Mapa de la Luna

Primer Acoplamiento en el Espacio Historia del Programa

HISTORIA DEL PROGRAMA SOYUZ-APOLLO-PRIMER ENCUENTRO ESPACIAL

En julio de 1975 se concretó un ambicioso proyecto conjunto entre los Estados Unidos y la Unión Soviética, consistente en el acoplamiento en órbita de una cosmonave Apolo con otra Soyuz. En esta misión se pusieron de manifiesto, en las técnicas utilizadas por ambas potencias para la conquista cósmica, diferencias que debieron en gran parte limarse con el objeto de hacer posible el éxito del programa.

Así, fue necesario emplear un módulo de anexión para que los tripulantes de una y otra cápsula pudieran aclimatarse lentamente a las diferencias de presión y de aire utilizado (oxígeno puro en la Apolo y oxígeno con nitrógeno en la Soyuz) y hasta ponerse de acuerdo acerca de la alimentación y los horarios de descanso.

mision soyuz apollo

Ambas naves acopladas

ANTES Y AHORA
La diferencia entre los vuelos orbitales iniciales y los actuales radica en que estos últimos cuestan mucho menos. ¿Por qué? Por la sencilla razón de que antes el cohete lanzador se usaba una soia vez y se perdía. Un cohete Saturno V, por ejemplo, que envió la nave Apolo a la Luna, costaba 300 millones de dólares y luego de terminar su combustible se perdía. Desde la construcción del “Space Shuttle” y otros naves similares se usa muchas veces un mismo equipo como un avión, lo que permite reducir notablemente los costos

Con “siete horas de diferencia partieron las cápsulas; de Baikonur, llevando a bordo a Alexei Leonov y Valeri Kubasov, y de Cabo Cañaveral, conduciendo a Thomas Stafford, Donald Slayton y Vanee Grand. Una vez en órbita hicieron las correcciones necesarias, descansaron y al día siguiente lograron sin dificultades el histórico acoplamiento.

En el aspecto político, significó el comienzo de una nueva era de cooperación; y en el técnico, un verdadero intercambio de conocimientos. Además, por primera vez desde el lanzamiento del primer Sputnik, la Unión Soviética abrió las puertas de su centro espacial de Baikonur no sólo a los científicos y cosmonautas sino también a los periodistas especializados de todo el mundo.

Se trata de un complejo levantado en medio de un desierto, que en nada se parece a la lujuriosa vegetación y los pantanos del Cabo Cañaveral, en Miami. Está situado cerca de la ribera este del Mar Caspio, en un sitio de difícil acceso y prácticamente sustraído a las posibilidades de espionaje desde la superficie o la atmósfera terrestres.

El desarrollo de la misión fue impecable y dejó las puertas abiertas a otro proyecto, ya en marcha, que se concretará cuando la astronáutica indique los nuevos rumbos a seguir.

Porque si bien esta misión significó la última de la serie Apolo, hay que esperar que Estados Unidos complete sus planes con el “transbordador espacial” (programa Shuttle) y que la Unión Soviética desarrolle los suyos con las series Soyuz o con las estaciones espaciales Salyut.

El descenso de la cápsula rusa se realizó tres días antes que el de la estadounidense, la que aprovechó ese tiempo en órbita para efectuar varios trabajos científicos. La Apolo regresó el 24 de julio de 1975 y a pesar de un inconveniente causado por el escape de gas letal que irritó los pulmones de los cosmonautas, el amerizaje en aguas del Pacífico se llevó a cabo con la precisión acostumbrada.

Para los Estados Unidos el programa Apolo-Soyuz representó la culminación de una larga serie de esfuerzos que se inició con las cápsulas Mercurio, de un solo tripulante; siguió con el proyecto Géminis, de dos ocupantes; y culminó con el plan Apolo, cápsula para tres astronautas.

A partir de aquí los programas ruso y norteamericano se bifurcaron; los soviéticos siguieron perfeccionado su navio Soyuz, acoplándolo con otras, cápsulas y dejándolo cada vez más tiempo en órbita: la NASA a su vez, tras un experimento de larga duración con el “Space Lab”, desechó los vuelos clásicos e hizo un paréntesis para reiniciar la actividad en 1980 con el “Space Shuttle” o Trasbordador Orbital.

tripulantes de la mision soyuz apollo

Los cinco tripulantes del programa conjunto pasaron a bordo 44 alegres horas en las que se alternaron los idiomas —inglés y ruso— con una facilidad que sorprendió a los mismos directores del programa. Parecía como si fuera una misión conjunta más que realizaran los cinco hombres del espacio. Alternando algunas bromas de tono político con informaciones sobre la marcha del vuelo y hasta discusiones acerca de cuál comida envasada o deshidratada era la más sabrosa, si la rusa o la estadounidense, se cumplió una misión que tuvo más importancia para la distensión entre Moscú y Washington que para los cosmonautas, quienes ya habían ensayado incontables veces en tierra esta misión, a tai punto que la esposa de Leonov manifestó a los periodistas: “Parece que para ellos es más fácil volar que esperar en tierra”.

Ampliar Este Tema En Este Sitio

Fuente Consultada:
Enciclopedia Ciencia Joven Tomo II Edit. Cuántica

Pioneros de los Viajes Espaciales Inventores de Cohetes

Pioneros de los Viajes Espaciales  – Inventores de Cohetes

Antes de que los hermanos Montgolfier hicieran su primera ascensión, nadie se había elevado nunca más que unos pocos centímetros sobre la superficie terrestre. Un siglo y medio después, miles de aviadores volaban a varios kilómetros por sobre la tierra. Luego, una vez conquistado el aire, los hombres empezaron a soñar en viajar a través del espacio hacia otros mundos.

Al principio parecía que los viajes espaciales no serían, por mucho tiempo, más que un sueño, ya que los problemas que se debían vencer eran dificilísimos. Uno consistía en que todos los motores hasta entonces conocidos tenían que quemar necesariamente algún tipo de combustible, y es bien sabido que ninguno de éstos puede arder en el espacio vacío donde no hay oxígeno con qué combinarse. Otro era el de que todos los aparatos de vuelo inventados hasta ese momento necesitaban aire para volar.

Pero hay una antigua forma de vuelo que no necesita aire. Si desatamos el cuello de un globo de juguete inflado, éste siempre se desplazará en la dirección opuesta a la del aire que escapa de él. Esto, no ocurre porque el aire mencionado empuje el del exterior: es que el de adentro del globo presiona fuertemente contra el frente, por donde no puede salir, pero no contra la parte posterior, o cuello, por donde sí puede escapar. Esta diferencia de presión es la que impulsa al globo hacia el frente.

Tsiolkovsky, hijo de un inspector forestal de Riazán, tras iniciar sus estudios en Moscú, se recibió de profesor de matemáticas, siendo asignado a la escuela de Borovo en 1882. Ya para aquel entonces el científico había llegado a profundizar sus estudios en tal forma que tenía casi terminada la teoría que años después lo hiciera célebre.

Tsiolkovski se dedicó a divulgar sus atrevidas ideas a través de obras de ficción, artículos periodísticos, muchos de los cuales fueron recibidos con luirlas por parte del gran público y con despectivas opiniones  por parte de  sus colegas moscovitas y de otaos países. En Borovo diseñó un dirigible enteramente metálico impulsado a motor de explosión -nítido precursor del Zeppelín germano-, un avión sumamente similar al que luego elevara pollos aires a los hermanos Wright y comenzó a afrontar las dificultades que había que vencer para iniciar los viajes interplanetarios.

Konstantín E. Tsiolkovski (1857-1935), científico e inventor ruso, pionero en la investigación de cohetes y espacial. A los nueve años se quedó casi totalmente sordo y siguió sus estudios en su domicilio; trabajó como profesor de matemáticas de la escuela secundaria hasta su retiro en 1920.

En 1903, una revista de Moscú publicó, con cinco años de arraso, su artículo “La exploración del espacio cósmico por medio de los aparatos a reacción“, en el que se sostenía que el único camino posible para abandonar  la Tierra  era  un cohete impulsado por propelentes líquidos como el oxígeno y el hidrógeno, fórmula utilizada años después por los misiles estadounidenses Centauro y Saturno-1.

En 1898 anticipó también la idea de la alimentación de los cohetes por medio de la presión, deflectores de lanzamiento, la cabina estanca conteniendo oxígeno para el piloto y un dispositivo para la absorción de anhídrido carbónico. De 1911 a 1915 perfeccionó su cohete y propuso un sistema para que el cosmonauta se halle en la cabina en posición horizontal para resistir la aceleración -idea que fue redescubierta 20 años después por el alemán Diringshofen.

Y en 1929 llegó a su momento cumbre, cuando concibió, con una precisión casi increíble, la construcción de un cohete de varias etapas pura escapar de la atmósfera; las escafandras de los astronautas; los satélites artificiales; las estaciones en órbita albergando invernaderos para la eliminación del gas de carbono -tal cual se hace hoy en día en las estaciones Skylab y Salyut-, e incluso la utilización de la energía solar como tuerza motriz de las astronaves, genial intuición hoy ya utilizada tras muchos fracasos de sus inventores.

Es recién en 1919 cuando comienzan a reconocerse los méritos de este pionero, que murió en 1935 convencido de que el destino del hombre está en las estrellas; idea que quedó grabada sobre su tumba, con una muy usada frase suya: “La humanidad no permanecerá siempre en la Tierra”.

El otro precursor, Goddard, había nacido en Massachusetts en 1882 y realizado sus estudios en la ciudad de Boston, al tiempo que su mente se dejaba llevar fantasiosamente por los trabajos de Verne; lentamente penetra en el mundo de los cohetes, representados en esa época únicamente por los de pólvora utilizados en la guerra o por aquel duramente criticado invento del misil a vapor, tipo ametralladora, del alemán Hermán Ganswindt en 1891.

Costeándose sus experimentos con sus escasos recursos, aquel joven llegó a demostrar la importancia de la cóhetería en la astronáutica e, incluso, en la guerra.

Goddard Cientifico

El ingeniero espacial estadounidense Robert Hutchings Goddard publica un libro titulado Método para alcanzar alturas extremas, en el que describe un tipo de cohete que podría alcanzar la Luna.

Tras perfeccionar un cohete con carga explosiva inventó en 1918 la célebre “bazooka”,arma que no se utilizaría hasta la segunda Guerra Mundial. Continuó luego sus experimentos y poco a poco comenzó a vislumbrar las posibilidades de construir un cohete impulsado por combustibles líquidos, y sin conocer las teorías de Tsiolkovski inició en 1920 sus primeros trabajos sobre el tema. Le llevó seis años concretar la idea, pero en 1926 logró algo fundamental en la historia de la astronáutica: el primer misil propulsado con carburante líquido.

A partir de entonces el pionero prosiguió su obra, ya con el apoyo del gobierno norteamericano, y fue obteniendo éxito tras éxito, hasta que la muerte lo sorprendió en 1946, cuando irrumpían en la carrera espacial otra serie de ideas y nombres que darían un fuerte impulso a la astronáutica.

Entre otros importantes avances debidos a la obra de Goddard podemos destacar los que significaron la bomba centrífuga de combustible; el cohete por etapas; las aletas desviadoras del chorro y la dirección giroscópica de loscohetes. Fue, además, el primero en lanzar un cuerpo a una velocidad mayor que la del sonido.

Alemania, creadora de las primeras bombas voladoras, las célebres V-1 y V-2, no surgió en la cohetería por obra de la casualidad. También allí existió un pionero: se llamó Hermán Oberth. Este,que trabajó casi exclusivamente en teoría, desarrolló las ideas del ruso en tal forma que llegó a proyectar íntegramente un cohete de 110 metros de altura, de características casi idénticas a las del Sarurno-5.

Oberth y sus alumnos Riedel, Nebel y Werner von Braun comenzaron a real izar sus proyectos y, en 1931, lanzaron el primer cohete europeo, que rápidamente fue perfeccionado hasta que el gobierno nazi vió -en 1933- la posibilidad bélica de esa arma y estableció una base experimental oficial en Kummersdorf, 28 kilómetros al sur de Berlín.

Allí, un año después la primera bomba V-1 alcanzó una altura de 2.200 metros. Después, a causa de los bombardeos aliados, la base fue trasladada a una isla del mar Báltico, Peeiiemünde, en la que se concretó la V-2, que asoló a Londres, Amberes, Lieja y Bruselas hasta el final de la contienda.

A partir de entonces, los científicos del Tercer Reich pasaron en su mayor parte a Estados Unidos y otros a la Unión Soviética, donde en base a los planos secretos que llevaban en la mente y a lo realizado por especialistas locales como Goddard, Tijoranov y Bajcjovangui, comenzó realmente la carrera espacial que culminaría asombrando al mundo, en 1957, con la puesta en órbita del primer satélite artificial: el Sputnik-1.

bomba V2 alemana

LA BOMBA V-2
Llevada a Estados Unidos por Von Braun y sus compañeros de Peenemunde, la bomba V-2 se convirtió en vital elemento para las naciones victoriosas de la segunda contienda mundial. En efecto, había llegado a producirse en serie y en número de 3.000, de las cuales solamente algunas decenas cayeron en manos de las tropas aliadas tras la “Operación Paperclip”, la que estuvo destinada a llevar a EE.UU. la mayor cantidad de científicos germanos y los documentos secretos sobre esa destructora arma, antes de que cayeran en manos soviéticas.

Y entre esos documentos se hallaban los de dos cohetes aún en experimentación, cuya finalidad, en tiempo no muy lejano, era bombardear la ciudad de Nueva York, además de los proyectos de Eugen Sanger, sobre un bombardero estratosférico, predecesor del X-15 norteamericano. He aquí algunas de las principales características de la V-2: Fuerza de impulsión: 24.401 kg. Impulso específico: 206 segundos. Peso vacío: 4.676 kg. Peso con combustible ycarga: 12.884kg.Tiempo de combustión: 70 segundos. Longitud total: 21 m. Diámetro: 1,65 m. Ancho entre alerones: 3,57 m.

ALGO MAS…

Durante la segunda guerra mundial inventores alemanes e ingleses produjeron aviones que usan un método similar de propulsión. Werner von Braun tuvo parte activa en la producción del arma alemana V-1. De su motor grandes masas de gas escapaban en rápida sucesión de cortos estallidos. A cada estallido la presión era mayor hacia el frente del motor que hacia atrás, dando a la bomba V-1 un impulso hacia adelante.

Von Braum cientifico alemanMientras tanto, en Inglaterra, el capitán Whittle inventó el motor de chorro, en el que un chorro continuo de gas da un impulso ininterrumpido hacia adelante. Motores de este tipo podrían funcionar en el espacio si no necesitaran combinar el oxígeno del aire con su combustible.

Afortunadamente, había todavía otra antigua forma de vuelo que usaba combustible pero no necesitaba oxígeno del aire exterior. Era el cohete, usado por primera vez en la China hace centenares de años.

En los primitivos cohetes el combustible era pólvora, y uno de los ingredientes de ésta —salitre— de por sí contiene bastante oxígeno como para permitir a los otros que ardan sin aire.

Cuando el combustible arde dentro de un cohete, la presión es mayor al frente, donde los gases no pueden escapar, que atrás, donde pueden hacerlo, del mismo modo que ocurría en el globo de juguete que tenía el cuello abierto. De este modo, el cohete da la solución a ambos problemas del vuelo espacial.

Durante la segunda guerra mundial, científicos alemanes, incluyendo a Werner von Braun, produjeron cohetes capaces de volar cientos de kilómetros, en los cuales el combustible líquido ardía con el oxígeno que se había comprimido y almacenado en forma líquida. Uno de ellos, el famoso V-2, está representado en la lámina (arriba, derecha, la figura más grande).

Sputnik satelite artificial rusoDesde entonces los vuelos de cohetes se han desarrollado enormemente, especialmente en Estados Unidos de América y en Rusia. Muchos cohetes modernos constan de tres partes, y cada una de ellas añade su propia tremenda velocidad a la ya aportada por su predecesora.

Con un cohete de este tipo los científicos rusos enviaron el primer satélite artificial de la Tierra, el Sputnik I, en octubre de 1957.

Tanto Rusia como los Estados Unidos han enviado luego muchos más, y hacia fines de 1960 más de 30 circulaban alrededor de la Tierra. Un cohete ya ha hecho impacto en la Luna. Otro ha dado la vuelta alrededor de ella, tomando fotografías del lado hasta entonces nunca visto. Todavía otro se ha transformado en un diminuto planeta que gira alrededor del Sol.

En abril de 1961 el astronauta ruso Yuri Gagarin surcó el espacio interplanetario dando un giro completo en 89 minutos alrededor de la Tierra, y en agosto del mismo año, otro cosmonauta ruso, Gherman Titov, dió 17 vueltas en torno a la Tierra en 25 horas 18 minutos. En febrero de 1962, el estadounidense John H. Glenn dio 3 vueltas alrededor de la Tierra en 4 horas 54 minutos.

Fuente Consultadas:
Enciclopedia Ciencia Joven La carrera espacial Edit. Cuántica Fasc. N°12
El Triunfo de la Técnica Tomo III Globerama Edit. CODEX

Composición Mineral de la Corteza Terrestre Tabla de Minerales

Composición Mineral de la Corteza Terrestre

Grandes son las riquezas que guarda en su seno la corteza terrestre y numerosas las necesidades que el hombre puede satisfacer con aquéllas. Pero rara vez esos recursos, que conocemos con el nombre de minerales, se encuentran tan a la vista que su busca, extracción y beneficio no exijan conocimientos y considerable trabajo.

Los estudios que se han realizado para conocer la composición de los constituyentes minerales de la Tierra se limitan a una pequeña porción del escenario que la ciencia geológica llama hidrosfera y litosfera.

Esta, que ordinariamente llamamos corteza terrestre, tiene un espesor de unos 120 kilómetros, que se considera dividido en dos zonas distintas, conocidas con los nombres de sial y sima.

corteza terrestre

Los componentes esenciales del sial son rocas del carácter del gneis y el granito, constituidos por minerales en los que predominan los elementos silicio y aluminio. De ahí el nombre de sial, formado con los símbolos de ambos elementos, que son Si y Al, respectivamente. Los constituyentes del sima son rocas de carácter volcánico, en las que abundan el silicio y el magnesio, con cuyas dos primeras letras se forma dicha voz.

El sial o zona de fractura de la corteza terrestre, que forma los bloques continentales, estaría, por su menor densidad (2,6), inmergido en el material de mayor densidad (3,0) del sima o zona de fluidez de la litosfera, como los témpanos de hielo en el agua.

En ambos componentes de lacorteza terrestre las substancias minerales, en un 98%, contienen los elementos siguientes en los porcentajes que se indican: oxígeno (46,46), silicio (27,61), aluminio (8,07), hierro (5,06), calcio (3,64), sodio (2,75), potasio (2,58) y magnesio (2,07). El porcentaje que resta lo forman, en orden decreciente, el titanio, hidrógeno, fósforo, manganeso, carbono, azufre, cloro, bario, flúor, estroncio, etc.

En la hidrosfera, parte líquida constituida principalmente por los mares, también existen varios de estos elementos que entran en la composición, por ejemplo, del cloruro de sodio, cloruro de magnesio y sulfato de magnesio, contenidos en solución, particularmente del agua de mar, desde un 3,5 a un 4 %.

Los elementos componentes de los minerales de la hidrosfera constituyen un 7% y los de la litosfera un 93 % deja composición media del material inorgánico o mineral de la superficie terrestre.

Entre los minerales más comunes e importantes se cuentan los siguientes: azufre, diamante, grafito, oro, plata, platino, galena, pirita, blenda, cinabrio, calcopirita, magnetita, hematita, corindón, cuarzo, halita, nitratina, calcita, yeso, bórax, coaolín, feldespatos, micas y asbetos o amiantos.

Las cantidades en que se encuentran estos y otros minerales varían muchísimo de unos a otros. Así, algunos, como la calcita en forma de caliza, ocupan por sí solos superficies de varios kilómetros; otros, como la casiterita, se hallan en cantidades moderadas, y algunos son una rareza, como la greenockita, que es un sulfuro de cadmio (CdS).

Además, si bien la contemplación ligera de los minerales produce la impresión de una cosa eterna e invariable, basta una observación atenta para reconocer que casi todos se hallan alterados de diversos modos, siendo muy pocos los que  se muestran tan resistentes como el cuarzo. Así, por la acción de los agentes atmosféricos, como el agua, oxígeno y dióxido de carbono, se forman óxidos, hidróxidos, carbonatas, etc., a partir de sulfuros y otras sales.

Por ello puede afirmarse que la corteza terrestre es objeto de una continua transformación en la que mueren los minerales viejos y nacen otros nuevos.

esquema de la composicion mineral de la corteza terrestre

DEL NÚCLEO A LA SUPERFICIE
De acuerdo con las hipótesis de los geólogos que tienen como base observaciones sismológicas, el núcleo de la Tierra estaría formado por una esfera cuyo radio sería,aproximadamente, de 3.500 kilómetros. Tal zona recibe el nombre de nife, pues se la considera compuesta de níquel (Ni) e hierro (Fe).

Sobre ella se encuentran los mantos de! núcleo, de unos 1.700 kilómetrcs de espesor que -según algunos autores- contienen hierro en forma de óxidos y sulfuros; otros estudiosos suponen que están formados por una mezcla de metales que contienen silicatos. Encima de los mantos del núcleo se hallan los mantos rocosos, cuyo espesor alcanza a medir 1.200 kilómetros.

Los forman rocas que se originaron en esa masa mineral, pastosa, a menudo denominada magma. En esta parte rocosa se distinguen la barisfera o zona del manto profundo -de unos 1.000 Kilómetros de espesor- y, sobre ella, la litosfera o corteza terrestre.

Ver: La Corteza Terrestre

Fuente Consultada:
Secretos del Cosmos Tomo 2 (Salvat)
Enciclopedia Ciencia Joven -La Corteza Terrestre – Fasc. N°15 Editorial Cuántica

El Descubrimiento del Planeta Neptuno La Influencia de Urano

HISTORIA DEL DESCUBRIMIENTO DE NEPTUNO Y PLUTÓN

Mucha sorpresa causó la revelación de Federico Guillermo Herschel cuando descubrió, en 1781, con la ayuda de un telescopio de fabricación casera, un nuevo planeta, nunca visto antes. Este famoso astrónomo tuvo siempre para sus observaciones, la colaboración de su hermana Carolina; la lámina del ángulo inferior izquierdo los muestra a ambos trabajando.

Herchell Guillermo astronomo

Urano, que así fue llamado este nuevo planeta, está tan alejado del Sol —a unos 2.991.200.000 km. con un año 84 veces más largo que el nuestro— que las manchas de su superficie no pueden ser apreciadas con claridad. Tiene algunos cinturones paralelos a su ecuador, de color grisáceo, y parece que está constituido en su mayor parte por el gas metano.

El diámetro de Urano es de 49.700 Km.; está levemente aplanado en los polos y su tiempo de rotación es de unas 10% horas. Contrariamente a otros planetas, cuyos ejes están algo inclinados con relación a las órbitas, los puntos de su eje están dispuestos casi en la misma dirección que su trayectoria, de manera que muchas veces avanza con un polo adelante. Otras veces, también, sus polos apuntan hacia la Tierra, de tal forma que podemos ver la totalidad de un hemisferio; algunas veces lo vemos de costado y entonces el aplanamiento del polo es bien evidente.

Seis años después de descubrir a Urano, Herschel vio dos de sus satélites, llamados Titania y Oberón. Más recientemente se han identificado otros tres, Ariel, Umbriel y Miranda. Cuando éstos dan la vuelta alrededor del ecuador de Urano, podemos observarlos en la totalidad de su curso; esto no es posible para ningún otro satélite.

También difieren de todos los demás satélites en que giran de este a oeste, en lugar de hacerlo de oeste a este. Sus distancias a Urano están comprendidas entre 129.000 y 586.500 km. Están muy alejados para ser medidos, pero tienen probablemente unos pocos cientos de kilómetros de diámetro.

El color azul verdoso de Urano se debe al gas metano presente en su atmósfera fría y clara. Lo que en la imagen parece ser el extremo derecho del planeta es en realidad el límite entre el día y la noche. Por la forma de girar el planeta, la noche y el día duran 42 años cada uno. Los científicos se formaron esta visión de Urano por las imágenes enviadas por el Voyager 2 en 1986, en un momento en el que la sonda estaba a 9,1 millones de kilómetros del planeta.

Apenas fue descubierto Urano, los matemáticos comenzaron a dibujar su órbita; pero pronto se dieron cuenta de que sus movimientos no concordaban con los cálculos. Pensaron entonces que debia haber otro planeta, aún más distante del Sol, que lo alejaba de su curso. De una manera totalmente independiente, dos jóvenes matemáticos, Le Verrier y Adams, se pusieron a la tarea de descubrir este planeta, no por medio del telescopio, sino por puro cálculo.

Esto fue sumamente dificultoso, pero finalmente triunfaron y enviaron sus resultados a los astrónomos, para que los verificaran. Lamentablemente, la verificación del resultado obtenido por Adams no fue continuada; pero en 1846, Galle, del Observatorio de Berlín, trabajando sobre las cifras de Le Verrier, halló este desconocido planeta, de acuerdo con la posición calculada.

El nuevo planeta, llamado Neptuno, el nombre del dios del mar, emplea 164 años y 280 días en dar una vuelta completa alrededor del Sol y está a una distancia media de 4.467.200.000 km. de éste, demasiado lejos para poder conocerlo bien.

Es levemente más grande que Urano, pues tiene unos 53.000 km. de diámetro y tarda 17 horas en dar una vuelta alrededor de su eje. Muy poco puede apreciarse en su superficie, que está constituida, completamente o en su mayor parte, por gases, como los demás planetas grandes.

Tiene dos satélites: Tritón, grande, de por lo menos 4.900 km. de diámetro, más cercano a Neptuno que la Luna a la Tierra, y Nereida, de 321 km. de diámetro, que se traslada describiendo una órbita sumamente alargada, de manera que algunas veces se encuentra a 1.609.300 km. de Neptuno mientras que otras veces se halla a 9.660.000 km.

Neptuno:En 1989 la misión Voyager 2 produjo esta imagen de Neptuno en falso color, mostrando los diferentes componentes de la atmósfera del planeta. El rojo muestra la luz del Sol dispersada por una capa de neblina alrededor del planeta, el azul verdoso indica el metano y las manchas blancas son nubes en la parte alta de la atmósfera.

El descubrimiento de Neptuno provocó, naturalmente, una gran duda en los astrónomos, la de si habría o no otros planetas más alejados del Sol.

Finalmente, hallaron que pequeñas diferencias entre las trayectorias calculadas de Urano y Neptuno y sus actuales movimientos hacían posible esa suposición. Así, en 1905, Percivall Lowell, que era al mismo tiempo astrónomo y matemático, comenzó a probar, por medio de cálculos, la existencia del que llamó “planeta X”. Triunfó en teoría, pero murió antes de que sus resultados pudieran ser confirmados.

No fue sino en 1930 cuando Clyde Tombough, del Observatorio de Flagstaff, en Arizona, anunció que había descubierto el “planeta X”. Examinando fotografías del cielo, vio que lo que había parecido una pequeña estrella era realmente un planeta, que se movía lentamente entre los demás. Las copias de dos fotografías que llevaron al descubrimiento se muestran en el costado superior derecho de la ilustración; fueron tomadas con tres días de diferencia entre sí y se puede apreciar que la pequeña “estrella” señalada por las flechas de color está ubicada en distintos lugares.

Plutón, último planeta del sistema solar, últimamente cuestionado por su pequeño tamaño

Este planeta recientemente descubierto es llamado Plutón, nombre del antiguo dios del averno. La distancia media que lo separa del Sol es de alrededor de 5.920.000.000 de km. y tarda 249 años para recorrer toda su órbita. Tan alejado se halla Plutón, que desde su superficie, el Sol aparecería como una gran estrella, según se ve en la parte inferior de la ilustración; pero ese paisaje es imaginario, puesto que poco se conoce de este planeta y ni siquiera se sabe si tiene satélites o no. Su diámetro, según se cree, es de 4.900 km.

Ver: Sistema Solar Para Niños

Fuente Consultada:
GLOBERAMA Tomo: Cielo y Tierra Nuestro Mundo En El Tiempo y El Espacio
Enciclopedia Microsoft ENCARTA
Enciclopedia Ciencia Joven Fasc. N°38 Los Planetas del Sistema Solar

 

 

 

 

La Luna Características Generales Información Científica

INFORMACIÓN GENERAL Y CIENTÍFICA DE LA LUNA, SATÉLITE TERRESTRE

De todos los cuerpos celestes, la Luna es posiblemente el más conocido. Fue objeto de muchas antiguas creencias y es aún llamada poéticamente Selene, el viejo nombre de la diosa Luna. La ciencia que la estudia se denomina selenografía, y a pesar de que este cuerpo celeste no ha revelado aún todos sus secretos, se conoce bastante sobre él, pues  el hombre ha alunizado en varias oportunidades y ha conseguido centenares de muestras de su superficie para futuras  investigaciones en la NASA.

MAPA DE LA LUNA CON NOMBRES DE SUS MARES Y CRÁTERES

satelite de la Tierra, Luna

(Para Ver Nombres de Cráteres y Mares)

LA LUNA EN NÚMEROS:

Edad: 4.600 millones de ños
Distancia máxima a la Tierra: 405.000 km
Distancia mínima a la Tierra: 363.000 km
Diámetro real de la Luna: 3.473 km
Circunferencia: 10.927 Km.
Superficie: 0,075 de la Terrestre
Volumen: 0,02 de la Terrestre
Peso: 0,012 de la Terrestre
Densidad: 0,6 de la Terrestre
Velocidad de Escape: 2,4 Km/s.
Revolución sobre su eje: 27 d. 7 hs. 43′
Distancia media a la Tierra: 384.403 km
Tiempo de su traslación: 27 d. 43′ 11″
Temperatura de su superficie: De 100°C a -184°C (noche lunar)
Altura máxima de sus montañas: 9.000 m.
Duración del día: 14 dias terrestres
Duración del la noche: 14 dias terrestres

Sobre su formación: Hace unos 5000 millones de años cuando el sistema solar se estaba formando, y definiendo su constitución actual, en nuestro planeta una capa de lava volcánica semiderretida burbujeaba por toda la superficie como un dulce hirviendo. No había tierra sólida, ni agua, ni vida. La Tierra, completamente inestable, giraba tan deprisa sobre su eje que cada día duraba sólo unas cuatro horas.

Ocurrió entonces fue algo inesperado. Los expertos creen que dos planetas jóvenes coincidieron en la misma órbita alrededor del Sol, aunque moviéndose a distintas velocidades. Uno era la Tierra; el otro, el planeta llamado Theia. Unos cincuenta millones de años más tarde, el Sol comenzó a brillar, y aquellos dos jóvenes planetas chocaron uno con otro. Con la sacudida, la Tierra giró sobre su costado, fuera de control.

Miles de volcanes entraron en erupción tras el impacto. Enormes cantidades de gas, antes atrapadas en el núcleo de la Tierra, salían ahora a borbotones a través de la superficie, y creaban así la primera atmósfera del planeta. Las capas más exteriores de Theia se vaporizaron en miles de millones de pequeñas partículas. Los restos volaron en todas direcciones y rodearon la Tierra con una gruesa capa de polvo, rocas y granito a elevada temperatura.

Atrapada por la gravedad terrestre, esta bruma de escombros se arremolinó en el cielo, y todo se oscureció. Durante meses ni siquiera el rayo más brillante de sol podía penetrar las capas de polvo que en un tiempo habían constituido el planeta Theia. Su núcleo de hierro fundido alcanzó el centro de la Tierra, y produjo la fusión de los dos núcleos en una única bola metálica, compacta, con una temperatura de miles de grados, que se hundió en el centro del globo, destrozado por la fuerza del impacto.

En la actualidad, no hay pruebas físicas en el planeta del impacto de la colisión con Theia, ya que tuvo tal fuerza que todo el material exterior se vaporizó y explotó en el espacio. Pero la evidencia no está muy lejos. El polvo y el granito que envolvieron la Tierra pronto se reagruparon, y se convirtieron en una enorme bola de polvo. Aproximadamente sólo un año después del impacto, la Tierra tenía una nueva compañera, nuestra grande, brillante y cristalina Luna.

Aldrin astronauta de la NASA tomando muestras

El astronauta estadounidense Neil Alden Armstrong, como comandante de la misión lunar Apolo 11, es la primera persona que pisa la Luna. Su compañero Edwin E. Aldrin es el segundo hombre en poner un pie en la Luna. Aquí lo vemos tomando muestras del suelo lunar. También participa en la misión el astronauta Michael Collins, que pilota el módulo de control

INFORMACIÓN GENERAL: La Luna da una vuelta completa alrededor de la Tierra en 27 días, 7 horas, 43 minutos, 7 segundos; pero a causa del movimiento de la Tierra alrededor del Sol, el mes lunar —o sea el período que va desde una nueva luna hasta la siguiente— es levemente mayor de 29,5 días.

El diámetro de la Luna es de 3.474km.; pero como la distancia que la separa de la Tierra varía, debido a que su trayectoria es elíptica, su tamaño parece cambiar levemente. La distancia mínima entre la Tierra y la Luna es de 364.300 km. y la máxima es de 408.000 km.

Sólo la mitad de su superficie está siempre iluminada por la luz del Sol. Durante la luna nueva, la cara iluminada está oculta para nosotros; pero a medida que va rodeando a nuestro planeta, vamos viendo cada vez más esta faz, hasta que se muestra totalmente en luna llena. Por varias razones, parece inclinarse levemente, de manera que podemos ver un 59 % de su superficie, en diferentes períodos de su trayectoria; pero no vemos jamás toda la cara posterior.

Cuando fue inventado el telescopio, en 1609, observó Galileo que la superficie lunar es muy rugosa, con picos y cadenas montañosas, con círculos como cráteres volcánicos y llanuras, que confundió con mares. Muy pronto se dibujaron mapas de la Luna y se están haciendo cada vez más perfectos, con ayuda de la fotografía. Un mapa simple de la Luna se muestra en la ilustración superior.

Galileo observando la Luna

1610: Galileo Galilei Observando los astros celestes

La palabra latina mare (mar) señala los desiertos; dos de ellos se muestran abajo, en escala mayor. A la izquierda está el llamado Mare Imbrium (Mar de las Lluvias), que es un vasto desierto, con algunas montañas y cráteres diseminados. Junto a éste, están los Apeninos (la mayoría de las cadenas montañosas de la Luna lleva el mismo nombre que algunas cordilleras terráqueas, mientras que los picos montañosos se conocen con el nombre de algún famoso sabio). En la lámina de la izquierda está el Mare Nubium (Mar de las Nubes), bordeado por una región de cráteres próxima al polo sur de la Luna.

Su peso es mucho menor que el de la Tierra y así también su fuerza de gravedad, de manera que nosotros pesaríamos allí sólo un sexto de nuestro peso en. la Tierra y nuestra fuerza muscular nos permitiría realizar saltos espectaculares.

En la Luna no hay atmósfera en la Luna, de modo que no puede escucharse sonido alguno en su superficie. La ausencia de aire debe hacer que el cielo se vea negro aun en plena luz del día, pero las estrellas se destacarán marcadamente. Desde un lado de la Luna la Tierra está siempre visible y aparece mucho más grande de lo que la Luna se ve desde la Tierra; además, visto desde la Luna, nuestro planeta nunca se oculta, pero sí se mueve de un lado al otro en el cielo. Desde la cara posterior de la Luna nunca sería posible ver la Tierra.

El día y la noche lunares son aproximadamente 14 veces más largos que los nuestros. No se han observado jamás señales de vida allí y sólo cambios muy leves y dudosos. Se han intentado muchas teorías para explicar la causa de su superficie rugosa; a pesar de sus nombres, los cráteres lunares no pueden haber sido producidos por volcanes, sino quizá por la caída de meteoritos, cuyos efectos habrían sido muy destructores, debido a la falta de atmósfera.

Comparar la Tierra con la Luna es como comparar un organismo viviente con uno muerto. Sabemos que en la Tierra se desarrolla una infinita variedad de seres vivos, que han alcanzado su presente estado de desenvolvimiento por un continuo proceso de evolución. Cambios han ocurrido y ocurren constantemente.

Contrariamente a lo que ocurre en nuestro planeta, palpitante de vida en todas sus formas, con climas que varían enormemente, desde el calor tropical al frío polar, y con sólo una parte comparativamente muy pequeña de su superficie total incapaz de mantener cualquier clase de ser viviente. En 2015 la NASA ha encontrado señales de presencia de agua en la Luna, pero hasta hoy es completamente inepta para toda forma de vida. Es un mundo absolutamente muerto.

Ningún otro cuerpo celeste está tan cerca de la Tierra como la Luna y ningún otro cuerpo puede ser observado, estudiado e investigado tan detalladamente: montañas y llanuras pueden verse con mucha claridad con un simple telescopio casero. Si existiera la vida, lo sería en alguna forma que escaparía a nuestra observación, y ésta parece ser una posibilidad bastante remota.

Un argumento de peso que sostiene la teoría de la imposibilidad de la existencia de vida en la Luna, parte del hecho de que no hay agua ni atmósfera en ésta. Todo ser vivo que visitara la Luna debería llevar consigo los medios para poder respirar, beber y comer. Todos los datos coinciden en afirmar que en la Luna no puede haber vida.

Si la Luna en algún estadio de su existencia poseyó atmósfera, no pudo haberla mantenido por mucho tiempo, pues como su tamaño no es lo suficientemente grande, su fuerza de atracción es insuficiente para impedir que los gases envolventes escapen al espacio. La ausencia de una atmósfera da como resultado temperaturas muy extremas en el día; desde 82° cuando brilla el Sol hasta muy por debajo del punto de congelación cuando aquél se ha ido. La superficie no está nunca, por supuesto, oscurecida por nubes.

Negro y blanco son los colores que hay en la Luna, con algunos toques de amarillo, que son aportados por la luz del Sol. Como no hay atmósfera que pueda captar la luz, el cielo lunar es profundamente oscuro. A pesar de que el Sol esté brillando, las estrellas permanecen siempre visibles.

También la ausencia de aire, según hemos dicho, hace que la Luna sea un lugar de absoluto silencio; aun el disparar de un cañón no produciría el menor sonido.

La Luna ejerce una gran influencia sobre la Tierra, aparte de reflejar la luz del Sol sobre nuestro planeta durante la noche. Océanos y mares están sometidos al movimiento regular de las mareas; éstas resultan de la atracción entre la Tierra y la Luna y el Sol. El Sol es infinitamente más grande que la Luna, pero está tan alejado de la Tierra, que su influencia sobre las mareas es menor.

Durante la luna nueva y el plenilunio, Tierra, Luna y Sol están en una misma línea recta y así la influencia de la Luna sobre las mareas está reforzada por la del Sol. De esta manera se producen pleamares y bajamares extremas.

Cuando la Luna está en cuarto creciente o menguante, la atracción lunar forma un ángulo recto con la del Sol; los efectos de la Luna y del Sol son opuestos entre sí y el resultado es la marea muerta, con movimientos muy excepcionales de subida y bajada. Las mareas están influidas por la posición de las masas continentales, y los mares cerrados, como el Mediterráneo, tienen rara vez mareas.

inclinación entre orbita lunar y la Tierra

El plano de la órbita de la Luna forma un ángulo de 5° con el terrestre. Desde la Tierra se descubre un ancho de 6° 30′ del suelo lunar más allá de cada polo: del Polo Norte si la Luna está en la parte sur de su órbita, y del sur cuando se halla en su parte norte. Este fenómeno recibe el nombre de libración en latitud. Las dos libraciones citadas y u na tercera llamada diurna, que solamente alcanza un grado, dan origen a que se reconozca el 59% de la superficie lunar en lugar de la mitad exacta que se vería si aquéllas no existiesen.

LA FASES DE LA LUNA:

FASES DE LA LUNA

Dijimos que la Luna como la Tierra carecen de luz propia y reflejan la que reciben del Sol. Por ello hay siempre en ellas una cara iluminada que en la Tierra denominamos día, y otra obscura, que llamamos noche. Combinados los movimientos lunar y terrestre se produce el ocultamiento permanente de una cara del satélite. Hasta octubre de 1959 ningún terrícola había podido ver la parte oculta. Pero en esa fecha fue fotografiada mediante un satélite artificial lanzado por la Unión Soviética.

Las variaciones que experimenta la Luna se denominan fases: en ocasiones vemos el disco lunar completo, en otras sólo una especie de hoz, y a veces nos resulta totalmente invisible. (Cuando se halla en conjunción con el Sol decimos que se halla en fase de Luna nueva. Al otro día surge por occidente cual un delgado creciente luminoso cuya convexidad está siempre del lado del Sol en el ocaso.

El ancho creciente va aumentando hasta que, transcurridos seis días, aparece en forma de semicírculo cuya parte luminosaterminaen una línea recta. En tal situación se dice que está en cuarto creciente. Se la observa con facilidad durante la tarde y en el anochecer. A medida que sigue su camino y se va alejando del Sol adquiere figura oval y su brillo va en aumento, hasta que al cabo de siete u ocho días se torna completamente circular.

Esta fase se llama de Luna llena, después de la cual la parte iluminada comienza a disminuir y las mismas fases se van repitiendo en sentido inverso. Es decir que, primeramente, toma la forma oval y después la de semicírculo en que llega al cuarto menguante, fácilmente observable al alba.

Por último, tras haber dado una vuelta completa al cielo, sale por la mañana un poco antes que el Sol, y ya cerca de éste, se pierde entre sus rayos y vuelve a la posición original de Luna nueva. Esta posición oculta se denomina conjunción, porque en ella se encuentra entre la Tierra y el Sol. De manera similar, las épocas de la Luna llena reciben el nombre de sicigias y las de los cuartos creciente y menguante, cuadraturas.

GRAN MAPA DE LA LUNA CON CRÁTERES Y MARES:

Ver También: Los Eclipses

Fuente Consultada:
Biblioteca Temática UTEHA Tomo 10 El Mundo Que Nos Rodea – La Luna, satélite terrestre-
Cielo y Tierra Nuestro Mundo en el Tiempo y el Espacio Globerama Edit. CODEX
Enciclopedia Electrónica ENCARTA Microsoft

Disputa Newton y Hooke Las Orbitas Elípticas de los Planetas

HISTORIA DE LA PUBLICACIÓN DE LOS “PRINCIPIAS” – CONFLICTO NEWTON-HOOKE

ANTECEDENTES DE LA ÉPOCA. El incipiente desarrollo científico que se inició en el siglo XVII,  comenzó cuestionando el primitivo y anacrónico aristotelismo (Conjunto de las doctrinas del filósofo griego Aristóteles que explicaban los fenómenos naturales ), como teoría sintetizadora general que da cuenta del conjunto del cosmos, es decir,  fue vulnerado seriamente por los nuevos descubrimientos científicos, pero éstos no bastaron, hasta Newton, para dar ocasión a una teoría que ordenara y diera sentido a la acumulación de descubrimientos parciales. Ello explica que en los más altos científicos de la época, las nociones matemáticas y astronómicas de la mayor exactitud se dieran junto a ideas místicas y religiosas tradicionales, tal como en el caso de Kepler.

En el campo de la astronomía se continuó la labor de Copérnico, especialmente por obra de Kepler, y los perfeccionamientos del telescopio que llevó a cabo Galileo permitieron comprender mejor la estructura del sistema solar.

La. investigación de la realidad física ensayó con éxito una metodología y una conceptuación nuevas cuando Galileo formuló las leyes del movimiento de los cuerpos, en 1638. El descubrimiento de la circulación de la sangre por William Harvey (1578-1657), significó un extraordinario avance para la fisiología.

En la segunda mitad del siglo, el mundo científico, tal como aconteciera con el mundo filosófico, estaba dominado por la polémica en torno del cartesianismo. La explicación dada por Harvey a los movimientos del corazón se impuso a la observación empírica, pese a la oposición de Descartes. Leibniz refutó las ideas cartesianas acerca del movimiento, y Pascal estableció la teoría de la probabilidad de las hipótesis.

Pero la culminación científica del siglo XVII fue la obra de Isaac Newton (1642-1727), quien había de resumir en sí y superar todas las tendencias intelectuales de la época. Descubrió el cálculo infinitesimal y formuló la ley de la gravitación universal, que pasó a ser la nueva concepción totalizadora del universo y desplazó definitivamente al aristotelismo.

Newton y Hooke

Robert Hooke (1635-1703), científico inglés, conocido por su estudio de la elasticidad. Hooke aportó también otros conocimientos en varios campos de la ciencia.Nació en la isla de Wight y estudió en la Universidad de Oxford. Fue ayudante del físico británico Robert Boyle, a quien ayudó en la construcción de la bomba de aire. En 1662 fue nombrado director de experimentación en la Real Sociedad de Londres, cargo que desempeñó hasta su muerte. Fue elegido miembro de la Real Sociedad en 1663 y recibió la cátedra Gresham de geometría en la Universidad de Oxford en 1665.

LA HISTORIA Y DESCRIPCIÓN DE LOS “PRINCIPIA”: Hacia 1680 el problema del sistema planetario, en el sentido de dar una explicación racional a las leyes, que Kepler había dado empíricamente, estaba, por así decir, en el aire entre los astrónomos ingleses. Se sabía, en virtud de las leyes de la fuerza centrífuga, que en un movimiento circular uniforme de un punto, que obedeciera a la tercera ley de Kepler, la fuerza era inversamente proporcional al cuadrado del radio.

¿Sería válida esta ley en el movimiento de los planetas, cuya órbita no era circular sino elíptica, y los cuerpos en cuestión no siempre podían asimilarse a puntos? Es a esta pregunta que Newton contesta afirmativamente en su célebre libro, en latín, Principios matemáticos de la filosofía natural (es decir de la física), conocido, abreviadamente como los Principia.

La obra se compone de tres libros, el Libro I de los cuales expone los fundamentos de la mecánica a la manera euclideana con definiciones, axiomas, teoremas y corolarios, introduciendo en los sistemas, además de la ley de inercia, el concepto de masa y el principio de acción y reacción. Este libro se ocupa del movimiento en el vacío, comprobándose las leyes de Kepler en el caso de un movimiento central en el cual la fuerza que actúa sobre el punto móvil es inversámente proporcional al cuadrado de ia distancia al centro fijo, foco de la órbita elíptica del móvil.

El Libro II se ocupa, en cambio, del movimiento en un medio resistente, y entre las distintas cuestiones que trata aparece la primera fórmula teórica que expresa la velocidad del  sonido.

Los dos primeros libros sientan los principios matemáticos, es decir teóricos, de la ciencia del movimiento; el Libro III estudiará el movimiento “filosóficamente”, es decir físicamente, tomando como ejemplo el “sistema del mundo”. Antepone para ello las “Reglas del razonamiento en filosofía”, es decir las normas que desde entonces constituyen las bases del método científico en la investigación de los fenómenos naturales; pasando luego al enunciado del grupo de fenómenos celestes que debe explicar, demostrando que la ley: “Dos cuerpos gravitan mutuamente en proporción directa de sus masas y en proporción inversa del cuadrado de sus distancias”, es de validez universal, dando así por primera vez una demostración matemática que elimina la milenaria distinción entre el mundo celeste y el mundo sublunar.

A continuación comprueba las leyes de Kepler y de la caída libre, demuestra el achatamiento de la Tierra, explica por vez primera las mareas y la precisión de los equinoccios, incluye los cometas en el sistema planetario…

En las ediciones sucesivas de los Principia que Newton publicó en vida, introdujo modificaciones y agregados entre los cuales el célebre “Escolio general”, en el cual el científico da paso al metafísico o, mejor, al creyente, expresando que “Este muy hermoso sistema del Sol, los planetas y cometas sólo puede proceder del consejo y dominio de un Ser inteligente y poderoso… discurrir de Él a partir de las apariencias de las cosas, eso pertenece, sin duda, a la filosofía natural”.

EL ORIGEN DEL CONFLICTO: LA LEY DE LA INVERSA DEL CUADRADO
EL ODIO ENTRE NEWTON Y HOOKE

A principios del siglo XVIII, el matemático y astrónomo alemán Johannes Kepplee había propuesto tres leyes del movimiento planetario, que describían con precisión como se mueven los planetas respecto al Sol, pero no conseguía explicar por qué los planetas  se movían como se movían, es decir en órbitas elípticas.

orbita elpitica de un planeta

1° Ley de Kepler: Los planetas recorren órbitas elípticas y el Sol ocupa uno de sus focos

Newton se propuso descubrir la causa de que las órbitas de los planetas fueran elípticas. Aplicando su propia ley de la fuerza centrífuga a la tercera ley de Kepler del movimiento planetario (la ley de las armonías) dedujo la ley del inverso de los cuadrados, que  establece que la fuerza de la gravedad entre dos objetos cualesquiera es inversamente proporcional al cuadrado de la distancia entre los centros de los objetos. Newton reconocía así que la gravitación es universal que una sola fuerza, la misma fuerza, hace que  una manzana caiga al suelo y que la Luna gire alrededor de la Tierra. Entonces se propuso contrastar la relación del inverso de los cuadrados con los datos conocidos.

Aceptó la estimación de Galileo de que la Luna dista de la Tierra unos sesenta radios terrestres,  pero la imprecisión de su propia estimación del diámetro de la Tierra le impidió completar esta prueba satisfactoriamente. Irónicamente, fue un intercambio epistolar en 1679  con su antiguo adversario Hooke lo que renovó su interés en este problema. Esta vez dedicó su atención a la segunda ley de Kepler, la ley de la igualdad de las áreas, Newton pudo demostrar a partir de la fuerza centrífuga.

Hooke, sin embargo, desde 1674 estaba intentando explicar las órbitas planetarias, y había logrado dar con el problema del movimiento orbital. En un tratado que se publicó aquel mismo año, descartó la idea de un equilibrio entre las fuerzas que empujaban hacia dentro las que empujaban hacia afuera para mantener a un objeto como la Luna en su órbita. Constató que el movimiento orbital resultaba de suma: por una parte, la tendencia de la Luna a moverse en línea recta y, por otra, una fuerza «única» que la atraía hacia la Tierra.

Mientras tanto el propio Newton, Huygens y todos los demás seguían hablando de «una tendencia a alejarse del centro», y Newton había llegado al extremo de aceptar vórtices cartesianos (una vieja teoría de Descartes) como responsables de empujar a los objetos para que volvieran a situarse en sus órbitas, a pesar de su tendencia desplazarse hacia el exterior.

También se sabe que  algunas de las cartas enviadas a Newton sobre este tema resultaron de particular interés para el científico, pues había despertado una gran idea para aplicar como teoría en sus investigaciones.  En una de sus cartas Hooke escribió a Newton para pedirle su opinión sobre estas teorías (que ya se habían publicado). Le habló de la ley del cuadrado inverso, que Newton ya tenía, de la acción a distancia, y de la idea a la que había llegado: no había fuerza centrífuga ninguna, sino solamente una fuerza centrípeta que apartaba a los planetas de una trayectoria rectilínea y la curvaba mediante la gravedad.

En el gran libro sobre la historia del pensmaiento científico, de Moledo y Olszevicki, conocido como:”Historia de las ideas científicas”, nos relata al respecto:

“Probablemente fue esta carta la que liberó a Newton del asunto de la fuerza centrífuga (que es una fuerza artificial, simplemente la reacción a la fuerza centrípeta —esta última sí real—) y lo estimuló para demostrar, en 1680, que una ley de la gravedad con cuadrados inversos a las distancias exige que los planetas se muevan recorriendo órbitas elípticae implica que los cometas deben seguir trayectorias elípticas o parabólicas alrededor del Sol. Ésta es la razón por la que ya tenía la respuesta preparada cuando, en 1684, Halley se apareció en la puerta de su casa.

Porque fue así: aprovechando un viaje, Halley, en agosto de 1684. visitó a Newton en Cambridge, donde debatieron sobre las órbitas de los planetas y la ley del cuadrado inverso. Según contó Newton después, cuando llevaban cierto tiempo reunidos, Halley le preguntó qué tipo de curva creía él que describirían los planetas, suponiendo que la fuerza de atracción hacia el Sol fuera inversa al cuadrado de las distancias respectivas de los planetas a dicho astro.

Newton dijo inmediatamente «una elipse», ante lo cual Halley le preguntó cómo lo sabía. «Porque la he calculado», respondió Newton de inmediato. Tras esto, Halley le pidió que le dejara ver los cálculos, pero Newton buscó entre sus papeles y no pudo encontrarlos. Se comprometió entonces a volver a hacerlos v a enviárselos apenas los tuviera listos.

Ese encuentro entre Halley y Newton y los cálculos que nunca encontro se convertirían en el puntapié inicial para que nuestro protagonis:: se pusiera a escribir los Principia.”

A petición de Halley, Newton pasó tres meses rehaciendo y mejorando la demostración. Entonces, en una explosión de energía sostenida durante dieciocho meses, durante los cuales se absorbía tanto en su trabajo que a menudo se olvidaba de comer, fue desarrollando estas ideas hasta que su presentación llenó tres volúmenes. Newton decidió titular su obra Philosophiae Naturalis Principia Mathemañca, en deliberado contraste con los Principia Philosophiae de Descartes.

Ya en 1684 Newton publicó un trabajo en el que explicaba la ley de cuadrado inverso, pero recién en 1687 vio la luz su gran obra épica.

Los tres libros de los Principia de Newton proporcionaron el nexo entre las leyes de Kepler y el mundo físico. Halley reaccionó con «estupefacción y entusiasmo» ante los descubrimientos de Newton. Para Halley, el profesor Lucasiano había triunfado donde todos los demás habían fracasado, y financió personalmente la publicación de la voluminosa obra como una obra maestra y un regalo a la humanidad.

“Los Principia fueron celebrados con moderación al ser publicados, en 1687, la primera edición sólo constó de unos quinientos ejemplares. Sin embargo, la némesis de  Newton, Robert Hooke, había amenazado con aguar la fiesta que Newton hubiera podido disfrutar.

Cuando apareció el libro segundo, Hooke afirmó públicamente que las cartas que había escrito en 1679 habían proporcionado las ideas científicas vitales para los descubrimientos de Newton. Sus pretensiones, aunque dignas de atención, parecieron abominables a Newton, que juró retrasar o incluso abandonar la publicación del tercero. Al final, cedió y publicó el último libro de los Principia, no sin antes eliminar cuidadosamente cualquier mención al nombre de Hooke.

El odio que Newton sentía por Hooke le consumió durante años. En 1693 todavía  sufrió otra crisis nerviosa y abandonó la investigación. Dejó de asistir a la Royal Society hasta la muerte de Hooke en 1703, y entonces fue elegido presidente y reelegido cacada año hasta su propia muerte en 1727.”

Fuente: “A Hombres de Gigantes”

Fuente Consultadas:
El Saber de la Historia de José Babini Edit. Biblioteca Fundamental del Hombre Moderno
Grandes Figuras de la Humanidad Edit. Cadyc Enciclopedia Temática Familiar
A Hombres de Gigantes Edit. CRÍTICA
Historia de las Ideas Científicas Leonardo Moledo y Nicolás Olszevicki Edit. PLANETA

Trabajo Enviado Por Colaboradores del Sitio

Porque se Produce el Eco? Aplicaciones Rebote del Sonido

Muchas veces, al gritar, sentimos el eco que al cabo de un instante nos imita. Normalmente, las ondas sonoras de nuestra voz se transmiten en línea recta, perdiéndose en la distancia. En ese caso no oímos ningún eco. Pero si algo hace que las ondas sonoras vuelvan, lo percibiremos.

Éste es, pues, el reflejo de las ondas sonoras emitidas, que vuelven luego de chocar contra una superficie como la de un edificio o las laderas de una montaña. En este sentido, las ondas sonoras se comportan muy similarmente a las luminosas, que son desviadas por un espejo, por ejemplo. La velocidad de la luz es tan fantástica que todo el proceso parece instantáneo. El sonido viaja más lentamente, su velocidad en el aire es de alrededor de 330 metros por  segundo.

Si disparamos un revólver, las ondas sonoras viajarán a través del aire con esa velocidad, y al cabo de un segundo se encontrarán a 330 metros de distancia. Si en ese momento son reflejadas por un obstáculo, tardarán otro segundo en volver hasta el sitio en donde se disparó el tiro, de modo que el eco se escuchará dos segundos después que el sonido original. El tiempo empleado por el sonido en ir y volver puede servirnos para encontrar la distancia que nos separa del obstáculo.

esquema del eco

CONDICIONES Y CÁLCULOS
El oído puede percibir y distinguir unas 10 sílabas por segundo; por lo tanto, la percepción de una sílaba exige 1/10 de segundo. Para que exista un eco monosílabo será preciso que el sonido reflejado llegue al oído 1/10 de segundo más tarde que el sonido directo, y como en 1/10 de segundo el sonido recorre unos 33 m., tendremos que la pared reflectora deberá hallarse, por lo menos, a la mitad de 33, o sea a 16,5 m. del observador. Cuando la distancia es menor, el sonido reflejado se superpone al directo.

Si la superposición es exacta, el eco (llamado entonces resonancia) aumenta la intensidad del sonido sin oscurecerlo; pero si la coincidencia de ambos sonidos no existe, las resonancias restan claridad al sonido directo. Este efecto pernicioso de las resonancias se evita, en las salas de audiciones que poseen malas condiciones acústicas, cubriendo las paredes con tapices que eviten la reflexión del sonido.

REFLEXIÓN
Al reflejarse, el sonido no siempre tiene que volver sobre sus pasos. Respeta las mismas leyes de reflexión que la luz (el ángulo de incidencia es igual al de reflexión) . Si la onda sonora incidente es guiada por algún medio, comprobaremos que se comporta exactamente igual que la onda luminosa.

Las superficies duras y brillantes son, generalmente, buenas reflectoras del sonido; en cambio, las blandas y rugosas lo absorben. En una habitación grande vacía será posible advertir el eco de la voz del que habla, pero si la habitación estuviera llena de gente, probablemente no se notaría el eco, porque las ropas de las personas absorberían gran parte del sonido.

ECOS MÚLTIPLES
En circunstancias especiales puede oírse más de un eco del mismo sonido, es decir, un eco múltiple. Estos ecos se hacen cada vez   más   débiles,   hasta   perderse.   Tienen lugar cuantío hay más de una superficie desde donde se pueda reflejar el sonido. Con cada reflexión, gran parte del sonido es absorbido, de modo que los sucesivos ecos van siendo cada vez más débiles.

ECO  EN  EL AGUA
El eco-sonda, o sonda ecoica, para determinar la profundidad del agua, funciona con el mismo principio. En este caso, un oscilador produce una onda ultrasónica, que es reflejada por el fondo y captada nuevamente por un micrófono ubicado en el casco del barco. Las ondas ultrasónicas son aquellas de frecuencia demasiado alta como para ser captadas por el oído humano. Se las utiliza porque no son amortiguadas por el agua tan rápidamente como las ondas sónicas. El sonido viaja mucho más rápidamente en el agua que en el aire.

En aquélla, su velocidad es de alrededor de 1.500 m./seg., más de cuatro veces superior. La información provista por los ecos es recogida por un aparato, que la traduce a signos inscriptos sobre un rollo de papel.

APLICACIÓN  PRÁCTICA
Los barcos desprovistos de radar pueden utilizar un método similar para estimar la distancia que los separa de un témpano o un acantilado, midiendo el tiempo que tarda en llegar el eco de la sirena de niebla desde el obstáculo. Un ejemplo: si el eco regresa 10 segundos después de haber hecho sonar la sirena, el sonido debe haber recorrido 10 seg. x 330 m./seg. = 3.300 m., de modo que el barco está a 1.650 m. (3.300 /2) del témpano o acantilado.

La profundidad del agua se determina enviando ondas ultrasónicas y midiendo el tiempo que tardan en regresar.

Aquí se forma un eco múltiple por la” repetida reflexión del sonido en las paredes del cañón.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°41 El Eco y sus aplicaciones

Concepto de Fuerza Centrífuga Aplicaciones Prácticas

Si se hace girar con rapidez un balde parcialmente lleno de agua, con los brazos extendidos alrededor del cuerpo, el contenido no se derrama, aun cuando el balde esté volcado sobre un costado. El principio responsable de este fenómeno es conocido por los físicos con el nombre de fuerza centrifuga.

Al mismo tiempo que se hace girar el balde, el agua tiende a permanecer dentro de éste, presionada hacia el fondo (es decir, hacia afuera con respecto a quien hace girar el balde) o al centro de giro por la fuerza centrífuga. Este es un ejemplo bastante directo de como se origina esta fuerza, aunque hay muchas otras aplicaciones más prácticas.

Sabemos, según las leyes de los cuerpos en movimiento, enunciadas por Isaac Newton, que las fuerzas siempre se originan por pares, siendo cada una de las mismas de igual valor y sentido contrario. La fuerza que se necesita para mantener un cuerpo que gira dentro de su trayectoria, evitando que se vaya hacia afuera, se conoce como fuerza centrípeta y es igual pero de sentido contrario a la fuerza centrífuga.

Fuerza centrífuga en un balde girando. El agua no sale del balde porque es empujada hacia el exterior o fondo.

En el caso del ejemplo mencionado, esta fuerza centrípeta se manifiesta como el esfuerzo realizado por el brazo para sostener el balde. Podemos ver, bastante fácilmente, cómo estas fuerzas se relacionan con la velocidad a la cual el objeto se mueve dentro de su órbita. Un ejemplo emocionante lo constituye, en el espec táculo circense, un motociclista que da vueltas dentro de una gran esfera de malla metálica.

Cuando su máquina se mueve lentamente, el motociclista no puede subir muy alto, pero a velocidades mayores la fuerza centrífuga que tiende a lanzarlo hacia afuera es tan grande, que puede trepar verticalmente hasta la cúspide de la esfera y girar sin perder contacto con la “pista”, a pesar de desplazarse “cabeza abajo”.

La inclinación que se observa en las curvas de las vías férreas obedece al mismo principio: la fuerza centrífuga que impulsa hacía afuera al tren cuando éste toma la curva, es contrarrestada por la fuerza centrípeta que se manifiesta cuando el costado de las ruedas presiona sobre los rieles. Este esfuerzo se reduce considerablemente inclinando las vías en un cierto ángulo, de modo que el riel exterior (el más alejado del centro de la curva) esté a mayor altura que el interior.

Otro ejemplo parecido lo constituye aquella famosa primera pista de Avus, en Alemania, donde ya en el año 1937, los promedios de velocidad establecidos por los coches de carrera llegaban a 261 Km./h., con records hasta de 280 Km./h. Esto podía lograrse porque aquella pista tenía curvas construidas con un extraordinario peralte que llegaba a los 45 grados. De esta manera, se conseguía precisamente vencer la gran fuerza centrífuga que esas velocidades provocaban en los giros. Una idea de dicha fuerza la da el cálculo de que, en el momento de paso sobre la curva, los neumáticos debían soportar nada menos que 3 veces el peso de la máquina.

Peralte o Inclinacion de la Carretera

Los llamados trajes de presión, creados por los japoneses durante la segunda guerra mundial y adoptados luego por casi todas las demás fuerzas aéreas, constituyen una solución bastante aceptable al problema de la tremenda fuerza centrífuga a que está sometido el piloto en un combate aéreo. Este traje evita que, en los giros violentos, la sangre se desplace y se agolpe por centrifugación, con el consiguiente desvanecimiento y pérdida momentánea de la visión. Pero no siempre ¡a fuerza centrífuga resulta negativa; muchas veces el hombre se vale de ella para obtener provecho.

Un buen ejemplo de aplicación práctica de este principio lo tenemos en el aparato denominado centrifuga. Si tenemos una suspensión de un sólido en un líquido, o una mezcla de líquidos de diferentes densidades, es decir, que tienen relaciones diferentes de peso a volumen (por ejemplo crema y leche), y que han sido mezclados hasta formar una emulsión, podemos separarla si la dejamos reposar tiempo suficiente.

Una centrifugadora es una máquina que pone en rotación una muestra para –por fuerza centrífuga– acelerar la decantación o la sedimentación de sus componentes o fases (generalmente una sólida y una líquida), según su densidad. Existen diversos tipos, comúnmente para objetivos específicos.

La atracción que ejerce la gravedad sobre la leche es mayor que sobre la crema, menos densa, que va a la superficie. Este proceso se puede acelerar centrifugando la mezcla (estas centrifugadoras tienen la forma de un cuenco que gira rápidamente). De este modo la leche es impulsada más lejos del centro que la crema, la cual, por no ser tan densa, no sufre con tanta intensidad los efectos de la fuerza centrífuga que se origina.

También bombas centrífugas y turbinas centrífugas que trabajan con líquidos y aire, respectivamente, son un acierto mecánico. Debemos recordar que los turborreactores centrífugos reciben este nombre porque su alimentación de aire lo produce una turbina de ese tipo.

Bomba centrifugadora

En la fundición de metales, las inyectaras centrífugas son insustituibles por la precisión, seguridad y calidad de los colados. Este tipo de inyectora recibe el metal fundido por un tragadero central, y mantiene adosada una batería de matrices a su contorno. Girando a gran velocidad, el metal es centrifugado con gran presión, e inyectado al interior de las matrices.

RAZÓN POR LA CUAL LA TIERRA NO ES ATRAÍDA POR EL SOL

Esquema Sistema Tierra-Sol

Esto se debe a que, a pesar de la atracción gravitacional (fuerza de gravedad) la fuerza centrífuga tiende constantemente a empujar a la Tierra hacia afuera. En este caso, las dos fuerzas están equilibradas. La fuerza de gravedad entre el Sol y la Tierra actúa como una fuerza centrípeta, que tiende a atraer al planeta, que gira en su órbita, hacia el Sol. La fuerza centrífuga originada por el movimiento de rotación, tiende a empujar al planeta en sentido contrario, es decir, fuera del Sol., El resultado es que la distancia entre el Sol y la Tierra se mantiene constante, suponiendo que la velocidad del planeta también se mantenga igual (en realidad, la velocidad de la Tierra sufre pequeñas variaciones, con la consiguiente alteración en la distancia al Sol). El mismo principio se aplica a los satélites artificiales que se ponen en órbita para girar alrededor de la Tierra. La atracción de la gravedad equilibra las fuerzas centrífugas, y los satélites pueden moverse a distancia más o menos constante de la Tierra, “suponiendo que su velocidad sea también constante”. De todos modos, la velocidad se reduce gradualmente, a causa del rozamiento con la atmósfera, y los satélites tienden a caer hacia la Tierra.

Formula de la Fuerza Centrípeta:

Diagrama de un cuerpo girando, Fuerza Centrifuga

Ejemplo: si se toma una piedra de 2 Kg. de masa, atada a una cuerda y se la hace girar con un radio de 1,2 m. a razon de 2 vueltas por segundo. Cuanto vale la fuerza centrífuga que debe soportar la cuerda?.

La masa es de 2 Kg., el radio: 1,20 metro, pero nos falta la velocidad tangencial Ve, pues la del problema es la velocidad angular.

Para ello se sabe que dá dos vueltas en un segundo, entonces el recorrido es, dos veces el perímetro de la circunferencia por segundo. Podemos hallarlo asi: 3.14. 1.2. 2=7.53 m. cada vuelta , por dos es: 15,07 m. distancia que la masa recorre en 1 segundo, por lo tanto la velocidad tangencial es: 15,07 m/seg.

Aplicando la formula se tiene que Fc= ( 15,07 )². 2 /1,2² =454/1.44=315,27 Newton

Fuente Consultada:
Revista TECNIRAMA N°21 Enciclopedia de la Ciencia y La Tecnología -La Fuerza Centrífuga-

Que es un Radiotelescopio? Función de la Radioastronomia

LA RADIOASTRONOMIA

La palabra “radioastronomía” data de mediados del siglo XX, por lo que podríamos decir que un rama de la astronomía, relativamente joven, pensemos que las primeras observaciones con telescopio fueron las de Galilei en el siglo XVI. La primera identificación de ondas de radio de origen extraterrestre tuvo lugar hace ochenta años; pero la colaboración sistemática con los observatorios ópticos sólo comenzó después de la segunda guerra mundial. Entretanto progresaron otras formas de escudriñamiento mediante cohetes o globos-sonda capaces de analizar las vibraciones que nuestra atmósfera intercepta o perturba, como por ejemplo los rayos X.

La radioastronomía depende por completo de los telescopios ópticos; sin ellos carecería de sentido y valor porque es incapaz de calcular la distancia de las fuentes emisoras. La comparación de los resultados de ambas disciplinas es interesante pues las ondas radioeléctricas más intensas suelen provenir de los objetos celestes menos visibles y aún, aparentemente, de ninguna materia identificable.

También los registros históricos son muy útiles. Gracias a los astrónomos chinos que en el año 1054 señalaron el súbito estallido de una estrella (“supernova”) podemos reconstruir la historia de la actual nebulosa del Cangrejo, que pertenece a nuestra galaxia, la vía Láctea . Otras supernovas, indicadas por Tycho Brahe en 1572 y Kepler en 1604, son ahora débiles radioestrellas.

Esta última categoría de astros, la más inesperada de la nueva ciencia, parece incluir los cuerpos más distantes que conoce la astronomía. Su conocimiento contribuyó notablemente a la dilucidación de uno de los problemas capitales de todos los tiempos: el del origen del universo.

Grupo de Radiotelescopios Trabajando en Paralelo

LA RADIOASTRONOMIA Y LOS RADIOTELESCOPIOS:

Las Ondas Electromagnéticas Que Emiten Las Estrellas: Cuando una estrella explota, formando una nova o supernova, irradia una enorme cantidad de energía luminosa. Los átomos componentes de la estrella reciben gran cantidad de energía, se calientan extraordinariamente y, como todos los cuerpos muy calientes, irradian la mayor parte de su energía en forma de luz.

La estrella se presenta mucho más brillante. Pero, además de la luz visible, la estrella emite otras clases de radiaciones: rayos infrarrojos invisibles, rayos ultravioletas y ondas de radio. Todas estas clases de radiaciones se hacen mucho más intensas en el momento de la formación de una supernova. La radioastronomía se ocupa de la última clase de radiación citada, o sea, de las ondas de radio.

La fuerza de la explosión acelera y ex-. pulsa de la estrella nubes de partículas cargadas eléctricamente. Asociada con ellas, hay una serie de campos magnéticos turbulentos que cambian rápidamente. Cuando las partículas cargadas se mueven por los campos magnéticos, ganan energía, irradiándola en forma de ondas electromagnéticas.

Una de las ondas corrientes emitidas por los átomos de hidrógeno cargados tiene una longitud de onda de 21 centímetros. Las ondas electromagnéticas de esta longitud de onda son ondas de radio. Se propagan, a partir de su origen, en todas direcciones, viajando con la velocidad de la luz.

Las ondas luminosas son también un tipo de radiación electromagnética, pero de longitud de onda mucho más pequeña. Todas las galaxias y muchas estrellas, incluso el Sol, emiten ondas de radio. El Sol no es una estrella que se caracterice especialmente por enviar ondas de radio; pero, durante los períodos de actividad de sus manchas, la emisión de ondas de radio aumenta.

Las fuentes que emiten ondas de radio con gran intensidad no coinciden necesariamente con los objetos que a nuestros ojos aparecen brillantes, como las estrellas. De hecho, las ondas de radio provienen de regiones oscuras del cielo, de oscuras nubes de polvo y de hidrógeno, en las que éste (según ciertas teorías) está concentrándose para formar nuevas estrellas; sus átomos irradian la energía que ganan al acelerarse en los campos magnéticos del espacio.

Las ondas de radio son invisibles y no pueden detectarse con los telescopios ópticos. Pero, de la misma forma que las emitidas por una estación de radio, pueden ser recogidas por una antena receptora. Estas ondas producen la circulación de débiles corrientes eléctricas en la antena.

Estas corrientes pueden amplificarse, seleccionarse y convertirse en sonidos audibles, tal como acontece con un receptor de radio corriente. Pero es más frecuente utilizar un receptor especialmente concebido, para recoger las ondas de radio del espacio. En él, las corrientes fluctuantes de la antena se registran automáticamente en una gráfica. Al mismo tiempo, se conducen directamente a un cerebro electrónico, para su análisis.

Gigate Radiotelescopio de Arecibo

Los radiotelescopios son grandes antenas diseñadas para interceptar toda la emisión de radio posible de una estrella o de una galaxia. Para ello, las ondas se recogen juntas y se concentran de forma que las corrientes fluctuantes que producen en la antena sean lo suficientemente grandes para ser detectadas.

Las ondas de radio se dispersan en todas direcciones a partir de su fuente. Sólo una pequeñísima fracción de la radiación total de una estrella es interceptada por la Tierra, y esta radiación ha recorrido distancias tan enormes que sus ondas son prácticamente paralelas unas a otras. El radiotelescopio intercepta los rayos paralelos en la mayor superficie posible y los concentra enfocándolos en la antena. Cuanto mayor sea la superficie, más sensible será el radiotelescopio, ya que recogerá más cantidad de radiación de la estrella lejana. Los mayores telescopios ópticos son gigantescos reflectores formados por espejos parabólicos.

Los rayos que llegan a la cuenca del espejo parabólico se reflejan en un pequeño espejo colocado en el foco, y son enviados a una pequeña película fotográfica. El enorme espejo parabólico recoge todos los rayos luminosos que llegan a susuperficie.

Algunos de los grande radiotelescopios son muy parecidos a ese dispositivo. El radiotelescopio es también un paraboloide que puede tener cientos de metros de diámetro.

El pequeño espejo colocado en el foco del telescopio óptico está reemplazado en el radiotelescopio por la antena, a la que se enfoca toda la radiación recibida. Hay un inconveniente importante en los radiotelescopios. Incluso si existen dos o tres fuentes de ondas de radio separadas en el campo de detección es imposible distinguirlas unas de otras.

Las corrientes fluctuantes son el resultado de todas las ondas de radio recibidas en el radiotelescopio. La placa fotográfica del telescopio óptico es un medio más eficiente para detectar la imagen, pues los rayos de luz que llegan al espejo con distintos ángulos se concentran en puntos ligeramente diferentes en el espejo pequeño, y se reflejan para ennegrecer puntos distintos en la placa sensible.

El radiotelescopio ideal debe ser lo más grande posible, para recoger el mayor número de rayos, pero también debe ser manuable, de forma que pueda dirigirse _ a cualquier parte del cielo. Cuando el diámetro sobrepasa los 80 metros, el telescopio no puede ser lo suficientemente rígido para resistir el viento sin doblarse y distorsionar la “imagen”. Además, no es fácil manejarlo. Se está construyendo en Puerto Rico un radiotelescopio de más de 300 metros de diámetro, forrando con aluminio pulimentado las paredes de un cráter que presenta una forma conveniente. Pero este radiotelescopio no puede ser enfocado arbitrariamente, puesto que es fijo.

Los radiotelescopios reflectores simples son de construcción difícil y costosa. Sin embargo, puede fabricarse otra clase de radiotelescopio formado por varios reflectores pequeños y antenas, dirigidos hacia diferentes partes del cielo y que se mueven conjuntamente, cubriendo una distancia mucho mayor de la que puede abarcar un solo reflector. De esta forma, la “imagen” puede componerse a partir de fragmentos parciales. Para localizar de manera más precisa las fuentes de ondas intensas, se usan unas largas hileras de reflectores y antenas idénticas, colocados exactamente a la misma distancia unos de otros.

Estos dispositivos tienen un excelente poder de resolución y resultan mejores para separar dos fuentes de ondas próximas. A pesar de que los rayos procedentes de una fuente emisora puntual son paralelos, si llegan al radiotelescopio formando un ángulo, alcanzarán la antena de un extremo de la línea antes de llegar a la del otro extremo. Al llegar a las antenas en instantes diferentes, las ondas de cada extremo lo harán en distintas fases de su vibración.

Al sumar todas las corrientes de las antenas, las de un extremo pueden estar en una fase opuesta a las del otro, eliminándose parcialmente una a otra. El efecto producido es hacer más nítida la imagen de radio de la estrella. Este tipo de radiotelescopio se llama radiointerjerómetro, debido a que la eliminación de una serie de ondas por otra es una interferencia. Generalmente, el interferómetro se compone de dos líneas de antenas que forman ángulos rectos. La nitidez de la imagen o poder de resolución puede aumentarse de varias maneras, sumando o restando las señales de las distintas antenas.

Los radiotelescopios pueden penetrar mucho más profundamente en el universo que los telescopios ópticos. Las galaxias más lejanas que se conocen son también los transmisores de radio más potentes, y fueron descubiertas precisamente a causa de esta poderosa emisión de ondas de radio, que emiten probablemente por ser galaxias en colisión. El telescopio óptico de Monte Palomar investigó con mucho cuidado en esa dirección, y encontró la tenue nube de galaxias causantes de las ondas de radio.

La atmósfera terrestre es un inconveniente para la radioastronomía, dado que absorbe grandes cantidades de la radiación electromagnética que llega a la Tierra. Sólo un pequeño margen de ondas puede atravesar la atmósfera. Las ondas de radio de pequeña longitud son absorbidas por las moléculas de la atmósfera, y las de onda larga se distorsionan a causa de las capas cargadas eléctricamente de la ionosfera.

Una solución sería la de colocar un radiotelescopio en un satélite artificial, y una idea todavía más prometedora es la de construirlo en la Luna, donde no hay atmósfera que pueda interrumpir la radiación. En la Luna se podrían construir radiotelescopios mayores, ya que siendo menor la fuerza de la gravedad, la estructura de los aparatos podría manejarse con menor esfuerzo y una menor deformación del reflector.

ALGUNAS FUENTES INTENSAS DE ONDAS DE RADIO

Sol 8 minutos Desde algunos milímetros a varios metros, emitidas por la corona y la cromosfera
Júpiter 40 minutos Unos 15 metros
Gas hidrógeno en ios brazos espirales de una galaxia De 1.500 a 80.000 años
21,1 cm„ emitida por el gas hidrógeno ionizado
Nebulosa de la constelación de Cáncer (su pernova) 3.000 años De 1 cm. a 10 m. Ondas de electrones acelerados
Supernova de la constelación de Casiopea 10.000 años De un centímetro a 10 metros; proceden de hidrógeno ionizado, oxígeno y neón
Centro de nuestra galaxia 30.000 años
Nubes de Magallanes (las galaxias más próximas) 200.000 años 21,1 centímetros
Nebulosa de la constelación de Andrómeda (la galaxia espiral más próxima) 2 millones de años 21,1 cm. Es un emisor tan potente como nuestra propia galaxia
Galaxia elíptica de la constelación de Virgo (Virgo A), nebulosa del chorro azul 33 millones de años Ondas de electrones acelerados
Dos galaxias espirales en colisión de la constelación del Cisne (Cisne A) 50 millones de años
Nebulosa de radio lejana, de la constelación de Hércules 750 millones de años

Fuente Consultada:
Revista TECNIRAMA N°90 Enciclopedia de la Ciencia y La Tecnología – La Radioastronomia –

Historia del Telescopio – Inventor y Primeras Observaciones

HISTORIA DEL TELESCOPIO: SU INVENTOR Y LAS PRIMERAS OBSERVACIONES

ORIGEN DEL INVENTO: Despúes de la invención del microscopio no debía pasar mucho tiempo para que se hagan distintas combinaciones de lenetes y aumentaran los objetos distantes, o bien, hacerlos mas próximos.

El descubrimiento parece que se produho en 1608 por accidente. Hans Lippershey (1590-1619) un anteojero holandés, tenía un ayudante que jugaba con los lentes durante sus momento de ocio, y descubrió que si sostenía dos lentes, delante de sus ojos, a una cierta distancia de la otra, y miraba a través de ellas, veía el campanario de una iglesia situada a lo lejos como si estuviera considerablemente más cerca, y además invertida.

Hans Lippershey (1590-1619)

Asustado, se lo contó a su patrón, el cual de inmediato captó la importancia del descubrimiento. Lippershey montó las lentes en un tubo, colocándolas a la distancia adecuada entre sí, y logró el primer telescopio primitivo (de las palabras griegas que significan «ver lejos»).

Los Países Bajos aún se hallaban en rebelión contra España, y Lippershey se dio cuenta de que el telescopio constituiría una importante arma de guerra, al hacer posible la observación de la proximidad de navios o tropas enemigas, antes de poderlos descubrir a simple vista.

Así se lo explicó a Mauricio de Nassau, quien le comprendió y trató de mantener en secreto las características del dispositivo. Este propósito fracasó, sin embargo, pues los rumores se extendieron, y el aparato era demasiado sencillo para no ser reconstruido en seguida.

La astronomía óptica emplea, para captar la luz, dos tipos de instrumentos: el anteojo (o telescopio refractor) y el telescopio reflector, o telescopio propiamente dicho. Consisten básicamente en un tubo provisto en uno de sus extremos (el que apunta al cielo) de un objetivo y, en el otro (próximo al ojo del observador), de un ocular.

El objetivo recoge los rayos luminosos emitidos por los astros observados y los concentra teóricamente en un punto —una pequeña mancha en realidad—, que el ocular amplía.

La naturaleza del objetivo es lo que distingue el anteojo del telescopio: en el primero es una lente —o, más bien, una combinación de lentes— que refracta la luz, mientras que en el telescopio es un espejo en el que la luz se refleja.

Las dimensiones del objetivo determinan las posibilidades máximas del instrumento: la energía, o luz, recogida está en función de su superficie colectora, mientras que de su diámetro depende su aptitud para separar dos fuentes luminosas angularmente próximas (poder separador), o distancia angular mínima entre dos puntos objeto que permita obtener imágenes separadas.

UN POCO DE HISTORIA…
Los Descubrimientos de Galileo Galilei

El científico italiano Galileo Galilei , debido a su formación técnica, pudo entender mejor que Lippershey el principio de funcionamiento este tipo de lente, por lo que pudo construir uno de mayor aumento (30x) y que le permitió observar algunos satélites de Júpiter y los novedosos cráteres de la “perfecta” Luna. Entre otras observaciones futuras, Galileo pudo estudiar Saturnos y sus anillos y las fases del planeta Venus.

Telescopio de Galileo

El mayor de los telescopios de Galileo aumentaba en treinta veces la imagen, pero era muy imperfecto. Desde entonces la astronomía recibió un extraordinario impulso de notables científicos vinculados al desarrollo de lentes y telescopios, que son la base de los modernos instrumentos de nuestros días.

Con todo estos conocimiento publuca un pequeño libro, que se podía leer en un par de horas, de solo 24 hojas llamdo Sidereus nuncius, que significa “El Mensajero de las estrellas”, donde informa sobre los observado cn su nuevo telescopio.

Para ello usa una forma de expresarse sumamente distinta al utilizada hasta el momento, a los efectos que sea comprendida por todos los curiosos de su época, consiguiendo que este libro se convienta en una especie de best sellers del momento. La novedad de esta información, no fue por su originalidad, pues ya otros científicos de su época habían también enfocado el firmamento nocturno, sino que fue el primero en publicar sus observaciones

Un gran científico europeo, que vivía en Alemania, pudo leer esta edición porque Galilei el envía una copia, solicitandolé que diera su opinión al respecto, opinión que resultó positiva, aunque no pudo confirmar esas observaciones ya que no contaba con el moderno instrumento

En una carta muy amable y elogiosa contestó Kepler a Galileo, rogándole que le prestara un telescopio para repetir las observaciones y ofreciéndole ser su escudero. Galileo no sólo no le prestó el telescopio sino que ni siquiera le contestó su carta.

Galileo Galilei

En el año 1609, el físico y astrónomo italiano Galileo Galilei recibió, según dice él mismo, noticias del extraordinario invento holandés. Como no se sabía nada de su construcción, Galileo se puso a meditar sobre el acerca de su construccn tema y tuvo la satisfacción de construir un primer anteojo que aumentaba en tres veces el tamaño de los objetos. Inmediatamente construyó anteojos con los cuales descubrió cráteres en la Luna, las fases de Venus, las manchas del Sol y los s liles de Júpiter. También especie de “orejas” que luego serían identificadas como los anillos que orbitan a Saturno.

En 1611, Galileo muy entusiasmado con sus logros, decide avanzar, y dar un paso importante, mostrando su telescopio en Roma a las mayores autoridades eclesiásticas. Fue muy bien recibido, atendido con una importante cena en su honor y escuchado. Galileo apuntó su equipo hacia el cielo y los invitó a observar, tratando de explicar el nuevo fenómeno que veían por ese misterioso tubo.

Observaron a Júpiter con sus satélites. Más tarde desmanteló el telescopio para que todos pudieran ver las dos lentes que lo formaban. A este instrumento le habían dado el nombre en latín de perspicillum o instrumentum, pero se dice que el nombre de telescopio fue dado por un principe de la zona conocido como Cesi, quien creo el nuevo nobre de telescopio.

Mas tarde se entrevistó primero con el cardenal Barberini, que más tarde sería el papa Urbano VIII; también se entrevistó con el papa Paulo V, en una audiencia muy amistosa.

De vuelta a su Padua, en 1611 siguió estudiando los astros celeste. Decidió estudiar el Sol, pero debió ingeniarse una pantalla para evitar lastimarse la vista con la fuerte energía lumínica con que nos abraza. Pudo descubrir las manchas solares y también su periódo de rotación.

En 1615 un teólogo romano conservador expresó la opinión de que la concepción copernicana debía tratarse como una hipótesis, pues contradecía a la palabra de la Biblia. Galileo insistió en que era real. En el edicto de 1616 el Santo Oficio puso el De revolutionibus orbium coelestium de Copérnico en el índice de libros prohibidos y ordenó a Galileo que no siguiera defendiendo a Copérnico so pena de ser encarcelado.

Galileo se daba cuenta que tarde o temprano el papa se moriría. Pocos años después se cumplieron sus expectativas y su viejo amigo Maffeo Barberini, que tantas veces le había defendido, fue elegido papa. Pero el poder absoluto corrompió a Barberini tan absolutamente que cuando los pájaros del Vaticano interrumpieron sus pensamientos hizo envenenarlos. Barberini —ahora el papa Urbano VIII— confirmó el edicto de 1616.

Galileo se mantuvo en las suyas. Durante seis años, animado por su amistad con el papa, trabajó en un libro titulado Diálogos sobre los dos máximos sistemas del mundo. Allí siguió lo legislado al pie de la letra; presentaba sus ideas como una hipótesis que explicaba un personaje llamado Salviati. El punto de vista de la Iglesia estaba representado por un personaje llamado Simplicio.

El insulto era intencionado y se percibió. En 1632 se prohibía el libro. Al año siguiente Galileo fue procesado por la Inquisición. Negó que creyera en el sistema copernicano, se derrumbó en todos los sentidos y se le ofreció firmar una confesión donde afirmaba: «El Santo Oficio me ha considerado vehementemente sospechoso de herejía; es decir, de haber sostenido y creído que el Sol es el centro del mundo e inmóvil, y que la Tierra no es el centro y se mueve». Se puso de rodillas, leyó el texto en voz alta y lo firmó.

La leyenda dice que entonces susurró: «Eppur si muove» («Sin embargo, se mueve»). Esta historia no es cierta, escribe el físico George Gamow, «y sólo ha dado pie a una vieja anécdota según la cual Galileo estaba observando el rabo que meneaba el perro de un amigo que entró, por equivocación, en el Santo Oficio de la Iglesia». Sin embargo, si Galileo no reaccionó de este modo, hubiera debido hacerlo. Algunas leyendas merecen la pena ser perpetuadas.

Galileo fue condenado a prisión y a repetir siete salmos una vez a la semana durante tres años, pero el papa redujo el castigo del astrónomo setentón a arresto domiciliario.

Galileo pasó el resto de su vida confinado en su villa próxima a Florencia (donde lo visitó una vez John Miltón). Hasta su muerte, su hija la hermana María Celeste lo cuido. (Un accidente geográfico de Venus lleva el nombre ella).

Durante este periodo, Galileo se quedó ciego, probablemente a consecuencia de mirar el Sol. Pero no todos los placeres le fueron negados; hasta su muerte en 1642 tocó el laúd, habilidad que había aprendido de su padre.

ALGO MAS SOBRE LOS TELESCOPIOS ASTRONÓMICOS

REFLECTORES Y REFRACTORES
5e pueden distinguir dos tipos principales de telescopios: refractores (o de lentes) y reflectores (o de espejos). Estos dos tipos combinados constituyen los instrumentos más recientes, como el telescopio de Maksutov. Las imágenes producidas por los telescopios reflectores están libres del efeto de aberración cromática, lo cual, para ciertos tipos de trabajos, constituye una clara ventaja respecto de los refractores ; pero, por otra parte, es::s últimos no presentan los efectos de difracción producirdos en los soportes del segundo espejo de los telescopios reflectores, aunque estos efectos no constituyen necesariamente un obstáculo de importancia.

El telescopio refractor suele ser más conocido; su principio es análogo al que se aplica en la construcción de catalejos, binoculares y anteojos de teatro. La luz procedente del objeto que se observa entra en el aparato a través de la lente objetivo. El objetivo de los telescopios se construye casi siempre corregido, para evitar la aberración cromática (o sea el defecto que suelen presentar muchas lentes que producen la aparición de franjas con los colores del el arco iris).

Hay alguna excepción a este respecto, particularmente en campo de la astronomía solar, pero estos casos caen fue-
a de nuestra atención en este momento. La luz se refracta al atravesar el objetivo, es decir, se desvía; la magnitud de
a desviación depende de la curvatura de la lente objetivo.

Para una lente dada, la desviación proyecta la imagen del objeto en un punto invertida, del mismo modo que lo está la imagen formada sobre la película por la lente de una cámara fotográfica. Si colocamos una placa fotográfica hemos trasformado el telescopio en una cámara fotográfica, y así se lo usa para fotografiar los astros.

En esta época de reflectores gigantes quizá resulte sorprendente saber que tales instrumentos son, por así decirlo, unos recién llegados. El principio en el que se basan es conocido desde hace más de doscientos años, pero los trabajos para su adaptación práctica sufrieron durante largo tiempo toda una serie de reveses técnicos.

Hoy día, los telescopios más grandes son invariablemente del tipo reflector. No parece aventurado afirmar que será muy difícil mejorar el refractor, con un objetivo de más de un metro de diámetro, del observatorio Yerkes, en Williams Bay, Wisconsin. Las razones para esta afirmación son varias y bien fundadas. En primer lugar, el moldear un disco de vidrio de grandes dimensiones es una tarea que requiere pericia extraordinaria y que origina gastos cuantiosos, y, desde luego, es incomparablemente más difícil obtener un gran disco de vidrio ópticamente puro, adecuado para la elaboración de una lente, que el necesario para formar un espejo.

El grosor de una lente aumenta con su diámetro, lo que significa un aumento en la cantidad de luz que es absorbida por el vidrio —lo cual, se comprende fácilmente, es un inconveniente para el astrónomo—. Pero, además, es necesario que la lente, bien centrada, esté sostenida en el extremo del tubo telescópico; un disco de vidrio macizo, sostenido sólo por sus bordes, tiende a deformarse por la acción de su propio peso (la lente del observatorio Yerkes pesa más de 225 Kg.), y cualquier imperfección tiene consecuencias catastróficas sobre la calidad de la imagen formada por la lente.

Estos problemas no se presentan en el caso del telescopio reflector. Para construir un espejo no es esencial la purezaóptica del vidrio, con tal de que la superficie que va a ser trabajada ópticamente reúna ciertas condiciones. La diferencia fundamental entre los dos sistemas es ésta: en un refractor la luz pasa a través de la lente, lo que exige una gran pureza óptica; en un reflector la luz se refleja en la superficie de un espejo, sin que resulte afectada por la calidad del vidrio.

corte de un telescopio refractor

Telescopio “refractor”. La lente objetivo A forma una imagen real en B, la cual se observa mediante la lente de aumento u ocular C.

En el telescopio reflector de Newton. La luz que entra por el tubo del telescopio incide sobre la superficie del espejo, al que se ha dado, con gran precisión, una forma parabólica. Esta superficie está formada por una capa muy fina de plata, o de aluminio (actualmente se prefiere el aluminio, porque la plata se deteriora muy rápidamente por la acción de distintas impurezas presentes en la atmósfera).

Corte de un telescopio reflector

Forma de Newton del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa lateralmente en el telescopio.

El espejo parabólico formaría la imagen en su punto focal A, pero antes de que los rayos alcancen este punto son desviados lateralmente por un pequeño espejo plano B, que está colocado con una inclinación de 45° respecto del eje principal del espejo primario.

De este modo la imagen es examinada con el ocular C en una dirección perpendicular a la de la luz enfocada por el aparato. Este tipo de reflector tiene gran aceptación entre los aficionados, por su sencillez. Sin embargo, los grandes instrumentos modernos no se sujetan exactamente a este esquema; incorporando el sistema óptico de Cassegrain se consigue una mayor versatilidad.

En el sistema de Cassegrain se reemplaza por un espejo convexo el pequeño espejo secundario B, y se practica un orificio en el espejo primario para permitir la observación de la imagen. Así, imagen y ocular se sitúan detrás del espejo principal, lo que proporciona varias ventajas, siendo la más importante la posibilidad de replegar la distancia focal, lo que permite reducir las dimensiones del tubo telescópico, con lo que el instrumento resulta más manejable.

corte de un telescopio sistema cassagrain

Forma de Cassegrain del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa por el extremo del telescopio.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Evolución de la Observacion del Espacio Historia

Cronología de las técnicas de observación
c. 2800 a. C: Stonehenge. La primitiva construcción incluye un foso, un montículo de tierra, 35 toneladas de restos pedregosos y cincuenta y seis pozos, llamados agujeros de Aubrey, que pueden haber sido utilizados para predecir eclipses. Entre 600 y 1000 años después se agregaría el famoso círculo de piedras.

c. 2600 a. C.: Se construye la Gran Pirámide de Gizeh, orientada hacia el Cinturón de Orion y Thuban de Draco el Dragón, la estrella del norte en aquel tiempo.

c. 440 a. C.: Se construye en Saskatchewan, Canadá, la Rueda de la Medicina de la Montaña del Ratón orientada hacia la posición del Sol en el solsticio de verano.

52 a. C. a 132 d. C: Los astrónomos chinos proyectan una esfera armilat para medir las posiciones de los objetos celestes. Empezando por un anillo metálico que representa el ecuador, incluye al final un ani lio que representa la trayectoria de los planetas, otro que reprc senta el meridiano y un reloj de agua.

150 d. C: Equipado con un plinto —un bloque de piedra con un arco calibrado que se utilizaba para medir la altura del Sol— y una regla triangular llamada triquetrum, Ptolomeo anota la posición de las estrellas.

927: Un fabricante árabe de instrumentos llamado Nastulo construye el astrolabio más antiguo que se conoce, un mapa metálico de los cielos que representa el movimiento aparente de las estrellas alrededor de la Polar y en relación con el horizonte.

1000: Los mayas erigen un observatorio en Chichén Itzá, en la península de Yucatán. Conocido como el Caracol, está alineado con el sol en los solsticios así como con las estrellas Castor, Pólux, Fomalhau y Canope.

1391: El Tratado sobre el astrolabio de Geoffrey Chaucer enseña a construir y utilizar el astrolabio para medir la posición de las estrellas.

1576: Tycho Brahe inicia la construcción de Uraniborg, su observatorio insular. Entre el equipamiento hay un cuadrante de pared, una gran esfera armilar y un sextante que abarca 30° de firmamento y va equipado con brazos fijos y móviles para medir las distancias entre las estrellas.

1608: El óptico holandés Hans Lippershey inventa el telescopio.

1609: Galileo Galilei se construye su propio telescopio. Un refractor con dos lentes de cristal (el objetivo convexo y el ocular cóncavo) que aumenta la imagen unas treinta veces.

1611: Johannes Kepler, retinando el telescopio, sustituye el ocular convexo por otro cóncavo, con lo que agranda el campo de visión pero invierte la imagen.

1636: El fraile y matemático francés Marín Mersenne propone la utilización de espejos para construir un telescopio reflector.

1668: Isaac Newton construye un telescopio reflector utilizando un espejo cóncavo en lugar de objetivo. Dado que los distintos colores se refractan de manera distinta, los telescopios refractores que se utilizan en osla época producen alrededor de las imágenes un cerco con los colores del arco iris. El reflector elimina esta aberración cromática porque los colores se reflejan de forma homogénea.

Otra ventaja es que el espejo, a diferencia de las lentes, puede sostenerse por detrás, con lo que produce menos distorsión. El físico francés N. Cassegrain diseña un telescopio en el que la luz se refleja desde un espejo secundario convexo a través de un agujero hecho en el primer espejo, una mejora del gran reflector new-toniano, en el que el ocular quedaba en la parte superior del telescopio, con lo que exigía al observador que trepara a una torre o escalera para mirar. Con el telescopio de Cassegrain el observador se mantiene a nivel del suelo. Según Newton, «La ventaja de este aparato es ninguna».

1733: Chester Moor Hall superpone dos clases de cristal para aumentar la lente del objetivo a la vez que suprime la aberración cromática.

1758: Utilizando el invento de Hall para hacer lentes de flint glass y de crown glass, John Dolland hace una lente acromática, que presenta en la Royal Society.

1789: William Herschel construye un telescopio con un espejo de 49 pulgadas.

1845: William Parsons, conde de Rosse, construye un telescopio reflector con un espejo de 72 pulgadas, el mayor del mundo hasta 1917. Se lo conoce como el Leviatán de Parsonstown.

1888: Se acaba el telescopio refractor de 36 pulgadas del Observatorio de Lick.

1897: Se construye el mayor telescopio refractor del mundo en el Observatorio de Yerkes, en Wisconsin. Tiene un objetivo con una lente de 40 pulgadas y un tubo de 64 pulgadas.

1908: Se acaba el telescopio reflector de 60 pulgadas de Monte Wilson.

1917: Se acaba el telescopio reflector de 100 pulgadas de Monte Wilson.

1930: Bernhard Schmidt inventa el Telescopio Schmidt, que utiliza lentes correctoras para eliminar la distorsión alrededor de los bordes de los espejos y para hacer fotografías claras del firmamento con gran angular.

1936: Después de diseñar el primer radiotelescopio del mundo, el ingeniero Grote Reber, de Illinois, erige un plato metálico de 9,15 metros en su patio trasero y empieza a hacer el mapa de la Vía Láctea, proyecto que completa al cabo de ocho años.

1948: Se acaba el telescopio reflector de 200 pulgadas de Monte Palomar.

1962: Un pequeño cohete detecta rayos X procedentes de más allá del sistema solar.

1970: Se lanza el primer satélite de rayos X.

1978: Se lanza la nave espacial Explorador Internacional de Ultravioletas (IUE), alimentada por energía solar.

Se lanza el Observatorio Einstein, que contiene un telescopio de rayos X de alta resolución.

1980: Una serie de veintisiete observatorios dispuestos en forma de Y, llamada la Gran Formación (Very Large Array), comienzan a operar en Nuevo México.

1981: El dispositivo de carga acoplada (CCD) deja obsoleta la fotografía. Mientras que las fotografías utilizan una fracción de la luz procedente de un objeto para producir un cambio químico en una película, el mucho más sensible CCD responde a casi toda la luz y envía corrientes eléctricas directamente al ordenador.

1983: Es puesto en órbita el Satélite de Astronomía Infrarroja (IRAS).

1989: Se lanza el satélite Explorador del Fondo Cósmico (COBE) de la NASA.

1990: Se pone en órbita desde la lanzadera espacial Discovery el Telescopio Espacial Hubble.

1991: Se pone en órbita desde una lanzadera espacial el Observatorio Compton de Rayos Gamma (GRO), con cuatro detectores de rayos gamma a bordo.

1992: El 14 de abril comienza sus observaciones el Telescopio Keck, con los treinta y seis espejos hexagonales colocados en su sitio. El 24 de agosto, su gemelo el Keck II recibe el primer segmento de sus treinta y seis espejos coordinados.

1993: Diciembre. Astronautas instalan durante un paseo espacial nuevos paneles solares, giróscopos, una nueva cámara y otros instrumentos para corregir la visión del Telescopio Espacial Hubble.

Entre los futuros instrumentos que se espera que estén funcionando el año 2000 se cuentan: el Telescopio Keck II; el Observatorio Estratosférico para Astronomía en el Infrarrojo Lejano (SOFÍA)en órbita; la Instalación Astrofísica de Rayos X Avanzada (AXAF); la Instalación Espacial para Telescopio de Infrarrojos (SIRTF); el Telescopio Sloan de la Universidad de Princeton, diseñado para hacer un mapa del desplazamiento hacia el rojo de un millón de galaxias; y el telescopio de múltiples espejos controlado por ordenador del Observatorio Europeo Austral en Chile, conocido como el VIT (Gran Telescopio).

El Gran Telecsopio que será construído en Chile

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway

Los Telescopios Mas Importantes del Mundo Medidas y Ubicación

TELESCOPIOS REFRACTORES Y REFLECTORES: Los primitos astrónomos utilizaban sus ojos y algunos sencillos instrumentos como el cuadrante para medir ángulos, pero hace unos 350 años, en 1609, Galileo inventó su “tubo óptico” o telescopio de construcción casera, y al dirigirlo al cielo la astronomía inició una nueva era.

Desde aquel entonces el astrofísico ha aprendido a aplicar la fotografía y la electricidad para resolver sus problemas, a separar y analizar la luz solar y de las estrellas, y a utilizar de muy diversos modos otros tipos de radiaciones que nos llegan de las profundidades del espacio.

Las radiaciones procedentes del espacio son, en verdad, las únicas fuentes de información de que disponen los astrónomos para bosquejar su esquema del universo. Dichas radiaciones nos llegan en tres formas distintas: luz, calor y ondas radioeléctricas. Observamos y medimos la luz y el calor con los telescopios ópticos, y las ondas radioeléctricas mediante los radiotelescopios.

Los dos principales telescopios ópticos son el telescopio refractor y el reflector. Ambos recogen la luz proveniente de objetos distantes y la concentran para formar una pequeña imagen. En los dos instrumentos la imagen es aumentada luego mediante un ocular.

Telescopio refractor:
El tipo de telescopio que nos es más familiar es el refractor, con una gran lente en su parte anterior. Esta lente frontal, llamada objetivo por encontrarse más cercana del objeto a observar, recoge la luz y la desvia o refracta hacia el foco. Este principio parece bastante sencillo, pero el llevarlo a la práctica no lo es tanto. La razón de ello estriba en que nadie ha diseñado aún una lente que desvíe todos los colores por igual. La luz violeta y la azul son más desviadas que la luz roja. Por lo tanto si utilizamos una sola lente como objetivo de un telescopio refractor, dicha lente lleva los rayos luminosos de los distintos colores a diferentes focos y vemos una imagen rebordeada por una coloración borrosa.

En los primeros años del telescopio, los astrónomos encontraron en este Icnómeno un gran inconveniente cuando intentaron efectuar observaciones y mediciones de precisión. Sin embargo, en 1733, un inglés, Chester Moor Hall, que se había dedicado al estudio óptico del ojo humano como pasatiempo, encontró la forma de eliminar dicho inconveniente y mejoró notablemente la calidad de la observación.

Ejemplo de funcionamiento de un telescopio refractor

Una gran lente (el objetivo) recoge la luz procedente de una estrella y la desvía hacia el foco produciendo en él una pequeña imagen. Esta se aumenta mediante otra lente (el ocular).

Telescopio Reflector: Otra forma de resolver este problema de la colora ción de los bordes. Si concentramos la luz mediante un espejo cóncavo, en vez de utilizar un objetivo de cristal, podemos dar por resueltos todos los problemas que se plantean al emplear lentes.

El espejo cóncavo nos enviará todos los colores hacia el mismo foco, y aunque todavía debemos recurrir a un ocular construido con lentes, es posible diseñarlo de tal forma que no se produzca ningún efecto de coloración. En este aspecto, por lo menos, el telescopio reflector con su gran espejo cóncavo es preferible al telescopio refractor con sus grandes lentes.

Un telescopio refelctor internamente

En tiempos de Isaac Newton no había lentes acromáticas. Para soslayar el problema que representaba el contorno coloreado, construyó un telescopio que tenía un espejo cóncavo en lugar de una lente. El espejo cóncavo enfocaba la luz de una estrella y la dirigía hacia un espejo plano inclinado, el cual a su vez reflejaba la imagen de la estrella hacia un ocular situado al lado.

TABLA CON LOS PRINCIPALES TELESCOPIOS DEL MUNDO

UBICACIÓN Y NOMBRE ALTITUD DIÁMETRO PROPIETARIO INICIO NOMBRE
Mauna Kea; Hawai, EE UU (W.M. Keck Observatory) 4150 10 Universidad de California y Caltech 1992 Keck Teiescope
Zelenchúkskaia; monte Pastujov, Cáucaso, Rusia 2 070 6,00 1976 Bolshoi Teleskop Azimutalnii(BTA)
Monte Palomar; California, EE UU 1706 5,08 EEUU 1948 Hale
Monte Hopkins; Arizona, EE UU (Fred Lawrence Whipple Observatory) 2 600 4,60 (6 x 1,8) Smithsonian Institution 1979 Múltiple Mirror Teiescope (MMT)
La Palma; Canarias, España (Observatorio Roque de los Muchachos) 2 300 4,20 RU 1988 William Herschel
Cerro Tololo; Chile (Cerro Tololo Interamerican Observatory, CTIO) 2 400 4,00 EEUU 1976
Siding Spring; Nueva Gales del Sur, Australia (Anglo-Australian Observatory) 1 164 3,89 RU-Australia 1975 Anglo-Australian Teiescope
Kitt Peak; Arizona, EE UU (Kitt Peak National Observatory, KPNO) 2 064 3,81 EEUU 1973 Mayall
Mauna Kea; Hawai, EE UU (W.M. Keck Observatory) 4 194 3,80 RU 1979 UK Infrared Teiescope (UKIRT)
Mauna Kea; Hawai, EE UU 4 200 3,60 Canadá-Francia 1979 C.F.H. (Canadá-Francia-Hawai)
La Silla; Chile 2 400 3,57 ESO* 1976
Calar Alto; Sierra Nevada, España 2 160 3,50 RFA 1983
La Silla; Chile 2 400 3.50 ESO* 1988 New Technology, Teiescope (NTT)
Monte Hamilton; California, EE UU (Observatorio Lick) 1277 3,05 EEUU 1959 Shane
Mauna Kea; Hawai, EE UU 4 208 3,00 EEUU (NASA) 1979 IRTF (Infra Red Teiescope Facility)
Monte Locke; Texas, EE UU (Observatorio MacDonald) 2 070 2,72 Universidad de Texas (EE UU) 1969
Crimea; Ucrania (Observatorio de Crimea) 2,60 1961 Shajn
Monte Aragats; Armenia (Observatorio de Biurakan) 1500 2,60 1971

Historia y Construcción del Gran Telescopio en Monte Palomar

ESTÁ EN CONTRUCCIÓN UN NUEVO Y GRAN TELESCOPIO EN CHILE

Comenzó a cosntruirse el telescopio mas grande del mundo, llamado el “telescopio de treinta metros”, que se llama así por los 30 metros de diámetro que tiene su espejo principal, es el resultado de la colaboración entre universidades e instituciones de Estados Unidos, Canadá, China, India y Japón y cuenta con una inversión de 1.400 millones de dólares. En total, tendrá 100 metros de ancho y 492 espejos hexagonales que le darán una resolución diez veces mayor a la que actualmente ofrece el Hubble, de la NASA, lo que sin duda lo convertirá en una de las herramientas más poderosas para explorar el universo. Se espera esté listo para el año 2022.

Ampliación:
Principales telescopios en uso en el mundo

Se inicia por describir los telescopios refractores, que son los más antiguos, y terminaremos por describir los reflectores, más modernos.

El telescopio refractor más grande que se construyó fue el de un metro de abertura, del observatorio de Yerkes, a finales del siglo pasado, con fondos proporcionados a la Universidad de Chicago por el magnate C. T. Yerkes, a petición de George Ellery Hale.

Observatorio de Yerkes

La montura para este telescopio fue construida en el año de 1890 por la compañía Warner and Swasey. Algunas experiencias recientes muy desagradables con las bajas temperaturas en las montañas hicieron que se tomara la decisión de colocar el observatorio a 129 kilómetros al noroeste de Chicago, en un lugar con una altura de tan sólo 75 metros sobre el nivel del mar.

El objetivo de este telescopio fue construido por Alvan Clark en 1985. Las lentes solas pesaban 225 kilogramos sin su montadura, a pesar de haberse construido con un grueso excepcionalmente pequeño, a fin de hacerlas tan ligeras como fuera posible. El 21 de mayo de 1897 hicieron la primera observación tres astrónomos, entre los que se encontraba Hale. Según palabras del mismo Hale, con este telescopio fue posible ver detalles lunares y planetarios que nunca antes habían sido observados.

Otro telescopio refractor históricamente muy importante, construido antes que el de Yerkes, es el del observatorio de Lick, construido también por Clark en 1888 y apoyado económicamente por James Lick, quien murió en 1879, antes de que fuera terminado el proyecto. El observatorio de Lick se instaló en el Monte Hamilton, en Santa Clara, California. Este telescopio tenía un objetivo de 90 centímetros de diámetro.

Ahora haremos una síntesis de los telescopios reflectores más grandes que existen, comenzando por el mayor de todos ellos, que es el de 6 metros de abertura, que se encuentra instalado en la Unión Soviética.

El telescopio reflector de 6 metros de abertura de la Academia de Ciencias de la URSS se comenzó a construir en el año de 1960. Después de muchos estudios para encontrar un buen lugar de observación, se instaló en el monte Semirodniki, a una altura de 2 070 metros al norte de la cordillera caucásica.

El trabajo en la construcción se inició en 1966 y comenzó a funcionar aproximadamente 10 años después. Este inmenso telescopio es hasta la fecha el mayor del mundo y quizá lo sea por mucho tiempo más, pues los problemas prácticos que tiene un telescopio de este tamaño son formidables. El espejo primario de este telescopio es de vidrio borosilicato (equivalente al Pyrex). La parte posterior del espejo es de forma convexa, a fin de que el espejo tenga un grueso aproximadamente constante y con ello minimizar las distorsiones térmicas.

La montura de este telescopio es de tipo altazimut, ya que una ecuatorial de estas dimensiones sería imposible de construir sin que tuviera muy serios problemas de flexiones mecánicas. La montura altazimut tiene menos problemas de flexiones, pero a cambio de ello la compensación por el movimiento diurno de las estrellas tiene que hacerse moviendo en forma alineal muy complicada los dos ejes, al mismo tiempo que se gira también el portaplacas fotográfico. Todo esto se hace simultáneamente con motores independientes, controlados por medio de una computadora.

El telescopio de 5 metros de abertura de monte Palomar fue el más grande del mundo durante casi tres décadas. Cuando se concibió la idea se pensó que era un gran proyecto que requería mucha planeación y esfuerzo.

Quien concibió la idea de construir este telescopio fue George Ellery Hale, quien además se tomó el trabajo de reunir los fondos necesarios.

Uno de los detalles técnicos más importantes era la selección del material para el espejo. Se sugirieron muchos materiales, pero finalmente se decidió utilizar cuarzo fundido, con vidrio Pyrex como alternativa. Varios fracasos en los intentos para fundir el bloque de cuarzo del diámetro requerido hizo que la selección final fuera Pyrex. El coeficiente de expansión del Pyrex es casi cinco veces mayor que el del cuarzo fundido, pero una tercera parte que el del vidrio común. Aumentando el contenido de cuarzo en el Pyrex se logró que el coeficiente de expansión fuera sólo tres veces superior al del cuarzo.

Se fundieron en la compañía Corning Glass, en el estado de Nueva York, dos bloques de Pyrex de 5 metros de diámetro, el primero de marzo de 1934, con la presencia de un gran número de observadores. El tanque donde se estaba fundiendo el vidrio se colocó dentro de un gran horno.

Las 65 toneladas de vidrio se vaciaron durante 15 días en forma continua. Después, tomó otros 16 días llegar a la temperatura de fusión de 1 575 °C. Luego se comenzó a pasar el vidrio fundido del tanque al molde final en crisoles de 300 kilogramos a la vez. El enfriado hasta 800 °C se hizo en cuatro semanas, 10 veces más rápido de lo previsto.
Al examinar la pieza final se detectaron tensiones y pequeñas fracturas internas, por lo que se intentó fundir un segundo bloque. Se pensó que el enfriado debía hacerse en 10 meses.

Cuando ya habían transcurrido siete meses se desbordó el río Chemung, pero se logró con gran esfuerzo que el agua no llegara al horno. Un mes después hubo un gran temblor, que por fortuna no causó ningún daño.
Finalmente, en 1935 se trasladó en un tren especialmente acondicionado el gran bloque de vidrio, de Corning, Nueva York a Pasadena, Cal., adonde llegó en perfectas condiciones.

Mientras tanto, en el California Institute of Technology se había instalado un gran taller óptico con una máquina pulidora que pesaba 160 toneladas, a cargo de J. A. Anderson y Marcus Brown.

El proceso de generar la curvatura deseada significaba profundizar en el centro casi 10 centímetros, desbastando casi cinco toneladas de vidrio. El segundo paso fue afinar la superficie hasta darle forma esférica, por medio de un proceso de esmerilado con granos de esmeril cada vez más finos.

Después, antes de pulir, se emplearon tres meses en lograr una buena limpieza sin granos de esmeril, tanto del espejo como de la máquina. En el proceso final de pulido y parabolizado se utilizaron 31 toneladas de abrasivos y casi 10 años. Se consideró listo para ser probado en noviembre de 1947.

El 3 de junio de 1948 tuvo lugar la ceremonia oficial de inauguración, donde estuvo presente la viuda de Hale y se develó un busto de bronce de su esposo, con una placa bautizando el telescopio con su nombre.

Al principio de los años 60, la Associated Universities for Research in Astronomy, comenzó el proyecto de construir dos telescopios reflectores de cuatro metros de abertura, para ser instalados uno en el observatorio de Kitt Peak en Arizona, y otro idéntico un poco más tarde en el cerro Tololo, en Chile.

Uno de los espejos era de Cervit y el otro de cuarzo fundido, ambos materiales con un coeficiente de expansión térmica despreciable. La inaguración del observatorio de Kitt Peak fue en junio de 1963.

Los principales telescopios refractores


Diámetro en m.
Constructor
Inició operaciones
Nombre oficial
Observatorio

1,01
Alvan Clark & Sons
1897
Yerkes, Univ. de Chicago
,89
Alvan Clark & Sons
1888
Refractor de 83 cm
Lick, en california, EUA
,83
Paul & Prosper Henry
1889
Observatorio de Niza, en Francia
,80
C. A. Stenheil
1899
Instituto Central de Astrofísica en Alemania Oriental
,76
John A. Brashear
1914
Refractor Thaw
Allegheny, en Pennsylvania
,74
Paul & Prosper Henry
1886
Lunette Bischoffsheim
Obs. de Niza en Francia
,71
Sir Howard Grubb
1894
Refractor visual de 64 cm
Old Royal Greenwich, en Inglaterra
,68
C. A. Stenheil
1896
Refractor Grosser
Archenhold Sternware, en RDA
,67
Sir Howard Grubb
1880
Refractor Grosser
Instituto de Astronomía de la Universidad de Viena
,67
Sir Howard Grubb
1925
El telesc. Innes
Estación del Observatorio Astronómico Sudafricano en Johannesburgo, Sudáfrica
,66
Alvan Clark & Sons
1883
Leander Mc Cormick en Virginia, EUA
,66
Alvan Clark & Sons
1873
Ecuatorial de 60 cm
Observatorio Naval de EUA en Washington
,66
Sir Howard Gribb
1899
El refract. Thompson
Observatorio Real de Greenwich, en Inglaterra
,66
J.B. Mc Dowell
1925
Refractor Yale-Columbia
Monte Stromlo, ACT, Australia

Los principales telescopios reflectores


Diámetro en m.
Constructor
Inició operación
Nombre oficial
Observatorio

6,00
Equipo de trabajo óptico de Leningrado
1976
Telescopio Altazimutal Bolshoi
Observatorio astrofísico Especial de la Unión Soviética.
5,08
J. A. Anderson Marcus Brown
1948
George Elery Hale
Monte Palomar, California
4,50
Centro de Ciencias Ópt. U. de Arizona
1979
Telescopio de espejos Múltiples
Kitt Peak, Arizona
4,20
1985
Islas Canarias, España
4,00
Taller Óptico de Kitt Peak
1976
Intermericano de cerro Tololo, Chile
4,00
Taller Óptico de Kitt Peak
1973
Nicholas U. Mayall
Kitt Peak, Arizona
389
Grubb-Parsons
1975
Anglo-Austral
Observatorio Angloaustriaco en Austria
3,80
Grubb-Parsons
1979
Infrarrojo del Reino Unido
Unidad del Observatorio Real de Edimburgo, Hawaii
3,60
Dominion
1979
Canadiense francés, hawaiano
3,57
Recherches et Études Optiques et de Sciences Connexes
1976
ESO 3.6 metros
Europeo del sur, Chile
3,05
Don O. Hendrix
1959
C. Donald Shane
Lick, California
300
Taller Óptico de Kitt Peak
1979
Infrarrojo de la NASA
Mauna-Kea, Hawaii

Fuente Consultada:
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Principales Cráteres en el Planeta Por Impactos de Meteoritos

EL IMPACTO DE LOS METEORITOS: Se define como meteorito a un trozo de material, a menudo procedente de algún asteroide, lo bastante  grande como para sobrevivir al pasar la atmosfera terrestre.

Los meteoritos son fragmentos de rocas del espacio interplanetario que el azar ha traído a la Tierra. Son de tres tipos: piedras —con mucho las más abundantes (92,8% de las caídas observadas)—, hierros (5,7%), y hierros líticos (1,5%).

Las piedras se componen en gran medida de silicatos —como la olivina, el piroxeno y el feldespato— y otros minerales conocidos en rocas ígneas lunares y terrestres. Más del 85% de las piedras son «condritas», que se distinguen de otras rocas ígneas por la presencia de pequeñas inclusiones esféricas de material de silicato llamadas cóndrulos. Los meteoritos de hierro son esencialmente aleaciones de hierro con hasta un 20% de níquel.

La mayoría de estos se componen de dos minerales de níquel-hierro intercalados laminarmente que muestran una superficie con dibujo en zig-zag al ser partidos y pulidos. Los meteoritos de hierro lírico se componen de níquel-hierro y silicatos en proporciones aproximadamente iguales: algunos presentan discretos granos de olivina dentro del níquel-hierro. Muchas piedras y hierros líricos presentan cortezas lisas o rugosascomo resultado de la ablación (fusión superficial) a su paso por la atmósfera de la Tierra. Algunos hierros presentan hendiduras cortantes formadas de la misma manera.

La datación isotópica de meteoritos revela edades mineralógicas de unos 4.600 millones de años, tanto como las rocas lunares datadas como más antiguas, e iguales a la edad que se le calcula a la Tierra y, presumiblemente, a los demás planetas.  La mayoría de los meteoritos se formaron probablemente mucho más tarde, cuando cuerpos originarios, pequeños pero de diferentes tamaños, del cinturón de asteroides entre Marte y Júpiter co-lisionaron y estallaron.

Caen en la Tierra un millón de meteoritos al año y, aunque raramente se ven, de vez en cuando causan daños. Los grandes han ocasionado cráteres, de los que el Cráter del Meteoro de Arizona de hace 20.000 años, con 1,2 kilómetros de diámetro y 174 metros de profundidad, es el ejemplo más gráfico. Algunos pequeños han caído sobre seres vivos. Una vez se rumoreó que un meteorito acertó a un gato.

Un caballo recibió un impacto en New Concord, Ohio, en 1860. Y aunque la mayor parte de los meteoritos proceden de asteroides, en 1911 un perro murió en Egipto al caerle un meteorito procedente de Marte. También han caído sobre seres humanos. Un hombre de Mhow, en la India, fue alcanzado en 1827, y en 1954 una ama de casa de Alabama dormía en el sofá de su cuarto de estar cuando una piedra procedente del espacio exterior atravesó el tejado y le impactó en la cadera, dejándole una impresionante quemadura. Fue un brusco despertar.

La mayoría son partículas pequeñas casi como de polvo y son rápidamente incineradas por el intenso calor friccional del vuelo atmosférico a alta velocidad. Sus incandescentes muertes, marcadas por brillantes estelas de luz, son las «estrellas fugaces» o «meteoros» del cielo nocturno.

Sólo unos pocos de los mayores meteoroides o sus restos fragmentados sobreviven al violento paso a través de la atmósfera para llegar a la superficie de la Tierra como meteoritos, e incluso así, alrededor de dos tercios caen en los océanos. Anualmente, rara vez se registran y recuperan más de diez caídas de meteoritos.

La caída de un meteorito se puede ver como una bola de fuego con largas colas incandescentes de materiales de desecho de la ablación. Se puede producir un sonido como de un trueno, de un silbido o de un resquebrajamiento, a veces acompañados por explosiones de «onda de choque supersónica».

Los lugares de hallazgos de meteoritos, de los que en la actualidad se conocen casi 2.500, se distribuyen de una manera fortuita, pero las tectitas parecen estar confinadas a «áreas de dispersión» en ciertas regiones geográficamente limitadas: las caídas de tectitas no han sido nunca observadas.

Las marcas de impactos de meteoritos en la superficie de la Tierra son muy poco corrientes, en gran medida porque los procesos geológicos normales conducen a su desaparición: sólo cráteres de mayor tamaño sobreviven durante algún tiempo, generalmente en condiciones de clima y de geología de superficie favorables, tal y como ejemplifica el cráter Meteor de Arizona, de 20.000 años de edad.

Sin embargo, investigaciones sistemáticas en muchas partes del mundo, sugieren ahora la presencia de hasta 60 estructuras de origen meteorítico, algunas de las cuales se asocian a la presencia de fragmentos de níquel-hierro y minerales que muestran el efecto de altas presiones coherentes con una modificación por impacto.

Mapa de los Principales Crateres

Principales cráteres de impacto en la superficie terrestre:

crater terrestre

Vredefort (Sudáfrica)  
De 300 km de diámetro y unos    2.000 millones    de    años de antigüedad.

crater terrestre

Sudbury (Ontario, Canadá)     
De unos 250 km de diámetro y    originado    hace    más    de 180 millones de  años.

crater mexico

Chicxulub (Golfo de México)  
De unos 170 km de diámetro y originado hace unos 65 millones de años, entre los límites de los tiempos mesozoicos y los fanerozoicos. Este gran cráter se relaciona con la gran catástrofe nz ógica que afectó a la Tierra al final del  período Cretácico, durante la cual se extinguieron numerosos grupos de organismos, entre ellos los dinosaurios.

Mankouagan (Quebec, Canadá)
De unos 100 km de diámetro originado hace unos 200 millones de años.

Propigai (Rusia)
De unos 100 km de diámetro y de alrededor de unos 35 millones de años de antigüedad.

Acraman (Australia)
De unos 90 km de diámetro y originado hace unos 570 millones de años, a inicios de los tiempos fanerozoicos.

Puchezh-Katunki (Rusia)
De 80 km de diámetro y originado hace unos 220 millones de años.

Siljan (Suecia)
De 55 km de diámetro y originado hace unos 368 millones de años.

Saint Martin (Canadá)
De 40 km de diámetro y formado hace unos 220 millones de años.

Teague (Australia)
De 30 km de diámetro y originado hace unos 1685 millones de años.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway – Crítica
La Luna, Marte y Los Meteoritos Geological Museum – Akal
Historia Universal Los Orígenes Tomo I – Salvat

Cuadro sinoptico del Universo, Sistema Solar, Planetas y Galaxias

SINTESIS EN UN CUADRO SOBRE EL SISTEMA SOLAR

Nuestro sistema solar que está contenido en la galaxia llamada Vía Láctea, está conformado por el Sol y ocho planetas que gravitan a su alrededor. Los planetas siguen órbitas que, casi en su totalidad, están situadas en el mismo plano; y todos se desplazan en torno al Sol en el mismo sentido.

El tiempo que tardan en dar una vuelta constituye el año de cada planeta: Mercurio, el más cercano, demora tres meses terrestres. Además de los planetas, entre Marte y Júpiter circulan cuerpos pequeños, bloques de rocas cuyo diámetro no suele pasar los pocos kilómetros. Se cree que estos asteroides son los restos de un planeta que, o bien se fragmentó, o no llegó a formarse jamás.

Ampliar Sobre la Evolución del Universo

cuadro sinoptico universo

Diferentes clases de astros
Los astros se pueden dividir en cuatro tipos: a) ios que poseen luz propia, como el Sol, las estrellas, las nebulosas de emisión y algunos cometas: b) los que brillan con luz reflejada, como la Luna, los planetas, satélites, asteroides, ciertos cometas y ciertas nebulosas: c) los que no emiten luz alguna, como las nebulosas obscuras, cuya existencia se conoce en virtud de que impiden pasar la luz de los astros situados detrás de ellas; y d) las estrellas fugaces y bólidos, que lucen porque al entrar velozmente en nuestra atmósfera se tornan incandescentes al rozar con los gases de ésta.

Los movimientos aparentes de los astros difieren según los casos.

Las estrellas, los conglomerados, las nebulosas y las galaxias, describen un círculo completo alrededor de la Tierra en 24 ñoras menos cuatro minutos.

Los planetas tienen un movimiento aparente complejo. Se clasifican eñ interiores o exteriores según sea que su órbita esté, respectivamente, dentro o fuera de la que sigue la Tierra. Los planetas interiores, Mercurio y Venus, siguen una ruta cercana al astro mayor y sólo son visibles antes de orto o salida de éste, y después de su ocaso o puesta. Vistos a través del telescopio los planetas interiores presentan fases porque,estando sus órbitas dentro de la terrestre, su disco se ve más o menos iluminado por el Sol. Cuando se hallan a la mayor distancia aparente del Sol -máxima elongación- tienen la mitad del disco iluminado.

La elongación puede ser oriental u occidental, de acuerdo a cómo están situados respecto del Sol. Los planetas exteriores se ven de noche y, por lo común, viajan aparentemente de O a E a través de las estrellas, pero, según los movimientos combinados de cada planeta y la Tierra, hay un momento en que parece que se detienen: están esfa-cionarios; acto seguido cambian de rumbo y se dirigen de E a O, hasta llegar a otro punto donde permanecen de nuevo estacionarios, para continuar posteriormente con su marcha normal. Entre dos posiciones estacionarias llegan a la oposición, en que se sitúan en la línea Sol, Tierra y planeta. Si la disposición es planeta, Sol y Tierra, se dice que el planeta está en conjunción (con el Sol interpuesto). Los planetas se mueven dentro del Zodíaco, que es una faja de 8o de anchura a cada lado de la eclíptica.

Los Lagos Mas Grande del Mundo Los Lagos Mas Extensos del Planeta

Lagos. Su origen
En la Tierra hay graneles extensiones de aguas permanentes almacenadas en hondonadas del terreno, con comunicaciones con el mar o sin ellas, que se denominan lagos. Son varias las fuentes que originan sus aguas: las precipitaciones directas, las indirectas, que los alimentan al escurrirse por el suelo; la fusión de las nieves y del hielo, las fuentes y los aportes fluviales. Abundan en áreas que han experimentado glaciación. Los lagos de llanura suelen ser poco profundos; en cambio, si las depresiones están formadas por rocas vivas, pueden tener gran profundidad y ser mucho más estables.

Hay algunos que reciben alimentación subterránea mediante manantiales que afloran en su fondo. Estas formaciones están condenadas a desaparecer con el correr del tiempo. Dos son las causas principales: la desecación y el desagüe. Todos los lagos salados están en trance de desaparición por desección. El mar Caspio elimina más agua por evaporación que la que recibe de los ríos que en él desembocan.

Esta tendencia a desaparecer se explica también por la cantidad de materiales de aluvión que vierten los ríos en sus orillas, y que progresivamente van formando en su fondo pequeños deltas con una superficie cada vez mayor.

Lagos artificiales
El hombre, a partir de este siglo, ha comenzado a construir grandes centrales hidroeléctricas para solucionar sus problemas energéticos. Por ello es común encontrar almacenadas al lado de cada presa o digue grandes cantidades de agua que constituyen verdaderos Jegos artificiales.
El número de lagos que aprovechan la energía hidroeléctrica es considerable. Los principales son: Gatún (Panamá), Nilo (Egipto), Dniéper (U.R.S.S.) y Hoo-ver (E.E.U.U.).

tabla de los lagos mas importantes del mundo

Fuente Consultada:Mundorama Tomo de Geografía General

Mapa de la Luna Superficie de La Luna Crateres Mares y Montañas

¿Por qué vemos más de la mitad de la superficie lunar? Hoy, esta y otras preguntas relativas al movimiento de nuestro satélite ya tienen respuesta. Sin embargo, a pesar de que la Luna es el objeto celeste más  próximo a nosotros, calcular su órbita todavía es difícil: se han descubierto más de 37.000 factores que influyen en sus movimientos.

Hace millones de años la Luna estuvo bombardeada por distintos cuerpos celestes, como asteroides y  cometas, dejando una superficie característica , totalmente “rugosa y ondulada”, formada por miles de cráteres que pueden observarse a simple vista. Inicialmente fueron grandes cuerpos, mientras que en una segunda etapa,  los cuerpos que impactaban fueron mas pequeños, provocando cráteres mas chicos, y todo esto ocurrió hace unos 3800 millones de años aproximadamente.

 El análisis de impactos responde al nuevo catálogo de alta resolución de los cráteres lunares de 20 metros de diámetro o superior -que son 5.185 en total- que se ha hecho gracias a los datos tomados por el altímetro de la sonda espacial de la NASA Lunar Reconnaissance Orbiter (LRO). China también está desde hace pocos años en un proyecto para fotografiar, estudiar y armar un meticuloso y fiel plano de la superficie lunar, por lo que ha enviado una nave que orbita la Luna consiguiendo imágenes en 3D. También estaría previsto enviar una nave no tripulada que alunizara.

Cráter Lunar

Cráter Lunar

INFORMACIÓN BÁSICA DE LA LUNA:
Durante e una órbita de la Luna alrededor de la Tierra, la distancia que separa ambos cuerpos celestes puede variar muchísimo: hasta 1/8 del valor medio. A la distancia máxima de la Tierra, el diámetro aparente de la Luna es aproximadamente 9/10 del que nos muestra cuando se encuentra a la distancia mínima.

Tampoco el perigeo y el apogeo son fijos. A pesar de que se trata del objeto celeste más cercano a la Tierra, calcular el movimiento de la Luna es una tarea difícil. Este tipo de medidas se refiere . siempre a los centros de los dos cuerpos celestes y no a sus superficies.

Deben considerarse también las perturbaciones debidas a la atracción gravitatoria del Sol, al abultamiento ecuatorial de la Tierra y a la influencia de los planetas. Además, la magnitud de las perturbaciones provocadas por todos estos cuerpos varía continuamente, ya que también varían las posiciones de cada uno de ellos en el sistema solar.

Las técnicas más modernas para medir la distancia Tierra-Luna se basan en el empleo del láser. Se envía un rayo láser a la Luna, el cual, por reflexión, vuelve a la Tierra. Sabiendo la velocidad del rayo enviado y calculando el tiempo que emplea en cubrir el recorrido de ida y vuelta, es posible obtener, con una diferencia muy pequeña (pocos centímetros), el valor que se busca. L; teoría que predice el comportamiento de la órbita lunar tiene en cuenta muchos factores periódicos, algunos de los cuales apenas modifican el valor en 2 cm.

Sin embargo, la precisión que se obtiene con el láser obliga a los astrónomos a tener presentes incluso las variables más pequeñas.

IMPORTANCIA DE LA DISTANCIA TIERRA-LUNA
Esta medida no sólo permite verificar nuestras teorías sobre el movimiento lunar, sino también conocer exactamente la distancia Tierra-Luna. Esta información es importante porque influye sobre otros fenómenos. Las mismas teorías sobre el material que forma el interior de la Luna dependen en parte de tales valores.

Gracias a esta medida, es posible obtener en un tiempo muy breve indicaciones exactas sobre la disminución de velocidad (no regular) de la rotación terrestre. La distancia de la Luna a k Tierra interviene también en la medición de la deriva de los continentes, cuyos desplazamientos pueden ser de algunos centímetros por año.

LA ÓRBITA LUNAR
El tiempo que emplea la Luna en efectuar una órbita completa merece un discurso especial: a pesar de que gira alrededor de la Tierra, ésta no está inmóvil en el espacio, sino que, a su vez, gira alrededor del Sol. Respecto a las estrellas que son fijas, un mes lunar dura 27,32 días (mes sideral), pero el tiempo que tarda la Luna en volver a la misma fase respecto a la Tierra es diferente, ya que interviene el movimiento de ambos cuerpos. Este intervalo, llamado mes sinódico, equivale a 29,5 días.

El plano de la órbita lunar no coincide con el terrestre (eclíptica), sino que está inclinado unos 5° 19′. Esto es importante porque gracias a la existencia de un ángulo entre los dos planos no se producen cada mes eclipses en la superficie terrestre.

Con el tiempo, los nodos -puntos de intersección de los dos planos- se mueven con un desplazamiento de 19° por año. También la línea de los ápsides -la que une el perigeo con el apogeo- se mueve, aunque en dirección opuesta. El período de este último movimiento es de 8,85 años.

ROTACIÓN Y TRASLACIÓN
Como ya se ha indicado en otras ocasiones, el movimiento de rotación y el de traslación están sincronizados, es decir, la Luna tarda el mismo tiempo en efectuar una rotación completa alrededor de su propio eje que en girar alrededor de la Tierra. Esto se debe a la fuerza gravitatoria terrestre, que, a lo largo del tiempo, ha hecho disminuir la velocidad inicial de la rotación lunar.

Una consecuencia interesante de ello es que los movimientos del Sol en el firmamento de la Luna son muy lentos: basta decir que el Sol permanece sobre el horizonte durantes 354 horas consecutivas y que el disco solar tarda mas de una hora en emerger completamente. En una semana, el Sol asciende desde el horizonte hasta el punto mas alto del firmamento, y en otra llega a la puesta. El eje de rotación de la Luna está poco inclinado respecto al plano de la órbita y, por lo tanto las variaciones estacionales son mínimas.

ALGO MAS SOBRE LA SUPERFICIE LUNAR…

Un paisaje totalmente desolado, más severo y más áspero que cualquier escenario terrestre, daría la bienvenida a un visitante de la Luna. Elevadas cadenas de montañas., imponentes picos dentados de más de 10.000 metros de altura se alzan sobre una superficie marcada con profundas hendiduras e innumerables cráteres, cubierta por una delgada capa de polvo de ceniza.

Uno de los caracteres más distintivos de la superficie lunar son los cráteres. Éstos varían de tamaño, desde pequeños hoyos hasta enormes depresiones de más de ICO Km. de ancho. Algunos están cercados por empinadas paredes que se elevan quizá a 5.000 metros sobre el piso del cráter y algunos kilómetros sobre la superficie genera! del “terreno”. Otros son depresiones poco profundas con paredes de sólo algunos cientos de metros de altura. Muchos tienen pisos a nivel, pero en otros casos se puede ver en el centro un pico solitario.

El origen de los cráteres ha sido motivo de gran número de discusiones. Dos hipótesis principales se formularon a este respecto: la que los atribuía a un origen volcánico, y la que los explicaba como debidos a grandes colisiones de cuerpos, tales como meteoritos, contra la superficie lunar.

La teoría volcánica adquirió bastante crédito antes de que los científicos comprobaran que era un hecho cierto la caída de meteoritos sobre la Tierra; fue necesaria une larga discusión, que se prolongó durante un siglo, antes de que todos los astrónomos aceptaran que la mayoría de los cráteres eran debidos a choques. De hecho, como luego pudo demostrarse, se pueden también hallar sobre la superficie de la Tierra cráteres formados de un modo semejante.

Uno de los más famosos, el cráter Meteoro, en Arizona, tiene 1.200 metros de ancho y 150 metros de profundidad. La razón de que la Tierra no esté marcada con cráteres, como la Luna, es porque el agua, el viento, y el hielo, han borrado en el trascurso del tiempo todas las huellas, excepto las de los cráteres más recientes.

Pero en la Luna no hay erosión alguna (ya que allí no existen el viento, el agua y el hielo), de modo que se guarda cuidadosamente la evidencia acumulativa de muchos millones de años de castigo meteorice Esta falta de erosión explica también la aspereza del paisaje. Actualmente se reconoce que existen también pequeños cráteres que no pueden ser debidos a choques y, por lo tanto, deben ser de origen volcánico, aun cuando su forma no es la de los volcanes terrestres. En este sentido, se plantea la cuestión de si la Luna se encontró en algún momento en forma de una masa fundida, a alta temperatura, o bien se formó a más baja temperatura a partir de materiales sólidos. Todos los indicios, resultantes de consideraciones de distintos tipos, parecen indicar que la Luna ha debido formarse a baja temperatura, si bien, desde luego, es posible que presente actualmente un interior parcialmente fundido.

La fuente de calor quizá no es su origen residual primitivo; al igual que actualmente se acepta para el origen de los volcanes terrestres, se puede derivar de acumulaciones de materiales radiactivos.

Otra interesante característica del paisaje luna-está constituida por la presencia de grandes áreas oscuras, que los primeros astrónomos creyeron que eran mares. Aunque actualmente se sabe que no son mares (no hay agua líquida en la Luna), continúan utilizándose los nombres antiguos. Un “mar” lunar es una especie de planicie seca situada a cierta distancia por debajo del nivel medio de la superficie. Así, por ejemplo, el océano de las Tormentas, que se sitúa totalmente a la izquierda en la fotografía de la superficie lunar. Un poco más al centro, en la parte superior, se halla el mar de las Lluvias (“Mare imbricum”), con la bahía o golfo de los Iris, de forma semicircular, en su parte superior.

En la parte de abajo, el mar de los Nublados. El astrónomo Gilbert, estadounidense, fue el primero que estudió con gran detalle las características de la imponente colisión que dio lugar a la formación de uno de estos mares, la que se ha denominado “colisión imbria”, por haber originado el mar de las Lluvias. Según todos los indicios, un enorme bólido, con un diámetro de más de 150 Km., incidió sobre la región del golfo de los Iris, procedente del noroeste, elevando una inmensa ola en todas las direcciones de la superficie lunar, pero especialmente en la dirección de su movimiento, esto es hacia el centro del disco visible de la Luna. La energía liberada por la colisión debió ser fabulosa.

Se estima que sería del orden de unos cien millones de veces superior a la de los mayores terremotos conocidos en la Tierra o, si se prefiere una medida más “actual”, ¡del orden de cerca de un billón de bombas atómicas! Un choque de esta magnitud debió producir efectos muy notables. La región afectada se pulverizaría hasta el grado de arena fina, una parte de la cual pudo extenderse sobre un área considerable. Grandes trozos de materia de la superficie lunar y del mismo meteorito fueron probablemente lanzados en alto para caer después en grandes bloques, formando varias masas montañosas. Trozos más pequeños, animados de grandes velocidades, produjeron surcos y estrías en la superficie, que se extienden a grandes distancias del área del choque.

En otras ocasiones la energía desarrollada por la colisión pudo originar la fusión de una parte del material, dando lugar a la formación de las corrientes de lava que parece ser la sustancia principal de algunos de los mares. Este tipo de fenómenos se especula que pudieron ocurrir durante un período del orden de un millón de años, hace unos 4.500 millones de años. Posteriormente, los cuerpos que cayeron sobre la Luna fueron más pequeños, produciendo cráteres menores.

Fuente Consultada: El Universo Enciclopedia de la Astronomía y del Espacio Tomo 3 – Movimientos y Fases de la Luna

Escala del Sistema Solar
Distancia a las Estrellas
La Vía Láctea
Más Allá de la Vía Láctea
Características del Módulo Lunar
La Fases De La Luna
El Hombre Llegó a la Luna
Lugares de Alunizajes

Usos del Transbordador Espacial Misiones y Programas de la NASA

El Trasbordador Espacial
El Trasbordador Espacial, u orbitador, es el único vehículo espacial en el mundo que se puede volver a usar. Se eleva en el espacio montado sobre un gigantesco cohete y luego es capaz de volver a aterrizar como un avión. Puede estar listo para volver a usarse en sólo seis días y medio.

Carga pesada: Del mismo modo que los astronautas, el Trasbordador Espacial lleva equipaje. Satélites, sondas espaciales o laboratorios espaciales son llevados dentro del compartimiento de cargas.

Super aterrizaje: Frenos de carbón, un timón dividido en dos y alerones especiales reducen su velocidad. Al tocar la pista de aterrizaje se abre un paracaídas.

Protectores térmicos: Un escudo hecho de siliconas cubre al Trasbordador Espacial, protegiéndolo de una temperatura superior a 1.260 °C durante su entrada en la atmósfera.

Arranque: El despegue del Trasbordador Espacial está controlado automáticamente por computadoras a bordo de la nave por un centro de control desde la base en Tierra. La fuerza que desplegan los cohetes durante el despegue es tres veces mayor que la fuerza de gravedad de nuestro planeta.

Los gases calientes que emanan del cohete impulsan la nave espacial hacia arriba.
Toma sólo 50 minutos alcanzar la órbita terrestre.

Ver el Trasbordador Discovery Por Dentro

La flota de transbordadores. Con una flotilla de seis transbordadores, la NASA ha llevado a cabo apasionantes misiones en el espacio. Ésta es la historia resumida de cada uno de ellos.

Columbia. Su primer vuelo fue en 1981. Fue bautizado así en honor al buque que circunnavegó el globo por primera vez con una tripulación de estadounidenses. En 1998, puso en órbita la misión Neurolab para estudiar los efectos de la microgravedad en el sistema nervioso. Neurolab fue un esfuerzo colectivo entre seis agencias espaciales, incluyendo la Agencia Espacial Europea. Se desintegró durante su reentrada a la Tierra en febrero de 2003. Columbia voló 28 veces.

Challenger. Realizó su ‘primera misión en 1982. Recibió el nombre del buque inglés que exploró los mares en el siglo XIX. En 1984, el astronauta Bruce McCandless se convirtió en la primera persona en realizar una salida espacial autónoma en una unidad de maniobra individual. El Challenger voló 10 veces.

Discovery. Entró en acción en 1984. Bautizado en honor a uno de los barcos del explorador británico James Cook que lo condujeron a las islas del Pacífico Sur. En 1998 llevó a Pedro Duque por primera vez al espacio en una misión histórica en la que participó también el ex astronauta estadounidense John Glenn, el primer hombre de EE. UU. en orbitar la Tierra. Discovery llevó a cabo 30 misiones.

Atlantis. Su primer vuelo fue en 1985.Lleva el nombre del velero del Instituto Oceanográfico de Woods Hole, que fue el primer barco en ser usado para investigaciones marinas en Estados Unidos. En 1995 llevó al espacio la primera de nueve misiones para atracar en la Estación Espacial Mir. Atlantis viajó 26 veces.

Endeavour. Es el más joven de la flotilla y fue operativo en 1992. Está bautizado en honor al primer .buque del explorador
británico lames Cook en las islas del Radico Sur. En 2001 timo lamiswndeñstalarel brazo robot de la Estación Espacial Internacional. Votó oí 19 ocasiones.

Enterprise. Fue el primer modelo y se usó en pruebas tripuladas durante los noventa para estudiar cómo planeaba en el ale al ser soltado desde un anón. Sin embargo, nunca voló al espacio. Fue bautizado con el nombre de la nave espacial de la serie Star Trek.

Los últimos cinco cambios claves para volver al espacio

Calentadores: Colocar calentadores eléctricos cerca de los puntos de fijación del depósito externo para prevenir la formación de cristales de hielo. Además, diseñar espuma aislante que no se separe de las paredes del depósito en el despegue.
Paneles de Carbono Realizar análisis -rayos X, ultrasonido, corriente electromagnética y termografía- de los 44 paneles de carbono-carbono reforzado que recubren los bordes de ataque de las alas, el morro y las compuertas del tren de aterrizaje delantero antes de cada vuelo. Además, detectar brechas en estos paneles durante el vuelo e inventar formas de repararlas en órbita.
Videos y fotos Evaluar la condición del transbordador durante el despegue, usando cámaras de vídeo y fotografía de la más alta resolución.
Aislante térmico. El material aislante térmico que recubre los propulsores de aceleración es una mezcla de corcho con una pintura protectora colocada con tecnología puntera, que evita que el aislante se despegue en grandes fragmentos.
Capsula de Seguridad: Diseñar una cápsula de seguridad expulsable para los astronautas.

Paracaídas y vehículo de escape en emergencias: La NASA trabaja también en un sistema de escape por si algo va mal durante el despegue. En el Centro Espacial Marshall se están llevando a cabo ensayos con motores de cohetes en una serie de Demostraciones de Aborto en Plataforma que incluyen paracaídas y una cápsula similar al vehículo de escape.”El accidente del Columbia fue ocasionado por una serie de errores colectivos. Nuestro regreso al espacio debe ser un esfuerzo colectivo”, dice el director de la agencia, Sean O’Keefe. A medida que el personal de la NASA se repone de la tragedia y se prepara a volar nuevamente, es importante recordar que explorar el cosmos es una actividad sin duda peligrosa y lo seguirá siendo durante mucho tiempo. Por eso, cualquier medida de seguridad es poca.

Hitos de la Carrera Espacial Primera Mujer en el Espacio Perra Laika

carrera espacial

sputnik

SPUTNIK: PRIMER SATÉLITE (URSS) EN ORBITA

¿Cuándo se lanzó el Sputnik?
El 4 de octubre de 1957, fue lanzado el Sputnik 1 en la entonces Unión Soviética, en Kazakhstan, cerca de la ciudad de Leningrado.

Esto representó el primer lanzamiento exitoso al espacio. El Sputnik 1 no era mucho más que un transmisor de radio, pero su órbita de 90 minutos alrededor de la Tierra condujo a la era espacial.

EXPLORER: PRIMER SATÉLITE (EE.UU.) EN ORBITA

¿Cuándo lanzaron los Estados Unidos su primer satélite?
El lanzamiento soviético del Sputnik incitó a los Estados Unidos a poner en órbita su primer satélite: el Explorer 1.  El Comité Nacional Asesor en Aeronáutica (NASA), predecesor de la Administración Nacional de la Aeronáutica y el Espacio (NASA), adoptó un plan de la Marina estadounidense llamado Vanguardia para lanzar el primer satélite del país. No obstante, la recorrida de prueba del satélite, en diciembre de 1957, terminó en un incendio.  El Explorer fue lanzado con éxito hacia su órbita espacial alrededor de la Tierra el 31 de enero de 1958.

PRIMER SER VIVO ENVIADO AL ESPACIO (URSS)

El Sputnik 2, transportó en su viaje orbital a una perra, llamada Laika. Fue el primer ser vivo en viajar al espacio. Laika no mostró signos de sufrimiento por el lanzamiento o la falta de gravedad durante el viaje. Sin embargo, la Unión Soviética no había creado un método para traerla sana y; salva de regreso a la Tierra.

Una semana después del lanzamiento, Laika murió debido a la falta de aire. Unos 5 meses más tarde, el Sputnik 2 regresó a la Tierra y Laika quedó inmortalizada en la historia de vuelos espaciales.

PRIMER SER VIVO ENVIADO AL ESPACIO (EEUU)

¿Cómo se probó la cápsula Mercury?
En enero de 1961, la primera Mercury fue probada con un chimpancé llamado Ham que cumplió exitosamente el primer vuelo suborbital. Ham sobrevivió.

Unos cuatro meses más tarde, el astronauta Alan B. Shepard también sobrevivió a un exitoso vuelo suborbital.

PRIMER HOMBRE EN EL ESPACIO (URSS)

¿Quién fue el primer hombre en ir al espacio?
Este honor lo tuvo el cosmonauta soviético Yuri Gagarin, el 21 de abril de 1961. casi un año antes que Glenn. La Unión Soviética informó sobre un vuelo orbital totalmente exitoso de 1 hora y 48 minutos de la cápsula Vostok 1 tripulada por un astronauta. 

Más tarde se supo que hubo problemas en el reingreso debido a que la carcaza antitérmica protectora de la cápsula se había calentado hasta ponerse incandescente por las elevadas temperaturas. 

Gagarin tuvo que eyectarse y abrir su paracaídas hasta que finalmente aterrizó a salvo.
Esta información, incluyendo el grado de heridas de Gagarin, no fue revelada hasta unos treinta años más tarde.

PRIMER HOMBRE EN EL ESPACIO (EEUU)

¿Quién fue el primer astronauta estadounidense en dar una órbita alrededor de la Tierra?
El astronauta John Glenn Jr. Fue el primer estadounidense en dar una órbita a la Tierra. Su cápsula Mercury, llamada Friendsbip 7, fue lanzada el 20 de febrero de 1962 y lo mantuvo en órbita durante 5 horas.  En el reingreso a la atmósfera, la NASA

PRIMERA MUJER EN EL ESPACIO (URSS)

El 16 de  junio de 1963, se lanzaron la Vostok 5 y la Vostok 6. Su plan también era encontrarse y establecer contacto radial en el espacio.

Lo que la mayoría de la gente no sabía en esa época era que la Vostok 6 iba comandada por una cosmonauta mujer, Valentina Tereshkova, de 26 años de edad. (La primera estadounidense astronauta fue Sally Ride, a bordo del transbordador espacial Challenger unos 20 años después.) Los vuelos de las Vostok 5 y 6 transcurrieron tranquilamente; la Vostok estableció el récord de permanencia de una persona en el espacio: 5 días.

PRIMERA MUJER EN EL ESPACIO (EEUU)

Sally Ride nació en Los Ángeles en 1951, y fue una de las cinco mujeres seleccionadas en 1978 (entre 9000 pedidos), para volar en el nuevo sistema de la lanzadera espacial  que se puso en marcha 18 de junio 1983.  Ella tiene un doctorado en Física por la Uni

PRIMER PASEO ESPACIAL (URSS)

El 18 de marzo de 1965, Alexei Leonov salió al espacio abandonando su nave Vokshod 2, mientras su compañero Pavel Belyayev quedaba a los comandos. Leonov llevaba un traje espacial y estaba conectado a la Vokshod 2 por una cuerda y comunicación radial. Su caminata transcurrió con éxito, pero el traje espacial de Leonov se había expandido y el astronauta debió reducir la presión del aire adentro de éste para poder volver a entrar en la nave. El regreso fue un poco traumático, y tuvieron que descender a mas de 1000 Km. de distancia del objetivo, pasando la noche en un bosque frente a un fuego improvisado.

PRIMER PASEO EN EL ESPACIO (EEUU)

Edward Higgins White II (1930 – 1967) fue un famoso astronauta norteamericano. Nació en San Antonio, Texas, Estados Unidos y fue formado en ingeniería aeronáutica en 1959 por la

CRONOLOGÍA DE LOS HITOS ESPACIALES

———4 OCT. 1957———
Empieza la Era Espacial con el lanzamiento del primer satélite soviético, el Sputnik 1. Fue puesto en órbita
alrededor de la Tierra.

———3 NOV. 1957———
Los soviéticos envían el Sputnik 2, tripulado por la perra Laika.

———1958———
Estados Unidos envía su primer vehículo espacial, d Explorer 1.

———1959 ———
Los soviéticos envían la sonda lunar Luna 2, que se estrella en la superficie lunar. La Luna 3 tiene éxito y envía las primeras fotografías de la Tierra vista desde el espacio.

———12 ABR. 1961 ———
El cosmonauta Yuri Gagarin realiza el primer vuelo tripulado.

——— MAYO 1961 ———
El presidente de Estados Unidos,John Kennedy, propone al estado la tarea de poner un hombre en la Luna antes del final de la década.

——— 20 FEB. 1962 ———
John Glenn, a bordo del Friendsbip 7, se convierte en el primer estadounidense que órbita la Tierra.

———10 JUL. 1962 ———
Se lanza el Telstar, primer satélite de telecomunicaciones comerciales. Transmite la primera película a través del Atlántico.

———1963 ———
La cosmonauta soviética Valentina Tereshkova se convierte en la primera mujer que sale al espacio.

———1965———
La sonda espacial estadounidense Maríner 4 proporciona las primeras fotografías de Marte. El soviético Alexei Leonov realiza el primer paseo espacial; tres meses después le sigue el estadounidense Edward H. White.

———1966———
La sonda espacial soviética Luna 9 alcaliza la superficie lunar y envía fotografías de ella.

———1967———
Los soviéticos instalan la estación espacial (nave espacial que puede mantenerse años en órbita) Soyuz, primera en la
historia. La misión acaba en desastre: la nave se estrella al regresar a la Tierra. Tres astronautas estadounidenses mueren calcinados durante una prueba de lanzamiento.

———1968———
Lanzamiento de la nave tripulada Apollo 8.

———2O JUL. 1969———
Los estadounidenses Neil Armstrong y Edwin Aldrin, de la misión Apollo 11, son los primeros hombres que caminan
sobre la superficie lunar.

———1970 ———
La nave soviética no tripulada Luna 16 recoge muestras de la superficie lunar.

———1971 ———
Una sonda soviética envía fotografías de Marte.

———1972 ———
Estados Unidos realiza su último vuelo tripulado del proyecto Apollo. Los astronautas son Eugene Ceñían
y Harrison Schmitt.

———1973———
Se instala el Skylab, la primera estación espacial estadounidense.

———1975———
Primeras operaciones conjuntas de Estados Unidos y la Unión Soviética con la misiones Apollo y Soyuz.

———1976———
Se lanza el Viking estadounidense para explorar la vida en Marte. Toma muestras de la superficie del planeta.

———1977———
Los Estados Unidos lanzan las sondas Voyager 1 y 2 para tomar fotografías de los planetas más remotos.

———1981———
Se pone en órbita el primer transbordador espacial.

———1983———
El presidente estadounidense Ronald Reagan da su conformidad a la Iniciativa de defensa estratégica,
que consiste en la instalación de defensas anti-misiles en el espacio.

——— 28 ENE. 1986———
Explosión del Challenger. Mueren sus siete tripulantes.

———1986———
La Unión Soviética instala la Estación espacial 3-

Biografía de TESLA Nikola Resumida Historia de Vida del Inventor

Resumen de la Biografía e Historia de TESLA NIKOLA

VIDA DEL INVENTOR – CIENTÍFICO: Nikola Tesla (1856-1943) En la pequeña ciudad de Smiljan en la provincia servia de Lika, llamada entonces Croacia (Yugoslavia), tuvo lugar un hecho aparentemente sin importancia —la muerte de un caniche francés—, pero éste fue un hecho que desencadenaría una serie de acontecimientos relacionados con el futuro del Mundo.

Nikola Tesla tenía cinco años de edad cuando encontró el pequeño caniche negro de su hermano Dane muerto bajo un matorral al lado de la carretera. Su hermano acusó a Nikki de la muerte del perro. Poco después encontraron a Dane inconsciente al pie de la escalera de piedra del sótano.

Dane murió a consecuencia de sus heridas, y hasta el fin de sus días Nikki Tesla creyó que sus padres le consideraban causante del empujón que hizo caer a su hermano. Al cabo de poco tiempo, Nikki oyó que su madre, cansada de batir huevos, se quejaba de dolor de muñeca. Deseoso de congraciarse, Nikki se puso inmediatamente en acción con la idea de aprovechar la fuerza de un cercano riachuelo de montaña para hacer girar el batidor. «Voy a capturar la fuerza del agua» anunció Nikki confidencialmente.

Cuando su padre dijo inadvertidamente que Dane era diferente de Nikki, porque «Dane era un genio», Nikki se propuso demostrar que él también lo era. Decidió en aquel momento que inventaría algo que asombraría al mundo. Nikki emprendió experimentos para aprovechar la fuerza del agua, pero a los nueve años abandonó de momento su trabajo para dedicarse al estudio de la fuerza del viento.

Deseaba desesperadamente inventar algo que impresionara a los mayores, especialmente a sus padres. Cuando tenía 10 años, Nikki ingresó en el Gimnasio real de Gospic, una institución con cursos de cuatro años equivalente a la escuela secundaria. Le gustaban especialmente las matemáticas y cuando demostró por primera vez sus dotes en la utilización de fórmulas y la solución de ecuaciones, incluso sus profesores se asombraron.

Fue acusado de «copiar» y tuvo que pasar un «juicio» escolar ante sus padres y profesores. A pesar de la atmósfera de desconfianza y hostilidad pasó el examen fácilmente, pero con una sensación de desgracia y confusión. La infancia de Tesla estuvo llena de ideas excéntricas y experimentos con aparatos; continuó su formación en el Instituto politécnico de Graz, donde se especializó en física y matemáticas. Finalizó sus estudios en la Universidad de Praga, en 1880. Un año después, inventó un amplificador para teléfono que ampliaba el sonido de la voz reduciendo al mismo tiempo los ruidos molestos, es decir, la estática.

El aparato completo, su primer invento, que no patentó nunca, fue llamado «repetidor telefónico». Hoy en día lo llamaríais altavoz. En un año, Tesla empezó a desarrollar la teoría de la corriente alterna. Tesla explicó a su ayudante: “Voy a producir un campo de fuerza que gire a gran velocidad. Rodeará y abrazará una armadura que no precisará conexiones eléctricas. El campo rotatorio transferirá su energía, sin cables, a través del espacio dando energía a través de sus líneas de fuerza a las bobinas cortocircuitadas de la armadura que formará su propio campo magnético siguiendo el remolino magnético rotatorio producido por las bobinas del campo. No habrá necesidad de cables, ni de conexiones defectuosas, ni de conmutador”.

Tesla fue a Budapest y luego a París para encontrar un patrocinador de su sistema de energía de corriente alterna. Trabajó una temporada con la compañía Continental Edison, de París. Le aconsejaron que buscara un empleo en la Compañía Edison de Nueva York, y Tesla, cuatro años después de haber obtenido su título en la Universidad de Praga, partió de París para América.

Tesla dijo a Thomas Edison que había perfeccionado —por lo menos en teoría— un sistema de energía de corriente alterna. Edison trató con desdén las ideas de Tesla y le dijo que «jugar con corrientes alternas era perder el tiempo. Nadie va a utilizarlas jamás, es demasiado peligroso. Un cable de corriente alterna a alto voltaje puede matar a una persona con la misma rapidez que un rayo. La corriente continua es segura». Pero Edison contrató a Tesla y el joven europeo hizo exactamente lo mismo que hacía en la Continental Edison de París: presentó un plan que permitiría ahorrar muchos miles de dólares, tanto en la construcción como en el uso de las dínamos y motores de Edison. Trabajaba desde las diez de la mañana hasta las cinco de la mañana siguiente, siete días a la semana. Pero Tesla dejó pronto a Edison y tras uno cuantos empleos misceláneos, encontró a gente dispuesta a invertir en su persona; de este modo se formó la Compañía eléctrica Tesla La labor de Tesla para desarrollar la corriente alterna en sus aplicaciones prácticas empezó en serio, y logró su objetivo.

Todos los elementos complicados y de difícil ejecución de la Feria mundial de Chicago de 1893, iban alimentados con la corriente alterna de los motores y dínamos Westinghouse, inventados por Tesla. Sus equipos se utilizaron después en las instalaciones generadoras de las cataratas  del Niágara. Tesla, instalado ahora en un laboratorio de Nueva York, dedicó todo su tiempo a investigar. El gran científico fue haciéndose más paranoico con la edad, una evolución que podía seguirse desde los traumas de su infancia.

Al informársele, en 1917, que seria invitado de honor en una cena ofrecida por el Instituto americano de Ingenieros eléctricos, donde recibiría la medalla Edison del Mérito, Tesla rechazó la invitación diciendo: «Cada vez que el Instituto concede una medalla Edison, la gloria va más a Edison que al homenajeado. Si tuviese dinero para gastar para estas tonterías, me lo gastaría gustosamente para que se concediera una medalla Tesla al señor Edison».

Le convencieron para que aceptara el honor, pero no se presentó en la cena. Sus amigos lo encontraron dando de comer a las palomas detrás de la Biblioteca pública de Nueva York. Tesla pasó los últimos años de su vida como un egoísta solitario e incomunicativo, absorbido en pensamientos y sentimientos que le separaban tanto del mundo como de las demás personas. No quería dar la mano por miedo a los microbios de los demás; las superficies redondas como las bolas de billar o los collares de perlas le asustaban; siguió teniendo celos de Edison y sólo quería a las palomas, que alimentaba diariamente.

Su gran talento se esfumaba intentando inventar rayos de la muerte y aparatos para fotografiar pensamientos en la retina del ojo. Tesla falleció en 1943 de un ataque al corazón. Las instituciones científicas del mundo conmemoraron el centenario de su nacimiento en 1956. Como un tributo final se dio el nombre de tesla a la unidad electromagnética de densidad de flujo en el sistema MKS.

RESUMEN DE SU VIDA: