Los Planetas del Sistema Solar

Primer Acoplamiento en el Espacio Historia del Programa

HISTORIA DEL PROGRAMA SOYUZ-APOLLO-PRIMER ENCUENTRO ESPACIAL

En julio de 1975 se concretó un ambicioso proyecto conjunto entre los Estados Unidos y la Unión Soviética, consistente en el acoplamiento en órbita de una cosmonave Apolo con otra Soyuz. En esta misión se pusieron de manifiesto, en las técnicas utilizadas por ambas potencias para la conquista cósmica, diferencias que debieron en gran parte limarse con el objeto de hacer posible el éxito del programa.

Así, fue necesario emplear un módulo de anexión para que los tripulantes de una y otra cápsula pudieran aclimatarse lentamente a las diferencias de presión y de aire utilizado (oxígeno puro en la Apolo y oxígeno con nitrógeno en la Soyuz) y hasta ponerse de acuerdo acerca de la alimentación y los horarios de descanso.

mision soyuz apollo

Ambas naves acopladas

ANTES Y AHORA
La diferencia entre los vuelos orbitales iniciales y los actuales radica en que estos últimos cuestan mucho menos. ¿Por qué? Por la sencilla razón de que antes el cohete lanzador se usaba una soia vez y se perdía. Un cohete Saturno V, por ejemplo, que envió la nave Apolo a la Luna, costaba 300 millones de dólares y luego de terminar su combustible se perdía. Desde la construcción del “Space Shuttle” y otros naves similares se usa muchas veces un mismo equipo como un avión, lo que permite reducir notablemente los costos

Con “siete horas de diferencia partieron las cápsulas; de Baikonur, llevando a bordo a Alexei Leonov y Valeri Kubasov, y de Cabo Cañaveral, conduciendo a Thomas Stafford, Donald Slayton y Vanee Grand. Una vez en órbita hicieron las correcciones necesarias, descansaron y al día siguiente lograron sin dificultades el histórico acoplamiento.

En el aspecto político, significó el comienzo de una nueva era de cooperación; y en el técnico, un verdadero intercambio de conocimientos. Además, por primera vez desde el lanzamiento del primer Sputnik, la Unión Soviética abrió las puertas de su centro espacial de Baikonur no sólo a los científicos y cosmonautas sino también a los periodistas especializados de todo el mundo.

Se trata de un complejo levantado en medio de un desierto, que en nada se parece a la lujuriosa vegetación y los pantanos del Cabo Cañaveral, en Miami. Está situado cerca de la ribera este del Mar Caspio, en un sitio de difícil acceso y prácticamente sustraído a las posibilidades de espionaje desde la superficie o la atmósfera terrestres.

El desarrollo de la misión fue impecable y dejó las puertas abiertas a otro proyecto, ya en marcha, que se concretará cuando la astronáutica indique los nuevos rumbos a seguir.

Porque si bien esta misión significó la última de la serie Apolo, hay que esperar que Estados Unidos complete sus planes con el “transbordador espacial” (programa Shuttle) y que la Unión Soviética desarrolle los suyos con las series Soyuz o con las estaciones espaciales Salyut.

El descenso de la cápsula rusa se realizó tres días antes que el de la estadounidense, la que aprovechó ese tiempo en órbita para efectuar varios trabajos científicos. La Apolo regresó el 24 de julio de 1975 y a pesar de un inconveniente causado por el escape de gas letal que irritó los pulmones de los cosmonautas, el amerizaje en aguas del Pacífico se llevó a cabo con la precisión acostumbrada.

Para los Estados Unidos el programa Apolo-Soyuz representó la culminación de una larga serie de esfuerzos que se inició con las cápsulas Mercurio, de un solo tripulante; siguió con el proyecto Géminis, de dos ocupantes; y culminó con el plan Apolo, cápsula para tres astronautas.

A partir de aquí los programas ruso y norteamericano se bifurcaron; los soviéticos siguieron perfeccionado su navio Soyuz, acoplándolo con otras, cápsulas y dejándolo cada vez más tiempo en órbita: la NASA a su vez, tras un experimento de larga duración con el “Space Lab”, desechó los vuelos clásicos e hizo un paréntesis para reiniciar la actividad en 1980 con el “Space Shuttle” o Trasbordador Orbital.

tripulantes de la mision soyuz apollo

Los cinco tripulantes del programa conjunto pasaron a bordo 44 alegres horas en las que se alternaron los idiomas —inglés y ruso— con una facilidad que sorprendió a los mismos directores del programa. Parecía como si fuera una misión conjunta más que realizaran los cinco hombres del espacio. Alternando algunas bromas de tono político con informaciones sobre la marcha del vuelo y hasta discusiones acerca de cuál comida envasada o deshidratada era la más sabrosa, si la rusa o la estadounidense, se cumplió una misión que tuvo más importancia para la distensión entre Moscú y Washington que para los cosmonautas, quienes ya habían ensayado incontables veces en tierra esta misión, a tai punto que la esposa de Leonov manifestó a los periodistas: “Parece que para ellos es más fácil volar que esperar en tierra”.

Ampliar Este Tema En Este Sitio

Fuente Consultada:
Enciclopedia Ciencia Joven Tomo II Edit. Cuántica

Pioneros de los Viajes Espaciales Inventores de Cohetes

Pioneros de los Viajes Espaciales  – Inventores de Cohetes

Antes de que los hermanos Montgolfier hicieran su primera ascensión, nadie se había elevado nunca más que unos pocos centímetros sobre la superficie terrestre. Un siglo y medio después, miles de aviadores volaban a varios kilómetros por sobre la tierra. Luego, una vez conquistado el aire, los hombres empezaron a soñar en viajar a través del espacio hacia otros mundos.

Al principio parecía que los viajes espaciales no serían, por mucho tiempo, más que un sueño, ya que los problemas que se debían vencer eran dificilísimos. Uno consistía en que todos los motores hasta entonces conocidos tenían que quemar necesariamente algún tipo de combustible, y es bien sabido que ninguno de éstos puede arder en el espacio vacío donde no hay oxígeno con qué combinarse. Otro era el de que todos los aparatos de vuelo inventados hasta ese momento necesitaban aire para volar.

Pero hay una antigua forma de vuelo que no necesita aire. Si desatamos el cuello de un globo de juguete inflado, éste siempre se desplazará en la dirección opuesta a la del aire que escapa de él. Esto, no ocurre porque el aire mencionado empuje el del exterior: es que el de adentro del globo presiona fuertemente contra el frente, por donde no puede salir, pero no contra la parte posterior, o cuello, por donde sí puede escapar. Esta diferencia de presión es la que impulsa al globo hacia el frente.

Tsiolkovsky, hijo de un inspector forestal de Riazán, tras iniciar sus estudios en Moscú, se recibió de profesor de matemáticas, siendo asignado a la escuela de Borovo en 1882. Ya para aquel entonces el científico había llegado a profundizar sus estudios en tal forma que tenía casi terminada la teoría que años después lo hiciera célebre.

Tsiolkovski se dedicó a divulgar sus atrevidas ideas a través de obras de ficción, artículos periodísticos, muchos de los cuales fueron recibidos con luirlas por parte del gran público y con despectivas opiniones  por parte de  sus colegas moscovitas y de otaos países. En Borovo diseñó un dirigible enteramente metálico impulsado a motor de explosión -nítido precursor del Zeppelín germano-, un avión sumamente similar al que luego elevara pollos aires a los hermanos Wright y comenzó a afrontar las dificultades que había que vencer para iniciar los viajes interplanetarios.

Konstantín E. Tsiolkovski (1857-1935), científico e inventor ruso, pionero en la investigación de cohetes y espacial. A los nueve años se quedó casi totalmente sordo y siguió sus estudios en su domicilio; trabajó como profesor de matemáticas de la escuela secundaria hasta su retiro en 1920.

En 1903, una revista de Moscú publicó, con cinco años de arraso, su artículo “La exploración del espacio cósmico por medio de los aparatos a reacción“, en el que se sostenía que el único camino posible para abandonar  la Tierra  era  un cohete impulsado por propelentes líquidos como el oxígeno y el hidrógeno, fórmula utilizada años después por los misiles estadounidenses Centauro y Saturno-1.

En 1898 anticipó también la idea de la alimentación de los cohetes por medio de la presión, deflectores de lanzamiento, la cabina estanca conteniendo oxígeno para el piloto y un dispositivo para la absorción de anhídrido carbónico. De 1911 a 1915 perfeccionó su cohete y propuso un sistema para que el cosmonauta se halle en la cabina en posición horizontal para resistir la aceleración -idea que fue redescubierta 20 años después por el alemán Diringshofen.

Y en 1929 llegó a su momento cumbre, cuando concibió, con una precisión casi increíble, la construcción de un cohete de varias etapas pura escapar de la atmósfera; las escafandras de los astronautas; los satélites artificiales; las estaciones en órbita albergando invernaderos para la eliminación del gas de carbono -tal cual se hace hoy en día en las estaciones Skylab y Salyut-, e incluso la utilización de la energía solar como tuerza motriz de las astronaves, genial intuición hoy ya utilizada tras muchos fracasos de sus inventores.

Es recién en 1919 cuando comienzan a reconocerse los méritos de este pionero, que murió en 1935 convencido de que el destino del hombre está en las estrellas; idea que quedó grabada sobre su tumba, con una muy usada frase suya: “La humanidad no permanecerá siempre en la Tierra”.

El otro precursor, Goddard, había nacido en Massachusetts en 1882 y realizado sus estudios en la ciudad de Boston, al tiempo que su mente se dejaba llevar fantasiosamente por los trabajos de Verne; lentamente penetra en el mundo de los cohetes, representados en esa época únicamente por los de pólvora utilizados en la guerra o por aquel duramente criticado invento del misil a vapor, tipo ametralladora, del alemán Hermán Ganswindt en 1891.

Costeándose sus experimentos con sus escasos recursos, aquel joven llegó a demostrar la importancia de la cóhetería en la astronáutica e, incluso, en la guerra.

Goddard Cientifico

El ingeniero espacial estadounidense Robert Hutchings Goddard publica un libro titulado Método para alcanzar alturas extremas, en el que describe un tipo de cohete que podría alcanzar la Luna.

Tras perfeccionar un cohete con carga explosiva inventó en 1918 la célebre “bazooka”,arma que no se utilizaría hasta la segunda Guerra Mundial. Continuó luego sus experimentos y poco a poco comenzó a vislumbrar las posibilidades de construir un cohete impulsado por combustibles líquidos, y sin conocer las teorías de Tsiolkovski inició en 1920 sus primeros trabajos sobre el tema. Le llevó seis años concretar la idea, pero en 1926 logró algo fundamental en la historia de la astronáutica: el primer misil propulsado con carburante líquido.

A partir de entonces el pionero prosiguió su obra, ya con el apoyo del gobierno norteamericano, y fue obteniendo éxito tras éxito, hasta que la muerte lo sorprendió en 1946, cuando irrumpían en la carrera espacial otra serie de ideas y nombres que darían un fuerte impulso a la astronáutica.

Entre otros importantes avances debidos a la obra de Goddard podemos destacar los que significaron la bomba centrífuga de combustible; el cohete por etapas; las aletas desviadoras del chorro y la dirección giroscópica de loscohetes. Fue, además, el primero en lanzar un cuerpo a una velocidad mayor que la del sonido.

Alemania, creadora de las primeras bombas voladoras, las célebres V-1 y V-2, no surgió en la cohetería por obra de la casualidad. También allí existió un pionero: se llamó Hermán Oberth. Este,que trabajó casi exclusivamente en teoría, desarrolló las ideas del ruso en tal forma que llegó a proyectar íntegramente un cohete de 110 metros de altura, de características casi idénticas a las del Sarurno-5.

Oberth y sus alumnos Riedel, Nebel y Werner von Braun comenzaron a real izar sus proyectos y, en 1931, lanzaron el primer cohete europeo, que rápidamente fue perfeccionado hasta que el gobierno nazi vió -en 1933- la posibilidad bélica de esa arma y estableció una base experimental oficial en Kummersdorf, 28 kilómetros al sur de Berlín.

Allí, un año después la primera bomba V-1 alcanzó una altura de 2.200 metros. Después, a causa de los bombardeos aliados, la base fue trasladada a una isla del mar Báltico, Peeiiemünde, en la que se concretó la V-2, que asoló a Londres, Amberes, Lieja y Bruselas hasta el final de la contienda.

A partir de entonces, los científicos del Tercer Reich pasaron en su mayor parte a Estados Unidos y otros a la Unión Soviética, donde en base a los planos secretos que llevaban en la mente y a lo realizado por especialistas locales como Goddard, Tijoranov y Bajcjovangui, comenzó realmente la carrera espacial que culminaría asombrando al mundo, en 1957, con la puesta en órbita del primer satélite artificial: el Sputnik-1.

bomba V2 alemana

LA BOMBA V-2
Llevada a Estados Unidos por Von Braun y sus compañeros de Peenemunde, la bomba V-2 se convirtió en vital elemento para las naciones victoriosas de la segunda contienda mundial. En efecto, había llegado a producirse en serie y en número de 3.000, de las cuales solamente algunas decenas cayeron en manos de las tropas aliadas tras la “Operación Paperclip”, la que estuvo destinada a llevar a EE.UU. la mayor cantidad de científicos germanos y los documentos secretos sobre esa destructora arma, antes de que cayeran en manos soviéticas.

Y entre esos documentos se hallaban los de dos cohetes aún en experimentación, cuya finalidad, en tiempo no muy lejano, era bombardear la ciudad de Nueva York, además de los proyectos de Eugen Sanger, sobre un bombardero estratosférico, predecesor del X-15 norteamericano. He aquí algunas de las principales características de la V-2: Fuerza de impulsión: 24.401 kg. Impulso específico: 206 segundos. Peso vacío: 4.676 kg. Peso con combustible ycarga: 12.884kg.Tiempo de combustión: 70 segundos. Longitud total: 21 m. Diámetro: 1,65 m. Ancho entre alerones: 3,57 m.

ALGO MAS…

Durante la segunda guerra mundial inventores alemanes e ingleses produjeron aviones que usan un método similar de propulsión. Werner von Braun tuvo parte activa en la producción del arma alemana V-1. De su motor grandes masas de gas escapaban en rápida sucesión de cortos estallidos. A cada estallido la presión era mayor hacia el frente del motor que hacia atrás, dando a la bomba V-1 un impulso hacia adelante.

Von Braum cientifico alemanMientras tanto, en Inglaterra, el capitán Whittle inventó el motor de chorro, en el que un chorro continuo de gas da un impulso ininterrumpido hacia adelante. Motores de este tipo podrían funcionar en el espacio si no necesitaran combinar el oxígeno del aire con su combustible.

Afortunadamente, había todavía otra antigua forma de vuelo que usaba combustible pero no necesitaba oxígeno del aire exterior. Era el cohete, usado por primera vez en la China hace centenares de años.

En los primitivos cohetes el combustible era pólvora, y uno de los ingredientes de ésta —salitre— de por sí contiene bastante oxígeno como para permitir a los otros que ardan sin aire.

Cuando el combustible arde dentro de un cohete, la presión es mayor al frente, donde los gases no pueden escapar, que atrás, donde pueden hacerlo, del mismo modo que ocurría en el globo de juguete que tenía el cuello abierto. De este modo, el cohete da la solución a ambos problemas del vuelo espacial.

Durante la segunda guerra mundial, científicos alemanes, incluyendo a Werner von Braun, produjeron cohetes capaces de volar cientos de kilómetros, en los cuales el combustible líquido ardía con el oxígeno que se había comprimido y almacenado en forma líquida. Uno de ellos, el famoso V-2, está representado en la lámina (arriba, derecha, la figura más grande).

Sputnik satelite artificial rusoDesde entonces los vuelos de cohetes se han desarrollado enormemente, especialmente en Estados Unidos de América y en Rusia. Muchos cohetes modernos constan de tres partes, y cada una de ellas añade su propia tremenda velocidad a la ya aportada por su predecesora.

Con un cohete de este tipo los científicos rusos enviaron el primer satélite artificial de la Tierra, el Sputnik I, en octubre de 1957.

Tanto Rusia como los Estados Unidos han enviado luego muchos más, y hacia fines de 1960 más de 30 circulaban alrededor de la Tierra. Un cohete ya ha hecho impacto en la Luna. Otro ha dado la vuelta alrededor de ella, tomando fotografías del lado hasta entonces nunca visto. Todavía otro se ha transformado en un diminuto planeta que gira alrededor del Sol.

En abril de 1961 el astronauta ruso Yuri Gagarin surcó el espacio interplanetario dando un giro completo en 89 minutos alrededor de la Tierra, y en agosto del mismo año, otro cosmonauta ruso, Gherman Titov, dió 17 vueltas en torno a la Tierra en 25 horas 18 minutos. En febrero de 1962, el estadounidense John H. Glenn dio 3 vueltas alrededor de la Tierra en 4 horas 54 minutos.

Fuente Consultadas:
Enciclopedia Ciencia Joven La carrera espacial Edit. Cuántica Fasc. N°12
El Triunfo de la Técnica Tomo III Globerama Edit. CODEX

El Descubrimiento del Planeta Neptuno La Influencia de Urano

HISTORIA DEL DESCUBRIMIENTO DE NEPTUNO Y PLUTÓN

Mucha sorpresa causó la revelación de Federico Guillermo Herschel cuando descubrió, en 1781, con la ayuda de un telescopio de fabricación casera, un nuevo planeta, nunca visto antes. Este famoso astrónomo tuvo siempre para sus observaciones, la colaboración de su hermana Carolina; la lámina del ángulo inferior izquierdo los muestra a ambos trabajando.

Herchell Guillermo astronomo

Urano, que así fue llamado este nuevo planeta, está tan alejado del Sol —a unos 2.991.200.000 km. con un año 84 veces más largo que el nuestro— que las manchas de su superficie no pueden ser apreciadas con claridad. Tiene algunos cinturones paralelos a su ecuador, de color grisáceo, y parece que está constituido en su mayor parte por el gas metano.

El diámetro de Urano es de 49.700 Km.; está levemente aplanado en los polos y su tiempo de rotación es de unas 10% horas. Contrariamente a otros planetas, cuyos ejes están algo inclinados con relación a las órbitas, los puntos de su eje están dispuestos casi en la misma dirección que su trayectoria, de manera que muchas veces avanza con un polo adelante. Otras veces, también, sus polos apuntan hacia la Tierra, de tal forma que podemos ver la totalidad de un hemisferio; algunas veces lo vemos de costado y entonces el aplanamiento del polo es bien evidente.

Seis años después de descubrir a Urano, Herschel vio dos de sus satélites, llamados Titania y Oberón. Más recientemente se han identificado otros tres, Ariel, Umbriel y Miranda. Cuando éstos dan la vuelta alrededor del ecuador de Urano, podemos observarlos en la totalidad de su curso; esto no es posible para ningún otro satélite.

También difieren de todos los demás satélites en que giran de este a oeste, en lugar de hacerlo de oeste a este. Sus distancias a Urano están comprendidas entre 129.000 y 586.500 km. Están muy alejados para ser medidos, pero tienen probablemente unos pocos cientos de kilómetros de diámetro.

El color azul verdoso de Urano se debe al gas metano presente en su atmósfera fría y clara. Lo que en la imagen parece ser el extremo derecho del planeta es en realidad el límite entre el día y la noche. Por la forma de girar el planeta, la noche y el día duran 42 años cada uno. Los científicos se formaron esta visión de Urano por las imágenes enviadas por el Voyager 2 en 1986, en un momento en el que la sonda estaba a 9,1 millones de kilómetros del planeta.

Apenas fue descubierto Urano, los matemáticos comenzaron a dibujar su órbita; pero pronto se dieron cuenta de que sus movimientos no concordaban con los cálculos. Pensaron entonces que debia haber otro planeta, aún más distante del Sol, que lo alejaba de su curso. De una manera totalmente independiente, dos jóvenes matemáticos, Le Verrier y Adams, se pusieron a la tarea de descubrir este planeta, no por medio del telescopio, sino por puro cálculo.

Esto fue sumamente dificultoso, pero finalmente triunfaron y enviaron sus resultados a los astrónomos, para que los verificaran. Lamentablemente, la verificación del resultado obtenido por Adams no fue continuada; pero en 1846, Galle, del Observatorio de Berlín, trabajando sobre las cifras de Le Verrier, halló este desconocido planeta, de acuerdo con la posición calculada.

El nuevo planeta, llamado Neptuno, el nombre del dios del mar, emplea 164 años y 280 días en dar una vuelta completa alrededor del Sol y está a una distancia media de 4.467.200.000 km. de éste, demasiado lejos para poder conocerlo bien.

Es levemente más grande que Urano, pues tiene unos 53.000 km. de diámetro y tarda 17 horas en dar una vuelta alrededor de su eje. Muy poco puede apreciarse en su superficie, que está constituida, completamente o en su mayor parte, por gases, como los demás planetas grandes.

Tiene dos satélites: Tritón, grande, de por lo menos 4.900 km. de diámetro, más cercano a Neptuno que la Luna a la Tierra, y Nereida, de 321 km. de diámetro, que se traslada describiendo una órbita sumamente alargada, de manera que algunas veces se encuentra a 1.609.300 km. de Neptuno mientras que otras veces se halla a 9.660.000 km.

Neptuno:En 1989 la misión Voyager 2 produjo esta imagen de Neptuno en falso color, mostrando los diferentes componentes de la atmósfera del planeta. El rojo muestra la luz del Sol dispersada por una capa de neblina alrededor del planeta, el azul verdoso indica el metano y las manchas blancas son nubes en la parte alta de la atmósfera.

El descubrimiento de Neptuno provocó, naturalmente, una gran duda en los astrónomos, la de si habría o no otros planetas más alejados del Sol.

Finalmente, hallaron que pequeñas diferencias entre las trayectorias calculadas de Urano y Neptuno y sus actuales movimientos hacían posible esa suposición. Así, en 1905, Percivall Lowell, que era al mismo tiempo astrónomo y matemático, comenzó a probar, por medio de cálculos, la existencia del que llamó “planeta X”. Triunfó en teoría, pero murió antes de que sus resultados pudieran ser confirmados.

No fue sino en 1930 cuando Clyde Tombough, del Observatorio de Flagstaff, en Arizona, anunció que había descubierto el “planeta X”. Examinando fotografías del cielo, vio que lo que había parecido una pequeña estrella era realmente un planeta, que se movía lentamente entre los demás. Las copias de dos fotografías que llevaron al descubrimiento se muestran en el costado superior derecho de la ilustración; fueron tomadas con tres días de diferencia entre sí y se puede apreciar que la pequeña “estrella” señalada por las flechas de color está ubicada en distintos lugares.

Plutón, último planeta del sistema solar, últimamente cuestionado por su pequeño tamaño

Este planeta recientemente descubierto es llamado Plutón, nombre del antiguo dios del averno. La distancia media que lo separa del Sol es de alrededor de 5.920.000.000 de km. y tarda 249 años para recorrer toda su órbita. Tan alejado se halla Plutón, que desde su superficie, el Sol aparecería como una gran estrella, según se ve en la parte inferior de la ilustración; pero ese paisaje es imaginario, puesto que poco se conoce de este planeta y ni siquiera se sabe si tiene satélites o no. Su diámetro, según se cree, es de 4.900 km.

Ver: Sistema Solar Para Niños

Fuente Consultada:
GLOBERAMA Tomo: Cielo y Tierra Nuestro Mundo En El Tiempo y El Espacio
Enciclopedia Microsoft ENCARTA
Enciclopedia Ciencia Joven Fasc. N°38 Los Planetas del Sistema Solar

 

 

 

 

Percival Lowell Canales y Vida en el Planeta Marte

Percival Lowell creía firmemente que existía vida en el planeta Marte y que su población estaba formada por seres muy civilizados. Ellos habrían construido la red de canales para irrigar el planeta, que, de otro modo, estaría seco y polvoriento. Los canales se podían ver, mediante un telescopio, como unas líneas débiles que se entrecruzaban sobre la superficie del planeta. En el cruce de los canales, Lowell descubrió manchas, que él llamó oasis, y pensó que eran centros de población.

Percival Lowell

Lowell nació en Boston, Massachusetts, en 1855; se educó en Harvard, estuvo en el Lejano Oriente y, posteriormente, decidió dedicarse a la astronomía. Lowell era de buena posición económica y pudo adquirir un telescopio de refracción, con el cual instaló su propio observatorio en Flagstaff, Arizona.

Se interesaba especialmente por los planetas, y su libro, en el que expuso sus ideas sobre Marte, se publicó en 1908 con el título Marte, morada de la vida. Lowell trazó mapas de Marte, que mostraban el sistema de canales con gran detalle; sin embargo, ningún otro astrónomo logró ver la superficie del planeta con tanta precisión.

Por ello las ideas de Lowell iniciaron una gran controversia. Ahora se sabe que los “canales” no son líneas rectas regulares, sino manchas mal definidas; que no hay suficiente agua en el planeta para llenar un río y, mucho menos, una red extensa de canales.

Aunque, probablemente, Lowell estaba equivocado en sus teorías acerca de Marte, era un buen matemático. Después de representar cuidadosamente las órbitas de dos de los planetas más alejados, Urano y Neptuno, calculó que las pequeñas perturbaciones en la órbita de Urano se debían a la existencia de otro planeta más alejado del Sol que Neptuno.

Lowell no pudo descubrirlo, pero, en 1930, 14 años después de su muerte, se localizó el planeta Plutón. Los astrónomos del propio observatorio de Lowell encontraron a Plutón en el sitio calculado por aquél, pero el planeta era más pequeño y menos visible que lo predicho por Lowell. Este fue el motivo fundamental de que se tardara tanto en descubrirlo.

Los Canales de Percival Lowell

Detalle del mapa de Marte trazado por Lowell. Éste vio manchas y rayas oscuras en la superficie del planeta, que se unían para formar una extensa red de “canales”. Creyó que las manchas en el cruce de dos o más canales eran centros de población.

Historia del Descubrimiento de los Planetas del Sistema Solar

LA OBSERVACION DE LOS PLANETAS DEL SISTEMA SOLAR

Para los primeros observadores terrestres, era evidente que la Tierra estaba en el centro del universo. La Luna giraba alrededor de la Tierra cada 28 días. La Tierra era el centro de su órbita. Aparentemente, el Sol tardaba 365 días en dar la vuelta alrededor de la Tierra. Se puede argumentar fácilmente que el resultado habría sido el mismo si el Sol estuviese quieto y la Tierra girase a su alrededor; pero la mayoría de los astrónomos prefería creer que la Tierra ocupaba el lugar más importante, en el centro.

Además de la Luna y la Tierra, parecían existir otros objetos relucientes, que se movían en el fondo formado por las estrellas fijas. Se los denominó planetas, o sea caminantes. Su movimiento resultaba muy complejo. Mercurio y Venus, los dos planetas interiores, parecían oscilar alrededor del Sol, con la oscilación al oeste,(con respecto al Sol) más rápida que la del este.

Cuando el planeta se halla al este del Sol, se pone después que él y es una estrella vespertina. Cuando está al oeste, “sale” antes que el Sol y es una estrella matutina. Según se cree, Pitágoras (572-492 a. de C.) fue el primero en darse cuenta de que estas “dos” estrellas eran la misma. Marte y los otros dos planetas gigantes, Júpiter y Saturno, se conocían también.

Sistema Geocentrico

Parecía que los planetas seguían órbitas planas, con curvas o vueltas. Cada noche salían antes que la anterior y se movían en el cielo a velocidades variables. Su comportamiento peculiar mostraba que los planetas diferían de la Luna y del Sol, así como de las estrellas.

Los astrónomos tardaron mucho tiempo en construir una imagen del universo. Tolomeo, en el siglo n de nuestra Era, explicó los movimientos de los planetas, suponiendo que cada uno, al igual que el Sol, giraba en órbitas circulares alrededor de la Tierra, una vez por año. Pero los planetas se mueven en pequeños círculos alrededor de otro círculo. Estos se llaman epiciclos.

Concepto de Epiciclo de un Planeta

Aunque la teoría de Tolomeo se aceptó durante más de mil años, otros astrónomos anteriores, como Aristarco, habían propuesto un modelo de universo donde el Sol era el centro (heliocéntrico). Esta teoría fue extendida, en el siglo XVI, por un astrónomo polaco, Nicolaus Koppernigk, conocido como Copérnico. Éste completó las tablas de los movimientos planetarios y observó que se explicaban fácilmente, si se suponía que el Sol estaba en su centro. Pensó que las órbitas eran perfectamente circulares, pero tuvo problemas, porque los planetas no se mueven en sus órbitas a velocidades constantes.

Después, Juan Kepler (1571-1630) demostró que esto era debido a que las órbitas no son perfectamente circulares, sino elípticas. Galileo (1564-1642) mantuvo las teorías de Copérnico. Fue uno de los primeros astrónomos que usó el telescopio (aparato que inventó Hans Lippershey, en Middleberg, en 1608).

Galileo hizo su propia adaptación del telescopio. Con ella realizó importantes observaciones, en apoyo de las teorías copernicanas. Si la Tierra estuviera en el centro del sistema, resultaría que el planeta Venus, siguiendo sus epiciclos entre la Tierra y el Sol, sólo se vería como un delgado cuarto creciente. La parte iluminada por el Sol sería invisible para los observadores de la Tierra. Sin embargo, Galileo demostró que Venus puede verse en todas sus fases, desde un disco entero hasta un pequeño cuarto.

Además, el tamaño de Venus parece cambiar Galileo pensó que esto sólo sería explicado si Venus girase entre el Sol y la Tierra y siendo aquél el centro del universo. Galileo descubrió también las lunas de Júpiter. Fue la primera vez que se obse: una luna distinta a la de la Tierra. A través de su telescopio, vio las cuatro lunas más brillantes de Júpiter, Todas giraban alrededor del planeta.

También advirtió una estrecha relación entre el modo en que los planetas se mueven alrededor del Sol y el modo en que las lunas de Júpiter lo hacen alrededor de éste. Comenzó a observar a Saturno de cerca. Su aspecto variaba sensiblemente de año en año. Galileo lo examinó en 1610 y parecían tres planetas unidos; dos años después volvió a verlo como uno solo. Esto le resultó incomprensible.

El holandés Húygens se dio cuenta de que Galileo” no había observado la existencia de un sistema de anillos. Éstos se encuentran rodeando el ecuador de Saturno y, cuando el planeta se mueve en su órbita, pueden verse desde distintos ángulos. ¿Por qué todos los planetas deben moverse alrededor del Sol? Según las teorías heliocéntricas, las órbitas de los planetas eran más sencillas; pero hasta el momento en que Newton expuso sus teorías, no hubo evidencia física para rechazar el sistema geocéntrico.

Newton (1642-1727) demostró que las fuerzas gravitatorias existentes entre los cuerpos pesados los mantienen en sus órbitas. Los planetas se mueven alrededor del cuerpo más pesado, que será el que ejerza una mayor fuerza de atracción. Este cuerpo es el Sol.

Seis de los planetas solares —Mercurio, Venus, Tierra, Marte, Júpiter y Saturno— no han sido propiamente descubiertos, puesto que eran conocidos en la antigüedad. El séptimo planeta es Urano, débilmente visible a simple vista pero, a pesar de esto, no descubierto hasta 1781.

William Herschel estaba llevando a cabo una investigación sistemática del cielo. Entonces observó un cuerpo de contorno discoideo; pensó que debía tratarse de un planeta y midió el diámetro del disco, Durante varias noches observó el movimiento del planeta, anotando cuidadosamente los cambios de po. sición. Luego examinó los datos de los observadores anteriores y comprendió que habían registrado el mismo astro desde cien años antes.

Un astrónomo, llamado Lemonnier, había visto el planeta ocho veces en un mes; pero pensó que se trataba de una estrella. Algunas de estas observaciones estaban escritas en la tapa de una polvera. Nadie se había dado cuenta de que se trataba de un planeta. Con ayuda de estas notas, Herschel pudo determinar la órbita de Urano. Herschel descubrió dos lunas más de Júpiter y seis lunas en Urano. Sin embargo, hoy se sabe que Urano sólo tiene cinco lunas; cuatro de las descubiertas por Herschel son estrellas débiles.

Hasta 1800, Urano se comportó de una manera prevista, pero, a partir de dicho año, el planeta comenzó a apartarse de las órbitas señaladas ppr las leyes gravitatorias. Se sabía que las órbitas de los planetas interiores eran perturbadas cuando otro planeta pasaba por sus cercanías,

En 1841, John Couch Adams expuso la teoría de que los cambios en la órbita de Urano podían ser debidos a la atracción de un planeta más lejano; pero esta teoría no se tomó en cuenta. Después, en 1845, el astrónomo francés Le-verrier, trabajando independientemente, estudió con atención la órbita de Urano. Parte de la distorsión podía atribuirse a Júpiter y a Saturno, pero, además, había otra causa de la perturbación.

Leverrier calculó la posición y el tamaño del planeta que podría causar la distorsión restante. Solicitó al astrónomo alemán Galle que observara el planeta, que fue descubierto aquella misma noche, denominándoselo Neptuno. Incluso la existencia de Neptuno no explicaba del todo la distorsión de la órbita de Urano.

El movimiento de éste mostraba un comportamiento raro, que debía ser causado por un cuerpo desconocido. Muchos astrónomos, especialmente William Pickering y Percival Lowell, calcularon la órbita de un planeta más externo, el noveno en el sistema solar; pero no fue encontrado hasta 1931, en que la imagen de Plutón se percibió en una placa fotográfica, una de las muchas que se impresionan en la búsqueda sistemática de los planos de las órbitas planetarias.

Fue descubierto por Clyde Tombaugh, que trabajaba en el antiguo observatorio de Lowell, 14 años después de la muerte de éste. Plutón resultó ser más pequeño y menos visible de lo que se esperaba. Es posible que haya algún planeta más externo perturbando las órbitas de los otros; pero, hasta la fecha, no se lo ha descubierto. Con la construcción de telescopios más potentes, los planetas se fueron conociendo con más exactitud. Se sabe poco de la superficie de Mercurio, porque siempre se encuentra muy próximo al Sol.

La superficie de Venus está cubierta por un velo de niebla. Lowell hizo mapas detallados de la superficie de Marte; pero la mayor parte del detalle era obra más de la deducción que de la observación. Júpiter y Saturno se encuentran envueltos en una nube de amoníaco y metano. Se cree que la situación de Urano y Neptuno es similar, y se conoce muy poco de Plutón.

Los radiotelescopios están resultando muy útiles en la exploración de los detalles superficiales de los planetas envueltos en nubes. Las ondas de radio pueden penetrar a través de las nubes, pero las ondas luminosas no. Una información más extensa se obtendrá de las pruebas espaciales.

Los nueve planetas brillantes forman ia mayor parte del sistema solar. Sus órbitas son casi circulares y, a excepción de Pintón, se encuentran casi en el mismo plano. Además, el sistema solar contiene otras tres clases de cuerpos. Los más grandes son los “asteroides” y los “meteoritos”. Las dimensiones de los asteroides y meteoritos oscilan entre unos centímetros y cientos de kilómetros. La mayoría de los asteroides tiene órbitas casi circulares o elípticas, situadas entre las de Marte y Júpiter. El primero de ellos, Ceres, fue descubierta en 1801; varios otros fueron descubiertos poco después. Los asteroides son fragmentos rocosos. También le son tos meteoritos, que pueden chocar casualmente con ia superficie de le Tierra. El primer meteorito registrado cayó en China, en el año 644 a. de C. Se piensa que el 30 % de la claridad del cielo, cuando no hay luna, se debe a pequeñas partículas similares, que reflejan la luz del Sol, Se trata de la “luz zodiacal”. Los “cometas” y las “estrellas fugaces” están compuestos de pequeñas partículas sólidas,, rodeadas de una capa de gas. Los “rayos cósmicos” constituyen un tercer tipo de materia interplanetaria. Son partículas atómicas, en su mayoría “protones”, originadas en el sistema solar o en su exterior.

Ver Una Lámina del Sistema Solar

14 de Julio de 2015: La sonsa New Horizon llega a Plutón despúes de un viaje de 9,5 años.

Esta sonda tomará las que está previsto que sean las mejores imágenes de Plutón nunca conseguidas, así como numerosos datos de la composición de la atmósfera gracias a los instrumentos que lleva a bordo. El paso cerca de Plutón se alargará una semana más y luego seguirá alejándose del planeta enano, pues no orbitará ante su incapacidad de detener la altísima velocidad que le ha permitido llegar en “solo” diez años hasta allí.

Fuente Consultada:
Enciclopedia de la Ciencia y La Tecnología N° 106 – Los Planeta –

Historia del Telescopio – Inventor y Primeras Observaciones

HISTORIA DEL TELESCOPIO: SU INVENTOR Y LAS PRIMERAS OBSERVACIONES

ORIGEN DEL INVENTO: Despúes de la invención del microscopio no debía pasar mucho tiempo para que se hagan distintas combinaciones de lenetes y aumentaran los objetos distantes, o bien, hacerlos mas próximos.

El descubrimiento parece que se produho en 1608 por accidente. Hans Lippershey (1590-1619) un anteojero holandés, tenía un ayudante que jugaba con los lentes durante sus momento de ocio, y descubrió que si sostenía dos lentes, delante de sus ojos, a una cierta distancia de la otra, y miraba a través de ellas, veía el campanario de una iglesia situada a lo lejos como si estuviera considerablemente más cerca, y además invertida.

Hans Lippershey (1590-1619)

Asustado, se lo contó a su patrón, el cual de inmediato captó la importancia del descubrimiento. Lippershey montó las lentes en un tubo, colocándolas a la distancia adecuada entre sí, y logró el primer telescopio primitivo (de las palabras griegas que significan «ver lejos»).

Los Países Bajos aún se hallaban en rebelión contra España, y Lippershey se dio cuenta de que el telescopio constituiría una importante arma de guerra, al hacer posible la observación de la proximidad de navios o tropas enemigas, antes de poderlos descubrir a simple vista.

Así se lo explicó a Mauricio de Nassau, quien le comprendió y trató de mantener en secreto las características del dispositivo. Este propósito fracasó, sin embargo, pues los rumores se extendieron, y el aparato era demasiado sencillo para no ser reconstruido en seguida.

La astronomía óptica emplea, para captar la luz, dos tipos de instrumentos: el anteojo (o telescopio refractor) y el telescopio reflector, o telescopio propiamente dicho. Consisten básicamente en un tubo provisto en uno de sus extremos (el que apunta al cielo) de un objetivo y, en el otro (próximo al ojo del observador), de un ocular.

El objetivo recoge los rayos luminosos emitidos por los astros observados y los concentra teóricamente en un punto —una pequeña mancha en realidad—, que el ocular amplía.

La naturaleza del objetivo es lo que distingue el anteojo del telescopio: en el primero es una lente —o, más bien, una combinación de lentes— que refracta la luz, mientras que en el telescopio es un espejo en el que la luz se refleja.

Las dimensiones del objetivo determinan las posibilidades máximas del instrumento: la energía, o luz, recogida está en función de su superficie colectora, mientras que de su diámetro depende su aptitud para separar dos fuentes luminosas angularmente próximas (poder separador), o distancia angular mínima entre dos puntos objeto que permita obtener imágenes separadas.

UN POCO DE HISTORIA…
Los Descubrimientos de Galileo Galilei

El científico italiano Galileo Galilei , debido a su formación técnica, pudo entender mejor que Lippershey el principio de funcionamiento este tipo de lente, por lo que pudo construir uno de mayor aumento (30x) y que le permitió observar algunos satélites de Júpiter y los novedosos cráteres de la “perfecta” Luna. Entre otras observaciones futuras, Galileo pudo estudiar Saturnos y sus anillos y las fases del planeta Venus.

Telescopio de Galileo

El mayor de los telescopios de Galileo aumentaba en treinta veces la imagen, pero era muy imperfecto. Desde entonces la astronomía recibió un extraordinario impulso de notables científicos vinculados al desarrollo de lentes y telescopios, que son la base de los modernos instrumentos de nuestros días.

Con todo estos conocimiento publuca un pequeño libro, que se podía leer en un par de horas, de solo 24 hojas llamdo Sidereus nuncius, que significa “El Mensajero de las estrellas”, donde informa sobre los observado cn su nuevo telescopio.

Para ello usa una forma de expresarse sumamente distinta al utilizada hasta el momento, a los efectos que sea comprendida por todos los curiosos de su época, consiguiendo que este libro se convienta en una especie de best sellers del momento. La novedad de esta información, no fue por su originalidad, pues ya otros científicos de su época habían también enfocado el firmamento nocturno, sino que fue el primero en publicar sus observaciones

Un gran científico europeo, que vivía en Alemania, pudo leer esta edición porque Galilei el envía una copia, solicitandolé que diera su opinión al respecto, opinión que resultó positiva, aunque no pudo confirmar esas observaciones ya que no contaba con el moderno instrumento

En una carta muy amable y elogiosa contestó Kepler a Galileo, rogándole que le prestara un telescopio para repetir las observaciones y ofreciéndole ser su escudero. Galileo no sólo no le prestó el telescopio sino que ni siquiera le contestó su carta.

Galileo Galilei

En el año 1609, el físico y astrónomo italiano Galileo Galilei recibió, según dice él mismo, noticias del extraordinario invento holandés. Como no se sabía nada de su construcción, Galileo se puso a meditar sobre el acerca de su construccn tema y tuvo la satisfacción de construir un primer anteojo que aumentaba en tres veces el tamaño de los objetos. Inmediatamente construyó anteojos con los cuales descubrió cráteres en la Luna, las fases de Venus, las manchas del Sol y los s liles de Júpiter. También especie de “orejas” que luego serían identificadas como los anillos que orbitan a Saturno.

En 1611, Galileo muy entusiasmado con sus logros, decide avanzar, y dar un paso importante, mostrando su telescopio en Roma a las mayores autoridades eclesiásticas. Fue muy bien recibido, atendido con una importante cena en su honor y escuchado. Galileo apuntó su equipo hacia el cielo y los invitó a observar, tratando de explicar el nuevo fenómeno que veían por ese misterioso tubo.

Observaron a Júpiter con sus satélites. Más tarde desmanteló el telescopio para que todos pudieran ver las dos lentes que lo formaban. A este instrumento le habían dado el nombre en latín de perspicillum o instrumentum, pero se dice que el nombre de telescopio fue dado por un principe de la zona conocido como Cesi, quien creo el nuevo nobre de telescopio.

Mas tarde se entrevistó primero con el cardenal Barberini, que más tarde sería el papa Urbano VIII; también se entrevistó con el papa Paulo V, en una audiencia muy amistosa.

De vuelta a su Padua, en 1611 siguió estudiando los astros celeste. Decidió estudiar el Sol, pero debió ingeniarse una pantalla para evitar lastimarse la vista con la fuerte energía lumínica con que nos abraza. Pudo descubrir las manchas solares y también su periódo de rotación.

En 1615 un teólogo romano conservador expresó la opinión de que la concepción copernicana debía tratarse como una hipótesis, pues contradecía a la palabra de la Biblia. Galileo insistió en que era real. En el edicto de 1616 el Santo Oficio puso el De revolutionibus orbium coelestium de Copérnico en el índice de libros prohibidos y ordenó a Galileo que no siguiera defendiendo a Copérnico so pena de ser encarcelado.

Galileo se daba cuenta que tarde o temprano el papa se moriría. Pocos años después se cumplieron sus expectativas y su viejo amigo Maffeo Barberini, que tantas veces le había defendido, fue elegido papa. Pero el poder absoluto corrompió a Barberini tan absolutamente que cuando los pájaros del Vaticano interrumpieron sus pensamientos hizo envenenarlos. Barberini —ahora el papa Urbano VIII— confirmó el edicto de 1616.

Galileo se mantuvo en las suyas. Durante seis años, animado por su amistad con el papa, trabajó en un libro titulado Diálogos sobre los dos máximos sistemas del mundo. Allí siguió lo legislado al pie de la letra; presentaba sus ideas como una hipótesis que explicaba un personaje llamado Salviati. El punto de vista de la Iglesia estaba representado por un personaje llamado Simplicio.

El insulto era intencionado y se percibió. En 1632 se prohibía el libro. Al año siguiente Galileo fue procesado por la Inquisición. Negó que creyera en el sistema copernicano, se derrumbó en todos los sentidos y se le ofreció firmar una confesión donde afirmaba: «El Santo Oficio me ha considerado vehementemente sospechoso de herejía; es decir, de haber sostenido y creído que el Sol es el centro del mundo e inmóvil, y que la Tierra no es el centro y se mueve». Se puso de rodillas, leyó el texto en voz alta y lo firmó.

La leyenda dice que entonces susurró: «Eppur si muove» («Sin embargo, se mueve»). Esta historia no es cierta, escribe el físico George Gamow, «y sólo ha dado pie a una vieja anécdota según la cual Galileo estaba observando el rabo que meneaba el perro de un amigo que entró, por equivocación, en el Santo Oficio de la Iglesia». Sin embargo, si Galileo no reaccionó de este modo, hubiera debido hacerlo. Algunas leyendas merecen la pena ser perpetuadas.

Galileo fue condenado a prisión y a repetir siete salmos una vez a la semana durante tres años, pero el papa redujo el castigo del astrónomo setentón a arresto domiciliario.

Galileo pasó el resto de su vida confinado en su villa próxima a Florencia (donde lo visitó una vez John Miltón). Hasta su muerte, su hija la hermana María Celeste lo cuido. (Un accidente geográfico de Venus lleva el nombre ella).

Durante este periodo, Galileo se quedó ciego, probablemente a consecuencia de mirar el Sol. Pero no todos los placeres le fueron negados; hasta su muerte en 1642 tocó el laúd, habilidad que había aprendido de su padre.

ALGO MAS SOBRE LOS TELESCOPIOS ASTRONÓMICOS

REFLECTORES Y REFRACTORES
5e pueden distinguir dos tipos principales de telescopios: refractores (o de lentes) y reflectores (o de espejos). Estos dos tipos combinados constituyen los instrumentos más recientes, como el telescopio de Maksutov. Las imágenes producidas por los telescopios reflectores están libres del efeto de aberración cromática, lo cual, para ciertos tipos de trabajos, constituye una clara ventaja respecto de los refractores ; pero, por otra parte, es::s últimos no presentan los efectos de difracción producirdos en los soportes del segundo espejo de los telescopios reflectores, aunque estos efectos no constituyen necesariamente un obstáculo de importancia.

El telescopio refractor suele ser más conocido; su principio es análogo al que se aplica en la construcción de catalejos, binoculares y anteojos de teatro. La luz procedente del objeto que se observa entra en el aparato a través de la lente objetivo. El objetivo de los telescopios se construye casi siempre corregido, para evitar la aberración cromática (o sea el defecto que suelen presentar muchas lentes que producen la aparición de franjas con los colores del el arco iris).

Hay alguna excepción a este respecto, particularmente en campo de la astronomía solar, pero estos casos caen fue-
a de nuestra atención en este momento. La luz se refracta al atravesar el objetivo, es decir, se desvía; la magnitud de
a desviación depende de la curvatura de la lente objetivo.

Para una lente dada, la desviación proyecta la imagen del objeto en un punto invertida, del mismo modo que lo está la imagen formada sobre la película por la lente de una cámara fotográfica. Si colocamos una placa fotográfica hemos trasformado el telescopio en una cámara fotográfica, y así se lo usa para fotografiar los astros.

En esta época de reflectores gigantes quizá resulte sorprendente saber que tales instrumentos son, por así decirlo, unos recién llegados. El principio en el que se basan es conocido desde hace más de doscientos años, pero los trabajos para su adaptación práctica sufrieron durante largo tiempo toda una serie de reveses técnicos.

Hoy día, los telescopios más grandes son invariablemente del tipo reflector. No parece aventurado afirmar que será muy difícil mejorar el refractor, con un objetivo de más de un metro de diámetro, del observatorio Yerkes, en Williams Bay, Wisconsin. Las razones para esta afirmación son varias y bien fundadas. En primer lugar, el moldear un disco de vidrio de grandes dimensiones es una tarea que requiere pericia extraordinaria y que origina gastos cuantiosos, y, desde luego, es incomparablemente más difícil obtener un gran disco de vidrio ópticamente puro, adecuado para la elaboración de una lente, que el necesario para formar un espejo.

El grosor de una lente aumenta con su diámetro, lo que significa un aumento en la cantidad de luz que es absorbida por el vidrio —lo cual, se comprende fácilmente, es un inconveniente para el astrónomo—. Pero, además, es necesario que la lente, bien centrada, esté sostenida en el extremo del tubo telescópico; un disco de vidrio macizo, sostenido sólo por sus bordes, tiende a deformarse por la acción de su propio peso (la lente del observatorio Yerkes pesa más de 225 Kg.), y cualquier imperfección tiene consecuencias catastróficas sobre la calidad de la imagen formada por la lente.

Estos problemas no se presentan en el caso del telescopio reflector. Para construir un espejo no es esencial la purezaóptica del vidrio, con tal de que la superficie que va a ser trabajada ópticamente reúna ciertas condiciones. La diferencia fundamental entre los dos sistemas es ésta: en un refractor la luz pasa a través de la lente, lo que exige una gran pureza óptica; en un reflector la luz se refleja en la superficie de un espejo, sin que resulte afectada por la calidad del vidrio.

corte de un telescopio refractor

Telescopio “refractor”. La lente objetivo A forma una imagen real en B, la cual se observa mediante la lente de aumento u ocular C.

En el telescopio reflector de Newton. La luz que entra por el tubo del telescopio incide sobre la superficie del espejo, al que se ha dado, con gran precisión, una forma parabólica. Esta superficie está formada por una capa muy fina de plata, o de aluminio (actualmente se prefiere el aluminio, porque la plata se deteriora muy rápidamente por la acción de distintas impurezas presentes en la atmósfera).

Corte de un telescopio reflector

Forma de Newton del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa lateralmente en el telescopio.

El espejo parabólico formaría la imagen en su punto focal A, pero antes de que los rayos alcancen este punto son desviados lateralmente por un pequeño espejo plano B, que está colocado con una inclinación de 45° respecto del eje principal del espejo primario.

De este modo la imagen es examinada con el ocular C en una dirección perpendicular a la de la luz enfocada por el aparato. Este tipo de reflector tiene gran aceptación entre los aficionados, por su sencillez. Sin embargo, los grandes instrumentos modernos no se sujetan exactamente a este esquema; incorporando el sistema óptico de Cassegrain se consigue una mayor versatilidad.

En el sistema de Cassegrain se reemplaza por un espejo convexo el pequeño espejo secundario B, y se practica un orificio en el espejo primario para permitir la observación de la imagen. Así, imagen y ocular se sitúan detrás del espejo principal, lo que proporciona varias ventajas, siendo la más importante la posibilidad de replegar la distancia focal, lo que permite reducir las dimensiones del tubo telescópico, con lo que el instrumento resulta más manejable.

corte de un telescopio sistema cassagrain

Forma de Cassegrain del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa por el extremo del telescopio.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Evolución de la Observacion del Espacio Historia

Cronología de las técnicas de observación
c. 2800 a. C: Stonehenge. La primitiva construcción incluye un foso, un montículo de tierra, 35 toneladas de restos pedregosos y cincuenta y seis pozos, llamados agujeros de Aubrey, que pueden haber sido utilizados para predecir eclipses. Entre 600 y 1000 años después se agregaría el famoso círculo de piedras.

c. 2600 a. C.: Se construye la Gran Pirámide de Gizeh, orientada hacia el Cinturón de Orion y Thuban de Draco el Dragón, la estrella del norte en aquel tiempo.

c. 440 a. C.: Se construye en Saskatchewan, Canadá, la Rueda de la Medicina de la Montaña del Ratón orientada hacia la posición del Sol en el solsticio de verano.

52 a. C. a 132 d. C: Los astrónomos chinos proyectan una esfera armilat para medir las posiciones de los objetos celestes. Empezando por un anillo metálico que representa el ecuador, incluye al final un ani lio que representa la trayectoria de los planetas, otro que reprc senta el meridiano y un reloj de agua.

150 d. C: Equipado con un plinto —un bloque de piedra con un arco calibrado que se utilizaba para medir la altura del Sol— y una regla triangular llamada triquetrum, Ptolomeo anota la posición de las estrellas.

927: Un fabricante árabe de instrumentos llamado Nastulo construye el astrolabio más antiguo que se conoce, un mapa metálico de los cielos que representa el movimiento aparente de las estrellas alrededor de la Polar y en relación con el horizonte.

1000: Los mayas erigen un observatorio en Chichén Itzá, en la península de Yucatán. Conocido como el Caracol, está alineado con el sol en los solsticios así como con las estrellas Castor, Pólux, Fomalhau y Canope.

1391: El Tratado sobre el astrolabio de Geoffrey Chaucer enseña a construir y utilizar el astrolabio para medir la posición de las estrellas.

1576: Tycho Brahe inicia la construcción de Uraniborg, su observatorio insular. Entre el equipamiento hay un cuadrante de pared, una gran esfera armilar y un sextante que abarca 30° de firmamento y va equipado con brazos fijos y móviles para medir las distancias entre las estrellas.

1608: El óptico holandés Hans Lippershey inventa el telescopio.

1609: Galileo Galilei se construye su propio telescopio. Un refractor con dos lentes de cristal (el objetivo convexo y el ocular cóncavo) que aumenta la imagen unas treinta veces.

1611: Johannes Kepler, retinando el telescopio, sustituye el ocular convexo por otro cóncavo, con lo que agranda el campo de visión pero invierte la imagen.

1636: El fraile y matemático francés Marín Mersenne propone la utilización de espejos para construir un telescopio reflector.

1668: Isaac Newton construye un telescopio reflector utilizando un espejo cóncavo en lugar de objetivo. Dado que los distintos colores se refractan de manera distinta, los telescopios refractores que se utilizan en osla época producen alrededor de las imágenes un cerco con los colores del arco iris. El reflector elimina esta aberración cromática porque los colores se reflejan de forma homogénea.

Otra ventaja es que el espejo, a diferencia de las lentes, puede sostenerse por detrás, con lo que produce menos distorsión. El físico francés N. Cassegrain diseña un telescopio en el que la luz se refleja desde un espejo secundario convexo a través de un agujero hecho en el primer espejo, una mejora del gran reflector new-toniano, en el que el ocular quedaba en la parte superior del telescopio, con lo que exigía al observador que trepara a una torre o escalera para mirar. Con el telescopio de Cassegrain el observador se mantiene a nivel del suelo. Según Newton, «La ventaja de este aparato es ninguna».

1733: Chester Moor Hall superpone dos clases de cristal para aumentar la lente del objetivo a la vez que suprime la aberración cromática.

1758: Utilizando el invento de Hall para hacer lentes de flint glass y de crown glass, John Dolland hace una lente acromática, que presenta en la Royal Society.

1789: William Herschel construye un telescopio con un espejo de 49 pulgadas.

1845: William Parsons, conde de Rosse, construye un telescopio reflector con un espejo de 72 pulgadas, el mayor del mundo hasta 1917. Se lo conoce como el Leviatán de Parsonstown.

1888: Se acaba el telescopio refractor de 36 pulgadas del Observatorio de Lick.

1897: Se construye el mayor telescopio refractor del mundo en el Observatorio de Yerkes, en Wisconsin. Tiene un objetivo con una lente de 40 pulgadas y un tubo de 64 pulgadas.

1908: Se acaba el telescopio reflector de 60 pulgadas de Monte Wilson.

1917: Se acaba el telescopio reflector de 100 pulgadas de Monte Wilson.

1930: Bernhard Schmidt inventa el Telescopio Schmidt, que utiliza lentes correctoras para eliminar la distorsión alrededor de los bordes de los espejos y para hacer fotografías claras del firmamento con gran angular.

1936: Después de diseñar el primer radiotelescopio del mundo, el ingeniero Grote Reber, de Illinois, erige un plato metálico de 9,15 metros en su patio trasero y empieza a hacer el mapa de la Vía Láctea, proyecto que completa al cabo de ocho años.

1948: Se acaba el telescopio reflector de 200 pulgadas de Monte Palomar.

1962: Un pequeño cohete detecta rayos X procedentes de más allá del sistema solar.

1970: Se lanza el primer satélite de rayos X.

1978: Se lanza la nave espacial Explorador Internacional de Ultravioletas (IUE), alimentada por energía solar.

Se lanza el Observatorio Einstein, que contiene un telescopio de rayos X de alta resolución.

1980: Una serie de veintisiete observatorios dispuestos en forma de Y, llamada la Gran Formación (Very Large Array), comienzan a operar en Nuevo México.

1981: El dispositivo de carga acoplada (CCD) deja obsoleta la fotografía. Mientras que las fotografías utilizan una fracción de la luz procedente de un objeto para producir un cambio químico en una película, el mucho más sensible CCD responde a casi toda la luz y envía corrientes eléctricas directamente al ordenador.

1983: Es puesto en órbita el Satélite de Astronomía Infrarroja (IRAS).

1989: Se lanza el satélite Explorador del Fondo Cósmico (COBE) de la NASA.

1990: Se pone en órbita desde la lanzadera espacial Discovery el Telescopio Espacial Hubble.

1991: Se pone en órbita desde una lanzadera espacial el Observatorio Compton de Rayos Gamma (GRO), con cuatro detectores de rayos gamma a bordo.

1992: El 14 de abril comienza sus observaciones el Telescopio Keck, con los treinta y seis espejos hexagonales colocados en su sitio. El 24 de agosto, su gemelo el Keck II recibe el primer segmento de sus treinta y seis espejos coordinados.

1993: Diciembre. Astronautas instalan durante un paseo espacial nuevos paneles solares, giróscopos, una nueva cámara y otros instrumentos para corregir la visión del Telescopio Espacial Hubble.

Entre los futuros instrumentos que se espera que estén funcionando el año 2000 se cuentan: el Telescopio Keck II; el Observatorio Estratosférico para Astronomía en el Infrarrojo Lejano (SOFÍA)en órbita; la Instalación Astrofísica de Rayos X Avanzada (AXAF); la Instalación Espacial para Telescopio de Infrarrojos (SIRTF); el Telescopio Sloan de la Universidad de Princeton, diseñado para hacer un mapa del desplazamiento hacia el rojo de un millón de galaxias; y el telescopio de múltiples espejos controlado por ordenador del Observatorio Europeo Austral en Chile, conocido como el VIT (Gran Telescopio).

El Gran Telecsopio que será construído en Chile

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway

Los Telescopios Mas Importantes del Mundo Medidas y Ubicación

TELESCOPIOS REFRACTORES Y REFLECTORES: Los primitos astrónomos utilizaban sus ojos y algunos sencillos instrumentos como el cuadrante para medir ángulos, pero hace unos 350 años, en 1609, Galileo inventó su “tubo óptico” o telescopio de construcción casera, y al dirigirlo al cielo la astronomía inició una nueva era.

Desde aquel entonces el astrofísico ha aprendido a aplicar la fotografía y la electricidad para resolver sus problemas, a separar y analizar la luz solar y de las estrellas, y a utilizar de muy diversos modos otros tipos de radiaciones que nos llegan de las profundidades del espacio.

Las radiaciones procedentes del espacio son, en verdad, las únicas fuentes de información de que disponen los astrónomos para bosquejar su esquema del universo. Dichas radiaciones nos llegan en tres formas distintas: luz, calor y ondas radioeléctricas. Observamos y medimos la luz y el calor con los telescopios ópticos, y las ondas radioeléctricas mediante los radiotelescopios.

Los dos principales telescopios ópticos son el telescopio refractor y el reflector. Ambos recogen la luz proveniente de objetos distantes y la concentran para formar una pequeña imagen. En los dos instrumentos la imagen es aumentada luego mediante un ocular.

Telescopio refractor:
El tipo de telescopio que nos es más familiar es el refractor, con una gran lente en su parte anterior. Esta lente frontal, llamada objetivo por encontrarse más cercana del objeto a observar, recoge la luz y la desvia o refracta hacia el foco. Este principio parece bastante sencillo, pero el llevarlo a la práctica no lo es tanto. La razón de ello estriba en que nadie ha diseñado aún una lente que desvíe todos los colores por igual. La luz violeta y la azul son más desviadas que la luz roja. Por lo tanto si utilizamos una sola lente como objetivo de un telescopio refractor, dicha lente lleva los rayos luminosos de los distintos colores a diferentes focos y vemos una imagen rebordeada por una coloración borrosa.

En los primeros años del telescopio, los astrónomos encontraron en este Icnómeno un gran inconveniente cuando intentaron efectuar observaciones y mediciones de precisión. Sin embargo, en 1733, un inglés, Chester Moor Hall, que se había dedicado al estudio óptico del ojo humano como pasatiempo, encontró la forma de eliminar dicho inconveniente y mejoró notablemente la calidad de la observación.

Ejemplo de funcionamiento de un telescopio refractor

Una gran lente (el objetivo) recoge la luz procedente de una estrella y la desvía hacia el foco produciendo en él una pequeña imagen. Esta se aumenta mediante otra lente (el ocular).

Telescopio Reflector: Otra forma de resolver este problema de la colora ción de los bordes. Si concentramos la luz mediante un espejo cóncavo, en vez de utilizar un objetivo de cristal, podemos dar por resueltos todos los problemas que se plantean al emplear lentes.

El espejo cóncavo nos enviará todos los colores hacia el mismo foco, y aunque todavía debemos recurrir a un ocular construido con lentes, es posible diseñarlo de tal forma que no se produzca ningún efecto de coloración. En este aspecto, por lo menos, el telescopio reflector con su gran espejo cóncavo es preferible al telescopio refractor con sus grandes lentes.

Un telescopio refelctor internamente

En tiempos de Isaac Newton no había lentes acromáticas. Para soslayar el problema que representaba el contorno coloreado, construyó un telescopio que tenía un espejo cóncavo en lugar de una lente. El espejo cóncavo enfocaba la luz de una estrella y la dirigía hacia un espejo plano inclinado, el cual a su vez reflejaba la imagen de la estrella hacia un ocular situado al lado.

TABLA CON LOS PRINCIPALES TELESCOPIOS DEL MUNDO

UBICACIÓN Y NOMBRE ALTITUD DIÁMETRO PROPIETARIO INICIO NOMBRE
Mauna Kea; Hawai, EE UU (W.M. Keck Observatory) 4150 10 Universidad de California y Caltech 1992 Keck Teiescope
Zelenchúkskaia; monte Pastujov, Cáucaso, Rusia 2 070 6,00 1976 Bolshoi Teleskop Azimutalnii(BTA)
Monte Palomar; California, EE UU 1706 5,08 EEUU 1948 Hale
Monte Hopkins; Arizona, EE UU (Fred Lawrence Whipple Observatory) 2 600 4,60 (6 x 1,8) Smithsonian Institution 1979 Múltiple Mirror Teiescope (MMT)
La Palma; Canarias, España (Observatorio Roque de los Muchachos) 2 300 4,20 RU 1988 William Herschel
Cerro Tololo; Chile (Cerro Tololo Interamerican Observatory, CTIO) 2 400 4,00 EEUU 1976
Siding Spring; Nueva Gales del Sur, Australia (Anglo-Australian Observatory) 1 164 3,89 RU-Australia 1975 Anglo-Australian Teiescope
Kitt Peak; Arizona, EE UU (Kitt Peak National Observatory, KPNO) 2 064 3,81 EEUU 1973 Mayall
Mauna Kea; Hawai, EE UU (W.M. Keck Observatory) 4 194 3,80 RU 1979 UK Infrared Teiescope (UKIRT)
Mauna Kea; Hawai, EE UU 4 200 3,60 Canadá-Francia 1979 C.F.H. (Canadá-Francia-Hawai)
La Silla; Chile 2 400 3,57 ESO* 1976
Calar Alto; Sierra Nevada, España 2 160 3,50 RFA 1983
La Silla; Chile 2 400 3.50 ESO* 1988 New Technology, Teiescope (NTT)
Monte Hamilton; California, EE UU (Observatorio Lick) 1277 3,05 EEUU 1959 Shane
Mauna Kea; Hawai, EE UU 4 208 3,00 EEUU (NASA) 1979 IRTF (Infra Red Teiescope Facility)
Monte Locke; Texas, EE UU (Observatorio MacDonald) 2 070 2,72 Universidad de Texas (EE UU) 1969
Crimea; Ucrania (Observatorio de Crimea) 2,60 1961 Shajn
Monte Aragats; Armenia (Observatorio de Biurakan) 1500 2,60 1971

Historia y Construcción del Gran Telescopio en Monte Palomar

ESTÁ EN CONTRUCCIÓN UN NUEVO Y GRAN TELESCOPIO EN CHILE

Comenzó a cosntruirse el telescopio mas grande del mundo, llamado el “telescopio de treinta metros”, que se llama así por los 30 metros de diámetro que tiene su espejo principal, es el resultado de la colaboración entre universidades e instituciones de Estados Unidos, Canadá, China, India y Japón y cuenta con una inversión de 1.400 millones de dólares. En total, tendrá 100 metros de ancho y 492 espejos hexagonales que le darán una resolución diez veces mayor a la que actualmente ofrece el Hubble, de la NASA, lo que sin duda lo convertirá en una de las herramientas más poderosas para explorar el universo. Se espera esté listo para el año 2022.

Ampliación:
Principales telescopios en uso en el mundo

Se inicia por describir los telescopios refractores, que son los más antiguos, y terminaremos por describir los reflectores, más modernos.

El telescopio refractor más grande que se construyó fue el de un metro de abertura, del observatorio de Yerkes, a finales del siglo pasado, con fondos proporcionados a la Universidad de Chicago por el magnate C. T. Yerkes, a petición de George Ellery Hale.

Observatorio de Yerkes

La montura para este telescopio fue construida en el año de 1890 por la compañía Warner and Swasey. Algunas experiencias recientes muy desagradables con las bajas temperaturas en las montañas hicieron que se tomara la decisión de colocar el observatorio a 129 kilómetros al noroeste de Chicago, en un lugar con una altura de tan sólo 75 metros sobre el nivel del mar.

El objetivo de este telescopio fue construido por Alvan Clark en 1985. Las lentes solas pesaban 225 kilogramos sin su montadura, a pesar de haberse construido con un grueso excepcionalmente pequeño, a fin de hacerlas tan ligeras como fuera posible. El 21 de mayo de 1897 hicieron la primera observación tres astrónomos, entre los que se encontraba Hale. Según palabras del mismo Hale, con este telescopio fue posible ver detalles lunares y planetarios que nunca antes habían sido observados.

Otro telescopio refractor históricamente muy importante, construido antes que el de Yerkes, es el del observatorio de Lick, construido también por Clark en 1888 y apoyado económicamente por James Lick, quien murió en 1879, antes de que fuera terminado el proyecto. El observatorio de Lick se instaló en el Monte Hamilton, en Santa Clara, California. Este telescopio tenía un objetivo de 90 centímetros de diámetro.

Ahora haremos una síntesis de los telescopios reflectores más grandes que existen, comenzando por el mayor de todos ellos, que es el de 6 metros de abertura, que se encuentra instalado en la Unión Soviética.

El telescopio reflector de 6 metros de abertura de la Academia de Ciencias de la URSS se comenzó a construir en el año de 1960. Después de muchos estudios para encontrar un buen lugar de observación, se instaló en el monte Semirodniki, a una altura de 2 070 metros al norte de la cordillera caucásica.

El trabajo en la construcción se inició en 1966 y comenzó a funcionar aproximadamente 10 años después. Este inmenso telescopio es hasta la fecha el mayor del mundo y quizá lo sea por mucho tiempo más, pues los problemas prácticos que tiene un telescopio de este tamaño son formidables. El espejo primario de este telescopio es de vidrio borosilicato (equivalente al Pyrex). La parte posterior del espejo es de forma convexa, a fin de que el espejo tenga un grueso aproximadamente constante y con ello minimizar las distorsiones térmicas.

La montura de este telescopio es de tipo altazimut, ya que una ecuatorial de estas dimensiones sería imposible de construir sin que tuviera muy serios problemas de flexiones mecánicas. La montura altazimut tiene menos problemas de flexiones, pero a cambio de ello la compensación por el movimiento diurno de las estrellas tiene que hacerse moviendo en forma alineal muy complicada los dos ejes, al mismo tiempo que se gira también el portaplacas fotográfico. Todo esto se hace simultáneamente con motores independientes, controlados por medio de una computadora.

El telescopio de 5 metros de abertura de monte Palomar fue el más grande del mundo durante casi tres décadas. Cuando se concibió la idea se pensó que era un gran proyecto que requería mucha planeación y esfuerzo.

Quien concibió la idea de construir este telescopio fue George Ellery Hale, quien además se tomó el trabajo de reunir los fondos necesarios.

Uno de los detalles técnicos más importantes era la selección del material para el espejo. Se sugirieron muchos materiales, pero finalmente se decidió utilizar cuarzo fundido, con vidrio Pyrex como alternativa. Varios fracasos en los intentos para fundir el bloque de cuarzo del diámetro requerido hizo que la selección final fuera Pyrex. El coeficiente de expansión del Pyrex es casi cinco veces mayor que el del cuarzo fundido, pero una tercera parte que el del vidrio común. Aumentando el contenido de cuarzo en el Pyrex se logró que el coeficiente de expansión fuera sólo tres veces superior al del cuarzo.

Se fundieron en la compañía Corning Glass, en el estado de Nueva York, dos bloques de Pyrex de 5 metros de diámetro, el primero de marzo de 1934, con la presencia de un gran número de observadores. El tanque donde se estaba fundiendo el vidrio se colocó dentro de un gran horno.

Las 65 toneladas de vidrio se vaciaron durante 15 días en forma continua. Después, tomó otros 16 días llegar a la temperatura de fusión de 1 575 °C. Luego se comenzó a pasar el vidrio fundido del tanque al molde final en crisoles de 300 kilogramos a la vez. El enfriado hasta 800 °C se hizo en cuatro semanas, 10 veces más rápido de lo previsto.
Al examinar la pieza final se detectaron tensiones y pequeñas fracturas internas, por lo que se intentó fundir un segundo bloque. Se pensó que el enfriado debía hacerse en 10 meses.

Cuando ya habían transcurrido siete meses se desbordó el río Chemung, pero se logró con gran esfuerzo que el agua no llegara al horno. Un mes después hubo un gran temblor, que por fortuna no causó ningún daño.
Finalmente, en 1935 se trasladó en un tren especialmente acondicionado el gran bloque de vidrio, de Corning, Nueva York a Pasadena, Cal., adonde llegó en perfectas condiciones.

Mientras tanto, en el California Institute of Technology se había instalado un gran taller óptico con una máquina pulidora que pesaba 160 toneladas, a cargo de J. A. Anderson y Marcus Brown.

El proceso de generar la curvatura deseada significaba profundizar en el centro casi 10 centímetros, desbastando casi cinco toneladas de vidrio. El segundo paso fue afinar la superficie hasta darle forma esférica, por medio de un proceso de esmerilado con granos de esmeril cada vez más finos.

Después, antes de pulir, se emplearon tres meses en lograr una buena limpieza sin granos de esmeril, tanto del espejo como de la máquina. En el proceso final de pulido y parabolizado se utilizaron 31 toneladas de abrasivos y casi 10 años. Se consideró listo para ser probado en noviembre de 1947.

El 3 de junio de 1948 tuvo lugar la ceremonia oficial de inauguración, donde estuvo presente la viuda de Hale y se develó un busto de bronce de su esposo, con una placa bautizando el telescopio con su nombre.

Al principio de los años 60, la Associated Universities for Research in Astronomy, comenzó el proyecto de construir dos telescopios reflectores de cuatro metros de abertura, para ser instalados uno en el observatorio de Kitt Peak en Arizona, y otro idéntico un poco más tarde en el cerro Tololo, en Chile.

Uno de los espejos era de Cervit y el otro de cuarzo fundido, ambos materiales con un coeficiente de expansión térmica despreciable. La inaguración del observatorio de Kitt Peak fue en junio de 1963.

Los principales telescopios refractores


Diámetro en m.
Constructor
Inició operaciones
Nombre oficial
Observatorio

1,01
Alvan Clark & Sons
1897
Yerkes, Univ. de Chicago
,89
Alvan Clark & Sons
1888
Refractor de 83 cm
Lick, en california, EUA
,83
Paul & Prosper Henry
1889
Observatorio de Niza, en Francia
,80
C. A. Stenheil
1899
Instituto Central de Astrofísica en Alemania Oriental
,76
John A. Brashear
1914
Refractor Thaw
Allegheny, en Pennsylvania
,74
Paul & Prosper Henry
1886
Lunette Bischoffsheim
Obs. de Niza en Francia
,71
Sir Howard Grubb
1894
Refractor visual de 64 cm
Old Royal Greenwich, en Inglaterra
,68
C. A. Stenheil
1896
Refractor Grosser
Archenhold Sternware, en RDA
,67
Sir Howard Grubb
1880
Refractor Grosser
Instituto de Astronomía de la Universidad de Viena
,67
Sir Howard Grubb
1925
El telesc. Innes
Estación del Observatorio Astronómico Sudafricano en Johannesburgo, Sudáfrica
,66
Alvan Clark & Sons
1883
Leander Mc Cormick en Virginia, EUA
,66
Alvan Clark & Sons
1873
Ecuatorial de 60 cm
Observatorio Naval de EUA en Washington
,66
Sir Howard Gribb
1899
El refract. Thompson
Observatorio Real de Greenwich, en Inglaterra
,66
J.B. Mc Dowell
1925
Refractor Yale-Columbia
Monte Stromlo, ACT, Australia

Los principales telescopios reflectores


Diámetro en m.
Constructor
Inició operación
Nombre oficial
Observatorio

6,00
Equipo de trabajo óptico de Leningrado
1976
Telescopio Altazimutal Bolshoi
Observatorio astrofísico Especial de la Unión Soviética.
5,08
J. A. Anderson Marcus Brown
1948
George Elery Hale
Monte Palomar, California
4,50
Centro de Ciencias Ópt. U. de Arizona
1979
Telescopio de espejos Múltiples
Kitt Peak, Arizona
4,20
1985
Islas Canarias, España
4,00
Taller Óptico de Kitt Peak
1976
Intermericano de cerro Tololo, Chile
4,00
Taller Óptico de Kitt Peak
1973
Nicholas U. Mayall
Kitt Peak, Arizona
389
Grubb-Parsons
1975
Anglo-Austral
Observatorio Angloaustriaco en Austria
3,80
Grubb-Parsons
1979
Infrarrojo del Reino Unido
Unidad del Observatorio Real de Edimburgo, Hawaii
3,60
Dominion
1979
Canadiense francés, hawaiano
3,57
Recherches et Études Optiques et de Sciences Connexes
1976
ESO 3.6 metros
Europeo del sur, Chile
3,05
Don O. Hendrix
1959
C. Donald Shane
Lick, California
300
Taller Óptico de Kitt Peak
1979
Infrarrojo de la NASA
Mauna-Kea, Hawaii

Fuente Consultada:
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Hitos de la Carrera Espacial Primera Mujer en el Espacio Perra Laika

carrera espacial

sputnik

SPUTNIK: PRIMER SATÉLITE (URSS) EN ORBITA

¿Cuándo se lanzó el Sputnik?
El 4 de octubre de 1957, fue lanzado el Sputnik 1 en la entonces Unión Soviética, en Kazakhstan, cerca de la ciudad de Leningrado.

Esto representó el primer lanzamiento exitoso al espacio. El Sputnik 1 no era mucho más que un transmisor de radio, pero su órbita de 90 minutos alrededor de la Tierra condujo a la era espacial.

EXPLORER: PRIMER SATÉLITE (EE.UU.) EN ORBITA

¿Cuándo lanzaron los Estados Unidos su primer satélite?
El lanzamiento soviético del Sputnik incitó a los Estados Unidos a poner en órbita su primer satélite: el Explorer 1.  El Comité Nacional Asesor en Aeronáutica (NASA), predecesor de la Administración Nacional de la Aeronáutica y el Espacio (NASA), adoptó un plan de la Marina estadounidense llamado Vanguardia para lanzar el primer satélite del país. No obstante, la recorrida de prueba del satélite, en diciembre de 1957, terminó en un incendio.  El Explorer fue lanzado con éxito hacia su órbita espacial alrededor de la Tierra el 31 de enero de 1958.

PRIMER SER VIVO ENVIADO AL ESPACIO (URSS)

El Sputnik 2, transportó en su viaje orbital a una perra, llamada Laika. Fue el primer ser vivo en viajar al espacio. Laika no mostró signos de sufrimiento por el lanzamiento o la falta de gravedad durante el viaje. Sin embargo, la Unión Soviética no había creado un método para traerla sana y; salva de regreso a la Tierra.

Una semana después del lanzamiento, Laika murió debido a la falta de aire. Unos 5 meses más tarde, el Sputnik 2 regresó a la Tierra y Laika quedó inmortalizada en la historia de vuelos espaciales.

PRIMER SER VIVO ENVIADO AL ESPACIO (EEUU)

¿Cómo se probó la cápsula Mercury?
En enero de 1961, la primera Mercury fue probada con un chimpancé llamado Ham que cumplió exitosamente el primer vuelo suborbital. Ham sobrevivió.

Unos cuatro meses más tarde, el astronauta Alan B. Shepard también sobrevivió a un exitoso vuelo suborbital.

PRIMER HOMBRE EN EL ESPACIO (URSS)

¿Quién fue el primer hombre en ir al espacio?
Este honor lo tuvo el cosmonauta soviético Yuri Gagarin, el 21 de abril de 1961. casi un año antes que Glenn. La Unión Soviética informó sobre un vuelo orbital totalmente exitoso de 1 hora y 48 minutos de la cápsula Vostok 1 tripulada por un astronauta. 

Más tarde se supo que hubo problemas en el reingreso debido a que la carcaza antitérmica protectora de la cápsula se había calentado hasta ponerse incandescente por las elevadas temperaturas. 

Gagarin tuvo que eyectarse y abrir su paracaídas hasta que finalmente aterrizó a salvo.
Esta información, incluyendo el grado de heridas de Gagarin, no fue revelada hasta unos treinta años más tarde.

PRIMER HOMBRE EN EL ESPACIO (EEUU)

¿Quién fue el primer astronauta estadounidense en dar una órbita alrededor de la Tierra?
El astronauta John Glenn Jr. Fue el primer estadounidense en dar una órbita a la Tierra. Su cápsula Mercury, llamada Friendsbip 7, fue lanzada el 20 de febrero de 1962 y lo mantuvo en órbita durante 5 horas.  En el reingreso a la atmósfera, la NASA

PRIMERA MUJER EN EL ESPACIO (URSS)

El 16 de  junio de 1963, se lanzaron la Vostok 5 y la Vostok 6. Su plan también era encontrarse y establecer contacto radial en el espacio.

Lo que la mayoría de la gente no sabía en esa época era que la Vostok 6 iba comandada por una cosmonauta mujer, Valentina Tereshkova, de 26 años de edad. (La primera estadounidense astronauta fue Sally Ride, a bordo del transbordador espacial Challenger unos 20 años después.) Los vuelos de las Vostok 5 y 6 transcurrieron tranquilamente; la Vostok estableció el récord de permanencia de una persona en el espacio: 5 días.

PRIMERA MUJER EN EL ESPACIO (EEUU)

Sally Ride nació en Los Ángeles en 1951, y fue una de las cinco mujeres seleccionadas en 1978 (entre 9000 pedidos), para volar en el nuevo sistema de la lanzadera espacial  que se puso en marcha 18 de junio 1983.  Ella tiene un doctorado en Física por la Uni

PRIMER PASEO ESPACIAL (URSS)

El 18 de marzo de 1965, Alexei Leonov salió al espacio abandonando su nave Vokshod 2, mientras su compañero Pavel Belyayev quedaba a los comandos. Leonov llevaba un traje espacial y estaba conectado a la Vokshod 2 por una cuerda y comunicación radial. Su caminata transcurrió con éxito, pero el traje espacial de Leonov se había expandido y el astronauta debió reducir la presión del aire adentro de éste para poder volver a entrar en la nave. El regreso fue un poco traumático, y tuvieron que descender a mas de 1000 Km. de distancia del objetivo, pasando la noche en un bosque frente a un fuego improvisado.

PRIMER PASEO EN EL ESPACIO (EEUU)

Edward Higgins White II (1930 – 1967) fue un famoso astronauta norteamericano. Nació en San Antonio, Texas, Estados Unidos y fue formado en ingeniería aeronáutica en 1959 por la

CRONOLOGÍA DE LOS HITOS ESPACIALES

———4 OCT. 1957———
Empieza la Era Espacial con el lanzamiento del primer satélite soviético, el Sputnik 1. Fue puesto en órbita
alrededor de la Tierra.

———3 NOV. 1957———
Los soviéticos envían el Sputnik 2, tripulado por la perra Laika.

———1958———
Estados Unidos envía su primer vehículo espacial, d Explorer 1.

———1959 ———
Los soviéticos envían la sonda lunar Luna 2, que se estrella en la superficie lunar. La Luna 3 tiene éxito y envía las primeras fotografías de la Tierra vista desde el espacio.

———12 ABR. 1961 ———
El cosmonauta Yuri Gagarin realiza el primer vuelo tripulado.

——— MAYO 1961 ———
El presidente de Estados Unidos,John Kennedy, propone al estado la tarea de poner un hombre en la Luna antes del final de la década.

——— 20 FEB. 1962 ———
John Glenn, a bordo del Friendsbip 7, se convierte en el primer estadounidense que órbita la Tierra.

———10 JUL. 1962 ———
Se lanza el Telstar, primer satélite de telecomunicaciones comerciales. Transmite la primera película a través del Atlántico.

———1963 ———
La cosmonauta soviética Valentina Tereshkova se convierte en la primera mujer que sale al espacio.

———1965———
La sonda espacial estadounidense Maríner 4 proporciona las primeras fotografías de Marte. El soviético Alexei Leonov realiza el primer paseo espacial; tres meses después le sigue el estadounidense Edward H. White.

———1966———
La sonda espacial soviética Luna 9 alcaliza la superficie lunar y envía fotografías de ella.

———1967———
Los soviéticos instalan la estación espacial (nave espacial que puede mantenerse años en órbita) Soyuz, primera en la
historia. La misión acaba en desastre: la nave se estrella al regresar a la Tierra. Tres astronautas estadounidenses mueren calcinados durante una prueba de lanzamiento.

———1968———
Lanzamiento de la nave tripulada Apollo 8.

———2O JUL. 1969———
Los estadounidenses Neil Armstrong y Edwin Aldrin, de la misión Apollo 11, son los primeros hombres que caminan
sobre la superficie lunar.

———1970 ———
La nave soviética no tripulada Luna 16 recoge muestras de la superficie lunar.

———1971 ———
Una sonda soviética envía fotografías de Marte.

———1972 ———
Estados Unidos realiza su último vuelo tripulado del proyecto Apollo. Los astronautas son Eugene Ceñían
y Harrison Schmitt.

———1973———
Se instala el Skylab, la primera estación espacial estadounidense.

———1975———
Primeras operaciones conjuntas de Estados Unidos y la Unión Soviética con la misiones Apollo y Soyuz.

———1976———
Se lanza el Viking estadounidense para explorar la vida en Marte. Toma muestras de la superficie del planeta.

———1977———
Los Estados Unidos lanzan las sondas Voyager 1 y 2 para tomar fotografías de los planetas más remotos.

———1981———
Se pone en órbita el primer transbordador espacial.

———1983———
El presidente estadounidense Ronald Reagan da su conformidad a la Iniciativa de defensa estratégica,
que consiste en la instalación de defensas anti-misiles en el espacio.

——— 28 ENE. 1986———
Explosión del Challenger. Mueren sus siete tripulantes.

———1986———
La Unión Soviética instala la Estación espacial 3-

Consecuencias de la Erupcion de un Volcan Composicion de la Lava

La Erupción de Un Volcán – Los Desequilibrios Ecológicos

Los volcanes
Las erupciones volcánicas constituyen uno de los fenómenos geológicos que más han impresionado al ser humano, por su grandiosidad y por los terribles efectos que provocan.

El vulcanismo es un hecho geológico que tiene lugar en la corteza terrestre y que se manifiesta arrojando a la superficie material fundido o magma como resultado de intensos desequilibrios en el seno de la corteza, originados durante las fricciones que ocurren entre las grandes masas geológicas sometidas a fenómenos de compresión y deslizamientos.

Generalmente los volcanes aparecen como promontorios muy elevados, formados por la solidificación del magma expulsado.

Desde antiguo estas erupciones han sido muy temidas por el hombre, y hasta el mito se ha ocupado de ellas. Recordemos el Hefesto o Vulcano de la mitología grecorromana: el fuego de las fraguas de sus herrerías salía al exterior y hacía temblar la Tierra.

Cómo es un volcán
Un cono volcánico se forma por la acumulación del magma solidificado. En su cima se halla el cráter, que se prolonga hacia el interior por la chimenea por donde ascienden las materias en fusión o los gases. Muchas veces, en torno del cráter principal se originan cráteres secundarios o parásitos formados por las bifurcaciones de la chimenea central. La montaña que forma el volcán en ignición tiende naturalmente a crecer en altura y volumen. El Chimborazo (Ecuador) mide 6.267 metros.

La rapidez con que se forman estos montes volcánicos suele ser sorprendente. El cono del Monte Nuovo (Nápoles) surgió en la noche del 27 al 28 de setiembre de 1538, ante los azorados ojos de los pobladores. El Parícutin (México, febrero de 1943) es otro ejemplo.

Hay conos volcánicos de una regularidad perfecta (Cotopaxi en Ecuador) y otros que tienen deformaciones debidas a los distintos agentes de la erosión. Existen otros que presentan en sus flancos conos secundarios o adventicios cuyo número puede variar a menudo (Etna).

Las dimensiones de los cráteres varían: algunas son enormes (Vesubio, Poás). Los cráteres volcánicos sin conos son de explosión están formados por gases que han arrojado los fragmentos del fondo rocoso en torno de la chimenea volcánica sumamente abierta, pero sin producto sólido alguno procedente del magma interior Otros volcanes curiosos son los denominados volcanes-calderas. Provienen del hundimiento o explosión de la zona central de un gran cono volcánico, de cual solamente quedan los flancos.

El sábado 22 de octubre de 2005, el volcán Sierra Negra, en las islas Galápagos, luego de 27 años de inactividad, comenzó a expulsar cenizas y gases. Tres días después, la lava comenzó a fluir. Este, sin embargo, no fue el único ejemplo eruptivo del año. Una semana antes, un grupo de observadores de El Salvador anunció que la columna de gases del volcán Santa Ana o Ilamatepec era muy débil y difusa. (ver mapa de Volcanes Activos)

Tres horas después era ya de 300 metros. Las piedras y cenizas que arrojó el Santa Ana mataron a dos personas. No obstante, desde el mes de junio se había intensificado su vigilancia debido a que se habían registrado microsismos de mayor intensidad de los que suele mostrar ese volcán.

Éstas fueron dos de las cinco erupciones volcánicas que tuvieron lugar el año pasado. En los últimos 10.000 años se han activado 1.415 volcanes en el mundo. Una de las peores fue la de 1815 cuando el Tambora, en Indonesia, se cobró la vida de 92.000 personas.

Animación Educativa Sobre Los Volcanes

Lago Toba, la más salvaje

Más cerca en el tiempo fue la explosión del Pinatubo, en Filipinas, que tuvo un saldo de 800 víctimas fatales. Algunos, como éste, entran en erupción cuando ya nadie se lo espera. Otros, como el Estrómboli, el Etna o los de Hawaii, se activan con frecuencia.

¿Pero qué ocurre en las entrañas de la Tierra? Sucede que nuestro planeta se comporta como un alto horno; a unos 100 km de profundidad, las rocas se funden para formar el magma, que tiene tendencia a ascender hacia la superficie y escapar aprovechando las zonas más frágiles de la corteza terrestre.

Y, en ciertas ocasiones, dicen algunos especialistas, la Tierra experimenta una erupción tan salvaje que hasta cambia el clima y amenaza la existencia sobre el planeta. Hace 75.000 años se produjo la mayor erupción de la historia en el Lago loba, Sumatra. Hay quienes opinan que existe otra en ciernes y que es probable que tenga un volcán que yace bajo el Parque Yellowstone, en EE.UU.

Más de 40 especialistas afirman que este supervolcán ya ha entrado en erupción varias veces. Las últimas mediciones confirman que el suelo del parque emite entre 30 y 40 veces más calor que el promedio de Estados Unidos. “No queremos ser catastrofistas —dice uno de los geólogos—, pero debemos reflexionar sobre la posibilidad de que sea el turno de un volcán”.

Lava en estudio El Etna, arriba, ha entrado en erupción varias veces en los últimos 100 años. La imagen de la izquierda muestra un volcanólogo recogiendo lava para estudiarla posteriormente. 

 LA LAVA DE LOS VOLCANES:  En el interior de la Tierra se encuentra en su mayor parte en estado liquido e incandescente a elevadísimas temperaturas. A esa inmensa masa de roca fundida, que además contiene cristales disueltos y vapor de agua, entre otros gases se la conoce como magma terrestre. Cuando parte de ese magma surge hacia el exterior a través de los fenómenos volcánicos, se la llama lava; 1000 °C es la temperatura media de la lava líquida

Al alcanzar la superficie de la corteza o el fondo oceánico , la lava comienza a enfriarse y se convierte así en diversos tipos de roca sólida, según su composición original. Ésta es la base de los procesos por los que se ha formado la superficie de nuestro planeta y por los cuales sigue en permanente cambio. Los científicos estudian la lava para conocer en profundidad nuestro planeta.

La lava es la sangre de toda erupción. Está cargada de vapor y de gases como el dióxido de carbono, el hidrógeno, el monóxido de carbono y el dióxido de azufre. Al salir, estos gases ascienden violentamente a la atmósfera, formando una nube turbia que descarga, a veces, copiosas lluvias. Los fragmentos de lava que son arrojados fuera del volcán se clasifican en bombas, brasas y cenizas. Algunas partículas, grandes, vuelven a caer dentro del cráter. La velocidad eje la lava depende en gran parte de la pendiente de la ladera del volcán. Hay corrientes de lava que pueden llegar a los 150 Km. de distancia

Composición mineralógica
La lava tiene un alto contenido de silicatos, que son minerales livianos formados de rocas y constituyen el 95% de la corteza terrestre. En proporción, el otro elemento importante es el vapor de agua. Los silicatos determinan la viscosidad de la lava, es decir, su capacidad de fluir, cuyas variaciones han originado una de las clasificaciones más difundidas: la lava basáltica, andesítica y riolítica, ordenadas de menor a mayor contenido de silicatos.

Poder destructor de los volcanes
La predicción de las actividades volcánicas puede reducir o evitar las pérdidas de vidas, pero poco puede hacer sin embargo para controlar los daños de los elementos y bienes inamovibles. Se ha intentado incluso desviar las corrientes de lava utilizando chorros de agua para enfriarla, y formar una sólida pared de lava solidificada bombardeando a continuación los costados de la colada para dividirla en varias corrientes de menor tamaño.

Durante la erupción del Etna de 1971 se vieron anegados por la lava casas, viñedos y carreteras. Nada pudo hacerse para prevenirlo, pues la desviación de las corrientes de lava es ilegal en Sicilia. Las coladas de lava y los espesos mantos de escoria inutilizan la tierra para su explotación agrícola durante muchos años; el ritmo de recuperación es más rápido en las regiones tropicales húmedas, pero muy lento en climas severos.

Tanto la avalancha de lodos como la colada de lava, se originaron por una erupción surgida de una fisura (aún humeante) que apareció en la parte superior del flanco del Villarica. Las erupciones más destructivas son las grandes erupciones explosivas con desprendimientos de piroclastos, que dan lugar a coladas de cenizas y a avalanchas de lodos. La mortalidad de estas erupciones depende de la densidad de población de la zona; la que produjo mayor número de víctimas mortales tuvo lugar en Indonesia.

Durante la erupción del Tambora en 1815 murieron 12.000 personas, pero otras 70.000 fueron víctimas de las enfermedades y el hambre que siguieron a esta gigantesca erupción. Para minimizar el riesgo de las avalanchas de lodo en Kelu, Java, se construyeron una serie de túneles que drenaron el lago surgido en el cráter del volcán.

Historia de la Medición del El Tiempo Desarrollo del Reloj Medir

INTRODUCCIÓN:  Las cuatro dimensiones conocidas hasta el momento, las conforman el tiempo y las tres que describen un espacio en sus tres coordenadas X, Y, y Z, en donde se encuentra el Universo.  Especulaciones se han dado, buscando una quinta dimensión, donde podría existir la antimateria o un Universo paralelo al nuestro, pero sin una comprobación científica valedera.

Refiriéndonos a la primera dimensión, el tiempo, cualquier persona que por un momento  haya pensado sobre él, estará de acuerdo con San Agustín (354-430 d. de C.). San Agustín en sus ”Confesiones” (XI, 14)(1) escribió: “Que es el tiempo? Como nadie me pregunta, siento que yo lo sé. Pero si tengo que explicarlo, no lo sé.” Es decir una definición concluyente del tiempo parece imposible darla. Cuando empezamos a definirlo ya se nos ha escapado y si lo reducimos a un concepto se mueve aun más lejano de nuestro alcance.

Tratando de estar de acuerdo con la concepción del tiempo dado por la lengua alemana en el sentido de que el tiempo es derivado de sucesos de ayer, hoy y mañana, podemos concluir que cuando pensamos en el tiempo estamos pensando en la vida, el nacer y morir, porque tenemos conciencia de esa realidad.

Por otra parte el Universo ocupa las otras tres dimensiones, encerrando aún grandes misterios para los científicos que incansablemente tratan de resolver. Ya desde los inicios de los primeros cosmólogos Sócrates, Platón, Aristarco de Samos, y Arquímedes que contemplaron el Sol, la luna y las estrellas, se preguntaban: ¿Qué somos, de dónde  venimos, a dónde vamos?; pasando por Aristóteles, Tolomeo, Copérnico, Kepler, Lemaitre,  quienes descubrieron las primeras leyes que rigen el movimiento de nuestro sistema solar, hasta Newton, Einstein, Hubble, Sandage, Zeidovich, Hawking y otros que han contribuido con sus teorías y descubrimientos para determinar que el Universo está en expansión,  continuamente el hombre ha querido encontrar el origen del Universo, si pertenecemos a un sistema cerrado o abierto y si este Universo algún día, dentro de miles de millones de años, lanzará su último suspiro, para dejar de existir.

El Universo sigue siendo inquietante,  misterioso. ¿Cuánta vida y atractivos esconde ese espacio tan infinito como desconocido?  ¿Qué hay más allá de nuestra vista, o de nuestro entendimiento? ¿Cuánto nos queda por aprender o descubrir de él? ¿Podremos algún día tener la capacidad para navegar a través de él?

Por ejemplo Aristarco de Samos (III a. de C.), sabio griego, ubicó al Sol en el centro del Universo y los demás astros girando alrededor de él. Arquímedes publicó estos trabajos en su libro “El Arenario”. Claudio Tolomeo (II d. de C.), elaboró otra teoría, donde la Tierra era el centro del Universo y estaba quieta. La Luna, Mercurio, Venus y el Sol los colocaba  casi en línea recta y a medida que se iba alejando, colocaba a Marte, Júpiter, Saturno a los que él llamaba estrellas inmóviles.

Nicolás Copérnico en 1543, en su libro “La revolución de las Esferas Terrestres”, publicó que el Sol estaba en el centro y los planetas a su alrededor, girando en movimientos circulares uniformes, lo cual fue confirmado por el  italiano Galileo Galilei, al estudiar las fases del planeta Venus, descubriendo experimentalmente que este giraba alrededor del Sol. Isaac Newton en el siglo XIX,  formuló las leyes de gravitación universal y dio explicación a las leyes del movimiento formuladas por Kepler. En 1928 el belga Georges Lamaitre, construyó un modelo en 2 expansión, mediante el cual era posible predecir lo descubierto por Hubble , al observar que las galaxias se alejaban entre sí al verificar el corrimiento al rojo de sus velocidades  relativas y que confirmaba la teoría de un universo en expansión.

Como puede verse, teorías, se han escrito muchas, algunas ya han desaparecido, otras han resistido las críticas y análisis de la comunidad científica, o cuentan con adeptos y las teorías más audaces persisten aun, aunque el único seguidor, sea su expositor. Bueno al fin  de cuentas todo el mundo tiene derecho a exponer sus ideas. Cuando Einstein, con su  pensamiento puro y visionario, expuso la Teoría de la Relatividad, nadie se lo creyó, solo el tiempo y comprobaciones científicas le dieron la razón.

En la figura No. 1, el telescopio Espacial Hubble, muestra una de las fotografías más interesantes del universo profundo visible jamás obtenido por la Humanidad. Este ha recibido el nombre de Campo Ultra profundo y el Hubble para su realización empleó una exposición de más de un millón de segundos, lo cual represento 400 órbitas del telescopio  espacial en torno a la Tierra. La imagen revela las primeras galaxias que emergieron de las llamadas “edades oscuras”, los cuerpos que comenzaron a calentar el frío y oscuro Universo poco tiempo después del Big Bang. Ante esa inmensidad del Universo los científicos se  vieron obligados a inventar una magnitud de medida: el «año luz», esto es, la distancia que recorre la luz en un año (9.463.000.000.000 kilómetros).

Otro de los misterios que se vienen estudiando dentro del Universo son los llamados Agujeros Negros. A partir de la década del 60 del siglo pasado, comenzaron a descubrirse  cuerpos celestes que venían a corroborar apreciaciones teóricas anteriores de hace más de dos siglos.

El concepto de un cuerpo tan denso que ni la luz pudiese escapar descrito en un artículo  enviado en 1783 a la “Royal Society ” por un geólogo inglés llamado John Michell quien calculó que un cuerpo con un radio 500 veces el del Sol y la misma densidad, tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible. Posteriormente  Laplace en 1796 en Exposition du Systeme du Monde, cuando demostraba su teorema que la fuerza de atracción de un cuerpo muy pesado puede ser tan grande, que la luz no pueda fluir fuera de él, lo confirmó matemáticamente. Con el avance de la ciencia  astronómica este concepto ha ido tomando mayor fuerza y ciertas observaciones hechas en   el cosmos, confirman su existencia, habiéndose bautizado dichos cuerpos como agujeros negros.

El hecho de que se hayan detectado y observado ciertas singularidades en el cosmos donde aparentemente no hay emisión de ninguna clase de energía, se ha relacionado con los cálculos teóricos que demuestran que cualquier objeto que emita energía desde un agujero negro, aparecerá indetectable desde el exterior ya que será tal la fuerza gravitacional generada por él, que impedirá que la luz (fotón portador de luz) salga y solo por su influencia gravitacional enorme a su alrededor se conoce su existencia.

Desde que el hombre comenzó a estudiar y comprender el tiempo y el Universo, como uno estaba ligado al otro, la raza humana empezó a progresar. Nuestros ancestros empezaron por estudiar las variaciones del día, como había un periodo de claridad seguido de un periodo de obscuridad, después comenzaron a observar ciclos regulares de las fases de la  luna, determinando que entre uno y otro cambio igual transcurrían aproximadamente 29,5días, después pudieron determinar las estaciones y como éstas tenían también un siclo regular pero mucho más largo que el ciclo lunar, así pudieron llegar al año, que es el periodo de rotación de la tierra alrededor del Sol y debido a la inclinación del eje de la tierra con relación a su órbita, da lugar a que la luz del Sol llegue a la Tierra en diferente ángulo a medida que ésta rota alrededor de él.

Después observando las noches pudieron determinar que las posiciones de los astros y las estrellas también tenían un significado en el transcurso del tiempo. Las civilizaciones pasadas, plasmaron estas observaciones a través de inmensas construcciones y monumentos en diferentes partes del mundo y que hoy en día nos permite entender como el conocimiento sobre el tiempo y el cosmos les permitió desarrollarse. Las civilizaciones que tenían más conocimiento sobre el tiempo y el Universo se desarrollaban mucho más rápido que las que no lo poseían.

En esta introducción no se puede terminar sin mencionar a Carl Edward Sagan (1934- 1996), venía de una familia pobre de emigrantes rusa, desde muy temprana edad, se interesó por el Cosmos y el porqué de todas las cosas que más tarde le llevarían a ser un pionero y un popular astrónomo, exobiólogo y divulgador científico en todo el mundo. Fue pionero también en campos como la exobiología y promotor del proyecto SETI (“Search of ExtraTerrestreal Inteligence” literalmente: Búsqueda de inteligencia extraterrestre).

Se dio a conocer públicamente en la serie para la televisión de Cosmos: Un viaje personal, presentada por él mismo entre 1977 a 1980, escrita y producida para la KCTE deCalifornia. Fue titular de la cátedra David Duncan de Astronomía y Ciencias del Espacio de la Universidad de Cornell y director del Laboratorio de Estudios Planetarios de dicha universidad. Decía Sagan: “Somos el medio para que el Cosmos se conozca a sí mismo”.

Toda una realidad que me motivo a elaborar este libro.

UNIVERSO

Figura No. 1. El Universo Profundo o Campo Ultra profundo(3)

 CAPITULO PRIMERO EL TIEMPO:

LA MEDIDA DEL TIEMPO

El segundo es la unidad base de medición del tiempo  Pero que tanto es un segundo? Normalmente lo relacionamos con un suceso instantáneo. Pero que tan lejos estamos de la realidad.

Realmente en un segundo, un montón de cosas pueden pasar y verdaderamente pasan: La luz atraviesa aproximadamente una distancia de 300.000 Km., el hombre más veloz recorre 10 metros y así sucesivamente podríamos enumerar diferente eventos que ocurren en la unidad del tiempo.

La primera definición oficial del segundo data de 1875, cuando el Comité Internacional de  Pesos y Medidas, estableció el Sistema Estándar de Referencia Métrico, cerca de Paris. El segundo fue definido como 1/86400 parte de la medida de un día solar, computado sobre un número suficiente de años para reducir el error. Esta definición fue reemplazada en 1956  por la siguiente: “El segundo es igual a 1/31.556`925.947 parte del año tropical calculado a las 12:00 del día primero de enero de 1.900 en Greenwich.

En 1956, sin embargo, se fundó un Comité Internacional para revisar y definir el segundo, conduciendo a la dada en 1967 y que permanece inalterable hasta el momento: “El segundo es la duración de 9.162`631.700 periodos de radiación correspondiente a la transición entre los dos niveles híper finos del estado fundamental del átomo de Cesio 133.”

Ahora Ud. Sabe que está diciendo cuando promete: “Regreso en un segundo”, o “Espere un segundo”, expresiones usuales a cada segundo.

¿CÓMO SE MIDE EL TIEMPO?

En la antigüedad, el tiempo fue medido por la variación de la longitud de la sombra proyectada por una varilla al recibir el Sol. También fue medido notando que tanto se tomaba en pasar cierta cantidad de agua de un recipiente a otro, a través de una tubería delgada. Esta era la forma empleada por los romanos de la antigüedad para medir el tiempo permitido en los discursos frente a la corte. No solo el agua fue empleada como elemento, otros como la arena o el quemado de cierta cantidad de cera, también se usaron como medio para medir el tiempo.

Pero no fue sino hasta la edad media que se visualizó que la exacta medición del tiempo,  solo era posible con la ayuda de procesos periódicos. El péndulo con su movimiento oscilante, es la representación obvia de este principio.

Se ha afirmado que el astrónomo Árabe Ibn Junis uso el péndulo en sus estudios  astronómicos como elemento para medir el tiempo en el siglo XV. En los años recientes se ha descubierto en los manuscritos y planos de Leonardo Da Vinci, el uso del péndulo como elemento primario para medir el tiempo.

En realidad el uso de un elemento regulado por el péndulo vino a mediados del siglo XVII mucho después de estarse usando primero una corona no balanceada y después reemplazada por una rueda balanceada , como medio para medir el tiempo y al cual se le denominó reloj.

DESARROLLO DEL RELOJ

El reloj como mecanismo para medir el tiempo tuvo un periodo relativamente lento de  evolución.  En 1270 se manifestaba primero en iglesias y más tarde en edificios públicos al comienzo  del siglo XIV.

El siguiente desarrollo consistió en el empleo en modelos planetarios complicados,  operados por un sistema de reloj que tuvo su aparición en el siglo XIV, siendo refinados durante los dos siglos siguientes. El ejemplo más antiguo conocido es el gran reloj planetario construido por el Astrónomo y Matemático ingles Abbot Richard Wallingford, para el Monasterio Benedictino de San Albán al comienzo del siglo XIV. Este fue seguido por una producción independiente entre 1348 y 1364 por el Profesor de Astronomía, Medicina, Astrología, Filosofía y Física de la Universidad de Padua, Giovanni De Dondi.

La tradición de estos modelos planetarios continuó hasta el siglo XVI con ejemplos aun  más sofisticados. Juanelo Turriano, mecánico al servicio del Emperador Carlos V, desarrolló un gran modelo astronómico, donde gasto 20 años en su diseño y tres años y medio en su construcción. No pudo terminarlo antes de la muerte del Emperador en 1558 y  fue modificado por Turriano posteriormente de acuerdo con la reforma del calendario.

La preocupación científica durante el siglo XVII en las áreas de Astronomía, Navegación y Mecánica y la necesidad de demostraciones científicas, hicieron que se pensara en el reloj y su adaptación real para propósitos científicos, particularmente en Astronomía. Fue en este siglo donde apareció el péndulo, siendo sus principios estudiados por Galileo Galilei, quien visualizó su potencial aplicación al reloj y su empleo en la navegación para determinar la longitud en el mar. Los grandes viajes hechos por España y Portugal durante el siglo XVI,  después del descubrimiento de América por Colón, determinaron la gran necesidad de hallar la longitud en el mar. En 1530 Gemma Frisius, propuso que esto era posible  utilizando alguna forma de medir el tiempo, efectuándose numerosos intentos para su logro.

En 1598, el Rey de España ofreció un premio de 1.000 coronas por la solución práctica del problema, siendo adicionada otra oferta hecha por el Estado General de Holanda por 10.000 florines. Estos premios no fueron ganados y no precisamente porque no se hubiese hecho un gran esfuerzo para conseguir la solución.

En 1612 Galileo comenzó sus primeros estudios serios sobre la solución del problema. En  1636 propuso que la longitud podría determinarse, graficando los satélites de Júpiter, descubiertos por él, durante sus observaciones astronómicas. Sin embargo se requería un telescopio muy exacto a bordo, lo que dificultaba el objetivo, además del empleo de un reloj de tan aprobada exactitud imposible de construir para la época. En 1641 Galileo  traspasó a su hijo Vincenzio Galilei, el concepto del reloj regulado por un péndulo.

Vincenzio trató de realizarlo pero no pudo completarlo antes de su muerte, en 1649. El proyecto fue realizado finalmente por el mecánico Johann Phillip Trefler al Príncipe Leopoldo De Medici, algunos años mas tarde. Si Galileo hubiese terminado su proyecto, indiscutiblemente su reloj regulado por un péndulo hubiese sido superior al patentado por  Christian Huggens en 1657. Sin embargo, Galileo logró el desarrollo de la rueda volante para relojes, que solo vino a ser superado en exactitud a mediados del siglo XVIII.

Los experimentos con diferentes métodos para determinar la longitud en el mar continuaron a través del siglo XVII, Huggens desarrolló un reloj marino, que utilizó el resorte balanceado inventado por él, pero no tuvo uso práctico. Los hermanos Campani de Roma, propusieron varias soluciones al Rey Luís XIV y Archiduque Ferdinando De Medici, pero  ninguno de ellos tampoco tuvo uso práctico. Los premios ofrecidos por España y Holanda,  fueron reemplazados al comienzo del siglo XVIII (1704), por el ofrecido por el Parlamento Inglés (20.000 Libras esterlinas). Aunque se hicieron grandes esfuerzos, solo en 1764 se logró con el invento del cronometro por John Harrison, quien gasto la mayor parte de su  vida para conseguirlo.

El siguiente desarrollo importante, fue el de lograr un reloj de pulsera, para lo cual se hizo necesario realizar un gran trabajo en muchos campos hasta llegar al perfeccionamiento del mecanismo minutero. Fue necesario encontrar el material que ofreciera la suficiente fortaleza en dimensiones muy pequeñas. El péndulo eléctrico fue introducido en el siglo  XIX y el primer reloj eléctrico de pulsera fue hecho en Suiza en 1952. El circuito eléctrico consistía en un micro-contacto, una batería y una bobina.

La necesidad de medir el tiempo cada vez más exactamente, llevó al desarrollo del reloj  electrónico controlado por un oscilador de cristal de cuarzo hecho en 1928 y tenía el tamaño de una maleta. En 1934 la técnica electrónica desarrollada fue capaz de registrar la desviación anual de la velocidad de rotación de la tierra con la ayuda del reloj de cristal de  cuarzo. Esta desviación no fue conocida por los astrónomos sino hasta 1951. El primer reloj  de pulsera de cristal de cuarzo fue desarrollado entre 1967-1970. Este reloj aparte del cristal de cuarzo, pila y circuito electrónico, tenía las mismas partes que el reloj mecánico.

Su principio se basa en el efecto piezo-eléctrico del cuarzo cuando se aplica un voltaje alterno,  el cual produce oscilaciones a altas frecuencias, siendo reducidas a un impulso por segundo  para controlar un motor de paso. De esta forma se consigue exactitudes mayores que con los relojes mecánicos. Hoy en día se han mejorados en forma increíble este tipo de relojes de cuarzo, habiéndose introducido innovaciones en la presentación del tiempo en forma numérica con el despliegue de cristal liquido (LCD) y en el uso de pilas, incluyendo  recargables con energía solar o lumínica. Los últimos avances de la ciencia llevaron al desarrollo del reloj atómico, como el empleado para la definición del segundo, empleando el átomo de Cesio 133, que introduce un error de un segundo en 30.000 años, y el más  reciente desarrollado en Estados Unidos en 1999, con un error de un segundo en 20 millones de años.

RELOJ SOLAR


Figura No. 2. Reloj solar hecho en St. Rémy de Provence (6)

Desde el desarrollo de los primeros relojes empleando diferentes medios físicos como el  Sol, agua, arena, pasando por medios mecánicos utilizados en torres, iglesias y por monarcas y reyes por sus costos, hasta los hechos hoy en día y al alcance de cualquier persona, el reloj ha conservado su símbolo majestuoso de poderío, donde el mundo, incluyendo al hombre, gira alrededor de él, como magnetizado por el pequeño tic-tac que inexorablemente va marcando el tiempo, indicándonos no solo cuanto tiempo el universo ha existido, sino cuanto tiempo de vida nos queda por vivir.

EL CALENDARIO

La voz calendario⁸ procede de calendas y según Pérez Millán “es la combinación de  elementos cronológicos y consiguiente distribución del tiempo, usada en cada país para regular la actividad humana, señalando los días y épocas laborales y las festividades  religiosas y civiles”. Históricamente el desarrollo del calendario tuvo su dependencia de las  observaciones astronómicas. El día es medido de la rotación de la tierra sobre su eje, la semana se aproxima al cambio de fase de la luna, el mes es medido de la revolución de la luna alrededor de la Tierra y el año de la revolución de la Tierra alrededor del Sol.

Nuestros antepasados, particularmente los babilonios, basaron su calendario en el ciclo de  la luna y la medida lunar de los años ha sido preservada en el calendario moderno por los judíos, chinos y musulmanes. En contraste, los egipcios basaron su calendario en el Sol, siendo figura prominente en su religión. La civilización egipcia dependía del crecimiento
estacional del Nilo, el que fue asociado en forma muy cercana al ciclo solar. En la  antigüedad algunas civilizaciones determinaban el año solar observando una estrella brillante después de que se hacía invisible por la proximidad del Sol.

A menudo Sirius fue utilizada con este propósito. Promediado estas observaciones se  encontró que el año solar daba cerca de 365 días. Los sumerios fueron los primeros en dividir el año en 12 unidades, fueron ellos también los primeros en dividir el día, y lo hicieron siguiendo el mismo patrón de divisiones. Así como su año constaba de 12 meses y  cada uno de ellos de 30 días, sus días consistían en doce “danna” de 30 “ges” cada uno, sin embargo fueron los egipcios los que introdujeron el día de 24 horas.

En la Roma antigua, los meses se basaron en el ciclo lunar. Los Pontífices observaban la aparición de la luna creciente después de la luna nueva, para poder declarar el comienzo de un nuevo mes. Este primer día era llamado “Kalendae”, que significa llamamiento. Nuestra palabra calendario se deriva de este término.

Desafortunadamente para nuestra medida de tiempo, el ciclo lunar no corresponde a un  número exacto de días, ni la Tierra efectúa una órbita completa alrededor del sol, en un número exacto de días. El ciclo lunar es de 29.53059 días, la órbita terrestre alrededor del Sol toma 365.242196… días. De esta manera 12 meses son demasiados cortos para un año
y trece demasiado largo. Nuestra semana de siete días (basados en la religión), aunque muy  cercanos a la fase lunar, tampoco es un factor de periodo lunar, mes o año.

Cuando los romanos adoptaron el año solar Egipcio en la época de Julio Cesar, su propio calendario lunar-solar tenía demasiado error. Introducido a Roma por un Astrónomo Sosígenes de Alejandría, el calendario Egipcio fue ordenado para su uso oficial Romano por Julio Cesar en el año 45 A.C. y fue llamado calendario Juliano y se basaba en el año  solar de 365.25 días. El año fue dividido en meses, de los cuales once contenían 30 o 31 días y el doceavo solo 28 días.

El primer mes era marzo y el último febrero. Julio recibió su nombre después de Julio Cesar y Agosto después de Augusto Cesar. Ambos meses  recibieron 31 días en honor de los dos Cesares. El séptimo mes fue llamado septiembre, el  octavo octubre, el noveno noviembre y el décimo diciembre, derivados del latín septem, octo, novel y decem, que significan siete, ocho, nueve y diez respectivamente.

El calendario Juliano, perdía aproximadamente un cuarto de día por año. Esta pérdida era  corregida agregando un día extra al doceavo mes (febrero), cada cuatro años, llamada año bisiesto. Sin embargo este calendario gradualmente iba moviéndose con respecto a la  posición estacionaria del Sol con relación a las estrellas. El año Juliano esta desfasado once  minutos cuatro segundos más del tiempo aparente tomado por el Sol en aparecer en la  misma posición después de la órbita de la tierra alrededor de él.

En el año 1500 D.C., el error era aproximadamente de once días. Las festividades religiosas cristianas basadas en la semana santa, asumían fijo el Equinoccio de Vernal, el 21 de marzo y en consecuencia iban  quedando desfasados con el paso de los años con la realidad. Por consiguiente, el Papa  Gregorio XIII dio instrucciones para corregir la situación anterior, al Padre Jesuita Alemán Cristopher Schlussel, cuyo nombre latín era Clavius. (Clavius está inmortalizado por el nombre de un gran cráter lunar cerca al polo sur de la luna).

Clavius utilizó un esquema
ideado por el Astrónomo Napolitano Aloysius Lilius, en el cual los siglos no tendrían años  bisiestos a menos que fuesen divisibles por 400. Para corregir el calendario, el Papa Gregorio ordenó que el día 15 de octubre de 1582, fuese el 4 de octubre. A pesar de las grandes protestas de la gente por haberles robado 11 días de su vida, la corrección se  efectuó y el nuevo calendario fue llamada Gregoriano. El nuevo calendario Gregoriano  también movió el comienzo del año de marzo 25 a enero 1⁰, así que realmente se perdieron aparentemente más de 3 meses de vida.

El calendario Gregoriano, fue adoptado por casi todos los países Romanos Católicos y por  Dinamarca y Holanda en 1582. Pero fue solo después de dos siglos que finalmente fue aceptado en forma general. Durante ese tiempo se podía salir de Inglaterra en febrero 1679 y hallarse en febrero de 1680 en algunos países europeos y Escocia. Los días del mes  también eran diferentes entre Inglaterra y algunas partes de Europa.

Finalmente otros países comenzaron a aceptar el nuevo calendario. Los protestantes en  Alemania y Suiza lo adoptaron en 1700 omitiendo 11 días antes entre septiembre 2 y 14. Prusia lo adopto en 1778. Otros países lo siguieron como Irlanda en 1782 y Rusia en 1902. Después de la revolución francesa, un nuevo calendario fue adoptado por Francia, el primer  día del año comenzó en septiembre 22 de 1792. Este calendario fue utilizado hasta  diciembre 31 de 1805, cuando Francia aceptó nuevamente el calendario Gregoriano.

Existen otros calendarios en uso, particularmente siguiendo los eventos religiosos. El calendario judío usa el siclo lunar y solar. Los meses son meses lunares, pero son alrededor de 11 días menos del año solar. Un treceavo mes periódicamente debe ser intercalado para mantener algún sincronismo con el ciclo solar. El calendario Musulmán ignora el ciclo  solar completamente y sigue únicamente el siclo lunar, alternan meses de 30 y 29 días. Los  años comienzan en diferentes estaciones sobre un ciclo de 32.5 años. Antes de la Segunda Guerra Mundial, se trató de introducir un calendario de negocios de 13 meses, en el cual todos los meses tendrían cuatro semanas. Este calendario de negocios permitía un mejor  significado financiero, pero no recibió mayor aceptación.

En la siguiente tabla como referencia8 se enuncian los principales acontecimientos  relacionados con el desarrollo de medios y/o sistemas para medir el tiempo, desde la antigüedad hasta nuestros días.

FECHA ACONTECIMIENTO

1300 a. de C. Descripción del primer reloj solar en Abydos.

1200 a. de C. Descripción de un ortostilo (Proto reloj solar) en China hecho por el Astrónomo Tscheu-Kang.

520 a. de C. Anaximenes de Mileto es el primero en analizar el cómputo geométrico de  la proyección de la sombra.

293 a. de C. Primer reloj de sol de la civilización romana instalado en Roma en el  templo de Júpiter por Lucio Papiro Cursor.

270 a. de C. Se construye un reloj de agua por Cesibio.

50 a. de C. Se construye la famosa torre ortogonal de los vientos en Atenas por  Andronicus de Kyrrhos. Cada cara contenía un reloj solar orientado a cada una de las direcciones de los vientos.

46 a. de C. Se crea el calendario solar con años bisiestos por Julio Cesar y Sosígenes  en el imperio Romano.

1000 Los vikingos utilizan un sistema basado en el ángulo de la luz solar para  calcular la latitud. Igualmente comienzan los diseños de grandes relojes en torres e iglesias en Europa.

1295 Raimundo Lullus construye un reloj mecánico conocido como Horologium  Noctis.

1330 El ingeniero Richard Wallingford empieza la construcción de un reloj  planetario y lo termina 30 años después.

1335 Construcción del primer reloj mecánico conocido en Milán.

1400 El Astrónomo Jhon Slape diseñó un reloj de sol portátil universal llamado  Navicela Italiana o Navicula de Venteéis.

Construcción del primer reloj mecánico con campana en la iglesia de Santa  María en Sevilla España.

1502 Johan Stabius construye el primer reloj solar estilo axial y lo ubica en la Iglesia de San Lorenz en Numberg Alemania.

1582 Introducción del Calendario Gregoriano por el Papa Gregorio XIII

1656 Christian Huygens construye el primer reloj de péndulo.

1737 John Harrison construye el primer cronometro náutico para precisar la  longitud en el mar.

1884 Adopción del meridiano de Greenwich como referencia horaria mundial en  honor de Nevil Maskelyne.

1928 Construcción del primer reloj de cuarzo por Joseph Horton y Warren  Morrison.

1949 Construcción del primer reloj atómico basado en la vibración molecular de  la mecánica quántica.

2008 Lanzamiento del primer reloj atómico al espacio.

Tabla No. 1. Desarrollo de medios y/o sistemas para medir el tiempo

El lector, después de haber leído esta breve reseña histórica del tiempo y de cómo el  hombre lo ha visualizado y medido, entenderá que para nosotros el tiempo es relativo a las  posiciones espaciales de nuestro sistema solar, sin embargo, existirán otros sistemas de  referencia relativos, donde es posible que el tiempo no transcurra con la misma rapidez que
en nuestro sistema solar, es decir un siglo nuestro podría significar un día en otro sistema
espacial o viceversa.

Como bien lo supo describir Einstein(9) en su teoría “El Significado de la Relatividad” todo  es relativo y el espacio y el tiempo se encuentran íntimamente ligados entre sí y su tiempo relativo con respecto a otro observador, depende de la velocidad relativa entre ellos. En singularidades como los agujeros negros y la ergoesfera los físicos teóricos proponen, que  en sus inmediaciones el tiempo transcurre más lentamente e inclusive se podría viajar al  pasado al alcanzarse velocidades superiores a la de la luz.

En conclusión, el tiempo es tan intangible que no puede ser tocado, sin embargo está  presente, dejando una huella imborrable de su presencia en nuestras vidas, y como dice algunos proverbios en latín (10): “Collige, virgo, rosas dum flos novas et nova pubes et menor esto aevumsic properare tuum” y que significa: “Coge, niña, las rosas mientras  exista la flor fresca y la nueva juventud y recuerda que así corre tu tiempo”, o mejor aun “Neque dimisi tempus” es decir “Y no deje pasar la ocasión”, y uno de los más representativos de acuerdo al estado de ánimo: “lentiores tristibus, laetissimis  velocissimae discurrunt” y que significa “Para quien está triste, las horas pasan bastante lentas, veloces para quien está feliz”.

1 San Agustín. “Confesiones“ (XI, 14) 400 d. de C.

2 Edwin Powell Hubble (Noviembre 20, 1889 – Septiembre 28, 1953) Astrónomo norteamericano que cambió profundamente el entendimiento de nuestro Universo.

3 Página web: www.xtec.es/~rmolins1/univers/es/

4 Albert Ziegler. “Thoughts on time and its measurement”. Swissair Gazette., 1/1984.

5 Silvio A. Bedini. “The mechanical clock and the scientific revolution”. Swissair Gazette., 1/1984.

6  Página web: Enciclopedia virtual Wilkipedia.

7  Fabienne Xavier Sturm. “Le cadran d’une montre image de’une heure visage de’un temps”. Swissair
Gazette., 1/1984.

8  Enciclopedia virtual Wilkipedia.

9 Albert Einstein. “El significado de la Relatividad”. Espasa Calpe S.A., 1980.

10 Página web: El tiempo y la humanidad – La medida del tiempo.

Tiempo Astronomico Concepto Definición y Explicación

EL TIEMPO ASTRONÓMICO

La idea del tiempo fue una consecuencia de la observación del cielo durante el día y la noche. Los HOMBRES de las antiguas civilizaciones observaron que después del amanecer comenzaba un lapso que duraba hasta el amanecer siguiente. También notaron que otro período, aproximadamente regular, transcurría entre cada aparición en el cielo de la LUNA nueva y la Luna llena.

En un análisis posterior, se dieron cuenta de que había un ciclo que duraba más tiempo aún. Observaron, quizá, que existía una época de días fríos y húmedos que se sucedía durante varias lunas, seguida por un período de días calurosos y secos. Eventualmente advirtieron que un ciclo completo de días húmedos y fríos y secos y calurosos, transcurría cada 300 ó 400 días. Días, meses y años en dicho orden fueron los primeros períodos de tiempo conocidos.

Los conocimientos sobre los movimientos de los astros, eran muy útiles para la medición del tiempo y la construcción de calendarios.

Alrededor de 6.000 años atrás, los egipcios establecieron su año de 365 días. Fueron, probablemente, los primeros en hacerlo. La relación entre meses y años confundía al hombre, debido a que el período de 291,5 días que pasan entre cada ciclo de la Luna no tiene relación exacta con los 365 días del año. Los árabes resolvieron el problema dividiendo el año lunar en doce meses, que duran alternativamente 29 y 30 días, lo que dio por resultado un año de 354 días. El año árabe, que se extendió por todos los países musulmanes es, por lo tanto, cerca de 11,25 días más breve que el año lunar.

Dos mil años atrás, los romanos idearon el CALENDARIO Juliano, llamado así en honor de Julio César. Denominaron seis de los doce meses con los nombres de sus dioses y dos con los de sus Césares. Nosotros aún usamos la forma castellana de dichos nombres. En 1582, el calendario Juliano fue mejorado; y a su forma corregida se le dio el nombre de Gregoriano, en honor de su promotor, Gregorio XIII.

Este calendario fue adoptado por Inglaterra y las colonias americanas en 1752; y por Rusia, en 1917. Por medio de su uso se alcanzó una acertada apreciación del tiempo basada en el movimiento de la TIERRA en relación con el SOL. Al avanzar la civilización y establecerse comunidades sedentarias, se necesitó una unidad más práctica y breve que el día. El hombre prehistórico debe haber notado que los árboles y otros objetos proyectaban una sombra móvil entre amanecer y amanecer de cada día. De la posición de dicha sombra fue posible inferir aproximadamente qué fracción del día había transcurrido. El RELOJ de sol se basó en I este método para establecer la hora.

I Hasta los más precisos relojes de Sol no eran lo suficientemente eficientes debido que funcionaban sólo cuando brillaba el Ia Astro Rey. La necesidad de saber la hora en los interiores de las casas motivó la INVENCIÓN de otro tipo de relojes. Uno de ellos consistía en una vela con muescas en su costado. Éstas indicaban horas a medida que se consumía la vela. Otro reloj fue la clepsidra, reloj de AGUA usado en Egipto, Grecia, Roma y China.

Los relojes de arena que semejaban enormes huevos, fueron usados en los barcos hace aproximadamente 200 años. La arena se filtraba desde la sección superior hacia la inferior a través de un “cuello de botella”. Tardaba media hora en vaciarse; entonces, un marino debía invertirlo para que el proceso comenzara nuevamente.

Los primeros relojes mecánicos fueron usados en templos y monasterios alrededor del año 1300. El primer reloj exacto, que trabajaba con un péndulo fue inventado por Christian Huygens en 1657. Además de la división del día, se necesitaba algún período de tiempo que vinculara el día con el mes.

Los babilonios dividieron un período lunar en cuatro de 7 días. Esta subdivisión de 7 días (semana) fue adoptada por los judíos y difundida luego en Europa. V. CALENDARIO. Hacia 1970, la diferencia entre tiempo solar y el tiempo del calendario era alrededor de 26,3 segundos. Aumentará unos 0,53 segundos cada 100 años, pues el año solar es cada vez más breve. La creciente necesidad de precisión ha hecho que el tiempo astronómico resulte inadecuado.

Entre la finalización de 1971 y el comienzo de 1972, se comenzó a medir el tiempo por medio de las vibraciones de ciertos átomos por la rigurosa constancia de ellas, que solamente se adelantan o retrasan un segundo al cabo de un siglo

10 Página web: El tiempo y la humanidad – La medida del tiempo.

Nacimiento, vida y muerte del Sol Evolucion de una estrella comun

LA VIDA DEL SOL: NACIMIENTO Y EVOLUCIÓN ESTELAR

Las estrellas como el Sol permanecen en fase de protoestrella (durante la cual su temperatura no es todavía suficiente para encender las reacciones nucleares en el centro) por algunos millones de años, hasta que comienzan las reacciones nucleares. Luego alcanzan la secuencia principal donde comienzan a quemar hidrógeno. Los cálculos indican que en el Sol esta fase comenzó hace 4,5 mil millones de años y durará otros 5 mil millones.

Una vez que agote el suplemento de hidrógeno, el núcleo solar contendrá sólo helio. La fusión del H continuará en la capa que rodea al núcleo, el cual va creciendo. Su propio peso provoca su contracción, la temperatura central aumenta y comienza la fusión del He. Los núcleos de He se combinan entre sí para formar elementos más pesados: C, N y O, son las llamadas reacciones CNO. (H: Hidrógeno, O: Oxigeno, C: Carbono, He: Helio)

En este proceso se entrega calor a la estrella, el cual se suma al producido por la fusión de H en He, que todavía continúa realizándose en las capas exteriores. Este calor provoca la expansión de la superficie, mucho más allá que en las estrellas normales (de secuencia principal). El Sol abandonará aquí la secuencia principal y entra en la fase de gigante roja, durante la cual su radio aumentará hasta la órbita de Marte y perderá mucha masa. Por entonces la Tierra ya habrá desaparecido pues a medida que la estrella se expande, se enfría.

Cuando el Sol alcance el final de la fase de gigante roja habrán pasado uno o dos millones de años desde que dejó la secuencia principal. La fusión del He proporciona menos energía que la del H, es decir que la reserva de He se agota mucho más rápido que la de H. Por eso esta fase es corta respecto de toda la vida de la estrella y se observan pocas gigantes rojas: sólo 1% de las estrellas de nuestra galaxia están en esta etapa, es decir unos 2.500 millones de estrellas. La figura 30 muestra la evolución del Sol en el diagrama H-R desde su nacimiento sobre la ZAMS hasta la fase de gigante roja.

A medida que continúa la contracción del núcleo, hacia el final de su vida como gigante roja, su temperatura central será mayor de 100 millones de grados y por lo tanto la presión central será enorme. Esta presión será tan grande que la materia en el centro adquirirá propiedades cuánticas especiales, debido a la gran concentración de electrones. Este tipo de materia se denomina degenerada.

La densidad actual del Sol es semejante a la del agua. La materia degenerada tiene una densidad 100.000 veces mayor.

¿Qué sucederá cuando siga creciendo la temperatura central? La evolución post-secuencia principal del Sol es mucho más incierta que la presente y, por lo tanto, sólo se puede hacer una rápida estimación de su agonía luego del llamado “flash de helio”: una explosión gigante en su centro. Codiagramamo resultado de este flash el núcleo se expande rápidamente y comienza a oscilar.

Este movimiento es frenado por la envoltura que en la gigante roja aparece muy extendida. El centro, donde el He se transforma en C y el C en O está rodeado por una capa de H que se quema. Luego del flash de He la estrella se mueve sobre la rama horizontal, zigzaguea horizontalmente a través del diagrama H-R, aumentando su luminosidad. Esta fase dura solo unos cientos de millones de años.

Evolución del Sol en el diagrama H-R, desde su nacimiento sobre la ZAMS ra sólo unos cientos de hasta la fase de gigante roja. 

Lo que sigue es muy difícil de predecir. Las etapas que transitará el Sol en su agonía se describen en detalle más adelante. Se supone que eyectará una envoltura de gas para transformarse en nebulosa planetaria. El núcleo remanente de las estrellas está formado principalmente por materia degenerada de electrones. En consecuencia no se puede contraer más y las estrella se enfrían lentamente transformándose en enanas blancas. Se estima que el Sol se transformará en una enana blanca con lo la mitad de su masa actual. El resto se habrá perdido en forma de vientos violentos y la eyección de sus capas superficiales durante la evolución post-secuencia principal. Las estrellas enfrían rápidamente al principio y luego lentamente , durante miles de millones de años. Las enanas blancas dejan de brillar y se transforman  en enanas negras: una masa fría de materia degenerada. Este es el ultimo suspiro del SOL.

diagram estelar de rousell

EL COLOR Y LA MATERIA
A la luz de los nuevos datos de la ciencia referentes a la masa, el brillo y ol color, se ha clasificado a las estrellas según un diagrama llamado, en honor a sus autores, de Hertzsprung*Russell, De acuerdo con el mismo, la mayoría de las estrellas se disponen en una diagonal, llamada “serie principal”. Las más brillantes y grandes están arriba y las más pequeñas y opacas, abajo. El color pasa, de izquierda a derecha, del azul hasta el rojo oscuro, teniendo como intermedios al blanco, ni amarillo y el anaranjado. La serie principal comienza con los brillantes azules y se traslada hasta las débiles rojas. El Sol, por ejemplo, está en el centro del diagrama. Un caso atípico, es decir, fuera de la serie principal, es el de las gigantes y supergigan-tes rojas, que se ubican a la derecho y arriba del diagrama. La otra familia especial es la de las enanas blancas, que se encuentran abajo y a la izquierda: En esta nota se explicaja incidencia que tienen todas estas características en el material interno de las estrellas

AMPLIACIÓN DEL TEMA…

Cuando transcurran unos 5.000 o 6000 millones de años, el proceso de fusión en el interior del sol se apagará. Sabemos que adentro del Sol hay una especie de central nuclear, quemando millones de toneladas de hidrógeno cada segundo y tiene una capacidad de funcionamiento de unos diez mil millones de años, de los cuales ya han transcurrido la mitad.

Agotado el hidrógeno, podrá iniciarse un nuevo ciclo de combustión, gracias a las cenizas del anterior, que habrá producido abundante cantidad de helio. La fusión del helio generará a su vez cenizas de carbono y nitrógeno que también servirán de combustible nuclear para que el Sol siga brillando durante un tiempo adicional, aunque ya tendrá sus milenios contados.

Las estrellas se parecen un poco al Ave Fénix de la mitología: pueden renacer varias veces de sus propias cenizas antes de apagarse definitivamente.

En todo caso, cuando alrededor de la octava parte del núcleo central del Sol se haya convertido en helio, por el proceso de fusión nuclear, el astro comenzará a experimentar transformaciones irreversibles. En primer lugar se hinchará y, al disminuir en unos dos mil grados la temperatura de su superficie, adquirirá un tono rojizo, crepuscular.

El proceso de expansión continuará y al celebrar su cumpleaños número diez mil millones, el astro rey tendrá cerca del doble del diámetro actual. De ahí en adelante la evolución hacia el gigantismo rojo y hacia la muerte se irán acelerando. En los mil millones de años siguiente el Sol habrá duplicado su tamaño nuevamente. Después, en sólo cien millones de años se hará cincuenta veces más grande y su potencia se multiplicaría por quinientos.

Este proceso de inflación solar terminará por calcinar y engullir a todos los planetas interiores del sistema. La mitología azteca predice que un día la Tierra se habrá cansado y entonces el Sol caerá del firmamento. La leyenda griega de Cronos que devora a sus hijos, terminará así por cumplirse. El Sol, deidad mitológica superior y paterna, de la que derivan los planetas, los devorará finalmente, o los bañará con el aliento de su radiación letal.

Así, llegará para la Tierra un último día perfecto, en que la naturaleza lucirá todo su esplendor y las múltiples criaturas vivas retozarán en los continentes y los océanos del planeta. Luego la biosfera comenzará a destruirse a medida que el Sol vaya hinchándose en el firmamento.

Los casquetes de hielo de los polos se fundirán inundando las costas. Después, el aumento de la temperatura producirá gran evaporación de agua y al engrosar la atmósfera protegerá aun la vida terrestre del exceso de radiación, retrasando un poco el final inexorable.

Pero llegará el día en que los océanos hervirán y nuestro hermoso planeta azul quedará convertido en un desierto, asolado por la radiación e incapaz ya de albergar a ningún tipo de vida.

Todo esto ocurrirá siempre y cuando el hombre no decida, cualquiera de estos días, adelantar el proceso en varios miles de millones de años, detonando sus arsenales nucleares. En ese caso el Sol, al expandirse encontrará a una Tierra tan desnuda y muerta como Mercurio, Marte y Venus.

Si la especie humana sobrevive para ver la muerte del Sol, es posible que adquiera la capacidad tecnológica suficiente como para controlar o al menos modular el proceso de evolución estelar, de manera de no perecer en esta catástrofe. Una solución más viable sería tal vez la de emigrar hacia otros mundos como Titán, el gigantesco satélite de Saturno, o incluso a otros sistemas planetarios.

Esta masiva emigración a las estrellas podría hacerse en naves espaciales que en algún tipo de supercomputadoras llevaran la información genética necesarias como para reproducir en otros soportes planetarios todas las formas de vida originadas en la Tierra. Serían verdaderas Arcas de Noé que salvarían la vida del diluvio de radiación que cundirá por el sistema solar.

Entretanto el Sol, una vez agotado el helio que mantenía encendidos sus motores nucleares, entrará en una agonía de milenios, reciclando las últimas cenizas utilizables como combustible. En esta etapa terminal se contraerá y expandirá alternativamente como un gigantesco corazón, y con cada pulso irá inundando el espacio de radiaciones ultravioletas.

Una hermosa luminosidad roja y azulada se extenderá hasta más allá de la órbita de Plutón. Ese será el ocaso de los planetas o, si se quiere llamarlo de otra forma, el crepúsculo de los dioses.

Más de la mitad de la masa solar se disipará en el espacio. El resto, comprimido en un pequeño núcleo, formará una de esas estrellas superdensas a las que se conoce como “enanas blancas”. Estas son verdaderos cadáveres estelares que aun cuando tienen sus hornos termonucleares apagados, siguen emitiendo, durante un tiempo, la radiación remanente.

Si es que la atmósfera terrestre no se evapora en el espacio, durante las fase de gigantismo solar, las vacías cuencas oceánicas de nuestro planeta volverán a llenarse de agua. Después, una nevazón de dióxido de carbono cubrirá los continentes. El frío se hará cada vez más intenso, los océanos se congelarán y una edad glacial permanente y definitiva se iniciará en nuestro planeta oscuro, ya sin Sol.

Fuente Consultada:
Notas Celestes de Carmen Nuñez

Hechos, Sucesos que estremecen el siglo XX El Universo en Explosión Tomo N°18

El Sol La estrella del sistema solar Informacion y Características

EL SOL: Si bien el Sol, en cuanto objeto astronómico, no es más que una estrella promedio, relativamente débil y fría, para nosotros, habitantes de uno de sus satélites, resulta indispensable conocerlo en detalle, pero además nuestra ubicación privilegiada, nos brinda la posibilidad, a través suyo, de conocer muy bien una estrella y, en base a ello, construir y probar las teorías sobre la naturaleza de las estrellas en general.

Lo que sucede en el Sol concierne a mucha gente y no sólo a los astrónomos. Las erupciones solares pueden callar las comunicaciones de radio de largo rango, interrumpir sistemas de potencia y cambiar las órbitas de los satélites. Muchas actividades espaciales y terrestres requieren un buen conocimiento de las condiciones presentes en el Sol y de su comportamiento en el futuro. Hasta se ha desarrollado una organización internacional para monitorear la actividad solar de hora en hora y transmitir informes a todo el mundo.

EL SOLExisten geoalertas de dos categorías: la primera incluye la radiación electromagnética del Sol, principalmente rayos x, radiación ultravioleta y ondas de radio, que llegan a la velocidad de la luz.

El brillo del Sol en rayos x puede aumentar 10.000 veces o más en un período muy breve durante las explosiones conocidas como “fiares” solares . Este baño de rayos x afecta la ionosfera terrestre hasta tal punto que puede llegar a cortar virtualmente las comunicaciones de radio de onda corta en la parte del planeta en que es de día.

La segunda concierne a la actividad geomagnética (recordemos que un campo eléctrico variable genera un campo magnético). La misma está causada por el viento solar, nubes tenues de protones, electrones y iones del Sol que se encuentran con el campo magnético terrestre. Cuando el Sol está calmo, estas partículas cargadas fluyen de manera continua, uniforme a unos 400 km/seg.

Un aumento de actividad solar puede transformar al viento en violento huracán. Sus ráfagas se abaten sobre el campo geomagnético, afectando la ionosfera y la superficie de la Tierra de varias formas, entre otras induciendo corrientes eléctricas en conductores largos como líneas de potencia y cables de teléfono. Durante su paso el viento solar barre gases evaporados de planetas y cometas, finas partículas de polvo meteorítico y rayos cósmicos de origen galáctico. Su influencia se extiende a ‘través del espacio interplanetario y provoca las auroras polares y las tormentas magnéticas en la Tierra.

También estas tormentas geomagnéticas, causadas por perturbaciones abruptas del campo magnético terrestre interfieren con las comunicaciones de radio y teléfono. Una serie de observaciones solares y geomagnéticas revelaron una correlación entre la aparición de estas tormentas y la aparición, uno o dos días antes, de erupciones solares.

Pero además de estos efectos perniciosos para las actividades terrestres, el Sol, siendo la estrella más cercana, presenta enormes ventajas astrofísicas. Su estudio nos ayuda a elucidar detalles de otras estrellas mucho más lejanas e inaccesibles incluso para el moderno instrumental astronómico y nos permite verificar teorías de evolución estelar.

El Sol emite, continua o esporádicamente todo el espectro de radiación electromagnética, desde rayos X, a través del ultravioleta, visible e infrarrojo, hasta radio ondas. La radiación de distintas longitudes de onda proviene de capas situadas a distintas profundidades en la atmósfera solar. Las características del fotón que atraviesa el gas solar y llega hasta nosotros están determinadas por las propiedades del gas, que varían con la altura. Variar la longitud de onda de la observación equivale a realizar un barrido de la atmósfera solar.

Además de la radiación hemos dicho que el Sol emite partículas como protones, electrones y núcleos de helio, a los que acelera a velocidades de unos pocos cientos a miles de kilómetros por segundo en el viento solar, y de unas decenas de miles de kilómetros por segundo en los rayos cósmicos solares.

Mediante el análisis de estos mensajeros de luz y materia podemos describir las propiedades del Sol en las regiones de donde fueron emitidos. Las observaciones solares, como las de todos los objetos celestes, requieren técnicas muy diferentes, dependiendo de la región del espectro en consideración; también requieren el uso de instrumentos especiales, como radio heliogramas, torres solares y coronógrafos ya que, a diferencia de lo que sucede con el resto de los cuerpos celestes, en el caso del Sol es necesario adecuar los instrumentos de observación a la gran cantidad de luz que nos llega de él. En la actualidad la tecnología de las observaciones solares ha avanzado enormemente.

El más grande de los observatorios solares orbitales, la estación tripulada Skylab, tenía 8 telescopios grandes, incluyendo uno corono-gráfico. Desde mayo de 1973 hasta febrero de 1974 los astronautas trajeron a Tierra miles de fotografías reveladoras de las maravillas de la atmósfera solar. El satélite más reciente, el SMM (Solar Maximum Mission) fue puesto en órbita en 1980 para examinar el Sol en el máximo de su ciclo de actividad y regresó a la Tierra en diciembre de 1989.

Hasta el momento, el Sol es la única estrella con dimensiones, masa, luminosidad y edad conocidas. Para los astrofísicos esto es lo único, pero a su vez lo más importante, que lo distingue de otras estrellas. Ya nos hemos referido en el capítulo 2 a la distancia Tierra-Sol y a los métodos utilizados para medirla. El diámetro del Sol se determina igual que el de la Luna: su disco subtiende un ángulo de aproximadamente medio grado que, a una unidad astronómica de distancia, equivale a 1.393.000 km la órbita de la Luna cabría cómodamente dentro del Sol!

La masa del Sol se calcula a partir de la órbita de la Tierra y de acuerdo a las leyes de Newton. Si la Tierra se detuviera en su movimiento orbital cae-ría hacia el Sol a razón de 2,8 mm./seg. La curvatura de la órbita terrestre es precisamente una consecuencia de esa desviación con respecto al movimiento rectilíneo. Usando las leyes de la mecánica resulta que la masa del Sol es de 1,992 x 1030 Koligramos.

El valor de la gravedad en la superficie de un cuerpo es proporcional a su masa dividida por el cuadrado de su radio, tal como vimos al enunciar las leyes de Newton. En la superficie del Sol entonces, la gravedad es unas 28 veces mayor que sobre la Tierra y un objeto que pesara aquí 10 kg en el Sol pesaría unos 279 kg. Este valor tiene interés para determinar la velocidad con que un cuerpo podría escapar de la atracción gravitatoria solar y lanzarse al espacio. En particular determina la capacidad del Sol para retener su atmósfera.

Ya a mediados del siglo pasado se había indicado que el Sol es una esfera de materia, especialmente hidrógeno, en estado gaseoso. Por lo tanto, para comprenderlo debemos estudiar

Algunas propiedades de los gases

Los átomos o moléculas de cualquier cuerpo están en continuo movimiento y chocando entre sí. Imaginemos por ejemplo, las moléculas de una gota de agua. Las fuerzas intermoleculares impiden que la gota se rompa o desaparezca y mantienen a las moléculas relativamente juntas, por eso, cuando una gota de lluvia se desplaza sobre la ventana, se deforma pero sigue siendo una gota de agua. Al aumentar la temperatura del agua, el movimiento de las moléculas aumenta y también el volumen entre ellas. Calentando el liquido aún más, llega un momento en que la fuerza entre las moléculas no es suficiente para mantenerlas juntas y comienzan a separarse. En esta fase se forma el vapor de agua y las moléculas están muy alejadas unas de otras.

Imaginemos ahora el vapor de agua, o cualquier otro gas, en un recipiente. Las moléculas chocarán contra las paredes y ejercerán así una fuerza contra ellas. Si el recipiente tiene un pistón, será necesario aplicar una fuerza sobre él para mantenerlo en la misma posición: esta fuerza se llama presión (en realidad la fuerza es la presión por el área). Obviamente la fuerza es proporcional al área ya que si aumentamos el área manteniendo el número de moléculas por cm3 aumenta el número de colisiones con el pistón en la misma proporción en que se aumentó el área.

Dupliquemos ahora el número de moléculas en el recipiente, de manera de duplicar la densidad, y mantengamos sus velocidades, es decir la temperatura. Entonces, en buena aproximación el número de colisiones se duplicará. Así la presión resulta proporcional a la densidad.

Si se aumenta la temperatura sin cambiar la densidad del gas, es decir si se aumenta la velocidad de los átomos, ¿qué pasará con la presión? Los átomos golpean más fuerte, porque se mueven más ligero, y además golpea  mas seguido, en consecuencia la presión aumenta. Este mismo principio se utiliza en el termómetro de mercurio: el aumento de la temperatura dilata el contenido del tubo y lo hace subir ya que en este caso no hay pistón.

Consideremos otra situación. Supongamos que el pistón se mueve hacia abajo, comprimiendo el gas. Cuando un átomo golpea el pistón en movimiento su velocidad aumenta y entonces los átomos se calientan. Por lo tanto, bajo compresión lenta, un gas aumenta su temperatura mientras que, bajo expansión lenta, la disminuye.

Si la temperatura disminuye mucho, los átomos se mueven más lentamente y forman, en el caso del agua, hielo. Se alcanza, entonces, la fase sólida.

El Sol, que es una pelota de gas, obedece estas mismas leyes. En él, todo elemento de volumen está sometido, por un lado a la fuerza de gravedad que tiende a llevarlo hacia el centro (donde está concentrada la mayor parte de su masa) y por otro, soporta la presión del gas que tiende a llevarlo hacia la superficie . Cuando ambas fuerzas son iguales se dice que el gas está en equilibrio hidrostático.

Siendo gaseoso, el Sol no presenta abruptas discontinuidades como las que separan el aire, el agua y los continentes en la Tierra, aunque sí se lo puede considerar como compuesto de varias capas concéntricas, de características diversas, de distinta densidad y temperatura. La fotosfera, la cromosfera y la corona son capas del Sol superpuestas como cáscaras de cebolla. Estas capas no son homogéneas y contienen estructuras difusas cuyo carácter variable es la base del concepto de actividad solar. Los ciclos, las manchas y erupciones son manifestaciones de esta actividad.

Las manchas solares, parecen oscuras porque son frías, 1.700°K más frías que las regiones circundantes de 6.0000K. La temperatura en la región central de las manchas puede caer a 3.000°K.

En 1908, G. Hale notó que algunas líneas espectrales aparecían dobles en las regiones con manchas. Este fenómeno, conocido como efecto Zeeman, permite medir la intensidad del campo magnético que resulta proporcional a la separación de las líneas. En la superficie del Sol, este campo alcanzó unos 2.500 a 3.000 gauss, un valor 6.000 veces mayor que el terrestre.

El mapa magnético de una región activa indica que estos campos tan fuertes no están restringidos a las manchas, sino que también aparecen en las regiones brillantes llamadas fáculas. El brillo de estas zonas se puede explicar por las altas temperaturas presentes, pero resulta difícil entender que campos magnéticos igualmente intensos puedan producir regiones calientes y brillantes como las fáculas y otras frías y oscuras como las manchas.

Además de los rasgos propios de la superficie solar, debemos mencionar las nubes luminosas de gas situadas a gran altura, algunas casi estacionarias y otras que se proyectan hacia arriba como erupciones sobre la corona que luego se precipitan en caída. Son las “protuberancias”, llenas de información sobre las condiciones reinantes cerca de la superficie solar. Su temperatura (8 0000K) es mucho menor que la de la corona, que alcanza un millón de grados. Esta diferencia puede ser explicada nuevamente debido a los fuertes campos magnéticos. Las protuberancias pueden alcanzar alturas de hasta un radio solar y velocidades cercanas a los 100 km/seg.

La atmósfera solar se ve sacudida periódicamente por erupciones, fenómenos violentos cuyos efectos, como hemos dicho, se pueden sentir hasta en la Tierra. Una erupción se caracteriza por un gran aumento de brillo en la cromosfera. Hay varios tipos de eventos eruptivos, que se clasifican de acuerdo al área de emisión, pero su característica común es lo abrupto del fenómeno (en menos de un minuto las intensidades de las líneas aumentan unas 10 veces). Luego, en un período que varía entre 10 minutos y una pocas horas, la emisión vuelve a su nivel normal.

El Sol se comporta como un dínamo gigante. Su campo magnético aumenta a medida que subimos en su atmósfera y es el responsable del encendido de las erupciones. Dicho campo surge a partir de una corriente eléctrica originada en el corazón de esta enorme esfera de gas rotante, por el movimiento de los electrones y protones.

Como todos los cuerpos gaseosos rotantes, el Sol no es exactamente esférico, pero como su velocidad de rotación es tan pequeña (el período rotacional varía de 25 días en la región ecuatorial a cerca de 35 en los polos) el achatamiento ecuatorial resultante es un tema de controversia. El período de rotación se determina fácilmente en las regiones donde hay manchas solares y la diferencia entre las velocidades de rotación polares y ecuatoriales se debe a que no rota como un cuerpo sólido.

La fuente de energía solar

Todos los intentos realizados en la primera mitad del siglo XIX para comprender cual era la fuente de energía del Sol —problema que hasta ese entonces no había sido considerado— resultaban insatisfactorios. En 1854, el físico alemán H. Von Helmholtz propuso que la única fuente de energía conocida que podía alimentar al Sol y que no provocaba complicaciones era su propia contracción. Según esta teoría, la masa solar cae lentamente hacia adentro por su propio peso y la energía producida por esta caída se convierte en radiación suficiente para alimentar al Sol durante muchos milenios.

Sin embargo, si el Sol se ha estado contrayendo durante millones de años, su tamaño inicial debió ser tan grande que habría llegado hasta la órbita de la Tierra. Nuestro planeta sólo podía haberse formado una vez que el Sol se hubiera contraído suficientemente y entonces su edad no podía ser mayor de algunas decenas de millones de años. Pero los geólogos y biólogos tenían fundadas sospechas, ya en esa época, de que la Tierra debía tener por lo menos algunos centenares de millones de años y, tal vez, mil millones o más. Ambas observaciones resultaban incompatibles.

A fines de siglo se descubrió una fuente de energía que resultó de gran importancia en la resolución de este problema: la radiactividad. Casi todos los elementos conocidos en la Tierra son estables, pero algunos de ellos (los de número atómico 43,61 o superiores a 83) no pueden existir indefinidamente. Tarde o temprano se desintegran en átomos estables. Esto no sucede necesariamente de manera instantánea y un elemento inestable puede llegar a durar mucho tiempo. El todo y el uranio, de número atómico 90 y92 respectivamente, sobreviven miles de millones de años antes de desintegrarse en plomo (de número atómico 82). De hecho en los 4 mil millones de años de vida de la Tierra sólo el 20% del tono y el 50% del uranio originales se han desintegrado.

En 1901 el físico francés P. Curie (1859-1906) demostró que la radiactividad iba acompañada de pequeñas cantidades de calor. Como las desintegraciones radiactivas podían prolongarse por miles de millones de años, la cantidad total de calor producida de esta manera podía ser enorme. La parte del átomo que se desintegra y libera energía por radiactividad es el núcleo. Por lo tanto esta nueva fuente de energía se llamó energía nuclear. Pero el Sol es de hidrógeno (ii) (de número atómico 1), no de uranio o tono. Entonces éste no puede ser el suministro de la energía solar;elemento muy estable; el más estable después del H1, inclusive a temperaturas muy elevadas. Los elementos que siguen a éstos en complejidad son muy inestables e inevitablemente decaen en alguno de ellos. Por lo tanto cuando el universo se expandió y enfrió hasta el punto en que no fue posible la formación de núcleos más complicados, sólo existían cantidades apreciables de H1 y He4. La teoría del big-bang explica de manera satisfactoria las cantidades actuales de 1-1 y He en el universo y éste es otro de sus éxitos observacionales. Esto explica también la composición del Sol. Pero ¿cómo se forman los elementos más pesados, aquellos de los que nosotros mismos estamos formados?

Para responder esta pregunta debemos comprender los procesos que tienen lugar en el centro de las estrellas. Igualmente, para comprender la historia del Sol, desde su nacimiento hasta su muerte, un período de unos 10 mil millones de años, es necesario estudiar otras estrellas en distintas etapas evolutivas. Abordaremos este problema en el próximo capítulo.

El enigma de los neutrinos del Sol

El análisis de la luz que nos llega de las estrellas devela solamente las condiciones que reman en sus superficies: temperatura, composición química, la agitación o rotación de su parte más externa. Para comprenderlas totalmente habrá que penetrar debajo de esa piel, adentrarse en las profundidades donde nace la energía de las reacciones nucleares e inicia su largo camino hacia la superficie.

Para penetrar de esta manera en el corazón de las estrellas se usó durante mucho tiempo el análisis teórico. El método consistía en construir modelos de estrellas de las que se daba la composición química inicial y seguir, mediante cálculos dictados por la física, su estructura y evolución. A partir de 1950 este tipo de análisis ha alcanzado gran refinamiento debido al avance de la física nuclear, el desarrollo de grandes computadoras, el aumento del número de astrofísicos y la acumulación de observaciones más precisas y sistemáticas.

Pero en principio es posible observar otra radiación procedente de las estrellas: los neutrinos. Estas pequeñas partículas, sin carga y mucho más livianas que los electrones, se producen en las reacciones nucleares que ocurren en el corazón de las estrellas.

El neutrino fue predicho por W. Pauli y E. Fermi en 1930 para explicar ciertas propiedades de la radiactividad, pero su existencia fue confirmada experimentalmente recién en 1958. Su característica más importante es poder atravesar enormes cantidades de materia sin sufrir interacciones, recorriendo así todo el espesor de la estrella sin aminorar su velocidad ni ser difundidos como ocurre con los fotones de la radiación óptica. Si se los puede observar, contemplaremos directamente lo que sucede en la región central de la estrella. Los neutrinos desempeñarán, entonces, un papel análogo al de los rayos x, que permiten ver el interior de un ser vivo.

Si bien el Sol pierde energía emitiendo neutrinos (se estima que un 3% de su energía se emite de esta forma), la escasez de interacciones con la materia implica también una desventaja: del flujo de neutrinos que atraviesa un detector, sólo una fracción muy pequeña interactuará con él y podrá ser develada. Este fenómeno obliga, por lo tanto, a utilizar detectores enormes y sólo se pueden registrar, incluso en las mejores condiciones, flujos de neutrinos muy intensos. En la práctica con esta técnica sólo podemos observar el Sol, pues las demás estrellas, demasiado alejadas, dan lugar a flujos de neutrinos muy débiles.

Los resultados de los experimentos de detección de neutrinos solares han conmovido los cimientos de la astrofísica, pues el flujo observado es dos veces más pequeño que el predicho por la teoría.

Los modelos del interior solar pasan todas las pruebas a que han sido sometidos y durante 20 años los científicos no han logrado elaborar una alternativa factible. Es decir que no parece posible modificar las predicciones teóricas. La hipótesis más interesante es que los detectores sólo reaccionan ante un tipo de neutrinos, el llamado neutrino-electrón. Sin embargo existen otros dos tipos: el neutrinomuón y el neutrino-tauón.

Los neutrinos solares, que viajan a la velocidad de la luz, tardan 8 minutos en llegar a la Tierra. Si en ese lapso los neutrinos-electrones se convirtieran en muones o tauones no podrían ser detectados. Esto significaría que los neutrinos deberían tener una pequeña masa, diferente para cada tipo, lo que a su vez tendría consecuencias importantes para los modelos sobre el origen y evolución del universo.

Todavía no hay una explicación convincente; esto deja a los astrofísicos la sensación de que hay procesos más complicados en el centro solar que aún no conocemos.

PARA SABER MAS…
El Sol y las estrellas
El Sol es 110 veces mayor que la Tierra. Harían falta alrededor de un millón de Tierras para rellenar el interior del Sol.
Según la Enciclopedia estudiantil Rand McNally’s, «Para obtener una imagen rudimentaria del tamaño y distancia del Sol en relación a la Tierra, piénsese en la Tierra como si tuviese el tamaño de un guisante. A esta escala, el Sol tendría el tamaño de una pelota de playa situada a unos 40 m de distancia».

El calor en la superficie solar es de 5.500° C. Las perturbaciones magnéticas ocasionan a veces manchas oscuras en el Sol, y entonces su superficie se enfría hasta los 2.500° C. Se cree que el núcleo del Sol está a unos 15 millones de grados centígrados.

El brillo del Sol se produce al quemarse combustible nuclear. En el interior del Sol tiene lugar una fusión nuclear, y durante este proceso se pierde una pequeña cantidad de materia. La pérdida de esta masa origina la energía solar.

Para producir su energía, el Sol consume alrededor de 22 mil millones de toneladas de hidrógeno cada año. A pesar de esto, según las predicciones científicas, el Sol contiene suficiente hidrógeno para continuar brillando con la actual intensidad durante otros 5 mil millones de años.

La luz solar emplea sólo ocho minutos en alcanzar la Tierra.

Si el Sol cesase de brillar —y a pesar de los restantes hilillos de luz provenientes de otras estrellas— toda vida humana, animal y vegetal se congelaría hasta la muerte, los trópicos serían tan fríos como los polos, y los siete mares se convertirían en hielo.

Puesto que el Sol no es sólido, no todas sus partes giran del mismo modo. El período de rotación en los polos es de 33 días, mientras que en el ecuador dura 25 días.

En nuestra galaxia hay 100 mil millones de estrellas. Desde la Tierra, únicamente unas 6.000 se pueden ver a simple vista, y el Sol es una de ellas.

La estrella más cercana a la Tierra se encuentra a 4 años-luz, o sea 38 mil millones de kilómetros, de distancia.
Rigel, en el extremo de la constelación llamada Orion, es una de las estrellas más brillantes. Es 18.000 veces más brillante que el Sol. La luz de Rigel, viajando hacia nosotros a 300.000 Km. por segundo, tarda 500 años en alcanzar la Tierra. Cuando esta noche miramos hacia el cielo y reconocemos Rigel, la luz que nos llega de ella empezó a brillar 20 años antes de que las naves de Colón navegaran hacia el Nuevo Mundo.

Fuente Consultada: Notas Celestes de Carmen Nuñez

El Sistema Solar Para Niños Planetas, Medidas y Caracteristicas

EL SISTEMA SOLAR PARA NIÑOS: PLANETAS, MEDIDAS, DISTANCIAS Y CARACTERÍSTICAS

sistema solar para niños

Se Utiliza Tecnología Flash, Puede No Verse en Celulares

Todos los días escuchamos noticias sobre viajes en al espacio, naves que estudian nuestro sistema solar y telescopios que flotan en el medio de “la nada”, pero muy pocos tienen noción exacta de lo que eso significa. Es para nosotros muy natural pensar que nuestro Sol es el centro, y que existe una fuerza de atracción sobre los nueve planetas que los mantiene girando alrededor del mismo desde hace millones de años.

Pero la totalidad de nuestro sistema solar,  ocupa sólo una pequeña parte en la vastedad del espacio; es, en realidad, nada más que una mínima porción de las miles de millones de estrellas que forman lo que se denomina la Galaxia, un poderoso universo de estrellas, que parecen estar ordenadas en una espiral gigantesca. Y, nuestro Sol, que no es de ninguna manera el cuerpo celeste más grande de ella, está situado junto con su cortejo de planetas, incluyendo nuestra propia Tierra, hacia fuera de la espiral, como la figura de abajo.

galaxia via lactea

Su posición no es fija, pues todo el Sistema Solar también se mueve, de tal manera que si pudiéramos observar el Sol desde una nave espacial muy lejana, observaríamos  un fenómeno muy interesante. Como nuestra Tierra da una vuelta completa alrededor del Sol y el Sol mismo también está en movimiento, la Tierra sigue en realidad un camino en forma de espiral. Al mismo tiempo, la Luna da vueltas alrededor de la Tierra, de manera que también se desplaza en forma de espiral alrededor de otra espiral.

Cuando hablamos de ir al espacio, estamos refiriéndonos, en realidad, al hecho de tratar de descubrir algo más sobre nuestro Sistema Solar. Ya se ha dicho suficientemente que éste no es más que un minúsculo fragmento del inconmensurable universo. Tiene nueve planetas, aunque Plutón es tan pequeño que muchos astrónomos no lo tienen en cuenta como un planeta, incluyendo la Tierra; las respectivas medidas se muestran comparativamente en la animación superior (pasando tu mouse sobre cada planeta).

Si pudiéramos dar 40 vueltas alrededor del ecuador, viajaríamos aproximadamente 1.800.000 km.; pero la distancia desde Plutón al Sol no es de 40 veces la vuelta a nuestro mundo, sino de aproximadamente 150.000 veces. Si vastas son estas distancias, aún son cortas comparadas con la distancia a las “estrellas”, como se denomina a los cuerpos celestes que están fuera de nuestro Sistema Solar.

PLANETAS: Los planetas, incluyendo la Tierra, se mueven describiendo aproximadamente elipses; éstas son circunferencias levemente alargadas y, en lugar de tener un centro, tienen dos puntos llamados “focos”; el Sol está situado en un foco y no hay nada especial en el otro.

Los planetas no se mueven con velocidad fija; al aproximarse al Sol, apresuran su marcha y cuando se alejan, la aminoran. Cuanto más lejos está un planeta del Sol, más grande es su trayectoria elíptica, más lentamente se mueve y más prolongado es su año, o sea el tiempo que tarda en dar una vuelta alrededor del Sol. Estas leyes hacen imposible el cálculo muy anticipado de las posiciones y movimientos de los planetas.

Partiendo del Sol, el orden de su sistema planetario es el siguiente: Mercurio, Venus, Tierra, Marte, un anillo de planetas menores llamados planetoides o asteroides, Júpiter, Saturno, Urano, Neptuno y Plutón. Alrededor de todos ellos, excepto Mercurio, Venus y quizás Plutón, se mueven satélites o lunas. La mayoría de los cometas también pertenecen al Sistema Solar, giran alrededor del Sol, describiendo amplias elipses alargadas e interceptan el paso de los planetas. Sus movimientos y el de los satélites también se adaptan a las leyes de Kepler.

 Una Imagen Grande del Gran Sistema Solar

DISTANCIAS EN EL UNIVERSO:
La Velocidad de la Luz, y el Año-Luz

Es imposible para la mente humana poder entender o imaginar lo enorme que resulta ser el universo, en donde cualquier unidad de medida utilizada diariamente como el kilómetro no alcanza para poder expresar en números las distancias. Para salvar este inconveniente los astrónomos utilizan una medida conocida como año-luz, y que significa o es igual a la distancia que recorre la luz en un año.

La luz viaja a 300.000 Km/seg., para que tengas noción de cuánto es esa velocidad,  podemos decir que dá la vuelta a nuestro planeta 8 veces en 1 segundo, mientras que a cualquier avión por más veloz que sea,  demorá varias horas en dar solo una vuelta.

Para determinar cuánto vales un año-luz, se debe calclar cuántos segundo tiene un año y multiplicar ese tiempo por los 300.000 Km. que recorre la luz por segundo.

365 dias x 24 horas x 60 minutos x 60 segundo=31.536.000 segundos.

31.536.000 seg. por 300.000 Km. = 9.460.000.000.000 Km.

Un cohete a esa velocidad podría llegar a Plutón , el planeta mas lejano del sistema solar en solo 12 o 13 horas, pero a la humanidad llevó mas de 30 años alcanzar esos bordes del sistema, con las naves Voyager I y Voyager II.

UN DIARIO DE LA ÉPOCA:
LA NACIÓN – Domingo 23, agosto 1981
VOYAGER II, CERCA DE SATURNO

PASADENA, 22 (AP).- La nave espacial Voyager II comienza un crucero por las vecindades de Saturno, gigantesco mundo de arremolinadas nubes, rodeado por centellantes anillos, que gira acompañado de varias lunas.

El navío, que se desplaza a casi mil seiscientos millones de kilómetros de la Tierra, en un viaje que comenzó hace cuatro años, sigue la ruta prevista y “se comportaba muy bien”, dijo Esker Davis, a cargo del proyecto, en una conferencia de prensa en el laboratorio que controla la misión.

“Esperamos obtener una visión muv clara de Saturno durante estos exDerimentos”, confió el eminente científico Edward Stone. La nave espacial sigue la ruta de la aeronave gemela Voyager I, que en noviembre asombró a los científicos con sus fotos del planeta de los anillos.

El plan de vuelo del Voyager II fue ajustado a fin de obtener una imagen más cercana de los misterios del planeta, especialmente de su aparentemente indefinida colección de delgados anillos —dos de los cuales parecen estar entrelazados— que conforman la serie de los siete anillos mayores.

Cuando el Voyager II cruce los cielos de Saturno, el martes por la noche, se acercará al planeta 24 000 kilómetros más que su predecesor Voyager I.

El primer encuentro cercano con el planeta tuvo lugar hoy cuando las once cámaras y demás instrumentos de la nave examinaron a Japetus, la luna de dos tonos, a una distancia de casi 900 000 kilómetros.

La nave pasará cerca de otras cuatro lunas en su camino hacia el planeta, dejará atrás otras dos y pasará cerca de la novena luna, Febe, el 4 de setiembre.

Se cree que el planeta tiene por lo menos 17 lunas.

Después de pasar por Saturno, el Voyager II seguirá hacia el ansiado encuentro con Urano, en enero de 1986, y más tarde, en 1989, con Neptuno.

Algunas Distancias:

Distancia de la Tierra a la Luna: 384.000 km.

De la Tierra al Sol: 148,8 millones de Km.

Del Sol a la estrella más próxima, la Alfa Centauri: 4,2 años luz

Del Sol al centro de la Galaxia Vía Láctea: 25.000-30.000 años luz

Diámetro de la Galaxia Vía Láctea: 100.000 años luz

De las galaxias más cercanas a la Galaxia Vía Láctea:

De la Galaxia Vía Láctea a Maffei I (la galaxia más lejana del Grupo Local): 3,3 millones de años luz

Diámetro de Maffei: 100.000 años luz

Pequeña Nube de Magallanes: 196.000 años luz

Gran Nube de Magallanes: 210.000 años luz

Galaxias exteriores:

Galaxia Andrómeda: 2,2 millones de años luz

Galaxia Vórtice: 37 millones de años luz

Galaxia Carretel:500 millones de años luz

Galaxias más lejanas identificadas: Más de 10.000 millones de años luz

Objetos más lejanos visibles (galaxias, quásares): 15.000 millones a 20.000 millones de años luz

Diámetro estimado del universo: 1,5 millardos de años luz

CURIOSIDADES DEL SISTEMA SOLAR:

Desde la Luna, la Tierra presenta una superficie 14 veces mayor que la de nuestro satélite en el cielo celeste.

el sistema solar para niños: planeta tierra

El planeta Neptuno gravita tan lejos del Sol que, desde el año en que fue descubierto (1846), aún no ha dado una vuelta completa en torno del mismo.

neptuno, para niños

Vista desde la Luna, la Tierra también presenta un ciclo de fases. Pero estas fases son exactamente contrarias a las que ofrece la Luna en el mismo instante al observador terrestre. Así, cuando aquí tenemos Luna nueva, en la Luna se tiene Tierra llena; al cuarto creciente de la Luna, corresponde el cuarto menguante de la Tierra, etc.

Febe. Éste es el nombre de Artemisa, como diosa de la Luna, en la mitología griega. También es el nombre del satélite más lejano de los que tiene Saturno.

Ganímedes, el tercer satélite de Júpiter, es, hasta ahora, el mayor de todos los satélites del sistema solar.

Gamínides satelite de jupiter

En la Luna, basta con dar unos pasos entre el suelo expuesto al Sol y uno a la sombra, para pasar de un terreno tórrido a uno gélido como el suelo siberiano.

Un planeta enigmático: la órbita del planeta Plutón penetra en el interior de la órbita de Neptuno.

Pluton

Dos planetas caprichosos: Venus y Urano. Ambos tienen rotación retrógrada; es decir, rotan en sentido opuesto a los demás planetas.

Los astrónomos calculan que hay dos millones de cometas en el sistema solar.

cometa en el sistema solar

Las rocas lunares traídas por los astronautas del “programa Apolo” son extremadamente ricas en titanio. Los terrícolas usamos el titanio para la construcción de aviones, cohetes y piezas de proyectiles, por ser un metal liviano, fuerte y resistente a la corrosión.

Alrededor de 24 000 000 de meteoritos penetran en el interior de nuestra atmósfera en un solo día. La mayor parte de ellos se consumen rápidamente por combustión. Los más brillantes desaparecen a una altura de 64 kilómetros. Únicamente unos cuantos centenares de ellos llegan a golpear la superficie terrestre.

El mayor meteorito encontrado sobre la Tierra fue el que cayó en Hoba West (África del Sudoeste); pesaba 60 toneladas.

gran meteorito

Una lluvia de estrellas, o lluvia meteórica, está compuesta por millares de meteoritos.

lluvia de meteoritos

LOS NOMBRES DE  LOS PLANETAS EN LA MITOLOGÍA
Mercurio: Mercurio era el protector de pies alados de los mercaderes y viajeros, así como también el mensajero de Júpiter.

Venus: Venus, la diosa romana del amor, era proclive a ataques de furia y celos. Cierta vez hizo que las mujeres de una isla apestaran tanto que sus esposos las abandonaron.

Marte: Marte, el dios romano de la guerra y la agricultura, fue el progenitor de Rómulo y Remo, los míticos fundadores de Roma.

Júpiter: Júpiter era el pródigo rey romano de dioses y diosas. Parece tener sentido que el planeta más grande reciba su nombre.

Saturno: Saturno era un titán (los titanes precedieron a los dioses) destronado por Júpiter. Algunas veces se lo asociaba al submundo y, hacia fines de año, en su festival se invertía el orden social: los esclavos ordenaban a sus patrones y los súbditos eran servidos.

Urano: Urano era un dios antiguo, aun para los romanos. Se le asigna el aporte de la civilización y la cultura al mundo, y era un gran astrónomo.

Neptuno: El dios romano Neptuno gobernaba el mundo submarino, las profundidades de lagos, lagunas y estanques. Era famoso por secar los ríos cuando se enfurecía. Era uno de los dioses más poderosos y el que más hijos tuvo.

Plutón: También conocido como Hades, Plutón era el siniestro dios de la muerte y el submundo. El nombre Hades significaba “el invisible”, y rara vez se pronunciaba en voz alta. Solían referirse a él como Plutón, o Pluto, que significaba el rico. Plutón parece el nombre adecuado para este amenazador y poco comprendido planeta.

¿Cómo comenzó el universo?
La idea más conocida sobre la creación del universo es la llamada teoría del big bang. Se basa en las ideas de muchos científicos, especialmente Edwin Hubble, un famoso astrónomo del siglo XX. La teoría del big bang alega que el universo fue creado por un surgimiento masivo de energía y materia hace unos 10 a 20 millardos de años. El big bang formó gases y partículas celestes… y todo lo que existe. Esta teoría también afirma que el universo continúa expandiéndose, que todos los cuerpos celestes -galaxias, estrellas y planetas, para nombrar sólo algunos- están constantemente alejándose unos de otros.

CÓMO INFLAR EL UNIVERSO: Hagamos la siguiente prueba para visualizar el universo como lo ven los astrónomos. Tomemos un globo desinflado y dibujémosle pequeñas estrellas con un marcador. Las estrellas representan las galaxias. Identifiquemos a alguna como la Vía Láctea, nuestra galaxia. Ahora, inflemos el globo. El globo que toma mayor tamaño es similar al universo en expansión. Podemos ver cómo las estrellas se separan, de una manera parecida a cómo se distancian las galaxias. El aire dentro del globo representa el pasado; la superficie del globo representa el presente y el aire alrededor del globo representa el futuro.

¿De qué están hechas las estrellas?
Las estrellas están hechas principalmente de hidrógeno y helio, junto con pequeñas cantidades de calcio, hierro y óxido de titanio. Las proporciones de estos elementos difieren de estrella en estrella. Los astrónomos pueden determinar los elementos que constituyen una estrella, y sus proporciones, estudiando las diferentes longitudes de onda de la radiación electromagnética de una estrella.

¿Cuánto brillo tienen las estrellas?
Existen tres formas de considerar el brillo de una estrella. Podemos hablar de la magnitud aparente de una estrella, o del brillo que parece tener al mirarla. Sabemos, no obstante, que las estrellas más cercanas a la Tierra parecen más brillantes que las que se encuentran alejadas, a pesar de que no sean en realidad más brillantes. Bien, los astrónomos también hablan de la magnitud absoluta de las estrellas, o sea del brillo de una estrella si el observador se encontrara a 10 parsecs de distancia. La tercera manera de medir el brillo de una estrella se llama luminosidad. La luminosidad es una medida de la cantidad de energía que emite una estrella en comparación con nuestro Sol.

EL BRILLO DE LAS ESTRELLAS: Las estrellas parecen más tenues o brillantes según su tamaño y distancia de la Tierra. Comprobemos el efecto de estos factores probando este experimento.

Equipo
linterna
un trozo de papel
un trozo de lámina de aluminio
1. Recortemos un agujero del tamaño de una pequeña moneda en la lámina de aluminio. Conservemos la lámina con el agujero para usarla más adelante.
2. Pongamos el papel sobre el piso de un cuarto oscuro.
3. Alumbremos con la linterna sobre el papel desde una distancia de unos 62 cm (2 pies). Observemos el brillo de la luz sobre el papel.
4. Alumbremos con la linterna sobre el mismo papel a una distancia de 31 cm (12 pulgadas). Observemos que el brillo es mayor. 5. Cubramos la linterna con la lámina de modo que la luz atraviese el agujero. Alumbremos el papel desde la altura de 31 cm (12 pulgadas). La luz será aún más brillante.
Hemos probado los efectos de la distancia y el tamaño en el brillo de la luz. Quizá podamos ahora comprender más claramente la razón por la cual los astrónomos usan dos medidas diferentes para registrar el brillo de una estrella: las magnitudes aparente y absoluta. La magnitud aparente es el brillo que parece tener una estrella vista desde la Tierra. La magnitud absoluta es el brillo de las estrellas si todas estuvieran a la misma distancia (10 parsecs) de la Tierra.

¿De qué está hecho el Sol?
Como otras estrellas, el Sol está compuesto principalmente de gases. Alrededor del 70 por ciento del gas es hidrógeno y el 25 por ciento es helio. Igual que las demás estrellas, el hidrógeno del Sol produce energía convirtiéndose en helio a través del proceso de fusión termonuclear. Vemos la energía del Sol en forma de luz solar y la sentimos como calor.
medio comparado con otra.

¿Qué tamaño tiene el Sol?
El Sol mide 1.392.000 kilómetros (865.000 millas) de diámetro. Necesitaríamos más de 1,3 millones de planetas del tamaño de la Tierra para llenar el Sol. En una balanza, el Sol pesaría casi 333.000 veces más que la Tierra; su masa es de 2 x 10 (potencia 27) toneladas.

¿El sol tiene diferentes capas, como la Tierra?
En el centro del Sol está su núcleo, donde el hidrógeno se transforma en helio, creando energía. Se calcula que el núcleo tiene unos 450.000 kilómetros (280.000 millas) de diámetro. La capa que le sigue al núcleo hacia afuera es la capa de radiación, de más de 278.000 kilómetros (167.000 millas) de espesor; luego la capa de convección, de alrededor de 200.000 kilómetros (125.000 millas) de profundidad; y luego la fotosfera, de 300-500 kilómetros (190 millas) de espesor, que es la que vemos como superficie del Sol. La atmosfera solar está formada por la cromosfera, cerca de la superficie y corona exterior.

¿Qué temperatura tiene el Sol?
La temperatura del núcleo puede registrar hasta 15 millones de °K (15 millones de °C/27 millones de °F), que es 1,5 veces más calor que el emitido en la explosión de una bomba nuclear. Si bien la superficie es mucho más fría ,apenas 5.800°K (6.000°C/10.000°F) es aun unas veinte veces más caliente que la temperatura a la que se quema el papel.

¡NO SE DEBE MIRAR EL SOL DIRECTAMENTE!
Es tan tentador mirar el Sol durante un eclipse, especialmente cuando todo el mundo nos dice que no lo hagamos. El hecho es que hacerlo puede dañarnos los ojos. A continuación proponemos una manera alternativa para mirar un eclipse sin que se nos lastimen los ojos.
Equipo
una caja de cartón con tapa
un alfiler
tijeras
1. Pinchemos un agujero en la parte superior de la caja con el alfiler. Hagamos un agujero por donde mirar en uno de los extremos de la caja.
2. Salgamos al exterior. Levantemos la caja a la altura de nuestros ojos y movámosla hasta que el Sol entre directamente a través del agujero hecho con el alfiler. La imagen del Sol debería aparecer en la parte inferior de la caja.
3. Durante el eclipse, observemos la imagen del Sol mientras la Luna cruza por delante de la estrella.Veremos el eclipse en el momento en que se produce.

¿De dónde salió el satélite de la Tierra?
Existen muchas teorías acerca de cómo llegó a tener un satélite la Tierra. La más popular afirma que hubo un inmenso asteroide -quizás el mismo que se piensa que inclinó el eje de la Tierra- que chocó contra nuestro planeta y arrojó una masa de desechos que quedaron girando dispersos en forma de anillo alrededor del planeta. Con el tiempo, los desechos se aglutinaron formando la Luna. Al principio la Luna estaba mucho más cerca de la Tierra, pero gradualmente llegó a la órbita actual.

EL HOMBRE DE LA LUNA
Casi todos hemos visto al hombre de la Luna. Su rostro luminoso y benigno brilla sobre la Tierra aproximadamente en la época de la luna llena. Pero no está allí en la realidad. Esta demostración les mostrará lo que sucede.
Equipo
aproximadamente siete fichas de dominó, o cajas de fósforos, u objetos pequeños cualesquiera que se puedan parar sobre una mesa una linterna

  1. Pongamos las fichas de dominó sobre la mesa formando una cara: dos ojos, una nariz y una boca.
  2. Oscurezcamos el cuarto. Alumbremos las fichas con la linterna desde arriba y en dirección oblicua. Observa cómo las sombras sobre la mesa forman un rostro espectral.

La superficie de la Luna tiene montañas, abismos y cráteres, que arrojan sombras cuando les da la luz del Sol. Parecen dibujar una cara porque las personas tendemos a reconocer objetos familiares en las sombras comunes y corrientes, como cuando vemos barcos, monstruos y castillos mirando las nubes.

Ver una Imagen Grande Del Sistema Solar

El Origen del Planeta Tierra

Fuente Consultada:
El espacio asombroso Ann-Jeanette Campbell
Dimension 2007 Para 7° Grado Edit. Kapelusz

El planeta sedna, Características y datos, Distancia y medidas

OPINION CIENTIFICA –1

Sedna: el décimo planeta en el Sistema Solar

Aunque es más pequeño que Plutón, es el cuerpo más grande en órbita alrededor del Sol identificado desde el descubrimiento de Plutón, en 1930. Existe discusión entre los astrónomos si, por su pequeño tamaño, tendrá o no status de planeta…o será solamente un planetoide.

planeta sedna

Planeta Sedna, N°:10 del sistema solar

Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano, Neptuno, Plutón… ¡y Sedna!… Sí, porque entre los astrónomos ya se hizo oficial el descubrimiento del décimo planeta del Sistema Solar, el cuerpo celeste más lejano al Sol y de un tamaño muy similar a Plutón.

Está tan lejos del Sol que es el más frío del Sistema Solar. De hecho, su temperatura nunca sobrepasa los -240º C. Pero es el cuerpo celeste más importante y más grande en órbita alrededor del Sol identificado desde el descubrimiento de Plutón, en 1930.

¿Cómo se hizo posible la confirmación de este nuevo planeta?… El equipo encabezado por el investigador Mike Browne, del California Institute of Technology (Caltech) lo detectó por primera vez el 14 de noviembre del 2003, con la ayuda del telescopio Samuel Oschin, en el Observatorio Palomar de Caltech, cerca de San Diego, en California. Con el correr de los días, los telescopios de Chile, España, Arizona y Hawai confirmaron la existencia de Sedna. También lo hizo el nuevo telescopio infrarrojo espacial Spitzer, de la NASA.

Michael Brown dijo que era tanta la distancia de Sedna con respecto al sol, que desde el nuevo planeta se podría tapar el sol con la cabeza de un alfiler.

Más acerca de Sedna

Este nuevo planeta fue bautizado como Sedna en honor a la diosa del mar entre los pueblos inuit, habitantes esquimales del Norte de Canadá y Groenlandia, dama de las profundidades del mar y de las emociones humanas.

Según el pueblo inuit, la diosa Sedna dio origen a las criaturas marinas desde una cueva congelada que ocupa en el fondo del océano.

Sedna se encuentra aproximadamente a 12.800 millones de kilómetros de la Tierra y su tamaño parece ser tres cuartas partes el de Plutón. Es seis veces más pequeño que la Tierra.

Posee un diámetro de unos 2.000 kilómetros y una superficie recubierta de hielo y roca, y debido a su dimensión pequeña, algunos científicos expresaron sus dudas a que pueda ser considerado un planeta más. Y es que – dicen – tal vez sería más correcto hablar de un “planetoide”.

Sedna es más rojo que cualquier otro cuerpo del Sistema Solar, con la excepción de Marte, y sigue una órbita muy elíptica, que en su punto más alejado lo sitúa a unos 135.000 millones de kilómetros del Sol, una distancia equivalente a 900 veces la existente entre el Sol y nuestro planeta, por lo cual tarda 10.500 años terrestres! en completar una sola órbita.

Para tener una idea, Plutón, el noveno planeta del Sistema Solar, y hasta ahora el último, tiene un diámetro de dos mil kilómetros y se encuentra a 6 mil millones de kilómetros de la Tierra.

Los primeros cálculos sugieren que Sedna se encuentra ubicado exactamente en una región del espacio llamada Cinturón de Kuiper. Éste posee cientos de objetos conocidos y los astrónomos creen que aún existen muchos otros esperando ser encontrados.

La mayoría son pequeños mundos de roca y hielo, aunque algunos también podrían ser tanto o más grandes que Plutón. La importancia de Sedna radica específicamente en que es el primero de este tipo de mundos que mantiene una órbita regular, ya que otros objetos similares son menos estables.

¿Qué viene ahora?…Intentar determinar si Sedna posee algún grado de atmósfera. Además, los científicos usarán el Hubble para descubrir por qué posee el tono rojizo más brillante después de Marte.

OPINION CIENTIFICA -2-

Sedna no es el décimo planeta del sistema solar. Numerosos medios de comunicación han cometido varios errores a la hora de describir el último descubrimiento de la NASA.

Entre otras cosas Sedna, un planetoide descubierto por astrónomos del Instituto Tecnológico de California ( Caltech) en cooperación con la NASA, no es un planeta ni tampoco, como se ha dicho, forma parte del cinturón de Kuiper.

El mismo equipo descubrió hace unos días otro planetoide, denominado 2004DW , y este si que forma parte del cinturón de Kuiper. De hecho, por su tamaño de 1600 km de diámetro, su descubrimiento habría sido una gran noticia sino fuera porque Sedna, a pesar de ser de un tamaño similar , tiene la particularidad de ser el primer planetoide situado más allá del cinturón de Kuiper, en una zona que hasta ahora era sólo intuida por la teoría y que se conoce como Nube de Oort.

Sedna está a más del doble de distancia que los objetos más lejanos de nuestro sistema conocidos hasta ahora y tres veces más lejos que Plutón. Por eso es noticia.

En nuestro sistema conocemos el cinturón de asteroides que se encuentra entre Marte y Júpiter, y un cinturón similar llamado Cinturón de Kuiper que se encuentra más allá de Plutón. De echo muchos astrónomos consideran que Plutón no es en realidad un planeta sino uno de los objetos que forman el Cinturón de Kuiper, ya que su tamaño es relativamente pequeño, su órbita es demasiado inclinada y a diferencia de los demás planetas sigue una trayectoría que hace que en ocasiones no sea el más alejado de la Tierra. Sedna es aún más pequeño que Plutón, su órbita también es muy inclinada, y su trayectoria es tan parabólica que sólo lo hemos detectado por casualidad, ya que dentro de unos 70 años volverá a alejarse de nuevo para no regresar y ser visible en las mismas condiciones en los próximos 10,500 años.

Ningún astrónomo calificaría a Sedna como planeta, y muchos dudan que Plutón lo sea, así que difícilmente se puede afirmar que Sedna es el décimo planeta de nuestro sistema. Se trata sólo de una exageración periodística.

Algunos Datos Sobre el Sistema Solar…

– El Sistema Solar está formado por una estrella central, el Sol, los cuerpos que le acompañan y el espacio que queda entre ellos.

– El Sol contiene el 99.85% de toda la materia en el Sistema Solar. Los planetas, los cuales están condensados del mismo material del que está formado el Sol, contienen sólo el 0.135% de la masa del sistema solar.

– Júpiter contiene más de dos veces la materia de todos los otros planetas juntos. Los satélites de los planetas, cometas, asteroides, meteoroides y el medio interplanetario constituyen el restante 0.015%.

– Los planetas terrestres son los cuatro más internos en el Sistema Solar: Mercurio, Venus, Tierra y Marte. Éstos son llamados terrestres porque tienen una superficie rocosa compacta, como la de la Tierra.

– Los planetas Venus, Tierra y Marte tienen atmósferas significantes, mientras que Mercurio casi no tiene.

– A Júpiter, Saturno, Urano y Neptuno se les conoce como los planetas Jovianos (relativos a Júpiter), puesto que son gigantescos comparados con la Tierra, y tienen naturaleza gaseosa como la de Júpiter. También son llamados los gigantes de gas, sin embargo, algunos de ellos tienen el centro sólido.

– Los asteroides son rocas más pequeñas que también giran, la mayoría entre Marte y Júpiter. Además, están los cometas que se acercan y se alejan mucho del Sol. Por su parte, los meteoritos son fragmentos de tierra extraterrestre que se encienden y se desintegran cuando entran a la atmósfera.

Ecuación de Drake Posibilidades de Vida Extraterrestre

La detección de vida en otro punto del universo sería el mayor descubrimiento de todos los tiempos. El profesor de física Enrico Fermi se preguntó por qué, teniendo en cuenta la y la vastedad del universo, así como la presencia de miles  millones de estrellas y planetas que han existido durante de millones de años, ninguna civilización alienígena se ha puesto en contacto con nosotros. Esta era su paradoja.

Mientras charlaba con sus colegas a la hora del almuerzo en 1950. Fermi, al parecer, se preguntó: «¿Dónde están?». Nuestra galaxia contiene miles de millones de estrellas y hay miles de millones de galaxias en el universo, así que hay billones de estrellas. Si sólo una pequeña fracción de ellas tuviera planetas, eso suponía un gran número de ellos. Si una parte de esos planetas albergaba vida, debería haber millones de civilizaciones ahí afuera. Así que, ¿por qué no las hemos visto? ¿Por qué no se han puesto en contacto con nosotros?

Así pensaba Carl Sagan, respecto a la vida extraterrestre: ¿hay alguien ahí fuera con quien hablar? ¿Es posible, habiendo una tercera parte o una mitad de un billón de estrellas en nuestra galaxia Vía Láctea, que la nuestra sea la única acompañada por un planeta habitado?.

Es mucho más probable que las civilizaciones técnicas sean una trivialidad, que la galaxia esté pulsando y vibrando con sociedades avanzadas, y por lo tanto que no esté muy lejos la cultura de este tipo más próxima: quizás esté transmitiendo con antenas instaladas en un planeta de una estrella visible a simple vista, en la casa de al lado.

Quizás cuando miramos el cielo nocturno, cerca de uno de esos débiles puntos de luz hay un mundo en el cual alguien muy distinto de nosotros esté contemplando distraídamente una estrella que nosotros llamamos Sol y acariciando, sólo por un momento, una insultante especulación.

Es muy difícil estar seguros. Puede haber impedimentos graves en la evolución de una civilización técnica. Los planetas pueden ser más raros de lo que pensamos. Quizás el origen de la vida no es tan fácil como sugieren nuestros experimentos de laboratorio. Quizás la evolución de formas avanzadas de vida sea improbable. 0 quizás las formas de vida compleja evolucionan fácilmente pero la inteligencia y las sociedades técnicas requieren un conjunto improbable de coincidencias: del mismo modo que la evolución de la especie humana dependió del fallecimiento de los dinosaurios y de la recesión de los bosques en la era glacial; de aquellos árboles sobre los cuales nuestros antepasados se rascaban y se sorprendían vagamente de algo. 0 quizás las civilizaciones nacen de modo repetido e inexorable, en innumerables planetas de la Vía Láctea, pero son en general inestables; de modo que sólo una pequeña fracción consigue sobrevivir a su tecnología y la mayoría sucumben a la codicia y a la ignorancia, a la contaminación y a la guerra nuclear.

Ecuación de Drake: En 1961, Frank Drake trasladó a una ecuación la probabilidad de que una civilización alienígena con la que pudiéramos contactar viva en otro planeta de la Vía Láctea. Se conoce como la ecuación de Drake. Nos dice que existe la posibilidad de que coexistamos con otras civilizaciones, pero la probabilidad es bastante incierta. Carl Sagan sugirió una vez que hasta un millón de civilizaciones alienígenas podrían vivir en la Vía Láctea, pero más adelante rechazó su propia afirmación, y desde entonces otros científicos han considerado que esa cifra se reducía a una civilización, concretamente, la humana.

 número de estrellas en la galaxia Vía Láctea;  fracción de estrellas que tienen sistemas planetarios número de planetas en un sistema dado que son ecológicamente adecuados para la vida, fracción de planetas adecuados de por sí en los que la vida nace realmente, fracción de planetas habitados en los que una forma inteligente de vida evoluciona, fracción de planetas habitados por seres inteligentes en los que se desarrolla una civilización técnica comunicativa; fracción de una vida planetaria agraciada con una civilización técnica. =N

FORMULA DE DRAKE: Es posible continuar explorando este gran tema y hacer una estimación basta de N, el número de civilizaciones técnicas avanzadas en la Galaxia. Definimos una civilización avanzada como una civilización capaz de tener radioastronomía. Se trata desde luego de una definición de campanario, aunque esencial. Puede haber innumerables mundos en los que los habitantes sean perfectos lingüistas o magníficos poetas pero radioastrónomos indiferentes. No oiremos nada de ellos. N puede escribirse como el producto o multiplicación de unos cuantos factores, cada uno de los cuales es un filtro y, por otro lado, cada uno ha de tener un cierto tamaño para que haya un número grande de civilizaciones:


Nt, número de estrellas en la galaxia Vía Láctea;
fp, fracción de estrellas que tienen sistemas planetarios,
ne, número de planetas en un sistema dado que son ecológicamente adecuados para la vida,
fj, fracción de planetas adecuados de por sí en los que la vida nace realmente,
f¡, fracción de planetas habitados en los que una forma inteligente de vida evoluciona,
fc, fracción de planetas habitados por seres inteligentes en los que se desarrolla una civilización técnica comunicativa; y
fL, fracción de una vida planetaria agraciada con una civilización técnic
a.

Esta ecuación escrita se lee N = N*. fp . ne . f1 . fi . fc . fL Todas las efes son fracciones que tienen valores entre 0 y 1; e irán reduciendo el valor elevado de N0.

Para derivar N hemos de estimar cada una de estas cantidades. Conocemos bastantes cosas sobre los primeros factores de la ecuación, el número de estrellas y de sistemas planetarios. Sabemos muy poco sobre los factores posteriores relativos a la evolución de la inteligencia o a la duración de la vida de las sociedades técnicas. En estos casos nuestras estimaciones serán poco más que suposiciones. Os invito, si estáis en desacuerdo con las estimaciones que doy, a proponer vuestras propias cifras y ver cómo afectan al número de civilizaciones avanzadas de la Galaxia. Una de las grandes virtudes de esta ecuación, debida originalmente a Frank Drake, de Cornell, es que incluye temas que van desde la astronomía estelar y planetario hasta la química orgánica, la biología evolutiva, la historia, la política y la psicología anormal. La ecuación de Drake abarca por sí sola gran parte del Cosmos.

Conocemos N*, el número de estrellas en la galaxia Vía Láctea, bastante bien, por recuentos cuidadosos de estrellas en regiones del cielo, pequeñas pero representativas. Es de unos cuantos centenares de miles de millones; algunas estimaciones recientes lo sitúan en 4 x 1011. Muy pocas de estas estrellas son del tipo de gran masa y corta vida que despilfarran sus reservas de combustible nuclear. La gran mayoría tienen vidas de miles de millones de años o más durante los cuales brillan de modo estable proporcionando una fuente de energía adecuada para el origen y evolución de la vida de planetas cercanos.

Hay pruebas de que los planetas son un acompañamiento frecuente de la formación de estrellas. Tenemos los sistemas de satélites de Júpiter, Saturno y Urano, que son como sistemas solares en miniatura; las teorías del origen de los planetas; los estudios de estrellas dobles; las observaciones de los discos de acreción alrededor de estrellas, y algunas investigaciones preliminares de las perturbaciones gravitatorias de estrellas cercanas. Muchas estrellas, quizás la mayoría, pueden tener planetas.

Consideramos que la fracción de estrellas que tienen planetas, es aproximadamente de 1/3. Entonces el número total de sistemas planetarios en la galaxia sería N. fp = 1,3 x 1011 (el símbolo = significa aproximadamente igual a ). Si cada sistema tuviera diez planetas, como el nuestro, el número total de mundos en la Galaxia sería de más de un billón, un vasto escenario para el drama cósmico.

En nuestro propio sistema solar hay varios cuerpos que pueden ser adecuados para algún tipo de vida: la Tierra seguro, y quizás Marte, Titán y Júpiter. Una vez la vida nace, tiende a ser muy adaptable y tenaz. Tiene que haber muchos ambientes diferentes adecuados para la vida en un sistema planetario dado. Pero escojamos de modo conservador ne = 2. Entonces el número de planetas en la Galaxia adecuados para la vida resulta
N. fp
ne = 3 x 1011.

Los experimentos demuestran que la base molecular de la vida, los bloques constructivos de moléculas capaces de hacer copias de sí mismas, se constituye de modo fácil en las condiciones cósmicas más corrientes. Ahora pisamos un terreno menos seguro; puede haber por ejemplo impedimentos en la evolución del código genético, aunque yo creo que esto es improbable después de miles de millones de años de química primigenio.

Escogemos f1=1/3, implicando con esto que el número total de planetas en la Vía Láctea en los cuales la vida ha hecho su aparición por lo menos una vez es N* fp ne f1 = 1 x 1011, un centenar de miles de millones de mundos habitados. Esta conclusión es de por sí notable. Pero todavía no hemos acabado.

La elección de fi y de fc es más difícil. Por una parte tuvieron que darse muchos pasos individualmente improbables en la evolución biológica y en la historia humana para que se desarrollara nuestra inteligencia y tecnología actuales. Por otra parte tiene que haber muchos caminos muy diferentes que desemboquen en una civilización avanzada de capacidades específicas.

Tengamos en cuenta la dificultad aparente que para la evolución de grandes organismos supone la explosión del cámbrico, y escojamosfi x fc = 1/100; es decir que sólo un uno por ciento de los planetas en los cuales nace la vida llegan a producir una civilización técnica.

Esta estimación representa un punto medio entre opiniones científicas opuestas. Algunos piensan que el proceso equivalente al que va de la emergencia de los trilobites a la domesticación del fuego se da de modo fulminante en todos los sistemas planetarios; otros piensan que aunque se disponga de diez o de quince mil millones de años, la evolución de civilizaciones técnicas es improbable.

Se trata de un tema que no permite muchos experimentos mientras nuestras investigaciones estén limitadas a un único planeta. Multiplicando todos estos factores obtenemos: N* fp ne f1 fi fc = 1 X 109, mil millones de planetas donde han aparecido por lo menos una vez civilizaciones técnicas. Pero esto es muy distinto a afirmar que hay mil millones de planetas en los que ahora existe una civilización técnica. Para ello tenemos que estimar también fL.

¿Qué porcentaje de la vida de un planeta está marcado por una civilización técnica? La Tierra ha albergado una civilización técnica caracterizada por la radioastronomía desde hace sólo unas décadas, y su vida total es de unos cuantos miles de millones de años. Por lo tanto, si nos limitamos a nuestro planeta fL es por ahora inferior a 1/108, una millonésima de uno por ciento. No está excluido en absoluto que nos destruyamos mañana mismo. Supongamos que éste fuera un caso típico, y la destrucción tan completa que ninguna civilización técnica más o de la especie humana o de otra especie cualquiera fuera capaz de emerger en los cinco mil millones de años más o menos que quedan antes de que el Sol muera.

Entonces N = N* fp ne f1 fi fc fL = 10 y en cualquier momento dado sólo habría una reducida cantidad, un puñado, una miseria de civilizaciones técnicas en la Galaxia, y su número se mantendría continuamente a medida que las sociedades emergentes sustituirían a las que acababan de autoinmolarse. El número N podría incluso ser de sólo 1.

Si las civilizaciones tienden a destruirse poco después de alcanzar la fase tecnológica, quizás no haya nadie con quien podamos hablar aparte de nosotros mismos, y esto no lo hacemos de modo muy brillante. Las civilizaciones tardarían en nacer miles de millones de años de tortuosa evolución, y luego se volatilizarían en un instante de imperdonable negligencia.

Pero consideremos la alternativa, la perspectiva de que por lo menos algunas civilizaciones aprendan a vivir con una alta tecnología; que las contradicciones planteadas por los caprichos de la pasada evolución cerebral se resuelvan de modo consciente y no conduzcan a la autodestrucción; o que, aunque se produzcan perturbaciones importantes, queden invertidas en los miles de millones de años siguientes de evolución biológica. Estas sociedades podrían vivir hasta alcanzar una próspera vejez, con unas vidas que se medirían quizás en escalas temporales evolutivas de tipo geológico o estelar.

Si el uno por ciento de las civilizaciones pueden sobrevivir a su adolescencia tecnológica, escoger la ramificación adecuada en este punto histórico crítico y conseguir la madurez, entonces fL = 1 / 100, N= 107, y el número de civilizaciones existentes en la Galaxia es de millones. Por lo tanto, si bien nos preocupa la posible falta de confianza en la estimación de los primeros factores de la ecuación de Drake, que dependen de la astronomía, la química orgánica y la biología evolutiva, la principal incertidumbre afecta a la economía y la política y lo que en la Tierra denominamos naturaleza humana. Parece bastante claro que si la autodestrucción no es el destino predominante de las civilizaciones galácticas, el cielo está vibrando suavemente con mensajes de las estrellas.

Estas estimaciones son excitantes. Sugieren que la recepción de un mensaje del espacio es, incluso sin descifrarlo, un signo profundamente esperanzador. Significa que alguien ha aprendido a vivir con la alta tecnología; que es posible sobrevivir a la adolescencia tecnológica. Esta razón, con toda independencia del contenido del mensaje, proporciona por sí sólo una poderosa justificación para la búsqueda de otras civilizaciones.


Si hay millones de civilizaciones distribuidas de modo más o menos casual a través de la Galaxia, la distancia a la más próxima es de unos doscientos años luz. Incluso a la velocidad de la luz un mensaje de radio tardaría dos siglos en llegar desde allí. Si hubiésemos iniciado nosotros el diálogo, sería como si Johannes Kepler hubiese preguntado algo y nosotros recibiéramos ahora la respuesta.

Es más lógico que escuchemos en lugar de enviar mensajes, sobre todo porque, al ser novicios en radioastronomía, tenemos que estar relativamente atrasados y la civilización transmisora avanzada. Como es lógico, si una civilización estuviera más avanzada, las posiciones se invertirían.

Más de medio siglo después de que Fermi planteara su pregunta, todavía no hemos oído nada. A pesar de nuestros sistemas de comunicación, nadie ha llamado. Cuanto más exploramos nuestro vecindario local, más solitario parece. Ni en la Luna, ni en Marte, ni en asteroides ni en los planetas del sistema solar exterior se ha encontrado rastro alguno de signos concretos de vida, ni siquiera de la bacteria más simple. Tampoco hay signos de interferencia en la luz de las estrellas que pudieran indicar máquinas gigantes orbitando a su alrededor y cosechando energía de ellas. Y no es porque no haya mirado nadie. Dado lo que está en juego, se presta mucha atención a la búsqueda de inteligencia extraterrestre.

Búsqueda de vida ¿Cómo saldríamos a buscar signos de vida? La primera manera es buscar microbios en nuestro sistema solar. Los científicos han escudriñado las rocas de la Luna, pero son basalto inanimado. Se ha sugerido que los meteoritos de Marte podrían contener vestigios de bacterias, pero todavía no se ha probado que las burbujas ovoides de esas rocas hayan albergado vida alienígena o no se hubieran contaminado después de haber caído a la Tierra, o bien que se hayan producido por procesos naturales.

Las cámaras de naves y sondas han recorrido las superficies de Marte, de asteroides y ahora incluso de una luna del sistema solar exterior (Titán, que órbita Saturno). Pero la superficie de Marte está seca, y la de Titán está empapada de metano líquido y, por ahora, desprovista de vida. Europa, una luna de Júpiter, puede albergar mares de agua líquida debajo de su superficie congelada. Por tanto, el agua líquida tal vez no sea un artículo extraño en el sistema solar exterior, lo que aviva las esperanzas de que pueda encontrarse vida algún día.

Sin embargo, los microbios no van a venir a llamar a nuestra puerta. ¿Y qué hay de los animales o plantas más sofisticados? Ahora que se están detectando planetas alrededor de estrellas lejanas, los astrónomos planean diseccionar la luz que proviene de ellos en busca de algún vestigio de vida.

Fuente Consultada: COSMOS Carl Sagan

Medida de La Via Lactea Cantidad de Estrellas en la Galaxia Descripcion

Medida de La Via Láctea
Cantidad de Estrellas en la Galaxia

LA VÍA LÁCTEA: Los astrónomos saben ahora que el conjunto de estrellas que vemos durante la noche es parte de un gigantesco sistema. La forma de este sistema estelar se parece bastante a la de dos platos encarados con sus bordes en contacto y una especie de abultamiento en su parte central.

El sistema solar no está ni mucho menos cerca del centro de este sistema estelar, sino a unos dos tercios de él. Las estrellas aparecen concentradas con mayor densidad en la parte central y en la porción plana situada entre los dos bordes de los “platos”, esto es, en el plano central. Podemos darnos cuenta de esto al observar el cielo en una noche clara: una tenue banda luminosa atraviesa el cielo de un extremo al otro.

Los hombres primitivos ya se dieron cuenta de la presencia de esta banda luminosa muchas leyendas tuvieron su origen en ella, conociéndose con el nombre de Vía Láctea. Tras la invención del telescopio, los astrónomos observaron que está constituida por gran número de estrellas individuales, y ahora sabemos que tal conjunto de estrellas representa el plano central de nuestra Galaxia. Aunque el sistema solar esté situado cerca del borde de este. sistema estelar, la Vía Láctea se ve atravesando todo el, cielo eh forma de una batida rectilínea, tanto al norte como al sin del ecuador, lo cual indica que el sistema solar se encuentra el el plano central de la Galaxia, de modo que de cualquier lado que nos volvamos podemos observar esta densa reunión. de estrellas.

Cuando miramos hacia el cielo en una dirección distinta a la de la Vía Láctea, vemos que las estrellas no están ya tan agrupadas; por el contrario, aparecen muy repartidas por el firmamento. Esto es debido a que entonces miramos hacia fuera del plano central y a través de la parte menos densa de la Galaxia. En efecto, la Vía Láctea nos señala en el espacio la dirección del plano central del sistema de estrellas del cual el Sol es un miembro más.

Nuestra Galaxia es inmensa en comparación con la magnitud de las distancias estelares antes mencionadas. Desde la “parte superior a la inferior” —esto es, a lo largo del diámetro menor de su abultamiento central— tiene un espesor de 20.000 años-luz. Y desde un borde al otro la distancia es de 100.000 años-luz.

DESCRIPCIÓN DE LA VÍA LÁCTEA: DIMENSIONES, CANTIDAD DE ESTRELLAS Y CARACTERÍSTICAS

La mitología griega dice que la diosa Hera, esposa de Zeus, se negaba a amamantar al pequeño Hércules pues había sido fruto de una aventura. En una ocasión lo acercaron a su pecho mientras dormía, pero Hera despertó, lo retiró suavemente de su pezón y la leche se derramó por los cielos, dando forma a las brillantes constelaciones que admiramos en la noche.

Estos valores no incluyen, sin embargo, la distancia a ciertas estrellas que se encuentran por encima y por debajo de ‘la propia Galaxia. Algunas de estas estrellas están solas, pero la mayoría de ellas constituyen grandes cúmulos estelares. Estos cúmulos (denominados cúmulos globulares) forman una especie de halo alrededor de la Galaxia. Cada cúmulo lo forman millares y, a veces, decenas de millares de estrellas agrupadas en forma de esfera o de globo. El más cercano de ellos se encuentra a unos 20.000 años-luz del sistema solar.

Nuestra Galaxia, por lo tanto, está constituida por un conjunto de estrellas, la mayor parte de las cuales se encuentra en el plano o en el abultamiento centrales, junto con mi halo de estrellas individuales y de cúmulos globulares. En nuestro siglo los astrónomos han demostrado que la Galaxia contiene además una considerable cantidad de gas y de polvo.

Observado a través del telescopio, parte de este gas y polvo presenta el aspecto de grandes nubes luminosas nebulosas, de la palabra latina que significa nube. La más famosa de das estas nebulosas es la gran nube gaseosa de la constelación de Orión. A simple vista aparece como un puntito luminoso en medio de las tres estrellas que representan la espada de Orión. Pero aun a través de un pequeño telescopio se convierte en un objeto interesante para la observación.

Las estrellas del cúmulo abierto, denominado las Pléyades, están rodeadas de polvo iluminado por las mismas. Si barremos el cielo con un telescopio, descubriremos muchas más nebulosas que las que se aprecian a simple vista.

La propia Vía Láctea contiene gran número de ellas. Por ejemplo, nebulosas del tipo de las que presenta la Vía Láctea al cruzar Sagitario cubren regiones que miden centenares de años-luz, y muchas contienen brillantes estrellas sumergidas en su seno.

“La Vía Láctea es parte de un barrio cósmico más grande –un grupo de más de 35 galaxias conocido como el Grupo Local. Estas galaxias se mueven por el espacio como una sola unidad, unidas por su mutua atracción gravitatoria. El número de galaxias que pertenecen al Grupo Local es incierto, debido a que los astrónomos siguen encontrando nuevos residentes de este barrio galáctico. Por ejemplo, una de las galaxias del Grupo Local fue descubierta en 1997, a unos tres millones de años luz de la Tierra. Esta nueva galaxia es diminuta: sólo contiene un millón de estrellas aproximadamente, comparado con los cientos de miles de millones de la Vía Láctea.”

En muchas nebulosas gaseosas aparecen surcos y regiones oscuras. La Vía Láctea también presenta surcos entre las estrellas, como si existieran huecos en el fondo estrellado. Las regiones oscuras en la Vía Láctea, así como en las nebulosas gaseosas brillantes, son debidas a gas no luminoso y a polvo. Como veremos más adelante, los astrónomos pueden distinguir el gas carente de luz del polvo cósmico, pero aquí consideramos sólo el hecho de que ambos oscurecen la luz procedente de las estrellas y nebulosas brillantes situadas más allá de los mismos. Este efecto de cobertura en la Vía Láctea nos impide observar lo que debe ser una visión grandiosa.

Debido al gran número de nebulosas situadas entre nosotros y el centro de la Galaxia, no podemos ver el brillante y compacto conjunto estelar que constituye el núcleo de la Galaxia. Nuestros telescopios registran únicamente aquellas estrellas que están situadas de este lado de la densa parte central.

A pesar del problema inherente a la presencia del polvo y del gas oscuro, se ha descubierto que la totalidad de nuestra Galaxia experimenta un movimiento de rotación. El Sol  que es una estrella bastante común, toma parte en esta rotación cósmica, arrastrando consigo a la Tierra a los demás planetas. Como otras estrellas cercanas, el Sol se mueve a través del espacio a razón de 240 Km./seg, velocidad que permitiría dar la vuelta a la Tierra en poco más de dos minutos y medio. Aun así, la Galaxia es tan enorme, que el Sol tarda tarda 225  millones de años en completar una revolución. Este inmenso período de tiempo, denominado ano cósmico, cae fuera de nuestro significado al considerar que hace dos años cósmicos la vida en la Tierra estaba en sus albores, y hace menos de media centésima de año cósmico que apareció el hombre.

Todas las estrellas de la Galaxia intervienen en la rotación cósmica, aunque sus velocidades varían. Las situadas más hacia el centro de la Galaxia generalmente se mueven con mayor rapidez que las que se encuentran cerca del borde, Este movimiento alrededor de la Galaxia constituye el principal desplazamiento de las estrellas, pero cada una precedía a su vez pequeños movimientos locales. Dicho de otro-modo, las estrellas no se mueven alrededor del centro de la Galaxia como si se tratara de una masa sólida. Es más bien como si un grupo de personas se dirigiera a tomar el Metro durante las horas punta; aunque todas van en la misma dirección general, la trayectoria de cada individuo está constituida por muchos movimientos distintos, hacia la izquierda y hacia la derecha, a medida que evita el tráfico o a los demás peatones. Lo mismo sucede con las estrellas de nuestra Galaxia: la dirección general es la de giro alrededor del denso núcleo central.

Fuente Consultada:  Secretos del Cosmos Tomo 2 (Salvat)

EL Tamaño del Universo Distancias del Sistema Solar Planetas

Si se pudiera reducir el globo terráqueo al tamaño de una manzana, el hombre mediría en proporción una cienmilésima parte de milímetro. Ante él cualquier ínfimo bacilo o bacteria alcanzaría dimensiones verdaderamente monstruosas. Por otra parte, como el Sol es una esfera de materia incandescente, que supera en ciento nueve veces el diámetro de la Tierra, si mantuviéramos las proporciones anteriores este Sol estaría representado por un globo de nueve metros de diámetro, situado a casi 1 Km. del planeta que, con el tamaño de una manzana, significaría la Tierra. Pero en los límites de la familia solar, Plutón, el último y más distante de los planetas, figuraría como una bola de billar a 40 kilómetros del citado Sol de! ejemplo.

Ahora bien; sobre la bóveda infinita del espacio brillan las estrellas, enormes masas globulares de gases ardientes. La más próxima, denominada Alfa del Centauro, es otro sol similar al que nos ilumina, con casi su mismo peso y dimensiones. Al igual que todas las estrellas. Alfa del Centauro no permanece inmóvil. Surca el firmamento a una velocidad de 22 kilómetros por segundo, y debido a la enorme distancia que nos encontramos de ella, solamente a lo largo de siglos se apreciaría un movimiento casi imperceptible, puesto que dista de nosotros ¡42 billones de kilómetros!

Si se aplicara a esta distancia la misma proporcionalidad que se empleó al equiparar la Tierra con una manzana y se viera dónde habría que situar la estrella vecina, como se hizo con la distancia del Sol y Plutón, saltaría a la vista la imposibilidad de concretar el objetivo, ya que se necesitaría para esta escala un mapa de unos 260.000 kilómetros de amplitud, es decir, casi las dos terceras partes de nuestra distancia al satélite de la Tierra. Se puede comprobar, de este modo, que la proporción entre la estatura de un ser humano y su distancia a la estrella más cercana es igual a la que existe entre un organismo ultramicroscópico y 260.000 kilómetros.

Un poco más distante, otra brillante estrella de azul tonalidad atrae nuestra atención. Se trata de Sirio, notable por su magnitud en el espacio y por una estrellita que la acompaña y que constituyen con aquélla un sistema físico similar al que forman los planetas del sistema solar El diámetro de Sirio es 1,8 veces el del astro mayor, lo que no significa mucho; sin embargo, situado en el lugar de éste proporcionaría 40 veces más luz y calor del que actualmente suministra.

El misterio revelado
Con respecto a la diminuta estrella que gira en torno de Sirio corresponde aclarar someramente su singular historia. Poco luminosa y lejana, fue ignorada durante siglos por los estudiosos, quienes por razones de tipo especulativo intuían su existencia. Intentaremos explicarlo: la altura del Sol sobre ei horizonte varía con la hora del día; del mismo modo, respecto del movimiento de las estrellas se puede establecer exactamente la hora correspondiente a un momento determinado.

Debido a su gran luminosidad Sirio era utilizada por los astrónomos como estrella horaria. Pero en el firmamento ésta resultaba un astro poco puntual, que se retrasaba o adelantaba temporalmente. Observaciones posteriores permitieron constatar que la estrella describía en el firmamento una levísima órbita elíptica. Sin duda alguna, un astro perturbador, aún invisible, era el causante, con la atracción de su masa, del titubeante comportamiento de Sirio. Apelando a la ley de la gravitación universal se admitió la existencia de un nuevo astro, cuya órbita y posición fueron determinadas en 1850 por el astrónomo alemán Frederick Peters.

En 1862, mediante el uso de un anteojo, a la sazón recién fabricado, se lo descubrió inesperadamente y comenzó a plantearse un nuevo interrogante referido a la especial naturaleza de la materia que lo compone.

La incógnita fue revelada en 1924, cuando el astrónomo estadounidense Walter Adams, empleando el interferómetro de Michelson, logró la doble comprobación del efecto Einstein, y la confirmación de la extraordinaria densidad (23.000 veces más que la del platino) de la diminuta estrella. El “misterio” de la substancia radicaba en lo siguiente: en tamaño, el satélite de Sirio es sólo tres veces más grande que la Tierra, pero su masa es casi igual a la del Sol.

A fin de que toda esta materia pueda caber en tan escaso volumen hay que someterla a una intensa presión, comprimirla enormemente. Los átomos, elementos que componen toda materia, tienen un límite de resistencia mecánica, tras lo cual son deshechos en un confuso montón de núcleos y electrones que invaden y desbordan los espacios interatómicos. Roto el equilibrio interno del átomo, los espacios vacíos son cubiertos por los componentes de otros átomos triturados.

Así, el espacio ocupado disminuye y por lo tanto la densidad media (relación entre volumen y masa) se acrecienta. Era éste, pues, el íntimo secreto que guardaba en su seno la estrella más brillante del cielo.

La “fuga” del universo
Se se miden las velocidades de esos universos-islas se llega a la conclusión de que parecen alejarse entre sí, acrecentando su velocidad a medida que se van distanciando. Esta fuga desordenada no afecta las dimensiones propias de las galaxias, que, alejándose, siguen conservando su tamaño.

Habida cuenta de esto, y calculando el tiempo necesario para que todas esas islas estelares volvieran a juntarse marchando a idéntica velocidad, pero inversamente, se necesitarían unos 13.000 millones de años para volver a reunirse en un conjunto de estrellas distribuidas en un solo universo de manera uniforme.

Si a partir de este conjunto único de densidad estelar se han condensado en grupos de estrellas de modo similar a como suponemos que el gas primitivo se fue condensando en estrellas, sigue aún en pie uno de los tantos interrogantes que se plantea la astronomía, para cuya respuesta el hombre acude con su ciencia al más allá.

Con el misterio de la creación ha quedado atrás en el tiempo y sumida en las sombras del espacio, a 1.500millones de años de luz, una imperceptible manchita nebulosa: es nuestro universo. Confundido entre corpúsculos titilantes hay un sol que nos es familiar, y como un punto minúsculo, donde el hombre lucha por penetrar en el misterio de lo infinito, está la Tierra, nuestro planeta.

La mediciones indicadas mas abajo van variando según se logran técnicas
e instrumentos mas precisos para su medición

Magnitud
Visual
Distancia
Años-Luz
Diámetro
Años-Luz
Vía Láctea 97.800
Nube de Magallanes (mayor) 0,9 156.480 32.600
Nube de Magallanes (menor) 2,5 182.560 26.080
Sistema de la Osa Menor 228.200 3.260
Sistema del Escultor 8,0 270.580 7.170
Sistema del Dragón 326.000 4.560
Fornax 8,3 619.400  21.520
Sistema del León II 12,04 749.800 5.220
Sistema del León I 12,0 912.800 4.890
NGC 6822 8,9 1.500.000 8.800
NGC 147 9,73 1.858.000 8.780
NGC 185 9,43 1.858.000 7.500
NGC 205 8,17 2.217.000 16.300
NGC 221 (M 32) 8,16 2.217.000 7.820
IC 1613 9,61 2.217.000 15.300
Andrómeda (M 31) 3,47 2.217.000 130.400
NGC 538 (M 33) 5,79 2.347.200 55.420
Maffei I 11,0

3.260.000

 

Estrella Constelaciones Magnitud
Aparente
Distancia
Año-Luz
Sirio +
Canope +
Rigil Kent
Arturo
Vega
Rigel +
La Cabra +
Proción
Achernar
Hadar +
Altair.
Aldebarán +
Acrux +
Betelgeuse + + +
Antares +
La Espiga +
Pólux
Fomalhaut
Deneb
Mimosa
Régulo +
Adhara +
Bellátrix
Shaula
Alnath
Alfa del Can Mayor
Alfa de Argos (Carina) .
Alfa del Centauro
Alfa del Boyero
Alfa de la Lira
Beta de Orión
Alfa del Cochero (Auriga)
Alfa del Can Menor
Alfa de Erídano
Beta del Centauro
Alfa del Águila
Alfa del Toro
Alfa de la Cruz del Sur
Alfa de Orión
Alfa del Escorpión
Alfa de la Virgen
Beta de los Gemelos
Alfa del Pez Austral
Alfa del Cisne
Beta de la Cruz del Sur
Alfa del León
Epsilón del Can Mayor
Gamma de Orion
Lamda del Escorpión
Beta del Toro
-1,47
-0,71
-0,27
-0,06
0,03
0,08
0,09
0,34
0,49
0,61
0,75
0,78
0,80
0,85
0,92
0,98
1.15
1.16
1,26
1,28
1,33
1,42
1,61
1,61
1,64
8.7
300
4
36
26
850
45
11
75
300
16
65
270
650
400
220
35
23
.500
370
85
620
450
300
270
(+):Estrella Doble  (+++): Estrella Variable

Fuente Consultada: Mundorama Geografía General Tomo I

Historia de la astronautica: vuelos tripulados y no tripulados

VUELOS NO TRIPULADOS

Vostok I, Primer Vuelo Ruso

VOSTOK 1     URSS 12-4-1961 Yury A. Gagarin. Primer hombre en el espacio dando una vuelta alrededor de la Tierra.

VOSTOK 2     URSS 6-8-1961 Gherman 5. Titov. Segundo astronauta ruso que estuvo en órbita durante 25 horas.

FRIENDSHIP 7 EE.UU. 20-2-1962 John H. Glenn Jr. Primer astronauta americano en órbita alrededor de la Tierra.

VOSTOK 3     URSS 11-8-1962 Andrian G. Nikolayev. En órbita simultáneamente con el Vostok 4.

VOSTOK 4     URSS 12-8- 1962 Pavel R. Popovich. En órbita simultáneamente con el Vostok 3.

VOSTOK 6     URSS 16-6- 1963 Valentina V. Tereshkova. Primera mujer en el espacio.

VOSKHOD 1     URSS 12-10-1964 Vladimir M. Komarov, Konstantin P. Feoktistov y Boris B. Yegorov. Primera cápsula espacial con más de un astronauta a bordo.

GEMINI 4     URSS 18-3- 1965 Pavel Belyayev y Aleksey Leonov que realizó el primer paseo espacial.

VOSKHOD 2 EE.UU. 3-6- 1965 James A. McDivitt y Edward H. Whíte II. Primer paseo espacial realizado por los norteamericanos.

GEMINI 7     EE.UU. 4-12- 1965 Frank Borman y James A. Lowell Jr. Establecen un nuevo record de permanencia en el espacio al efectuar 206 vueltas alrededor de nuestro Planeta.

SOYUZ 1     URSS 23- 4-1967 Vladimir M. Komarov, sufre el primer accidente mortal en la carrera del espacio.

APOLLO 8     EE.UU. 21-12- 1968 Frank Borman, James Lowell Jr. y William Anders. Primer vuelo de una nave tripulada alrededor de la Luna.

APOLLO 11 EE.UU. 16-7-1969 Neil A. Armstrong, Edwin E. Aldrin Jr. y Michael Collins. Llegada del hombre a la Luna.

APOLLO 13 EE.UU. 11-4-1970 James A. Lowell Jr., Fred W. Haise Jr. y John L. Swigert Jr. Una explosión en el módulo de mando obliga a suspender el alunizaje y el regreso a la Tierra se hace en precarias condiciones.

APOLLO 15 EE.UU. 26-7-1971 David R. Scott, Alfred M. Worden y James B. Irwin. Los astronautas utilizan por segunda vez el vehículo todo terreno, permitiéndoles de este modo hacer una experiencia lunar más extensiva.

SKYLAB 1 EE.UU. 25-5-1973 Charles P. Conrad, Joseph P. Kerwin y Paul J. Weitz son la primera tripulación que habita en el laboratorio espacial.

SKYLAB 3 EE.UU. 16-11- 1973 Gerald Carr, Gibson y Pogue. 84 días de permanencia en el espacio.

APOLLO– EE.UU. 15-7-1975 Stafford, Slayton, Brand, Leonov y Kubasov.

SOYUZ     URSS Primer vueló conjunto soviético- norteamericano y primera cita espacial.

SOYUZ 29 URSS 15-6-1978 Vladimir Kovalyonok y Aleksandr Ivanchenkov permanecen más de 4 meses en el espacio (139 días).