Latitud y Longitud

Primeros Geógrafos de la Antiguedad y Los Mapas del Mundo

Primeros Geógrafos de la Antiguedad-Primeros Mapas

A pesar de los trabajos de los historiadores, no podemos conocer con absoluta certeza las biografías de los grandes hombres de lds tiempos antiguos. Todo lo que podemos decir con seguridad sobre el poeta griego Homero, es que vivió en el siglo IX a. J. C, que habitó posiblemente cerca o sobre las costas de Asia Menor, y que acaso fue el autor de la Illada y la Odisea. De sus escritos, se puede deducir lo que sabía e imaginaba un hombre educado de aquellos tiempos sobre la forma de la Tierra.

Suponíase que la Tierra era una gran isla que se extendía en torno al monte Olimpo, morada de los dioses, en medio de un mar inmenso: el río-Océanos. Poco se sabía del Mediterráneo occidental, no obstante los atrevidos viajes de los fenicios; se pensaba que dividía la tierra en dos partes.

concepcion homerica del mundo

Puede verse el mundo según la concepción homérica (siglo IX a. J. C).

El primer gran paso dado en el dominio de los conocimientos geográficos está estrechamente ligado al nombre de Herodoto, el “padre de la historia”, que escribió, hacia el año 450 a. J. C, nueve libros en los que expuso todo su saber. Atraído por los monumentos antiguos y por las costumbres exóticas, viajó por Grecia y Siria, Egipto y Mesopotamia, y por las tierras lejanas que bordean el norte del mar Negro. En cada lugar que visitó, escuchó, sin duda, muchas historias y habló con mucha gente que habría viajado aun más lejos, y así pudo representarse la Tierra tal como se muestra en el dibujo de abajo.

mapa de herodoto

Entre los navegantes de la época, fue famoso el cartaginés Hannon, quien en el año 490 a. J. C. salió al Atlántico y recorrió 2.600 millas por las costas de África. En el siglo siguiente, Pytheas de Marsella llegó al Báltico y bordeó la costa de Noruega.

Mucho antes de la era cristiana, barcos con cereales hacían una travesía regular entre Alejandría y Roma, por la costa oriental del Mediterráneo, las islas del mar Egeo, la costa sur de Grecia, y pasaban más allá de Sicilia.

Entre los primeros geógrafos cabe destacar, en el siglo III a. C., a Eratóstenes de Cirene, el “padre de la geografía”, y aún antes (siglo VI a. J. C.) a Hecateo de Mileto, el primero que dibujó un mapamundi.

En el siglo I, Strabón, geógrafo y gran viajero, pudo realizar un mapa de Europa, Asia y África; cien años después, Marino de Tiro y Ptolomeo de Alejandría comenzaron a hacer mapas de una manera diferente, en los que los lugares se localizaban de acuerdo con la latitud y la longitud.

Sólo quince siglos después de la muerte de Ptolomeo, se halló un método simple para calcular exactamente la longitud, y se advirtió que las líneas que aparecían en los mapas de Ptolomeo no eran exactas. Sin embargo, cuando miramos un mapa suyo, podemos ver que comenzó a esbozar las formas de tierras y mares de manera bastante aproximada a como son en la realidad. Grecia, Italia, España y Portugal, la península arábiga, las Islas Británicas, el mar Mediterráneo y el mar Rojo, se reconocen perfectamente.

geografos de la antiguedad

A pesar de que en el medioevo se difundieron muchas ideas fantasiosas sobre geografía, hubo quizá bastante gente que conocía los mapas de Ptolomeo, y a fines de esta época llegaron a constituir la guía infalible de los marinos.

antiguo mapa del mundo

A los primeros geógrafos les interesaba explorar los territorios desconocidos y describir los rasgos que observaban en los diferentes lugares. Estos geógrafos de la antigüedad realizaron largos viajes y anotaban sus observaciones sobre las tierras desconocidas que recorrían. Uno de los primeros mapas conocidos se realizó en una tabla de arcilla en Babilonia, hacia el 2300 a.C. Hacia el año 1400 a.C. se recorrieron las costas del Mediterráneo y se representaron en mapas las tierras exploradas.

DIBUJANDO MAPAS PARA LA NAVEGACIÓN:

Durante trece siglos después de Ptolomeo, los marinos de Europa occidental (a excepción de los nórdicos, de quienes trataremos más adelante) realizaron pocos viajes importantes y ningún descubrimiento de nuevas tierras.

Continuaron basándose en Ptolomeo y, además, en la experiencia y el azar, para ir de un puerto a otro.

Pero a fines de dicha época se comenzó a conocer más sobre la teoría y práctica de la navegación, y hubo también un nuevo incentivo para los descubrimientos. Los europeos aprendieron de los musulmanes a hacer mejores astrolabios (instrumento para medir el ángulo de elevación de las estrellas); y conocieron la brújula, cuya aguja apunta siempre bastante aproximadamente al norte.

Más tarde el Imperio Musulmán se apoderó de la franja de tierra que separa el mar Mediterráneo del mar Rojo, y así cerró la vieja ruta que conducía de Europa a las islas del Asia oriental, ricas en especias. Marinos aventurados se pusieron a la búsqueda de nuevos caminos, y comenzó así la gran época de los descubrimientos, con el viaje de Colón hacia el Nuevo Mundo y el de Vasco de Gama alrededor de África, ambos atraídos por las especias orientales.

En los años siguientes, ya los viajes realizados por los marinos demostraban la redondez de la Tierra, y durante los tres siglos que siguieron fueron exploradas las costas de todos los continentes.

Había ahora más necesidad que nunca de revisar el mapa del mundo, de actualizarlo y presentarlo de la manera más útil para uso de aquellos que más lo precisaban: los marinos.

Es completamente imposible mostrar sin deformarla en una simple hoja plana de papel, la totalidad de la superficie esférica de la Tierra (para advertirlo basta con el intento de aplanar una pelota de goma rota). El hombre que resolvió este problema de la manera más satisfactoria para los marinos fue Gerardo Kremer, que más tarde tomó el nombre de Mercator.

proyeccion de mercator para dibujar un mapa plano

A principios del siglo XVI fue empleado por  el emperador Carlos V para dibujar mapas con fines militares, y desde entonces dedicó el resto de su vida a la cartografía. Realizó un mapa de Flandes en 1540, uno de Europa en 1554 y otro sobre el mundo conocido en 1569.

Se dio cuenta de que a un marino no le interesan especialmente las medidas de las tierras que visita; lo que debe saber es la ruta exacta que ha de tomar para ir de un punto a otro. Y en el mar, la distancia más breve entre dos puntos no es precisamente la línea recta.

Lo es, en cambio, un arco que forma parte de un gran círculo, que se puede dibujar sobre la circunferencia de la Tierra. Pero si un capitán quiere navegar con dirección N.O. a lo largo de un gran círculo, no tiene para ello gran ayuda si el camino aparece en el mapa como una línea curva. Puede orientarse mejor si éste se representa por una línea recta. Él método empleado para hacer posible tal cosa se llama proyección.

La proyección de Mercator tuvo éxito.

Las líneas de latitud aparecen paralelas (como realmente son) y lo mismo se hace con las líneas de longitud (aunque en realidad no lo son de ninguna manera, sino que convergen del ecuador hacia los polos). Además, el mapa de Mercator muestra una distancia mayor entre los paralelos cercanos a los polos que entre los cercanos al ecuador.

Como resultado de todo esto, un marino que quiere navegar con rumbo N.O., puede dibujar en el mapa una línea recta con dicha dirección, y realmente marcará el curso que debe seguir. Pero ningún mapa plano ni planisferio puede tener todas las virtudes. La proyección de Mercator exagera las medidas y distancias cercanas a los polos en comparación con las medidas y distancias cercanas al ecuador.

Actualmente hay muchas otras proyecciones en uso. Entre otras, se encuentran las de Bonne, Mollweide, Flamsteed y Gall. Pero es a Mercator a quien debemos el primer planisferio digno de confianza.

Ver: Primeros Mapas

Ver: Antigua Concepción del Mundo

Fuente Consultadas:
Mundorama Geografía General – El Sistema Solar –  Edit. Quevedo S.R.L.
El Universo Para Curiosos Nancy Hathaway Edit. Crítica
El Mundo y El Tiempo Globerama Edit. CODEX

La Antigua Concepción del Mundo – Evolución a la Moderna

LA ANTIGUA CONCEPCIÓN  DEL MUNDO Y LOS NUEVOS VISIONARIOS

Desde los primeros estadios de la civilización, el hombre suplió —imaginándolas— su desconocimiento de las cosas. Así, la forma de la Tierra fue primero concebida de un modo bastante distinto de lo que es en realidad.

Los libros sagrados y los poemas épicos de la antigua India sugieren una concepción de la Tierra tal como se representa en la lámina superior izquierda. La representaron como un caparazón vacío que descansaba sobre los lomos de cuatro gigantescos elefantes, los cuales, a su vez, eran conducidos por una tortuga de gran magnitud. No podemos asegurar si la gente creía en la verdad de tal concepción.

Sabiendo que la Tierra permanecía firme debajo de sus pies, nada les pareció más seguro que apoyar el mundo en la forma indicada, por ser la tortuga, para ellos, símbolo de la fuerza y del poder conservador. Según algunos, la tortuga debía reposar sobre una gran serpiente, que representaba eternidad. También, siempre dentro del pensamiento antiguo, parece que la gente que vivía cerca del mar se sintió sorprendida por el hecho de que el horizonte semeja un amplio arco.

Y quizás habrá comenzado a imaginar a la Tierra como un disco plano, o como medio disco. Algunos pensaron que ese medio disco estaba rodeado por algo así como un enorme tazón dado vuelta: los cielos, donde se movían el Sol, la Luna y las estrellas. Todo el universo, incluidos los cielos y la Tierra, estarían rodeados por un océano sin límites.

la concepcion del mundo antiguo

Durante la época de los caldeos y fenicios, se llegó a una concepción de la Tierra algo más real. Los astrónomos, interesados por los eclipses que, según suponían, eran señal de importantes acontecimientos, pudieron observar que la Luna es eclipsada sólo cuando la sombra de la Tierra cae sobre ella.

Y si así era, habrían llegado a la conclusión de que la Tierra es redonda, justamente por la forma de la sombra sobre la Luna eclipsada. Los navegantes fenicios debende haber aprendido, también durante sus largos viajes hacia el norte y hacia el sur, por las costas occidentales de Europa y África, que los rayos del Sol del mediodía caen en distintos sitios en ángulos diferentes. Esto tiende también a indicar que la Tierra es redonda. Pero fueron los griegos los que verificaron la redondez de nuestro planeta.

Marinos de Grecia antigua no sólo conocieron la forma de la Tierra, sino que también hallaron la latitud por referencia al Sol y a las estrellas. En el siglo II a. J. C, Eratóstenes de Alejandría calculó con bastante aproximación la medida de la circunferencia terrestre.

Pero desde comienzos de la Edad Media, cuando muchos de los conocimientos griegos se perdieron temporariamente, muchas personas volvieron a idear imágenes fantasiosas sobre la forma del mundo. En el año 535, el geógrafo Cosmas escribió un libro en donde figuraba la extraña fantasía de que la Tierra y los mares yacían sobre un rectángulo alargado, rodeado de los cielos; todo, a su vez, estaba encerrado dentro de una especie de caja celestial que constituía los límites del universo.

En los monasterios de Europa occidental, los monjes medievales dibujaron mapas fantásticos del mundo con monstruos imaginarios e insuficiente información geográfica.

En el siglo XIV, los hombres representaban la Tierra como el centro de un extraño universo constituido por muchas esferas concéntricas, teoría desarrollada por el astrónomo Claudio Ptolomeo (ó Tolomeo) que escribiera entre los años 140 y 149. . Estas esferas mostraban los pasos de la Luna, de los planetas Mercurio y Venus, del Sol, Marte, Júpiter y Saturno, y de las estrellas fijas. Una última esfera exterior representaba lo que se denominó el primum mobile, o primer motor de todo el universo.

sistema geocentrico de ptolmeo

En este post expondremos brevemente cómo el hombre llegó por primera vez a una idea real del mundo que habita, y cómo, habiéndola olvidado, volvió a restablecerla muy pronto.

LOS NUEVOS VISIONARIOS: Por sobre los temores creados frente a la contemplación de una naturaleza cuyos fenómenos se le aparecían misteriosos y hostiles, o la metafísica sensación de impotencia, el hombre desde la antigüedad aceptó el desafío y se lanzó a la conquista del Universo.

Muchas son las referencias mitológicas en las que los deseos de volar o visitar las estrellas se hicieron realidad a través de los dioses o semidioses, aunque no siempre con igual suerte; los que en Babel intentaron llegar a la morada de Dios finalizaron en la caótica parábola de los idiomas; el Icaro de los griegos se precipitó a tierra tras haber querido alcanzar el Sol con sus alas de cera. Pero el gran héroe del espacio fue sin duda Rama, el personaje de la máxima epopeya indoaria, quien surcó los espacios y conoció las estrellas a bordo de los “vimanas”, carros de fuego “movidos por cuatro tambores de mercurio y cuatro grandes calderos de fuego”.

En la Biblia se habla también de Elias como pasajero de las “ruedas celestiales”; en Egipto se imaginan a Osiris y Seth luchando con sus ejércitos en el espacio extraterrestre; en América precolombina, a los dioses que van y vienen por el cielo utilizando una escalera de fuego. Sin embargo, la realidad no es tal hasta que el hombre no comienza a interiorizarse seriamente sin necesidad de levantar los pies del suelo; hace primero cálculos y desentraña lentamente el Universo que nos rodea.

Las evidencias escritas o pictográficas más antiguas indican que en Babilonia, el valle del Indo y Egipto ya se realizaban estudios de las estrellas alrededor de los años 4.500 a 5.000 antes de Cristo.

Asimismo en Tiahuanaco, Bolivia, y en Teotihuacán, México, la investigación arqueológica nos advierte que allí también los hombres escrutaron el espacio exterior. Todo esto nos lleva a afirmar que en la antigüedad se conocían los movimientos planetarios, las evoluciones de laTierra alrededor del Sol, o las fases lunares, movimientos éstos que sin ninguna duda fueron interpretados por el pensamiento de la época con acierto, dando así nacimiento a la ciencia astral, la astrología –aparentemente nacida entre los caldeos-, principal impulsora de nuestra astronomía actual.

En el año 250 antes de Cristo, un griego que vivía en Alejandría, Eratóstenes, determinaba por vez primera y con increíble precisión el diámetro terrestre, medida que se tuvo como indis-cutida incluso hasta los tiempos posteriores a Cristóbal Colón.

Setenta años después, otro griego, el gran Hiparco, calculó la distancia entre la Tierra y la Luna, predijo los eclipses y compendió todos los conocimientos sobre la materia logrados hasta la época. Posteriormente, su alumno Ptolomeo de Alejandría construyó el primer modelo del Universo, haciendo figurar como centro del mismo a nuestro planeta, teoría conocida como geocéntrica, que llegó a su fin cuando el clérigo polaco Nicolás Copérnico (1473-1543) echó las bases de la astronomía moderna al establecer su teoría heliocéntrica, o sea, el Sol como centro del sistema. Luego vanos introducimos, con algunas leves variantes, en la evolución de una nueva física básica para la conquista del espacio.

concepcion de corpernico sobre el universo

Se van sumando nombres: Giordano Bruno, Galileo Galilei, Johannes Kepler -el primero en considerar la posibilidad de los viajes interplanetarios- y un pionero injustamente olvidado, John Wilkins, obispo de Chester, quien en 1538 publicó su obra “El descubrimiento del nuevo mundo”. En ella expone acertadas predicciones sobre los problemas de la fuerza de gravedad, la duración de las travesías, la falta de peso y la extensión de la atmósfera terrestre.

LOS PECURSORES DE LA MODERNA CONCEPCIÓN:

astronomos de la edad moderna

NICOLÁS COPÉRNICO: Astrónomo y matemático polaco (1473-1543), nacido en Thorn. Fundó el sistema astronómico que lleva su nombre, con lo que inauguró una nueva era en el estudio de los movimientos de los cuerpos celestes. ¡Sus diversas profesiones no le impidieron realizar estudios acerca del Sol, la Luna y los planetas, investigaciones que habría de publicar en su obra maestra: Acerca de las revoluciones del mundo celeste.

En el prólogo Copérnico anuncia su propósito de encontrar una nueva teoría del Universo, a la luz de las múltiples e inexplicables contradicciones de las teorías existentes hasta el momento. Pensaba descubrir aquello que faltaba para dilucidar la situación confusa. El sistema solar concebido por Copérnico es heliocéntrico (el Sol ocupa el centro), contraponiéndose al geocéntrico, que imaginaba en ese lugar a la Tierra, en aparente oposición con los textos bíblicos.

Copérnico no fue el creador del sistema completo de Astronomía que generalmente se le atribuye, pero cimentó las bases para que investigaciones posteriores a su muerte, realizadas con instrumentos infinitamente más precisos que los utikizados por él en su época, pudieran construir la actual estructura de la Astronomía.

Setenta y tres años después de la muerte de Copérnico, Galileo tomaría como base su teoría para realizar sus propias investigaciones.

JOHANNES KEPLER: Astrónomo alemán (1571-1630) nacido en Wiel, (Wurttemberg). Se lo considera uno de los creadores de la astronomía moderna.,En 1596 publicó su obra Mysterium Cosmographicum, en donde intentaba desarrollar una teoría geométrica mística de los cielos. En 1600 viajó a Praga para trabajar como ayudante de Tico Brahe, que ocupaba el cargo de astrónomo imperial y en el que posteriormente lo reemplazaría. Sus obras más importantes fueron Astronomía Nova (1609) y Harmonices Mundi (1619), donde expuso las leyes que llevan su nombre acerca del movimiento de los planetas.

Estas leyes fueron producto de un profundo y concienzudo estudio y de precisas observaciones llevadas a cabo a través de varios años. Mas leyes keplerianas pueden sintetizarse del siguiente modo:

1  – Los planetas describen órbitas elípticas, en las que el Sol ocupa uno de sus focos:
2 – El radio vector que une al Sol con el planeta describe áreas iguales en tiempos iguales (Ley de las áreas).
3  – Los cuadrados de los tiempos empleados por los planetas en recorrer sus órbitas son directamente proporcionales a los cubos de sus distancias medias al Sol.

GALILEO GALIEI: Físico, matemático y astrónomo italiano, nacido en Pisa (1564-1642). Fue uno de los grandes investigadores y pensadores de su siglo. En 1583 enunció la ley de las oscilaciones del péndulo: en la misma época inventó una balanza hidrostática y estudió el peso específico de los cuerpos.! Propuso su teorema de que todos los cuerpos caen con la misma velocidad, demostrada con varios experimentos realizados desde lo alto de la torre de Pisa: inventó el termoscopio, el compás proporcional y el telescopio, a través del cual pudo descubrir cuatro satélites de Júpiter y afirmar que no se hallaban fijos, sino que giraban alrededor del planeta.

Fue éste el primer descubrimiento de cuerpos celestes realizado por el hombre con medios artificiales. Demostró la configuración no plana de la Luna; descubrió manchas solares, hecho a partir del cual pudo demostrar la rotación del astro; estableció las leyes de la hidrostática y las que rigen el movimiento de los astros, compartiendo las teorías de Copérnico acerca de la inmovilidad del universo y el movimiento terrestre a su alrededor.

Por estos conceptos tuvo dificultades con la Iglesia y se vio obligado a declarar ante un tribunal, debió entonces abjurar de sus opiniones, compromiso que no cumplió. Debido a ello debió comparecer otra vez ante la lnquisición, que lo forzó nuevamente a abjurar de sus creencias científicas. De ese momento surgió la leyenda que dice que al concluir con su nueva retractación, Galileo exclamó en voz baja: “I por so move” (“Y sin embargo, se mueve”).

Ver: Newton: El Mayor Científico de la Historia

Fuente Consultadas:
Mundorama Geografía General – El Sistema Solar –  Edit. Quevedo S.R.L.
El Universo Para Curiosos Nancy Hathaway Edit. Crítica
El Mundo y El Tiempo Globerama Edit. CODEX

Ubicacion Geografica de Importantes Ciudades Turisticos del Mundo

UN POCO DE HISTORIA RESPECTO A LA EVOLUCIÓN DE LAS CIUDADES: Hasta hace unos cuantos miles de años, el hombre vivía de la caza y de la recolección, pero después de la última glaciación comenzó un periodo de rápido desarrollo demográfico, gracias a la mejora de las condiciones climáticas que se dieron sobre todo en las zonas del hemisferio septentrional que hoy tienen un clima templado. Algunos grupos de Homo sapiens, probablemente grandes familias, abandonaron la vida nómada para establecerse en áreas en las que el suelo fértil y la abundancia de recursos les garantizaban alimento para todos durante mucho tiempo.

Desde entonces la historia del hombre ha experimentado un sorprendente aceleración, una de las muchas realizadas gracias a los descubrimientos y a la tecnología en nuestra civilización. Aquellos antepasados nuestros aprendieron rápidamente a seleccionar los vegetales que tenían sustancias nutritivas adecuadas para su alimentación. En aquellos primeros asentamientos estables fue donde comenzó la domesticación de los primeros animales como ovejas, cabras y bóvidos. Así nacieron los primeros centros habitados y se creó el primer germen de una sociedad estructurada, en la que nuestros abuelos comenzaron a dividirse funciones y ocupaciones, y en la que el trueque se convirtió en la primera forma de comercio. A partir de aquellas primeras experiencias de convivencia se crearon posteriormente lo que los griegos llamaron polis, los romanos urbs o civitas, y nosotros, hoy día, llamamosciudades.

África, el continente negro. Naturaleza virgen, paisajes de ensueño y grandiosos testimonios de culturas desaparecidas. En esta parte de la Tierra se encuentran los últimos paraísos animales y naturales del planeta, al tiempo que fabulosos edificios evocan el esplendor de culturas africanas cuya influencia todavía se manifiesta de forma ostensible en muchas partes del mundo.

Grandes ciudades prosperaron en el pasado, antiguo y reciente, contribuyendo de manera excepcional a la evolución de la cultura humana. Y precisamente en su desarrollo se basó la formación de los grandes imperios. Entre las legendarias ciudades de la Antigüedad, hay que recordar las dos capitales egipcias Menfis y Tebas, en las que hace 5000 años ya era utilizada una lengua escrita con el primer embrión de alfabeto que superaba el simbolismo ideográfico. Y Babilonia, la magnífica capital del reino de Hammurabi, el soberano que en torno al año 1700 a. de C. formuló el código de leyes más antiguo de la historia: un inequívoco signo de madurez de aquellas primeras sociedades, de su vitalidad y de su capacidad para producir culturas estructuradas.

Asia, el continente más extenso del planeta, es una tierra de contrastes: aromas europeos y mediterráneos en Estambul, el maravilloso mundo de las mil y una noches, el misterioso exotismo del Lejano Oriente, los estados insulares del océano índico, etc. De las grandes culturas y religiones hemos heredado fabulosas construcciones, y de las fuerzas de la naturaleza, magníficos paraísos.

 Con el paso de los siglos, la ciudad se convirtió cada vez más en el centro de la actividad humana. Basta pensar en Atenas, Roma o Constantinopla (posteriormente Bizancio, y después Estambul), uno de los centros urbanos más dinámicos y discutidos de la historia. Y ya más cerca de nosotros, hay que recordar las grandes potencias mercantiles de la Edad Media, como las ciudades marítimas italianas, entre ellas Venecia que durante siglos dominó el Mediterráneo, o la Florencia del Renacimiento.
O incluso las ciudades de la Liga Hanseática, en el Norte de Europa, desde Eübeck a Bergen, desde Brujas a la misma Londres, que situada en una posición estratégica, entre los siglos XVI y XVII, le permitió convertirse en una de los más importantes imperios de la historia.

Cada una de estas extraordinarias ciudades ha atravesado momentos de increíble riqueza y esplendor, dando un formidable impulso al conocimiento, al arte, a la arquitectura y, más adelante, al desarrollo industrial. Algunas se encuentran todavía hoy entre las ciudades más importantes del mundo, y otras han ido poco a poco perdiendo su influencia y teniendo que enfrentarse a periodos de decadencia. Cada una de ellas ha marcado de forma indeleble alguna época de la historia de la humanidad.

Europa: arquitectura y arte en primer plano. Durante muchos siglos, desde la Antigüedad clásica hasta el siglo xx, en el viejo continente se erigieron espléndidas construcciones de fama mundial: castillos, palacios, torres, fortalezas, templos religiosos y puentes. Asimismo, junto a todo ello no hay que olvidar las fascinantes maravillas naturales que ofrece Europa.

Pero nunca como en los últimos cincuenta años, las ciudades habían entrado a formar parte tan intensamente del horizonte de nuestra cotidianidad, ni nunca hasta ahora habían existido metrópolis de 20 y 30 millones de habitantes, cuya extensión y densidad están modificando los paradigmas de la convivencia.

En nuestros días, tres mil millones de personas viven en el mundo concentradas en los centros urbanos, de las que 640 millones (un 10 % de la población total del planeta) viven en las 300 ciudades más pobladas. Por primera vez, los habitantes de las ciudades están a punto de superar a los de las áreas rurales, y según las previsiones de las Naciones Unidas en 2030 serán 5000 millones, frente a una población rural de 3200 millones de personas.

Misteriosas civilizaciones han dejado sus huellas por el territorio comprendido entre México (al norte) y Patagonia (al sur). Fabulosas construcciones, templos gigantescos y pirámides espectaculares constituyen el legado de los legendarios pueblos inca, maya y azteca. Los magníficos paraísos naturales del centro y el sur del continente americano dan un carácter y belleza especiales a esta parte del planeta.

A comienzos del siglo XX, las grandes ciudades se hallaban casi todas en Europa y en América del Norte, y Londres, París o Berlín estaban situadas en la vanguardia del proceso de modernización de un mundo que veía la aparición del automóvil y los primeros rascacielos (el nombre se acuña en Estados Unidos para designar a los primeros edificios que superaban los 15o 20 pisos de altura).

En torno al año 2030, las mayores ciudades estarán en su mayoría concentradas, según las previsiones, en Asia, pero también África —el continente menos desarrollado— habrá dado el salto desde una sociedad rural a

Golfos y Bahias Mayores Golfos del Mundo Mas Grandes del Planeta

TABLA DE GOLFOS Y BAHÍAS MÁS GRANDES DEL PLANETA
Nombre Superficie en Km² Profundidad máx. en m
Golfo de Bengala (SL/Ind./Ban./Bir) 2.172.000 5.258
Golfo de Guinea (Gui./Ben.) 1.533.000
Golfo de Alaska (EU) 1.327.000
Golfo de México (Méx./EU/ Cuba) 1.507.600 4.380
Bahía de Hudson (Can.) 730.100 259
Bahía de Baffin (Can./ Groenlandia) 689.000 2.136
Gran Bahía Australiana (Atl.) 484.000
Golfo de Carpentaria (Atl.) 310.000
Golfo de San Lorenzo (Can.) 240.000 550
Golfo de Siam (Tai./Cmb./VN) 239.000
Golfo Pérsico (Irán/Iraq/AS/Qat./EAU/Bhr./Kuw./Omán) 230.000 102
Golfo de Vizcaya (Esp./Fra.) 223.000 4.732
Golfo de Adén (Som./Dji./RDP Yem.) 220.000
Golfo de Omán (Omán/Irán) 181.000
Golfo de California (Méx.) 153.000 3.295
Golfo de Botnia (Fin./Sue.) 117.000 294
Golfo de Tonkin (Chn./VN) 117.000 70

Imagen aerea de un golfo

El Everest Habitantes Fauna Flora Altura Historia Ascensos

El Everest: Fauna, Flora, Altura, Historia

HISTORIA DEL LA EXPLORACIÓN DE LA ZONA:

El Everest Habitantes Fauna Flora Las Escaladas Altura HistoriaCuando sir George Everest entró a formar parte, en 1823, del Great Trigonometrical Survey of India no imaginaba, ciertamente, que su nombre pasaría a la historia. Superintendente de dicha organización entre 1830 y 1843, se dedicó ala difícil labor de estudiar datos geográficos, determinando, entre otras cosas, el esferoide matemático sobre el que se calcula la altura de las montañas.

Por esta razón, cuando en 1852 se descubrió que el Peak 15, de la cadena del Himalaya, era la cima más alta de la Tierra, Andrew Waugh, que entre tanto había sustituido a Everest, propuso bautizarla con el nombre de su predecesor.

Más interesados en la cartografía que en. la antropología, Everest y Waugh ignoraban, probablemente, la existencia de un topónimo local utilizado por la población tibetana para indicar no ya la cima más elevada sino toda la cadena del Himalaya (palabra esta última derivada del sánscrito y que más o menos significa Residencia de las Nieves).

Este topónimo es Chomo Lungma, es decir Diosa Madre de la Tierra (o según otras interpretaciones, Diosa Madre de las Montañas o del Viento). Otro apelativo más reciente es Sagarmatha, Elevado en el Cielo, elegido por los nepaleses, no sin un destello de orgullo nacionalista, tras la apertura de sus valles a los occidentales.

El Everest, o Chomo Lungma o Sagarmatha es una enorme montaña piramidal de calizas primarias cuyas vertientes oriental y noroccidental están orientadas hacia el Tibet y la sudoccidental, hacia el Nepal; es el punto culminante de la cadena del Himalaya, sistema montañoso que comprende más de cien cimas de una altitud superior a los 7.000 metros y diez de 8.000 (otras cuatro cimas de 8.000 metros se encuentran en el Karakorum) y constituye una franja de picos y de macizos que se extiende formando un arco de más de 2.500 kilómetros de longitud y entre 200 a 500 de anchura. Esta franja montañosa está delimitada, al sur, por las tierras bajas de la India, y al norte, por la altiplanicie del Tibet.

El Everest Habitantes Fauna Flora Las Escaladas Altura Historia

Su formación se inició hará unos 10 ó 16 millones de años, durante el mioceno, cuando la cima del futuro Everest yacía aún bajo el nivel del mar y la violenta colisión del subcontinente indio (escudo de Deccan), separado de África, con el continente asiático (escudo siberiano) señaló el comienzo de la primera elevación de la cadena. Según tal interpretación, relacionada con la teoría de “los continentes a la deriva” (que no ha sido aceptada por todos), se necesitaron por lo menos cinco millones de años para que el Everest emergiera de las aguas y fuera empujado, durante las eras que siguieron, a más de 7.000 metros de altura. La elevación de las cadenas provocó una notable modificación del clima, sobre todo en la vertiente meridional; la de la India, con incremento de lluvias, progresiva erosión de las vertientes de las montañas e intensa formación de sedimentos que llenaron lo que entonces era el “mar del Ganges”.

La prueba de que allí por donde hoy discurre el río sagrado había un mar la demuestran los hallazgos, hasta cotas de 6.000 metros, de numerosísimos fósiles de amonites, moluscos que los indios llaman shaligram y recogen con devoción, considerándolos como uno de los atributos de Visnú. El Everest sufrió su última elevación en épocas más recientes, durante la fase denominada Mahabharat, que se remonta a 200.000 años atrás. La cima, formada por calizas estratificadas y esquistos calcáreos y de cuarzo, fue empujada hacia arriba por intrusiones de granito, alcanzando casi los 8.900 metros.

Y puesto que el movimiento descrito todavía se está realizando se supone, con fundamento, que la altura real de la montaña es, en la actualidad. superaba los 8.848 metros oficiales; teniendo presente, por otra parte, que el crecimiento anual calculado en unos 7-10 centímetros, se ve  profundamente limitado y reducido a unos pocos centímetros por siglo debido a a acción constante de los fenómenos de erosión.

A diferencia de cuanto se ha imaginado, basándose en la gran altura del Everest, el desarrollo de los glaciares no es excepcional la escasez de precipitaciones, los períodos de sequía que dejan los monzones y la notable pendiente, que acentúa el fenómeno de arrastre, impiden a los glaciares del Everest (el Khumbu, a lo largo del cual transcurre el camino de acceso meridional; el Rongbruk al norte, y el Kangghung, al este) competir con los de otros sistemas montañosos. Así a  los 17 kilómetros del Khumbu, por ejemplo son poca cosa comparados con las enormes avenidas de hielo de Baltoro (60 Km.) en el Karakorum o de Fedchenko, en el Pamir Translai (77 km).

Otro aspecto singular de la cadena del Himalaya, y que quizá desconozcan muchos occidentales, es su gran variedad climática que permite pasar del clima cálido-húmedo tropical de la llanura al alpino-glacial de las cimas más elevadas, ofreciendo una completa gama de paisajes y de ambientes naturales, desde la jungla del Terai (hasta 600 metros de altura) al bosque húmedo subtropical; desde las pinedas con ejemplares de hasta 20 metros, a las magnolias y a los fantásticos rododendros arbóreos (1800 – 2.500 metros de altitud) y desde los abedules del bosque subalpino (hasta los 4.000 metros) a los brezales y praderas, donde bajo el límite de las nieves, crece la flora espontánea, como saxífragas y gencianas.

Yack es el bovido

Yack es el bovido mas comun del valle de Khumbu y de todo Nepal puede vivir hasta los 5000 m. de altura. Los sherpa lo consideran su mayor riqueza. No comen su carne pero usan su leche para mantequilla.

La fauna, naturalmente, también se distribuye según las franjas climáticas altitudinales, por lo que en Nepal es posible ir a la caza del tigre a lomos de un elefante, entre los cañizales y pantanos del Terai, y observar, pasados los 5.000 metros, manadas de yacks en estado salvaje.

La cadena del Himalaya se encuentra relativamente cerca del trópico de Cáncer (para ser más exactos, está en la misma latitud que el norte de África o que el delta del Missisipi) y sirve de barrera ante el monzón, régimen periódico de vientos causados por la diferencia de temperatura y, por tanto, de presión, que se establece entre las aguas del océano Indico y el continente asiático.

Durante el inicio del verano, grandes masas de aire húmedo, procedentes del sudoeste, son empujadas hacia la India, produciéndose violentas lluvias que en la cadena del Himalaya se transforman en nevadas de gran intensidad. El monzón repercute en el ritmo de vida de la población local, mucho más numerosa de lo que se cree, teniendo presente que, en Europa, el límite de tierra habitada raramente supera los 2.000 metros.

El Himalaya, gracias a sus características climáticas, permite el desarrollo de una agricultura elemental, por lo que, desde la antigüedad, el hombre, con tenacidad y perseverancia, fue colonizando los valles más inaccesibles, formando terrazas en las laderas de las montañas y llevando el ganado a pastos que a menudo se encuentran a más de 5.000 metros de altura.

El Himalaya, a despecho de su denominación de “techo del mundo”, nunca ha representado un limite inalcanzable; por el contrario, Nepal, a caballo entre dos grupos étnicos diferentes, tibetanos e indios, ha sido teatro de una continua migración entre unos y otros, dando origen a una fusión y a un sincretismo cultural que aún hoy son fácilmente comprobables: los nepaleses, por ejemplo, población muy religiosa, permiten la coexistencia, entre ellos, de dos religiones diferentes, el budismo y el hinduismo, que se han superpuesto al culto autóctono del Ben Po y se han reunido en la veneración hacia Manjusri, “suave fortuna”, divinidad que los indígenas consideran como la fundadora de Nepal.

Muy complicado resulta también el marco étnico actual de la zona del Himalaya, caracterizado por la presencia simultánea de cuatro grupos principales: los tibetano-nepaleses, los indonepaleses, los indios y los tibetanos. De estos últimos, los sherpas (shar-pa u hombres del este) han desempeñado un papel determinante en la conquista del Everest y de las cimas más altas del Himalaya. Viven en su mayor parte en poblaciones del valle de Khumbu, cuya capital es Namke Bazar, pueblo de 500 habitantes, situado a 3.340 metros de altura y antiguo lugar de tránsito obligado de las caravanas que se dirigían al Tibet para intercambiar sal por pieles, lana y mantequilla, pasando a través de Nangpa La, un pasaje situado a 4.776 metros de altitud. Los primeEl Everest Habitantes Fauna Flora Las Escaladas Altura Historiaros exploradores que se acercaron a los 8.000 metros se limitaron a seguir las pistas e itinerarios por los que se movía la población local desde hacía siglos y que conseguía un sustento gracias a la cría de yacks y al cultivo de patatas, nabos y cebada.

Los sherpa, es un población de origen tibetano. Aquí vemos a un joven transportando alimento para su familia y también para el trueque.

LOS PRIMEROS ASCENSOS: La historia de las escaladas del Everest es relativamente reciente, pues se remonta a finales de la primera Guerra Mundial, cuando el Dalai Lama, encarnación perpetua del bodhisattva Avoloikitesvara y jefe religioso y temporal de las religiones tibetanas, permitió a los occidentales adentrarse en las montañas del Himalaya; poco después, en 1921, se constituyó en Inglaterra el Comité del Everest, cuya primera actividad fue la expedición dirigida por el coronel Howard-Bury.

Los problemas que los primeros europeos tuvieron que superar y resolver al enfrentarse con el Everest los desconocen hasta los alpinistas de cierta experiencia. En primer lugar, el período de actividad de una expedición está obligatoriamente supeditado a dos épocas del año: la primavera, cuando ya se han derretido las nieves invernales y cesa el peligro de aludes, y el otoño, al término del monzón estival. Otro factor, aparte del climático, acrecienta las dificultades de acceso a las cumbres: la altura.

Erie Shipson definió como “un enfermo que se encarama soñando” al alpinista que llega a más de 7.000 metros y se acerca a la “franja de la muerte”. El paso se hace entonces pesado, la respiración afanosa, los reflejos más lentos y una sensación de aturdimiento dificulta hasta los actos más elementales. La progresiva disminución de oxígeno, a medida que la cota aumenta, y la cada vez mayor falta de humedad en el aire, con la consiguiente deshidratación, unidas a la pérdida de calor, más sensible todavía a causa del viento, constituyen un conjunto de factores que únicamente un alpinista robusto y dotado de una capacidad de adaptación excepcional puede afrontar. Es indispensable, por lo tanto, una adecuada aclimatación para poder someter el organismo a estas condiciones ambientales tan diversas.

Desde el punto de vista técnico, la escalada a la cordillera del Himalaya es diferente a la alpina y debe hacerse por etapas, alternando los “campamentos altos” con períodos de permanencia y descanso en el “campamento base”. Además, a partir de los 7.500 metros ya no se puede hablar de aclimatación: el desgaste quebranta la resistencia del organismo y causa peligrosos síntomas de agotamiento precoz. Más allá de los 8.000 metros es necesario el empleo de oxígeno, especialmente para asegurar el descanso nocturno; pero el problema del transporte de las bombas de oxígeno a los “campamentos altos” hace indispensable la cooperación de porteadores especialistas en cotas altas.

Por esta razón la historia del Everest está íntimamente unida a la presencia y actividad de la población tibetana y, en particular, de los sherpas, raza excepcionalmente resistente, hasta el punto de que los niños de siete a ocho años pueden llevar cargas de hasta 20 kilos y de 35 los adultos y las mujeres. Sin embargo; los primeros porteadores no fueron los sherpas del Khumbu, sino un grupo perteneciente a la misma etnia y que se había establecido en Darjieling (India), pintoresco poblado situado frente al monte Kinchinjunga, de 8.000 metros, al que los europeos llamaron el Chamonix del Himalaya; aquí se alquilaron los primeros porteadores para las primeras tentativas de escalada al Everest, entre 1921 y 1938. Estas empresas tuvieron a los ingleses como protagonistas, y en particular a Mallory, que desapareció en 1924, durante una tormenta, en su tercer intento de llegar a la cumbre, después de haber cubierto la cota de 8.572 metros, la más alta alcanzada hasta entonces.

Tras la interrupción que se produjo durante la segunda Guerra Mundial, la carrera hacia el Everest volvió a iniciarse en 1950, esta vez por la vertiente meridional del Nepal, con una exploración que visitó la cuenca del glaciar Khumbu y fotografió las huellas de un extraño animal, creando el mito, todavía no olvidado, del Yeti, el Hombre de las Nieves. Y tres años después, en 1953, se alcanzó la victoria. Una expedición inglesa y de la Commonwealth, dirigida por J. Hunt, sitúa su campamento a 5.336 metros, en la base de la cascada de hielo aparentemente insuperable que protege el Cwm Occidental. Ocho campamentos sucesivos llevan a la Cima Sur (7.986 metros), mientras que el noveno se emplaza en la cresta meridional. El 29 de mayo, a las 6,30 de la mañana, salen dos hombres de la minúscula tienda de campaña para intentar el asalto final.

Toda la cordada de la expedición los acompaña espiritualmente, comprendidos los sherpas, que se han prodigado en la oscura labor de transporte de materiales de un campamento a otro. Precisamente uno de los alpinistas que habían de asaltar el techo del mundo es el sherpa Tensing Norkay, hombre de excepcional experiencia: en el año 1946 estuvo con los suizos en el Kedernat (Garhwal); en 1950, con los ingleses, en el Nanga Parbat, y en 1951 en el Nanda Devi, con los franceses, y también en el Kinchinjunga, con el suizo Frey, que moriría despeñado. En 1952 fracasó en su escalada al Everest con una expedición suiza, pero, por último, al año siguiente, lo desafía de nuevo. Y esta vez, como acabamos de decir, con éxito, llegando al punto más elevado.

El otro escalador es el neozelandés Edmund Hillary, que ha quemado etapas consiguiendo en pocos años una sólida fama de alpinista: una campaña en los Alpes (1950), la escalada al Mukut Parbat (7.245 m) en 1951 y, en el mismo año, su participación en la expedición inglesa de exploración al Everest. Hillary, el citado 29 de mayo, siente la victoria al alcance de su mano.

Fija las bombonas de oxígeno a sus espaldas, acopla la mascarilla, prepara los garfios, sujeta el pico e inicia la marcha, atacando la escarpada pendiente llena de nieve situada encima de su tienda de campaña. El frío es punzante y Hillary ruega a Tensing que lo preceda para batir la pista. A las nueve están en la Cima Sur, a la que ya había llegado la primera cordada de asalto de Evans y Bourdillons. Y ahora les espera la parte más difícil y desconocida de la ascensión: una estrecha cresta rocosa coronada por peligrosas cornisas. Se conceden un breve descanso para apagar la sed y cambiar las bombonas, produciéndose momento de pánico porque el respiración de Tensing se ha bloqueado causa del hielo; luego, después peligroso rodeo de un ascenso rocoso, a las 11:30 se llega, finalmente, a la cima.

Las divinidades que habitan en Chomo Lugma acogen con benevolecia a los valientes, y mientras Hillary quitandose el tubo de respiración, dispara las fotografías, Tensing excava un agujero capa de nieve e  introduce en él ofrecimientos de acción de gracias: bizcochos y dulces. Durante los años posteriores a la conquista del valle del Khumbu se vio animado por  la presencia de columnas de porteadores sahib que se dirigían al campamento del Everest. Todas las naciones con una sólida tradición alpinista consideraban un asunto de prestigio llevar a la cumbre alta del mundo una cordada propia: en 1956 lo hicieron los suizos, en 1963 los  Estados Unidos, en 1965 los indios, en 1973 los japoneses y en 1975 los chinos ascensión por la cresta Noroeste Quedaba un último problema que resolver  medir las posibilidades de llegar a la cumbre del Everest sin oxígeno, a decir verdad, la discusión sobre este tema nació desde un principio, durante las expediciones de 1921 y 1922. No todos estaban  de acuerdo sobre el uso de oxigeno porque entonces los instrumentos de que se disponían, todavía imperfectos, en determinados casos podían llegar a ser mas perjudiciales que útiles. Norton, en 1933, había llegado sin bombonas a la cota de 8.600 metros y Hillary y Tensing se quitaron los tubos de respiración en la misma cima del Everest para gozar de mayor libertad de movimientos. En la actualidad se discute toda la técnica de aproximación al coloso del Himalaya.

Problemas de orden logístico, económico y filosófico hacen que muchas expediciones, que por cierto cada día son más, decidan enfrentarse con las cimas en el más puro estilo alpino. Ya no se sitúa una pirámide de campamentos de apoyo a la cordada punta, sino que la cima se asalta directamente, sin el arreglo previo del camino, con un número mínimo de porteadores y reduciendo los campamentos intermedios a los estrictamente esenciales. Desde este punto de vista, que presupone la formación de un pequeño grupo de alpinistas autosuficientes y dotados de un excepcional equilibrio psicofísico, la utilización de oxígeno se considera superflua, muy costosa e incluso “moralmente desleal”. La cuestión adquiere una dimensión casi filosófica. El oxígeno —afirman los purista— rebaja la altura del Everest a la de una montaña de 6.000 metros, allana las dificultades y pone al alcance de alpinistas mediocres las cimas más elevadas.

Tan sólo respirando libremente se puede vivir la experiencia de la escalada en toda su grandeza, manteniendo inalterable la relación entre la dimensión de la montaña y la capacidad humana: las grandes montañas deben ser para los grandes escaladores. Pero, ¿es verdaderamente necesario escalar el Everest sin oxígeno para “captar su grandeza”? El Everest es más que una montaña, es casi un mundo especial en el que los grandiosos panoramas de cumbres nevadas son el fondo de un universo humano y cultural sin el cual la roca y el hielo vivirían sin alma. Entender el Everest quiere decir también recorrer humildemente los valles de acceso y llegar a sus pies enriquecido con los encuentros humanos que se han producido durante la marcha.

El itinerario clásico que proponen la mayoría de agencias de viajes de todos los países, se articula en diecinueve etapas. Partiendo de Katmandú, capital de Nepal, se van atravesando, a lo largo de las crestas, una serie de valles habitados por poblaciones thamang, que se encargan de transportar los equipajes hasta el país de los sherpas. En Kan Kola se emprende la ruta hacia el norte y después hacia el nordeste, subiendo por el valle de Dudh Kosi hasta llegar a los hielos del Khumbu. Si el turista tiene prisa, puede utilizar el avión que aterriza en Lukla (a 2.804 m de altitud), que es la etapa 12, o bien en Namche Bazar, a sólo cuatro días de marcha del campamento base.

Mas, para vivir plenamente el ambiente de estos lugares hay que detenerse en las casas de los sherpas y beber una copa de chang, símbolo de la fraternal hospitalidad; contemplar cómo las sherpanas emulsionan la mantequilla en el dongpo junto a la soda, el agua hirviendo, la sal y el té, para preparar la fuerte y sabrosa bebida; detenerse ante los chorten, receptáculos de ofrendas, y meditar sobre el drama cósmico de los seres que, a través de sucesivos ciclos de nacimiento y de muerte, tienden a la liberación; pasar junto al mani korlo, el molino de las plegarias, en el que se hallan grabados los ochos signos de la buenaventura (tarashigye); ver ondear al viento las lungktas, banderas estampadas que representan la donación de las propiedades a los dioses; y observar cada día, etapa tras etapa, cómo se van acercando las lejanas agujas nevadas…

El trekking en el campamento base del Everest no es una simple excursión, sino un peregrinaje que nos permite captar la esencia de lo divino y que nos conduce a la base de Cwm Occidental, el santuario de Cfromo Lungma, la Diosa Madre de la Tierra, frente a una cima que los hombres conquistan por breves momentos pero que siempre será la residencia eterna de las divinidades.


Ver mapa más grande

Fuente Consultada: Maravillas del Mundo por Giancarlo Cortellini

Los Gobernantes o Presidentes de Todos los países del mundo Leyes

ORIGEN Y FUNCIÓN DE LAS LEYES Y LAS CONSTITUCIONES

A medida que los contactos humanos se hicieron más complejos y múltiples, fue necesario establecer los derechos y las obligaciones de los individuos; nació así el derecho escrito, cuya expresión es la ley.

Durante mucho tiempo las leyes fueron hechas por los más poderosos (los más ricos, los poseedores de la tierra y las armas), y por consiguiente de la manera que más los beneficiaba. Cuando los pueblos comenzaron a elegir a sus gobernantes, es decir, sus representantes, estos fueron los encargados de elaborar las leyes.

¿Cuál es el objetivo que debe tener una ley?: proteger a todos los individuos por igual para que sean más felices; es importante que no privilegie a ningún sector o individuo sobre otro.

Las normas jurídicas son obligatorias, ya que su observancia puede ser coercitivamente impuesta por la autoridad pública (por ejemplo, la inscripción en el registro de las personas, el pago de impuestos). Su carácter de obligatorias las distingue de las normas morales, religiosas o de trato social. La fuerza pública no puede obligar a nadie a oír misa (regla religiosa), a cumplir con la caridad (regla moral) ni con el saludo (regla de trato social).

Tal como se dijo, el cumplimiento de las leyes supone la aceptación de ciertos límites a la libertad individual y algún tipo de control social que las mantenga vigentes.

Las normas jurídicas tienen distintas jerarquías, que se denominan jerarquías normativas. Además, pueden ser nacionales, si pertenecen a un determinado país como la Argentina, México, Egipto, etc., o internacionales, cuando rigen en distintos países, ya sea pertenecientes a una misma región o comunidad, como el Mercosur o la Unión Europea, o no. como es el caso de la Carta de la Organización de las Naciones Unidas.

La norma fundamental de una nación, la ley de la que se desprenden todas las otras, es la constitución. Su función esencial es designar los órganos encargados de la creación de las normas jurídicas generales bajo la forma de leyes, determinando el procedimiento que deben seguir en su formulación.

En la República Argentina, para tener el carácter de ley, un proyecto debe ser aprobado por las dos cámaras del Congreso (Senadores y Diputados) y el Poder Ejecutivo. Una vez publicada en el Boletín Oficial de la Nación, adquiere el carácter de obligatoria.

A nivel provincial existen también una constitución y leyes provinciales. Las normas provinciales tienen que respetar siempre la Constitución Nacional, es decir que ella está, indefectiblemente, por encima del sistema normativo provincial.

Existen también otras normas de menor nivel como las resoluciones ministeriales, las ordenanzas municipales, los edictos policiales y otras disposiciones dictadas por diferentes autoridades y referidas a cuestiones específicas.

La constitución escrita más antigua e influyente del mundo es la de Estados Unidos de América. En su origen consistía en un preámbulo y siete artículos, fue esbozada en 1787, firmada en septiembre de ese año y entró formalmente en vigor el 21 de junio de 1788, cuando fue ratificada, como exigía su propio Artículo Vil, por nueve de los trece Estados que existían en la época. Su preocupación más general, manifestada en el breve preámbulo, es «garantizar los beneficios de la libertad», una aspiración que refleja el hecho de que la guerra en que Estados Unidos se había enfrentado a los ejércitos de Jorge III, un «tirano … incapaz de ser el gobernante de un pueblo libre», había acabado sólo cinco años antes. La preservación de la libertad se logrará sobre todo limitando el poder del gobierno, y esto se plantea en los tres primeros artículos mediante la famosa separación de poderes: el poder legislativo se confiere al Congreso (Artículo I), el poder
ejecutivo a la presidencia (Artículo II) y el judicial reside en los tribunales (Artículo III).
El resto de la Constitución comprende 27 enmiendas, cada una de las cuales tuvo que ser aprobada según las fórmulas establecidas en eí Artículo V. Entre ellas, las diez primeras forman en conjunto la Carta de Derechos y fueron adoptadas a la vez el 15 de diciembre de 1791. La Primera Enmienda protege diversas libertades, incluidas las de religión, expresión, reunión y de prensa, y la Quinta garantiza el derecho de los testigos a guardar silencio sí su testimonio puede proporcionar pruebas contra ellos. De las demás enmiendas, son especialmente notables la Décimo tercera, que abolió la esclavitud (1865), la Décimo cuarta, que garantiza protección igual bajo la ley, la Décimo quinta, que establece el derecho a voto independientemente de la raza (1870), y la Décimo novena, que permite el sufragio femenino (1920).

El Estado y las leyes
Las leyes que hoy rigen en la Argentina son el resultado de un largo proceso cuyo momento clave es la formación del Estado nacional, en la segunda mitad del siglo XIX.

¿Qué es el Estado? ¿Cómo surge? ¿Sufrió cambios a lo largo del tiempo?
El Estado no surge de un día para otro, no es creado por “alguien”, sino que es el producto de un proceso de construcción social a través del cual va adquiriendo las propiedades que lo definen. Está constituido por tres elementos: población, territorio e institucionalización del poder.

La población es el conjunto de hombres que participan de la vida de una comunidad política que posee una cierta unidad cultural definida por las normas jurídicas del Estado.

El territorio es la base sobre la que se ejerce el poder del Estado. Se habla de Estado cuando existe un poder institucionalizado capaz de dar unidad a la sociedad en su conjunto, y por lo tanto es una asociación obligatoria para todos sus miembros. El poder institucionalizado es una combinación de coacción y persuasión, que es ejercido en función del interés general de la población de un territorio determinado.

En el proceso de creación del Estado se van determinando los diferentes componentes de la vida social organizada (fuerzas productivas, recursos naturales, clases sociales, articulación con la economía internacional). Asimismo, supone la formación de un poder político que se ejerce a través de un conjunto de instituciones (poderes de gobierno, leyes, administración, fuerzas armadas, policía). El aparato administrativo está constituido por funcionarios especializados que ejercen parte del poder estatal. Ministerios, oficinas públicas, bancos, escuelas, hospitales, registro de las personas, tribunales, etc., conforman una serie de organismos que controlan y regulan el funcionamiento de los individuos y se hacen cargo de los distintos problemas que la sociedad presenta a lo largo del tiempo.
Otra institución del Estado nacional es el aparato de coerción, formado por las fuerzas armadas, de seguridad y la policía, cuyo objetivo es garantizar un orden social y proteger el territorio.

El aparato judicial y el sistema de códigos caracterizan también al Estado porque regulan la vida social, garantizando las libertades individuales en las relaciones entre particulares y entre particulares y el Estado.

En todo Estado nacional existe una constitución que establece los principios de la vida política (régimen político, instituciones), social (garantías, deberes y derechos) y económica (derechos laborales, de expresión de asociación, de propiedad).
Por otra parte, es necesario mencionar que, para mantener sus gastos, el Estado cuenta con un aparato recaudador, la AFIP en Argentina, y los organismos provinciales.

La nación es también una construcción social que implica la existencia de símbolos y un sentimiento de pertenencia que integra a los habitantes de un territorio, aun cuando sus intereses sean contrapuestos, y los diferencia de los de otras naciones.

El Estado, como instancia de articulación de las relaciones personales, supone un sistema de dominación o estructura de poder impuesto sobre la sociedad, que revela los intereses predominantes.

Fuente Consultada:
Ciencias Sociales 7° – Tobío-Piacenza-Miceli-Elicine-Elbaum-Arca-Garringa-Morando

Historias Anecdotas y Curiosidades Mas Importantes de la Historia

10 CURIOSIDADES DEL PLANETA Y DE LA HISTORIA

 

 

 

 

 


 


 

 


 

 

 

 Curiosidades e Inquietudes De Los Navegantes

UN COMENTARIO SOBRE LA HISTORIA DE LA HUMANIDAD:

Desde un punto de vista físico, el hombre es uno de los seres más débiles de la Creación. El relato de cómo ha conseguido superar esta debilidad frente a especies más fuertes, y de qué modo ha llegado a dominar el mundo hasta el momento en que se dispone a conquistar el espacio extraterrestre, constituye la Historia del Hombre.

Durante innumerables siglos tuvo que luchar para sobrevivir, para dominar el hambre, el frío, las enfermedades y los ataques de otras especies enemigas. Pero desde los tiempos más remotos, en que se unía en una organización tribal, acomodaba una vivienda y construía sus utensilios de barro, sus instrumentos de hueso o sus armas de piedra, comenzó a pensar y a crear, es decir, a progresar.

La lucha por el poder y el dominio ha sido llevada constantemente a compás de la conquista de la Verdad, la Belleza y el Bien. La Filosofía y la Ciencia, la organización de la Política, la Moral y la Religión, el Arte… se encuentran ya como tendencias en las sociedades más primitivas, y precisamente este combate de tipo espiritual es lo que ha diferenciado al Hombre de cualquier otra especie que se caracteriza por no tener historia, es decir, evolución, cambio o progreso.

La reconstrucción del pasado ha llegado a una gran perfección. La Ciencia ha puesto en manos de los historiadores medios maravillosos para descifrar escrituras, interpretar restos o datar yacimientos. Innumerables ciencias auxiliares prestan su apoyo a la Historia.

En esta tarea, el historiador se encuentra con fuentes, es decir, materiales para reconstruir Historia, de todas clases. Unos son claros como los documentos, las inscripciones y los relatos, mientras en otros casos, cuando el investigador se enfrenta con restos mudos, piedras, cerámica, armas, monumentos, etc., una sagaz labor detectivesca debe guiar la intuición del estudioso para averiguar cómo, cuándo y en qué forma ocurrió el hecho que se propone historiar. En cualquier caso, el que dedica sus afanes a los estudios históricos sabe que es un ciego servidor de la verdad, a veces tan difícil de discernir del error o de la falsedad.

Pero no se trata sólo de reproducir fríamente lo que ocurrió. Cicerón decía que la Historia era la gran maestra de la vida. Interpretar el sentido del Pasado es algo sumamente difícil y arriesgado cuando la trayectoria conocida del Hombre sobre la Tierra es aún tan corta.

En efecto, ante los millares de siglos que abarca la Prehistoria, un período de la vida humana sobre la cual sólo es posible conjeturar, ya que no existen documentos escritos, ¿qué importancia tienen los dos mil años de nuestra Era, o los seis mil que abarca la historia escrita del Hombre?

Algunos historiadores han querido encontrar el sentido de este devenir y se han preguntado si los hechos se repiten, tal como cree el vulgo, y de este modo, de acuerdo con Cicerón, sería posible prever el futuro aleccionados por el pasado. La Filosofía ha expuesto con sobrada variedad de tonos las tendencias fatalistas o deterministas, providencialistas o libres ante el misterio de la conducta humana.

Es evidente que, a lo largo de los tiempos, han florecido imperios los cuales, una vez llegados a su mayor esplendor, han experimentado una decadencia, unida a la cúspide del poder, de la riqueza y de la molicie, a a continuación de la cual han llegado a desaparecer totalmente; los hititas, los pueblos de la Mesopotamia, los mayas, los aztecas, etc., constituyen algunos ejemplos.

El historiador inglés Toynbee afirma que para cada pueblo existe un ciclo que abarca cuatro fases: génesis, crecimiento, crisis y desintegración. Mas para él un pueblo no está fatalmente obligado a sufrirlas ciegamente, sino que es capaz de reaccionar y superar los estadios más bajos de este proceso.

A partir de Carlos Marx, la interpretación económica de la Historia ha pesado notablemente en el ánimo de muchos historiadores. Las guerras, las invasiones, incluso los movimientos espirituales, tendrían, según este criterio, una causa material. Así, la invasión de los bárbaros tuvo su origen en unas sequías espantosas que asolaron el Asia central.

En la actualidad los estudios de Geopolítica, que determina el espacio vital, Geografía política y Geografía histórica, tienden a enjuiciar los hechos pasados tomando en consideración todos los elementos físicos, humanos y económicos que pudieron determinarlos o condicionarlos. No debe olvidarse nunca el factor hombre. El esplendor de Macedonia o del Imperio Árabe no se pueden concebir sin las figuras de Alejandro Magno y Mahoma, respectivamente.

Se han ciado movimientos cuya génesis es de orden puramente espiritual, por lo menos en sus principios, como fueron las Cruzadas o el Humanismo. De otra parte, el hallazgo de nuevos caminos para el trabajo, debidos a la Ciencia, ha producido cambios tanto o más profundos que el alumbramiento de una nueva doctrina. Así, la Revolución Industrial, nacida a raíz de las aplicaciones del vapor, tuvo una importancia tanto o más decisiva que la Revolución Francesa.

Espíritu y Técnica parecen enfrentados en nuestros días. En los últimos sesenta años la Ciencia ha ofrecido tantos y tan extraordinarios descubrimientos que la Técnica ha trastornado la vida del hombre. Vivimos una fase histórica en la que el Espíritu parece batirse en retirada, o por lo menos realiza denodados esfuerzos para no dejarse avasallar por un alud de maquinaria.

Las fases de crisis, y a nosotros nos corresponde vivir una, son connaturales a todo estadio de crecimiento. El historiador no se pregunta nunca qué sucederá en el futuro, o si la Humanidad está en trance de perecer. El conocimiento del camino recorrido por el Hombre sirve maravillosamente para reafirmar el optimismo hacia el porvenir.

 

Las Glaciaciones Causas y Consecuencias Prehistoria Hombre Neolitico

Gran parte de la historia humana transcurrió durante los bruscos cambios climáticos de la última glaciación, o Era de Hielo, iniciada hace 1,5 millones de años. La capacidad de adaptación a estos cambios ha sido crucial en el desarrollo de la civilización, pero el ser humano también puede ser la causa de un futuro calentamiento. Durante millones de años, la Tierra ha experimentado una diversidad de temperaturas y condiciones climáticas que influyeron en la extinción o supervivencia de grupos enteros de especies y han cambiado la faz del planeta.

Existen indicios del comienzo de otra gran transformación (antes por deriva de los continentes y enormes levantamientos volcánicos) que experimentó el clima hace unos tres millones de años, preludio de la fase en la que aún vivimos, y casi todas las etapas de la evolución humana de las que han quedado vestigios se desarrollaron en las condiciones que surgieron entonces.

Gracias a este cambio aparecieron los entornos que permitieron la supervivencia de la especie humana y de sus antepasados inmediatos. Hace un siglo empezó a denominarse a este período climático Pleistoceno(derivado de términos griegos que significan «lo más reciente»). Se distingue de la etapa anterior por las variaciones del clima, mucho más radicales y frecuentes.

Aunque hay que tener en cuenta que nos referimos a miles de años y que estos cambios no podrían notarse en el corto espacio de vida de un hombre, en el Pleistoceno se produjeron más altibajos que en ninguna otra época de duración similar. Los cambios más destacados se denominan «glaciaciones», cuatro en total.

No sabemos por qué se desencadenaron, pero se cree que el planeta Marte atravesó etapas semejantes, y es probable que se debieran a un cambio que afectó a todo el sistema solar. Las consecuencias resultan mucho más claras: durante siglos enteros, ciertas zonas muy extensas —gran parte de Europa y Norteamérica, por ejemplo— quedaron cubiertas de grandes capas de hielo, en algunos casos de varios kilómetros de espesor. En ciertos puntos, el hielo hundió el suelo a varios cientos de metros. Estas capas empezaron a formarse porque cada primavera la nieve del invierno se derretía un poco más tarde, hasta que un año no se derritió.

Al cabo de miles de años se produjo un retroceso del hielo, también muy lento, y tanto el avance como el retroceso resultaron catastróficos para el entorno, pues al sobrevenir el deshielo, arrasó la vida animal y vegetal y se desencadenaron enormes inundaciones. A consecuencia de una elevación del nivel del mar tras un deshielo volvió a aparecer el canal de la Mancha, que separó definitivamente las islas Británicas de la Europa continental. Pero estas inundaciones ofrecieron nuevas oportunidades de desarrollo a las especies mejor dotadas.

Tras cada glaciación, dichas especies se trasladaban a las zonas que habían quedado libres de hielo; y no fueron sólo las zonas directamente afectadas las que experimentaron cambios: como el hielo dejó «encerradas» enormes cantidades de agua, se transformaron miles de kilómetros de costas de las regiones heladas.

Cada glaciación tuvo una duración de entre cincuenta y setenta y cinco mil años. En la actualidad vivimos en el período cálido posterior a la última, y algunos científicos han predicho que se producirá otra dentro de unos cincuenta mil años. No es una perspectiva tan terrible como la del «encogimiento» del universo, pero de todos modos queda tan lejos que no debe preocuparnos demasiado. Las glaciaciones constituyen una ayuda muy valiosa para los estudiosos de la Prehistoria.

En primer lugar, sabemos muy bien cuándo se produjeron y podemos fechar muchos objetos prehistóricos basándonos en ellas. Otro factor importante radica en que podemos especular con un margen de error razonable sobre las consecuencias que tuvieron en el medio ambiente de los primeros seres humanos y prehumanos.

Al estudiar estos cambios físicos y biológicos, no debemos olvidar la extraordinaria lentitud con que se produjeron. Cuando pensamos en las grandes fallas que se abrieron en la tierra, en las costas que surgieron de los océanos, o en los mares que aparecieron al derretirse la gigantesca capa de hielo, hemos de recordar que todo esto sucedió en el transcurso de varios siglos, y en algunos casos, de millones de años. Los seres que vivieron en este proceso, si hubieran sido capaces de reflexionar sobre él, no habrían podido notarlo en el breve espacio de sus vidas, al igual que una mariposa actual, con una existencia de dos o tres semanas, tampoco apreciaría los cambios que ha experimentado el paisaje en el último siglo. Y las transformaciones biológicas que se operan a causa de la selección natural son aún menos visibles, pues incluso la más pequeña tarda miles de generaciones en completarse.

Las Glaciaciones Causas y Consecuencias Prehistoria Hombre Neolitico

Las cuatro «glaciaciones» se sucedieron en el último millón de años y reciben el nombre de los ríos alemanes en cuyos lugares se hallaron los primeros vestigios. Es imposible dar fechas exactas; sólo aproximadas. Los períodos interglaciares fueron muy semejantes a los actuales. Contrariamente a la idea popular, una glaciación no es una época de congelamiento constante, sino un período de continuas fluctuaciones climáticas cuyo punto máximo consistió en etapas de frío intenso.
Los primeros milenios de la última glaciación —período crítico en el que nuestros remotos antepasados ocuparon gran parte de África— son poco conocidos. La información obtenida de perforaciones del fondo marino y de muestras de hielo ofrece una imagen más nítida del clima posterior a la brusca inversión del campo magnético terrestre producida hace unos 780.000 años. Las muestras del fondo del Pacífico revelan al menos cuatro grandes períodos fríos, o glaciales, a lo largo de esos 780.000 años: el último finalizó hace entre 10.000 y 15.000 años con un súbito e irregular calentamiento global.

Las muestras marinas tan sólo ofrecen una impresión general sobre el cambio climático durante la glaciación, pero como regla general, el enfriamiento se produce con relativa lentitud y el calentamiento es rápido, como sucedió al final del último período glacial. Los períodos glaciales fueron más largos que los interglaciales (breves intervalos de condiciones climáticas más cálidas durante la glaciación, cuando el clima era tan cálido o más que hoy). Estos aumentos de temperatura fueron causados por cambios en el movimiento de la Tierra alrededor del Sol y sobre su propio eje, a los que se añadía un aumento natural de los gases de efecto invernadero. En la actualidad estamos experimentando un período interglacial, provocado por la suma de todos estos fenómenos naturales, que comenzó hace unos 10.000 años.

90 metros bajó el nivel del mar al principio de la ultima glaciación, a medida que el agua se congelaba para formar
los casquetes polares de la Antártida y el Ártico actual.

Cambio medioambiental La glaciación fue testigo de drásticos cambios en el clima global y el medio natural. Durante los períodos glaciales, inmensas capas de hielo cubrieron Escandinavia, gran parte de Canadá y zonas de Estados Unidos hasta Seattle y los Grandes Lagos al sur. En los Alpes se formaron grandes glaciares y hubo casquetes glaciares en los Pirineos, los Andes y las montañas y altiplanos de Asia central. Al sur de los casquetes escandinavos, inmensos espacios de terreno inhabitado se extendían desde el Atlántico hasta Siberia.

Estos entornos sufrían nueve meses de invierno y eran inhabitables para los ancestros de Horno sapiens, que carecían de la tecnología e indumentaria adecuadas para adaptarse a las temperaturas extremas. No es una coincidencia que H. erectus, con su simple Metros bajó el nivel del mar al principio de la última glaciación, a medida que el agua se congelaba para formar los casquetes polares de la Antártida y el Ártico actuales. tecnología y sus limitadas habilidades cognitivas, se estableciera en entornos más templados y tropicales.

El frío causó un drástico descenso del nivel del mar a medida que el agua se convertía en hielo, y quedaron expuestas enormes extensiones de lo que actualmente son plataformas continentales (suelo bajo aguas costeras poco profundas), enlazando masas de tierra: Siberia era parte de Alaska, y Gran Bretaña estaba unida al continente europeo. El Sudeste Asiático estaba separado de Australia y Nueva Guinea por cortos trechos de mar abierto.

Durante los períodos interglaciales, el nivel del mar subió, los casquetes glaciares se redujeron y los bosques avanzaron al norte ganando terreno a la tundra. Los humanos se trasladaron hacia el norte siguiendo a los animales que cazaban y las plantas que recolectaban, y se adaptaron a una gran variedad de entomos de bosque y pradera, y a terrenos áridos y semiáridos.

El hombre y los elementos: El clima de la Era de Hielo era inestable: los hábitats cambiaban constantemente, lo que implicaba que el oportunismo y la capacidad de adaptación de los humanos sufrían un desafío continuo entre un milenio y el siguiente. Estos desafíos pudieron ser incluso un factor en la evolución humana, ya que nuestros antepasados más antiguos eran básicamente animales tropicales.

Durante largos períodos glaciales, el Sahara fue algo más húmedo que hoy; podría considerarse como una bomba que atraía a humanos y animales en los períodos húmedos y los expulsaba hacia los márgenes cuando el clima se volvía más seco. Este efecto ecológico permitió que Homo erectus y los animales que cazaba cruzaran el desierto y se extendieran a entornos más templados hace 1,8 m.a.

Un largo período interglacial elevó las temperaturas hace unos 400.000 años. Para esa época, Homo erectus prosperaba en el norte de Europa, pero no se pudo adaptar a la glaciación de hace 350.000 años. Es probable que los pocos grupos de cazadores que vivían allí se desplazaran al sur, hacia regiones más templadas. Existen evidencias de asentamientos en Europa y partes de Asia oriental de hace unos 250.000 años. El último período interglacial tuvo su apogeo hace unos 128.000 años, cuando los neanderthales prosperaban en Europa. Hace unos 50.000 años, los humanos modernos habían dominado todos los entornos y vivían incluso en las zonas más frías.

Ver: Historia del Cambio Climático desde la Prehistoria

Fuente Consultada:
Geografía Mundial y los desafíos del SXXI. Editorial Santillana. Geografía Mundial, Editorial Puerto de Palos.  

Gerardus Mercator: Proyeccion de Mercator Para Dirigir el Rumbo en el Mar

Gerardus Mercator: Proyeccion de Mercator

Gerardus Mercator: Proyeccion de Mercator La proyección de Mercator permite a los marineros dirigir el rumbo de la embarcación en largas distancias mediante el trazado de líneas rectas, sin necesidad de hacer constantes ajustes de la lectura del compás

El matemático y geógrafo flamenco Gerhard Kremer pasaría a los anales de la historia por la innovación que en el ámbito de la cartografía significó su representación cilíndrica, directa y conforme de la esfera terrestre, a la que él mismo darla nombre: la proyección de Mercator.

La imagen que ésta ofrece del globo terráqueo es la de un conjunto de meridianos trazados como líneas verticales paralelas —separadas unas de otras por la misma distancia—, y una serie de paralelos horizontales que se van separando progresivamente conforme se alejan del ecuador.

Esta proyección, elaborada en 1569, todavía hoy sirve de gran ayuda a los navegantes a la hora de dirigir el rumbo de sus naves, aunque es menos práctica para construir los mapas del mundo, pues la escala está distorsionada y las zonas más alejadas del ecuador se muestran exageradamente grandes (así, por ejemplo, la extensión de Groenlandia, según la concepción de Mercator, es superior a la de toda Sudamérica, cuando en realidad comprende una superficie menor que la de Arabia Saudí).

Recorrido biográfico

Natural de Alemania, la familia de Gerhard (o Gerard) Mercatus se trasladó a los Países Bajos poco antes de que él viniera al mundo. Nació en la localidad belga de Rupelmonde, en 1512, y cursó sus primeros estudios en Hertogenbosch (Holanda), donde se formó en la doctrina cristiana, la dialéctica y el latín. Ya en 1530 ingresó en la Universidad de Lovaina (Bélgica) para especializarse en humanidades y filosofía, materias en las que se licenciaría con tan sólo veinte años de edad.

Las dudas religiosas le asaltaron cuando no pudo conciliar el origen bíblico del Universo con el que proponía Aristóteles. Tras dos años de estudios que le llevaron a Amberes, su crisis personal y espiritual se resolvió con el fortalecimiento de su fe, pero también con la pérdida de entusiasmo hacia la especulación filosófica. Esta circunstancia, unida a la influencia que sobre él ejerció el astrónomo y cartógrafo Gemma Frisius (de quien fuera discípulo en Lovaina), desplazó su centro de interés hacia la geografía y las matemáticas.

Los trabajos de Frisius y Mercator

A la edad de 24 años, Mercator era ya un soberbio grabador, un destacado calígrafo y un fabricante de instrumentos científicos altamente cualificado. Trabajó muy estrechamente con su maestro (Gemma Frisius) y con Gaspar Myrica (grabador y orfebre, cuyo taller era regularmente frecuentado por los dos geógrafos). Entre los tres lograron hacer de Lovaina un importante centro de construcción de mapas e instrumentos astronómicos.

La reputación de estos científicos-artesanos fue creciendo paulatinamente, hasta el punto de que el emperador Carlos y les encargaría dos globos, uno terrestre (en cuya fabricación invirtieron unos dos años, 1535-36) y su contrapartida celeste (que acabaron en 1537). Estos mapas mostraban la caligrafía en itálica, libre y elegante, con la que Mercator iba a cambiar por completo el aspecto de los mapas tradicionales que se hacían en el siglo XVI. Al mismo tiempo, Mercator diseñaba el trazado de Tierra Santa, el de Flandes y un mapamundi de dos caras, y en 1540 publicaba su Literarum Latinarum quas Ita/leas cursoriasqué vocant scribende ratio —con su característica escritura cursiva—, una obra de la que además de autor fue impresor.

A pesar de su reconocida contribución al terreno de la geografía (en una época, por cierto, en que el tráfico marítimo con las colonias en el Nuevo Continente era constante) y de la fama que ya se había granjeado entre sus contemporáneos, Mercator es hecho prisionero en 1544 bajo la acusación de herejía (junto con 43 ciudadanos más): su inclinación al protestantismo, así como sus frecuentes ausencias de Lovaina (con el fin de recopilar información para sus mapas) lo convirtieron en sospechoso y en una amenaza para el credo oficial. Tras siete meses en la cárcel, la mediación de las autoridades académicas consiguió liberarle; Mercator pudo entonces continuar con sus experimentos.

Un atlas histórico-geográfico

En 1552 se estableció en el ducado de Clever (en Duisburg) y, una vez allí, abrió un taller cartográfico con sus propios grabadores y enseguida se convirtió en una figura de renombre. En Duisburg diversificó su actividad, si bien todo su esfuerzo se concentraba en las tareas cartográficas: en 1 554 publicó un mapa de Europa; de 1 559 a 1562 impartió clases de matemáticas en una escuela, trató de reconstruir el árbol genealógico del duque Wilhelm de Cleve y redactó un detallado comentario acerca de la primera parte de la carta del apóstol san Pablo a los romanos; en 1564 completó el mapa de Lorraine y otro de las islas Británicas. Pero lo más importante fue el perfeccionamiento de su ya mencionado sistema de proyección cartográfico, que practicó entre 1 564 y 1 569.

Paralelamente, trabajó en la creación del Atlas, sive cosmographicae meditatíones de fabrica mundiet fabricatifigura, que pretendía reflejar en una colección de mapas la historia del mundo, desde su génesis hasta el siglo que a Mercator le tocó vivir: la primera sección —compuesta por 27 mapas— abarcaba desde la Creación hasta 1568 y llevaba por título Tabulae Geágraphicae CI. Ptolemaei ad mentem auctoris restítutae et emendatae; en el siguiente apartado trazó la disposición geográfica de Francia, Alemania, Países Bajos, Italia y los actuales países balcánicos (a los que él dio el nombre de Sclavcha); por fin, la última parte, que incluía las islas Británicas, sería editada un ano después de su muerte (que le sobrevino en Duisburg en 1594), gracias a sus hijos Rumold y Arnold (fruto de la unión de Gerard y Barbara Schellekens, con quien había contraído matrimonio en 1 534). Las planchas del Atlas de Mercator fueron más tarde aprovechadas por Jedocus Hondius, artífice de la edición del Atlas Mercator-Hondius (de 1606).

La proyección de Mercator

Como adelantábamos al principio, se trata de una representación cilíndrica, directa y conforme del globo de la Tierra, realizada por Mercator hacia 1569 (aunque su planteamiento matemático correcto se lo debemos a H. Bond, quien formuló su definición exacta en 1645). La proyección corresponde a un desarrollo cilíndrico efectuado a lo largo de la línea del ecuador. La conformidad se expresa mediante las coordenadas clásicas de la esfera (l, j) y las coordenadas cartesianas del plano (abscisas o X y ordenadas o Y), lo cual se traduce en las siguientes ecuaciones (admitiendo que el meridiano origen constituye el eje de las Y):

X = Rþ

Y = R £= R Log tg (n/4 + Þ/2)

donde R se corresponde con el radio de la esfera modelo y £ representa la latitud creciente. Las imágenes de los meridianos son, en consecuencia, rectas equidistantes paralelas al eje de ordenadas, en tanto que las paralelas se trazan como rectas paralelas al eje de abscisas (imagen del ecuador). De esta forma, se puede reproducir el trayecto de un barco que sigue un rumbo constante. Su defecto radica, repetimos, en la desproporcionada distancia que separa a los paralelos a medida que se desplazan del ecuador a los polos.

De utilidad para los hombres de mar el aspecto transverso de la proyección de Mercator se usa también en la confección de mapas a pequeña escala: es la proyección de Gauss, en la que el ecuador (meridiano central, en la terminología de Gauss) es una recta ortogonal, en tanto que la imagen de los restantes meridianos y paralelos es la de dos familias de curvas ortogonales.

De otro lado, la proyección de Mercator ha servido para diseñar la MTU (Mercator Transversa Universal), muy utilizada en geodesia, y que consiste en una representación cilíndrica conforme transversa, pero articulada sobre un elipsoide concreto.

Para formular esta proyección según los parámetros matemáticos, se parte del supuesto de que la imagen del meridiano central es el eje de las Y y que se corresponde con un par de meridianos opuestos, lo cual plantea un problema importante: al ser meridiano central una integral elíptica de Þ, no es posible contenerlo en una expresión finita. Al respecto, se han propuesto dos soluciones: el método del servicio cartográfico norteamericano (que se sirve de unos desarrollos limitados de orden 5) y el método de la doble proyección (primero, la proyección conforme del elipsoide modelo sobre una esfera, y después la proyección de Gauss sobre esa misma esfera)

Como vemos, la repercusión del modelo de Mercator ha sido determinante en el desarrollo de los estudios cartográficos posteriores. En la actualidad se utiliza tanto para navegación marítima como para la aérea. (un link para visitar: http://www.clubdelamar.org/mercator)

Como se formaron las rocas? Rocas Igneas sedimentarias metamorficas

¿Como se Formaron las Rocas? – Tipos de Rocas

Se denominan así las masas naturales formadas por agrupación de distintos minerales. De ahí que la acción erosiva se realiza sobre materiales muy diferentes, con resultados también distintos. A la constitución de las rocas se une el factor climático, que aumenta la diversificación del modelado. Una roca presenta diferentes aspectos según se halle en terrenos ecuatoriales, templados o polares.

Todas las rocas de la Tierra se dividen en tres grandes grupos –ígneas o volcánicas, sedimentarias y metamórficas–, según la forma en que se originaron. Las rocas ígneas, cuyo nombre procede de la palabra latina que significa fuego, comenzaron como magma, que es el material fundido del interior de la Tierra. Cuando el magma se enfría lentamente y se endurece bajo tierra forma el granito y otras rocas de grano grueso. El magma que aflora en erupción a la superficie se enfría rápidamente y forma basalto y otras clases de rocas volcánicas.(Fuente Consultada:selecciones Readers Digest)

LAS ROCAS: Toda la Tierra esta hecha de rocas y minerales. Dentro de la tierra hay una base líquida de roca fundida (magma) y en el exterior hay una corteza dura. Podemos comparar la tierra con un huevo, la cáscara del huevo es como la corteza en la tierra. La corteza se compone de rocas y de minerales. Mucha de la corteza esta cubierta por agua, la arena, el suelo y el hielo. Si usted cava lo suficientemente profundo, siempre encontrará rocas.

Se designa con el nombre de roca  a toda asociación de partes minerales homogéneas o heterogéneas que se encuentren en la corteza sólida del globo en masas bastante grandes como para ser consideradas parte esencial, de esa corteza.

La geología (ciencia que estudia los materiales que componen el globo, su naturaleza, su situación y las causas que lo han determinado), la paleontología (que trata de los seres orgánicos cuyos restos están fosilizados) y la litología (parte de la geología que se ocupa de las rocas), establecieron que las rocas más antiguas se encuentran en los estados de Manitoba y Dakota (Estados Unidos de América); la fecha de su formación se remonta a 1700 millones de años, es decir, al período en que aparecieron los primeros invertebrados marinos.

Por lo tanto, el estudio de los minerales nos presenta, en una serie de capítulos sucesivos, la historia misma de la vida hasta la aparición del hombre. Haremos una comparación: si representáramos esa historia reunida en un solo volumen, cada una de cuyas páginas correspondiera a un millón de años, tendríamos un libro de casi 2.000 páginas, y sólo al final de la última descubriríamos la aparición del hombre en el mundo. La litología nos indica la edad de ciertos grandes sistemas montañosos.

Por ejemplo, sabemos que los montes Apalaches (Estados Unidos) son los más antiguos; cuentan alrededor de 240 millones de años, mientras que las Montañas Rocosas tienen 105 millones; los Pirineos, 30 millones; los Alpes, 21 millones: la cadena del Himalaya y la cordillera de los Andes, sólo 8 millones.

Para interpretar el lenguaje de las piedras es menester, ante todo, distinguir sus orígenes, que podemos conocer analizando tres elementos esenciales:

1) la naturaleza química de la roca;
2)
su estructura, es decir, la forma como se aglomeraron los distintos elementos que la componen;
3)
la disposición de los terrenos donde se encuentra.

Esa distinción hizo que los geólogos dividieran todos los tipos de rocas en tres grupos: rocas eruptivas o ígneas, rocas sedimentarias y rocas metamórficas.

I) LAS ROCAS ERUPTIVAS: Estas rocas, llamadas también ígneas, se formaron por la solidificación del magma que está en fusión bajo la corteza terrestre y es arrojado por los volcanes en erupción. El magma es la masa mineral que se halla en las profundidades de la tierra en estado pastoso debido al calor central. También hay rocas eruptivas en el fondo de los mares y están constituidas, principalmente, por el grupo de los silicatos. Las rocas volcánicas superficiales presentan grandes irregularidades en su estructura. Se deben al enfriamiento que, al operarse rápidamente, no permitió que la cristalización se produjera en forma homogénea.

A ese tipo pertenecen las rocas porfídico-cuarcíferas, cuyas variedades y colores son muy numerosos. Por su solidez son muy indicadas para pavimentar. Menos común, pero más importante, es la porfirita, cuyas variedades más conocidas son el pórfido rojo, con el fondo sembrado de manchitas blancas (cristales de feldespato) y el pórfido verde. El pórfido rojo, muy apreciado por los antiguos, provenía del Alto Egipto; en cuanto al pórfido verde, los griegos lo extraían del monte Taigeto.

El basalto es una roca eruptiva negra, compacta, muy difícil de romper; a pesar de eso, es poco resistente a la intemperie. Es fusible al soplete y produce un esmalte negro. En Irlanda existe una magnífica columnata natural, llamada la calzada de los Gigantes de Antrim, formada por rocas basálticas. La abundancia de los productos gaseosos que despiden las rocas volcánicas durante su consolidación determina la formación de rocas porosas, de una textura celular sumamente liviana, que se conocen con el nombre de piedra pómez o pumita. Se las utiliza mucho para pulir y también en la industria de la cerámica y los esmaltes.

Las rocas eruptivas cuya consolidación se produjo en las profundidades de la tierra se cristalizaron de manera mucho más uniforme; son las rocas graníticas, puestas al desnudo por la erosión que duró millones de años. En cuanto a su disposición, las rocas eruptivas consolidadas desde el interior presentan filones, o sean rocas micro graneadas que llenaron las hendiduras del magma en vías de solidificación. Con el transcurso del tiempo, la erosión arrancó la roca exterior menos dura, hasta que el filón formó en la superficie del suelo un verdadero muro saliente, llamado dique.

Principales Rocas Ígneas:

GRANITO

BASALTO

DIORITA

OBSIDIANA

PUMITA

GRANITO: Una de las rocas más abundantes en la corteza, y también una de las más variables, pues su composición depende de las proporciones en las que se encuentren los minerales que la forman: cuarzo, mica, plagioclasa y ortosa Es el ejemplo clásico de roca plutónica, que se forma en el interior de La Tierra, donde el magma puede enfriarse lentamente y la cristalización se realiza despacio, de forma que los cristales resultantes están muy bien formados y son claramente visibles a simple vista. El carácter plutónico del granito se aprecia además en sus afloramientos, generalmente muy masivos, formando en ocasiones sierras enteras. En estos casos, se ha producido el afloramiento de un plutón completo.

En el campo, el granito da lugar a paisajes muy agrestes, en los que abundan las grandes rocas redondeadas (piedras caballeras) que se desprenden como consecuencia de la meteorización mecánica. Muchas zonas graníticas se denominan «caos de bolas» por el aspecto que presenta el paisaje.

El granito es duro y muy resistente a la intemperie, lo cual lo hace ideal para la construcción. Muchos edificios notables han sido construidos con granito. Las otras aplicaciones de esta roca son ornamentales, como piedra pulimentada (de uso en revestimiento de fachadas, suelos, encimeras…) y como material para escultura.

BASALTO: La roca ígnea extrusiva (volcánica) más común en la Tierra. Procede en la mayor parte de los casos de coladas de lava. El enfriamiento rápido de la lava produce rocas con los cristales pequeños, aunque visibles. Su textura es más bien densa: en una muestra no se suelen poder identificar visualmente los minerales que la componen. Es muy poco brillante, especialmente en las superficies de corte. Con frecuencia, las muestras de basalto albergan cristales bastante grandes (fenocristales) de minerales como el olivino y el piroxeno.

En el campo presenta aspectos (hábitos) muy variados. Son relativamente frecuentes los hábitos columnares, en los que el basalto forma estructuras similares a columnas, muy juntas, que dan lugar a paisajes bastante espectaculares. En otros casos presenta aspecto bastante liso, y en otros, globular. Esta forma la adopta cuando la colada de lava se ha enfriado debajo del agua (en este caso, se forman las llamadas lavas almohadilladas).

DIORITA: Es una roca intrusiva, de color negro con vetas verdosas o rosadas, de textura porfídica, formada por plagioclasa y hornablenda. Existe una variedad, la granodiorita, que contiene cuarzo.  Se trata de una roca muy dura. Pero existen algunas estatuas egipcias, como la del faraón Kefrén, que están realizadas en diorita, sin que se pueda explicar satisfactoriamente cómo con las herramientas disponibles entonces fue posible trabajar este material tan duro.

OBSIDIANA: No se puede considerar estrictamente una roca, sino un vidrio volcánico. Se trata de un material amorfo, fruto de una cristalización tan rápida que el magma no tuvo tiempo de formar cristales, sino que se convirtió en una especie de pasta vítrea.

Su color es negro brillante. Su forma de fractura es característica: al golpearse se rompe con fracturas en forma de concha, que dejan aristas tan afiladas que algunos pueblos de la Antigüedad, como los aztecas, utilizaron esta roca para fabricar cuchillos muy afilados.

PUMITA: También llamada piedra pómez, es una curiosa roca extrusiva, tan ligera que flota en el agua, y con aspecto de esponja. La pumita se forma en algunas erupciones volcánicas en las que se acumulan gran cantidad de gases en la cámara magmática de los volcanes. Esto hace que se produzcan burbujas en el interior de la aya. Cuando esta se enfría al contacto con el aire, una vez expulsada del volcán (por lo general, de forma violenta), da origen a fragmentos rocosos llenos de poros.

II) ROCAS SEDIMENTARIAS O ESTRATIFICADAS: Están dispuestas en capas sucesivas o estratos, generalmente de poco espesor, formados por sedimentos. Algunas son de naturaleza aluvional, otras son simples depósitos químicos y otras son de origen orgánico. A veces se dio el nombre de terrenos aluvionales a los terrenos terciarios; esto no es exacto, porque, en toda época hubo aluviones, es decir, depósitos arrastrados por las aguas. Su composición varía, según la proporción en que se encuentren mezclados fragmentos rocosos, cantos rodados y limo.

A menudo se presentan bajo el aspecto de partículas sin cohesión (arena); a veces se amalgaman y forman terrenos arcillosos. Podemos observarlas en todo su esplendor en el Gran Cañón del Colorado de Estados Unidos de América, y en el Valle Encantado del río Limay (Parque Nacional de Nahuel Huapi, República Argentina).

Las rocas de depósitos químicos se formaron por la lenta precipitación de sustancias que se encuentran en suspensión en las aguas. Así, en las lagunas y en los lagos, la sal gema o el yeso se sobrepusieron lentamente hasta formar verdaderas rocas. Admirables ejemplos nos presentan las estalagmitas, de donde derivan algunas variedades de alabastros, que confieren a ciertas grutas un aspecto arquitectónico refinado e imponente a la vez.

Las rocas calcáreas, formadas por ácido carbónico y cal combinados (carbonato de calcio), son duras y de aspecto granuloso; entre ellas podemos mencionar el mármol, la piedra caliza, la piedra litográfica, la calcita, la creta, etc. Por lo común son blancas, pero presentan también coloraciones muy variadas. De ellas se extraen la cal, la tiza, el yeso y el cemento, que se emplean en la construcción.

Las rocas sedimentarias son muy variadas e importantes. Tanto, que mientras que una de ellas, la caliza, configura buena parte de los paisajes, otra, el petróleo, no sólo es la única roca líquida que existe, sino también la principal fuente de energía.

CALIZA

CARBÓN

PETRÓLEO

Caliza: Roca sedimentaria evaporítica constituida por carbonato de calcio (calcita aunque en su composición pueden aparecer pequeñas cantidades de otros minerales e impurezas. Su formación, en muchos casos, está asociada a la acumulación de restos de seres vivos (fundamentalmente conchas de moluscos, ricas en carbonato de calcio). En otros casos, se debe a la precipitación del carbonato disuelto en agua, en ambientes propicios, como sucede en las cuevas, donde el carbonato precipita en forma de caliza y origina las estalactitas y las estalagmitas.

La caliza es una roca muy abundante: constituye más deI 10% del conjunto de rocas sedimentarias de nuestro planeta. Se presenta en numerosas variedades, que se distinguen por su textura, su contenido en fósiles, su grano (que puede ser fino o basto) y su color. La caliza pura es blanca, pero su contenido en impurezas, como arcilla, óxido de hierro, etc., hace que pueda tener colores crema, rojizo o gris.

Una roca muy útil: Por su abundancia, la caliza siempre ha sido una roca muy utilizada. Se obtiene de canteras, explotaciones al aire libre, cortándola directamente de los conjuntos rocosos. Sus usos son muy variados: es una de las materias primas del cemento. Su resistencia a la intemperie hace que se pueda usar para el revestimiento de fachadas y la construcción de edificios representativos. También ha sido un material utilizado en escultura desde la Antigüedad, ya que se trabaja con relativa facilidad y tiene un bello aspecto.
A pesar de su resistencia, la caliza es muy sensible al ataque con ácidos. Por eso, en los lugares donde hay lluvia ácida, los edificios con fachada de caliza (como en las catedrales, por ejemplo) corren peligro de deterioro.

Petróleo: El petróleo es La única roca líquida que existe. Es una roca sedimentaria organógena, formada por restos de seres del plancton marino. La sedimentación de estos seres en zonas poco profundas y su transformación, que requiere un proceso de millones de años, originó el petróleo que hoy se extrae. Se trata de una mezcla de hidrocarburos, que a temperatura ambiente se encuentra en estado liquido, acompañados frecuentemente de gases. Puesto que es un fluido, los yacimientos de petróleo no forman parte de estratos, sino que ocupan las bolsas o espacios entre rocas.

Enla formación del petróleo influye la profundidad (por la presión a la que se encuentran es sedimentos) y la temperatura. Si el sedimento se encuentra en una zona poco profunda, a temperatura baja, es habitual que predomine la formación de petróleo pesado, el más denso. En zonas más profundas y a mayor temperatura, el petróleo menos denso (llamado absotualmente crudo) es más abundante. Si las temperaturas superan los 100 °C, se forma gas  natural.

Se puede decir que el petróleo es el combustible fósil más utilizado y, en buena medida, sociedad actual depende de él para su funcionamiento. De ahí que se piense que puede producirse una crisis energética importante si, como se prevé, las reservas de petróleo se agotan en un futuro más o menos próximo.

Carbón: comienza a estar en desuso, pero 0n el pasado el carbón era un combustible fósil de la máxima importancia. A diferencia del petróleo, el carbón se formó a partir de restos vegetales (fundamentalmente de los helechos gigantes del período Carbonífero), acumulados en zonas pantanosas. De la lenta transformación de estos restos en un ambiente sin oxígeno y su litificación se formaron los carbones, rocas en cuya composición es abundante o predominante el elemento carbono.  La explotación del carbón se realiza mediante minas, normalmente subterráneas. Los yacimientos suelen formar estratos, cuyo espesor oscila entre los 2 cm. y los 20 m. o más.

III) ROCAS METAMÓRFICAS: Se llaman así porque pueden encontrarse en las rocas eruptivas y en las sedimentarias; se diferencian entre sí por profundas metamorfosis de estructura. A veces, rocas cristalinas de origen eruptivo han soportado una segunda cristalización, o el magma eruptivo ha penetrado entre las capas de la roca sedimentaria (no cristalina) que sufrió corto metamorfismo (transformación natural ocurrida en un mineral o en una roca).

Los tipos principales de estas rocas son los gneis (roca pizarrosa), las micacitas, las pizarras, los esquistos anfibólicos (formados por feldespato y anfíbol) y los filadíos. Las rocas sedimentarias así transformadas en esquistos cristalinos, contienen mucho grafito.

Naturaleza de las rocas metamórficas: Los factores que definen o clasifican las rocas metamórficas son dos: los minerales que la forman y las texturas que presentan dichas rocas. En cuanto a su composición, minerales que se forman como consecuencia del metamorfismo se asocian, y estas asociaciones se suelen repetir en diferentes rocas, constituyendo lo que se conoce como metamórficas. Así, existen las facies de las ceolitas, de las anfibolitas, de las granulitas… Cada facies se define por unas condiciones de presión y temperatura determinadas, en las cuales la composición mineral se mantiene estable.

Las texturas son básicamente de dos tipos: foliada o esquistosaza (con bandas por la alineación de los minerales en planos paralelos) y no foliada o granoblástica (minerales desordenados). Existen, a su vez, tres subtipos de texturas foliadas. La pizarrosidad es característica de rocas con metamorfismo poco intenso en las que los minerales no se ven, y presentan láminas que se separan fácilmente. La esquistosidad aparece en rocas que han sufrido metamorfismo más intenso. El bandeado gnéisico es la alternancia de colores claros (por cristales de cuarzo) y bandas oscuras (anfiboles y micas).

SUBTIPOS DE TEXTURA FOLIADAS

PIZARROCIDAD

Este tipo de foliación está definida por la cristalización orientada de minerales planares muy pequeños, no visibles a simple vista (fundamentalmente micas).
La pizarrosidad es característica de condiciones
de bajo grado metamórfico, ósea baja presión
y temperatura.

ESQUITOCIDAD

Cuando aumenta el grado metamórfico los minerales planares aumentan de tamaño y son visibles a simple vista. En algunos casos en las superficies de foliación se observan grandes placas de micas, que le dan un aspecto escamoso. La esquistosidad es característica de condiciones de grado metamórfico medio – alto.

BANDEADO GNÉISICO

Durante el metamorfismo en grado alto las migraciones iónicas pueden ser lo suficiente grandes como para causar, además de la orientación de los minerales con hábito planar, la segregación de minerales en capas.
Estas segregaciones producen bandas de minerales claros y oscuros, que confieren a las rocas metamórficas un aspecto bandeado muy característico. A este conjunto lea denominamos bandeado gnesico, y es propio del metamorfismo de alto grado.

TIPOS DE ROCAS METAMÓRFICAS SEGÚN SU TEXTURA:

TEXTURA FOLIADA

PIZARRA

Su aspecto es claramente foliado y al romperse se obtienen láminas planas Procede del metamorfismo de las arcillas y su grano, de tamaño muy fino, está formado por pequeñísimos cristales de mica.

ESQUISTO

Esta roca se rompe con facilidad, dando lugar a láminas en las que los minerales se ven de forma clara. Se obtiene a partir de las pizarras o areniscas sometidas a un metamorfismo muy intenso.

GNEIS

En esta roca aparecen alternativamente bandas de minerales claros y oscuros debido a fenómenos de recristalización metamórfica y grandes presiones. Sus minerales, de aspecto granular y aplanado, se disponen en planos en el espacio. Procede del metamorfismo de granitos o de esquistos.

  TEXTURA NO FOLIADA

MÁRMOL

De textura granoblástica, su aspecto es cristalino y recuerda a un terrón de azúcar por su color blanco, aunque puede tener impurezas y entonces presenta distintos  colores. Se obtiene por metamorfismo  de calizas y dolomías.

CUARCITA

Su color blanco en estado de mayor pureza puede cambiar cuando tiene impurezas en su composición. Es una roca campada y dura formada a partir de areniscas ricas en cuarzo.

MÁRMOL:  El mármol es una roca metamórfica que se origina a partir de la caliza (o de la dolomita). Puesto que esta roca es muy abundante en la corteza, el mármol también lo es, y, además, es muy variable. En general, el mármol es una roca más dura que la caliza, su grano es mucho más fino, y su aspecto, más terso. Puede pulirse hasta conseguir superficies muy brillantes y sedosas, por lo que se ha considerado siempre una roca de gran interés para el ante y la decoración.

Durante el metamorfismo de la caliza, los fósiles que contienen estas rocas desaparecen (aunque no siempre, porque es posible encontrar mármoles pulidos en los que se observan cortes de fósiles). Los restos de los fósiles y el cemento original de la roca se disuelven y se recristalizan. Puesto que los nuevos cristales de carbonato de calcio (calcita) que se forman lo hacen prácticamente al mismo tiempo, su tamaño es muy homogéneo. Esta es la causa del aspecto tan particular de la textura del mármol.

El mármol se obtiene en canteras al aire libre. Las canteras más conocidas mundialmente son las de Carrara (Italia) y las del Pentélico (Grecia). Con mármol de Carrara, el escultor italiano Miguel Ángel Buonarroti realizó algunas de sus más bellas creaciones. Y con mármol del Pentélico se construyó el Partenón en la acrópolis ateniense.

PIZARRA: Es una roca bastante abundante, de grano fino, y que se forma por metamorfismo no demasiado intenso, a temperaturas y presiones relativamente bajas. Habitualmente se considera que la pizarra proviene del metamorfismo de las arcillas (lutitas), aunque también se puede producir pizarra a partir de depósitos de cenizas volcánicas.

Se trata de una roca de color variable, aunque predominan el gris y el negro, que tiene una textura foliosa característica. Su capacidad para exfoliarse en láminas ha sido aprovechada para construir techos en la arquitectura popular. Se ha usado también para las pizarras de las aulas. En China, un uso tradicional de esta roca es la fabricación de las piedras, ricamente talladas, en las que se prepara la tinta para la caligrafía.

GNEIS: Es una roca que ha sufrido un metamorfismo de alto grado. Se forma a partir del granito y de los esquistos. Los gneises tienen una textura característica, y normalmente presentan un bandeado debido a la orientación de los minerales, que se han separado por la acción de la presión y la temperatura. Los minerales predominantes en el gneis son el cuarzo, los feldespatos de varios tipos y la plagioclasa. No obstante, puesto que el granito es una roca bastante heterogénea, los gneises también lo son.

CUARCITA: Es la roca derivada del metamorfismo de la arenisca rica en cuarzo, y es mucho más dura que esta. Se trata de una roca bastante común, con un color que varia entre gris (variedades más puras) y anaranjado, ocre o marrón (variedades que contienen impurezas en su composición).  Se forma por exposición de las masas rocosas de arenisca a las altas temperaturas causadas por la proximidad de magmas, a bastante profundidad. El metamorfismo provoca la recristalización y la fusión de los granos que formaban la arenisca, dando lugar a una roca muy compacta, dura y bastante áspera al tacto. A pesar de ser una roca metamórfica, a veces conserva restos de fósiles. Muchas crucianas (huellas fósiles de artrópodos marinos) se conservan en cuarcitas.

AMPLIACIÓN DEL TEMA…

El clima determina que factor de erosión es preponderante y las propiedades de las rocías que mejor papel desempeñan en el modelado (coherencia, permeabilidad, solubilidad, etc.). Atendiendo al origen y a la disposición de las rocas los geólogos han distinguido tres grupos fundamentales: eruptivas, sedimentarias y metamórficas. Las eruptivas o magmáticas o platónicas se hallan en la base de todas las formaciones geológicas. Son las formadas por el enfriamiento de! líquido denominado magma.

Ese enfriamiento lento cristalizó sus componentes. De ahí e! calificativo de holocristalinas que se les ha dado. Las rocas plutónicas (de Plutón, dios del infierno que vivía en las profundidades “de la Tierra), que emergen rápidamente sobre la superficie terrestre, se llaman también rocas volcánicas y tienen una estructura semicristalina o amorfa (obsidiana, utilizada por e! hombre primitivo, piedra pómez, etc.). Las rocas plutónicas más importantes son los basaltos, que sirven de sustrato a continentes y océanos; los granitos, roca plutónica no volcánica, y los cuarzos, feldespatos y micas, entre otras. Las rocas sedimentarias son las originadas por la acción de los agentes atmosféricos y superficiales de la Tierra.

Los agentes destructores de tipo mecánico, físico, químico y biológico que actúan sobre las rocas dispersan sus materiales y reducen sus dimensiones. Los cantos y arenas se van depositando en el fondo de lagos y océanos, con los que forman sedimentos variados por sus génesis y estructura. Estos sedimentos, que pueden variar en tamaño, se denominan sedimentos detríticos.

Cuando los fenómenos de destrucción de las rocas son de origen mecánico, aquélla no va acompañada de la desaparición de la estructura cristalina de sus minerales. Si, en cambio, actúan agentes de orden químico, esa estructura desaparecerá y sus constituyentes se convertirán en micelas (agregados moleculares), en coloides, o en sales disueltas. Los materiales que forman las rocas sedimentarias son de variada composición mineralógica y de diferentes tamaños (gravas, arenas, limos y arcillas).

Las margas son una variedad de arcilla y la cimentación de las arenas constituye el gres o arenisca. Las calizas son las rocas sedimentarías más importantes (origen químico-orgánico). Rocas sedimentarias de origen orgánico son las carbonosas (antracita, hulla, lignito y turba). Las rocas metamórficas son las formadas a partir de cualquiera de los dos grupos anteriores, por acción de las elevadas temperaturas y presiones que reinan en el interior de la corteza.

La sucesión de convulsiones orogénicas, la formación de montañas y la erosión pueden ocasionar notables cambios en la estructura y composición de las rocas primitivas. En las zonas de contacto de las rocas plutónicas entre sí, y de éstas con las sedimentarias, pueden ocurrir cambios físicos y químicos (metamorfosis de contacto), como también en algunas regiones al variar las condiciones de temperatura y presión (metamorfosis regional) o al producirse algún movimiento tectónico (metamorfosis dinámica).

Dichas transformaciones dan origen a las rocas metamórficas, que en su composición mineralógica, modelado, etc., se asemejan a las plutónicas y a las sedimentarias. Las más conocidas son los gneis, mármoles, pizarra (sedimentos arcillosos).

Las rocas, por la acción combinada de numerosos elementos corrosivos, se van disgregando físicamente y se alteran químicamente hasta transformarse en una materia blanda, semi-pulverizada, que se llama de suelo. Sobre él seguirán actuando agentes físicos, químicos y biológicos que continuarán su transformación y evolución, las que dependerán de las condiciones ambientales. El clima, la vegetación y la topografía del terreno gravitarán de manera decisiva en su futuro.

Cuadro resumen de las principales rocas, con la definición de sus rasgos más sobresalientes.

CLASIFICACIÓN DE LAS ROCAS

ROCAS PRINCIPALES CLASES TIPOS
ERUPTIVAS o ÍGNEAS Proceden de masas fluidas o magmas que se forman en el seno de la corteza terrestre y afloran a la superficie o a capas inmediatamente inferiores, donde se solidifican

GRANITOIDEAS o INTRUSIVAS. Son rocas de profundidad, solidificadas en el senode la corteza terrestre sin comunicación con el exterior FILONIANAS. Consolidadas en grietas formando filones o diques.

EFUSIVAS o VOLCÁNICAS. Solidificadasen la superficie y que han corrido por ella. Se presentan en capas o mantos

Granitos, Sienitas, Dioritas, Gabros, Nositas, Peridotitas, Granitoporfídicas, Aplíticas, Lamprófidos

(Antiguas) Pórfidos euarcíferos. Pórfidos ortoclásicos, Porfiritas, Melafitas.

(Modernas) Rioíitas, Traquitas, Andesitas, Dacitas, Basaltos, Picritas

SEDIMENTARIAS Son productos detríticos de rocas erup tivas y metamórficas, depósitos formadospor cristalización de sustancias disueltas  en el agua, depósitos de sustancias orgánicas o materiales de explosión de las erupciones volcánicas.

DE ORIGEN QUÍMICO. Formadas por precipitación de sales disueltas en el agua DETRÍTICAS 0 CLÁSTICAS. Formadas a partir de materiales fragmentarios procedentes de otras rocas

CARBONATOS. Los de procedencia orgánica 0 química de esta composición.

SILÍCEAS. Las de procedencia orgánica o química de esta composición

CARBONOSAS. Son de origen orgánico y en su composición predomina el carbono

ASFALTOS Y BETUNES. Rocas con granriqueza de hidrocarburos

Sal, Anhidrita, Yeso, Silvinita Areniscas, Arcosas, Granvacas, Arcillas

Calizas, Dolomías

Tierra de diatomeas, Lidita, Sílex, Travertino

Turba, Lignito, Hulla, Antracita

Asfalto, Pizarras bituminosas

METAMÓRFICAS
Rocas, primitivamente eruptivas o sedimentarias, que han experimentado cambios tan importantes, que presentan una estructura totalmente distinta a la original. En su metamorfosis han influido la temperatura y la presión; el proceso se reduce a deformaciones mecánicas, recristalizaciones y formación de nuevos minerales.

Gneis, Granulitas, Haleflintas, Micacitas, Clositocitas, Talcocitas, Pizarras macliferas. Pizarras satinadas. Pizarras antibélicas, Eclogítas, Serpentinas, Granatitas, Cornubianitas, Mármol, Cuarzitas, Esmeril

Otra Fuente Consultada:
Enciclopedia del Estudiante Tomo V – Lo Sé Todo Tomo II
Mundorama Tomo I

El magnetismo terrestre – Planeta Tierra y los polos magnéticos

El Magnetismo Terrestre – Los Polos Magnéticos

Hasta el siglo XVI el hombre no intuyó que la Tierra se comportaba como un gigantesco imán. Desde entonces, diversos científicos se aplicaron al estudio del magnetismo terrestre, contribuyendo de manera fundamental a aumentar el conocimiento y la comprensión de este fenómeno.

El magnetismo terrestre - Planeta Tierra y los polos magnéticos

La existencia del campo magnético de la Tierra es conocida desde muy antiguo, por sus aplicaciones a la navegación a través de la brújula. En el año 1600, el físico inglés de la corte de Isabel I, William Gilbert, publicó la obra titulada De magnete, considerada como el primer tratado de magnetismo. Gilbert talló un imán en forma de bola y estudió la distribución del campo magnético en su superficie.

Encontró que la inclinación del campo en este imán esférico coincidía con lo que se sabía acerca de la distribución del campo terrestre. De este experimento concluyó que la Tierra era un gigantesco imán esférico. Posteriormente, los estudiosos del geomagnetismo observaron que, tomando en cuenta la declinación, la mejor representación del campo terrestre sería un imán esférico cuyo eje de rotación estuviera desviado unos 110 del eje geográfico de la Tierra.

La Tierra es un imán

Un imán suspendido horizontalmente adopta una posición tal que uno de sus extremos apunta aproximadamente hacia el polo norte geográfico. Este extremo se llama polo norte del imán; el opuesto se denomina polo sur. Los polos del mismo nombre de dos imanes se repelen y los de nombre contrario se atraen.

El polo norte de la aguja de una brújula apunta al polo norte geográfico, porque la Tierra misma es un imán: el polo sur de este imán está cerca del polo norte geográfico y, como los polos contrarios de dos imanes se atraen mutuamente, resulta que el polo norte de la brújula es atraído por el polo sur del imán terrestre, que está en las proximidades del polo norte geográfico.

Sin embargo, la brújula indica cuál es la dirección de la línea geográfica Norte-Sur sólo de un modo aproximado. Los polos norte y sur geográficos son los dos puntos donde el eje de rotación de la Tierra corta a la superficie terrestre. Normalmente, la aguja de la brújula se desvía hacia el Este o hacia el Oeste del norte geográfico. Este ángulo de desviación se denomina declinación.

Una aguja magnética suspendida por su centro de gravedad no se mantiene en posición horizontal. el extremo que señala al Norte se inclina hacia el suelo en el hemisferio septentrional, y lo mismo hace el extremo que señala al Sur, en el hemisferio meridional. Este ángulo de desviación de la aguja respecto de la horizontal se llama inclinación magnética. El valor de la inclinación, al igual que el de la declinación, es diferente de un punto a otro de la superficie de la Tierra.

El campo magnético terrestre se caracteriza también por su intensidad. La intensidad de un campo magnético se mide en gauss. El campo magnético terrestre es bastante débil, del orden de 0,3 gauss en las proximidades del ecuador y de 0,7 gauss en las regiones polares.

El alineamiento en general Norte-Sur de las líneas magnéticas, de acuerdo con el eje de rotación terrestre, sugiere que el campo, en lo fundamental; constituye un dipolo. Resulta inclinado unos 110 respecto al eje de rotación terrestre, y presenta considerables irregularidades (no corresponde al campo de un dipolo perfecto).

Hipótesis del magnetismo terrestre

Hay dos modos de producir un campo magnético: bien por medio de un cuerpo imanado, bien a través de una corriente eléctrica. Antiguamente, se creía que el magnetismo terrestre estaba originado por un gigantesco imán situado dentro de la Tierra (hipótesis del imán permanente). Ciertamente, la Tierra contiene yacimientos de minerales de hierro, y se cree que su núcleo está compuesto por hierro y níquel, sustancias altamente magnéticas. Si este núcleo, cuyo radio excede de los 3.400 km, es en efecto un imán permanente, el campo magnético terrestre puede muy bien ser atribuido a él.

Sin embargo, las sustancias ferromagnéticas, como el hierro y el níquel, pierden su magnetismo por encima del denominado punto de Curie, que es de 770 °C para el hierro y de 360 °C para el níquel. Como la temperatura del núcleo es superior a estos valores (es mayor de 2.000 0C), ni el níquel ni el hierro pueden conservar su ferromagnetismo. El núcleo terrestre no puede ser, pues, un imán permanente.

Otras teorías, posteriores a la de la imanación permanente, están basadas en la rotación de cargas eléctricas. También se han propuesto diversas hipótesis que se fundamentan en el fenómeno termoeléctrico y el efecto Hall. Sin embargo, todas han sido abandonadas a favor de las que postulan la existencia en el núcleo de la  Tierra de fenómenos semejantes a los de una dinamo autoexcitada.

Varios indicios geofísicos sobre la existencia de un núcleo terrestre de naturaleza fluida y alta densidad, compuesto casi en su totalidad de hierro, sirven de base  a las teorías que sitúan el origen del campo magnético en procesos dinámicos que  tienen lugar en su interior. J. Larmor, en 1919, fue el primero en proponer este tipo  de proceso como constitutivo de un efecto de dinamo auto excitada, que originaría el campo magnético terrestre. El fenómeno se basa en que el movimiento de circulación de material conductor en presencia de un campo magnético genera corrientes eléctricas que, a su vez, realimentan el campo inductor. En el caso de la Tierra o este movimiento afecta al material fluido del núcleo. En 1934, Cowling demostró, en oposición a Larmor, que un mecanismo con simetría de revolución no podía servir como explicación de la generación de un campo magnético estable. Desde 1946 se vuelve a dar impulso a las teorías de la dinamo autoinducída, debido a los trabajos pioneros de W. M. Elsasser, E. C. Bullard y H. Gellman; en la actualidad es, prácticamente, la única manera de explicar el origen del campo geomagnético.

Variaciones del campo magnético terrestre

Los estudios permanentes que se realizan en cualquier observatorio demuestran que el campo magnético terrestre no es constante, sino que cambia continuamente. Hay una variación pequeña y bastante regular de un día a otro (variación diurna). La variación en la declinación es de algunos minutos de arco, y la variación en la intensidad es del orden de 10-4gauss.

Algunos días se producen perturbaciones mucho mayores, que alcanzan hasta varios grados en la declinación y 0,01 gauss en la intensidad. Son las llamadas tormentas magnéticas, generadas por corrientes eléctricas que tienen lugar en las capas superiores de la atmósfera. A unos cuantos centenares de kilómetros por encima de la superficie terrestre existe una zona llamada ionosfera, en la que hay electrones libres arrancados a los átomos de oxígeno y nitrógeno por la radiación solar. Las partículas cargadas positiva y negativamente (iones y electrones) hacen que el aire en la ionosfera sea un conductor eléctrico. Estas corrientes eléctricas de la ionosfera originan campos magnéticos que causan variaciones transitorias del campo magnético terrestre.

Variación secular: el campo geomagnético deriva hacia el Oeste

Las variaciones temporales del campo magnético terrestre, de periodo tan largo que sólo se aprecian al comparar valores medios anuales durante varios años, reciben el nombre de variación secular. Un fenómeno de la variación secular hace referencia a que la distribución del campo geomagnético se mueve lentamente hacia el Oeste. El promedio de avance es del orden de 0,18v de longitud por año. A esta velocidad, la distribución del campo daría la vuelta completa a la Tierra en unos 2.000 años. A diferencia de las tempestades magnéticas, que ocurren por causas externas, las anomalías alargo plazo y su marcha hacia el Oeste se deben a causas localizadas en el interior de la Tierra. Los cambios internos tienen lugar de modo muy lento y abarcan hasta millares de millones de años. En comparación, dos mil años es, pues, un tiempo muy corto. Este elemento constituye una de las claves fundamentales en el estudio del magnetismo terrestre.

Paleomagnetismo

El paleomagnetismo es la ciencia qué estudia el magnetismo antiguo de la Tierra. El fundamento dé esta disciplina es la propiedad que tienen ciertas rocas en las que existen granos de minerales magnéticos, como la magnetita, de adquirir una imanación inducida por el campo magnético terrestre y en su misma dirección. Cada grano de magnetita se convierte así en un pequeño imán. Una roca que contenga este mineral tendrá una imanación que será la suma de la de todos sus pequeños granos de magnetita. Esta imanación tiene la propiedad de que, aunque cambie después la dirección del campo magnético terrestre, ella permanece inalterada y se conserva constante. El estudio de la imanación de rocas antiguas permite conocer la dirección que tuvo el campo magnético terrestre en otras épocas.

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23) y Wikipedia

El magma los volcanes cristalizacion magmática Formación Fósiles

El Magma los Volcanes Cristalización Magmática Formación Fósiles

El magma los volcanes cristalizacion magmática Formación FósilesDebajo de la corteza terrestre existe una región grande y profunda, parecida a un océano semifluido y muy caliente, compuesta por materiales fundidos que constituyen el magma y que, a veces, salen proyectados al exterior con gran intensidad a través de los volcanes

El nombre de magma designa la materia en estado semifluido —resultado de la fusión de silicatos y otros compuestos que integran las rocas— que forma la región situada debajo de la corteza terrestre. Debido a las condiciones a que están sometidos (altas presiones y elevadas temperaturas), los materiales magmáticos muestran propiedades que no se corresponden con las del estado sólido y tampoco con las de un líquido o fluido, según los principios generales de la física.

En el magma aparecen en suspensión diferentes tipos de cristales y fragmentos de rocas parcialmente fundidas, así como carbonatos, sulfuros y distintos componentes volátiles disueltos. La interacción de las diversas condiciones físicas determina las características del magma, tanto en lo que se refiere a su composición química como a su viscosidad, resistencia, plasticidad y movimiento.

Tipos de magmas

Una primera clasificación de los distintos tipos de magmas hace referencia a su contenido en sílice. Los magmas con más de un 60% de anhídrido silícico son los llamados ácidos, mientras que los que poseen menos de dicha cantidad se denominan básicos.

Según el estado del gas que contienen, se pueden distinguir; el hipomagma o magma profundo, no saturado de gases, los cuales se encuentran en disolución debido a que la presión exterior es superior a la tensión de vapor del magma; el piromagma, sobresaturado de gases, que constituyen una fase en forma de burbujas debido a que la presión exterior es inferior a la tensión de vapor; y el epimagma o magma desgasificado, del que forman parte solamente minerales fundidos (los gases escapan del resto del magma debido a la escasa presión externa).

Cuando el epimagma se proyecta al exterior por los puntos más débiles de la corteza terrestre, las masas de magma dan origen a los volcanes y forman, por enfriamiento, las rocas magmáticas, también llamadas ígneas o eruptivas, cuyo grado de cristalización es variable, y entre las que se encuentran el granito, el basalto o los pórfidos.

El ascenso de los magmas depende de sus condiciones físico-químicas (viscosidad, densidad, contenido en elementos volátiles, etc.), de las particularidades tectónicas de la región donde se encuentran y de las rocas que han de atravesar. Los magmas ácidos son ligeros y viscosos, ascienden con facilidad y originan grandes depósitos. Los magmas básicos, de mayor densidad, son menos viscosos y ascienden con mayor dificultad que los anteriores.

Al ser mezclas de diversas sustancias, los magmas no tienen un punto de fusión definido, sino un intervalo de fusión. De igual manera, no se puede hablar de temperatura de cristalización, sino de intervalo de cristalización.

LOS VOLCANES:
En el interior de la Tierra se encuentra en su mayor parte en estado liquido e incandescente a elevadísimas temperaturas. A esa inmensa masa de roca fundida, que además contiene cristales disueltos y vapor de agua, entre otros gases se la conoce como magma terrestre. Cuando parte de ese magma surge hacia el exterior a través de los fenómenos volcánicos, se la llama lava. Al alcanzar la superficie de la corteza o el fondo oceánico , la lava comienza a enfriarse y se convierte así en diversos tipos de roca sólida, según su composición original. Ésta es la base de los procesos por los que se ha formado la superficie de nuestro planeta y por los cuales sigue en permanente cambio. Los científicos estudian la lava para conocer en profundidad nuestro planeta

Cristalización magmática

El magma se origina cuando en un lugar de la corteza o del manto superior la temperatura alcanza un punto en el que los minerales con menor punto de fusión empiezan a fundirse (inicio de fusión parcial de las rocas). Sin embargo, la temperatura de fusión no depende sólo del tipo de roca, sino también de otros factores como la presión a la que se encuentra o la presencia o ausencia de agua. El incremento de presión en condiciones de ausencia de agua dificulta la fusión, por lo que, con la profundidad, tiende a aumentar la temperatura de fusión de las rocas. Por el contrario, fa presencia de agua disminuye el punto de fusión.

Tras su formación, el magma asciende, pues es menos denso que las rocas que lo rodean. Durante el ascenso se enfría y empieza a cristalizar, formándose minerales cada vez de más baja temperatura, según una secuencia fija y ordenada conocida como serie de cristalización de Bowen.

La serie de Bowen hace referencia a dos grandes líneas de cristalización. Una de ellas indica el orden en que se forman los silicatos ricos en hierro y magnesio (llamados ferromagnesianos). Se denomina serie discontinua porque los cristales formados van siendo sustituidos por otros de estructura distinta y más compleja medida que desciende la temperatura.

La otra serie de cristalización es la de las plagioclasas. Recibe el nombre de serle continua porque los minerales formados sucesivamente tienen la misma estructura y sólo cambia la proporción relativa de sodio y calcio.Al final de la cristalización, a la vez que la plagioclasa sódica (albita> y las micas se forman el cuarzo y la ortosa.

 Diferenciación magmática

Algunas veces, a medida que se produce la cristalización de un magma si la diferencia de densidad entre los minerales ya formados y el líquido residual es alta y si la viscosidad de éste es baja, los cristales recién formados pueden quedar aislados del resto del magma, que por tanto se verá enriquecido progresivamente en sílice De continuar el proceso, se obtendrá, a partir de un solo magma, una serie de rocas ígneas de distinta composición, por cristalización fraccionada. Este proceso es denominado diferenciación magmática, y puede originaria formación de rocas ácidas a partir de magmas básicos o intermedios.

Fases de cristalización magmática

El enfriamiento de un magma en el interior de la corteza da lugar a una serie de fases sucesivas de cristalización, a temperaturas cada vez más bajas. La primera es la denominada frise ortomagmática, que. se produce en general por encima de los 700 °C (dependiendo de la composición del resto de las condiciones físicas). En ella cristaliza la mayor parte del magma formando las rocas plutónicas.

La fase pegmatítica tiene lugar más o menos entre los 700 y 550 0C. A estas temperaturas, el residuo fundid6 está muy enriquecido en volátiles, por lo que se introduce a través de grietas, donde cristaliza originando yacimentos filonianos de pegmátitas. Los minerales que se forman son silicatos ricos en sílice (cuarzo, ortosa, albita),en grupos hidroxilo (micas) y en elementos como el boro (turmalina), el fósforo (apatito), el flúor (fluorita), etc.

En la tercera fase, denominada neumatolítica, que tiene lugar aproximadamente entre los 550 y 375 °C, el residuo de cristalización está compuesto básicamente por volátiles, que penetran en las rocas encajantes y dan lugar a filones formados por minerales como la moscovita, el cuarzo, el topacio, óxidos y sulfuros metálicos, etc. Igualmente, los volátiles actúan sobre los minerales de las rocas ígneas o del encajante, transformándolos.

La última fase, llamada hidrotermal, se inicia por debajo de los 375 °C da lugar a vetas y filones de cuarzo y calcita, a minerales metálicos y a transformaciones de minerales ya formados.

El magmatismo y la tectónica de placas

El origen del magma se relaciona a menudo con la dinámica global de la corteza y el manto terrestres, ya que, en general, tiene lugar en los bordes de placas. En las dorsales, el magma se forma básicamente por descompresión de los materiales del manto superior, a poca profundidad, y da lugar a rocas básicas (basaltos y gabros).

En las zonas de subducción, el magma se origina a una profundidad de hasta 150 Km. por fusión parcial de la corteza oceánica y/o del manto y la corteza situados por encima. Este proceso da lugar a la formación de rocas en su mayoría intermedias (andesitas y granodioritas).

En las áreas de colisión continental, en relación con los procesos orogénicos, se produce la fusión parcial de la corteza, y surgen esencialmente rocas ácidas, como el granito. Existen también zonas concretas de magmatismo de intraplaca, que se deben a la existencia de puntos calientes en el manto.

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23) y Wikipedia

Libro de Copernico Sobre Las Revoluciones de las Órbitas Celestes

Libro de Copernico Sobre Las Revoluciones de las Órbitas Celestes

Copernico NicolasNicolás Copérnico inició una revolución en la astronomía al afirmar que no era la Tierra, sino el Sol el que estaba en el centro del universo. Esperando controversia y burla, Copérnico vacilaba en publicar la obra en la que proponía su teoría heliocéntrica.

Sin embargo, finalmente cedió y logró ver un ejemplar de su obra justo antes de morir.

Nicolás Copérnico, Sobre las revoluciones de las órbitas celestes:
“Largo tiempo, pues, reflexioné sobre esta confusión en las tradiciones astronómicas concernientes a la derivación de los movimientos de las esferas del universo. Empezó a molestarme que los movimientos de la máquina del mundo, creada para nosotros por el mejor y más sistemático artesano de todos, no fueran entendidos con certeza por los filósofos, que —de otra suerte— examinaban con tanto vigor las más insignificantes naderías de este mundo.

Por esta razón emprendí la tarea de releer las obras de todos tos filósofos que pude obtener, para saber si alguien había propuesto alguna vez otros movimientos de las esferas del universo que tos expuestos por los profesores de astronomía de las escuelas. Y, en efecto, hallé primero en Cicerón que Hicetas suponía que la Tierra se movía. Más tarde descubrí también en Plutarco que otros eran de esta opinión. He decidido poner sus palabras aquí, para que puedan ser accesibles a cualquiera:

Algunos piensan que la Tierra se mantiene en reposo; pero Filolao el Pitagórico cree que, como el Sol y la Luna, gira alrededor del fuego en un círculo oblicuo. Heráclides del Ponto y Ecfanto el Pitagórico hacen a la Tierra moverse, no en movimiento progresivo, sino como una rueda en rotación del poniente . oriente alrededor de su propio centro.

Por consiguiente, habiendo obtenido la oportunidad de e?:. fuentes, yo también empecé a considerar la movilidad de la Tierra. Y aunque la idea parecía absurda, no obstante, yo s: que a otros antes que a mí se les había concedido la libertad de imaginar cualesquiera círculos para el propósito de explicar los fenómenos celestes. De aquí pensé que a mí también se me permitiría discernir si hubiera explicaciones más correctas que las de mis predecesores para la revolución de las esferas celestes,: a supuesto de algún movimiento de la Tierra.

Habiendo supuesto así los movimientos que atribuyo : Tierra más adelante en este volumen, merced a largo e intenso estudio, descubro finalmente que si los movimientos de lo; planetas se correlacionan con la órbita de la Tierra, y se calculan  para la revolución de cada planeta, no sólo se siguen de ello sus fenómenos, sino el orden y el tamaño de todos los planetas y esferas, y el cielo mismo está tan unido, que ninguna porción del mismo puede cambiarse en nada sin alterar las restantes partes y el universo como un todo…

Por esto no me avergüenza afirmar que esta entera región circundada por la Luna, y el centro de la Tierra, atraviesan es gran círculo en medio del resto de los planetas en una revolución anual alrededor del Sol. Cerca del Sol está el centro del universo.

Más aún, puesto que el Sol permanece estacionario, cualquier movimiento que parezca ser del Sol se debe realmente al movimiento de la Tierra.

Hallar Coordenadas Geográficas de un lugar Latitud y Longitud Terrestre

Hallar Coordenadas Geográficas de un lugar Latitud y Longitud

Coordenadas geográficas: latitud y longitud
Para conocer latitud y longitud de un punto de la superficie de la Tierra, primero tenemos que conocer algunos conceptos que nos ayudarán a comprender mejor el tema.

Observa en la figura que Tierra está recorrida por líneas imaginarias que forman una red como la de los pescadores; las líneas que corren en sentido vertical se llaman meridianos y las otras, en sentido horizontal, son los paralelos.

hallar las coordendas geograficas

De todos ellos interesa nombrar al Ecuador, que es el paralelo mayor y divide la Tierra en dos partes iguales llamadas hemisferios Norte (boreal o septentrional) y Sur (austral o meridional); el meridiano de Greenwich, que la divide en dos partes iguales, pero en este caso determina los hemisferios Este (oriental) y Oeste (occidental).

Hacemos referencia especial al Ecuador y a Greenwich porque con ellos se determina la latitud y longitud respectivamente.

Entonces ahora podemos definir que la latitud de un punto en la superficie terrestre, es la distancia que existe entre ese punto y el Ecuador. Se mide en grados y varía de 0° a 90° Norte y de 0° a 90° Sur, siendo 0° el Ecuador y 90° los polos. La longitud, en cambio, es la distancia que existe entre el punto de la superficie terrestre y el meridiano de Greenwich. También se mide en grados, y varía entre 0° y 180° Este y 0° y 180° Oeste.

Todos los puntos de la superficie terrestre pueden localizarse por su latitud y longitud. Los que se encuentran sobre un mismo paralelo tienen la misma latitud, por eso para localizarlos exactamente se debe establecer también

El Sistema de Coordenadas Geográficas determina todas las posiciones de la superficie terrestre utilizando las dos coordenadas angulares de un sistema de coordenadas esféricas que está alineado con el eje de rotación de la Tierra. Este define dos ángulos medidos desde el centro de la Tierra: 

La latitud mide el ángulo entre cualquier punto y el ecuador. Las líneas de latitud se llaman paralelos y son círculos paralelos al ecuador en la superficie de la Tierra.

La longitud mide el ángulo a lo largo del ecuador desde cualquier punto de la Tierra. Se acepta que Greenwich en Londres es la longitud 0 en la mayoría de las sociedades modernas. Las líneas de longitud son círculos máximos que pasan por los polos y se llaman meridianos.

Combinando estos dos ángulos, se puede expresar la posición de cualquier punto de la superficie de la Tierra.

Por ejemplo, Baltimore, Maryland (en los Estados Unidos), tiene latitud 39,3 grados norte, y longitud 76,6 grados oeste. Así un vector dibujado desde el centro de la tierra al punto 39,3 grados norte del ecuador y 76,6 grados al oeste de Greenwich pasará por Baltimore.