La Vuelta Al Mundo Sin Escalas

Historia de los Submarinos Partes, Características y Evolución

Resumen de la Historia de los Submarinos
Partes, Características y Evolución

¿Quién no recuerda las aventuras del capitán Nemo, héroe de la novela de Julio Verne, Veinte mil leguas de viaje submarino? La historia de estas naves es, incluso para los profanos, apasionante.

El submarino es un producto maravilloso de la ciencia mecánica y naval moderna, pero la idea de navegar bajo las aguas tiene más de tres siglos; ya Leonardo de Vinci había estudiado la posibilidad de  que el hombre se  aventurase por los  abismos submarinos. Hoy se está casi seguro de que el primer constructor de sumergibles fue el holandés Cornelio Drebbel (1572-1634), quien había construido para el rey Jacobo I de Inglaterra un barco submarino con el cual recorrió la distancia que separa Greenwich de Westminster, navegando sin incidentes bajo las aguas del Támesis.

El francés De Son construyó en Rotterdam, en 1653, un barco de este tipo propulsado por una rueda de alabes.En Estados Unidos de Norteamérica, David Bushnel construyó hacia 1775 el primer submarino que fue utilizado contra Inglaterra durante la guerra de la Independencia americana. Este barco, llamado Tortuga (American Turtle), sólo podía transportar una persona.

invento del submarino

El americano Roberto Fulton, constructor del primer barco a vapor, ideó igualmente un submarino, el Nautilus; pero los gobiernos francés e inglés, a quienes se lo había ofrecido, rechazaron la invención porque juzgaron ese medio de combate poco leal y porque era absurda la idea de que existieran naves sumergibles.

En 1800 Roberto Fulton presentó a Napoleón I el plan de un submarino, el Nautilus. El proyecto fue ejecutado y los ensayos probaron el valor del invento. Otros proyectos y otras tentativas se sucedieron en Francia, en Baviera y en Suecia. El Zambullidor, cuya propulsión por primera vez no era ejercida por un hombre sino por un motor de aire comprimido, se construyó en Rochefort y se lanzó en 1863.

Casi en la misma época, durante la guerra de Secesión americana, un torpedero sumergible pequeño llamado David, logró luego de numerosos ensayos y múltiples aventuras, hundir un barco de guerra. La violencia de la explosión fue fatal para el mismo David, que al estar demasiado cerca del navio que torpedeaba, se hundió también con los nueve hombres de a bordo.

Los proyectos y los ensayos continuaron desde esa época, trayendo nuevas mejoras tanto en los medios de inmersión y de propulsión como en el casco. En Francia los acumuladores eléctricos constituyeron para los submarinos el medio de propulsión que debía permitirles funcionar sumergidos sin peligro. En 1885 el ingeniero Goulet los aplicó por primera vez a un submarino minúsculo. Un año más tarde, en Francia, Gustavo Zédé dirigía la construcción del Gymnote concebido por Dupuy de Lome.

Tenía 17 metros de largo y desplazaba 30 toneladas. Su velocidad en inmersión era de 4,5 nudos. Estaba provisto en cada extremo de un prisma a reflexión total, antepasado del periscopio del submarino actual.

¿Existe alguna diferencia entre los términos sumergible y submarino? Los dos vocablos son equivalentes, pero se ha hecho corriente el uso de la palabra submarino para los tipos que tienen una reserva de empuje menor, es decir que son menos aptos para recorrer grandes distancias en superficie.

Esos modelos han sido superados y ahora se dice corrientemente tanto submarino como sumergible. ¿Cuáles son las características que debe presentar un submarino para ser un buen instrumento de navegación? Se las puede enumerar del siguiente modo: buena velocidad en superficie, rapidez de inmersión, gran autonomía que asegure un vasto radio de acción, abundantes reservas de aire, espacio habitable y cómodo para la tripulación.

La forma debe ser estudiada para asegurar la velocidad de navegación en superficie y la estabilidad en la inmersión. Por otra parte la estructura debe ser concebida para que resista a las fuertes presiones que soporta el casco a medida que el submarino se hunde en las aguas.

Por lo general el sumergible está constituído por un casco interno en forma de huso, cuyo corte es mas menos circular y otro extremo que se prolonga más allá de las paredes internas, en las dos extremidades y le da la forma de un torpedo. El espacio entre los dos cascos esta dividido en compartimientos estancos que se llenan de agua cuando el submarino se sumerge; asimismo se encuentran ahí los depósitos de combustibles.

El problema más importante que los constructores deben afrontar es el de la inmersión a la profundidad requerida, que debe ejecutarse rápida y fácilmente. El submarino, como cualquier otro cuerpo, flota mientras su peso sea inferior al peso del agua que corresponde a su volumen. En virtud de un principio físico, es necesario por consiguiente aumentar mucho su peso para lograr la inmersión.

Para ello se llenan de agua tanques adecuados, una vez que las aberturas hacia el exterior han sido cuidadosamente cerradas. En el curso de la segunda guerra mundial, Alemania había construido submarinos de bolsillo que podían sumergirse en 25 segundos y aguantar hasta 3 días bajo el agua.

Si un sumergible navega a escasa profundidad puede, para descubrir a sus adversarios, recurrir a uno o varios periscopios. Cuando no son utilizados, se los hace entrar en el casco y la abertura se cierra automáticamente. Pero en tiempo de guerra, como la condición esencial del submarino es la de ser invisible, el periscopio puede presentar inconvenientes, puesto que deja una estela fácil de localizar sobre todo por aviones.

Cuando el sumergible navega en inmersión, la profundidad media es de 40 metros, aunque ahora es posible descender a más de 100 metros. Para dirigirlo hacia el enemigo, se recurre a los hidrófonos, que permiten percibir las vibraciones producidas por las hélices de los barcos y las de los motores. En los modelos más recientes se utilizan aparatos ultrasónicos, mediante los cuales es posible determinar la dirección y la distancia de un obstáculo, de modo comparable a la acción del radar.

En la torrecilla de comando pueden estar instalados las antenas de radio y uno o dos tubos para el periscopio y el schnorkel, conducto doble que rige la purificación del aire y la evacuación de los gases provocados por el funcionamiento de los motores Diesel, que el submarino tiene para navegar en superficie. Cuando debe deslizarse en inmersión dispone de motores eléctricos que funcionan con acumuladores.

Durante la segunda guerra mundial se adoptaron aparatos consistentes en dos tubos que se podían hacer bajar y entrar en el casco cuando no se empleaban, uno de los cuales servía para evacuar el humo producido por los motores a explosión, mientras el otro permitía introducir aire fresco en el submarino. Así se posibilitaba la navegación en inmersión durante varios días con evidentes ventajas para la seguridad.

La más reciente conquista en el campo de la propulsión es el Nautilus, el sumergible americano impulsado por energía atómica. Este progreso le asegura una gran autonomía en inmersión y abre nuevos horizontes a toda la navegación submarina.

Queda sobreentendida la realización de prodigios técnicos para ubicar, en el restringido espacio de que se disponía, un lugar habitación casi confortable para la tripulación, que debe encontrar en el submarino todo lo necesario para la subsistencia. El sumergible lleva reservas de víveres y de agua dulce y tiene comedores de oficiales lo bastante cómodos como para que la vida a bordo sea aceptable.

El peligro mayor en la navegación submarina es la irrupción del agua en el interior del casco. Un medio eficaz de defensa son los compartimientos estancos, que impiden al agua inundar todo el navio. Para que el submarino pueda volver a la superficie se extrae aquélla mediante bombas de aire comprimido. Si esto no es ya posible, el sumergible señala su posición mediante una boya que contiene un aparato telefónico ligado al navio. Se emplean también señales de humo.

En caso de accidente, para dar a la tripulación oportunidad de salvarse, es necesario disponer de medios rápidos para ascender a la superficie o esperar socorro. Por eso cada submarino está provisto de dispositivos para la purificación del aire, como también de aparatos de salvamento individuales que permiten a la tripulación abandonar el navio.

submarino partes

Este corte a lo largo de un submarino permite hacerse una idea de la disposición de las piezas, que comprenden: doble fondo para los depósitos de agua de lastre y agua potable, la cámara de torpedos, los tanques de aire comprimido, los depósitos de municiones y de acumuladores, los motores Diesel y los motores eléctricos, la sala de maniobras, los comedores para la tripulación. Sumergido el submarino, la visión de los objetos que están en la superficie se efectúa con el periscopio.

Ver: Imagen de las Partes de un Submarino

¿Cuáles son los objetivos para un sumergible en tiempo de guerra? Establecer barreras submarinas a la entrada de los puertos, cerca de las costas, explorar los mares surcados por barcos enemigos, torpedear a los barcos de guerra aislados o en convoyes, fijar minas, transportar armas. Les está prohibido destruir los barcos de comercio sin una previa inspección de la patente. Pero esta regla de honestidad internacional no ha sido siempre observada.

A comienzos de la primera guerra mundial, las grandes potencias marítimas tenían una flota submarina de regular importancia. Durante la guerra se descubrió que su efectividad como medio de ataque era superior a todo lo previsto y en consecuencia, después de 1918, las potencias trataron de desarrollar aún más su flota submarina.

Luego vino la segunda guerra mundial. El submarino desempeñó nuevamente misiones importantes. La extensión de las zonas de ocupación y la importancia de las fuerzas en pugna tuvieron, como consecuencia, destrucciones espantosas de navios de superficie pero también pérdidas  en submarinos  igualmente  considerables.

El submarino es sobre todo un arma ofensiva. Su armamento consiste, en un cierto número de tubos lanzatorpedos, cañones y ametralladoras antiaéreas. Alemania, al final de la guerra, empleaba torpedos acústicos que eran atraídos automáticamente hacia los navios enemigos por el ruido de las hélices.

En todos los océanos se desarrollaban cazas a menudo agotadoras que duraban muchos días, incluso semanas, hasta descubrir al enemigo. Cuando no se trataba de un solo navio, el sumergible evitaba el ataque inmediato para no dar la alarma; seguía al convoy sin abandonarlo y cuando otros submarinos alertados se unían a él se desencadenaba el ataque.

El Mediterráneo fue el más mortal de los campos de acción, pues su superficie, relativamente restringida, permitía a los enemigos la vigilancia constante del pasaje de navios y la transparencia de las aguas facilitaba a los aviones ubicar a los submarinos.

A los episodios de heroísmo debemos agregar los de solidaridad humana, cuando las tripulaciones de los sumergibles se sacrificaron generosamente para no abandonar a los náufragos de los navios torpedeados, aun con peligro de sus vidas. Tales episodios prueban que si el furor de destrucción y la violencia se han desencadenado, no se llega nunca a ahogar completamente el sentimiento de fraternidad.

ETAPAS DE FLOTACIÓN DE UN SUBMARINO

http://historiaybiografias.com/archivos_varios5/submarino3.jpg

ALGO MAS SOBRE SUBMARINOS…

Roberto Fulton, norteamericano nacido en 1775, es también considerado como el prier  hombre que fabricó un submarino prácico, hizo demostraciones con él a Napoleón: destruyó un buque fijándole una carga a su fondo , mas tarde repitió la experiencia ante el Almirantazgo británico.
Cuando un submarino está en la superficie se ve que tiene la forma de un gran cigarro con la timonera blindada en el centro del navio y de la cual salen dos columnas: son los periscopios de los cuales se levanta uno u otro solamente cuando el barco está apenas bajo la superficie del mar. uno es un periscopio de gran poder y largo alcance que puede ser apuntado hacia el cielo para advertir la presencia de aviones enemigos.

El otro es un periscopio de bajo poder y corto alcance, o de ataque, en cuyo ocular se hallan las líneas graduadas que permiten al capitán observar mejor su objetivo y le facilita el cálculo del instante de disparo de los torpedos.

Fuera del casco de presión y contenidos en lo que parecen ser protuberancias en cada costado, están los grandes tanques de lastre. Cuando se halla en la superficie el submarino flota como cualquier otro barco. En razón de que sus tanques están vacíos no pesa más que el agua que desplaza. Para sumergirlo se hace entrar agua en los tanques de lastre (que están abiertos por el fondo) hasta que el peso total del navio sea ligeramente mayor que el agua desplazada.

De popa a proa están los tanques accesorios que ayudan a mantener el buque horizontal. Si se llena el delantero y se vacía el trasero, la proa se hará más pesada y la nave zambullirá. Esos tanques, que se hallan dentro del casco, están conectados por cañerías, de manera que la nave puede ser nivelada bombeando el agua de uno a otro sin aumentar el peso total.

Los tanques grandes son inundados mediante válvulas que permiten la entrada del agua del mar, y se los vacía por medio de aire comprimido. Una vez sumergido el submarino no tiene estabilidad natural; un aumento de la velocidad o una alteración en la dirección, el movimiento de dos o tres miembros de la tripulación, de un lugar del barco a otro, puede producir una alteración de la inclinación que debe ser corregida inmediatamente moviendo los estabilizadores (aígo así como timones horizontales) para asegurar que el navio conserve su nivelación.

La mayor parte de los submarinos es propulsada por motores diesel, pero como éstos necesitan aire sólo pueden ser usados cuando la nave está en la superficie; para moverse bajo las aguas se utilizan motores eléctricos que funcionan por baterías. En consecuencia debe ascender a la superficie de vez en cuadno para recargar las baterias por medio de un generador diesel. Ya este problema no existe en los submarinos modernos que emplean energía nuclear.

Fuente Consultada:
LO SE TODO Tomo III Editorial CODEX Historia del Submarino
Enciclopedia Tecno-Científico Volumen VII Editorial CODEX

El Submarino Atomico o Nuclear Funcionamiento El Nautilius Polo Norte

FUNCIONAMIENTO DEL SUBMARINO ATÓMICO  – VIAJE AL POLO NORTE

En agosto de 1958 un inmenso objeto negro y alargado pasó lentamente bajo la corteza de hielo del polo Norte. Había navegado 1.500 Km. sin emerger y cumplía la fantástica tarea de cruzar el polo por debajo del agua. Era el Nautilus (foto izq.), estadounidense, el primer submarino atómico de la historia.

La idea de utilizar energía atómica para hacer marchar a los submarinos fue de Philip Albelson, en 1946. Sólo cuatro años más tarde, sin embargo, esta idea fue concretada en la construcción del primer submarino atómico, con la orientación del almirante H. Rickover.

El empleo de la energía atómica apresuró la solución de los dos grandes problemas que siempre preocuparon a los constructores de submarinos: las reservas de combustible y la existencia de dos tipos de motores. Los modelos antiguos usan motores Diésel cuando navegan por la superficie, y motores eléctricos bajo el agua.

Este sistema no permite grandes velocidades, exigiendo frecuentes ascensos a la superficie, cuando falta oxígeno o cuando la energía eléctrica se acaba. En el caso de los submarinos atómicos, la autonomía es prácticamente ilimitada.

Cómo funcionan: Con la eliminación de motores endotérmicos y motores eléctricos, se creó para los submarinos atómicos un sistema generador de vapor. El calor necesario para lograr su funcionamiento es proporcionado por una pila nuclear capaz de producir energía por muchos meses, dando a los submarinos una autonomía de más de 100.000 millas náuticas (casi el doble en Km.).

El sistema atómico de propulsión está constituido por dos circuitos cerrados que no necesitan oxígeno o agua del exterior ni tampoco aparatos de, descarga; por lo tanto, es el sistema ideal para los submarinos. En el primer circuito circula agua, sodio u otras sustancias cuya temperatura es elevada por encima del punto de ebullición.

Este líquido, encerrado bajo presión, no se transforma en vapor. Su calor se transmite al líquido que circula en el segundo circuito, y éste sí es transformado en vapor, el cual llega a la turbina y acciona la hélice. Para el funcionamiento de ese motor son suficientes algunos kilos de óxido de uranio, que permiten dos años de navegación.

La estructura : El submarino atómico tiene dimensiones bastante mayores que los de tipos anteriores. El submarino estadounidense Lafayette alcanza un desplazamiento de 8.200 toneladas. El francés Le Redoutable, llega a 9.000 toneladas. Tiene forma alargada, para una penetración óptima en el agua, y lleva en la popa una hélice de cuatro metros de diámetro. La velocidad que desarrolla es elevada, llegando a veces a más de treinta nudos, o sea, cerca de 56 Km./h. Los submarinos tradicionales alcanzaban 7 a 8 nudos: aproximadamente 13 a 15 kilómetros por hora.

La exigencia de mayor velocidad provocó otra modificación en la construcción de los submarinos: en vez de cuatro timones pequeños, la mayoría de los submarinos atómico lleva solamente dos timones de profundidad que sobresalen de la torre como grandes aletas horizontales. En esa posición, los timones no dificultan el fluir del agua a lo largo de la estructura. La torre, antes llena de salientes a causa de las armas e instrumentos que cargaba, hoy es lisa. Se ha transformado en una especie de aleta vertical y fina, necesaria para la estabilización del submarino.

La necesidad de navegar sumergido durante muchos meses exige espacio para todas las actividades de la tripulación, incluidos los ocios. Normalmente, el submarino nuclear dispone de dos tripulaciones que se alternan, a fin de evitar la fatiga de los individuos. Mientras los antiguos submarinos podían descender sólo 150 metros, los actuales pueden alcanzar profundidades de algunos centenares.

Esta es una gran ventaja para la actividad bélica, ya que navegando a gran profundidad el submarino se convierte en un blanco más difícil. Sin embargo, el submarino atómico tiene un grave defecto: el ruido de sus, máquinas, que en el silencio de los mares se propaga con gran facilidad. Navíos y helicópteros que estén a la escucha o que utilicen boyas sonares pueden localizarlo a la distancia.

Los astilleros estudian actualmente la forma de hacer’ más silencioso a este tipo de submarinos. Un submarino atómico estadounidense llega a costar casi 100 millones de dólares. Gran parte de esta suma se destina al equipo extremadamente complejo que se instala a bordo de la nave con la finalidad de dirigirla y lanzar mísiles y torpedos. El interior de un submarino nuclear parece un escenario de ciencia-ficción: hileras de computadoras, registradores y aparatos para el control de blancos. Todas las operaciones —desde la purificación del aire hasta la medición de la oscilación del submarino, y desde el control de los reactores hasta la regulación de la trayectoria de los mísiles— son efectuadas por computadoras electrónicas.

El armamento: Aunque ya se ha pensado en su utilización para fines pacíficos, los submarinos nucleares sólo fueron planeados, hasta ahora, con objetivos militares. Como integrantes de la moderna marina de guerra, se dividieron en dos grandes grupos: submarinos de ataque y submarinos lanzamisiles. La finalidad de los primeros es localizar y destruir navíos y submarinos enemigos, y están armados con torpedos. Los segundos tienen funciones estratégicas, y están provistos de misiles balísticos. Los submarinos de ataque cargan hasta 48 torpedos, capaces de dar en un blanco usando un equipo electrónico que capta el sonido o el calor de las máquinas de los navíos enemigos. Los mísiles utilizados por los submarinos atómicos son de dos tipos.

Unos son grandes mísiles balísticos que, lanzados por el submarino sumergido, vuelvan a través de miles de kilómetros hacia su lejano objetivo. Generalmente, tienen carga atómica y pueden utilizarse para atacar blancos que distan hasta 5.000 kilómetros. Los otros se usan en combinación con los torpedos.

El complejo misil-torpedo se llama subroc, abreviatura de subaqueous rocket (cohete submarino). Cuando los instrumentos de a bordo localizan un navío enemigo, el submarino se aproxima hasta 30 ó 40 Km. de su blanco y lanza el misil. Al funcionar así, el submarino actual prescinde del periscopio: los instrumentos modernos permiten acercarse al blanco sin necesidad de verlo. Esto es importante, porque el periscopio mide sólo veinte metros de alto y al utilizarlo, el submarino se acerca peligrosamente a la superficie del mar.

¿Y el futuro? : Es probable que los submarinos atómicos continúen siendo, por mucho tiempo, un arma exclusiva de las flotas de las naciones más poderosas. Pero ya se han dado los primeros pasos para la utilización no militar de los modernos submarinos. En Estados Unidos, por ejemplo, ya se usan los submarinos ató micos para la exploración del fondo del mar. Algunas compañías petroleras están proyectando la construcción de grandes submarinos para el transporte de petróleo desde los nuevos yacimientos de Alaska hasta los puertos cercanos a las refinerías. En un futuro no muy lejano también se podrá utilizar el submarino atómico para el transporte de mercaderías perecederas.

HISTORIA DEL NAUTILIUS: Terminada la Segunda Guerra Mundial con la terrible demostración de las capacidades del átomo, a principios de 1946 varios ingenieros navales reciben la orden de reunirse en una base militar secreta donde conocerían los reactores nucleares, pronto se pensó en utilizar esta energía como propulsora de submarinos por su propiedad de no necesitar oxigeno durante la fisión. Con este fin, la marina inició en 1948, un programa en Washintong en el Laboratorio de Investigación Naval, al mando de este programa estaba el capitán Hyman G. Rickover quien llegó a controlar todo el programa nuclear de la marina.

Adelantándose a su época y gracias a su tenacidad y empeño, consiguieron que en 1954 se botase el Nautilus, no sin enfrentarse a duras oposiciones desde todos los ámbitos, que consideraban el proyecto algo descabellado. Una vez convencidos, después de cuatro años de trabajo, la marina encargo a Rickover (imagen) y su equipo la construcción del primer submarino atómico en un plazo de cinco años.

Nadie, excepto el propio Rickover pensaba que ese plazo fuese factible, debido a lo descomunal de un proyecto en el que participarían miles de personas.

Se crearon unas instalaciones en Idaho en las que se construyó un duplicado del casco del Nautilus y se diseñó todo el sistema para que se adaptase en su interior. Esto suponía que todas las piezas de los reactores ya existentes debían ser rediseñados para adaptarse a las caprichosas formas de un submarino.

Rickover insistió en el control de calidad, también exigió un trabajo de ingeniería de la mejor clase, así como, hizo gran hincapié en tener una formación extremadamente competente de la futura dotación. Su equipo hizo todo lo posible para que este proyecto funcionase y lo hiciese bien, demostrando que aquel submarino podía ir al mar con total confianza y desempeñar su misión como submarino de combate.

Una de las principales preocupaciones del equipo de Rickover era evitar la radiación a toda costa. A este respecto cuando surgió el dilema de si debían cerrar la tapa del reactor con juntas o soldarla, se reunió a varios fabricantes de juntas que aseguraban que sus productos garantizaban el sellado. Rickover entró en la sala y les preguntó “¿Estarían dispuestos a permitir a sus hijos viajar en ese submarino?” a lo que los asistentes contestaron “suéldela”.

En 1952 se colocó la quilla del submarino en medio de una gran campaña publicitaria. Pero hasta la primavera de 1953 no se puso en marcha por primera vez el reactor Mark 1 en el centro de pruebas. Por fin, el 21 de enero de 1954 se botó el primer submarino nuclear, y a finales de 1955 el Nautilus se unió a la flota. Desde este día el submarino batió de inmediato todos losrecords de velocidad y permanencia sumergido. Con su primer núcleo de uranio navegó 62000 millas náuticas y casi todas en inmersión. Pronto se le consideró “el primer submarino verdadero”. Aunque se trataba más bien de un prototipo, sus capacidades demostraron que los conceptos de la guerra submarina y antisubmarina iban a cambiar drásticamente.

El propio Rickover afirmaba en 1956 “En mi opinión el Nautilus no es sólo un nuevo submarino que puede recorrer distancias prácticamente ilimitadas bajo el agua, yo lo considero una nueva arma y que puede tener un efecto tan profundo en las tácticas y estrategias navales como lo ha tenido el avión en la guerra”.

Los tripulantes acostumbrados a los submarinos convencionales opinaban del Nautilus que era una especie de trasatlántico. Tenía ventilación individual en todos los camastros, una sala común donde se proyectaban películas de cine, máquina de helados y muchas comodidades nunca vistas en un submarino. Los alimentos eran de la mejor clase y en aquella enorme sala las comidas se convertían en un acontecimiento social. La tripulación pronto lo apodó “Lola” en referencia a la canción “Lola consigue todo lo que quiere” ya que el proyecto contaba con toda clase de apoyos y un presupuesto muy generoso.

Pero pronto se terminarían aquellos momentos de tranquilidad y celebraciones. En la Unión Soviética se lanzó el primer satélite artificial, el Sputnik, mientras tanto el Nautilus operaba bajo el hielo del Ártico. Cuando el presidente Eisenhower se enteró de la posibilidad de cruzar por debajo del Polo Norte dio la orden. Su país debía responder de inmediato.

Después de algún intento, el Nautilus cruzó bajo el Polo Norte el 3 de agosto de 1958, este histórico acto demostró definitivamente la importancia estratégica del submarino nuclear. Operó hasta los años ochenta y en la actualidad el Nautilus está atracado en Groton Connecticut y se ha convertido en un museo que rinde homenaje a la flota submarina de los Estados Unidos.
(Fuente Consultada: Daniel Prieto)

UN POCO DE HISTORIA SOBRE LA EVOLUCIÓN DE LOS BARCOS: Desde el comienzo, los barcos de vapor tuvieron ventajas obvias sobre los barcos de vela. Por ser menos dependientes de los vientos favorables o adversos, cumplían mejor los horarios establecidos y nunca se quedaban encalmados.

Sin embargo los primeros vapores tenían también algunas desventajas. A mediados del siglo xix, el arte de construir barcos de vela llegó a su máxima perfección, y los mejores de los elegantes clíperes, construidos sobre el Clyde o en los astilleros de Boston, podían mantener una velocidad de 15 a 18 nudos en la mayoría de los viajes largos. En cambio los desgarbados y anchos vapores de ruedas rara vez podían viajar mucho más rápido que de 10 a 12 nudos. También los barcos de vela estaban en el mar tanto tiempo como sus provisiones lo permitieran, que podía ser varios meses; pero los vapores habían de permanecer en el mar solamente tanto como durara la provisión de carbón para las calderas.

A medida que la hélice reemplazó a la rueda de paletas, los vapores pronto aumentaron su velocidad, en parte porque la hélice era más eficiente que la rueda de paletas, en parte porque los barcos con hélice poseían un mejor perfil hidrodinámico y en parte también porque, en el ínterin, se habían perfeccionado los motores.

Y a medida que los vapores se hicieron más y más veloces, obtuvieron cargamentos cada vez más abundantes y valiosos. Para fines del siglo pasado, ya transportaban más del 80’% de todos los cargamentos, y los barcos de vela menos del 20 %. Luego, en los primeros años del siglo, se introdujeron las turbinas de vapor, y dieron a los barcos aún mayor ventaja en velocidad.

Así, el vapor había ganado la batalla de la velocidad; pero las velas eran todavía dueñas del cetro en la lucha de los barcos para ver cuál podía permanecer más tiempo en el mar. Pero, hace más de 50 años, comenzaron a botarse barcos de una clase diferente, provistos no de máquinas de vapor, sino de motores de combustión interna para mover la hélice. Estos pueden viajar los mejores barcos de motor modernos sin reabastecerse de combustible —hasta 30.000 kilómetros. Ahora, en nuestra época, el uso de reactores atómicos ha abierto la posibilidad de construir barcos capaces de navegar muchas veces alrededor del mundo sin reabastecerse.

Aunque los hombres de ciencia habían resuelto el problema de dominar la energía atómica con propósitos pacíficos pocos años después de la segunda guerra mundial, se tardó mucho más en producir un pequeño reactor apropiado para dar energía a un barco, y asegurarse de que se podría instalar sin exponer a la tripulación al peligro de la radiactividad. Así que hasta enero de 1955 el primer barco de energía atómica, el submarino americano “Nautilus”, no hizo su primer viaje de prueba. Sin embargo, en los años subsiguientes, un buen número de barcos atómicos comenzaron a circular.

El viaje más notable del “Nautilus”, que aparece en la ilustración de arriba, se hizo debajo de la capa de hielo que cubre el polo norte. El viaje demandó gran coraje, pues se pensaba que no se podría salir a la superficie hasta pasar el otro cabo de la capa de hielo. Pero el “Skate” lo hizo exactamente en el polo norte geográfico.

Otro submarino atómico norteamericano, el “George Washington”, que puede hacer viajes larguísimos y disparar proyectiles “Polaris” sin subir a la superficie. El rompehielos ruso “Lenin”,  puede navegar durante dos años sin reabastecerse de combustible. El diagrama del centro muestra cómo usa su propio peso para despejar un camino a través del hielo.

Fuente Consultada:
Sitio WEb Wikipedia
Revista Conocer Nuestro Tiempo
Diccionarioo Enciclopédico Espasa Calpe
El Triunfo de la Ciencia Tomo III Globerama Edit. CODEX

Musica en el Voyager Violin Stradivarius Gaitas Escocesas Violines

LOS SONIDOS DEL PLANETA TIERRA:

¿CÓMO HACER comprender a un habitante de un planeta lejano lo que son y cómo viven los seres humanos en la Tierra? Ésta fue la pregunta que se  planteó a un comité de expertos en 1977, cuando las naves espaciales de EUA Voyager 1 y 2 iban a ser lanzadas en un viaje al espacio con un saludo para cualquier forma de vida inteligente con que se toparan.

Para sorpresa de muchos, los expertos coincidieron en que uno de los mejores modos de comunicarse con extraterrestres sería no con palabras o imágenes, sino con música. Dedicaron los 87 minutos del videodisco de los Voyager a una selección de los “grandes éxitos musicales de la Tierra”. ¿Por qué la música?.

Disco de oro The Sounds of Earth (arriba), protegido por un estuche de aluminio con chapa de oro, es instalado en el Voyager 2. Con éste se envió al espacio exterior, donde los científicos esperan que lo reciba alguna forma de vida inteligente no humana.

En primer lugar,  porque su estructura —desde un blues de ocho compases hasta una compleja fuga de Bach— se basa en números, y la armonía es de fácil análisis matemático. Las matemáticas son el lenguaje más universal, por lo que era más probable que los extraterrestres comprendieran la estructura matemática de nuestra música más que cualquier otra cosa sobre nosotros.

Además, expresa los sentimientos humanos mejor que otros medios y podría representar la variedad de culturas. No ha habido sociedades sin su música típica para expresar tristeza y dolor, alegría y tranquilidad. Al seleccionar la música que representaría a la humanidad en el universo, la clave fue la variedad.  Se eligieron canciones aborígenes de Australia, el Night Chant de los navajos y una canción de boda peruana; música de gamelán de Java, de zampoñas de las islas Salomón y de Perú, un raga de la India y música ch’in de China; piezas para gaitas de Azerbaiyán, flautas de bambú de Japón y percusiones del Senegal. También se incluyeron canciones de Georgia, Zaire, México, Nueva Guinea y Bulgaria; el blues Dark Was the Night con Blind Willie Johnson, Melancholy Blues con el trompetista de jazz Louis Armstrong y Johnny B. Goode con el cantante de rock Chuck Berry. De la tradición culta occidental se seleccionó música para flauta renacentista, tres obras de Bach y dos de Beethoven, un aria de La flauta mágica de Mozart y La consagración de la primavera de Stravinsky.

¿Son éstos los éxitos musicales de la Tierra? Al menos son hoy los que más podrían persistir. El videodisco, de cobre con chapa de oro, fue fabricado para que dure 1.000 millones de años.

INSTRUMENTOS DE GUERRA:

EL SONIDO estridente de las gaitas ha acompañado a los escoceses de laS Tierras Altas en las batallas cuandc menos durante los últimos 400 años, dando nuevos ánimos a los ardientes guerreros de las montañas y provocando miedo en el corazón de sus enemigos. Según registros, en la Batalla de Pinkie (1549), “los violentos escoceses se incitaban a la guerra con el sonido de las gaitas”. Y éstas se escucharon también en 1942, cuando tropas de las Tierras Altas escocesas avanzaron por campos minados del desierto contra el Afrika Korps de Rommel, en la batalla de El Alamein.

Desde Suecia hasta Túnez

Las gaitas simbolizan a Escocia tanto como el haggis y el whisky. Pero los escoceses no pretenden ser los inventores de la gaita. Es casi seguro que haya surgido en el Imperio Romano durante el siglo 1. Se cree que el emperador Nerón la tocaba, y es más probable que estuviera practicando este instrumento, no el violín, mientras Roma ardía.

Hacia 1300, gaitas de un tipo u otro zumbaban y chillaban desde Inglaterra hasta la India, y de Suecia a Túnez casi en cualquier parte, menos en Escocia. Fue un siglo después, cuando ya el resto del mundo había empezado a cansarse del instrumento, que los escoceses lo adoptaron.

Llamado a la gloria En 1915, el gaitero Laídlaw (foto izquierda) incitó a las tropas británicas para que continuaran el avance a través de una nube de gas mostaza en el frente occidental. Su valentía lo hizo merecedor de la Cruz de Victoria.

Las gaitas fueron populares en parte porque podían fabricarse con materiales que se conseguían en la sociedad rural. Sólo se requería la piel de una oveja o el estómago de una vaca para hacer el odre, y unas pocas cañas perforadas para los canutos. El principio del instrumento es ingenioso, pero sencillo. El gaitero sopla en el odre, que actúa como depósito para mantener la circulación constante de aire a los canutos. Estos son de dos tipos, caramillo y roncón. En una versión sencilla de dos canutos, el gaitero ejecuta la melodía en el caramillo, mientras el roncón produce el bajo continuo característico del sonido de la gaita. En algunas variantes, el aire para el odre proviene de un fuelle.

Las gaitas aún se emplean en la música folklórica de muchos países. Por ejemplo, acompañan las danzas tradicionales de los bretones, en el noroeste de Francia. Muchas personas relacionan con regimientos escoceses el sonido de las gaitas entremezclado con el estruendo de una batalla. Pero los escoceses no tienen exclusividad al respecto: durante siglos los irlandeses también las han usado para llamar a las armas.

EL VIOLIN STRADIVARIUS:

Los violines Stradivarius son los más preciados instrumentos musicales del mundo. Entre los cerca de 600 ejemplares que aun se conservan hay algunos valorados en más de un millón y medio de euros, es decir, más de cien veces de lo que costaría el más perfecto ejemplar artesano moderno y más de diez mil veces que los procedentes de fabricaciones industrializadas.

Un violín hecho en el siglo XVIII por Antonio Stradivarius, de Cremona, Italia, puede costar hasta un millón de dólares. Los stradivarius se cotizan a tan altos precios porque todavía se los cataloga como los violines más finos que se hayan producido.

Stradivarius fue un genio tranquilo, un artesano asentado en Cremona, donde residió toda su vida en una modesta casa taller del barrio antiguo. A crear esta aureola de misterio ha contribuido el hecho de no conocer apenas datos biográficos de su vida, a lo que hay que sumar las extrañas circunstancias en las que se perdió su cadáver.

No se sabe con certeza en que año nació ni en que ciudad exactamente, pues no queda registro del hecho. Se piensa por otras fechas posteriores que pudo nacer en torno a los años 1640-1645. Se conoce mejor su estancia en la ciudad Italiana de Cremona donde desarrolló toda su carrera como constructor de violines. En total construyó más de mil violines, de los que se conservan cerca de la mitad.

Stradivarius enseñó a sus dos hijos el arte de hacer instrumentos de cuerda y, aunque ellos no lograron alcanzar la misma calidad mágica del padre, su trabajo fue notable. Ha sido un misterio qué confiere a un stradivarius su calidad única; las conjeturas se han centrado en el barniz empleado en estos instrumentos. Stradivarius escribió su fórmula del barniz en la guarda de la Biblia familiar; mas, por desgracia, uno de sus descendientes la destruyó.

El italiano Antonius Stradivarius (1644-1737) introdujo una geometría y un diseño que se convirtieron en los modelos a seguir por todos los fabricantes de violines. De los 1.100 instrumentos que construyó, aún sobreviven unos 650. El extremadamente alto valor de estos instrumentos quedó demostrado en una subasta realizada en el mes de abril en Londres. El violín Stradivarius ‘Lady Tennant’ vendido en esa oportunidad, batió un récord en el mundo de las subastas de instrumentos musicales, con un precio astronómico de un millón y medio de euros.

Madera veneciana:

Pese a lo anterior, Joseph Nagyvary, profesor de bioquímica y biofísica en la Universidad de Agricultura y Mecánica de Texas, cree haber descubierto el secreto de Stradivarius: la madera de abeto que éste usó procedía de Venecia, donde se guardaba junto al mar. Esto producía diminutos agujeros en la madera, sólo visibles con un microscopio electrónico de 2 000 amplificaciones. La madera curada en seco de los violines modernos no tiene estos orificios. Según Nagyvary, esto confiere riqueza y resonancia especiales al sonido.

Nagyvary también descubrió, al examinar el barniz, que incluía diminutos cristales de mineral. Infirió que procedían de piedras preciosas molidas, que añadían los alquimistas al preparar el barniz en la creencia de que las piedras tenían propiedades mágicas. En un violín, estos cristales filtran los armónicos agudos y producen un sonido más puro y terso.

Nagyvary puso a prueba su teoría al fabricar un violín con madera curada en la humedad y recubierta de un barniz que contenía polvo de piedras preciosas. Un experto calificó el resultado como “el mejor violín nuevo que jamás he escuchado”. La famosa violinista Zina Schiff quedó tan impresionada que tocó el instrumento en conciertos públicos.

¿Se percataban Stradivarius u otros famosos violeros de Cremona —como los Amati y los Guarnen— de la singular calidad de los materiales que utilizaban? Al respecto, Nagyvary dice: “Sinceramente pienso que los antiguos violeros no sabían, acerca de la fabricación de violines, más de lo que saben los actuales artesanos… Solamente fueron los afortunados beneficiarios de una feliz coincidencia histórica.”

Silos violeros actuales usaran los descubrimientos de Nagyvary, ¿disminuiría el valor de un stradivarius? Es casi indudable que no, pues no parece haber nadie capaz de revivir su ingrediente mágico: su genialidad.

Fuente Consultada: Sabia ud. que….? Editorial Reader Digest

Yeager rompio la barrera del sonido Bell X1 Velocidad del sonido

Dos días antes de que intentara romper la barrera del sonido, el capitán Charles “Chuck’ Yeager, (foto izquierda) de la Fuerza Aérea de Estados Unidos, casi perdió el conocimiento en un accidente ecuestre y se rompió dos costillas.

A la mañana siguiente un médico de la localidad le vendó el cuerpo, pero ni siquiera así pudo mover el brazo derecho debido al dolor. No obstante, sabía que si sus superiores se enteraban de su estado, pospondrían el proyecto secreto programado para el 14 de octubre de 1947.

El avión cohete Bell X-1 se dejaría caer del compartimiento de bombas de un Superfortaleza B-29, y después de planear brevemente comenzaría a ascender cuando Yeager encendiera los cuatro cohetes en rápida sucesión.

Para salir del vientre del B-29 y entrar en la pequeña cabina del X-1 (conocido también como XS- 1), Yeager tenía que deslizarse hacia abajo por una pequeña escalera. Después había que bajar la puerta de la cabina por medio de una extensión desprendible del compartimiento de bombas.

Una vez que la puerta estuviera colocada en la forma debida, Yeager debía cerrarla desde el lado derecho. Era ésta una operación que resultaba muy simple, mas no para quien tenía dos costillas fracturadas y el brazo derecho sin poder moverlo. Entonces, su ingeniero de vuelo, Jack Ridley, tuvo una idea genial: el piloto podía quizá usar una especie de bastón con la mano izquierda, y utilizarlo para elevar la manija de la puerta y asegurarla.

La velocidad del sonido es la velocidad de propagación de las ondas sonoras, un tipo de ondas mecánicas longitudinales producido por variaciones de presión del medio. Estas variaciones de presión (captadas por el oído humano) producen en el cerebro la percepción del sonido. El sonido no se transporta por el vacío porque no hay moléculas a través de las cuales transmitirse.

En general, la velocidad del sonido es mayor en los sólidos que en los líquidos y en los líquidos es mayor que en los gases.

La velocidad del sonido en el aire (a una temperatura de 20 ºC) es de 340 m/s (1.224 km/h)

En el aire, a 0 ºC, el sonido viaja a una velocidad de 331 m/s y si sube en 1 ºC la temperatura,
la velocidad del sonido aumenta en 0,6 m/s.

En el agua es de 1.600 m/s, En la madera es de 3.900 m/s, En el acero es de 5.100 m/s

“Echamos un vistazo alrededor del hangar y descubrimos una escoba, rememoró en cierta ocasión Yeager. “Jack cortó un palo de escoba de unos 25 cm., que se ajustó a la manija de la puerta. Luego me escurrí dentro del X-1 e intentamos probar el remedio. Él sostuvo la puerta contra el fuselaje y, usando el palo de escoba para elevar la manija, me di cuenta de que podía yo maniobrar para asegurarla como se requería”, añadió.

Hacia las 8:00 a.m. del 14 de octubre, el B-29 despegó de la Base Aérea Muroc (ahora Base Edwards) en el desierto de Mojave, al sur de California. A pesar del dolor que sentía, Yeager, de 24 años de edad, tenía un tranquilo optimismo.

Ya había hecho vatios vuelos de prueba en el avión cohete y quería ser el primer hombre en volar a una velocidad supersónica, a unos 1.126 km/h y alrededor de 12.200 m sobre el nivel del mar.

La velocidad de un gavión comparada con la del sonido se conoce como número mach, por el, físico austriaco Ernst Mach (1838-1916). Cuando un avión vuela a la velocidad del sonido se dice que viaja a 1 mach.

A menos que un avión esté diseñado para el vuelo supersónico, las fuertes ráfagas de viento lo golpean al acercarse a 1 mach y lo vuelven inestable; el X-1, con su nariz y sus líneas aerodinámicas, en teoría no sería afectado por ese fenómeno. Sin embargo, la inercia del avión lanzaba al piloto por la cabina con tanta fuerza, que éste corría el riesgo de golpearse y quedar inconsciente. Para protegerse, Yeager llevaba una gorra de cuero encima de su casco de aviador.

Cuando el B-29 se acercaba a 2100 m de altura, Yeager se dirigió al compartimiento de bombas, donde había unas barandillas que descendían junto al X- 1; empujó la escalera de aluminio y se deslizó con los pies por delante en la cabina del X-1.

Allí tuvo que soportar un. frío intenso. 1’Aás tarde relataría: “Tiritando, uno se frota las manos con todo y guantes y se pone la mascarilla de oxígeno. El frío de los centenares de litros de oxígeno líquido que lleve la nave hace que uno se paralice. No hay calefactor ni descongelador; no se puede hacer nada más que apretar las mandíbulas y dejar correr los minutos… es como tratar de trabajar y concentrarse dentro de un congelador.”

Durante los vuelos de prueba la transpiración de Yeager avía formado una capa de escarcha en el parabrisa. Para evitarla el jefe de mecánicos había puesto un revestimiento de champú sobre el vidrio. “Por alguna razón desconocida”, dijo Yeager, “funciono como anticongelante y continuamos usándolo incluso después de que el gobierno compro un producto químico especial que costaba 18 dólares la botella.”

Barrera rota De sólo 9.5 m de largo y con una envergadura de 8.5 m, el Bell X-1 piloteado
por el capitán “Chuck Yeager rompió la barrera del sonido a 1126 km/h.

Los dos aviones, todavía uno dentro y del otro, volaban a unos 4.570 m y seguían ascendiendo. A los 6.100 m, el piloto del B-29, el mayor Bob Cárdenas, comenzó la cuenta regresiva; al terminar apretó el botón de apertura y el X-1 quedo libre con una sacudida, cayendo con la nariz hacia arriba.

Cayó aproximadamente 150 metros, mientras Yeager luchaba desesperadamente con los controles. Por fin logró poner la nariz del aparato hacia abajo y entonces encendió los cuatro cohetes; sabia que el combustible podía estallar al. conectar el encendido, pero todo funcionó conforme a lo planeado y el avión comenzó a traquetear y a tragarse una tonelada de combustible por minuto”, según relató.

El X-1 ascendía a una velocidad de 0.88 mach y comenzó a balancearse. Yeager accionó de inmediato el interruptor del estabilizador y el avión se niveló a los 11.000 m de altura. Apagó dos de los cohetes y a los 12.200 m subía a 0.92 mach; de nuevo niveló el aparato, esta vez a 12.800 m. Encendió el cohete número tres e instantáneamente llegó a 0.96 mach… y la velocidad seguía en aumento.

“¡Volamos a velocidad supersónica!”, exclamó. “Y todo estaba tan suave como la piel de un bebé; mi abuela podría sentarse aquí a beber limonada. Yo elevé entonces la nariz del avión para reducir la velocidad. Estaba atónito. Después de toda la ansiedad, romper la barrera del sonido resultó como correr en una pista perfectamente pavimentada.”

Para conservar intacta su carga de 2 00 metros de oxígeno liquido y alcohol, el X-1 iba sujeto en el compartimiento de bombas de un Superfortaleza B-29. Para iniciar su vuelo, el X-l se dejó caer del avión nodriza como si fuera una bomba.

Para eliminar el riesgo de una explosión en el momento de aterrizar el X-1, Yeager dejó escapar el resto del combustible y siete minutos después el avión descendía sin peligro. Yeager había allanado el camino para la exploración espacial.

“Me convertí en héroe ese día”, dijo con orgullo. “Como siempre, los carros de bomberos se abalanzaron hacia el lugar donde la nave se detuvo. Y como de costumbre. el jefe de bomberos me llevó de regreso al hangar. Ese cálido sol del desierto era en verdad maravilloso, pero aún me dolían las costillas.”

Explicación Física Sobre Romper La Barrera del Sonido

Fuente Consultada:
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia – Enciclopedia Encarta – Enciclopedia Consultora

VIAJE A CABALLO CRIOLLO UNEN BUENOS AIRES CON WASHINGTON EN 1925-1928

DOS CABALLOS CRIOLLOS UNEN BUENOS AIRES CON WASHINGTON EN 1925-1928

En 1928 tuvo lugar el raid más formidable que hayan realizado en la historia del mundo el hombre y el caballo.

Un profesor suizo radicado en la República Argentina, Aimé Félix Tschiffely (1896-1954), con dos caballos criollos, Mancha y Gato pertenecientes a la estancia “El Cardal” del doctor Emilio Solanet, realizaron esta fabulosa hazaña de resistencia.

Tschiffely partió de la Sociedad dad Rural en Palermo el 25 de abril de 1925 y llegó a Washington el 29 de agosto de 1928, después de tres años, cuatro meses y cuatro días.

Recorrió una distancia de más de 25.000 kilómetros, atravesando los desiertos más inhóspitos del globo, subiendo a más de cinco mil metros sobre el nivel del mar y transitando por selvas pobladas de indios salvajes.

De Buenos Aires, pasando por Rosario y Santa Fe, arribó a Jujuy y pasó a Bolivia. En el Perú atravesó el desierto de Matacaballos, 160 kilómetros de arena sin agua y con 52 grados de calor; lo hizo de noche y en una sola etapa.

Desde Cartagena hasta Panamá viajó en barco y luego pasó por Costa Rica, Nicaragua, El Salvador, Guatemala y México. El plan inicial tenis como destino la ciudad de Nueva York, pero, con buen criterio, Tschiffely le puso fin en Washington, pues viajar a caballo por las carreteras de Estados Unidos atestadas de autos era suicida.

El presidente Calvin Coolidge recibió al jinete, y el alcalde de Nueva York, Jimmy Walker, le ofreció una recepción y le entregó una medalla. Este viaje actualíz6 el proyecto de realizar la Carretera Panamericana, hoy una realidad. Después del raid, el jinete regresó a Inglaterra, donde se casó con una cantante argentina y regresó al país en 1938 y 1943 para ver a Mancha ya Gato.

Estos dos caballos tenían 15 y 16 años al iniciar el raid y habían pertenecido a un cacique patagón llamado Liempichún. En el viaje usó un ‘chirigote’ silla de montar muy usada en Entre Ríos.

El periódico LA RAZÓN, comenta: “Buenos Aires, admira los valores sustanciales del hombre: espíritu de empresa, coraje y tenacidad, agasaja a Aimé Tschiffely, criollo de corazón como tantos extranjeros que amaron la tierra gaucha. Nada detuvo su avance a través del continente, montando en Gato o en Mancha. Las largas marchas en los suelos pedregosos de los declives de montaña, en medio del sol abrasador de los trópicos, los valles dilatados, los ríos impetuosos y profundos, todo ha sido salvado; y los caballos criollos, exponentes de la resistencia, de la bondad, de lo útil de la raza, triunfan en una prueba en la que habrían caído vencidos animales selectos de cualquier origen, que no ostentaran en sus corrientes de sangre el blasón noble de sus antecesores árabes. Miles de leguas pisadas por los cascos endurecidos, hasta llegar a la Quinta Avenida, que detuvo su agitado tránsito para ver pasar las figuras legendarias, extrañas en otro marco que no fuera el de la pampa infinita. Buenos Aires, a su vez, siente el orgullo y la emoción de la hazaña, volcando sus sentimientos, por lo menos esa pureza que ningún filósofo le ha negado, al dar la bienvenida al raidista y a los valientes caballitos criollos “del galope largo y el instinto fiel”, como lo cantó el poeta y como lo probaron en todas las rutas de América, para asombro de propios y extraños.”

Linbergh Cruzó Sin Escalas y Solo el Oceano Atlantico en Avion

Charles Lindbergh (1902-74)

En 1903, cuando Charles tenía un año de edad, el único avión existente en el mundo, tenía una autonomía de un minuto. Cuando cumplió los 25 años, la aviación había alcanzado un grado de desarrollo tal, como para que este entusiasta se fuera en 33 horas de N.York a Paris sin escalas, con su Spirit Of St. Louis.

Todo esto no fue gratis; unos cuantos murieron en este desarrollo, y los intentos por el premio Orteig de 25.000 U$s. (todos con varios tripulantes y motores) habían fracasado, generalmente en forma trágica.

Los rugientes veintes estaban faltos de un héroe, y este vino a llenar el lugar. Veamos como hizo, este solitario que prefirió un solitario motor. A los 21 años, hizo su primer vuelo solo, a los 22 chocó en el aire y bajó en paracaídas, a los 23 no pudo salir de un tirabuzón y volvió a bajar en paracaídas, e inició el correo entre St. Louis y Chicago donde al año siguiente también bajó en paracaídas.

En 1926 y con 2000 hs voladas, no cree que el Atlántico le depare sorpresas; para competir por el premio Orteig solo le falta el avión. Nueve empresarios de St Louis lo patrocinan, encarga un monoplano de ala alta a Ryan Co de San Diego, California y a su diseñador Donald Hall, con quien establece armoniosa sintonía.

El Spirit Of St. Louis se construyó a toda prisa, en mayo, pues otros pilotos como el explorador del Artico, Richardr Byrd, también competían por el premio, sin embargo el único que pensaba cruzalo solo era Lindbergh. El motor, un Whirlwind de 9 cilindros y 220 HP a 1800 rpm; el resto alivianado al máximo para dejar capacidad portante para llevar los 1750 litros =1400 Kg. de nafta mas 100 Lt. de aceite necesarios. Se suprime la radio, el sextante, el tapizado, el parabrisas se reemplaza por un tanque de nafta; también se suprime el sistema eléctrico y la pintura.

Toda comodidad, cedió lugar a la aerodinamía y liviandad. Costo de todo el avión: 10.500 dol. Tras las primeras pruebas, vuela sin escalas a St Louis calibrando el consumo, y luego a N.York.

Con muy poco preámbulo, con el primer pronóstico meteorológico aceptable, el 20 de mayo sale desde la pista de césped de 1500 m de Roosevelt Field hacia París, y después de 33 horas y media, aterriza en Le Bourget. Durante todo el viaje estuvo luchando para no dormirse , la borrasca, la niebla, y la inestabilidad del avión  dificultaron aun más su tarea, muchos pensaron que estaba loco, pero cuando llegó fue recibido por una multitud entusiasta de 100000 personas. Los coleccionanistas casi le destrozan su Spirit.

La velocidad media, fue de 173 kph. Las consecuencias de este vuelo, son tremendas. Se transforma en el ídolo mundial Lucky Lindy, cosa que a él poco parece importarle.

A partir de este momento aparece un antes y un después; la aviación comienza a ser tomada en serio como un medio de transporte de personas; en los próximos tres años nacerán las principales aerolíneas del mundo y recién entonces los pasajeros descubren que el avión de transporte existe.

Se desarrolla mucha tecnología que se intercambia, especialmente con la industria automotriz. Lucky Líndy quedará como máximo referente de la aviación por el resto de su vida.

Cuando Nixon y el Congreso de EE.UU. debieron decidir en 1970 si aportaban dinero para el SS116 consultaron a Lindy y éste respondió que no se debía gastar dinero de los contribuyentes en una actividad no rentable; el tiempo le daría la razón.

Tuvo ideas políticas cuestionables y fue influenciado por Alexis Carrel sobre la superioridad del hombre blanco.

Nota: La hazaña de Lindbergh no fue solo cruzar el océano sin escalas, sino que lo hizo solo, la audaz tentativa captó la atención mundial, pero en realidad Lindbergh no fue el primer aviador en realizar un vuelo transatlántico sin escalas. John Alcock y Arthur Whitten Brown, dos aviadores británicos, lograron volar desde Lesters Field, cerca de Saint Johns, Nueva Escocia a Clifden, Irlanda del 14 al 15 de junio de 1919 en su avión Vickers Vimy IV (un bombardero modificado). Por haber logrado este vuelo, Alcock y Brown ganaron el premio de 10.000 libras esterlinas del periódico londinense Daily Mail, recibiendo el premio de manos del mismo Winston Churchill. Se encuentra una estatua de Alcock y Brown en el aeropuerto de Heathrow, cerca de Londres, Inglaterra en honor al primer vuelo trasatlántico.

PARA SABER MAS… Charles A. Lindbergh no fue el primero que cruzó el Atlántico en aeroplano ni el primero que realizó una travesía sin escalas. (Ambas proezas ya se habían realizado en 1919). No obstante, fue el primero que lo cruzó solo. La audaz tentativa captó la atención mundial hasta un nivel sólo comparable a la firma del armisticio. El 20 de mayo de 1927, Lindbergh despegó de Roo-sevelt Field en Long Island (Estados Unidos) a las 7.54. Cuando aterrizó en el aeródromo Le Bourget de París 33 horas y media después, lo esperaba una multitud entusiasta de cien mil personas.

Los coleccionistas casi destrozan su avión, el Spirit of St. Louis. En junio, cuatro millones de neoyorquinos le dieron la bienvenida con un desfile. La prensa lo trató como a un nuevo Colón, unaimagen equivalente a su ambición. Lindbergh quería una nueva Era: la del vuelo transoceánico.

Empezó a pensar en la idea cuando hacía rutas aéreas postales entre St. Louis y Chicago. Más tarde escribió: «¡Imagínate ser capaz de poder sobrevolar la tierra a voluntad, aterrizando en este o en aquel hemisferio!». Cuando leyó que un hotelero neoyorquino oriundo de Francia ofrecía un premio de 25.000 dólares por un vuelo sin escalas entre su ciudad de adopción y París, Lindbergh se propuso ganarlo. Tras conseguir el apoyo financiero de unos hombres de negocios de St. Louis, empezó a buscar a un fabricante que construyera un aeroplano según sus indicaciones. Muchos se negaron pensando que estaba loco. Finalmente, una compañía californiana, la Ryan Airlines, aceptó.

El Spirit of St. Louis se construyó a toda prisa: en mayo, otros pilotos, como el explorador del Ártico Richard E. Byrd, también competían por el premio. Sin embargo, el único que planeaba un vuelo solitario era Lindbergh y la prensa se concentró en él. La víspera de su viaje histórico no pudo dormir, cuando inició su travesía de 5.782 km ya estaba agotado y durante todo el vuelo estuvo luchando para permanecer despierto. La borrasca, la niebla y la inestabilidad del aeroplano dificultaron aún más su tarea.

Lindbergh se convirtió en un héroe internacional y promovió los viajes aéreos comerciales ante reyes, financistas y todo el que lo escuchara. Realizó vuelos de reconocimiento con su mujer, Anne Morrow, y estableció rutas que todavía se utilizan. En 1935, la Pan Am inauguró el servicio de pasajeros a través del Atlántico, y el sueño de Lindbergh se hizo realidad. 

OTRA HAZAÑA….

Howard Hughes, productor de cine, fabricante de aviones y multimillonario, también estableció un récord como piloto. Hughes cerró la época de los aviadores heroicos el 14 de julio de 1938, cuando aterrizó con su bimotor Lockheed en el campo Floyd Bennett de NuevaYork tras dar la vuelta al mundo en tres días, 19 horas y 17 minutos, la mitad del tiempo que había empleado Wiley Post en su viaje solitario de 1933. Más tarde, Hughes aclaró: «Cualquier piloto aéreo comercial hubiera podido hacer lo mismo». Hughes aprovechó las experiencias de sus predecesores y sus fondos ilimitados. Su Lockheec 14 estaba equipado con los instrumentos de navegación más modernos: estuvo en contacto permanente con emisoras de radio en tierra y en barcos.

Historia y Futuro del Concorde Accidente aereo del Concorde

Historia y Futuro del Concorde – Accidente Aéreo

el concorde frances, ultimo vuelo

datos del concorde

Datos Principales

  • Capacidad: hasta 144 pasajeros y 11.340 kg. de carga
  • Autonomía 7.582 Km.
  • Motores: 4 Rolls-Royce / SNECMA Olympus 593 Mk 610 que producen 38.000 lbs (169,1 KN) de empuje.
  • Velocidad de despegue: 402 Km/h
  • Velocidad de crucero: 2.179 Km/h (Mach 2.2) a 16.765 M de altura.
  • Velocidad de aterrizaje: 300 Km/h
  • Longitud total: 62,10 M
  • Envergadura (longitud de las alas): 25,55 M
  • Superficie alar: 358,25 m2
  • Altura: 11.40 M
  • Anchura del fuselaje 2,9 M
  • Techo máximo: 61.000 pies (18.300 m)
  • Capacidad de combustible: 119.500 L / 95.600 kg
  • Consumo de combustible: 25.629 L / 20.500 kg
  • Peso máximo de despegue: 185.066 kg
  • Peso máximo al aterrizaje: 111.130 kg
  • Peso en vacío: 78.698 kg
  • Tren de aterrizaje: 2 neumáticos en el delantero y 8 en el trasero
  • Tripulación de vuelo: 2 pilotos y un ingeniero de vuelo
  • Tripulación de cabina: 6 azafatas
  • Rutas:
    • París – Nueva York (3 horas y 54 minutos)
    • Londres – Barbados

La Caída de un Grande….

Punto final para el famoso Concorde, el avión supersónico que cruza el  cielo a velocidad del sonido: desde el 1 de noviembre de 2002 dejó de volar.  Así lo decidieron las dos líneas aéreas que tienen estos aviones entre su flota, Air France y la British Airways.  Las empresas anunciaron el retiro de estos aparatos por los altos costos de mantenimiento que tienen y porque ya no hay suficientes pasajeros dispuestos a pagar casi 10.000 dólares por un viaje de ida y vuelta.

Oficialmente, la suspensión de los vuelos estaba prevista para el año 2009, pero la guerra en Irak parece haber acelerado los tiempos.  Apenas se inició el conflicto, la ruta París-Nueva York que hace el Concorde llegó a despegar con sólo 20 pasajeros y los asientos disponibles son cien.

Las dos empresas sostuvieron que en estas condiciones ya no tenía sentido seguir operando.  El presidente de la British Airways, Rod Eddington, anunció que los siete aviones Concorde que tiene la compañía ya fueron prometidos a varios museos que los exhibirán como atracciones.

En muchos aspectos, este es un día triste – declaró.  Eddington-.  El Concorde cambió la naturaleza de la aviación comercial.  Revolucionó el modo en que la gente viaja por el mundo.  Es el final de una era fantástica en el mundo de la aviación’.

Su colega jean Cyril Spinetta, presidente de Air France, precisó que la suspensión de los vuelos tendrá un costo de entre 30 y 50 millones de euros en pérdidas.  La compañía francesa interrumpió  los vuelos de sus cinco aparatos el 31 de mayo, pero hasta noviembre se realizaron algunos vuelos individuales.  Este avión no va a morir, porque continuará viviendo en la imaginación humana’, dijo el presidente de Air France.

Es el final de los 27 años de historia del elegante jet blanco, la única aeronave supersónica pasajeros que navega a  dos veces la velocidad del sonido (2200 Km/h a 18.000 m de altura)

El recorrido entre Londres y Nueva York -que hace la British Airways- dura 3 horas y 20 minutos.  Y como entre las dos ciudades hay cinco horas de diferencia, se da la curiosidad de que el Concorde llega a destino antes del horario de salida.

Acaso el fin de estos vuelos haya comenzado en el mismo momento de los atentados a las Torres Gemelas de Nueva York, el 11 de setiembre de 2001. la drástica caída del número de pasajeros por temor a los a terroristas disminuyeron en todas aéreas.

Pero además en    el caso del  los Concorde eso se suma al recuerdo de la tragedia de julio de 2000 cuando uno de estos aviones se estrelló apenas despegó del aeropuerto parisino Charles de Gaulle.(ver más abajo)   Ese día hubo 113 muertos: toda la tripulación y los pasajeros.  Un mes después se suspendieron las salidas, que recién se retomaron al año siguiente.

Por otro lado, las compañías dueñas de los Concorde también apuntaron a los crecientes costos de mantenimiento que tienen estos aviones (se calcula que es cinco veces más que las aeronaves comunes).  Y otros motivos que contribuyeron a sacarlos de circulación, fueron los problemas técnicos que presentaban. Scientist informó    sobre una inspección encargada por la British Airways,donde se detectaron 55 ‘riesgos de en estos aviones.  ‘El Concorde es tan sensible como una bailarina rusa.  Con la menor la de temperatura empieza a toser’, describió un técnico en un periódico francés.

Lo cierto es que en los últimos meses los vuelos estaban saliendo casi vacíos. Un viaje del Concorde de Air France levantó vuelo de París a Nueva York, con sólo 12 pasajeros.  Y sólo había 16 reservas par cubrir todas las plazas del avión.

Esta decisión está motivada por el deterioro económico observado en los último meses y que se aceleraron desde comienzos de año”, esgrimió la empresa Al France en un comunicado.

Una realidad muy lejana de los buenos viejos tiempos, cuando estos aviones supersónicos tenían entre sus pasajeros a personajes notorios como la Princesa Diana, estrellas del rock como Mick jagger y Elton john, actores famosos como joan Collins y Sean Connery., modelos, políticos y altos ejecutivos.

Pero esos eran otros tiempos.  ‘Si en una empresa están despidiendo trabajadores y pidiendo al personal que se ajuste el cinturón, los ejecutivos no consideran adecuado ir al aeropuerto y tomarse un Concorde’, opinó el presidente de la British.  Estos aviones fueron concebidos en 1956, cuando se fundó, en Gran Bretañia el Comité de Aviones de Transporte Supersónico.

La idea era investigar las posibilidades de construir un avión de esas características.  En 1962, los gobiernos de Francia e Inglaterra fue un acuerdo para desarrollar el proyecto’ Y al aflo siguiente, el presidente francés Charles de Caulle, usó por primera vez el término ‘Concorde’ para referirse al primer avión que volaría a la velocidad decido.

El servicio comercial se inició en enero de 1976.  Desde entonces volaron más de 2 millones de pasajeros que degustaron exquisitas comidas y vinos finos durante el viaje.  Hoy es Concorde es una leyenda.

Un Lujoso Proyecto:

Desde su primer vuelo regular, el 21 de enero de 1976 -desde París hasta Río de Janeiro-, el Concorde simbolizó la misma expresión de lujo y refinamiento en la industria aerocomercial, con sus azafatas vestidas por Goulle y cuatro chefs a bordo.

Pero detrás de las líneas elegantes del avión estaba el primer proyecto de cooperación aeroespacial entre dos países europeos, Francia (Aeroespatiale) y Gran Bretaña (British Aircraft), cuyos ingenieros comenzaron a trabajar en forma conjunta a fines de los años 60.

El proyecto costó 3.000 millones de dólares y conjugó el encuentro entre dos culturas: los planos franceses estaban diagramados según el sistema métrico decimal, en tanto el de los ingleses lo hicieron según su propio sistema.  El Concorde fuel la génesis de la cual surgió posteriormente el Airbus, el único avión capaz de hacerle frente hoy a la poderosa Boeing estadounidense.  Eso sí: para el Airbus, se dejaron de lado las mediciones en pulgadas, pies y yardas.

El Concorde aterrizó tres veces en suelo argentino: primero en 1971 (era aún un prototipo) y luego para el Mundial ’78, como transporte de la Selección francesa.  Afíos más tarde, el 8 de didembre de 1999, un Concorde charteado trajo a Ushuaia a 100 turistas que pagaron US$ 52.000 por un tour sudamericano.

Siete meses más tarde, en París, sobrevino el único accidente fatal en la historia del Concorde.  Fue el punto de inflexión en la historia de la única aeronave comercial desde cuyas ventanillas se podía observar la curvatura de la Tierra.


Conclusiones Finales de la Investigación

Luego de seis meses de investigaciones se ha llegado a la siguiente conclusión, respecto a las causas del accidente:

Un avión DC10 con destino a EE.UU. despegó pocos minutos antes de la salida del Concorde. Este avión que había sido reparados mecánicamente, pierde un elemento metálico de forma rectangular bien alargado que cae sobre la pista. Al despegar el Concorde, y cuando llevaba una velocidad de unos 330 km/h, uno de los neumáticos de goma inflados a alta presión pisa esta chapa filosa produciéndole un corte profundo a la cubierta de caucho.

El neumático explota y uno de los pedazos  (que salen expulsados a gran velocidad) , impacta en la parte inferior del ala  creando una gran onda de choque que desprende un sello hermético del tanque de combustible. El combustible comienza a fugarse, pero hasta ese instante no hay problemas porque existen sistemas de seguridad para esas situaciones.

Pero fue aquí cuando sucede la peor, porque otro trozo de cubierta corta unos cables del tren de aterrizaje, que al rozarse producen chispas eléctricas, que en contacto con el combustible que se escapa, crea una combustión que en segundo se expande por todo el fuselaje, hasta su caída sobre un hotel cercano al aeropuerto.

Fuente Consultada: National Geographic

El aparato cayó en parte sobre un hotel, a unos cinco kilómetros del aeropuerto de Roissy-Charles de Gaulle, de donde había despegado pocos minutos antes. Es el primer concorde que se estrella en sus treinta años de historia.

DATOS DEL VUELO:

Día: Martes 25 de Julio del 2000

Hora: 14:44 GMT

Marca-Modelo: Aérospatiale / BAC Concorde 101

Propietario: Air France Matrícula: F-BTSC Serial: 203 Año: 1975

Tripulación: 09

Pasajeros: 100

Total de personas abordo: 109 (todos fallecieron)

Personas fallecidas en tierra: 05

Total de personas fallecidas: 114

Sitio del accidente: Gonesse (Francia) Plan de vuelo: Roissy-Charles de Gaulle de París – New York- John F. Kennedy IAP, NY, Vuelo número: 4590

Puedes leer un libro sobre esta maravilla aérea del autor Roberto Blanc, que lo ha enviado para que sea compartido con los navegantes interesados en el tema:

libro sobre el concorde

Primera Mujer en Dar la Vuelta al Mundo en Avion Historia del Vuelo

Primera Mujer en Dar la Vuelta al Mundo en Avión

LA MAÑANA del 2 de julio de 1937, en Lae (isla de Nueva Guinea) Amelia Earhart encendió los motores de su Lockheed Electra. Escuchó durante unos momentos el ronco rugir de los motores, y luego enfiló el avión plateado hacia el extremo de la pista. Cargado con casi 4 mil litros de combustible, el Electra recorrió lentamente el trayecto hasta el rocoso malecón que señalaba el fin de la pista.

A menos de 50 metros del precipicio, Earhart se remontó en el aire. La nave se desplomó por un momento antes de iniciar el ascenso, lento pero continuo, hacia las nubes. Minutos después, desaparecía de vista. La pequeña congregación de observadores vitoreó.

Earhart y su navegante, Fred Noonan, se dirigían a la isla Howland a 4,113 kilómetros de distancia -el trayecto más largo de su viaje alrededor del mundo. Hasta ese día, ningún piloto había volado alrededor del mundo siguiendo su línea más ancha, el ecuador, como lo estaba haciendo Earhart, y ninguna mujer había circunnavegado el planeta.

Al finalizar su viaje de 46,670 kilómetros, podría sumar ese récord a su lista de logros aeronáuticos, que incluían el primer “solo” transatlántico realizado por una mujer. También sería su última proeza, como confió a un reportero al iniciar el viaje, ya que deseaba vivir de manera más reposada al volver a casa. Su sueño jamás se realizó. Quienes presenciaron su despegue aquella brumosa mañana en Lae, fueron los últimos en ver a Earhart y a Noonan. El avión desapareció en algún lugar del Pacífico.

avion de amelia

SE HIZO FAMOSA PORQUE VOLABA y su desaparición la volvió legendaria. A más de 60 años de que
Amelia Earhart remontara el aire en su reluciente Electra por última vez, el público no ha
dejado de devorar los relatos de sus asombrosas aventuras. Certificada como aviadora a
escasas dos décadas del primer vuelo de los hermanos Wright, Earhart utilizó su fama para
promover la aviación y la igualdad para las mujeres pilotos.
(Fuente Consultada: Revista National Geographic Enero 1998)

El primer intento  de vuelo transcontinental En 1928, una mujer, por primera vez en la historia, fue pasajera de uno de los primeros vuelos que atravesaron el océano Atlántico, catorce años más tarde logró recorrer sola la gran extensión de agua intercontinental. Resultó ser el símbolo de la nueva mujer independiente de principios del siglo XX. Desapareció en 1937 en la región sudeste del océano Pacífico intentando culminar su viaje transcontinental.

ameliaLa pasión de Amelia: Amelia Earhart nació en 1898 en Atchison (Kansas, Estados Unidos) y estudió en la Universidad de Columbia y en la Escuela de Verano de Harvard. Desarrolló una pasión por los asuntos aéreos desde su juventud, por lo que se desempeñó arduamente en variados oficios —operadora telefónica, administrativa—para poder financiar su deseo de volar.

Amelia Earhart, quien en 1932 se convirtió en la primer mujer en cruzar el Atlántico volando en solitario y sin escalas. Murió cinco años después, con solo 39 años, cuando intentaba ser la primera mujer en dar la vuelta al mundo en avión, esta vez con un copiloto.

Fue reconocida por numerosos méritos entre los que se destacan los primeros vuelos de Hawai a California, y de este estado, a México. También estableció un nuevo récord de velocidad del vuelo transcontinental desde América.

Fue asesora de mujeres estudiantes en la Universidad de Purdue que procuraban organizarse para reclamar por sus derechos civiles. En 1937 puso en práctica el proyecto más asombroso de su carrera: pretendía circunvolar la Tierra en un Lockheed L10 Electra para poder testear los efectos orgánicos y mecánicos de un vuelo de larga duración con el empleo del avión como un laboratorio móvil. Acompañada de un navegante, Earhart partió y cumplió la mayor parte del trayecto pero el avión nunca llegó a destino.

Las últimas noticias acerca del vuelo fueron proporcionadas por la administración australiana en Papua-Nueva Guinea. Se enviaron numerosos equipos de rescate pero ninguno pudo encontrar alguna pista cierta acerca de los tripulantes y el avión.

Distancia: 35.000 km. Países: Estados Unidos, Puerto Rico, Venezuela, Surinam, Brasil, Senegal, Mali, Chad, Sudán, Etiopía, Pakistán, India, Birmania, Tailandia, Singapur, Indonesia, Australia y Nueva Guinea.

La circunvalación aérea Amelia tomó la decisión de no esperar hasta el año siguiente para respetar el plan previsto. Debido a las condiciones climáticas hostiles era un riesgo volar sobre la región caribeña y el continente africano. Por lo tanto, dispuso hacerlo hacia el Este (en sentido contrario a lo pautado) para regresar a su país avanzando por el Oriente.

Después de la entrega del Electra reconstruido, el 21 de mayo de 1937, Amelia partió desde Los Ángeles (California, Estados Unidos) hacia el estado de Florida. Unos días atrás había expuesto que ese sería su último viaje de larga distancia, necesario para cumplir un profundo deseo latente.

El 1°. de junio Amelia, y su navegante Fred Noonan (1893-1937) despegaron del aeropuerto de Miami (Florida) con destino a California después de viajar alrededor del mundo. El recorrido sobrevolaba San Juan (Puerto Rico), el extremo nordeste brasileño, alcanzaba África y continuaba hacia el Mar Rojo. Desde ese lugar se proyectaba otro comienzo pues nadie antes había volado sin detenerse desde la península arábiga hasta la India.

La ciudad de Karachi localizada al sur de Pakistán fue abandonada por el Electra el 17 de junio, con destino a los centros urbanos de Calcuta, Rangún, Bangkok, Singapur y Bandoeng (Indonesia). La partida desde Bandoeng se retrasó por unos cuantos días debido a las condiciones climáticas adversas que ofrecía el monzón (viento periódico del océano índico).

Durante ese lapso se revisaron y ajustaron algunos instrumentos de medición específicos para vuelos de larga distancia y luego, Amelia se enfermó de disentería (enfermedad infecciosa que se caracteriza por la inflamación y ulceración del intestino grueso), por ello tuvo que permanecer cuidada por un médico.

El 27 de junio, ambos tripulantes del Electra dejaron atrás el territorio indonesio y se adentraron en el cielo australiano. Los instrumentos de medición fueron nuevamente testeados en la escala Darwin (extremo norte de la isla continente). Asimismo. Earhart empacó los paracaídas puesto que no tendrían ninguna utilidad en la etapa sucesiva.

Dos días más tarde, ya habían recorrido 35 mil kilómetro;-solo quedaban 11 mil para cumplir el viaje alrededor del mundo Aterrizaron en Lae (Nueva Guinea) y Amelia envió desde allí su último artículo al periódico estadounidense Herald Tribune (Tribuna del heraldo) acompañado de una serie de fotografías que retrataban su cansancio y su deterioro físico.

El bote de la Guardia Costera de los Estados Unidos, Itasca, desde hacía unos días estaba anclado frente a la costa de Howland con objeto de servir de contacto radial para el vuelo. Sin embargo, la interferencia que provocó el propio Electra en el precario sistema de radio existente en la región, impidió cualquier comunicación posible. Últimos contactos

A la hora 0 —del horario de Greenwich— del día 2 de julio, Amelia partió desde Lae con combustible suficiente como para cumplir veinte horas de vuelo sin escalas. Siete horas después, el Electra reportó su curso a 30 kilómetros al suroeste de las islas Nukumanu.

Si bien se supo que antes de partir Amelia había recibido el pronóstico para la región, aún se desconoce si supo acerca del aumento de la velocidad del viento (16 kilómetros por hora) que posteriormente tuvo lugar. Alas ocho realizó el último contacto radial con Lae informando que se encontraba a 3600 metros de altura rumbo a la isla de Howland. No existe evidencia alguna acerca del trayecto preciso del avión después de Nukumanu. El Itasca recibió algunas transmisiones cortas con señal de variada intensidad pero los guardacostas no pudieron establecer su localización debido a la precariedad de la indicación por radio.

Casi doce horas más tarde se registró el siguiente mensaje que provenía del Electra: “KHAQQ llamando a Itasca. Debemos estar sobre ustedes pero no podemos verlos! el combustible está bajando”. Alas 20.14, el equipo de guardacostas recibió la última transmisión de voz de Amelia informando su posición; continuó conectado infructuosamente hasta las 21.30, momento en que determinó que el avión debía haber efectuado un aterrizaje forzoso en el océano Pacífico y se disponía a organizar el rescate de los tripulantes.

El presidente de los Estados Unidos, Franklin Roosevelt, dictaminó que nueve buques navales y sesenta y seis aviones fueran a explorar la región, tarea que se cumplió durante quince días. El esposo de Amelia continuó buscándola pero en octubre desistió de encontrarla con vida. Realizó una compilación de las cartas que Amelia le había enviado desde las escalas que había efectuado durante su histórico vuelo transcontinental, y publicó una obra llamada “Ultimo vuelo”, donde puede leerse “Por favor, entiende que estoy advertida acerca de los riesgos… quiero hacerlo porque quiero hacerlo. Las mujeres debemos tratar de hacer cosas como los hombres lo han hecho. Cuando ellos fracasan, su desilusión debe ser solo un desafío para los demás“.

Explicaciones acerca de la desaparición Entre las hipótesis que se ofrecieron para intentar explicar lo que había sucedido, durante aquella época también se creyó que los japoneses atacaron al Lockheed Electra porque habían pensado que se trataba de una misión de espionaje enviada por el gobierno de los Estados Unidos.

Las especulaciones al respecto imaginaron a Earhart tomada prisionera y que había sido mantenida con vida hasta después de finalizada la Segunda Guerra Mundial (1945). Tiempo después se estableció que el avión se había ido a pique a 50 ó 100 kilómetros de la costa de la isla de Howland. La tripulación aérea contaba con un bote salvavidas pero nunca fue encontrado. Algunos investigadores consideraron que el combustible que contenían pudo haber permitido mantener a flote la aeronave.

OTRAS PIONERAS DE LA AVIACIÓN: Las mujeres se sumaron muy pronto al entusiasmo que despertaba la aviación en los primeros años del siglo XX. La primera en volar en avión (sin pilotear) fue la estadounidense Edith Ogilby Berg. Vestida de calle, en septiembre de 1908 viajó como acompañante del pionero Wilbur Wright durante una exhibición en la ciudad francesa de Le Mans.

De delicada figura y hermosos ojos negros, la baronesa francesa Raymonde de Laroche (1886-1919), obtuvo el brevet N° 36 de la Federación Aeronáutica Internacional tras rendir su examen de piloto en marzo de 1910. Fue la primera mujer en el mundo a quien se le concedió. Sin embargo, desde octubre del año anterior ya volaba sola. Murió en 1919, al estrellarse su avión contra una colina.

En 1912 tuvo lugar en Londres un Congreso de Aviadoras. Asistieron numerosas damas pilotos que intercambiaron sus experiencias bajo la presidencia de la primera aviadora británica, Hilda Beatrice Hewlett (164-1943).  La estadounidense Harriet Quimby (1875-1912) fue la primera que obtuvo su brevet en EE.UU., durante 1911.

Un año después, el 16 de abril, se hizo Argentina, el mérito de haberse transformado en la primera mujer aviadora correspondió a Amalia Celia Figueredo de Pietra (1895-1985). El 1° de octubre de 1914 rindió examen y obtuvo el brevet Internacional de Piloto.

Fuente Consultada: Grandes Enigmas de la Historia de Alfred L. Daves
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia – Enciclopedia Encarta – Enciclopedia Consultora

Primer Vuelo Sin Escala Para Cruzar el Oceano Atlantico

Primer Vuelo Sin Escala Para Cruzar el Océano Atlántico

HISTORIA DEL PRIMER VUELO TRANSOCEÁNICO SIN ESCALA ACOMPAÑADO

Primer vuelo a través del Atlántico sin detenerse fue efectuado apenas 16 años ;después de que los hermanos Wright hicieron su primer recorrido de 37 m por aire sobre las arenas de Kitty Hawk, Carolina del Norte. (icografía: Brown y Alcock)

 Arthur Whitten BrownDicho vuelo fue realizado por el capitán inglés John Alcock, veterano de la guerra Guerra Mundial, y el teniente Arthur Whitten Brown, piloto que renuncio a  su nacionalidad estadounidense para incorporarse a la Real Fuerza Aérea británica durante ese conflicto bélico.

En 1919 cinco equipos ingleses compitieron por un premio de 10 000 libras esterlinas ofrecido por un periódico a quien hiciera el vuelo. El primer intento fue de este a oeste, pero el avión cayó al frente a la costa irlandesa, así que otros equipos decidieron volar desde Terranova hasta Irlanda aprovechando vientos dominantes: un avión chocó al despegar, y a otro le falló el motor tras 960 Km. de vuelo, por lo que su tripulación tuvo que ser rescatada en el mar. El tercero era un biplano de cabina abierta al que sus tripulantes —Alcock y Brown— le adaptaron dos motores de Rolls-Royce.

No obstante el mal tiempo, Alcock decidió despegar el 14 de junio, acicateado por el hecho de saber que un hidroavión estadounidense acababa de hacer la primera travesía trasatlántica, aunque con escalas: había tenido que interrumpir su viaje y aterrizar en las Azores tras 57 horas y 16 minutos de vuelo continuo.

Alcock y Brown calcularon que podían hacer el viaje en menos tiempo. Durante varias horas esperaron a que amainaran los vientos contrarios, y después despegaron aprovechando una corriente a favor de 64 km/h desde una pista llena de baches en un lugar llamado Monday’s Pool. cerca de Saint John.

Una vez que comenzaron a volar en mar abierto, Brown hizo rápidamente todas las observaciones que pudo del océano y el horizonte, pero pronto un denso banco de niebla ocultó las aguas y gruesos nubarrones taparon el sol. El primer contratiempo surgió una hora después del despegue: se. desprendió una pequeña hélice que había sido colocada sobre un ala para impulsar el generador de un radiotransmisor inalámbrico, por lo cual podían recibir mensajes pero no enviarlos.

El segundo problema ocurrió una hora después, cuando el motor de estribor comenzó a hacer un fuerte ruido debido a un tubo de escape roto que finalmente cayó al mar.

Los dos hombres tenían un teléfono para comunicarse, pero por el estruendo de los motores preferían no usarlo: durante la mayor parte del vuelo se comunicaron con ademanes y notas.

Cuando anocheció, Brown encendió una lámpara eléctrica para estudiar su mapa y revisar los motores desde la cabina. Al amanecer el avión entró en una nube tan densa que no podían ver las puntas de las alas ni la del fuselaje, y peor aún, perdieron el sentido de la horizontalidad y el aparato comenzó a balancearse con violencia (Alcock calculó más tarde que durante unos minutos volaron de cabeza). Después el avión perdió velocidad e inclinó la nariz; por las vueltas que daba la aguja de la brújula, la tripulación dedujo que estaban volando en círculos.

De pronto el avión salió de la nube: allí estaba el mar, al parecer en sentido vertical, así que Alcock tuvo que nivelar rápidamente el aparato. El biplano estaba a sólo 15 m por encima de las olas y volaba rumbo a América; entonces Alcock hizo dar vuelta al aparato y reanudó el viaje hacia el este.

Apenas acababan de recuperarse del susto cuando el avión se encontró bajo una tormenta de nieve y granizo. La nieve se acumuló en el medidor de combustible, fijado fuera de la cabina, por lo que a ratos Alcock tenía que salir de ésta y arrodillarse en el fuselaje para limpiar el medidor.

Para colmo, el hielo cubrió los tacómetros instalados encima de los motores, y taponó los tubos que activaban el anemómetro y los carburadores. Para poder limpiarlos Alcock tuvo que arrastrarse a lo largo de las alas.

Cuando podían, los dos pilotos comían sandwiches y chocolates y bebían café. Alcock procuraba no apartarse de los controles del aparato, y mantenía permanentemente un pie sobre la barra del timón y una mano sobre la palanca de mando. Cuando los tanques traseros se vaciaron, el avión se fue de cabeza, y un buen rato Alcock maniobró la rueda de control para enderezarlo.

Entonces divisaron dos puntos en el horizonte: eran las islas Eashal y Turbot, frente a la costa de Irlanda. Diez minutos después, a las 8:25 am., el biplano cruzó la costa y se dirigió hacia un campo situado cerca de una estación de comunicación inalámbrica en Clifden, en el condado de Galway.

Alcock maniobró para hacer un aterrizaje perfecto, pero el campo resultó ser un pantano: con un chapoteo el avión se inclinó y enterró la nariz en el fango. El combustible de un tubo roto inundó la cabina, pero Alcock ya había apagado la corriente eléctrica y no se incendió.

caida de un avion

El avión se había desviado sólo 16 Km. del curso que Brown había planeado en Terranova. Él y Alcock se estrecharon las manos solemnemente. El personal de la estación llegó corriendo, y una vez que se cercioraron de que no había heridos, les preguntaron: “¿De dónde vienen?” Uno de los pilotos contestó: “De América.” Las sonrisas escépticas que provocó la respuesta se transformaron en felicitaciones cuando comprobaron que en efecto habían cruzado el Atlántico.

Los aviadores estaban entumecidos y agotados, y llevaban 40 horas sin dormir. Habían tardado 15 horas y 57 minutos en recorrer 3.024 km, y permanecieron en el aire durante 16 horas y 28 minutos. Su marca fue la mejor hasta que Charles Lindbergh hizo ,solo, su histórica travesía en 1927. Cinco días después de su aterrizaje Alcock y Brown fueron nombrados caballeros. Alcock murió en 1919, y Brown en 1948.

CÓMO SE ORIENTARON PARA CRUZAR EL OCÉANO: Si el piloto de una aeronave pequeña comete un error de sólo un grado en la lectura de su brújula, puede desviarse de su curso hasta 1.5 Km. después de casi 100 Km de vuelo.

El vuelo de Alcock y Brown cubrió cerca de 3 000 Km. sobre un océano sin relieves, expuestos al error por los vientos en contra. Sin una navegación experta quizá no hubiesen llegado a las islas irlandesas, Haberse apartado sólo 16 Km. de su curso fue una hazaña excepcional.

Para seguir el curso que trazaron entre Terranova e Irlanda, Brown se valió tan sólo del cálculo y de la observación astronómica, comprobando el uno con la otra,

Para asegurarse de que volaban en la dirección correcta usó constantemente la brújula. El anemómetro le indicaba la velocidad aparente, pero él tenía que calcular el efecto del viento, que podía acelerar o retardar el avance. Un indicador de deriva le servía para saber cuánto se apartaban de su curso, y con ayuda de su reloj podía determinar la distancia recorrida y la dirección precisa de vuelo desde el último cálculo. Entonces podía comunicar a Alcock que corrigiera el rumbo y marcaba su posición en el mapa.

Como no había puntos de referencia para confirmar los cálculos, Brown localizaba un “punto fijo” en el cielo con un sextante, que mide el ángulo de una estrella o de cualquier otro cuerpo celeste por encima del horizonte. Tomando lecturas de tres estrellas conocidas y contando el tiempo exacto de cada una, podía consultar las cartas de navegación y trazar tres líneas sobre el mapa. El punto de intersección indicaba la posición del avión.

Fuente Consultada:
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia – Enciclopedia Encarta – Enciclopedia Consultora