la Orbita en el Átomo de Hidrógeno

Cálculo del radio de la primera órbita del átomo de hidrógeno
Como es sabido, un átomo puede compararse a un sistema solar en miniatura. El centro, o núcleo, es relativamente pesado y estacionario, mientras que los electrones giran alrededor, en forma similar a como los planetas giran alrededor del Sol.

En general, las distancias electrón-núcleo son del orden de  10-8 cm, 0,00000001 cm.

esquema radio del hidrogeno

En un átomo la fuerza que mantiene a los electrones en sus órbitas no es gravitatoria, sino de naturaleza electrostática, ya que el protón (único componente del núcleo en el átomo de hidrógeno) y el electrón tienen cargas contrarias.

Neils Borh

Niels Bohr

Al igual que la fuerza gravitatoria, la electrostático es inversamente proporcional al cuadrado de las distancias.

Teniendo en cuenta que en una órbita circular la fuerza centrípeta está constituida por esta fuerza de atracción electrostática, e introduciendo el postulado de Niels Bohr, que establece que el momento angular del electrón en una órbita circular está cuantificado, es decir, sólo puede alcanzar valores enteros de h/2.¶ , donde h es la constante de Planck,   obtendríamos  la  siguiente expresión:

formula radio orbita del hidrogeno

que nos permite hallar para la distancia requerida el valor de 5.28.10-9 cm., sustituyendo las constantes n (en este caso es igual a 1, por ser la primera órbita), h (constante de Planck), m y e (masa y carga del electrón) por sus valores respectivos.

Valores de:
h=6.62606957 ×10 -34 J×s
m=9,109 382 91×10−31 Kg.
e=1,602 × 10-19 culombios

El valor obtenido, conocido como radio de Borh es: 5,291 772 0859×10−11 m.

 

Calcular la Velocidad de Una Bala Pendulo Balistico

HALLAR LA VELOCIDAD DE UNA BALA

La velocidad de una bala de rifle o de pistola puede medirse con un aparato llamado péndulo balístico. Consiste en esencia de un bloque de madera o dé plomo, de masa M, suspendido por una cuerda, como se indica en la figura.

pednulo balistico calcula velocidad de una bala

Si disparamos una bala de rifle de masa m y velocidad v contra dicho bloque, obligaremos a éste a recorrer el arco @, que puede ser medido fácilmente. Cuando la bala ha penetrado en el bloque, el conjunto se mueve con una velocidad V, y de acuerdo con el principio de conservación de la cantidad de movimiento, podemos escribir:

m . v = (M + m).V

Para hallar el valor de v, velocidad del proyectil antes de que se produzca el impacto, sólo nos resta pues conocer el valor de V, velocidad del conjunto después de que la balo se ha incrustado en el bloque.

Esta velocidad se puede hallar fácilmente aplicando el principio de conservación de la energía al movimiento de (M+ m) desde A, donde la energía es totalmente cinética (y potencial nula), hasta el final de su recorrido B, donde toda la energía es potencial (y cinética cero)

1/2 (M + m) V² = (M + m) g. h

Despejando V de esta fórmula de conservación de la energía es: V= (2.g.h)½ (elevado a 1/2 ó raíz cuadrada)

Midiendo directamente h, o hallando su valor a partir de l , @ (usando trigonometría) encontraremos V, que, sustituida en la primera fórmula, nos indicará el valor de la velocidad de la bala antes de producirse el impacto (g representa la aceleración de la gravedad, es decir, aproximadamente 9,8 m/seg²).

Historia del Progreso Tecnológico En El Uso de la Energía

El dominio del hombre sobre la materia creció en proporción directa con el control que adquirió sobre la energía. El proceso fue larguísimo. Durante siglos y siglos la humanidad sólo dispuso de la energía muscular, primero la suya propia y luego la de los animales domésticos.

Llegó a depender en tal forma de su ganado que cuando éste era muy especializado y el clima lo obligaba a emigrar, el hombre iba tras él; al final de la edad glacial, cuando el reno siguió los hielos en su retroceso, el hombre marchó a su zaga. Lo mismo ocurrió con el camello.

Cuando la actividad era medianamente inteligente, la ejecutaban casi exclusivamente los hombres: la pirámide de Keops se edificó en base a la técnica de las multitudes y costó, probablemente, cien mil vidas. Desde hace casi dos siglos, el hombre aprendió a disponer de cantidades abundantes de energía, e inició una era industrial muy diferente a las otras épocas históricas.

He aquí la lista de los pasos más importantes hacia el dominio de la energía:

CRONOLOGÍA DE LOS AVANCES TECNOLÓGICOS

domesticacion del caballo

4000 a. C. (aprox.): El hombre domestica al caballo.

la rueda

3500 a.  C.  (aprox.) Primeros   vehículos   con   ruedas,   en   Mesopotamia. 3000  a.  C.   (aprox.):   Arado   liviano   para   trabajo   continuo.

27  a.  C.  (aprox.):  Vitrubio   describe   molinos   de   agua,   ruedas a   vapor y  algunas  máquinas. 900  (aprox.):   Los persas utilizan molinos de viento. 1638:   Galileo   publica   sus  estudios  sobre  el   péndulo  y  loe   proyectiles.

1686:   Newton publica   sus  “Principia”,   en   los  que   formula   las leyes  de   la   mecánica   celeste. 1693:   Leibniz  establece  la   ley  de  conservación  y transformación de  la   energía   cinética   en   energía   potencial  y  viceversa.

maquina a vapor

1775:   Máquina de vapor de Watt.

lavoisier

1777: Lavoisier atribuye la energía animal a procesos químicos y compara   la   respiración  con   una   combustión   lenta,

1824:   Carnot  funda   la  termodinámica.

1831:  Faraday descubre  la  inducción  electromagnética.

1843/50: Joule determina   el  equivalente   mecánico  del   calor.

1847: Helmholtz incluye el calor en la ley de conservación de la energía.

1850 a 1854: Kelvin y Clausius formulan la primera y segunda ley de la  termodinámica y descubren  la  entropía.

maxwell electromagnetismo

1860/61: Maxwell y Boltzmann calculan la distribución estadística   de  la  energía  en  los  conjuntos  de  moléculas.

1866:   Primer   cable   eléctrico   submarino   a   través   del   Atlántico.

1876: Otto construye el primer motor de combustión interna a base  de  petróleo.

1879/80: Lámpara eléctrica de filamento carbónico de Edison y  Swan.

1884:  Turbina de vapor de Parsons.

becquerel radioactividad

1896:   Becquerel descubre  la  radiactividad.

albert einstein

1905: Einstein asimila la masa a la energía en una célebre ecuación   que  luego   permitirá   la   transmutación   de   una   en   otra.

1932: Chadwick descubre el neutrón, la partícula más eficaz para el  bombardeo  de  núcleos atómicos.

fision nuclear

1945: Primera reacción de fisión nuclear, con uranio (punto de partida de las centrales electroatómicas y de la propulsión atómica).

1951: Primera reacción de fusión nuclear, con hidrógeno pesado (reacciones termonucleares).

1956:   Primera   turbina   atómica,   en   Calder   Hall   (Gran   Bretaña!.

Naturaleza Ondulatoria de la Materia Resumen Descriptivo

RESUMEN DESCRIPTIVO DE LA FÍSICA CUÁNTICA APLICADA A LA MATERIA

Durante los últimos 300 años, los científicos han invertido mucho tiempo en discutir e investigar la naturaleza de la luz. En el siglo XVII, Isaac Newton sostenía que los rayos luminosos consistían en flujos de partículas muy pequeñas. Esta teoría corpuscular prevaleció durante muchos años, aunque Christian Huygens, contemporáneo de Newton, tenía el convencimiento de que la luz era trasmitida mediante vibraciones (es decir, ondas) en el éter.

Isaac Newton

HUYGENS Christian (1629-1695

En los primeros años del siglo XIX, Thomas Young realizó sus famosos experimentos sobre las interferencias luminosas. Estos fenómenos podían explicarse muy bien con sólo suponer que la luz es un conjunto de ondas y no un flujo de partículas.

Por consiguiente, la teoría ondulatoria parecía explicar satisfactoriamente todas las observaciones experimentales hechas hasta la época, por lo que se pensaba que remplazaría para siempre a la teoría corpuscular. Después, a fines del siglo XIX, se descubrió que, en ciertas condiciones, se liberaban electrones cuando incidía un rayo luminoso sobre una superficie.

Al incidir un haz de luz sobre ciertos materiales se desprenden electrones, creando una corriente electrica, medida por el galvanómetro.

La teoría ondulatoria no podía explicar este fenómeno, que conocemos con el nombre de efecto fotoeléctrico. Este nuevo descubrimiento planteó a los físicos un serio dilema. El efecto fotoeléctrico era más fácilmente explicable acudiendo a la teoría corpuscular, aunque casi todos los otros fenómenos luminosos se explicaban mejor a partir de la teoría ondulatoria.

Éstos eran algunos de los problemas teóricos que tenían planteados los físicos cuando apareció en escena el joven aristócrata francés Luis de Broglie. En una tesis publicada en 1922, cuando sólo tenía 30 años, sugirió que la luz presentaba un comportamiento a veces ondulatorio y a veces corpuscular, aunque no ambos al mismo tiempo.

Científico Luis De Broglie

LOUIS DE BROGLIE (1892-1960): Físico nacido en Francia el año 1892. Sus trabajos de investigación le permitieron descubrir la naturaleza ondulatoria de los electrones. Fue galardonado con el Premio Nobel de Física en 1929.

De Broglie supuso que, así como la luz, normalmente de naturaleza ondulatoria, podía, en ciertos fenómenos, comportarse corpuscularmente, las partículas pequeñas, tales como los electrones, podían presentar características ondulatorias. Pero tuvo que esperar 5 años para que se descubriera la evidencia de este fenómeno.

Fue en 1927 cuando los estadounidenses Clinton G. Davisson y L. H. Germer, trabajando en los laboratorios de la Bell Telephone, consiguieron producir fenómenos de  difracción  con un flujo de electrones, usando un cristal como red de difracción.

La teoría dualista de De Broglie puede aplicarse a todas las partículas en movimiento, cualquiera que sea su naturaleza.

La longitud de onda de esta onda De Broglie (la onda asociada con la partícula) se averigua dividiendo la constante de Planck por la cantidad de movimiento de la partícula. Luis Víctor de Broglie nació en Dieppe (Francia), en 1892. Su hermano mayor, Maurice, el sexto duque De Broglie, fue también un físico de cierta importancia.

Luis se interesó, primero, por la historia y la literatura, pero después, sirviendo en el ejército francés durante la primera guerra mundial, se dedicó a la física. En reconocimiento a su contribución al avance de la física teórica, Luis de Broglie fue galardonado, en 1929, con el premio Nobel. Desde 1928 fue profesor de física teórica en la Universidad de París, donde había cursado sus estudios.

PARA SABER MAS…

La teoría cuántica puso una bomba bajo la visión de física clásica y, al final, la derrocó. Uno de los pasos críticos de esta rebelión se dio cuando Erwin Schrodinger formuló su teoría de la mecánica de ondas, en la que sugería que un electrón, en un átomo, se comporta como una onda. Se guiaba por la belleza, por su principio básico de que si una solución no era matemáticamente hermosa, casi seguro era incorrecta. El trabajo de Schrodinger recibió un estímulo vital cuando leyó la tesis doctoral en Filosofía de Louis de Broglie, y fue oficialmente reconocido cuando, en 1933, Schrodinger compartió el Premio Nobel de Física con Paul Dirac.

El saludo de la onda de electrones
En 1900, Max Planck había sugerido por primera vez que la energía venía en conglomerados. Esto llevó a pensar que la luz — que es una forma de energía— también estaba compuesta de partículas. Al principio no parecía probable, pero Einstein había desarrollado el concepto hasta el punto de tener una credibilidad considerable, y las partículas de la luz se conocieron como fotones.

A pesar de que la luz era claramente una partícula, :ambién tenía propiedades de onda. El trabajo de Planck había demostrado que distintas luces se transformaban en diferentes colores porque los fotones tenían distintas cantidades de energía. Sin embargo, si se divide la energía por la frecuencia a la que ese color oscila, siempre resulta el mismo valor, la llamada constante de Planck.

Eso para la luz. ¿Pero qué hay de las partículas de materia? la pregunta empezó a tener respuesta cuando Louis de 3roglie, un aristocrático físico francés del siglo XX, sugirió c¡ue las partículas de los materiales parecían ser :onglomerados localizados porque no éramos capaces de verlas más de cerca. Una mejor observación, creía, revelaría que ellas también tienen propiedades de onda.

Buscando soporte para sus ideas sobre la teoría de la relatividad de Einstein, de Broglie demostró que, con las ecuaciones Je Einstein, podía representar el movimiento de la materia :omo ondas. Presentó sus descubrimientos en 1924, en su :esis doctoral Recherches sur la Théorie des Quanta (Investigación sobre la Teoría Cuántica).

Se demostró experimentalmente gracias al trabajo con electrones llevado a cabo por los físicos americanos Clinton Joseph Davisson y Lester Hallbert Germer en 1927, quienes demostraron que los electrones, aun siendo partículas, se comportan como ondas. Planck había cambiado nuestra visión de la luz, Broglie cambió la de la materia.

La aportación de Schrodinger en esta revelación, fue tomar .as observaciones de Broglie y desarrollar una ecuación que describía el comportamiento de los electrones. Usó la ecuación para definir los modos de movimiento de los electrones en los átomos, y descubrió que las ecuaciones sólo funcionaban cuando su componente de energía era múltiplo de la constante de Planck.

En 1933, Schrodinger recogió el Premio Nobel de Física, aero, al hacerlo, pagó tributo a Fritz Hasenhórl, el profesor de Esica que había estimulado su imaginación cuando era estudiante en la Universidad de Viena. Hasenhórl había sido asesinado en la Primera Guerra Mundial, pero durante su aiscurso de recepción, Schrodinger remarcó que de no haber ;:do por la guerra, habría sido Hasenhórl, y no él, quien recibiera el honor.

Fuente Consultada:
Las Grandes Ideas que Formaron Nuestro Mundo Pete Moore
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología

Amianto Aplicaciones, Propiedades y Riesgos de Cancer

El amianto o asbesto es conocido por el hombre desde hace por lo menos 2.500 años. A causa de su singular resistencia al fuego, se atribuían a esta sustancia propiedades mágicas. Se dice que el emperador Carlomagno demostró sus poderes sobrenaturales arrojando al fuego un mantel de amianto que recuperó intacto. La resistencia al fuego es la propiedad que más llamaba la atención de los antiguos, pero no es la única cualidad del amianto, que ha probado ser enormemente apto en aplicaciones industriales.

Es un excelente aislante del calor, del sonido y de la electricidad, y su naturaleza fibrosa permite que se pueda trabajar para elaborar telas para trajes, etc. Mezclado con otros materiales como el cemento proporciona un excelente material de construcción. El amianto es flexible, resistente a los ácidos y a los álcalis y no se deteriora  con el  tiempo.

Amianto

Hablar solamente de “amianto” no es precisar mucho, pues el amianto no es una sustancia única. Hay muchas variedades de él, y cada variedad posee en distinto grado las propiedades ya indicadas.

El valor comercial del amianto depende grandemente de dos cualidades: su incombustibilidad y su singular estructura fibrosa. La última permite separarle en fibras o filamentos que, en la variedad usada con más frecuencia, poseen una gran resistencia a la tracción y son muy flexibles.

Podemos decir que las principales propiedades del amianto son:

Incombustibilidad.
Elevado aislamiento térmico.
Elevado aislamiento acústico.
Resistencia a altas temperaturas.
Resistencia al paso de electricidad.
Resistencia a la abración.
Resistencia al ataque de microorganismos.

Debido a estas especiales características, el amianto se ha usado para una gran variedad de productos manufacturados, principalmente en materiales de construcción (tejas para recubrimiento de tejados, baldosas y azulejos, productos de papel y productos de cemento con asbesto), productos de fricción (embrague de automóviles, frenos, componentes de la transmisión), materias textiles termo-resistentes, envases, paquetería y revestimientos, equipos de protección individual, pinturas, productos de vermiculita o de talco. El amianto también está presente en algunos alimentos.

YACIMIENTO Y ORIGEN
El amianto, tal como se encuentra en la naturaleza, es una roca, tan sólida y densa como el granito. Se encuentra subterráneamente en vetas delgadas, incluidas en rocas que tienen una composición química parecida.

Incluso hoy día no hay una idea clara de cómo el amianto se formó en la corteza terrestre. La teoría más generalizada es la de que la roca subterránea se transformó por la acción del agua caliente, que contenía sales disueltas y anhídrido carbónico. Al producirse grietas en la roca, éstas se llenaron de agua, y, durante largos períodos de tiempo, ocurrieron reacciones químicas, que dieron lugar a capas gelatinosas que eventualmente cristalizaron para formar el mineral, fibroso y estrechamente empaquetado, que hoy día conocemos.

VARIEDADES   DE   AMIANTO
El nombre de amianto, en una acepción amplia, puede darse a todo mineral natural capaz de ser manejado o transformado en fibras. Hay, por lo menos, treinta tipos distintos de minerales que forman lo que se llama el grupo asbestiforme, y que tienen grandes semejanzas, pero solamente seis poseen importancia comercial.

En orden de importancia, son:   el crisotilo  o  amianto blanco,  la crocidolita o amianto azul, la amosita, antofilita, tremolita y actinolita. Se dividen en dos grupos principales: los amiantos de crisotilo (o serpentina) y los amiantos anfibólicos.

Las diferencias entre los distintos tipos provienen de la roca o matriz donde el amianto se encuentra. Desde el punto de vista químico, son complicados silicatos de magnesio que, generalmente, contienen uno o varios de los siguientes metales: sodio, aluminio, hierro y calcio.

CRISOTILO
Es la variedad más importante de mineral de amianto, y constituye el 80 ó 90 por ciento de la producción mundial. Se encuentra principalmente en Canadá, en la U.R.S.S. y en Rodesia del Sur. Su color varía desde el blanco puro hasta el verde grisáceo, dependiendo de las impurezas que contenga.

El crisotilo no se altera a temperaturas de hasta 450 ó 500 °C, en que empieza a perder agua estructural. Sus fibras resisten la acción de los álcalis, pero no la de los ácidos, y los ácidos minerales  fuertes  las  disuelven  completamente.

Crisolito o Amianto Blanco

Algunas fibras de crisotilo tienen hasta ocho centímetros de longitud, aunque la mayoría están por debajo de los cuatro centímetros. Son fuertes y flexibles, trabajándose con facilidad, probablemente a causa de las cantidades de talco que se encuentran en ellas.

Estas propiedades, juntamente con su resistencia, longitud, y mala conductividad eléctrica (gran resistencia al paso de la corriente), lo hacen muy adecuado para la manufactura de amianto textil. Cuando se muele la roca, el amianto se descompone en fibras, y la parte de roca adyacente se pulveriza.

De esta forma, ambos se separan fácilmente. Frotando la superficie de la roca, pueden obtenerse fibras extremadamente finas, que, de hecho, son haces de fibras todavía más finas, las cuales pueden separarse a mano. Incluso esas fibras pueden subdividirse a su vez.

Con el microscopio electrónico han podido medirse los diámetros de las fibras más finas, que son del orden de dos millonésimas a veinte millonésimas de centímetro. Las fibras que se usan en la práctica son mucho  más  gruesas.

Los  estudios  modernos  con  el  microscopio electrónico sugieren que. las fibras de crisotilo son huecas, a pesar de que los tubos pueden estar rellenos de material menos cristalino, pero con la misma composición química. Esto serviría de explicación al hecho de que las fibras sean suaves, elásticas y absorbentes. Su resistencia a la tensión es muy grande; por término medio, del orden de la de una cuerda de acero para piano del mismo diámetro, aunque se han obtenido valores de resistencia doble.

AMIANTOS ANFIBÓLICOS
Los amiantos que derivan de este grupo se diferencian de los del crisotilo por su mayor riqueza en sílice, hierro, aluminio, sodio y calcio. Sin embargo, contienen menos magnesio. Cada uno de ellos incluye dos o más de esos metales en diferentes proporciones. La crocidolita, que tiene un color azul peculiar, y la amosita, que varía desde el blanco al pardo amarillento, son las variedades más importantes. Ambos son silicatos de hierro; el primero contiene dos tipos de hierro y sodio, y el segundo, hierro ferroso y magnesio.

La crocidolita posee magníficas propiedades de resistencia al calor, semejantes a las del crisotilo. Los amiantos anfibólicos son más ásperos al tacto y, por’consiguiente, más difíciles de trabajar, y menos aptos para la fabricación de tejidos, a pesar de que sus fibras son más largas y que su resistencia a la tracción es grande (mayor que la de las cuerdas de acero para piano). La propiedad más importante de la crocidolita es su resistencia al ataque por los ácidos.

La crocidolita se encuentra principalmente en Sudáfrica, pero también hay grandes yacimientos en Bolivia y en Australia. La amosita se encuentra solamente en Sudáfrica. La resistencia a la tensión es mediana, pero, para algunas aplicaciones, su resistencia al calor resulta superior a la del crisotilo o la crocidolita. Sus fibras pueden tener hasta 30 centímetros de largo, y se usa principalmente para la fabricación de aislantes térmicos. Dado que la amosita es menos flexible y tiene menor resistencia a la tracción que el crisotilo y la crocidolita, sus aplicaciones son bastante limitadas.

Las fibras de los amiantos anfibólicos no sólo son más largas que las del amianto blanco, sino también más gruesas (de 400 a 100 milésimas de centímetro, en vez de dos millonésimas de centímetro). Son sólidas, y, por lo tanto, duras y elásticas, pero quebradizas.

Riesgos del amianto: Existe el riesgo de contraer determinadas enfermedades específicas provocadas por la inhalación de fibras de amianto: asbestosis, cáncer pulmonar y mesotelioma de pleura y/o peritoneo, además de una irritación crónica de la dermis.

Está compuesto por fibras microscópicas que pueden permanecer en suspensión en el aire el tiempo suficiente para que representen un riesgo respiratorio. Cuando el contacto es prolongado puede provocar son enfermedades del aparato respiratorio. El cáncer de pulmón es la más mortal de las enfermedades que afectan a las personas expuestas al amianto.

Otra enfermedad respiratoria es la asbestosis es una enfermedad asociada directamente a la exposición al amianto. Consiste en el desarrollo de una fibrosis pulmonar tras la inhalación de asbesto que con el tiempo dificultad para respirar.

MINERÍA Y TRATAMIENTOS
La mayoría de las rocas que contienen los minerales del amianto se explotan relativamente cerca de la superficie, por lo que esta minería resulta relativamente económica y sencilla, en comparación -con la minería profunda. Con frecuencia, las explotaciones están al descubierto.

A veces, sin embargo, se practican túneles en el frente de la roca, y el mineral se saca en vagonetas. El mineral bruto, con grandes cantidades de ganga, se pica o se dinamita de la roca, de forma parecida a como se hace con el carbón, y se separa provisionalmente a mano. La roca acompañante se tira y el material se lleva al grupo separador donde se extraer; las fibras largas.

Éstas forman el 3 % del mineral extraído, y son susceptibles de ser tejidas. El resto se tritura y se pasa por tamices. Los residuos se aventan para recuperar las pequeñas cantidades de amianto que puedan quedar. La producción de fibra es pequeña: una tonelada de fibra por cada ocho o hasta treinta toneladas de roca triturada.

La fibra de amianto separada por los tamices se lleva a un molino que funciona como un mortero, y a continuación se pasa a un molino de alta velocidad, donde las fibras se separan aún más.

APLICACIONES DEL AMIANTO
Las fibras largas usadas para tejer reciben un tratamiento más cuidadoso para separar las longitudes desiguales, los fragmentos de roca y las fibras no abiertas. A continuación se cardan, se bobinan y se tejen o trenzan. Generalmente se refuerzan con alguna fibra vegetal o, en algunos casos, con finos hilos de metal.

El tejido de amianto tiene muchas aplicaciones industriales. Se usa en revestimientos aislantes de muchas clases, para juntas y protecciones de calderas. Para estos revestimientos, la cubierta exterior de tejido de amianto se rellena de fibra suelta del mismo material. Los revestimientos están solamente extendidos y tensados, de forma que pueden quitarse fácilmente cuando hay que hacer reparaciones o para su manejo.

Los trenzados de amianto tienen usos muy variados en la industria para empaquetamientos y juntas, especialmente para máquinas de vapor y para bombas. Su resistencia al calor y su larga duración les hace excelentes para tales aplicaciones. Otra aplicación de relieve es en los frenos y embragues, donde las propiedades importantes son las de la resistencia y no alteración por el calor. La lisura del amianto permite que la pieza giratoria encaje sin vibración ni desgaste. La mayoría de las camisas anti-fricción se fabrican con tejido de amianto o se moldean con fibras o resina de este material.

Las fibras cortas de amianto son la mayor parte de las obtenidas en la mina y se usan para hacer tableros y objetos prensados. Hay una demanda creciente de fibrocemento (cemento con fibras de amianto) en la industria, especialmente en la de la construcción. Se usa para cubiertas de tejados y paredes, para edificar depósitos y hangares, así como para compartimientos. Los productos de fibrocemento moldeado se usan en la construcción de canales, desagües, tuberías, depósitos, tubos para cables y acequias.

Los tubos subterráneos de fibrocemento de gran diámetro se fabrican con destino a aprovisionamientos de aguas, cloacas y drenaje. La fibra de amianto puede también esparcirse sobre objetos, especialmente si se desea protección contra el fuego. Cuando la fibra se mezcla con un líquido, cada haz de fibras absorbe cierta cantidad de éste. Esta propiedad hace posible el pegarla sobre estructuras de acero, por ejemplo, o sobre la parte inferior de los pisos, para evitar que las llamas puedan extenderse a otras habitaciones.

El amianto de usa también mucho en el aislamiento del sonido. El amianto esparcido o pegado en las superficies es especialmente útil. Como material absorbente del sonido, se usa en las salas de cine o de conciertos, para eliminar las superficies que reflejan el sonido produciendo eco.

El amianto esparcido se aplica también a superficies frías donde, de otra forma, se acumularía la humedad. El amianto esparcido disminuye el enfriamiento de la capa de aire próxima a la superficie (por ejemplo, en un techo) y, de esta manera, evita la condensación.

El uso de amianto fue absolutamente prohibido en España en diciembre de 2001, si bien algunas de sus variedades se prohibieron antes como el amianto azul en 1984 y el amianto marrón en 1993.

Fuente Consultada:
TECNIRAMA La Enciclopedia de la Ciencia y la Tecnología Fasc. N°56
Sitio web español: http://www.amianto.com.es/

Energía Mareomotriz Producir Electricidad Con Las Mareas

USINAS EECTRICAS QUE USAN LA FUERZAS DE LAS MAREAS

Hasta ahora, el hombre ha hecho muy poco para aprovechar la energía de los mares y utilizarla convenientemente. La central mareomotriz francesa de la Ranee, fue la primera en su estilo en el mundo, que produzcía electricidad a partir del regular flujo y reflujo de las mareas.

Ocurre que, en este lugar particular de la costa francesa, la diferencia entre pleamar y bajamar es lo suficientemente grande para poder hacer funcionar una planta eficaz. En realidad, hay pocos sitios en el globo terrestre donde el nivel del agua sube y baja lo suficiente como para que valga la pena llevar a cabo la operación.

El desnivel entre la pleamar y la bajamar en el estuario de la Rance tiene un valor medio de 11,4 metros y, por otra parte, la electricidad producida puede consumirse inmediatamente en la región. Por estas circunstancias, el proyecto resulta práctico. Dos veces en cada día lunar (24 horas y 50 minutos), una “ola astronómica” llega del Atlántico y penetra en el Canal de la Mancha.  Su potencia bruta se ha estimado en  56 millones de cabullos vapor.

Aproximadamente, una mitad de esta potencia se pierde en el Canal, al romper las olas y al rozar con el fondo del mar y a lo largo de la costa. Lo que los ingenieros intentan aprovechar con sus centrales mareomotrices es una parte de esta energía perdida.

El principio de la operación, en su conjunto, es sencillo. El hombre lo ha utilizado desde la antigüedad, con ruedas de molino impulsadas por la marea. Un canal, con una compuerta abierta cuando sube la marea, se llenará de agua.

Ésta podrá ser retenida cerrando la compuerta y, posteriormente, se utilizará para producir trabajo o para hacer funcionar algún tipo de planta generadora, cuando la marea baje.

Desgraciadamente, esta teoría tan sencilla fallará en la práctica, porque esto significa que sólo se puede producir electricidad cuando la marea está bajando, y una generación momentánea de electricidad en la madrugada no es útil a nadie. Se necesita una producción regular, para suministrar energía en el tiempo preciso, y esto exige una organización mucho más compleja.

En realidad, pura poder armonizar la producción de electricidad con la demanda se necesita una calculadora que dirija las operaciones de abrir y cerrar las compuertas.

VEINTICUATRO CENTRALES ELÉCTRICAS EN  UNA
La central de la Rance organiza su producción de electricidad por medio de veinticuatro elementos, que, para el espectador, aparecen como veinticuatro canales que corren a lo largo de una gran presa, construida a través del extremo del estuario de la Rance.

El conjunto tiene una longitud total de 750 m, y consta de Oeste a Este de:
  • Una esclusa que permite la navegación entre la parte embalsada y la parte de mar de la bahía, de 65 metros de largo por 13 metros de ancho.
  • Una planta mareomotriz de 390 metros de largo por 33 de ancho, formada por 24 turbinas “tipo bulbo”, de 10 MW cada una.
  • Un dique de entronque de 163 metros de largo que completa el cierre del estuario entre la planta y el islote de Chalibert.
  • Una pesa movil de 115 metros de largo, provista de 6 válvulas de tipo “wagon”, capaces de funcionar a una diferencia de altura de la columna de agua de 10 metros; siendo su ancho de 15 metros cada una.
  • Una carretera de doble sentido que une Dinard con St-Malo, la cual se ve sometida al paso de 26.000 coches diarios, siendo 60.000 en verano.

Represa Mareomotriz en Francia Dos veces al día pasan 184 millones de metros cúbicos a través de la presa, cayendo de una altura de 11,4 metros y proporcionando energía. Se eligen los momentos del día en que se necesita más electricidad, las horas de máximo consumo.

Lo energía básica de una central eléctrica mareomotriz depende de dos factores: la superficie del canal en el que se retiene el agua y la diferencia entre la pleamar y la bajamar. Por tanto, conviene elegir un lugar en el que este valor sea el más grande posible. El estuario de la Ronce tiene una superficie de 22 kilómetros cuadrados y el nivel del agua varía 11,4 metros, como valor medio, en cada marea, lo que significa una cantidad de agua de 184 millones de metros cúbicos que entra y sale dos veces al día. El Mediterráneo no podría utilizarse nunca para producir energía eléctrica, ya que la marea sólo hace variar el nivel del mar en pocos decímetros.

Cuando la marea sube, el agua se precipita dentro de los canales, impulsando las turbinas a su paso. Así se produce mucha menos energía que cuando las presas están vaciándose; pero, a pesar de todo, todavía resulta conveniente.

Al final de la marea se utiliza energía de la red ordinaria, para que la turbina siga girando y llene la presa por encima del nivel exterior durante esta operación. Este aumento extra de nivel es un métodopara obtener algo a partir de nada.

Cuesta muy poco tomar electricidad del sistema para hacer subir, artificialmente, el nivel del agua, digamos 50 centímetros más. Pero tres horas después, cuando el nivel del agua en el exterior haya bajado unos 6 metros, esta misma agua tendrá una caída de 6 metros y, en la práctica, podrá proporcionar una energía 12 veces mayor que la empleada para subirla a su posición inicial.

El tiempo en que se almacena el agua a este nivel artificial depende de la demanda de electricidad. En el momento oportuno, el agua puede salir hacia el mar y proporcionar así la electricidad a la red. La turbina que convierte el flujo de agua en   una   corriente   eléctrica   utilizable   está sumergida y se encuentra en el paso de la corriente de agua. Está rodeada de agua por todas partes y posee una gran hélice, que es impulsada por la corriente.

La hélice es de láminas ajustables, que pueden orientarse de modo que se adapte a las condiciones imperantes. Se puede llegar a la turbina sumergida por medio de un túnel con una escalera.

Cuando una presa se ha vaciado y alcanzó el nivel de la marea que la rodea, se toma otra vez un poco de energía de la red para producir un sobrevaciado. Entonces, el ciclo completo puede empezar nuevamente.

Cada pequeña central funciona independientemente de las demás, para responder a las distintas necesidades de corriente, según las diferentes mareas. El número de ciclos diversos que se pueden utilizar en el curso de un mes es variable, permitiendo, así, una adaptación a las más diversas demandas de electricidad y el mejor aprovechamiento de toda clase de mareas.

Es necesario tener en cuenta el hecho de que las mareas se retrasan 50 minutos cada día y no tienen siempre la misma amplitud. Se calcula que la producción anual de la central será de unos 540 millones de kilovatios-hora por año, producción muy pequeña para una central eléctrica. Pero el combustible no faltará nunca y la planta será una experiencia útil para decidir si se puede emplear el mismo principio en otro lugar del globo terráqueo.

esquema represa mareomotriz

La turbina, que está sumergida y se encuentra en el paso de la corriente de agua, gira,
proporcionando   una   pequeña   cantidad   de   electricidad.

Se toma de la red una pequeña cantidad de electricidad,
para elevar artificialmente el nivel del agua  en el estuario.

Represa mareomotriz

A medida que se vacía el embalse, la turbina produce una
gran cantidad de electricidad en el sistema.

Cuando el embalse está vacio, se toma un poco do electricidad para hacer
girar la turbina y vaciar todavía más la presa.

FUENTES DE ENERGÍA ELÉCTRICA
Casi toda la energía eléctrica producida actualmente prosede de combustible! extraídos de la Tierra, que pueden encontrarse en una u otra forma. Estos combustibles —carbón, petróleo y uranio— se extraen, retiran y trasporté?; antes de utilizarlos para trasformar el agua en el vapor que hará funcionar los generadores eléctricos. Además de estas fuentes de energía, existen otras —ríos de corriente rápida y el calor procedente del Sol.

En todos los métodos convencionales, la energía encerrada en el combustible se convierte, primero, en energía calorífica. En el carbón y en el petróleo, lo que se convierte es energía química; en el caso del uranio se utiliza la energía desprendida en la fisión controlada de los núcleos de uranio.

En la instalación de la Ranee, la energía mecánica de la marea se convertirá directamente en energía eléctrica.

El procedimiento es similar, en principio, a las centrales hidroeléctricas que funcionan en todo el mundo, mediante la energía mecánica que libera el agua al caer de un nivel a otro. Esta energía se convierte directamente en electricidad Este proyecto de la Ranee también se parece mucho a otros de almacenamiento por bombeo, ya en servicio en Luxemburgo (en Vianden) y en el país de Gales (en Ffestinlog).

En ambos proyectos, como en el de la Ranee, sólo se pers fluir el agua a través de los equipos generadores cuando se requiere, es decir, cuando hay una demanda en el circuito eléctrico. En los proyectos de almacenamiento por bombeo, el agua se hace subir a una colina desde una reserva hasta otra más elevada, en los momentos del día en que no hay una gran demanda de electricidad. Se guarda hasta que la demanda alcanza un máximo y entonces se libera, dejándosela fluir a través de los equipos generadores, para producir un suplemento de energía eléctrica, muy necesario.

Otro ejemplo de conversión de una energía natural es la utilización de la energía solar. Una gran cantidad de energía radiante procedente del Sol alcanza la superficie de la Tierra durante el día y puede utilizarse para trasformar agua en vapor. Este vapor puede hacer funcionar turbinas generadoras. Tales proyectos se han puesto en marcha en Rusia a partir de la década del 60´.

Fuente Consultada
Enciclopedia TECNIRAMA Fasc. N° 118 Electricidad Producida Por Las Mareas

Naturaleza de la Luz Onda o Partícula Teorías Fisicas

FÍSICA: TEORÍA ONDULATORIA Y CORPUSCULAR

LA CURIOSIDAD DEL HOMBRE: Un hombre de ciencia destina una buena parte de su tiempo en pensar “qué pasaría si …” ¿ … si alguien inventara algo para bloquear nuestra gravedad? ¿ … si la luz fuera a la vez una partícula y una onda? ¿ … si hubiera un mundo de antimateria? ¿ … si el Universo que ahora parece expandirse, se contrajera en ei futuro? El investigador científico plantea la pregunta fundamental: ¿Qué cíase de Universo es éste donde yo vivo?

Es muy improbable que alguna vez llegue el tiempo en que ios humanos agoten sus preguntas respecto a la naturaleza del Universo. Recordemos que Newton se comparaba a sí mismo con un niño jugando con guijarros y conchas en una playa, mientras el “gran océano de la verdad estaba sin ser descubierto” delante de él. El científico siempre trabaja en las orillas del “gran océano de la verdad”, esforzándose en descubrirle cada vez más.

A principios del siglo XX, algunos de los que se preguntaban “qué pasaría si . . .” expusieron ideas que, al principio, se veían tan imposibles como la afirmación de que la gente viviría felizmente en el centro de la Tierra. Al investigar estas ideas aprendieron mucho sobre la orilla del océano de la verdad.

Una de las preguntas más importantes fue estimulada por el estudio de la luz, en particular, de los espectros: ¿Es posible que la luz sea a la vez una onda y una partícula? Las consecuencias de esta pregunta han mantenido ocupados a los científicos por más de cincuenta años. Otras preguntas, relacionadas algunas con el problema de la onda-partícula y otras muy diferentes, han surgido en la actualidad.

La Física no está completa. El hombre está aún en la playa de Newton, tratando de comprender el océano que está delante de él. Ahora analizaremos lo relativo a la onda-partícula y también introduciremos algunas otras preguntas para las que están buscando respuestas los científicos actuales.

Como las teorías modernas con relación a la luz no son completas, se van agregando nuevas ideas. Sin embargo, una piedra angular de la teoría moderna es que la luz se propaga como ondas, que tienen muy corta longitud de onda.

PRIMERAS INTERPRETACIONES: El hombre es capaz de ver los objetos que lo rodean debido a la luz que, procedente de ellos, llega a sus ojos. Los objetos brillantes, tales como el Sol o una llama luminosa, emiten su propia luz. Todos los demás son visibles a causa de la luz que reflejan.

Un grupo de filósofos griegos del siglo IV a. de J. C. interpretó este hecho diciendo que la luz estaba formada por diminutos corpúsculos, emitidos por los objetos visibles y recibidos por el ojo humano. Esta hipótesis estaba en contradicción con las ideas postuladas por otra escuela del pensamiento griego, que interpretaba el mecanismo de la visión como productos de unos invisibles rayos, emitidos por el propio ojo para sondear sus alrededores.

Los rayos de luz obedecen a reglas muy simples, algunas de las cuales eran ya conocidas por los antiguos griegos. Así, por ejemplo, sabían que la luz sigue siempre trayectorias rectilíneas, empleando el menor tiempo posible en recorrer la distancia existente entre dos puntos. Del mismo modo, se sabía entonces que la luz era reflejada por la superficie del agua, o por una superficie metálica pulimentada, y se interpretó el fenómeno diciendo que los rayos luminosos, al llegar a estas superficies, sufrían un brusco cambio de dirección.

Hooke observa las ondas en un lago

También era conocida en aquella época la ley de la reflexión, es decir, que el ángulo, respecto a la normal, con que el rayo luminoso incide en la superficie, es igual al ángulo que forma, con dicha normal, el rayo reflejado.

Las lentes de vidrio y cuarzo eran también conocidas, así como las desviaciones que producían en los rayos de luz que las atravesaban. En este sentido, los griegos utilizaron el poder que poseen las lentes de concentrar la luz, y el calor a que ésta da lugar, par» encender fuego, por ejemplo.

Nada nuevo fue descubierto en este campo hasta la Edad Media, en que se construyeron lentes especiales para ser utilizadas como lupas. Un siglo después empezaron a emplearse las lentes para corregir los defectos de la visión humana, así como en la construcción de los telescopios astronómicos que utilizaron Galileo, Kepler y otros astrónomos. Leeuwenhoek las usó también para construir el primer microscopio.

En todos estos instrumentos, los rayos de luz sufren una desviación al pasar del aire al vidrio, o viceversa. La ley que gobierna esta desviación, propuesta primeramente por Willebrord Snell, en 1621, es la ley de la refracción.

LA LUZ COMO ONDA O COMO PARTÍCULA:

Las leyes de la reflexión y de la refracción son las dos leyes básicas por las que se rigen los rayos luminosos. Una vez descubiertas, faltaba una teoría, acerca de la naturaleza de la luz, que las explicase. Surgieron entonces dos distintas: la ondulatoria y la corpuscular.

Los principios de la teoría ondulatoria fueron expuestos por Roberto Hooke en 1607; éste comparó las ondas formadas en la superficie del agua cuando una piedra cae en ella, con el tipo de perturbación que se origina en un cuerpo emisor de luz.

robert hooke

Robert Hooke, concluyó que la luz se comporta como una onda

Ésta debía tener su origen en algún tipo de vibración producida en el interior del cuerpo emisor y, consecuentemente, se propagaría en forma de ondas. Hooke formuló estas ideas después de haber descubierto el fenómeno de la difracción, que hace aparecer iluminadas ciertas zonas que deberían ser oscuras. Encontró la explicación observando detenidamente el comportamiento de las ondas formadas en la superficie del agua.

En 1676, Olaus Roemer, considerando el carácter ondulatorio de la luz, pensó que ésta no podía tener una velocidad infinita, y se dispuso a medir la velocidad de las ondas luminosas. Observando los eclipses de las lunas de Júpiter notó que, cuando la Tierra se encontraba a la máxima distancia de dicho planeta, estos eclipses se retrasaban unos 15 minutos.

Ello quería decir que la luz empleaba este tiempo en recorrer la distancia adicional. Según este método, Roemer obtuvo para la velocidad de la luz un valor de 3.100.000 Km./seg., muy cercano al valor actual aceptado, que es de 2,990.000 Km./seg.

TEORÍA ONDULATORIA: Las leyes de la óptica se pueden deducir a partir de una teoría de la luz más sencilla pero de menores alcances propuesta en 1678 por el físico holandés Christian Huygens.

HUYGENS Christian (1629-1695)

Esta teoría supone simplemente que la luz es un fenómeno ondulatorio y no una corriente de partículas, pongamos por caso. No dice nada de la naturaleza de las ondas y, en particular —puesto que la teoría del electromagnetismo de Maxwell no apareció sino un siglo más tarde— no da ninguna idea del carácter electromagnético de la luz.

Huygens no supo si la luz era una onda transversal o longitudinal; no supo las longitudes de onda de la luz visible, sabía poco de la velocidad de la luz. No obstante, su teoría fue una guía útil para los experimentos durante muchos años y sigue siendo útil en la actualidad para fines pedagógicos y ciertos otros fines prácticos. No debemos esperar que rinda la misma riqueza de información detallada que da la teoría electromagnética más completa de Maxwell.

La teoría de Huygens está fundada en una construcción geométrica, llamada principio de Huygens que nos permite saber dónde está un frente de onda en un momento cualquiera en el futuro si conocemos su posición actual; es: Todos los puntos de un frente de onda se pueden considerar como centros emisores de ondas esféricassecundarias. Después de un tiempo t, la nueva posición del frente de onda será la superficie tangencial a esas ondas secundarias.

Ilustraremos lo anterior con un ejemplo muy sencillo: Dado un frente de onda en una onda plana en el espacio libre, ¿en dónde estará el frente de onda al cabo de un tiempo t? De acuerdo con el principio de Huygens, consideremos varios puntos en este plano (véanse los puntos) como centros emisores de pequeñas ondas secundarias que avanzan como ondas esféricas. En un tiempo t, el radio de estas ondas esféricas es ct, siendo c la velocidad de la luz en el espacio libre.

El plano tangente a estas esferas al cabo del tiempo t está representado por de. Como era de esperarse, es paralelo al plano ab y está a una distancia ct perpendicularmente a él. Así pues, los frentes de onda planos se propagan como planos y con una velocidad c. Nótese que el método de Huygens implica una construcción tridimensional y que la figura es la intersección de esta construcción con el plano de la misma.

frente de onda de luz

Frente de Onda de Luz

Primera Ley de la Óptica

“En la reflexión el ángulo de incidencia de una onda o rayo es igual al ángulo de reflexión, ósea en este caso i=r. Ambos rayos siempre se encuentran contenidos en un mismo plano.”

Llamamos refracción de la luz al fenómeno físico que consiste en la desviación de un rayo de luz al pasar de un medio transparente a otro medio también transparente. Un ejemplo diario es cuando miramos un lapiz dentro de un vaso de agua.

Difracción de la luz

Segunda Ley de la Óptica

“El cociente entre el seno del ángulo de incidencia y el seno del ángulo de refracción es constante para todos los rayos reflactados. Todos los rayos, incidentes y reflactados se encuentran en un mismo plano”

NACE LA TEORÍA CORPUSCULAR: La teoría de Hooke se vio pronto derrotada por las ideas de Isaac Newton, quien propuso otra teoría corpuscular corregida.

En su famoso libro titulado “Óptica”, éste describió un gran número de experimentos dirigidos a explicar el comportamiento de la luzen todos sus aspectos, entre los que se destacaba la descomposición de la luz en sus distintos colores, al atravesar un prisma. De acuerdo con la teoría corpuscular, Newton explicó los diferentes colores del espectro, mediante la existencia de distintos corpúsculos.

En el curso de sus elaborados experimentos, Newton descubrió el fenómeno de la difracción y el de la interferencia. Dos rayos de luz, ambos procedentes del Sol, y convenientemente separados para que sus recorridos fuesen diferentes, producían anillos luminosos, oscuros y coloreados (llamados anillos de Newton), cuando se los hacía pasar a través de la lente de un telescopio.

Hooke había descrito antes la formación de irisaciones en las pompas de jabón, pero fue incapaz de explicar el fenómeno. Tanto la debían a la interferencia de dos ondas luminosas, de recorridos ligeramente distintos.

El fenómeno de la difracción casi destruyó la ingeniosa interpretación corpuscular. Newton había llegado a los mismos resultados que Hooke, tras llevar a cabo experimentos muy cuidadosos: una pequeña porción de luz se extendía por una región que, seguía teoría corpuscular, debía permanecer totalmente a oscuras. Este hecho era, exactamente, lo que había predicho la teoría ondulatoria de la luz debida a Hooke.

El físico holandés Christian Huygens sentó las bases más generales de esta teoría, al explicar con todo detalle la propagación de los movimientos ondulatorios. Se estableció entonces una agitada controversia entre los partidarios de una y otra teoría, que quedó de momento sin resolver, debido a la carencia de aparatos lo suficientemente exactos que proporcionasen datos experimentales decisivos.

En 1801, Thomas Young asestó un terrible golpe a la teoría corpuscular con su experimento acerca de las interferencias; según éste, se producían franjas luminosas y oscuras que sólo podían ser explicadas aceptando que la luz tenía un carácter ondulatorio. El descubrimiento del fenómeno de la polarización, debido a Augustín Fresnel, en 1816, significó un nuevo apoyo en favor de la teoría ondulatoria. Según ella, la luz polarizada estaba compuesta por ondas que vibraban en un solo plano.

Tanto las ondas sonoras como las que se forman en el agua necesitan un medio para poder propagarse. Durante todo el siglo xix se consideró que las ondas luminosas eran perturbaciones producidas en el éter, sustancia invisible que lo invadía todo, incluso el espacio “vacío”. Clerk Maxwell llevó a cabo un tratamiento matemático de las ondas luminosas, demostrando que éstas eran un tipo dé radiación electromagnética, y similares, por tanto, a las ondas de radio. Una pregunta quedaba por hacer: ¿era necesaria la existencia del éter para la propagación de las radiaciones electromagnéticas?.

En seguida se pusieron en acción numerosos dispositivos experimentales, para tratar de demostrar su existencia; entre ellos puede señalarse el de Oliver Lodge —que constaba de dos discos que giraban muy próximos—, con el que trató de verificar si el éter ejercía algún tipo de fricción. Las observaciones astronómicas sugerían que si, de verdad, existía el éter y éste envolvía la Tierra, no debía de girar con ella, pues, de otro modo, su rotación habría afectado las observaciones de los telescopios.

Los estadounidenses Michelson y Morley realizaron una serie de experimentos para determinar el retraso de la rotación del éter con respecto a la de la Tierra, encontrando que era igual a cero. El éter, por tanto, permanecía estacionario, o no existía, o la luz se comportaba de un modo p’eculiar. De esta forma se llegó a la conclusión de que esta sustancia tan tenue, que tanta resistencia había opuesto a ser detectada, no era más que un ente hipotético.

El éter era una complicación innecesaria. La luz se comportaba de un modo peculiar cuando se trataba de medir su velocidad, ya que mantenía una propagación siempre igual. Este resultado condujo a Albert Einstein a formular su teoría de la relatividad, basada en la constancia de la velocidad de la luz.

La idea corpuscular es quizá la mejor forma de representarnos un rayo de luz. Los corpúsculos viajan en línea recta, ya que tienden siempre a desplazarse entre dos puntos por el camino más corto posible. Los cuerpos muy calientes, como el Sol o el filamento de una lampina eléctrica, emitirían un chorro de diminutas partícula. Los demás cuepos se ven debido a que reflejan algunos de los corpúsculos que los golpean.

El cuerpo humano no emite corpúsculos luminosos propios, pero se hace visible cuando refleja los corpúsculos en los ojos de las personas que están mirándolo. De acuerdo con la teoría corpuscular, toda la energía luminosa que llega a la Tierra, procedente del Sol, es transportada por corpúsculos.

Las teorías modernas sobre la naturaleza de la luz sugieren que es, en realidad, un conjunto de diminutas partículas emitidas por cuerpos calientes, como el Sol. Pero existe una sutil diferencia entre la moderna partícula luminosa, llamada fotón, y la versión antigua, el corpúsculo, consistente en que el fotón no transporta energía, sino que es energía.

Podemos pensar en un fotón como en un paquete de energía. Es diferente a todas las demás clases de energía, ya que existe sólo en movimiento. Cuando se desplaza a sus velocidades normales, aproximadamente 300.000 kilómetros por segundo, los fotones se comportan como un trozo ordinario de materia. Pueden entrar en colisión con partículas, tales como electrones y protones, y desviarlos, del mismo modo que si fueran partículas normales.

En los fotómetros fotoeléctricos, empleados en fotografía;, los fotones que golpean un trozo de metal sensible a la luz liberan electrones de él. Estos electrones forman una corriente eléctrica que mueve una aguja, indicando la intensidad de la luz. Se ha descubierto que un fotón libera un electrón.

Los electrones son partículas y se liberan por los fotones que se comportan como partículas. Isaac Newton fue defensor de la vieja teoría corpuscular, la cual, debido a su influencia, dominó durante el siglo XVIII. La teoría moderna de los fotones fue consecuencia del trabajo de Alberto Einstein sobre el efecto fotoeléctrico, en el año 1905.

Sigamos ahora con esta nueva visión física del fenómeno.

NUEVA VISIÓN CORPUSCULAR: EINSTEIN Y LOS CUANTOS DE LUZ (los fotones)
Cuando la luz choca con una superficie metálica sensible provoca un desprendimiento de electrones. En 1905, Alberto Einstein, examinando ese efecto (efecto fotoeléctrico), llegó a la conclusión de que las cosas sucedían como si la luz estuviese compuesta de pequeñas partículas (posteriormente denominadas cuantos).

albert einstein

Cada cuanto de luz provocaba la liberación de un electrón. Con ello se volvía de nuevo a los postulados de la teoría corpuscular. En el segundo decenio de nuestro siglo, Louis de Broglie propuso una arriesgada teoría: la luz posee una doble personalidad: unas veces se comporta como ondas y otras como partículas.

Broglie Louis

La teoría actualmente aceptada sugiere que la luz es algo aún más indefinido. Su comportamiento es regido por leyes estadísticas (mecánica ondulatoria). Para demostrarlo, podemos, por ejemplo, utilizar el experimento de Young sobre la formación de las interferencias, sólo que, en este caso, se emplea un haz luminoso de intensidad muy débil. Haciéndolo pasar a través de dos aberturas convenientemente situadas, se hace llegar la luz a una placa fotográfica.

En principio, hemos de esperar que cada cuanto de luz que llegue a la placa ennegrecerá una molécula de la emulsión que la recubre. Si el haz luminoso es lo suficientemente débil, al comienzo de la operación parece como si los electrones que llegan a la placa pudieran chocar con cualquier parte de ella; pero esto es algo muy fortuito.

A medida que pasa el tiempo, sin embargo, puede verse como las partes mas ennegredecidas van concentrándose gradualmente. Estas zonas son, precisamente, aquellas donde nan de producirse las franjas luminosas de interferencia. Según las modernas teorías, estas zonas son las que tienen mayor probabilidad de ser alcanzadas por la luz, de manera que sólo cuando el número de cuantos que llegan a la placa es suficientemente grande, las teorías estadísticas alcanzan el mismo resultado que las teorías clásicas.

Fuente Consultada:
FISICA I Resnick-Holliday
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología