Origen del Hombre

Etapas en la Digestión de los Alimentos Cuerpo Humano

Etapas en la Digestión de los Alimentos

Sahemos que los alimentos realizan en nuestro organismo importantísimas funciones: aportan los elementos necesarios para la formación y desarrollo de los innumerables compuestos orgánicos que lo integran y suministran las calorías necesarias para la vida, en una serie de procesos químicos que se efectúan, muchos de ellos, en la intimidad de las células.

Pero nosotros no ingerimos sustancias simples, capaces de ser asimiladas inmediatamente a nuestros tejidos, sino que, por el contrario, nuestros alimentos son cuerpos compuestos, formados por una serie de elementos agrupados de distinta manera, como sucede con el pan, la carne, etc.

Ahora bien, este pan, esta carne, no se incorporan a nuestro cuerpo según se ven, sino que son desmenuzados, desintegrados paulatinamente hasta sus componentes más simples, que, entonces sí, son absorbidos e incorporados a nuestros propios tejidos, adonde son llevados por la corriente sanguínea.

Todos estos procesos de orden físico-químico, que llevan a la destrucción de la materia constitutiva de los alimentos hasta sus componentes básicos asimilables y su ulterior absorción, constituyen, en resumen, la digestión.

Ésta se lleva a cabo en el aparato digestivo, por medio de un conjunto de compuestos, casi todos ellos fermentos, que forman parte de los jugos digestivos elaborados por una serie de glándulas, que los vuelcan con sus secreciones, a lo largo del citado aparato, desde la boca hasta el intestino. Este proceso es común a los tres principales componentes de los alimentos: grasas, hidratos de carbono y las denominadas proteínas.

¿QUÉ ES  EL ALIMENTO?
Es necesario recordar que los alimentos se componen de tres clases de sustancias fundamentales:
1) hidratos de carbono o glúcidos: azúcares, almidón, celulosa, etc., contenidos sobre todo en los vegetales, en el pan y en las pastas;
2)
grasas o lípidos: contenidos en la manteca, aceites, etc.;
3) proteínas o prótidos: se encuentran en la carne, huevos, quesos, etc. Se hallan, además, sustancias inorgánicas, agua y sales minerales, necesarias a nuestro organismo.

ESQUEMA DEL APARATO DIGESTIVO

Etapas en la Digestión de los Alimentos

ETAPAS DE LA DIGESTIÓN

1) DIGESTIÓN BUCAL. Los dientes trituran los alimentos, mientras las glándulas salivales vuelcan su secreción, la saliva, en la boca. Esta saliva, por medio de un fermento, la tialina, transforma el almidón en un azúcar simple, la maltosa. Además embebe los alimentos y lubrica la mucosa bucal.

2) DE LA BOCA AL ESTÓMAGO. El alimento masticado, que origina la formación del bolo alimenticio, es deglutido y, por medio del esófago, llega hasta el estómago.

3) LA DIGESTIÓN GÁSTRICA. El jugo gástrico segregado por las glándulas de la mucosa del estómago posee dos integrantes fundamentales en la digestión: el ácido clorhídrico y la pepsina.

corte esquematico del estómago

El primero disuelve ciertos elementos (fibras conjuntivas, nucleoproteínas, etc.) y crea un medio cuya acidez favorece la acción de la segunda, que es un poderoso fermento   actuante   sobre   las   proteínas,   desdoblándolas en cuerpos más simples: peptonas y albumosas. La acción de aquéllos resulta favorecida por los movimientos que el estómago imprime a la masa alimenticia permitiendo primero su mezcla y, luego, su progresión hacia el intestino.

 4) DEL ESTÓMAGO AL INTESTINO. Después de un tiempo, que varía entre 1 y 6 horas, según los alimentos, se ha completado la digestión gástrica y el bolo alimenticio ha sido transformado en una papilla blanquecina llamada quimo. El estómago, entonces, contrayéndose, lo envía hacia el intestino, pasando a través de un anillo muscular a modo  de válvula,   llamado píloro   (válvula gastrointestinal).
 5) LA DIGESTIÓN INTESTINAL. Cuando el quimo llega a la primera porción del intestino, el duodeno, se inicia la digestión intestinal, mediante la acción de tres jugos, que son los siguientes:

1) Jugo duodenal o intestinal: es producido por las células de la pared del duodeno y posee varios fermentos: erepsi-na, que actúa sobre las peptonas desdoblándolas en aminoácidos; lipasa, que desdobla las grasas; maltasa, que tranforma la maltosa en glucosa; invertasa, que desdobla la sacarosa en fructosa y glucosa.

2) Jugo pancreático: segregado por el páncreas y llevado al duodeno por los conductos pancreáticos (de Wirsung y de Santorini), este importantísimo jugo digestivo actúa sobre los tres tipos de sustancias que componen los alimentos, por medio de cuatro fermentos que son:
a) tripsina: actúa sobre las peptonas y albumosas, transformándolas en aminoácidos asimilables;
b) lipasa, desdobla las grasas, ayudada por la bilis y las transforma en ácidos grasos y glicerina, fácilmente absorbibles por el intestino;
c) amilasa, completa la acción de la saliva y jugo intestinal, desdoblando el almidón en glucosa;
d) maltasa: desdobla la maltosa en glucosa.

3) Bilis: segregada por el hígado y almacenada en la vesícula biliar, cuando llega al intestino cumple importantes funciones: emulsiona las grasas, favorece la absorción de ciertos ácidos, excita los movimientos del intestino, etcétera.

 6) LA ABSORCIÓN INTESTINAL. Después de ser, como hemos visto, profundamente transformada, el quimo se convierte en una masa muy fluida, a la cual se le da el nombre de quilo. A medida que la digestión se va completando, las sustancias alimenticias, transformadas en otras capaces de ser utilizadas por el organismo, van siendo absorbidas por conducto de las vellosidades intestinales.

En toda la mucosa del intestino delgado, las vellosidades van absorbiendo el quilo, por medio de las células absorbentes que las recubren.

Las grasas pasan en parte a los vasos linfáticos y de éstos al conducto torácico que las conduce al sistema sanguíneo. En cambio, las proteínas, los azúcares y las sales penetran en los capilares; de allí pasan a la vena porta, que los conduce directamente hasta el hígado.

7) LA LABOR DE LAS BACTERIAS. En el intestino grueso es absorbida el agua; por otro lado, millones de bacterias atacan la celulosa de los alimentos vegetales, que no es alterada por los jugos digestivos, y la transforman, aunque en pequeña parte, en glucosa asimilable.
8) LA EXPULSIÓN. Finalmente la masa de sustancia, privada de todos los materiales alimenticios y de buena parte del agua, queda reducida a una pasta formada por desechos no digeribles, moco, sales y productos intestinales no asimilables, que es expulsada formando las materias fecales.

Fuente Consultada:
Enciclopedia Estudiantil Ilustrada de Lujo Tomo VII – La Digestión-


 

Biografia de Ray John Naturalista Obra Cientifica

Al comenzar el siglo XVIII , los estudios de historia natural constituían más bien hallazgos aislados, y debemos agradecimiento a John Ray, hijo de un herrero de Essex, Inglaterra, por haber puesto cierto orden en aquel conjunto de conocimientos inconexos.

Naturalista Ray John

Por la precisión de sus observaciones y la claridad de sus descripciones, su trabajo fue muy valioso para los naturalistas que lo sucedieron. Linneo, el gran clasificador sueco, encontró mucho material aprovechable en los escritos de Ray. John Ray nació en 1627 e ingresó en Cambridge en 1644.

Fue un buen alumno en materias clásicas y, al finalizar, se dedicó a la enseñanza de griego, matemáticas y humanidades. Su interés por la historia natural comenzó en 1650, debido a una enfermedad que lo forzó a un período de reposo y vida al aire libre. Se interesó por la vegetación de los alrededores de Cambridge y continuó su estudio di’rante algunos años.

En 1660 publicó el “Cambridge Catalogue” (“Catálogo de Cambridge”), en el que se relacionan y describen las plantas de la zona; fue el primer catálogo de su clase, que preparó el camino para la “Synopsis of Bristish Plants” (“Compendio de las plantas británicas”), publicado por Ray después de innumerables viajes a través de todo el país. Realizó muchos de estos viajes con sus dos mejores amigos: Francis Wülughby y Philip Skippon.

En 1662, Ray abandonó la universidad y pasó a depender económicamente de su amigo Wülughby. Ambos decidieron realizar un.estudio completo de la vida vegetal y animal, y, en compañía de Skippon, embarcaron para un viaje de tres años por Europa.

Aunque, en principio, Ray sólo estaba interesado por las plantas, pronto sintió una profunda curiosidad por la vida animal y tomó cuidadosas notas a lo largo de su viaje, que formaron la base de todo su trabajo futuro. En 1667 fue elegido miembro de la Royal Society y, en años posteriores, presentó muchas comunicaciones a dicha sociedad científica.

Wülughby murió en 1673, y Ray tomó sobre si la tarea de continuar los escritos. Publicó “Ornithology” (“Ornitología”) e “History oj Fishes” (“Historia de los peces”) con el nombre de Wülughby, y también escribió unos tratados sobre reptiles e insectos, aunque su “Historia de los Insectos” no se pjblicó hasta después de su muerte, acaecida en 1705.

Ray explicó por primera vez la naturaleza verdadera de los capullos, tan frecuentes en las orugas.
Son ninfas de un insecto parásito,   que   pone   sus   huevos   sobre   la   oruga.

Ssry no abandonó su trabajo botánico y, en 1682, publicó “Methodus Plantarían”, en el que resume estructura y clasificación de las plantas. En el curso de su trabajo, descubrió la diferencia básica entre las mono-cotiledóneas y las dicotiledóneas. El primer volumen de “Historia de las plantas” —quizá, el trabajo más famoso de Ray— apare-
ció en 1686, seguido muy pronto por el “Compendio de las plantas británicas”.

plantas dicotiledonea

Ray fue el primero en señalar la diferencia fundamental entre monocotiledóneas y dicotiledóneas,
los dos grupos principales de las fanerógamas.

A estas obras tan conocidas acompañaron escritos sobre fósiles, discusiones teológicas, proverbios ingleses y otros variados asuntos. Casi todas fueron escritas en latín, por lo que el trabajo de Ray tuvo una rápida difusión fuera de su patria.

Por la precisión de sus escritos y descripciones, Ray conquistó un lugar de honor entre los grandes naturalistas. En 1844, un grupo de naturalistas que lo admiraba fundó, en su honor, la Ray Society, cuyos fines son alentar el estudio de la historia natural publicando una variedad de trabajos en el campo de la  biología.

Fuente Consultada
Enciclopedia TECNIRAMA Fasc. N° 110 El Naturalista John Ray

Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia

El enigma del origen del Universo siempre fue tema de estudio y discusión para los científicos. Hasta el presente, la teoría que mejor ha podido explicar este acontecimiento es la propuesta por el físico George Gamow (1904-1968), llamada teoría del Big-Bang o de la Gran Explosión. Está basada en las observaciones del astrónomo Edwin Hubble (1889-1953), quien demostró que las galaxias se alejan unas de otras continuamente.

BIG BANG

13.700 millones de años

Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL SISTEMA SOLAR 4500 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COLISIÓN PLANETARIA ORIGINA LA LUNA 4500 millones de años
PRIMEROS SIGNOS DE VIDA MICROSCÓPICA 3700 millones de años
PRIMEROS ORGANISMOS PLURICELULARES 500 millones de años
ALGUNOS ANIMALES EMERGEN DEL AGUA 400 millones de años
LA MAYOR EXTINCIÓN EN MASA 252 millones de años
APARICIÓN DE LOS DINOSAURIOS 240 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
DESARROLLO Y EXPANSIÓN DE LAS FLORES 150 millones de años
EVOLUCIÓN DE LOS MAMÍFEROS 150 millones de años
EXTINCIÓN DE LOS DINOSAURIOS 65 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EXPANSIÓN DE LOS MAMÍFEROS POR LA TIERRA 55 millones de años
INICIO DE LA EDAD DEL HIELO 40 millones de años
LOS MONOS BAJAN DE LOS ÁRBOLES 7 millones de años
PRIMEROS HUMANOS PREHISTÓRICOS (homo habilis) 2.5 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EVOLUCIÓN DEL LINAJE MODERNO EN ÁFRICA 130.000 años
DATACIÓN DE LA PINTURA RUPESTRE MAS ANTIGUA 30.000 años
NACIMIENTO DE LA AGRICULTURA Y GANADERÍA 10.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ARMAS DE BRONCE, CABALLOS Y CARROS 3.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COMIENZAN LOS JUEGOS OLÍMPICOS EN GRECIA 2.700 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL BUDISMO 2.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL CRISTIANISMO 2.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EL IMPERIO ROMANO ALCANZA SU APOGEO 2.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL ISLAM 1.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LAS CRUZADAS 1.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA PÓLVORA Y EL PAPEL LLEGAN A OCCIDENTE 800 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CONQUISTA EUROPEA DEL NUEVO MUNDO 500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CULTIVOS, ANIMALES Y ENFERMEDADES SE GLOBALIZA 400 años
REVOLUCIONES FRANCESA Y AMERICANA 250 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ERA DE LOS IMPERIALISMO OCCIDENTALES 250 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COMIENZA LA REVOLUCIÓN INDUSTRIAL 200 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
PRIMERAS VACUNAS 200 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA POBLACIÓN MUNDIAL SUPERA LOS 1000 MILLONES 180 años
FERROCARRIL, ELECTRICIDAD Y AUTOMOVILES 150 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
PRIMER VUELO CON MOTOR 100 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
GUERRAS MUNDIALES 80 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
DESCUBRIMIENTO DE LA ENERGÍA ATÓMICA 60 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ERRADICACIÓN MUNDIAL DE LA VIRUELA 40 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COLAPSO DE LA UNIÓN SOVIÉTICA 25 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA POBLACIÓN MUNDIAL SUPERA LOS 6000 MILLONES 10 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CIENTÍFICOS PREDICEN LA SEXTA EXTINCIÓN EN MASA 5 años

Aún hoy, después de tanto avances científicos y progresos en la exploración del espacio,  el origen del universo sigue siendo mi misterio. Los astrónomos no pueden más que recurrir a diversas hipótesis. Según la teoría del Big Bang, el universo que se observa en la actualidad se habría formado hace diez mil o veinte mil millones de años, debido a una explosión que formó una “bola de fuego primigenia” en cuya composición entrarían protones, electrones, fotones y neutrones, a una temperatura extremadamente alta; más de un millón de grados. Este gas, en permanente expansión, sería el que, al condensarse, dio origen a las galaxias y, dentro de ellas, a las estrellas y los planetas.

Los astrónomos no se han puesto de acuerdo acerca de la duración de esta expansión: ¿será indefinida, o en algún momento se detendrá? Algunos sugieren que podría detenerse poco a poco. Otros predicen que a la detención le seguiría una contracción y toda la materia volvería, entonces, a su condensación inicial; luego se produciría otra explosión, y el ciclo recomenzaría. También hay quienes sostienen que el universo no tendría principio ni fin, y que permanecerá por siempre en el estado actual. No obstante, debido a que el universo no es estático y hay una creación continua de materia para reemplazar a las galaxias que se alejan, las dos primeras teorías se consideran más consistentes.

Una galaxia es un inmenso sistema conformado por billones de estrellas. Las hay de diversos tipos: irregulares, espirales, elipsoidales; la Vía Láctea, que nos contiene, es una galaxia espiral. Los centros de las galaxias suelen ser luminosos; y en varias de ellas hay indicios de que se hubieran producido explosiones.

Las galaxias forman “racimos” con distinto número de componentes: de una veintena a miles. La Vía Láctea forma parte de un grupo de veinticuatro miembros, denominado Grupo Local, en el cual la más importante es la galaxia de Andrómeda, que tiene el doble del tamaño de la nuestra. En torno a las estrellas, pueden apreciarse nubes de gas y polvo, a veces visibles como en el caso de la nebulosa de Orión. Son estas nubes las que, al condensarse, dan origen a las estrellas.

Imagen del Universo

Nuestro sistema solar está conformado por el Sol y ocho planetas que gravitan a su alrededor. Los planetas siguen órbitas que, casi en su totalidad, están situadas en el mismo plano; y todos se desplazan en torno al Sol en el mismo sentido. El tiempo que tardan en dar una vuelta constituye el año de cada planeta: Mercurio, el más cercano, demora tres meses terrestres. Además de los planetas, entre Marte y Júpiter circulan cuerpos pequeños, bloques de rocas cuyo diámetro no suele pasar los pocos kilómetros. Se cree que estos asteroides son los restos de un planeta que, o bien se fragmentó, o no llegó a formarse jamás.

En la periferia del sistema existen, además, una serie de cuerpos que no alcanzan la categoría de planeta, como es el caso de Pintón, “degradado” recientemente, además de otros, descubiertos en los últimos años gracias a los nuevos instrumentos de detección, como Eris, Sedna y Xena. Además hay cuerpos de menor tamaño, como los meteoros. Son rocas que, al entrar en la atmósfera terrestre, se inflaman por el roce del aire y se convierten en estrellas fugaces. Los cometas, por su parte, son bloques sólidos cuya materia comienza a evaporarse a medida que se aproximan al Sol, lo que genera su característica cabellera de gases. Vienen do muy lejos, de más allá de los límites del sistema solar; algunos son periódicos, como el cometa Halley, que se aproxima al Sol cada 75 años.

El trabajo del astrónomo ha variado mucho desde que se estudiaba el movimiento de los astros a simple vista. Los medios de observación actuales —radiotelescopios, receptores espaciales, telescopios ópticos— surgieron del aporte de disciplinas variadas, como la óptica, la mecánica de precisión, le electrónica. Tanto la recolección como la interpretación de datos ya no corren por cuenta de astrónomos individualistas, sino que surgen del trabajo coordinado de un equipo interdisciplinario.

El astrónomo nunca podrá recurrir a la comparación directa del objeto de estudio ni podrá ver por sí mismo la estructura de un astro ni visitar un agujero negro, por lo que constante” mente debe recurrir a la reformulación de sus modelos teóricos. Esto implica un alto grado de interacción de las diversas ciencias, lo que hace de la astronomía actual una disciplina dinámica y en constante evolución, que con el tiempo puede brindar los frutos más inesperados.

EVOLUCIÓN DEL COSMOS

Tiempo cero

Existen cuatro fuerzas unificadas: la fuerza de gravedad, que atrae a los cuerpos; la nuclear débil, que mantiene unidas las partículas subatómicas; la nuclear fuerte, que une los núcleos atómicos y la electromagnética, que atrae a las cargas positivas y negativas. La materia y la energía están concentradas en un pequeño volumen. La temperatura es superior a los 1.011 °C. Se produce una gran explosión o Big-Bang. A partir de allí, el Universo comienza a expandirse.
10-43  10-43segundos después del Big-Bang. La fuerza de gravedad se independiza del resto de las fuerzas. El Universo se visualizaría del tamaño de una uva.
10-35  10-35segundos después del Big-Bang. Se independiza la fuerza nuclear fuerte. Abundan los quarks, los electrones, los positrones y los neutrinos.
1 segundo  1 segundo después del Big-Bang. El electromagnetismo y la fuerza nuclear débil se separa.  Se fusionan las primeras partículas formando los protones y los neutrones.
1 minuto 1 minuto después del Big-Bang. Se forman los núcleos de helio (He) y deuterio (H)
30 minutos 30 minutos después del Big-Bang. Continúa la expansión, la temperatura del Universo baja a 3 . 108 °C.
4 . 105 años después del Big-Bang. Se forman átomos de hidrógeno (H) y sus isótopos y helio (He). Comienza a separarse la radiación de la materia: se liberan microondas, que se expanden en todas las direcciones.
106 años después del Big-Bang.  Las nubes de gas (de hidrógeno y helio) se atraen por fuerzas gravitatorias. Aparecen las primeras galaxias y quasares. Se forman los primeros elementos químicos más pesados que el hidrógeno y el helio. Continúan la expansión y el enfriamiento.
109 años después del Big-Bang.  Se origina la Vía Láctea, galaxia espiral en la cual se encuentra el Sistema Solar.
109 años después del Big-Bang.  Se originan el Sol y los planetas (entre ellos la Tierra). En las estrellas se producen fusiones nucleares que dan origen a los restantes elementos.
109 años después del Big-Bang.  Se forman las primeras moléculas orgánicas en a Tierra
Época actual. 15 . 109 años después del Big-Bang.  Continúa la expansión. La temperatura de las radiaciones de microondas (descubiertas en 1965) es de apenas -270°C. Diámetro estimado del Universo actual: 30.000 millones de años luz (cada año luz equivale a 9,463 x 1012 Km.). El futuro del Universo es incierto. Algunas teorías estiman que seguirá expandiéndose, otras dicen que se contraerá y otras que ocurrirán ambas cosas alternativamente.

Fuente Consultada:
Grandes Inventos Que Cambiaron El Mundo Michael Spiers
Todo sobre nuestro mundo de Christopher LLoyd

 

Predecir Terremotos Tsunamis Detectar a Tiempo Movimiento Terrestre

Así como hoy se puede predecir el tiempo, se cree también que será posible que un día puedan predecirse los terremotos con cierto grado de fiabilidad. Se han realizado intensos esfuerzos en muchos países para detectar síntomas precursores de los terremotos, pero no se ha conseguido establecer un esquema coherente, y los resultados prácticos en la predicción de terremotos son, por el momento, muy limitados. Muchos de los fenómenos que se consideran como precursores de terremotos están relacionados con la dilatancia, esponjamiento que se produce en las rocas como consecuencia del incremento de las tensiones internas a que se ven sometidas. Otros síntomas, no relacionados probablemente con la dilatancia, pueden ser las sacudidas previas, la fluencia del terreno e incluso el comportamiento inhabitual de los animales. Actualmente desconocemos si existe una serie de síntomas que invariablemente deban preceder a un terremoto; son necesarias, por tanto, más pruebas.

El 24 de enero de 1556, un terremoto sacudió la provincia china de Shansi. El enorme número de víctimas que ocasionó —alrededor de ochocientos mil— lo convirtió en el sismo más mortífero que registra la historia.

Casi 1.500 años antes de este terrible hecho, el 24 de agosto del año 79, la erupción inesperada del volcán Vesubio, en el sur de Italia, enterró bajo un manto de lava y de cenizas las ciudades de Pompeya y Herculano, que permanecieron escondidas durante quince siglos. Los terremotos y las erupciones volcánicas tienen muchas cosas en común.

Pueden resultar tremendamente destructivos, violentos y aterradores, pero, ante todo, son inevitables. Sin embargo, a pesar de no poder impedir su ocurrencia, se los puede predecir Tanto en el caso de los sismos como de las erupciones volcánicas, existen varias señales claras que anticipan el desastre.

Predicción de terremotos: En otros tiempos, los chinos, como muchos otros pueblos, creían que los terremotos podían augurarse por medio de la astrología. En la actualidad, en cambio, los intentos por predecir un sismo se basan fundamentalmente en la observación de los diversos cambios que experimenta la corteza terrestre antes de un fenómeno de esta magnitud.

Hoy se trabaja con la predicción a largo y a corto plazo. Para la primera, resulta imprescindible disponer de registros históricos que certifiquen la ocurrencia de anteriores terremotos en la región, y realizar un análisis estadístico del patrón futuro de estas mismas ocurrencias.

Otro análisis similar incluye el concepto de vacío o laguna sísmica (seismic gap) es decir, la no ocurrencia de terremotos durante un lapso más o menos prolongado, en zonas tectónicamente activas, puede indicar un período de acumulación de energía que finalmente se liberará en la forma de un gran terremoto. Una de las pistas principales son los temblores de baja intensidad o sacudidas precursoras, que preceden a los terremotos y que pueden adelantárseles incluso varios años.

Estos pequeños movimientos anteceden la liberación brusca, en forma de vibraciones sísmicas intensas, de la tensión acumulada durante años en el interior de la Tierra Para algunos sismólogos, estas variaciones menores provocan una alteración en la velocidad de propagación de las ondas sísmicas. Por lo tanto, las fluctuaciones en el patrón de ondas podrían interpretarse como una advertencia. La predicción a corto plazo es la más importante y difícil.

Los sismólogos estudian los datos acumulados de otros terremotos, como movimientos lentos del terreno, emanaciones de gases, variaciones del nivel freático, etcétera Muchos especialistas sostienen que en el lugar donde va a originarse un sismo, y en sus alrededores, los materiales sólidos que componen las rocas se dilatan y deforman. Esta dilatación, que se manifiesta, entre otras cosas, como un aumento de volumen, produce variaciones medibles, en la corteza terrestre, de diversos parámetros, como la velocidad de las ondas sísmicas, la resistividad eléctrica y los niveles del suelo y del agua. Si estas alteraciones llegaran a comprobarse, podrían resultar sumamente útiles para predecir la ocurrencia de un terremoto.

En la misma línea de pensamiento, los científicos analizan también la modificación en la concentración de ciertos gases, como el radón, un gas inerte y radiactivo, que aumenta a medida que las rocas acumulan esfuerzos. Predicción de erupciones volcánicas Aparentemente, existiría una relación entre los terremotos y la erupción de los volcanes. Si esta relación se continuara, los observatorios podrían monitorear los movimientos sísmicos para confeccionar un pronóstico de erupciones medianamente confiable. Por otro lado, una teoría propone que las mareas solares y lunares, que poseen un ciclo definido, y el acercamiento a la Tierra de un planeta de gran masa también favorecerían de alguna manera la actividad volcánica. Una vez más, de comprobarse este hecho. se podrían prever con antelación las grandes erupciones, además de los cambios climáticos ligados a ellas, por ejemplo, las sequías y las inundaciones.

Pero otros signos de posible erupción parecen más frecuentes y seguros. La emisión de gases que cambian de composición química a medida que ésta se acerca (por ejemplo, pocas semanas antes de la gran erupción del volcán Pinatubo, en 1991, se detectaron grandes cantidades de gases sulfurosos, que incluso contaminaron lagos cercanos y acabaron con todo signo de vida). Otro fenómeno asociado al “prevulcanismo” es el abultamiento, inclinación y levantamiento de la superficie del edificio volcánico, por la actividad de los gases y el ascenso del magma, lo que a su vez eleva la temperatura del suelo.

Como podemos ver no existe una “bola de cristal” que nos permita predecir con certeza el despertar de un volcán dormido o las sacudidas violentas del planeta Pero todos los especialistas están de acuerdo en algo: la Tierra nos da muchas señales. Sólo es cuestión de saber descifrarlas.

ALGUNAS EXPERIENCIAS: El primer paso, esencial, por otra parte, para avanzar en el estudio de predicción de terremotos, consiste en identificar una región en la que su historia sísmica sugiera la posibilidad de que un terremoto pueda tener lugar en un plazo corto, para poder instalar convenientemente todos los instrumentos necesarios . En China se han obtenido notables éxitos en la predicción de terremotos; indudablemente el incentivo es alto en ese país que tiene una larga historia de desastres producidos por este fenómeno, por lo que se han dedicado a este trabajo enormes recursos de mano de obra, tanto profesional como amateur.

Antes de ocurrir el terremoto de Haicheng …”en 1975, se habían estudiado una serie de terremotos de la zona a partir del que tuvo lugar en Bo Hai en 1969 y otros anteriores a él , y se había localizado una especie de trayectoria progresiva en dirección noreste. Mediante trabajos de campo para determinar las deformaciones del terreno, y otra serie de síntomas, se llegó a establecer en junio de 1974 que un terremoto de magnitud 5 a 6 tendría lugar en la zona norte de Bo Hai en un plazo de uno o dos años.

En febrero de 1975 una serie de pequeños temblores fueron correctamente identificados corno una secuencia de sacudidas previas; este hecho provocó la decisión de evacuar a la población, instalándola en tiendas de campaña a pesar de las crudas condiciones meteorológicas invernales. A lo largo de ese día más de un millón de personas acamparon en las afueras de la ciudad, y al principio de la tarde tuvo lugar la primera gran sacudida de magnitud 7,3 y con un foco a 12 Km. de profundidad.

Trágicamente, el terremoto que tuvo lugar en Tangshan el año siguiente, y en el que murieron 240.000 personas, no pudo ser predicho, en parte debido a la aparente ausencia de sacudidas previas y de otros síntomas precursores. Fuertes temblores se sintieron también en Beijing (Pekín) que hicieron que los residentes de esa zona se trasladaran temporalmente a campamentos provisionales durante el período posterior al terremoto .

INTENTOS DE CONTROL SATELITAL: Lanzado en 1976, el Satélite Geodinámico Láser (LA-GEOS) está concebido para proporcionar información sobre los desplazamientos de la corteza terrestre, y puede conducir al desarrollo de técnicas que permitan predecir los terremotos.

Para ello se hacen rebotar en el satélite rayos láser y se cronometra su retorno a la Tierra, con lo que se mide la distancia que separa el satélite de distintas estaciones terrestres de seguimiento. Este valioso procedimiento para la predicción de seísmos sería posible gracias a la reciente puesta a punto de todo un sistema para comunicar estaciones terrestres y lunares con satélites por medio de láseres. La capacidad de un sistema láser es 100 veces mayor que la de un sistema convencional de mícroondas y extiende su eficacia más allá del sistema solar.

Las técnicas de medición láser-satélite se han propuesto también como un posible medio de detectar las ondas de gravedad, es decir, el hipotético equivalente gravitatorio a la radiación electromagnética. En teoría, las manifestaciones violentas de energía gravitatoria agitarían los satélites en sus órbitas.

Sin embargo, tales efectos pueden resultar demasiado tenues para que sean registrados por las actuales técnicas de láser y, hasta la fecha, la labor más convincente para verificar la existencia de las ondas gravitatorias la ha realizado el profesor Joseph Weber, de la Universidad de Maryland. Empleando dos cilindros de aluminio sólido y tres toneladas y media de peía, situados a mil kilómetros de distancia entre sí y totalmente aislados de vibraciones locales, Weber logró detectar (con un equipo tan sensible que era capaz de registrar movimientos de una centésima del diámetro del núcleo atómico) vibraciones simultáneas en los cilindros que no podían atribuirse a ningún fenómeno conocido.

Una causa de las vibraciones pudieran ser explosiones de energía gravitatoria. Si posteriores experimentos lo confirman, podemos estar a las puertas de una revolución en el campo de la física tan grande como la preludiada en el siglo XIX por el descubrimiento de la radiación electromagnética.

En lo que respecta al conocimiento de la gravedad, nos encontramos tan sólo un poco más avanzados que los antiguos griegos en lo concerniente a la electricidad: les resultaba familiar la electricidad estática y la magnética, pero no sabían nada de su tercera manifestación, las invisibles ondulaciones que hacen posible la radio, la televisión y muchos otros fenómenos que hoy ya no nos sorprenden. Si la sociedad ha de experimentar una nueva revolución, sus raíces tecnológicas bien pudieran afirmarse en las actuales investigaciones para detectar las ondas gravitatorias.

ALGO MAS…
La señal producida por un terremoto típico (suponiendo que no sea suficientemente potente para causar daños al aparato) presenta tres tipos de ondas. Las primeras ondas que llegan al observatorio son las ondas longitudinales, que se propagan de la misma forma que las sonoras (es decir, vibran en la dirección de la propagación).

Después, llegan las ondas transversales, que vibran en ángulo recto, respecto a la dirección de propagación. Estas últimas son las menos potentes y el tiempo que transcurre entre ambas, determina la distancia del foco al observatorio.

Este tipo de ondas se denomina ondas principales. Los terremotos fuertes se pueden observar en forma de ondulaciones “visibles” que se propagan por sobre la superficie terrestre.

Estas ondas se propagan por la vía más larga, alrededor de la capa más exterior de la corteza terrestre, y llegan al observatorio algún tiempo después que las otras ondas, que pasan a través de la Tierra. Las ondas principales son las que producen mayores daños. La velocidad de las ondas sísmicas es distinta en las diferentes clases de ellas; las longitudinales recorren 12.000 metros por segundo; las transversales 6.500, y las superficiales 3.800.

La velocidad de todas ellas decrece con la distancia al epicentro hasta llegar a un valor mínimo, a partir del cual aumenta con dicha distancia hasta hacerse constante. Llama la atención la extraordinaria velocidad de las ondas longitudinales, tres veces superior a la de las superficiales y más del doble de la velocidad de propagación del movimiento en las rocas más elásticas conocidas.

Lo primero se explica porque las longitudinales viajan por el interior de la Tierra, desde el hipocentro (foco) a los distintos puntos de su superficie, y esto explica también que aumente, con la distancia del epicentro, a partir de un cierto punto, puesto que entonces la línea, según se propaga la onda sísmica, atraviesa mayor longitud de rocas de profundidad, que son más densas y elásticas.

Lo segundo nos obliga a admitir la existencia, en el interior de la Tierra, de una sustancia muy densa y de una rigidez mayor que la de todas las rocas conocidas; es decir, el núcleo terrestre no puede ser fluido ni pastoso, pues, en este caso, las ondas caminarían con mayor velocidad en el núcleo que en la corteza terrestre, y la experiencia demuestra, precisamente, lo contrario.

 Ver: Terremotos Históricos

Terremotos Mas Importantes de Argentina

Fuente Consultada:
Biología y Ciencias de la Tierra -Estructura y Dinámica de la Tierra Santillana
Los Terremotos Akal Geological Museum

Historia del Trineo Resumen Origen Primeros Transporte de Carga

HISTORIA DEL TRINEO:

Una migración de humanos  en el -7000 es el origen de la población de América se produce Sur, de las islas del Pacífico, y por vía marítima. También se sabe que otras migraciones se habían producido anteriormente por el Norte, pudiéndose calcular que se remontan a 9-000 u 8.000 años a. de J. C, y utilizando a buen seguro eltrineo. De ahí que la necesidad de superar terrenos o mares helados acuciase la genialidad inventiva del hombre. Nació así el trineo, y si no precisamente la barca, fruto de una civilización posterior y más evolucionada, sí al menos algunos tipos rudimentarios de balsas y maderos flotantes. Estos fueron los primeros medios de transporte.

Será oportuno detenernos un momento en el trineo, advirtiendo que cuanto se refiere a las balsas será descrito en otro lugar.
Los primeros trineos se deslizaban silenciosos en las selvas de coníferas de la Europa septentrional; se construyen vaciando la corteza de los árboles y, además de facilitar el viaje sobre los hielos y la nieve, haciéndolo más rápido y seguro, sirven para transportar los animales cazados. Con bastante rapidez el hombre descubre que también pueden utilizarse como medio de transporte sobre la hierba, el barro y los terrenos cenagosos, tal como aún hoy se utilizan en Laponia, en el Asia septentrional y en la Columbia Británica. La idea de añadir varillas y guías deslizantes para reducir el rozamiento parece relacionarse con el uso de cuernos de animales o, más probablemente en el Norte, con la utilización de las curvadas mandíbulas de las ballenas. Si bien en un primer tiempo el trineo era empujado o arrastrado por un hombre, no transcurre mucho tiempo sin que el perro sea uncido a él, aunque no el reno, domesticado mucho más tarde.

El trineo es el predecesor del esquí, del que se han hallado varios ejemplares, pertenecientes al período neolítico, en Finlandia, Noruega y casi todos los países del norte de Europa. En aquella época el trineo había llegado ya a un grado notable de perfección; era ligero y llevaba alzada la proa para que pudiera superar ágilmente las asperezas e irregularidades del terreno. El esquí, por el contrario, era aún muy primitivo y basto, estando formado por dos guías anchas y cortas fijadas al pie por medio de ataduras; sin embargo, en Riihimaki (Finlandia), se han encontrado ejemplares en los que el pie se apoya en una concavidad de madera en cuyos bordes se habían fijado correas. El material utilizado era siempre madera de pino. Ya en las postrimerías del neolítico el esquí había evolucionado de tal forma, que se diferenciaba muy poco del que se usa actualmente. Cambió el tipo de madera y asimismo el engranaje, constituido por relieves de hierro peraltado, dotado de estrías para fijar el pie.

Del trineo derivan, además del esquí, diversos tipos de vehículos deslizantes que se difundieron de modo extraordinario, y no sólo en el Norte. Egipto y Sumer hacían un uso especial del trineo, transportando material de construcción, estatuas colosales y pesos enormes. En Mesopotamia fue adoptado un tipo de trineo arrastrado por bueyes; en Ur, la reina Shub-ad poseía — nos encontramos ya en el siglo III a. de J.C.—un hermosísimo carro-trineo dotado de guías muy recurvadas. Trineos mucho más pequeños se usaban corrientemente en Egipto para el transporte del trigo.

El principio de la reducción del rozamiento, haciendo que sobre el terreno se deslice una superficie lisa y aguda, se aplica también a otros medios de transporte que parecen derivar del trineo, aunque no falta quien sostiene que algunos de ellos sean anteriores. Un tronco con la rama en forma de horquilla constituyó sin duda el primer trineo utilizado en los campos de Europa hasta épocas relativamente recientes. Los travois empleados por los indios americanos se diferencian poco de este tipo, y son arrastrados por perros o caballos. De estos rudimentarios medios de transporte proviene la «narria», constituida esencialmente por dos ramas de árbol arrastradas por un buey o un caballo y ligadas entre sí por unos barrotes transversales, que forman la superficie utilizada para depositar la carga.

Continuando de nuevo el examen del desarrollo humano, nos encontramos que alrededor del año 7000 a. de J.C. empiezan a formarse en el Medio Oriente las primeras comunidades de pastores y agricultores, fenómeno producido como consecuencia de la domesticación del ganado lanar y cabrío y del cultivo de los cereales. Aún se trata de pueblos nómadas, pero el paso de la caza y la recolección al pastoreo y al cultivo de la tierra, la llamada revolución neolítica que liga los hombres a la tierra, produce notables transformaciones en la civilización.

En efecto, dos milenios más tarde observamos que el progreso ha sido enorme: el arte de la cerámica evolucionó considerablemente y las artes plásticas moldeaban ya sus primeras figuras con gran maestría, mientras, algo más tarde y siempre en el Medio Oriente, aparecían las primeras manufacturas textiles y de mayólica.
Nuestra exposición ha dado fin. Nos aproximamos al año 3000 a. de J.C. Es la época de la rueda, que ve el florecimiento de grandes civilizaciones.

Un trineo de Laponia

Un trineo de Laponia en forma de piragua. Construido a base de un tronco de árbol ahuecado, no posee trenes de deslizamiento, pero resbala sobre su base. El trineo, primer medio de transporte utilizado por el hombre, se deslizaba también sobre la hierba y terrenos arcillosos. 

Un "tobogán», el trineo

Un “tobogán», el trineo utilizado por Ion indios cllipeva para trasladarse sobre terrenos nevados. T\to medio de transporte, muy difundido en In región de los grandes lagos, estaba formado por Uni larga tibia, curvad» un tu parte delantera y arrastrada por mujeres o por perros. 

trineo esquimal

Un trineo esquimal de transporte. La necesidad de reducir el rozamiento del terreno y de aumentar la estabilidaddel vehículo sugirió la idea de aplicar, sobre el fondo del trineo, dos mandíbulas de ballena,  que al cabo de poco tiempo fueron sustituidas por auténticas guías metálicas favorecieron el deslizamiento sobre el terreno.

Fuentes Consultadas:
Historia de la Comunicaciones Transportes Terrestres J.K. Bridges
Historia y Cronología de la Ciencia y los Descubrimientos de Isaac Asimov

Las eras geologicas del planeta Tierra Primeros seres vivos organicos

ORIGEN DE LA TIERRA – LAS ERAS GEOLÓGICAS – SU EVOLUCIÓN

Ver un Amplio Cuadro Sintesis Con Las Características de cada Etapa

LAS ERAS GEOLÓGICAS:

La edad de la tierra se calcula en más de cuatro mil quinientos millones de años. Las ciencias geológicas que estudian cómo fue evolucionando nuestro planeta durante este larguísimo período de tiempo, tasan sus investigaciones en las rocas y en los fósiles contenidos en algunas rocas.

Por el estudio de las rocas se ha podido conocer:
1) la enorme antigüedad de la tierra;
2) las temperaturas existentes en las distintas épocas;
5) los movimientos registrados en la corteza terrestre, los cuales han dado origen a la formación de montañas y depresiones; y
4) las variaciones en la distribución de las tierras y las aguas sobre la superficie de nuestro planeta, ocurridas en períodos de tiempo muy largos.

La antigüedad de la tierra ha sido posible calcularla estudiando la constitución de las rocas radioactivos. Los átomos de uranio se transforman en átomos de plomo con un ritmo constante, de tal manera que, comparando la cantidad de plomo contenido en un mineral de uranio, se puede calcular cuándo se formó la roca que lo contiene. De este modo se cree que las rocas más antiguas de la tierra, conocidas hasta hoy, se formaron hace más de cuatro mil millones de años, lo cual indica que la tierra es mucho más antigua.

Mediante el estudio de los fósiles contenidos en las rocas sedimentarias se han conocido:
1) las diferentes especies animales y vegetales que vivieron en las distintas épocas; y
2) las variaciones ocurridas en el clima de las diferentes regiones.

Un fósil es cualquier resto o impresión de origen animal o vegetal, preservado bajo la corteza terrestre al formarse las rocas sedimentarias.

En las rocas sedimentarias abundan los fósiles. Como en cada época vivieron ciertas especies animales y vegetales típicas, que no existieron en otras, los geólogos pueden determinar en qué época se formó la roca, observando los fósiles típicos que presente.

La evolución de la tierra en el tiempo ha sido reconstruida por la geología histórica, al ser estudiadas las capas formadas por las rocas sedimentarias. Estas rocas, depositadas en los fondos de los mares y lagos durante millones y millones de años, están situadas unas sobre otras, formando estratos, y Kan sido comparadas en su conjunto con un enorme libro.

Las rocas formadas en cada época serían como las páginas del libro. Las rocas más antiguas se encuentran en las capas más profundas y las más recientes muy cerca de la superficie. Sólo cuando las rocas han sido muy perturbadas por fenómenos posteriores, su orden puede aparecer cambiado.

La historia de la tierra consta de cuatro grandes etapas denominadas eras, las cuales tuvieron distinta duración. Las eras geológicas reciben los nombres de Protozoica, Paleozoica, Mesozoica y Cenozoica.

Era Protozoica: Esta era se divide en dos etapas: Arcaico y Precábrico.

Arcaico: Los primeros millares de millones de años de la tierra. La tierra debió ser, en sus comienzos, una esfera de gases incandescentes, semejantes a los que forman el sol, del cual se desprendió al igual que los demás planetas, según las hipótesis más aceptadas.

Debido a su tamaño relativamente pequeño, la tierra comenzó a enfriarse pronto. Los gases primitivos se convirtieron en líquidos, etapa durante la cual la luna debió desprenderse de la tierra. Más tarde, las materias líquidas comenzaron a enfriarse en la superficie y a solidificarse, formando las primeras rocas. Los vapores que se escapaban de esas rocas se convertían en nubes muy densas, formando una atmósfera semejante a la que se supone cubre el planeta Venus actualmente. A partir de entonces, y durante millares de millones de años, no hubo vida sobre la tierra; de ahí el nombre de Azoica (sin vida) que se da a esta primera era.

Aparición de los océanos y de las primeras manifestaciones de vida. Las rocas que formaban la superficie de la tierra continuaron enfriándose, hasta que el vapor de agua que contenía la atmósfera comenzó a precipitarse en forma de lluvia.

El agua procedente de estas lluvias iniciales, escurriéndose desde las zonas altas a las bajas, fue a depositarse en las depresiones de la corteza, para formar ormar los océanos primitivos. De las profundidades del planeta brotaban rocas fundidas (magma), originando grandes volcanes; y la corteza terrestre se arrugaba, formando estos plegamientos altísimas montañas.

Precámbrico: En esta era debieron aparecer las primeras manifestaciones de vida en forma de seres de una sola célula, semejantes a las bacterias actuales, los cuales no podían dejar huellas fósiles.

Los fósiles más antiguos conocidos son de fines de esta era, y corresponden a impresiones de algas marinas muy rudimentarias.

El enfriamiento de nuestro planeta continuó. Aunque las grandes explosiones volcánicas disminuyeron, inmensas cantidades de rocas fundidas traían de las profundidades del planeta minerales de hierro, plata, cobre, oro y otros metales que hoy conocemos. Estas rocas, que antes de consolidarse pasaron por el estado de fusión, son denominadas rocas ígneas, o sea, rocas formadas por el fuego.

Las lluvias, cada vez más intensas, al caer sobre las partes elevadas de la corteza, arrastraban los materiales sueltos y los iban depositando en los fondos de los mares, dando origen a las rocas sedimentarias.

Esta era, denominada Proterozoica, o de la vida elemental, debió durar, al igual que la anterior, unos 650 millones de años. En ella aparecieron organismos más complejos, como las esponjas y corales y las primeras plantas con raíces.

Era Paleozoica: La era de los peces y de los grandes helechos. Durante un largo período no se produjeron en la tierra grandes conmociones. Los océanos cubrían extensas zonas de la superficie terrestre y la erosión iba reduciendo intensamente el relieve de las áreas emergidas.

En los mares de esa era vivían cantidades enormes de animales provistos de conchas o caparazones, cuyos restos, al depositarse en el fondo de los océanos, formaron profundas capas de rocas calizas. En las costas se depositó gran cantidad de arena. Más tarde, según indican los fósiles, aparecieron los peces en los océanos y plantas mayores en las tierras. Los insectos se multiplicaron.

En los finales de esta era se formó la mayor parte de la hulla o carbón mineral de que disponemos hoy. En este período, llamado carbonífero, cuyo clima era caliente, hubo extensos bosques de helechos arborescentes, que medían hasta 30 metros de altura. Los restos de estos helechos fosilizados en las zonas cenagosas, después de quedar cubiertos por arcillas y arenas, formaron la hulla, que actualmente es extraída de sus yacimientos por los mineros.

Durante esta era aparecieron los primeros animales vertebrados, que podían vivir lo mismo en tierra que en el mar: los anfibios.
La temperatura, que se mantuvo relativamente cálida, favoreció la multiplicación de las especies tanto vegetales como animales. Después, el clima se enfrió considerablemente, y muchas de estas especies se extinguieron.

La era Paleozoica (de la vida antigua), duró más de 360 millones de años.

Era Mesozoica: La era de los reptiles gigantescos. Durante millones de años los animales más notables que vivieron sobre la tierra fueron unos reptiles gigantescos, de figuras grotescas, que habitaban en tierra firme y en los lagos. Algunos poseían alas y podían volar. Entre estos reptiles figuraron los animales mayores que han vivido sobre los continentes. Muchos de sus esqueletos han sido descubiertos. Algunos de los reptiles más pequeños evolucionaron en esta época, hasta convertirse en los antecesores de las aves actuales.

Sobre la tierra firme aparecieron unos pequeños seres de sangre caliente y cubiertos de pelos, que alimentaban con leche a sus pequeñuelos. Eran los mamíferos, a los que pertenecería el hombre millones de siglos después.

En los últimos tiempos de esta era hubo gran actividad volcánica, y se produjeron grandes plegamientos y fallas en la superficie terrestre. Entonces se formaron las mayores montañas que hay sobre la tierra: los Himalayas de Asia, los Andes de la América del Sur y las Rocosas de la América del Norte.

La era Mesozoica (de la vida media), duró unos 120 millones de años.

La tierra adopta sus caracteres actuales. (Era Cenozoica.) En esta era, que es la más reciente de la historia de la tierra, se han producido distintos períodos en los cuales la temperatura descendió tanto, que grandes masas de hielo (glaciares) avanzaron desde los polos. En el hemisferio norte estas glaciaciones cubrieron gran parte de la América del Norte, Europa y Asia.

Los mamíferos se multiplicaron durante estas épocas frías, siendo notable, entre ellos, el mamut, antepasado de los elefantes actuales.

En esta era los continentes y los océanos adquirieron su forma actual y aparecieron casi todos nuestros animales domésticos: caballo, perro, gato, cerdo y muchos más.

La era Cenozoica (de la vida reciente), abarca los últimos 60 millones de años de la historia de la tierra. Hará cerca de dos millones de años surgieron sobre la tierra los primeros seres parecidos al hombre. Mucho más tarde, hará unos 50.000 años, encontramos ya los primeros hombres, que conocían e! uso del fuego y de la piedra.

Algunos autores estiman que, a partir del cese de las glaciaciones hará unos 30.000 años cuando los hombres comenzaron su lenta marcha la civilización , dando comienzo a la era actual.

Cuadro de Animales y Plantas

CRONOLOGÍA DE LA TIERRA

Era Período Época Millones de Años Principales Acontecimientos
Protezoica  Arcaico
Precámbrico
  4500-3500
3500-590
Origen del Sistema Solar. Origen de las primeras células vivas. Dominio de las bacterias. Aparición de las células eucariotas. Primeros seres pluricelulares.
Paleozoica Cámbrico   570-505 Incremento súbito de fósiles de invertebrados. Gran variedad de algas marinas.
  Ordocivico   505-438 Dominio de los invertebrados. Primeros vertebrados.
  Silúrico   438-408 Primeras plantas e invertebrados terrestres.
  Devónico   408-360 Primeros vertebrados terrestres.
  Carbonífero   360-286 Bosques de helechos arbóreos. Desarrollo de los anfibios e insectos. Aparición de los primeros reptiles
  Pérmico   286-248 Origen de las coníferas. Proliferación de los reptiles. Extinción de muchas formas de invertebrados.
Mesozoica Triásico   248-213 Bosques de gimnospermas y de helechos arbóreos. Origen de los dinosaurios y mamíferos.
  Jurásico   213-144 Dominio de los dinosaurios y las coníferas. Primeras aves.
  Cretácico   144-65 Primeras plantas con flores. Extinción de los dinosaurios.
Cenozoica Terciario Paleoceno 65-54 Radiación de los mamíferos primitivos.
    Eoceno 54-37 Dominio de las plantas con flores.
    Oligoceno 37-24 Surgimiento de los grupos modernos de mamíferos e invertebrados.
    Mioceno 24-5 Proliferación de peces óseos.
    Plioceno 5-2 Dominio de mamíferos y aves.
  Cuaternario Pleistoceno 2-0,01 Aparición de los humanos.
    Reciente 0,01 – hoy

cuadro de las eras geológicas

Ver un Amplio Cuadro Con Las Características de cada Etapa

Cuadro Estratigráfico

tabla geologica

Ver Una Tabla Geológica

Fuente Consultada:
La Tierra y Sus Recursos Levi Morrero
Biología II Ecología y Evolución Bocalandro-Frid-Socolovsky

Estructura Interna de la Tierra Corteza Manto y Nucleo Litosfera

Estructura Interna de la Tierra Corteza Manto y Nucleo Litosfera

El estudio de los terremotos ha permitido definir el interior de la Tierra y distinguir tres capas principales, desde la superficie avanzando en profundidad, en función de la velocidad de propagación de las ondas sísmicas.

Dichas capas, apreciables en un corte transversal, son: corteza, manto y núcleo. También la información que nos proporcionan los meteoritos puede ser de gran utilidad para conocer la composición de los materiales del interior de la Tierra.

Los métodos de datación sitúan la edad de algunos meteoritos en unos 4500 millones de años coincidente con la edad de la tierra. Se cree que la composición de muchos meteoritos es idéntica a la de algunas capas del interior terrestre. (foto arriba: cráter en Arizona por el impacto de un un meteorito, tiene aproximadamente 1,5 Km. de diámetro, y se cree que su masa era de 300.000 ton. y viajaba a una velocidad de 60.000 Km/h.)

La corteza

Con el nombre de corteza se designa la zona de la Tierra sólida situada en posición más superficial, en contacto directo con la atmósfera, la hidrosfera y la biosfera. La corteza terrestre presenta dos variedades: corteza oceánica y corteza continental.

La corteza oceánica

La corteza oceánica tiene un grosor aproximado de 10 km; no obstante, esta cifra decrece notablemente en determinados puntos del planeta, como en el rift valley, en el área central de las dorsales oceánicas, donde alcanza un valor prácticamente equivalente a O. En dicha zona, el magma procedente del manto aflora directamente.

En la corteza oceánica se pueden distinguir diversas capas. Los sedimentos que forman la primera tienen un espesor situado entre 0 y 4 km; la velocidad media de propagación de las ondas sísmicas alcanza los 2 km/s.

A continuación se localiza una franja de basaltos metamorfizados que presentan entre 1,5 y 2 km de grosor; la velocidad de las ondas es en este punto de 5 km/s. La tercera capa de la corteza oceánica, formada por gabros metamorfizados, mide aproximadamente 5 km; en ella, la velocidad media queda comprendida entre 6,7 y 7 km/s. Cabe mencionar una última parte, donde se registra la máxima velocidad (8 km/s); está constituida por rocas ultra básicas cuyo espesor ronda el medio kilómetro.

La corteza continental

Con un espesor medio de 35 km, la corteza continental incrementa notablemente este valor por debajo de grandes formaciones montañosas, pudiendo alcanzar hasta 60-70 km. Aparece dividida en dos zonas principales: superior e inferior, diferenciadas por la superficie de discontinuidad de Conrad.

En este plano existe un brusco aumento de la velocidad de las ondas sísmicas, que, no obstante, no se registra en todos sus puntos. Consecuentemente, puede afirmarse que no hay una separación nítida entre ambas capas. La corteza superior presenta una densidad medía de 2,7 kg/dm3 y, en el continente europeo, su espesor medio se sitúa en algo más de 810 km. Los materiales que la constituyen son rocas sedimentarias dispuestas sobre rocas volcánicas e intrusivas graníticas. La corteza inferior contiene rocas metamorfizadas cuya composición es intermedia (entre granito y. diorita o gabro); su densidad equivale a 3 kg/dm3.

El manto

En un nivel inmediatamente inferior se sitúa el manto terrestre, que alcanza una profundidad de 1900 km. La discontinuidad de Mohorovicic, además de marcar la separación entre la corteza y el manto terrestres, define una alteración en la composición de las rocas; si en la corteza —especialmente en la franja inferior— eran principalmente basálticas, ahora encontramos rocas mucho más rígidas y densas, las peridotitas. Hay que hacer notar que la discontinuidad de Mohorovicic se encuentra a diferente profundidad, dependiendo de que se sitúe bajo corteza oceánica o continental. El manto se puede subdividir en manto superior e inferior.

El manto superior se prolonga hasta los 650 o los 700 km de profundidad. En este punto, la velocidad de las ondas sísmicas se incrementa, al aumentar la densidad. A su vez, en el manto superior pueden diferenciarse dos regiones; en la superficial, el incremento de velocidad es constante con relación a la profundidad, mientras que en la inferior la velocidad decrece súbitamente. Como resultado de la fusión que experimentan las peridotitas en esta última capa, su rigidez disminuye con relación a la capa superior.

El grosor del manto inferior varía entre 650-700 km —bajo la astenosfera— y 2.900 km —en la discontinuidad de Gutenberg, que marca la separación entre el manto y el núcleo—. En la parte interna de esta capa, tanto la densidad —que pasa de .4 kg/dm3 a 6 kg/dm3, aproximadamente— como la velocidad aumentan de manera constante.

El núcleo

Los principales elementos constitutivos del núcleo terrestre son dos metales: hierro y níquel. A partir del límite marcado por la discontinuidad de Gutenberg, la densidad experimenta un súbito aumento, desde 6 a 10 kg/dm3, aproximadamente. Por otra parte, la velocidad de las ondas sísmicas primarias experimenta un rápido descenso —se pasa de 13 km/s a 8 km/s—, al tiempo que no se registra propagación de ondas secundarias hasta profundidades de 5.080 km. En este último punto, conocido como discontinuidad de Lehmann, la velocidad de las ondas primarias vuelve a incrementarse, situándose en torno a los 14 km/s en el centro del globo terrestre.

Existe un núcleo superior y un núcleo inferior; el primero, con ausencia de ondas secundarias, aparece fundido, mientras que el segundo se encuentra en estado sólido.

La investigación de los fondos oceánicos

La aplicación de grandes avances tecnológicos al estudio de los océanos ha permitido, en las últimas décadas, conocer a fondo aspectos enormemente relevantes de su geología y su morfología. Como resultado, existen en la actualidad mapas precisos de los fondos oceánicos. Elementos característicos de la geografía submarina son los márgenes continentales, las cuencas oceánicas y las dorsales.

Los márgenes continentales

La prolongación de los continentes por debajo del nivel del mar constituye los márgenes continentales, formados por corteza continental. Se distinguen tres zonas principales: la plataforma, el talud y la elevación.

La plataforma continental, una zona que se inclina paulatinamente hasta llegar al talud, puede no presentarse o, por el contrario, alcanzar una extensión de cientos de kilómetros. Aparece recubierta por materiales resultantes de la erosión de la tierra emergida, que han sido transportados por los cursos fluviales.

En torno a —200 m aparece el talud, una pendiente horadada por los denominados cañones submarinos, por los que «viajan» sedimentos procedentes de la plataforma o bien consecuencia de grandes desprendimientos submarinos provocados por los terremotos. La acumulación de sedimentos determina el surgimiento de abanicos, por la forma que adquiere el depósito, que conforman la elevación continental, a veces muy extensa pero generalmente con poca pendiente.

Las cuencas

Las cuencas, cuya profundidad puede superar los 4.000 m, están formadas por corteza oceánica. En ellas pueden individualizarse diversas formas, desde antiguos volcanes, que hoy son montañas submarinas, hasta áreas deprimidas de perfil estrecho y alargado, las denominadas fosas oceánicas, que marcan el punto de contacto entre las placas litosféricas.

Las dorsales oceánicas

Por su parte, las dorsales oceánicas son cadenas montañosas de considerable longitud —de hecho, las más largas del planeta—, que se extienden de forma ininterrumpida por los océanos, a través de unos 80.000 km; su anchura es de 2 .000 km aproximadamente. Están formadas por crestas de origen volcánico, con una altitud media aproximada de 2.000 m sobre el fondo. No obstante, en algunos puntos de la Tierra, por ejemplo en Islandia, pueden llegar a emerger. Las dorsales, centro de actividad sísmica de notable intensidad, aparecen cortadas por numerosas fallas de gran tamaño, denominadas fallas transformantes.

LITOSFERA Y ASTENOSFERA

La franja superior de la superficie terrestre se encuentra dividida en dos partes:

• La litosfera, formada por la corteza y la zona externa del manto superior, es bastante rígida, presenta aproximadamente 100 km de espesor y en ella, la velocidad de las ondas sísmicas aumenta constantemente en función de la profundidad.

• La astenosfera es la franja inferior del manto superior, que se encuentra fundida parcialmente. Se extiende hasta los 400 km, punto en el que el manto recupera sus características de solidez y rigidez, puesto que la velocidad de las ondas sufre una nueva alteración muy brusco.

MODELOS DE LA ESTRUCTURA DE GEOSFERA
Al interior de la tierra también se la conoce con el nombre de geosfera, y si se intenta hacer un estudio directo, solo se puede profundizar un pocos kilómetros, por lo que son necesarios métodos indirectos. Acá se presentan los dos modelos que intentan explicar como es la estructura interior de nuestro planeta.

Está claro que el interior terrestre está formado por varias capas, y en esto coinciden todos los modelos. Pero las investigaciones sobre el interior de la Tierra se han centrado en dos aspectos. en la composición de los materiales que forman las distintas capas del planeta y en el comportamiento mecánico de dichos materiales (su elasticidad, plasticidad, el estado físico…)

Por eso, se distinguen dos tipos de modelos que presentan diferentes capas, aunque coinciden en muchos puntos: el modelo estático y el modelo dinámico.

Capas en el modelo estático

La corteza es la capa externa de la Tierra. Se diferencian dos partes: la corteza continental, con materiales de composición y edad variada (pueden superar los 3.800 millones de años) y la corteza oceánica, más homogénea y formada por rocas relativamente jóvenes desde un punto de vista geológico.

Por debajo de la corteza se encuentra el manto, mucho más uniforme, pero con dos sectores de composición ligeramente distinta: el manto superior, en el que destaca la presencia de olivino, y el superior, con materiales más densos, como los silicatos.

Por último, la capa más interna es el núcleo, que se caracteriza por su elevada densidad debido a la presencia de aleaciones de hierro y níquel en sus materiales. El núcleo interno podría estar formado por hierro puro.

Capas en el modelo dinámico

La capa más externa es la litosfera, que comprende la corteza y parte del manto superior. Es una capa rígida. La litosfera descansa sobre la astenosfera, que equivale a la parte menos profunda del manto. Es una capa plástica, en la que la temperatura y la presión alcanzan valores que permiten que se fundan las rocas en algunos puntos.

A continuación se encuentra la mesosfera, que equivale al resto del manto. En la zona de contacto con el núcleo se encuentra la región denominada zona D”, en la que se cree que podría haber materiales fundidos. La capa más interna es la endosfera, que comprende el núcleo interno y el núcleo externo. Los estudios de propagación de las ondas sísmicas han puesto de manifiesto que la parte externa de la endosfera (el núcleo externo) está compuesta por materiales fundidos, ya que en esa zona se interrumpe la transmisión de algunas de las ondas.

Mohorovicic y la estructura de la Tierra: El 8 de octubre de 1909, se produjo un intenso terremoto a 40 km al sur de Zagreb, en Croacia (que entonces formaba parte del Imperio Austrohúngaro). Otro terremoto ocurrido previamente en Zagreb había determinado la instalación de un sismógrafo en el observatorio meteorológico de la ciudad, dirigido por Andrija Mohorovicic. En su calidad de director del observatorio, Mohorovicic recibió de todas las estaciones de Europa los registros del terremoto de 1909. Después de analizarlos detalladamente, realizó un interesante descubrimiento. Como esperaba, los registros reflejaban dos tipos de ondas: de compresión (P), en las que las partículas oscilan a lo largo de la línea de propagación, y de distorsión (S), en las que el movimiento se produce en ángulo recto con respecto a la línea de propagación.

Luego advirtió que había en realidad dos tipos de ondas P. A escasa distancia del epicentro, la primera onda en llegar se desplaza a una velocidad de 5,5 a 6,5 km por segundo. A una distancia de unos 170 km, esta onda es superada por una segunda onda, que se desplaza a 8,1 km/s. Más allá de este punto, hasta los 800 km, es posible detectar las dos ondas, pero luego las más lentas se desvanecen. Mohorovicic interpretó este fenómeno como la prueba de que las ondas más lentas se desplazan directamente hacia el sismógrafo, mientras que las más veloces son refractadas a una profundidad de unos 50 km. En su honor, la capa refractora recibió el nombre de discontinuidad de Mohorovicic, o Moho. Investigaciones posteriores demostraron que la profundidad del Moho (el límite entre la corteza terrestre y el manto superior) varía entre 30 y 50 km.

PARA SABER MAS…
LAS EDADES RELATIVAS Y ABSOLUTAS DE LA TIERRA: ERAS Y PERÍODOS

Cuando se dice que el hombre pisó la Luna durante la era atómica se está dando una fecha imprecisa, relativa, ya que podría ser ubicada en cualquier punto del transcurso temporal de dicha era; en cambio, al decir que el hombre pisó por vez primera la Luna el 20 de junio de 1969, se está ante una fecha absoluta. Así como sucede con los acontecimientos históricos, los fósiles y los terrenos pueden fecharse en su edad absoluta y en su edad relativa.

Pero las técnicas para desentrañar la edad absoluta constituyen un logro reciente. Antes del descubrimiento del método del carbono 14, el método del plomo, del helio, del estroncio, etc., los científicos sólo podían valerse de una cronología relativa fundada en difíciles estudios de la superposición de las rocas sedimentarias, del contacto con las precedentes si eran rocas eruptivas, del grado de evolución de los fósiles, etcétera.

A partir de este estudio y teniendo en cuenta grandes cambios, como la formación de una cadena montañosa, la desaparición de un grupo de fósiles, etc., la historia de la Tierra se divide en cuatro grandes eras: precámbrica, paleozoica, mesozoica y cenozoica, que se divide en los períodos terciario, cuaternario y reciente. Los períodos son las divisiones internas de cada era. Así, por ejemplo, la era primaria se divide en los períodos cámbrico, silúrico, devónico, carbonífero y pérmico. A su vez los períodos se dividen en pisos.

Con mayor precisión deberíamos emplear la palabra “era” para designar la duración de una serie, período para señalar la duración de un sistema y edad para la duración de un piso.  Los modernos métodos de la determinación de las edades absolutas se basan en la siguiente comprobación científica. Se sabe que la desintegración del uranio 238 (elemento inestable que se modifica por el escape constante de protones y neutrones) da como resultado el radio, que a su vez origina el plomo 206 (elemento estable, pero distinto del plomo de origen no radiactivo, o sea el plomo 204), más un escape de helio 4 durante el proceso:

Uranio 238 = plomo 206 más 8 helio 4. El uranio 235 se transforma en el plomo 207 y el torio deviene plomo 208. La desintegración de estos elementos radiactivos es un fenómeno perfectamente conocido. Como se sabe, un gramo de uranio 238 produce anualmente 0,014 x 10-8 g de plomo 206 y 1,2 x 10-4 mg3 de helio (10-8 equivale a 1/108 y 108 corresponde a 1 seguido de 8 ceros, es decir 100 millones).

De esta fórmula se puede deducir la antigüedad de una roca según sea su proporción de uranio 238 y plomo 206. Pero es necesario además realizar el correspondiente análisis espectográfico para determinar si el elemento originario era el uranio 238 (que da plomo 206), el uranio 235 (que da plomo 207), el torio 232 (que da plomo 208) o todos estos elementos combinados. Éste es el llamado método del plomo.

Otro método tiene en cuenta las proporciones de uranio y helio, pero tropieza con la dificultad de no poder precisar qué cantidad de helio perdió la roca durante su formación. Éste es el método del helio.

El método del estroncio utiliza la transformación de rubidio en estroncio. El método del carbono 14 (fue descubierto en 1947 por el químico estadounidense Williard Libby) se aplica para determinar la antigüedad de los restos de seres vivos. Parte de la siguiente apreciación: todos los organismos vivos absorben, durante su vida, carbono 12 (estable) y carbono 14 (radiactivo). Pero la proporción de carbono 14 y la de carbono 12 (constante en la naturaleza) es la siguiente: un billón de átomos de C 12 por un átomo de C 14.

Cuando el ser muere, el carbono 14 del cuerpo comienza a disminuir en cantidad por un proceso de desintegración, ya que no es renovado. La mitad de este carbono desaparece durante el transcurso de 5.600 años, las tres cuartas partes, a los 11.200 años, los siete octavos a los 16.800 años, etc. En la práctica, por ejemplo, se reduce a carbón una muestra de hueso, madera, etc., y se lo introduce en un contador Geiger, determinándose de este modo su edad.

Este método es aplicado desde 1948, pero tropieza con una seria limitación: sólo puede remontarse a 15.000 o a 16.000 años atrás. Desde que en 1939 el físico estadounidense Alfred Otto Nier efectuó una medición completa y precisa de los isótopos del plomo, en los minerales de uranio y plomo se pudieron construir geocronómetros bastante sensibles que fueron sucesivamente perfeccionados por la electrónica.

Estos geocronómetros, mediante los métodos “potasio-argón”, “rubidio-estroncio” y “uranio-plomo”, pueden determinar la edad de las rocas, fechando incluso Ja data de aquellas de más de 10.000.000 de años. Como todos estos métodos de medición del tiempo se refieren a la edad de las capas de rocas sedimentarias, las etapas previas por las cuales pasó nuestro planeta antes de la formación de las capas sedimentarias pertenecen, casi por completo, al campo de la hipótesis.

El Origen del Planeta Tierra

Composición Mineral de la Corteza Terrestre

La teoría de la Evolución Darwin Charles La Selección Natural

Está generalmente reconocido que los seres vivos evolucionan y que las formas sencillas dan lugar a formas cada vez más complejas. ¿Cómo sucede esto? He aquí la cuestión que intrigó a Carlos Darwin, el gran naturalista, durante muchos años. Darwin creía firmemente en la evolución, pero por largo tiempo fue incapaz de explicarla. Al cabo de muchos años desarrolló su famosa Teoría de la evolución por selección natural, basada en el modo prodigioso en que los animales se adaptan a su ambiente. La evolución es el proceso por el que una especie cambia con el de las generaciones. Dado que se lleva a cabo de manera muy lenta han de sucederse muchas generaciones antes de que empiece a hacerse evidente alguna variación.

UN POCO DE HISTORIA…Desde la antigüedad, el modo de originarse la vida y la aparición de la gran variedad de organismos conocidos, constituyó un misterio que, en menor o mayor medida, despertó curiosidad de los científicos.

Sin embargo, las supersticiones, los prejuicios, los dogmas religiosos y las teorías que se aventuraban debido a la imposibilidad de probarlas con el nivel de conocimiento de aquellas épocas, hicieron que la cuestión quedara a menudo en el olvido o que, simplemente, se aceptara la imposibilidad de averiguar los orígenes.

No fue hasta épocas relativamente recientes cuando el hombre pudo finalmente abordar esta cuestión con unos criterios fiables y unos conocimientos científicos suficientes para demostrar sus hipótesis.

Es así como podemos afirmar, que antes del siglo XIX existieron diversas hipótesis que intentaban explicar justamente esta cuestión, “el origen de la vida sobre la Tierra”. Las teorías creacionistas que hacían referencia a un hecho puntual de la creación divina; y por otra parte, las teorías de la generación espontánea que defendían que la aparición de los vivos se producía de manera natural, a partir de la materia inerte.

Una primera aportación científica sobre el tema es el trabajo de Oparin (1924), El origen de la vida sobre la Tierra, donde el bioquímico y biólogo ruso propone una explicación, vigente aún hoy, de la manera natural en que de la materia surgieron las primeras formas pre-biológicas y, posteriormente el resto de los seres vivos. En segundo aspecto de la generación espontánea de la vida tiene una respuesta convincente desde mediados del siglo XIX.

Esto es así, gracias a Pasteur y fundamentalmente a Darwin quienes realizaron experimentos al respecto. Este último, naturalista británico realizó una obra de vital trascendencia (1859): El origen de las especies. La cual tiene por objetivo aportar una explicación científica sobre la evolución o denominada “descendencia con modificación” (término utilizado para explicar estos fenómenos).

Los pinzones de Darwin son un grupo de pájaros que se encuentran en las islas Galápagos y que contribuyeran grandemente a ¡a formación de la teoría de la evolución. En esas islas existen pocas aves de otra de otra clase y los pinzones han evolucionado en varias direcciones, de modo que ahora los hay granívoros, frugívoros, insectívoros, etc. Sus picos varían de forma, de acuerdo con le función. Se distinguen varias especies y subespecies. La semejanza general entre ellos sugiere que han evolucionado recientemente, a partir de un antepasado común.

Evolución de los pinzones de Darwin

Sin lugar a dudas que existieron importantes antecedentes del tema, aunque siempre se manifiesta el honor de haber realizado esta teoría de manera científica e inexorable, a Charles Darwin. No muy lejos, fue su abuelo –Erasmo Darwin- quien aportó las primeras muestras de interés científico por estos temas. No obstante, quien fue precursor de una corriente de pensamiento sobre el estudio de la evolución de los seres vivos, es Jean Baptiste de Monet, caballero de Lamarck (1744-1829).

Su tesis fundamental es la transmisión de los caracteres adquiridos como origen de la evolución (es decir, que las características que un individuo adquiere en su interacción con el medio se transmiten después a su descendencia); denominada este principio como Lamarckismo.

La causa de las modificaciones de dichos caracteres se encuentra en el uso o no de los diversos órganos, tesis que se resume en la siguiente frase: «La función crea el órgano». Lamarck resume sus ideas en Filosofía zoológica (1809), el primer trabajo científico donde se expone de manera clara y razonada una teoría sobre la evolución.

Así, por ejemplo, los lamarckistas explicaban la aparición del cuello largo en las jirafas como un proceso paulatino de adaptación de un animal a ir comiendo hojas situadas cada vez más altas. Lo que supondría que sus hijos heredarían un cuello más largo aún.

jirafas comiendo

Lemack suponía que el esfuerzo de las jirafas para alcazar la hojas mas altas, hacía que sus cuellos se estirasen unos centímetros, y que luego ese estiramiento era transmitido a sus descendientes.Las ideas de Lamarck fueron criticadas por Weissman, quien posteriormente demostró que los caracteres adquiridos no pueden heredarse. Las células del cuerpo (o somáticas) están completamente separadas de las reproductoras (gametos: óvulos y espermatozoides) y solamente estas últimas transmiten rasgos hereditarios a la generación siguiente.

En realidad según la teoría de Darwin las que tenían el cuello y las patas algo más largos que las otras, podrían alimentarse de hojas de acacia, (las otras se desnutrían) lo que les ayudaría a sobrevivir mejor en las épocas de sequía. Actuó de esta manera la selección natural, que permitió a los mejor adaptados, los más altos, reproducirse.

lamarck teoria de los caracteres adquiridos

Lamarck, que vivió de 1744 a 1829. De acuerdo con ella, si un hombre hace gimnasia intensamente y desarrolla sus músculos, sus hijos tendrán también músculos potentes. En otras palabras, los caracteres adquiridos durante la vida de un individuo pueden ser heredados. Esta teoría recibe, por ello, el nombre de teoría de la herencia de los caracteres adquiridos. Evidentemente, es cierto que los músculos pueden ser desarrollados mediante ciertos ejercicios, pero lo que no está demostrado en absoluto es que estas modificaciones puedan heredarse.

En lo que respecta al científico británico, Charles Darwin, viajando a bordo del Beagle, durante largos años (1831- 1836) recogió datos botánicos, zoológicos y geológicos que le permitieron establecer un conjunto de hipótesis que cuestionaban las ideas precedentes sobre la generación espontánea de la vida.

La diversidad observada durante esos veinte años siguientes se intentó explicar de manera coherente mediante la formulación de los datos obtenidos. Una de las etapas que más influyó en el fue su paso por las islas Galápagos, donde encontró 14 subespecies distintas de pinzones, que se diferencian únicamente en la forma del pico. Es decir, que cada una de ellas, estaba adaptada a un tipo de alimentación y vivía en un hábitat diferente en las diversas islas.

Sin embargo, en 1858, Darwin se vio obligado a presentar sus trabajos, cuando recibió el manuscrito de un joven naturalista, Alfred Russel Wallace (1823/1913), que había llegado de manera independiente a las mismas conclusiones que él, es decir, a la idea de la evolución por medio de la selección natural.

La obra de Malthus sobre el crecimiento de la población, fue la base que habría tomado para sus estudios, tanto Darwin como Wallace. La misma establece que este factor (crecimiento de la población) tiende a ser muy elevado, la cual al disponibilidad de alimento y espacio son limitados lo mantendrá constantes, de aquí surge esta proposición de la idea de competencia. Ambos científicos de acuerdo a esta base argumental sustentan sus teorías estableciendo dos aspectos relevantes, dando por sentado que los seres vivos pueden presentar clones.

Justamente la noción de competencia establecida anteriormente por Malthus y finalmente esta última idea, es lo que los lleva a establecer que estas variaciones pueden ser ventajosas o no en el marco de dicha competencia. Entonces la conquista por los recursos necesarios para la vida, dará como resultado una lucha que determinará una selección natural la cual favorecerá a los individuos con variaciones ventajosas y eliminará a los menos eficaces. Pese a ello, no todo es compartido por ambos, ya que existe un punto discordante entre ellos. Y es que esta idea de Darwin de selección natural expresada en su obra El origen del hombre (1871), nunca fue compartida por Wallace.

Al respeto, Darwin argumenta que algunos caracteres son preservados sólo porque permiten a los machos mayor eficacia en relación con las hembras. Pero cabe decir, que ciento cincuenta años después, hay quienes aún lo veneran y quienes lo deploran, pero El Origen de las especies sigue aún ejerciendo una influencia extraordinaria.

Cuando Darwin regresó de su viaje por América del Sur y el Pacífico, era capaz de empezar a responder una pregunta muy sencilla que no parecía tener una respuesta fácil: ¿por qué las plantas y los animales cambian? El problema se le presentó al advertir que en América del Sur encontraba muchas especies que conocía, pero con algunas diferencias. Asimismo, en las Galápagos pudo clasificar dieciséis especies de pinzones y se preguntó por qué un pájaro, que conocía de Europa, presentaba tal grado de variación.

Uno de los hechos que impresionó a Darwin, durante su largo viaje fue la variedad de formas y de especies análogas que pueden agruparse alrededor de un mismo prototipo. Esta variación morfológica es fácil de observar también, por ejemplo, en los animales domésticos.

En las palomas caseras existen innumerables razas que se diferencian por la forma de la cola, por el tipo de rizado o lisura del plumaje, por el color, por la existencia de moños o carnosidades (carúnculas) en la cabeza, además de otras características.

Mediante una serie de cruzamientos, es posible convencerse de que estas formas descienden todas de la forma silvestre: la paloma saxícola o paloma de las rocas (Columba livia). El autor de la perpetuación de estas variaciones es el hombre, que las dirige y conserva, según su voluntad y sus intereses; y lo mismo actúa sobre otros animales domésticos o sobre las plantas cultivadas. Darwin buscó, durante mucho tiempo, la fuerza que en la naturaleza podría reemplazar la acción selectiva del hombre, evidente en las plantas cultivadas y en los animales domésticos.

LA TEORÍA DE DARWIN

Darwin parte de las ideas, del economista Thomas Malthus. Malthus postulaba que la población crece en forma geométrica y se preguntaba qué sucedería con el crecimiento de la población humana en un habitat cerrado, como por ejemplo una isla. La conclusión era que el crecimiento estaría limitado por la cantidad de alimento, que crece en proporción aritmética. Si la cantidad de alimento es restringida, debemos suponer que llegará un momento en que existirán más animales con necesidad de alimentarse que alimento disponible.

Entonces, se producirá una competencia entre los individuos por el alimento, y algunos individuos resultarán vencedores y los otros morirán de hambre. De esta idea, Darwin concluye que sobrevivirán aquellos individuos con características más favorables, idea conocida como la “supervivencia del más apto”. Sin embargo, hay que tener en cuenta que, a menudo, se registran variaciones, hecho que Darwin había observado en las Galápagos.

Conectando este hecho con la idea de la supervivencia del más apto, se deduce que aquellos individuos que poseen las características más favorables compiten en mejores condiciones y, al cabo del tiempo, se produce la selección natural; es decir, los más aptos ocupan todo el habitat y los menos “adaptados” desaparecen.

Un Ejemplo de la Selección Natural: Entre las perdices se observa, ocasionalmente, la aparición de individuos completamente blancos o albinos, o cuyo plumaje tiende a ser blanco. Estos casos se presentan, por lo demás, en muchos otros animales. Sin embargo, el porcentaje de perdices blancas es siempre muy pequeño. Se puede comprender fácilmente que, en caso de ataque por un ave de rapiña, cuando las perdices se ven obligadas a buscar refugio entre la maleza y los accidentes del terreno, las de color blanco están mucho menos favorecidas y tienen muchas más probabilidades que las otras de ser el punto de mira y la presa inmediata del halcón atacante.

Sin embargo, la variación blanca sigue apareciendo de vez en cuando entre las perdices, aunque la selección natural, que trabaja en contra de ella, le impida “fijarse” o convertirse en una característica importante. Si se tratase, sin embargo, de animales que por habitar en altas latitudes (tierras circumpolares) o altas montañas se vieran obligados a pasar una época de su vida en la nieve, el color blanco podría ser una característica favorable que los ayudaría a pasar inadvertidos.

De hecho, la coloración blanca se presenta frecuentemente en esa clase de animales, ya sea de modo estacional o fijo. Se puede suponer que la selección natural ha favorecido su fijación. Las variaciones que tienen lugar en todos los animales hacen, por tanto, que se adapten más o menos al ambiente que los rodea. Los que están bien adaptados tienen más probabilidades de vivir y reproducirse, y pueden transmitir estas variaciones favorables a su descendencia. De esta manera, una especie cambia gradualmente y acaba por estar muy bien adaptada al medioa ambiente.

Desarrollo de la teoría de la evolución

A finales del siglo XIX, el llamado neodarvinismo primitivo, que se basa en el principio de la selección natural como base de la evolución, encuentra en el biólogo alemán A. Weismann uno de sus principales exponentes. Esta hipótesis admite que las variaciones sobre las que actúa la selección se transmiten según las teorías de la herencia enunciadas por Mendel, elemento que no pudo ser resuelto Darwin, pues en su época aún no se conocían las ideas del religioso austríaco.

Durante el siglo XX, desde 1930 a 1950, se desarrolla la teoría neodarwinista moderna o teoría sintética,: denominada así porque surge a partir de la fusión de tres disciplinas diferentes: la genética, la sistemática y la paleontología. La creación de esta corriente viene marcada por la aparición de tres obra. La primera, relativa a los aspectos genéticos de la herencia, es Genetics and the origin of species (1937). Su autor, T. H. Dobzhansky, plantea que las variaciones genéticas implicadas en la evolución son esencialmente mínimas y heredables, de acuerdo con las teorías de Mendel.

El cambio que se introduce, y que coincide posteriormente con las aportaciones de otras disciplinas científicas, es a consideración de los seres vivos no como formas aisladas, sino como partícipes de una población. Esto implica entender los cambios como frecuencia génica de los alelos que determinan un carácter concreto. Si esta frecuencia es muy alta en lo que se refiere a la población, esto puede suponer la creación de una nueva especie.

Más adelante, E. Mayr desarrollará en sus obras Systematics and the origin of the species (1942) y Animal species evolution (1963) dos conceptos muy importantes: por un lado, el concepto biológico de especie; por otra parte, Mayr plantea que la variación geográfica y las condiciones ambientales pueden llevar a la formación de nuevas especies. De este modo, se pueden originar dos especies distintas como consecuencia del aislamiento geográfico, o lo que es lo mismo, dando lugar, cuando intentamos el cruzamiento de dos individuos de cada una de estas poblaciones, a un descendiente no fértil.

Atendiendo a las condiciones ambientales, en consonancia con las ideas de Dobzhansky., la selección actuaría conservando los alelos mejor adaptados a estas condiciones y eliminando los menos adaptados. En 1944 el paleontólogo G. G. Simpson publica la tercera obra clave para poder comprender esta corriente de pensamiento: en Tempo and mode in evolution establece la unión entre la paleontología y la genética de poblaciones.

Durante la segunda mitad del siglo XX se han planteado dos tendencias fundamentales, la denominada innovadora y el darvinismo conservador. La primera de ellas, cuyo máximo exponente es M. Kimura, propone una teoría llamada neutralista, que resta importancia al papel de la selección natural en la evolución, dejando paso al azar.

Por su parte, el neodarvinismo conservador, representado por E. O. Wilson, R. Dawkins y R. L Trivers, queda sustentada en el concepto de «gen egoísta»; según esta hipótesis, todo ocurre en la evolución como si cada gen tuviera por finalidad propagarse en la población. Por tanto, la competición no se produce entre individuos, sino entre los aletos rivales. Así, los animales y las plantas serían simplemente estrategias de supervivencia para los genes.

GENÉTICA Y EVOLUCIÓN: A pesar de que la teoría de Darwin demostró claramente que la variación natural era la base del cambio evolutivo no daba explicaciones acerca de cómo ocurren estas variaciones, ni de la forma en que se heredan. Los trabajos posteriores en genética han mostrado, sin embargo, cómo tiene lugar la variación y en qué forma estos cambios repentinos pueden llevar a la aparición de nuevas características.

Cada célula del organismo contiene un cierto número de corpúsculos llamados cromosomas. Cada especie tiene un número fijo de ellos y existen procesos especiales que aseguran que cada nueva célula reciba la cantidad completa que le corresponde. Cada cromosoma contiene numerosos genes, moléculas muy grandes que controlan las características de todo el organismo. Por ejemplo, hay genes que controlan el color del cabello, la forma de los dientes, etc. A veces, un solo gen es responsable de una característica; en otras ocasiones, varios genes actúan conjuntamente.

Durante la reproducción se originan diferentes combinaciones de genes, que dan lugar a ligeras variaciones (continuas) en la descendencia. A veces, sin embargo, un gen varía de forma radical, e, incluso, puede ocurrir que un cromosoma entero cambie, se rompa o desaparezca. Tales cambios repentinos se llaman mutaciones y son responsables de la aparición de nuevas características (variación discontinua).

La mayoría de las mutaciones que aparecen en un organismo son desfavorables, incluso letales, por interferir el funcionamiento del organismo. Sin embargo, de un modo ocasional y raro aparece una mutación útil que resulta favorecida por la selección natural. En ese caso, y con el transcurso del tiempo, puede llegar a incorporarse a la configuración normal de la especie.

Pruebas de la evolución

Son pruebas basadas en criterios de morfología y anatomía comparada. Los conceptos de homología y analogía adquieren especial relevancia para la comprensión de las pruebas anatómicas. Se entiende por estructuras homólogas aquellas que tienen un origen común pero no cumplen necesariamente una misma función; por el contrario, las estructuras que pueden cumplir una misión similar pero poseen origen diferente, serían análogas. De esta manera, las alas de los insectos y las aves serían estructuras análogas, mientras que las extremidades anteriores de los mamíferos, que presentan un mismo origen pero que llevan a cabo funciones diversas —locomotora, natatoria, etc.—, constituirían estructuras homólogas.

En relación a las pruebas embriológicas, hay que distinguir entre ontogenia —las distintas fases del desarrollo embrionario— y filogenia, concepto que hace referencia a las distintas formas evolutivas por las que han pasado los antecesores de un individuo, es decir, su desarrollo evolutivo. En los vertebrados, cuanto más cerca de la fase inicial se sitúan los embriones, más parecidos son; posteriormente, se van diferenciando progresivamente cuanto más cerca de la fase de adulto terminal se encuentran.

Otra de las pruebas clásicas es el estudio de los fósiles. El análisis de los distintos estratos geológicos demuestra la presencia de fósiles de invertebrados en los más antiguos; gradualmente, van apareciendo en los más recientes peces primitivos, y, finalmente, los fósiles correspondientes a los mamíferos y las aves.

EVIDENCIAS SOBRE ESTA TEORÍA:

En El origen de las especies, Darwin decía: “No vemos ninguno de estos lentos cambios en el momento en que ocurren sino hasta que el transcurso del tiempo los ha marcado”.

Muchas personas, tal como lo pensaba Darwin, suponen que todo ocurrió en un pasado distante, Los biólogos actuales, por su parte, sostienen que la evolución no solo es un fenómeno del pasado, sino que continúa hoy en día. Así, pueden citarse ejemplos del proceso evolutivo llevado a cabo en tiempos coitos, como los originados por la fuerte intervención producida por el hombre sobre el ambiente durante los siglos XIX y XX.

Uno de los ejemplos más conocidos es el de la polilla del abedul, cuyo nombre científico es Biston betularía. Los bosques británicos, cuyos árboles en general están cubiertos de líquenes de color claro, son el habitat natural de estas polillas de hábitos nocturnos. Antes de la Revolución Industrial (mitad del siglo XIX), la mayor parte de la población de polillas era de color claro, con algunas motas oscuras. Debido a que las polillas descansaban durante el día sobre los troncos de los árboles, no eran vistas por las aves depredadoras. Sin embargo, entre la población de polillas, se podían encontrar algunos individuos mutantes de Color oscuro, que eran fácilmente detectados y devorados por las aves.

Durante la Revolución Industrial, la floreciente industria británica comenzó a quemar grandes cantidades de carbón como combustible. Debido a la falta de control de la contaminación, el hollín se diseminó por los bosques, lo que provocó la muerte de los líquenes claros. De este modo, solo quedaron a la vista los troncos de los árboles, que se ennegrecieron por la contaminación.

La polilla de color claro contrastaba con el color oscuro de los troncos y era fácilmente detectada por los depredadores, pero no así la oscura: estas últimas, que hasta ese momento habían sido escasas, sobrevivían y se reproducían, y pasaban esta característica a sus descendientes. Hacia el final del siglo XIX, el 98 % de las polillas en los alrededores de la ciudad de Manchester eran de color oscuro. Esta tendencia de las variedades de color oscuro de reemplazar a las de color claro es conocida como melanismo industrial. Pero es importante recordar que la coloración negra de las polillas no fue producida por la contaminación: la selección natural “trabaja” sobre variaciones que ya existen en las poblaciones. Las medidas adoptadas en la última mitad del siglo XX para el control de la contaminación han revertido esta situación, y en las poblaciones de Biston betularía de las islas británicas, los individuos de color claro han vuelto a ser mayoría.

Existen otros ejemplos que ponen de manifiesto en tiempos cortos el proceso evolutivo, tales como la resistencia de algunos insectos a los insecticidas o la resistencia de las bacterias a algunos antibióticos.

El Origen del Planeta Tierra

Fuente Consultada:
TECNIRAMA N°90 Enciclopedia de la Ciencia y la Tecnología – Como actua la evolución –
CONSULTORA Enciclopedia Estudiantil Tmo II Los Seres Vivos
Gran Enciclopedia Universal (Espasa Calpe) – Teoría de la Evolución –
Sitio Web Wikipedia.

Nombre de las Placas Tectonicas Ubicacion y Teoria Resumen

La deriva continental: Desde la prehistoria, la búsqueda de minerales metálicos proporcionó a los mineros un amplio conocimiento empírico de la estructura de la corteza terrestre: la forma en que diferentes rocas se disponen en estratos una encima de otra, la posibilidad de que las vetas minerales se abran paso a través de los estratos, y así sucesivamente.

Pero el fundador de la geología como ciencia fue James Hutton, (imagen) que trabajó en Escocia durante la segunda mitad del siglo XVIII. Sus ideas fueron desarrolladas en el siglo XIX por otros precursores, como los geólogos británicos Charles Lyell y Archibald Geikie.

Sus investigaciones entraron en conflicto con las creencias más establecidas sobre la edad de la Tierra y las fuerzas que la habían modelado. Según la opinión predominante, la historia geológica sólo podía interpretarse como una sucesión de catástrofes, entre ellas, el diluvio universal en tiempos de Noé.

Durante los años 60, las ideas científicas sobre la corteza terrestre cambiaron espectacularmente al confirmarse ciertos vagos conceptos que se habían desarrollado durante los tres últimos siglos.

Desde que en 1620 el filósofo inglés Francis Bacon advirtiera que África y América del Sur parecen dos piezas de un enorme rompecabezas, muchos trabajaron sobre esta idea. El más influyente fue el meteorólogo alemán Alfred Wegener, quien en 1915 propuso la teoría de la «deriva continental», según la cual todos los continentes estuvieron unidos en algún momento del pasado. La idea encontró dos partidarios, durante los años 20 y 30, en el geólogo británico Arthur Holmes y el geólogo sudafricano Alexander du Toit.

La aceptación comenzó en 1960, cuando el geofísico norteamericano Harry Hess comprobó que ciertos descubrimientos hechos por oceanógrafos durante la década anterior se ajustaban perfectamente a la idea de la deriva continental.

Entre estos hallazgos figuraba el hecho de que la cordillera que discurre por el centro del océano Atlántico forma parte de un sistema montañoso que puede observarse en todos los océanos, así como el hallazgo de que la corteza terrestre debajo de los océanos es notablemente delgada.

Hess sugirió que las cordilleras oceánicas estaban situadas sobre corrientes de convección ascendentes en el manto y que el material que afloraba, empujado por estas corrientes, se solidificaba en la superficie para formar nueva corteza; esta nueva corteza, a su vez, se desplazaba lateralmente con respecto a la línea de actividad. Estas ideas indicaban que la corteza en las proximidades de las cordilleras era muy reciente y que sería más antigua cuanto más lejos se encontrara del sistema montañoso. Hess denominó a este concepto «expansión del lecho oceánico».

En 1963, los geólogos británicos Fred J. Vine y Drummond H. Matthews descubrieron que la corteza oceánica a ambos lados de la cordillera atlántica estaba magnetizada en bandas paralelas, presentando cada banda una polaridad opuesta a la de sus vecinas. En 1966, se sabía ya que la polaridad del campo magnético de la Tierra se ha invertido varias veces en el pasado reciente, por lo que se dedujo que cada parte nueva de la corteza, en el momento de su formación, asumía la polaridad magnética reinante en su época.

En 1967, el geofísico norteamericano Hugo Benioff observó que los hipocentros de los terremotos en una región sísmica están localizados sobre un plano inclinado que desciende por el borde del continente. El sismólogo japonés Kiyoo Wadati realizó la misma observación, pero el fenómeno recibe solamente el nombre de Benioff.

La «zona de Benioff» representa una zona antigua de la corteza en proceso de sumergirse en el manto terrestre y ser destruida. En esos puntos, el material fundido de la corteza se abre paso hacia la superficie y forma volcanes.

Todos estos fenómenos se combinaron en un único concepto a fines de los años 60. La superficie de la Tierra consiste en varias placas, cada una de las cuales se crea continuamente a lo largo de una cordillera oceánica y se destruye continuamente en una zona de Benioff. El término «placa» fue acuñado por el geólogo norteamericano W. Jason Morgan y, en la actualidad, el concepto en su totalidad recibe el nombre de «tectónica de placas».

mapa tectonicas de placas

Sucesora de la teoría de la deriva continental, la teoría de la tectónica de placas, enunciada a principios de la década del ’70 por varios científicos, postula la existencia de placas litosféricas que se desplazan en forma más o menos independiente unas de otras sobre la blanda astenosfera. También explica la distribución global de los volcanes y de los terremotos.

La litosfera no es una capa continua y uniforme, sino que está dividida en grandes fragmentos o placas litosféricas. Estos fragmentos tienen cierta independencia unos de otros y se desplazan flotando sobre la astenosfera, en forma similar a como lo hacen los grandes bloques de hielo que flotan sobre el agua. Cada una de las placas está totalmente rodeada de otras, y sus formas y tamaños son variados e irregulares.

Existen ocho grandes placas litosféricas: la Pacífica, la Europa-africana, la Antártica, la Asiática, la Norteamericana, la Sudamericana, la Indoaustraliana y la de Nazca, y algunas placas menores, como la del Caribe, la Filipina, la de Cocos y la Arábiga.

1 Placa norteamericana 2 Placa pacífica 3 Placa de Nazca 4 Placa sudamericana
5 Placa africana 6 Placa arábiga 7 Placa eurasiática 8 Placa antártica
9 Placa indoaustraliana ____ Convergente ______ Divergente  
bordes tectonicos divergente

Bordes convergentes o destructivos. Dos placas con bordes comunes se acercan y colisionan. Una de las placas desciende y se Introduce debajo de la otra (subducción). Se produce este fenómeno cuando el borde de una placa oceánica, que es densa y delgada, choca contra una placa continental, menos densa y más gruesa: la primera se introduce por debajo de la segunda, se ablanda y se funde en el manto. Durante este proceso, se destruye litosfera oceánica. Esto ocurre, por ejemplo, con la placa de Nazca que choca y se introduce debajo de la placa Sudamericana.

bordes tectonicos divergente

Bordes divergentes o constructivos. Dos placas con bordes comunes se alejan o divergen y se forma entre ambas una brecha, a través de la cual asciende el material del magma. Éste se solidifica y se adhiere a los bordes de las placas oceánicas, proceso denominadoacreción, con lo cual se forma nueva litosfera oceánica. Esto ocurre, por ejemplo, con los bordes divergentes de la placa Sudamericana y la Africana.

bordes tectonicos frontera transformacion

Bordes transformantes. Los bordes comunes de dos placas se desplazan uno al lado del otro, lateralmente. En este caso, las placas no chocan ni se alejan: no se crea ni se destruye litosfera; sin embargo, este desplazamiento genera enormes fricciones que liberan energía en forma de terremotos. Uno de los ejemplos más conocidos de bordes transformantes es la falla de San Andrés, en California, producida por el desplazamiento lateral de la placa Pacífica y la Norteamericana.

 LOS BORDES DE PLACAS: BORDES DE LAS PLACAS
En las zonas en que están en contacto dos placas, es decir en sus bordes,,tienen lugar los principales fenómenos geológicos que modelan la superficie del globo. Según sean los movimientos relativos de dos placas en contacto, tenemos tres tipos de bordes.

Los bordes divergentes o constructivos corresponden a las dorsales oceánicas medias. En ellas se da un abundante vulcanísmo, que genera kilómetros cúbicos de basaltos, de composición muy uniforme. Y esta acumulación de basaltos, que presentan el aspecto de lavas almohadilladas por haberse vertido en el mar, forma la nueva corteza oceánica y hace que las dos placas adyacentes se muevan en sentidos opuestos. Al vulcanismo se le suma una actividad sísmica poco profunda.

Los bordes convergentes o destructivos corresponden a las zonas de subducción. Cuando dos placas que se desplazan en sentidos opuestos entran en contacto, una de las dos se hunde bajo la otra y va a destruirse en el manto.

La convergencia va acompañada de violentos fenómenos. Al hundirse, la placa inferior provoca rozamientos que se traducen en movimientos sísmicos. Provoca, también, la producción de magma, que alimenta volcanes de carácter frecuentemente explosivo.

Comprime y deforma fuertemente la placa superior, originando en ella un levantamiento que se convierte en cordillera. Si ambas placas son oceánicas, como en el Pacífico occidental, el levantamiento es un arco insular, erizado de múltiples volcanes, que emerge progresivamente.

Si una placa oceánica entra en contacto con otra continental, la placa oceánica se hunde por debajo de ésta y origina la formación de una imponente cordillera en el borde de la placa continental: es, por ejemplo, el caso de los Andes. Pero la prosecución del movimiento puede hacer que entren en contacto dos continentes y que, al colisionar ambas masas, el movimiento quede bloqueado: así ocurrió en el Himalaya.

Añadamos, por último, que en algunas zonas las placas en contacto se deslizan lateralmente una con respecto a otra. Son los bordes conservadores, así llamados porque en ellos no se da destrucción ni construcción. Dichos bordes quedan materializados por grandes fallas verticales, o fallas transformantes, a lo largo de las cuales se producen intensas fricciones que provocan violentos seísmos. La falla de San Andrés es un buen ejemplo.

Inventos de Edison Bombilla Eletrica Fonografo Historia y Evolución

Thomas Alva Edison es uno de los más famosos inventores de América: perfeccionó el telégrafo, el teléfono, inventó el mimeógrafo, aportó al cine y la fotografía, para, finalmente, gravar su nombre en el primer fonógrafo. Fue responsable de importantes cambios en la ciencia.

Sus inventos creados han contribuido a las modernas luces nocturnas, películas, teléfonos, grabaciones y CD’s. Edison fue realmente un genio. Edison es famoso por su desarrollo de la primera ampolleta eléctrica.

El fonógrafo de tinfoil fue la invención favorita de Edison. Hacia 1877, inventó la “máquina que habla” por accidente, mientras trabajaba en telegrafía y telefonía; pero el fonógrafo no salió a la venta sino hasta 10 años después. También trabajó en una máquina para grabar mensajes telegráficos automáticamente.

La primera demostración práctica, coronada con un éxito completo, tuvo lugar en Menlo Park, el 21 de octubre de 1879, y dio paso a la inauguración del primer suministro de luz eléctrica de la historia, instalado en la ciudad de Nueva York en 1882, y que inicialmente contaba con 85 abonados.

Para poder atender este servicio, Edison perfeccionó la lámpara de vacío con filamento de incandescencia, conocida popularmente con el nombre de bombilla, construyó la primera central eléctrica de la historia (la de Pearl Street, Nueva York) y desarrolló la conexión en paralelo de las bombillas, gracias a la cual, aunque una de las lámparas deje de funcionar, el resto de la instalación continúa dando luz.

La Primer Llamada Telefonica de la Historia Bell Inventor

La Revolución Industrial popularizó tanto los avances científicos como sus aplicaciones técnicas; el ferrocarril, la electricidad, el teléfono o las vacunas consiguieron que en la mentalidad de las sociedades europea y americana se estableciese el ideal de progreso continuado y una fe ciega en las posibilidades de la ciencia y la técnica: las exposiciones universales fueron un ejemplo de esta actitud.

Los propios científicos se convirtieron en propagandistas del progreso con la creación de instituciones y sociedades dedicadas a esta tarea, como la Royal Institution, fundada por Rumford en Londres (1 799) y animada por científicos como Davy y Faraday. Pronto se iniciará también una colaboración internacional plasmada en la celebración de congresos como los de estadística (1853), química (1860), botánica (1864) y medicina (1867).

Otro hecho interesante que hay que destacar es el de la conversión de la actividad científica en un acontecimiento de amplias repercusiones sociales, es decir, en un fenómeno sociológico. Las aplicaciones de la física en la industria, o de la biología en la medicina, provocaron el cambio de actitud de la sociedad frente a los avances científicos. Los gobiernos que desde el siglo XVI impulsaron la fundación de universidades y academias, iniciarán, a partir del despotismo ilustrado y por influencia de los enciclopedistas, una actuación que se podría calificar de «política científica».

Estas acciones supondrán la extensión de la enseñanza superior, cambios en los planes de estudio y realización de tareas científico-técnicas fomentadas y financiadas por las monarquías del Antiguo Régimen. Academias, observatorios y expediciones científicas se prodigarán en Europa durante el siglo de las Luces.

Una derivación del telégrafo que finalmente tuvo un efecto igual de grande fue el teléfono. Patentado en Estados Unidos en 1876 por Alexander Graham Bell, y perfeccionado por el inventor Tomás Alva Edison, el teléfono pronto se asentó. En 1884, la compañía de Bell puso en funcionamiento la primera línea de larga distancia entre Boston y Nueva York. Las redes de cables, parte vital para las comunicaciones, fueron desarrolladas en varias naciones. Marcar los números sin recurrir a la operadora aceleró el proceso telefónico y, poco después, la mayoría de las grandes ciudades contaron con sus propias redes.

El teléfono en una exposición: Es casi seguro que Bell no se diese cuenta de la inmensa trascendencia de su invento, pero lo cierto es que en el mes de julio de 1876, se celebró en Filadelfia una gran exposición con motivo de la conmemoración de la independencia de Estados Unidos.

Es muy posible que Bell no pensara llevar su invento a dicha exposición, puesto que tal vez consideraba que el aparato, compuesto por un receptor harto rudimentario, un transmisor y un hilo que hacía vibrar la membrana metálica, que Bell ya había patentado con el nombre de teléfono, no era digno de figurar en una exposición de tanto prestigio.

Pero intervino el amor. Efectivamente, Bell fue a la estación de Boston a despedir a su amada que, junio con su padre, se marchaba a Filadelfia. El joven subió a un vagón, incapaz de contener los impulsos de su enamorado corazón, y así llegó a la capital di Pennsylvania. Luego, pidió por carta a Watson que le enviase el aparato, y logró exponerlo en un rincón

Durante varios días nadie se acercó a conocer su invento. Pero de pronto se produjo el milagro. El mismo  día en que la Comisión se disponía a conceder los diversos premios establecidos, un personaje con gran séquito, nada menos que el emperador Pedro, del Brasil, se acercó a la mesa de Bell. Lo cierto era que el emperador había conocido al joven Bell cuando éste enseñaba a los sordomudos en su país. Tan pronto como el Emperador reconoció a Bell, lo abrazó, con gran asombro de todos los presentes y, como es natural, todos se interesaron por el inventor y su invento.

El propio Emperador, después de oír unas palabras a través del receptor, exclamo:
—Este aparato habla!

Estas palabras cambiaron por completo la vida y la fortuna de Alexander Graham Bell. La aludida Comisión estudió el aparato, y de aquella exposición surgieron dos cosas importantísimas en la vida de Bell: su boda con su amada y la intervención de su suegro en las patentes del joven, todo lo cual tuvo como epílogo la producción del teléfono en serie, su perfeccionamiento y su propagación por todo el mundo.

Sólo hubo una amargura en medio de su triunfo:
Bell, que había dedicado gran parte de su juventud a enseñar a vocalizar y hablar a los sordomudos, jamás consiguió que su linda esposa, sordomuda también, llegase a hablar y a oír a su marido, ni por teléfono ni de viva voz.

ANTECEDENTES DE LA ÉPOCA: Las ventajas materiales constantemente crecientes y a menudo espectaculares, generadas por la ciencia y la tecnología, dieron lugar a un aumento de la fe en los beneficios de esta rama del saber y el hacer humanos. Aun la gente ordinaria que no entendía los conceptos teóricos de la ciencia estaba impresionada por sus logros.

La popularidad de los logros científicos y tecnológicos condujo a la extendida aceptación del método científico, basado en la observación, el experimento y el análisis lógico, como único camino a la verdad y a la realidad objetivas. Esto, a su vez, minó la fe de mucha gente en la revelación y la verdad religiosas. No es por accidente que el siglo XIX llegó a ser una época de creciente secularización, que de manera particular se manifiesta en el crecimiento del materialismo o la creencia de que todo lo mental, espiritual o sentimental era, sencillamente, una excrecencia de las fuerzas físicas.

La verdad había de encontrarse en la existencia material concreta de los seres humanos, no como la imaginaban los románticos, en las revelaciones obtenidas por destellos del sentimiento o de la intuición.

La importancia del materialismo fue asombrosamente evidente en el acontecimiento científico más importante del siglo XIX, el desarrollo de la teoría de la evolución orgánica mediante la selección natural. Sobre las teorías de Charles Darwin podría construirse un cuadro de los seres humanos como seres materiales, que eran parte sencillamente del mundo natural.

Primera Asociacion Internacional de Trabajadores del Mundo

La Primera Internacional y la Comuna

La expansión del sistema capitalista a través de la industrialización progresiva del continente generalizó las condiciones de vida de los obreros, pero también sus reivindicaciones. Al mismo tiempo, la actuación coordinada de los diferentes gobiernos contra los opositores políticos redundaba en la necesidad de la cooperación más allá de la diversidad nacional.

La toma de conciencia por parte de la clase trabajadora fue más rápida que la manifestación práctica de esa doble realidad. Los primeros intentos organizativos sucumbieron a causa de las numerosas tendencias socialistas y la represión gubernamental. La recuperación del asociacionismo obrero tras las revoluciones de 1848 creó nuevas expectativas gracias a la aportación marxista. Ambos factores condujeron a la fundación de la Asociación Internacional del Trabajadores (AIT) en 1864, conocida históricamente como la Primera Internacional.

Como decíamos antes, en 1864 se fundó en Londres la Asociación Internacional de Trabajadores, formada por sindicatos ingleses y franceses de obreros especializados, buscando en ella más una asistencia mutua de tipo sindical que un programa de acción política de tipo colectivista, a pesar de que Marx fue su principal impulsor y quien redactó el mensaje inaugural: “La Internacional es prohibida en la mayor parte de los países y aunque divisiones internas entre anarquistas y marxistas le restan mucha fuerza, aun así consiguió cierta extensión, no solamente en Europa, sino también en Estados Unidos”.

Los antecedentes más cercanos acerca de una organización internacional de trabajadores se encuentran en la Liga de los justos (1826), convertida a instancias de Marx en Liga de los Comunistas. Otros precursores fueron la británica Fraternal Democrats y la belga Association Démocratique. El último paso está representado por la International As

ESTATUTO DE LA PRIMERA INTERNACIONAL

Art. 1°: Se establece una asociación para procurar un punto central de comunicación y de corporación entre los obreros, de diferentes países, que aspiran al mismo objetivo, a saber: el concurso mutual, el progreso y la total liberación de la clase obrera.

Art. 2°: El nombre de esta asociación será: Asociación Internacional de Trabajadores.

Art. 3°: En 1865 tendrá lugar, en Bélgica, la reunión de un Congreso General. Este Congreso deberá dar a conocer a Europa las comunes aspiraciones de los obreros, concluir el reglamento definitivo de la Asociación Internacional, examinar los mejores medios para asegurar el éxito de su trabajo y elegir el Consejo General de la Asociación. El Congreso se reunirá una vez al año.

Art. 4°: El Consejo General radicará en Londres y constará de obreros que representan a las diferentes naciones que formen parte de la Asociación Internacional. (…)

En París, en 1871, se produjo una insurrección obrera que consiguió controlar la ciudad durante más de un mes.

La Comuna fue una sublevación espontánea contra los elementos conservadores que habían triunfado en las elecciones, a pesar de haber sido los responsables de la derrota, los sufrimientos del asedio de la ciudad y la capitulación frente a los prusianos.

El manifiesto de la Comuna fue un auténtico proyecto para crear un Estado socialista formado por municipios comunes— libres y autónomos, federados entre sí a nivel nacional e incluso internacional. Se adoptó la bandera roja como enseña, se decreté la separación de la Iglesia y el Estado, y se realizó una avanzada legislación social que reglamentaba el trabajo.

La Comuna de París tendría una enorme resonancia en el mundo, tanto entre el dividido movimiento obrero, que por primera vez veía la realización práctica de sus programas, como entre las burguesías y los gobiernos europeos, que se disponían a tomar medidas represivas en previsión de hechos similares.

La Comuna, totalmente aislada y sin ningún apoyo exterior, fue aplastada después de una terrible represión del ejército francés; se calcula que el número de ejecuciones ascendió a unas 20 mil. Con ello también la Internacional en el Congreso de La Haya, de 1872, entró definitivamente en crisis, tanto por los enfrentamientos internos como por su fracaso en acudir en ayuda de la Comuna de París o en no haber logrado evitar la guerra franco-prusiana, que fue un preludio del fracaso similar del movimiento obrero europeo de 1914.

La fundación. La Primera Internacional surgió de la colaboración entre las clases obreras británica y francesa, en consonancia con la mayor industrialización de sus respectivos países. El sindicalismo británico practicaba una acción reformista sin ninguna referencia al socialismo. Las corporaciones de oficios (trade-unions) sólo agrupaban a los obreros cualificados, interesados en ampliar los derechos políticos y sindicales.

Logros cientificos Siglo XIX Teoria Electromagmetica de Maxwell

La caída del principio de “libre competencia”, bajo la aplastante tendencia a la concentración de la producción y los capitales en la segunda fase de la Revolución Industrial, supuso también una transformación importante en el desarrollo del quehacer científico y en la elaboración de las nuevas técnicas. Durante el proceso de la industrialización, el desarrollo científico y técnico no conocía más ritmos que el de un progreso lineal constante. Sin embargo, la producción científica caminaba dentro de los márgenes de una cierta autonomía, pero siempre bajo la tutela del empresario capitalista emprendedor.

El estímulo económico de la libre competencia repercutía, sin duda, en el campo de la investigación. Por otra parte, las fuertes crisis cíclicas del capitalismo industrial, fundamentalmente de superproducción, forzaban a condicionar la técnica a una continua depuración. Había un hilo común que iba de estas crisis de superproducción, a través de la caída de los precios y el desempleo que produce el maquinismo, hasta la caída del nivel de consumo de las clases trabajadoras.

JAMES C. MAXWELL En la historia de la ciencias  hay algunos científicos virtualmente desconocidos para el gran público, aunque sus logros sean casi tan importantes como los de los de Einstein, Darwin y Newton. Éste es el caso del físico escocés James Clerk Maxwell.

Los científicos profesionales, y los físicos en particular, lo reconocen como uno de los más inteligentes e influyentes que hayan vivido nunca, pero fuera de los círculos científicos su nombre apenas es conocido.

Maxwell nació en Edimburgo, en 1831, el mismo año en que Faraday logró su máximo descubrimiento, la inducción electromagnética, en 1831. Descendiente de una antigua familia de nobles blasones, Maxwell era un niño prodigio. En 1841 inició sus estudios en la Academia de Edimburgo, donde demostró su excepcional interés por la geometría, disciplina sobre la que trató su primer trabajo científico, que le fue publicado cuando sólo tenía catorce años de edad.

A pesar de que su madre murió cuando tenía ocho años, tuvo una infancia feliz. A una edad temprana ya demostró ser una promesa excepcional, sobre todo en matemáticas. Cuando tenía quince años, sometió un escrito sobre matemáticas a la Royal Society de Edimburgo, que asombró a todos los que lo leyeron. Al año siguiente tuvo la suerte de conocer al físico de setenta años William Nicol, que también vivía en Edimburgo.

Nicol había hecho un trabajo importante utilizando cristales para investigar la naturaleza y la conducta de la luz, y las conversaciones adolescentes de Maxwell con él hicieron que sintiera un interés por la luz y otras formas de radiación que le duró toda la vida.

Estudió matemáticas con sobresaliente en Cambridge y se graduó en matemáticas en 1854; siendo estudiante, tuvo la experiencia intelectual que definió su vida: la lectura de las Investigaciones experimentales en electricidad de Faraday. Todavía estudiaba cuando realizó una gran contribución al desarrollo del tema con un brillante escrito titulado Sobre las líneas de fuerza de Faraday.

Más tarde fue asignado a la cátedra de filosofía natural en Aberdeen, cargo que desempeñó hasta que el duque de Devonshire le ofreció la organización y la cátedra de física en el laboratorio Cavendish de Cambridge. Tal labor lo absorbió por completo y lo condujeron a la formulación de la teoría electromagnética de la luz y de las ecuaciones generales del campo electromagnético.

En 1856, a los veinticinco años, fue nombrado profesor en el Marischal College de Aberdeen; y en 1860 se trasladó al Kings College de Londres como profesor de filosofía natural y astronomía. Fue en esa época de la mudanza a Londres cuando realizó su primera gran contribución al avance de la física.

En tal contexto, Maxwell estableció que la luz está constituida por ondulaciones transversales del mismo medio, lo cual provoca los fenómenos eléctricos y magnéticos. Sus más fecundos años los pasó en el silencioso retiro de su casa de campo. Allí maduró la monumental obra «Trealise on Electricity and Magnetism» (1873).

James Clerk Maxwell falleció en Cambridge, el 5 de noviembre de 1879.

ALGO MAS…

1-Formuló la hipótesis de la identidad de la electricidad y la luz.

2-Inventó un trompo para mezclar el color y un oftalmoscopio, instrumento que permite ver el interior del ojo de una persona viva, o de un animal. Experimentalmente demostró que la mezcla de dos determinados pigmentos de pintura constituía un proceso diferente a la mezcla de los mismo colores de luz. Sus principios fundamentales sobre la mezcla de colores se emplea en la actualidad es la fotografía, la cinematografía y la televisión.

3-Maxwell corrigió a Joule, Bernouilli y Clausius que habían sostenido que propiedades de los gases como la densidad, la presión, le temperatura eran debidas a que un gas está compuesto de partículas de movimiento rápido y velocidad constante. Maxwell demostró que la velocidad no es constante y que varía de acuerdo con la curva de frecuencia en forma de campana que se conoce como ley de Maxwell. Sus descubrimientos han servido de fundamento a las teorías de las física del plasma. Maxwell inventó la mecánica estadística para analizar las velocidades moleculares de los gases.

Leyes de la Herencia de Mendel Historia de sus Experiencias

Historia de las Experiencias de Mendel y El Auge de la Genética

A partir de 1856  y después de nueve años de trabajo, en que estudió la reproducción en 28.000 plantas de guisantes, Mendel presentó en 1865 sus resultados a la citada sociedad de historia natural. La comunicación, en la que establecía las leyes de la herencia, fue publicada al año siguiente en los anales de la sociedad. ¿Cómo pudo pasar inadvertida durante treinta y cuatro años? Es un enigma de la historia de la ciencia. Una de las razones pudo consistir en que Mendel no se preocupó de publicar sus trabajos en alguna revista científica de amplia difusión. Pero también hay que tener en cuenta, sobre todo, que sus descubrimientos contradecían radicalmente las ideas que entonces se tenían sobre la herencia: según Mendel, los determinantes genéticos de los caracteres provenientes de los padres no se «mezclaban» en sus descendientes, cuando la teoría más común era la de la herencia por mezcla. En otras palabras: la obra de Mendel era prematura en relación a los conocimientos prácticos y teóricos de su época.

Mendel tuvo la fortuna de contar, en su propio monasterio, con el material necesario para sus experimentos. Comenzó sus trabajos estudiando las abejas, coleccionando reinas de todas las razas, con las que llevaba a cabo distintos tipos de cruces.

Entre 1856 y 1863 realizó experimentos sobre la hibridación de plantas. Trabajó con más de 28.000 plantas de distintas variantes del guisante oloroso o chícharo, analizando con detalle siete pares de características de la semilla y la planta: la forma de la semilla, el color de los cotiledones, la forma de la vaina, el color de la vaina inmadura, la posición de las flores, el color de las flores y la longitud del tallo.

Sus exhaustivos experimentos tuvieron como resultado el enunciado de dos principios que más tarde serían conocidos como «leyes de la herencia». Sus observaciones le permitieron acuñar dos términos que siguen empleándose en la genética de nuestros días: dominante y recesivo. Factor e hibrido son, asimismo, dos de los conceptos establecidos por Mendel de absoluta vigencia en la actualidad.

El descubridor de Mendel: Después de realizar sus estudios en Viena,Tschermak decidió adquirir experiencia en agricultura y trabajó en la granja Rotvorwerk, cerca de Friburgo (Sajonia). Luego retomó sus estudios de botánica en la universidad de Halle y se doctoró en 1896. En la primavera de 1898, Tschermak comenzó a estudiar la reproducción del guisante en el jardín botánico de Gante, y luego en Esslingen, cerca de Viena.

En 1900, con la intención de publicar sus resultados, encontró las huellas de los trabajos de Mendel y reconoció con sorpresa que éstos ya exponían e incluso sobrepasaban sus investigaciones personales. Eminente genetista de plantas, Tschermak aplicó seguidamente las leyes de la herencia de Mendel al desarrollo de nuevas plantas y logró perfeccionar los híbridos trigocenteno y un híbrido de avena de crecimiento rápido resistente a las enfermedades.

UN RECONOCIMIENTO TARDÍO
Mi las dos ponencias sobre sus descubrimientos ante la Asociación de ciencias naturales de Brünn en febrero y marzo de 1865, ni el texto publicado en el volumen y de las actas de la asociación fueron objeto de comentarios. Sin duda, esta indiferencia del mundo científico se explica por el carácter insólito del pensamiento mendeliano, que podía parecer «antibiológico», sobre todo en 1865; por el corte”secular que separaba, a los ojos de los naturalistas, los problemas de la herencia de aquellos de la hibridación, y quizás también por el aspecto aparentemente «inmutable» de las conclusiones del autor, en una época marcada por la repercusión de El origen de las espicies.

El propio Mendel, elegido en 1868 superior de su convento, abandonó hacia 1870 sus investigaciones sobre la hibridación, limitó sus observaciones a la meteorología y consagró sus fuerzas, hasta su muerte, en los asuntos de su comunidad. Murió siendo totalmente desconocido el 6 de enero de 1884. Debieron transcurrir treinta y cuatro años para que se reconociera el verdadero alcance de sus descubrimientos.

En 1900, tres botánicos europeos, Cari Correns, Erich Tschermak von Seysenegg y Hugo de Vries, obtuvieron en forma independiente resultados similares a los de Mendel y, al investigar en la literatura sobre el tema, sacaron a la luz sus trabajos, asegurando al padre de la genética un tardío reconocimiento.

EL AUGE DE LA GENÉTICA
EL descubrimiento de las leyes de Men-del siguió una verdadera floración de investigaciones sobre genética. De entrada, desde 1902, Lucien Cuénot (1866-1951), en Francia, y William Bateson (1861-1926), en Gran Bretaña, demostraron que dichas leyes eran válidas también para el reino animal (hasta entonces, tanto en los trabajos de Mendel como en los de H. De Vries, C. E. Correns y E. Tschermak, habían sido establecidas sólo para los vegetales). Paralelamente, el biólogo norteamericano W. S. Sutton (1877-1916) y el alemán T. Boveri (1862-1915), al advertir que los cromosomas se distribuyen en la reproducción exactamente igual que lo hacen los genes, dedujeron que aquéllos son el soporte físico de éstos (aunque hubo que esperar a los trabajos de T. H. Morgan, en la década de 1910, para que esta hipótesis se aceptara sin reticencias). En 1909, el biólogo danés W. L. Johannsen (1857-1927) fue el primero en usar el término gen, diferenciando genotipo y fenotipo, y al año siguiente el norteamericano E. M. East (1879-1938) demostró que los caracteres sujetos a variación continua (como el tamaño) están controlados por varios genes a la vez. Entre tanto, el matemático británico G. H. Hardy (1877-1947) y el biólogo alemán W. Weinberg (1862-1937) determinaron la más fundamental de las leyes de la genética de poblaciones (principio de Hardy-Weinberg), que permitió a los matemáticos y biólogos posteriores plantear, sobre bases sólidas, un análisis genético de la evolución de las especies.

LAS SEMILLAS Y FRUTOS MAS IMPORTANTES DE LA HUMANIDAD Alimentacion Quinua

SEMILLAS Y FRUTOS MAS IMPORTANTES DE LA HISTORIA

semillas mas importantes de la historia

-7000 China y Corea: Las enorme dimensiones de la población actual se deben tanto al cultivo del arroz como a los fertilizantes artificiales. Esta planta puede alimentar a mas seres humanos por hectárea que cuaquier otro cultivo. (Ver: Arroz)

semillas mas importantes de la historia

-7000 en Próximo Oriente: Las variedades resultado de la selección artificial que hoy cononemos solo empezaron a cultivarse despúes del periodo frio “Younger Dryas” hace unos 12.000 años. Esta labor produjo una variedad domesticada con espigas largas que se mantenían unidad firmemente al tallo (lo que hacia que cocecharlas y molerlas sea mas fácil)

semillas mas importantes de la historia

-5000 en Centroamérica: Conseguido laboriosamente a partir del teocinte silvestre por los primitivos agricultores centroamericanos, el maiz se convirtió llegado el momentos en el cultivo basico de todos los pueblos indigenas de América. Para el siglo XVo, los exploradores europeos habían difundido el maiz por todo el mundo.

semillas mas importantes de la historia

4000 a.C. en Asia, Oriente Próximo y Europa: Aunque el uso medicinal del opio se remonta a los primeros granjeros del Neolitico, es hacia el siglo XIX que el extraido de las cabezas de adormidera se convierte en una mercancía de primera importancia a nivel internacional. La morfina otro derivado, continua siendo uno de los analgésicos mas utilizados del mundo.

semillas mas importantes de la historia

3000 a.C. en Sudámerica y 1600 d.C en Europa: Los nativos del sudámerica cultivaron selectivamente centenares de variedades de este tubérculo de gran valor nutritivo , pero los colonos del siglo XVI sólo exportaron cuatro de ellas a Europa. En el siglo XIX esta falta de diversidad provocó la aparicón en Europa de plagas desvastadoras que arruinaron cosechas y forzaron a cientos de miles a emigrar a América y Australia.

Ver: Hambre en Irlanda

La Papa

semillas mas importantes de la historia

3000 a.C. en el Sudeste Asiático: La deforestación que se llevó a cabo en Nuevo Mundo con el fin de crear plantaciones de caña de azúcar modificó de forma impresionante el paisaje e inició una nueva era de esclavitud, que finalmente se desbordaría en el conflicto armado en la guerra civil americana.

semillas mas importantes de la historia

Morera 2500 a.C. en China: Se dice que fue Leizu, una emperatiz china , quien descubrió como se podía convertir en hilos de seda los capullos que tejía la larva de una polilla que se alimenntaba con hojas de morera. Más tarde , se descubrió un procesi para la fabricación de papel que utilizaba la corteza de este árbol. El papel es una de las mayores contribuciones al desarrollo económico y la forestación global.

semillas mas importantes de la historia

Antes de 1000 a.C. en China: Los gobernantes chinos usaban esta hoja de camelia con fines medicinales , y los monjes budistas la aprovechaban para mantenerse despiertos durante sus oraciones. Para el siglo XIX los británicos se habían vueltos adictos al té, tanto que el proveniente de China se obtenia a cambio del opio cultivado en Bengala , lo que era ilegal y provocó la Guerra del Opio.

Ver: Planta de Té

semillas mas importantes de la historia

-700 en el Mediterráneo: Las aceitunas son un fruto de gran valor energético que crece en terrenos accidentados y cuyo cultivo no exige un esfuerzo desmesurado. La riqueza producto de las aceitunas proporcionó a las antiguas ciudades griegas tiempo y ocio suficientes para el desarrollo de investigaciones cientificas y nuevos experimentos sociales incluidos la democracia y el republicanismo.

semillas mas importantes de la historia

1600 d.C. Sudamérica: Este extrato de la corteza del quino proporcionó a los colonos europeos su primera protección eficaz contra la malaria, una enfermedad transmitida por el mosquito. La quina se convirtió en un pasaporte para la colonización de Africa, por parte de los europeos y, en última instancia, hacia las circunstancias que darían origen a lo que en la actualidad conocemos como el Tercer Mundo.

Fuente: Todo Sobre Nuestro Mundo Cristopher Loyd

EL TRIGO, LA SEMILLA MAS FAMOSA: Se ha dicho que los cereales no sólo alimentan a los hombres, sino que, además, los unen, y a veces les ayudan a escribir su historia. De esta manera se habla de las civilizaciones del trigo, del arroz y del maíz.

El trigo, que se cree que es originario del Asia Menor, se extendió pronto por Europa y hoy es considerado el cereal europeo característico, por lo que se dice que la civilización de Europa es la civilización del trigo. El arroz, cultivado inicial-mente en Indonesia, predomina en Asia, donde se ha desarrollado la llamada civilización del arroz. El maíz es el cereal americano por excelencia: desde su posible región original, Perú, se extendió por las Américas, y fue el sostén económico de la civilización del maíz que encontraron en pleno florecimiento los europeos.

Hace más de 6.000 años, en plena edad Neolítica, el trigo era cultivado en el Cercano Oriente, pues en muchas tumbas de aquella época se han encontrado granos de trigo. Después de extenderse por Asia, Europa y África, fue traído a América y llevado a Australia.

El trigo necesita para producir entre 50 y 70 cm. de lluvia y por lo menos 90 días sin heladas. Durante su crecimiento el tiempo debe ser húmedo y fresco, pero para madurar necesita tiempo seco y sol brillante. Las áreas trigueras predominan en las latitudes medias, y que más allá de los 65° de latitud no se puede cultivar trigo. En las latitudes bajas es posible cultivar trigo en las mesetas, lo que explica la producción de Colombia, Venezuela, Centroamérica y Etiopía. En la India se cultiva en las regiones altas, porque las lluvias monzónicas llegan cuando ya ha sido cosechado el grano.

El trigo no es muy exigente en cuanto a suelos, siempre que no sean demasiado húmedos o secos. Las áreas ideales son las de suelos negros (chernozem) ricos en humus. El trigo es el cereal de más consumo en el mundo, y el que entra en mayor escala en el comercio internacional. Esta popularidad del trigo ha sido explicada porque contiene mucho valor alimenticio en relación con su volumen y peso; no se deteriora fácilmente y es fácil de almacenar.

Las grandes regiones productoras de trigo son actualmente: 1) las llanuras centrales de Estados Unidos y Canadá (Praderas); 2) las llanuras del Danubio y del sur de Rusia (Ucrania); 3) los países del Mediterráneo; 5) las Pampas de Argentina; 6) el noroeste de la India y 7) el sureste de Australia.

Hasta el siglo pasado el cultivo del trigo estaba casi limitado a Europa, pero el proceso de la revolución industrial produjo tres factores que abrieron nuevas zonas trigueras en Estados Unidos, Canadá, Argentina y Australia.

Estos factores fueron: 1) la posibilidad de perforar pozos artesianos profundos para regadíos en regiones semi-áridas que hoy están cubiertas por extensas siembras de trigo; 2) el avance del ferrocarril que Hizo accesibles las regiones situadas hacia el interior de los continentes y facilitó el transporte del trigo hasta los puertos y 3) la mecanización del cultivo y la cosecha, mediante el empleo de arados múltiples de acero, tirados primero por caballos y después por tractores, y la invención de las segadoras-trilladoras (combinadas).

En estas zonas trigueras nuevas el cultivo se realiza en forma extensiva y mecanizada, con lo cual se logra gran rendimiento con el empleo de pocos trabajadores. La enorme producción de las zonas trigueras de América y Australia, continentes con, escasa población relativa, ha permitido establecer un activo comercio internacional del trigo, pues aunque Europa produce cerca de la mitad del total mundial, por su gran densidad de población

necesita importar cantidades adicionales. Los principales países exportadores son Estados Unidos, Canadá, Argentina, Australia y la URSS; y los mayores importadores son el Reino Unido, Alemania, Italia, la India, Japón y Bélgica.

Fuente Consultada: La Tierra y Sus Recursos Levi Morrero

Abajo: Multimedia en Flash Para PC

La Seleccion Natural Mediante El Uso de un Arma Biologica Natural

Si un parásito matase a todos los huéspedes a los cuales encuentra, entonces también él perecería. Existen al menos dos estrategias que pueden adoptar los parásitos para asegurar su permanencia, y ambas dependen de su propio estilo de vida.

Por un lado, si el parásito es muy rápido para multiplicarse y pasar a otro huésped y si, al mismo tiempo, hay una cantidad infinita de nuevos huéspedes no infectados donde anidar, el parásito puede mantener un estado de alta virulencia generación tras generación. Sin embargo, la realidad es que si este tipo de parásitos tuviera el suficiente éxito, se haría cada vez más difícil encontrar una cantidad ilimitada de nuevos huéspedes no infectados.

Lo lógico en este caso es que la población huésped disminuya, y por lo mismo la “comida” potencial del parásito también disminuirá. Por ello, el mantenimiento de un estado de alta virulencia termina siendo contraproducente para el propio parásito. Así, si cualquiera de los preceptos mencionados no se cumple, al parásito no le queda otro camino que atenuar su virulencia.

En este caso cuenta con la complicación de que el huésped también tendrá tiempo para combatirlo, por lo que los parásitos deberán utilizar este tiempo para cambiar y adaptarse también a las nuevas respuestas del huésped. Por lo mismo, casi todas las relaciones de coevolución, con el tiempo, terminan en la atenuación de las respuestas entre predador y presa. Para ilustrarlo veamos una serie de desventuras ocurridas en Australia.

Los diseñadores de políticas ambientales australianas no les temían a los riesgos y por ello se embarcaron en un proyecto que, para controlar un desbalance grave del equilibrio ecológico, implicó una serie de peligros que no se tuvieron en cuenta y generaron nuevos desequilibrios. No hubo conejos en Australia hasta 1859, cuando un señor inglés importó apenas una docena de estos encantadores animalitos desde Europa, para distraer a su esposa y agraciar su hacienda. Los conejos se reproducen muy rápido, apenas un poco más rápido de lo que tardamos en reconocer el problema que generan. Y ese “apenas” es más que suficiente.

En poco más de un lustro (1865), el mencionado caballero había matado a un total de 20.000 conejos en su propiedad y calculó que quedaban todavía otros 10.000. En 1887, en Nueva Gales del Sur solamente, los australianos mataron 20 millones de conejos. Llegado el siglo XX aparecieron nuevas herramientas de combate contra las plagas. En la década de 1950, la vegetación de Australia estaba siendo consumida por hordas de conejos. En ese año el gobierno trató de hacer algo para detener a los simpáticos animalitos. En Sudamérica, los conejos locales están adaptados a un virus con el que conviven desde hace mucho tiempo. este se transmite cuando los mosquitos que toman la sangre de un conejo infectado lo depositan sobre un conejo sano, ya sea por deposición o por la nueva picadura. Este agente infeccioso, denominado virus de la mixomatosis, provoca sólo una enfermedad leve en los conejos de Sudamérica, que son sus huéspedes normales.

La mixomatosis ha generado una de las mayores catástrofes ecológicas de la historia y el desmantelamiento de las cadenas tróficas en el ámbito mediterráneo, donde el conejo era la base de la alimentación de rapaces y carnívoros. De nuevo el responsable de esta catástrofe fue el ser humano al ser introducida la enfermedad en Francia en 1952, desde donde se extendió por toda Europa. Dicha enfermedad se había llevado a Australia anteriormente para erradicar el conejo allí, que era plaga.

Sin embargo, es mortal para el conejo europeo, que fue el que se implantó en Australia. Así que en Australia se liberaron en el campo una gran cantidad de conejos infectados con el virus de la mixomatosis, esperando que [os mosquitos autóctonos hicieran el trabajo de esparcir el agente infeccioso. En un comienzo, los efectos fueron espectaculares y la población de conejos declinó de manera constante: llegó a ser menos del 10% de la población original, cuando comenzó el tratamiento en gran escala. De esta manera se recuperaron zonas de pastura para los rebaños de ovejas, de los cuales depende en gran medida la economía de Australia.

Sin embargo, en poco tiempo aparecieron evidencias de que algunos conejos eran más resistentes a la enfermedad. Como estos conejos eran los que más se reproducían, sus crías también resultaron resistentes al virus de la mixomatosis. Cuando el fenómeno se estudió en forma global, se observó que no sólo los conejos se volvían más resistentes, sino también que el virus iba atenuando su virulencia generación tras generación. Así, había ocurrido un doble proceso de selección. El virus original había resultado tan rápidamente fatal que el conejo infectado solía morir antes de que tuviese tiempo de ser picado por un mosquito y, por lo tanto, de infectar a otro conejo; la cepa del virus letal, entonces, moría o desaparecía junto con el conejo. Por otra parte, en la preparación original de virus debería de haber algunos más atenuados.

En las condiciones de muy alta mortalidad de los conejos, las cepas virales de efectos más atenuados tenían una mejor probabilidad de sobrevivir, dado que disponían de mejores oportunidades y, fundamentalmente, de más tiempo para encontrar un nuevo huésped. De tal manera, la selección comenzó a operar en favor de una cepa menos virulenta del virus. Por su parte, un conejo que sobrevive a una infección inicial queda “protegido” como si hubiera sido vacunado, por lo que no vuelve a enfermarse fácilmente. Además es probable que los sobrevivientes hayan sido los que más resistencia intrínseca tuvieron al virus original. De esta manera su descendencia también debía ser más resistente, por lo que cuando estos conejos comenzaron a proliferar, todos los conejos australianos fueron adquiriendo resistencia al virus de la mixomatosis. Hace poco tiempo, como resultado de la rápida coevolución, la relación huésped-parásito se estabilizó, por lo que los conejos volvieron a multiplicarse, y regeneraron la población existente antes del comienzo del ataque.

En definitiva, se utilizó un arma biológica tremendamente activa, pero las consecuencias distaron mucho de ser las esperadas. De hecho, no se contuvo la proliferación de los conejos y se mantuvo el riesgo del desequilibrio ambiental comenzado hace 150 años, y; por el contrario, se generó una adaptación de los animales, se los tomó más fuertes para resistir a una plaga como el virus de la mixomatosis A pesar de las enseñanzas que debieron haber quedado después de este tremendo fracaso, hace poco tiempo se intentó nuevamente en Australia repetir la metodología para eliminar Los conejos con un nuevo patógeno cuya dinámica poblacional se desconocía casi por completo. Es obvio que hay gente a la que le encantan los riesgos. El problema es cuando al asumirlos se involucra a demasiadas personas, o, como en este caso, a un ecosistema completo.

satira a darwin
Portada en una revista, publicado con ironía la teoría de Darwin

A lo largo de la evolución, y mediante el proceso de selección natural, los organismos de las distintas especies han ido adquiriendo modificaciones morfológicas, fisiológicas y comportamentales con las cuales han logrado responder y adaptarse a las características Particulares de su medio.

ESTRATEGIA ADAPTATIVA DE PLANTAS Y ANIMALES
FACTOR EFECTOS ADAPTACIONES DE LAS PLANTAS ADAPTACIONES DE LOS ANIMALES
Escasez de Agua Deshidratación.
Estrés hídrico.

Reducción de la superficie foliar, por la que las plantas transpiran: espinas.Esclerofilia (hojas duras, coriáceas o revestidas con ceras o quitina, que las protegen de la radiación intensa y de la desecación)

Plantas con metabolismoCAM (los estomas de las hojas sólo se abren de noche para captar el CO2, con lo que se evita la pérdida de agua que se produciría si los estomas se abrieran durante las horas de mayor radiación solar).

• Piel estratificada, con varias capas de células (por ejemplo, en los vertebrados).• Productos de excreción concentrados, como el ácido úrico o le urea en lugar del amoníaco.

• Elevada reabsorción intestinal de agua en las heces.

• Obtención de agua metabólica a partir de la oxidación del hidrógeno de los alimentos.

Temperatura Temperaturas altas: deshidratación desnaturalización de las enzimas.
Temperaturas bajas: cristalización del agua en los tejidos, retardo del metabolismo.
Las mismas que para la escasez de agua. Al calor y al frío: cambios comportamentales (mayor actividad diurna durante el invierno y mayor actividad nocturna o crepuscular durante períodos cálidos); regulación social de la temperatura: vida en grupos, sobre las ramas de los árboles o en cuevas; vida subterránea.
Escasez de Alimentos, baja disponibilidad de nutrientes Crecimiento y desarrollo deficientes.Inanición. Plantas carnívoras, como respuesta a la escasez de nitrógeno en pantanos, bosques con suelos empobrecidos, etcétera.Asociación con bacterias fijadoras ; de nitrógeno en leguminosas: nódulos radiculares. Asociación con hongos (micorrizas) en distintas plantas. Almacenamiento en cuevas y guaridas, como en las hormigas y otros insectos sociales.Acumulación de reservas en la grasa corporal.
Salinidad •  Efecto osmótico: tendencia de los tejidos a perder agua en ambientes muy salinos (medio hipertónico), y a ganar agua e hincharse en ambientes poco salinos (medio hipotónico).•  Efecto iónico: toxicidad en plantas (especialmente por Cl y Na4). Secreción de iones a través de glándulas especializadas.Suculencia: planta de aspecto globoso; incorporan agua para diluir la concentración de sales. Vida marina (medio hipertónico): beben agua de mar y luego secretan el exceso de sales a través de las branquias y las glándulas de la sal; producen una orina concentrada.Agua dulce (medio hipotónico): no beben agua y absorben sales a través de la piel y las branquias; producen una orina diluida.

Fuente Consultada:
Ahí viene la plaga Colección: “Ciencia que ladra….” Mario Lozano

LA SELECCION ARTIFICIAL: LA ACCIÓN DEL HOMBRE EN LA SELECCIÓN DE LAS MEJORES ESPECIES

En su célebre obra, Darwin hace una serie de consideraciones acerca de las variaciones que aparecen en muchas especies de plantas y animales domésticos. Llegó a la conclusión de que, evidentemente, todas las especies de plantas y animales domésticos proceden de especies silvestres. La explicación era sencilla el hombre no ha sido siempre agricultor y ganadero, ya que sabemos que en tiempos remotos vivía exclusivamente de la caza y de la pesca, o de la recolección de frutos (etapa de cazador-recolector), forma de vida que conservan actualmente algunas tribus remotas de Nueva Guinea o de la Amazonia.

En algún momento en la historia, el ser humano eligió determinadas especies de animales que le eran particularmente útiles como alimento y comenzó a criarlas en cautiverio. Estos primeros intentos constituyeron el comienzo de la ganadería, que más tarde se iría perfeccionando hasta llegar a nuestros días.

Al observar las actuales especies de animales domésticos, inmediatamente se advertirá que la variación que se presenta entre los individuos es mucho mayor que la que aparece en el mismo animal en estado silvestre. Darwin fue un profundo conocedor de muchas especies de animales domésticos, y él mismo, durante una larga etapa de su vida, se dedicó en el campo a la cría de palomas.

En el caso de la paloma, Darwin llegó a la conclusión de que todas las razas domésticas procedían de la paloma de las rocas, Cotumba livia.

Si bien ésta presenta características muy constantes en cuanto al tamaño, el color, la forma de las alas, el pico y la cola, etc., el número de variaciones observado en las razas domésticas es sumamente elevado.

Otro ejemplo examinado por Darwin es el caballo, un animal de gran utilidad para el hombre, que ha sido sometido a un largo proceso de selección artificial desde hace miles de años. Así, mediante cruzas controladas se han obtenido muchísimas razas de caballos que son diferentes tanto por su aspecto como por su capacidad.

Dos ejemplos son los pura sangre y los percherones. Los caballos de pura sangre son altos, de cascos pequeños y patas delgadas y musculosas. Son notablemente veloces y, por eso, son los típicos caballos de carrera. Por otro lado, los percherones son caballos de poca alzada, grandes cascos y patas cortas y fuertes. No pueden tener gran velocidad, pero son caballos muy fuertes y resistentes, lo que los hace muy aptos como animales de tiro.

Las variaciones que se dan en los cereales, las frutas y las hortalizas cultivadas son incluso más notables que las de los animales, si se comparan con las correspondientes especies silvestres.

A pesar de la posible influencia de las condiciones ambientales y de las costumbres, Darwin asignó a la acción humana el papel fundamental en la variabilidad de las especies domésticas de plantas y animales.

Desde la época de los faraones egipcios, el ser humano eligió las semillas de plantas más robustas y los animales mejor dotados para utilizarlos como reproductores en la agricultura y en la ganadería. De esta forma, consiguió mejorar las razas.

Lo que hace el hombre es “seleccionar” aquellos individuos que presentan espontáneamente variaciones interesantes que pueden transmitirse a la descendencia. En los cereales, por ejemplo, elegirá las semillas de mayor tamaño o más robustas, ya que sabe que di-chas semillas normalmente darán origen a plantas jóvenes mejores que las semillas de plantas raquíticas o que han dado menos frutos. Estos mismos ejemplos podrían ampliarse a todos los animales y plantas domésticos.

Evidencias aportadas por la selección artificial
La cruza de animales de cría o de plantas cultivadas para obtener individuos con ciertas características deseables fue una práctica implementada por el hombre desde la época en que abandonó la caza y la recolección como principal forma de subsistencia y se estableció en un sitio por un período más prolongado.

En esta práctica, llamada selección artificial, el criador de animales tales como perros, gatos, vacas, ovejas, caballos, palomas, u otras especies selecciona entre los progenitores a los individuos cuyas características se ajustan a lo que busca, y aparta a los otros posibles progenitores. Como la descendencia puede presentar características no deseadas, el criador vuelve a seleccionar en cada generación los individuos que se ajustan a sus preferencias. De este modo, resulta que las características de los descendientes aparecen fuertemente diferenciadas de las de los ancestros.

Este proceso le ha permitido al hombre obtener una gran variedad de razas de perros, tan diferentes en tamaño y aspecto como un gran danés, un ovejero alemán o un chiguagua. Asimismo, es notable la diversidad de razas de los diferentes tipos de ganados vacuno, ovino, lanar, en muchos casos muy distintos de sus parientes ancestrales que podrían encontrarse en estado salvaje.

De la misma forma, se han obtenido muchas plantas cultivadas, tanto alimenticias como ornamentales, con notables diferencias con respecto a sus estados originales.
Esta práctica llamó poderosamente la atención de Darwin y le aportó una de las evidencias más importantes para sustentar sus hipótesis.

La selección artificial continua era lo suficientemente poderosa como para provocar cambios observables en tiempos relativamente cortos. Dados los largos períodos de la historia evolutiva, la selección natural parecía una explicación adecuada para la aparición de nuevas especies.

Fuente Consultada:
Biología y Ciencias de la Tierra La Selección Natural Capitulo: 15

Rechazos a Teoria de la Evolución del Hombre La Revolucion de Darwin

Rechazos a Teoria de la Evolución del Hombre

Desde su origen, muchas personas aceptaron de buen grado la teoría de la evolución, pero consideraron un insulto imperdonable a la especie humana la inclusión de ésta en la comunidad de descendencia de los mamíferos. Las cosas se complicaron en el terreno religioso.

Los mitos de los pueblos primitivos, así como las historias contadas por los libros de las grandes religiones acerca de la creación, tenían un concepto esencialmente estático del mundo: una vez creado, éste ya no cambiaba —a no ser por un acontecimiento catastrófico— y, además, no llevaba mucho tiempo de existencia. Durante los siglos XVII y XVIII, el “orden” de la naturaleza era presentado como un ejemplo de la obra divina (esta perfección debía ser tomada como la muestra ideal en la cual las personas debían reflejarse).

Darwin Naturalista Ingles

Por otra parte, según la concepción dominante, el hombre había comenzado su historia sobre la Tierra 4.004 años antes de Cristo -cálculo basado en las Sagradas Escrituras, realizada por el arzobispo James Ussher. A partir de las ideas de Darwin se calculó el origen del hombre en 100.000 años antes de los calculados en el siglo XIX y, un siglo después, la estimación estuvo en el orden de los 304 millones de años. Cuando la teoría de Darwin comenzó a extenderse, nadie quedó indiferente ante ideas tan escandalosas como el parentesco con seres inferiores. El obispo anglicano de Worcester comentaba, por ejemplo: “;Del mono! Santo cielo, esperemos que no sea cierta; pero si lo es, recemos para que no corra la voz.” Los propios científicos se dividieron en atacantes y defensores de la teoría de Darwin.

Entre sus defensores se contaban Charles Lyell (geólogo), Charles llooker (1817-1911), el famoso botánico que desarrolló una obra muy precisa y de acertado juicio taxonómico sobre la historia natural de las plantas, y Thomas H. Huxley (1825-1895), el biólogo británico apodado el bulldog de Darwin, quien se convirtió en su más exaltado defensor. Aunque la nueva teoría afecta a todos los campos, los mayores ataques vinieron de la Iglesia. En realidad, la parte de la teoría que más molestaba a las almas piadosas era “la supervivencia de los más aptos”, no acuñada por Darwin, sino por su defensor, el filósofo inglés Herbert Spencer (1820-1903).

No cabe duda de que, además, molestaba que se considerara a la especie humana como descendiente del mono y que se negura, así, la naturaleza del espíritu humano. Sin embargo, Darwin era creyente y nunca había negado la espiritualidad del ser humano, sólo se limitaba a una explicación científica de cómo su anatomía adquirió las características que conocemos. Tiempo después, algunos fanáticos decidirían que el “mas apto” debía tener alguna superioridad innata preservada a través de la historia.

Esta gente vio la evolución como un árbol en el que los seres humanos —en realidad, los europeos— ocupaban la rama más alta. No cabe duda de que estas ideas influirían luego en los movimientos racistas. Pero volviendo a la época de Darwin, y para hacemos una idea del tono que iba alcanzando la polémica, nos remitimos al debate sobre evolución celebrado en Oxford en 1860, entre Huxley y el obispo anglicano Owen, quien preguntó al primero si se consideraba heredero del mono por línea paterna o materna la respuesta fue contundente: “Si tuviera que elegir por antepasado entre un pobre mono y un hombre magníficamente dotado por la naturaleza y de gran influencia, que utilizaba aquellos dones pura ridiculizar una discusión científica y para desacreditar a quienes buscaban humildemente la verdad, no dudaría en inclinarme por el mono.

Fuente Consultada: Biología y Ciencias de la Tierra La Selección Natural Capitulo: 15.

 

La Prehistoria y la evolucion del hombre: edad de los Metales Neolitico

LA PREHISTORIA: EDAD DE PIEDRA Y DE LOS METALES

Como todos sabemos, la historia estudia el pasado del hombre desde que éste apareció sobre la Tierra. Sin embargo, los historiadores acordaron organizar este pasado en dos grandes períodos: la prehistoria y la historia, señalando como división entre ambos la aparición de la escritura, hecho sucedido aproximadamente en el 4.000 a.C.

En la actualidad, esta separación es replanteada por la comunidad científica pues los investigadores reconocen que no todos los pueblos del mundo conocieron la escritura en el mismo momento, por lo tanto, no entraron en los tiempos históricos.

cuadro prehistoria

Métodos para fechar el pasado

El investigador que se dedica a estudiar la prehistoria, al no poder contar con documentos escritos, trata de reconstruir el pasado basándose en los restos culturales encontrados. Para poder establecer la antigüedad de estos restos, se utilizan métodos especiales. Sin embargo, las fechas en el período prehistórico son siempre aproximaciones.

Uno de los primeros métodos desarrollados fue la dendrocronología, que consiste en observar los anillos de crecimiento presentes al cortar un tronco de árbol. Analizando entonces los troncos, o los elementos hechos con madera de los mismos, es posible deducir su antigüedad pues a cada año corresponde un determinado tipo de anillo presente en todos los árboles.

Otra forma de datación es el análisis de los sedimentos de materiales de origen glacial, que han sido arrastrados por los ríos y torrentes en los deshielos primaverales, hacia el fondo de los lagos. Estudiándolos, se pueden conocer fechas relativas a la vida de los hombres que habitaron sobre esos materiales.

Sin embargo, los métodos más exactos son los desarrollados en tos últimos años, gracias a los adelantos de la física nuclear, como el del carbono-14, que mide lo que queda de carbono-14 en los restos encontrados, ya que todos los organismos vivos incorporan este elemento durante su vida y lo van perdiendo paulatinamente luego de muertos. Como el ritmo de esta pérdida puede ser medido, conociendo lo que queda en los diferentes materiales se sabrá su antigüedad. Otros métodos basados en la física nuclear son el del potasio argón, que se utiliza para poner fecha a las rocas volcánicas muy antiguas, y la termoluminiscencia que posibilita establecer la fecha de cocción de las cerámicas.

La edad de piedra

Es la etapa más antigua de la humanidad, en ella aparece la piedra como el principal material trabajado por el hombre. Esta edad comprende dos períodos bien definidos, el paleolítico (de paleo: “antiguo” y litos: “piedra) oedad de piedra antigua y el neolítico (de neo: “nuevo” y litos: “piedra’) o edad de piedra nueva. Entre uno y otro período, se encuentra un período de transición: el mesolítico (de meso: “entre” y litos: “piedra”).

El Paleolítico: Es el período que se extiende desde hace aproximadamente 2.000.000 de años, hasta 10.000 años atrás. Durante el mismo, los hombres comienzan a fabricar las primeras herramientas, en un principio muy simples, las que fueron perfeccionando cada vez más.

La preocupación principal era conseguir alimentos y defenderse de los grandes animales que recorrían la Tierra, o de cualquier otro peligro que la naturaleza presentara. La forma de vida era nómade y los hombres se alimentaban de la carne que obtenían de animales muertos, y de los frutos, hojas o raíces que pudiesen recolectar. No producían su alimento, sólo lo consumían. Con el tiempo aprendieron a cazar y entonces fabricaron armas y elaboraron técnicas de caza, actividad que realizaban en cuadrillas, que requerían de una mínima organización social. Para su mejor estudio, el período paleolítico puede separarse en tres etapas: paleolítico interior, medio y superior.

Ver: Vida del Hombre y Utensillos en la Edad de Piedra

Paleolítico inferior: En esta etapa el hombre vagaba por la Tierra en pequeños grupos, probablemente construyendo chozas para protegerse cuando el clima era cálido y refugiándose en cuevas o en cavernas si el clima era frío, pues la naturaleza ha provocado en los últimos 3.000.000 de años importantes cambios climáticos en los que se sucedieron períodos cálidos, seguidos de períodos fríos conocido como glaciaciones , en la que grandes masas de hielo cubrieron extensas superficies continentales.

La principal herramienta era el hacha de mano que se usaba para cazar, raspar, y cortar. En esta época el hombre descubrió, tal vez la de manera accidental, el fuego, que le permitió cocinar sus alimentos , alejar a las fieras, protegerse del frío e iluminarse en la oscuridad.

Paleolítico Medio: En esta etapa los grupos humanos se hacen más numerosos y perfeccionan sus herramientas fabricando puntas de flechas, raspadores y hachas de mano. Aparecen también los primeros vestigios de una cultura espiritual pues idearon ritos fúnebres. Enterraban a sus muertos en tumbas especiales junto a trozos de carne y otros elementos, lo que mostraría que los hombres, ya en esta época, habían imaginado alguna forma de continuación de la vida.

Paleolítico superior: Aquí los hombres están mejor equipados para enfrentar los peligros y sacar ventajas de la naturaleza. A la piedra se agregan el uso del hueso y del marfil, materiales con Los que se fabrican instrumentos cada vez más específicos, apareciendo entonces punzones o buriles para agujerear, raspadores, arpones para pescar (ya que se incorpora esta actividad), lámparas de mano en las que se quemaba grasa, para iluminación, y primitivas agujas que, enhebradas con crines, permitían coser pieles.

Se cazaban mamuts, renos, bisontes, vacunos salvajes y caballos. Para ello el hombre incorporó el arco y la flecha y los dardos. La caza se realizaba en grupo, existiendo una cierta división de trabajo entre los sexos. Había algunos intercambios entre las comunidades, lo que mostraría que los grupos no estaban totalmente aislados entre sí.

Los enterramientos continúan con ritos más complejos. Se han encontrado pequeñas esculturas que se usaban, probablemente en ritos relacionados con la fertilidad y pinturas de animales, sobre todo mamuts, bisontes y renos, en la superficie rocosa de algunas cuevas. A este tipo de pintura sobre roca se la denomina “rupestre” y constituye una de las primeras manifestaciones artísticas de la humanidad.

El Mesolítico: Cuando finalizó la Era Glacial, la selva avanzó e invadió las grandes estepas. Esto produjo la emigración y algunas veces la desaparición de los animales que vivían en ella y que servían al hombre de alimento. Los grupos humanos, entonces, se diseminaron por la selva y se ubicaron en las orillas de los ríos. Sobrevivieron cazando animales salvajes, aves y peces. La madera, obtenida fácilmente en las selvas, se utilizó con intensidad. En las zonas frías aparecen los trineos, tirados primero por hombres y luego por perros. Los hombres continuaron siendo nómades, pero en algunas regiones, con suficiente agua y alimentos, aparecen asentamientos más estables.

El Neolítico: Comenzó hace aproximadamente 10.000 años y sus transformaciones son tan importantes que los historiadores las llaman “la revolución neolítica”. El hombre comienza a producir sus alimentos a partir de la domesticación de plantas y animales: el paso decisivo fue plantar deliberadamente semillas en un suelo adecuado y cultivar la tierra. Las primeras plantas obtenidas fueron el trigo y la cebada, a las que se incorporaron luego el arroz y las arvejas. Los excedentes de la cosecha se almacenaban en graneros, permitiendo que los hombres pudiesen guardar alimentos para los períodos de escasez. También aparece la alfarería, como una necesidad, pues había que fabricar recipientes para contener las semillas y los granos.

De algunas plantas, como por ejemplo el lino y el algodón, se obtendrán posteriormente fibras, que hiladas en los husos y tejidas en telares se convertirán en telas, dando inicio a la industria textil.

Con respecto a los animales, probablemente haya sido la observación de los mismos lo que puso de manifiesto que esas bestias podían ser domesticadas y convertirse en una importante reserva de alimentos y pieles sin necesidad de matarlos, como es el caso del ovino, que provee lana y leche.

Las viviendas estuvieron hechas en barro, cañas, leños o piedras, y las herramientas para construirlas fueron más específicas. Entre ellas se destacó el “hacha de piedra pulida’, que se realizaba en una roca de grano fino y luego se afilaba por medio de un pulido a base de arena. El dominio de la agricultura hizo a los hombres sedentarios y aparecen, entonces, las primeras aldeas y con ellas el crecimiento de los grupos familiares, la división del trabajo y la organización social.

cuadro de la etpas de la prehistoria: edad de piedra y de los metales

Una de las más fascinantes epopeyas del género humano es su evolución técnica. El cerebro y la mano han dado al hombre aptitudes de inventor, que ha utilizado constantemente para dominar el medio en su provecho. Los más remotos vestigios de la humanidad revelan ese afán, esa lucha de las manos hábiles, creadoras de instrumentos para construir y destruir, para modificar la materia y disponer de energía, para defender la vida e imponer la voluntad.

El hombre prehistórico, a través de medio millón de años, utilizó la piedra (además de la madera) para sus armas e instrumentos (Edad de Piedra).

¿Cómo evolucionó esta industria lítica desde sus comienzos?

1°) El hombre del paleolítico inferior poseyó la “industria del cascajo”. Mediante percusión supo desprender fragmentos de pedernal, de dos caras, para empuñar como instrumentos contundentes. Estas “hachas de mano” o “golpes de puño”, amigdaloides (en forma de almendra), por un proceso de descantillado, alcanzaron su mayor perfección en el período achelense, que se remonta a unos 150.000 años antes de Cristo.

2°) Durante el paleolítico medio el hombre perfeccionó la “industria de las lascas”, descortezando a presión hojas de pedernal, raederas y puntas de flechas (período musteriense).

3°) En el paleolítico superior el hombre auriñaciense logró, mediante menudos retoques, notables puntas de dorso arqueado y buriles. Desde unos 20.000 años antes de Cristo la cultura magdaleniense desarrolló en Europa la industria de los “micro-litas” (pequeños instrumentos de pedernal hábilmente astillado) e instrumentos de asta y hueso, tales como punzones, arpones y agujas de coser.

4°) En el período neolítico (que en Europa se inició hacia el año 5000 antes de Cristo) el hombre aprendió a pulir sus instrumentos de piedra afilándolos mediante la frotación entre sí.

Los instrumentos más antiguos del hombre son los guijarros toscamente astillados. Los que se ven abajo (en la parte superior) se remontan al primer período del paleolítico inferior (600.000 a 200.000 años aproximadamente) . Son llamadas “hachas de mano” o “golpe de puño” porque se empuñaban directamente con la mano. Mas abajo se puede reconocer un extremo forjado para la empuñadura. Con estas armas el hombre primitivo logró tener un instrumento defensivo y ofensivo.

Esta hacha se remonta a 200.000 años aproximadamente. Ya se reconoce en ella un trabajo más cuidadoso. Las hachas de este tipo, por su forma característica, son llamadas “amigdaloides” (“amígdala”, en latín, significa almendra). Se han encontrado algunas de 40 cm.

Un punzón y una raedera que se remontan a unos 100.000 años. Obsérvese el borde cortante conseguido con un minucioso trabajo de descantillado. La longitud de la raedera es de unos 10 centímetros, aproximadamente.

En esta época fue cuando el hombre aprendió a atar las astillas de piedra agudizada a los bastones, obteniendo así las primeras y rudimentarias hachas y lanzas. Para hacer las ataduras utilizaba intestinos desecados de animales.

instrumentos d ela edad de piedra

Edad de los metales: Es la etapa en la cual el hombre descubre el uso de los metales y los incorpora a su cultura para fabricar distintos elementos. Aparece entonces la metalurgia. Los historiadores reconocen tres edades de los metales, según el material usado con más intensidad: Edad de cobre, Edad de bronce y Edad de Hierro.

El cobre fue el primer metal utilizado, seguido del bronce, cuando el hombre aprendió a fundir cobre con estaño. Con estos metales se hicieron cuchillos, espadas, puñales, vasijas, adornos, herramientas, etc. Por último apareció el hierro, pero el uso de este metal, que permitió la fabricación de armas, herramientas y otros elementos de gran dureza, se logró alcanzar recién en los tiempos históricos.

La prehistoria es entonces, es período fascinante de la humanidad donde todo está por hacerse y donde todo es posible.

Los periodos prehistóricos vienen definidos por una escala temporal geológica. Los cambios climáticos delimitan cada periodo, conduciendo a una diversificación en la fauna y la flora, y a sus consiguientes adaptaciones evolutivas.

Desde hace 5,3 hasta 1,8 millones de años: el Plioceno: Este periodo viene caracterizado por un clima frío y seco y la presencia de grandes mamíferos. En esta época vivieron los australopitecos o primeros homínidos. Entre los inventos más importantes se encuentran las herramientas de piedra rudimentarias.

Desde hace 1,8 millones de años hasta 11.5OO años: el Pleistoceno. Se conoce como la Gran Edad del Hielo por sus glaciaciones y el desarrollo de enormes bloques de hielo. Los grandes mamíferos vieron su esplendor, pero acabaron extinguiéndose. El hecho más significativo de este periodo es la evolución de los primeros humanos.

Hace 1,5 millones de años: Nace la industria de piedra achelense. Se construyen hachas de mano
de piedra.
Hace 500.000 años: Utilización del fuego.
Hace 200.000 años: Nace el Homo sapiens.
Hace 50.000 años: Se construyen utensilios de hueso y asta. Aparecen los primeros microlitos en las herramientas de piedra.
Hace 12.000 años: Aparición de la cerámica.
Hace 11.500 años: inicio del Holoceno.
Esta época marca el inicio del periodo interglaciar. El desplazamiento de las placas de hielo a los polos y el incremento de lluvias favorecen el desarrollo de la civilización humana.
Año 9000 a. C: Domesticación de las ovejas.
Año 9000 a. C.: Se utilizan ladrillos secados al sol para construir casas en Jericó.
Año 8000 a. C.: Se empieza a utilizar el cobre.
Año 7000 a. C: Orígenes de la agricultura. Se cultiva trigo, cebada
y guisantes. Ya en el año 7000 a. C. existen comunidades agrícolas y ganaderas en Oriente Medio, Grecia, la península de Anatolia, Creta y la orilla occidental del valle del Indo. La agricultura se extiende por el sur y el centro de Europa.
Año 7000 a. C.: Se cultiva arroz y mijo en China.
Año 6000 a. C.: Se utilizan ladrillos hechos en moldes en la meseta de Anatolia.
Año 4500 a. C: Inicio del periodo predinástico en Egipto.
Año 4000 a. C.: Primeros intentos de producción de material sintético (cerámica vidriada egipcia).
Año 4000 a. C.: Se empiezan a utilizar hornos para cocer cerámica, por lo que se puede fabricar a gran escala.Año 4000 a. C.: Primeros sellos (pequeños discos circulares de arcilla quemada o piedra con una imagen impresa).

Astronomia: El Sistema Solar y sus Planetas Movimiento y Datos del Sol

CARACTERÍSTICAS DE LOS PLANETAS Y CUERPOS CELESTES

INTRODUCCIÓN  Sistema Solar es  sistema formado por el Sol, nueve planetas y sus satélites, asteroides,  cometas y meteoroides, y polvo y gas interplanetario. Las dimensiones de este sistema se especifican en términos de distancia media de la Tierra al Sol, denominada unidad astronómica (UA). Una UA corresponde a 150 millones de kilómetros.

El planeta más distante conocido es Plutón, su órbita está a 39,44 UA del Sol. La frontera entre el Sistema Solar y el espacio interestelar -llamada heliopausa– se supone que se encuentra a 100 UA. Los cometas, sin embargo, son los más lejanos del Sol; sus órbitas son muy excéntricas, extendiéndose hasta 50.000 UA o más.

El Sistema Solar es el único sistema planetario existente conocido, aunque en 1980 se encontraron algunas estrellas relativamente cercanas rodeadas por un envoltorio de material orbitante de un tamaño indeterminado  o acompañadas por objetos que se suponen que son enanas marrones o enanas pardas. Muchos astrónomos creen probable la existencia de numerosos sistemas planetarios de algún tipo en el Universo.

EL SOL Y EL VIENTO SOLAR El Sol es una estrella característica de tamaño y luminosidad intermedios. La luz solar y otras radiaciones se producen por la conversión del hidrógeno en helio en el interior denso y caliente del Sol . Aunque esta fusión nuclear convierte 600 millones de toneladas de hidrógeno por segundo, el Sol tiene tanta masa (2 × 1027 toneladas) que puede continuar brillando con su luminosidad actual durante 6.000 millones de años. Esta estabilidad permite el desarrollo de la vida y la supervivencia en la Tierra.

A pesar de la gran estabilidad del Sol, se trata de una estrella sumamente activa. En su superficie aparecen y desaparecen manchas solares oscuras lindando con intensos campos magnéticos en ciclos de 11 años. Los repentinos estallidos de partículas cargadas procedentes de las fulguraciones solares pueden provocar auroras y alterar las señales electromagnéticas de la Tierra; un continuo flujo de protones, electrones e iones abandona el Sol y se mueve por el Sistema Solar, formando espirales con la rotación del Sol. Este viento solar configura las colas de ion de los cometas y deja sus rastros en el suelo lunar; la nave espacial Apolo, en su misión a la superficie de la Luna, trajo muestras a la Tierra de estos rastros.

LOS PLANETAS PRINCIPALES 

En la actualidad se conocen nueve planetas principales. Normalmente se dividen en dos grupos: los planetas interiores (Mercurio, Venus, Tierra y Marte) y los planetas exteriores (Júpiter, Saturno, Urano, Neptuno y Plutón). Los interiores son pequeños y se componen sobre todo de roca y hierro. Los exteriores (excepto Plutón) son mayores y se componen, principalmente, de hidrógeno, hielo y helio.

Mercurio es muy denso, en apariencia debido a su gran núcleo compuesto de hierro. Con una atmósfera tenue, Mercurio tiene una superficie marcada por impactos de asteroides. Venus tiene una atmósfera de dióxido de carbono (CO2) 90 veces más densa que la de la Tierra; esto causa un efecto invernadero que hace que la atmósfera venusiana conserve mucho el calor. La temperatura de su superficie es la más alta de todos los planetas: unos 477 °C. La Tierra es el único planeta con agua líquida abundante y con vida.

Existen sólidas pruebas de que Marte tuvo, en algún momento, agua en su superficie, pero ahora su atmósfera de dióxido de carbono es tan delgada que el planeta es seco y frío, con capas polares de dióxido de carbono sólido o nieve carbónica. Júpiter es el mayor de los planetas.

Su atmósfera de hidrógeno y helio contiene nubes de color pastel y su inmensa magnetosfera, anillos y satélites, lo convierten en un sistema planetario en sí mismo. Saturno rivaliza con Júpiter, con una estructura de anillos más complicada y con mayor número de satélites, entre los que se encuentra Titán, con una densa atmósfera. Urano y Neptuno tienen poco hidrógeno en comparación con los dos gigantes; Urano, también con una serie de anillos a su alrededor, se distingue porque gira a 98° sobre el plano de su órbita. Plutón parece similar a los satélites más grandes y helados de Júpiter y Saturno; está tan lejos del Sol y es tan frío que el metano se hiela en su superficie.

Algunos asteroides son desviados hacia órbitas excéntricas que les pueden llevar más cerca del Sol. Los cuerpos más pequeños que orbitan el Sol se llamanmeteoroides.

Ampliar Sobre Este Tema: Leyes de Kepler

OTROS COMPONENTES Los asteroides son pequeños cuerpos rocosos que se mueven en órbitas, sobre todo entre las órbitas de Marte y Júpiter. Calculados en miles, los asteroides tienen diferentes tamaños, desde Ceres, con un diámetro de 1.000 km, hasta granos microscópicos.

Algunos se estrellan contra la Tierra y aparecen en el cielo nocturno como rayos de luz; se les llama meteoros. Los fragmentos rescatados se denominan meteoritos. Los estudios en los laboratorios sobre los meteoritos han revelado mucha información acerca de la condiciones primitivas de nuestro Sistema Solar.

Las superficies de Mercurio, Marte y diversos satélites de los planetas (incluyendo la Luna de la Tierra) muestran los efectos de un intenso impacto de asteroides al principio de la historia del Sistema Solar. En la Tierra estas marcas se han desgastado, excepto en algunos cráteres de impacto reciente.

Parte del polvo interplanetario puede también proceder de los cometas, que están compuestos básicamente de polvo y gases helados, con diámetros de 5 a 10 km. Muchos cometas orbitan el Sol a distancias tan grandes que pueden ser desviados por las estrellas hacia órbitas que les transportan al Sistema Solar interior. A medida que los cometas se aproximan al Sol liberan su polvo y gases formando una cabellera y una cola espectaculares. Bajo la influencia del potente campo gravitatorio de Júpiter, los cometas, adoptan algunas veces órbitas mucho más pequeñas. El más conocido es el cometa Halley, que regresa al Sistema Solar interior cada 75 años.

Su última aparición fue en 1986. En julio de 1994 los fragmentos del cometa Shoemaker-Levy 9 chocaron contra la densa atmósfera de Júpiter a velocidades de 210.000 km/h. Con el impacto, la enorme energía cinética de los fragmentos se convirtió en calor a través de explosiones gigantescas, formando bolas de fuego mayores que la Tierra.

Las superficies de los satélites helados de los planetas exteriores están marcadas por los impactos de los núcleos de los cometas. En realidad, el asteroide Quirón, que orbita entre Saturno y Urano, puede ser un enorme cometa inactivo. De forma semejante, algunos de los asteroides que cruzan la órbita de la Tierra pueden ser los restos rocosos de cometas extinguidos.

El Sol está rodeado por tres anillos de polvo interplanetario. Uno de ellos, entre Júpiter y Marte, es conocido desde hace tiempo como el origen de la luz zodiacal. De los otros dos anillos, que se descubrieron en 1983, uno está situado a una distancia del Sol de solamente dos anchos solares y el otro en la región de los asteroides.

MOVIMIENTOS DE LOS PLANETAS Y DE SUS SATÉLITES 

Si se pudiera mirar hacia el Sistema Solar por encima del polo norte de la Tierra, parecería que los planetas se movían alrededor del Sol en dirección contraria a la de las agujas del reloj. Todos los planetas, excepto Venus y Urano, giran sobre su eje en la misma dirección. Todo el sistema es bastante plano -sólo las órbitas de Mercurio y Plutón son inclinadas. La de Plutón es tan elíptica que hay momentos que se acerca más al Sol que Neptuno.

Los sistemas de satélites siguen el mismo comportamiento que sus planetas principales, pero se dan muchas excepciones. Tanto Júpiter, como Saturno y Neptuno tienen uno o más satélites que se mueven a su alrededor en órbitas retrógradas (en el sentido de las agujas del reloj) y muchas órbitas de satélites son muy elípticas. Júpiter, además, tiene atrapados dos cúmulos de asteroides (los llamados Troyanos), que se encuentran a 60° por delante y por detrás del planeta en sus órbitas alrededor del Sol. (Algunos satélites de Saturno tienen atrapados de forma similar cuerpos más pequeños). Los cometas muestran una distribución de órbitas alrededor del Sol más o menos esférica.

Dentro de este laberinto de movimientos, hay algunas resonancias notables: Mercurio gira tres veces alrededor de su eje por cada dos revoluciones alrededor del Sol; no existen asteroides con periodos de 1/2, 1/3, …, 1/n (donde n es un entero) del periodo de Júpiter; los tres satélites interiores de Júpiter, descubiertos por Galileo, tienen periodos en la proporción 4:2:1. Estos y otros ejemplos demuestran el sutil equilibrio de fuerzas propio de un sistema gravitatorio compuesto por muchos cuerpos.

Ampliar: Las Leyes de Kepler

TEORÍAS SOBRE EL ORIGEN A pesar de sus diferencias, los miembros del Sistema Solar forman probablemente una familia común; parece ser que se originaron al mismo tiempo.

Entre los primeros intentos de explicar el origen de este sistema está la hipótesis nebular del filósofo alemán Immanuel Kant y del astrónomo y matemático francés Pierre Simon de Laplace. (imagen) De acuerdo con dicha teoría una nube de gas se fragmentó en anillos que se condensaron formando los planetas. Las dudas sobre la estabilidad de dichos anillos han llevado a algunos científicos a considerar algunas hipótesis de catástrofes como la de un encuentro violento entre el Sol y otra estrella. Estos encuentros son muy raros, y los gases calientes, desorganizados por las mareas se dispersarían en lugar de condensarse para formar los planetas.

Las teorías actuales conectan la formación del Sistema Solar con la formación del Sol, ocurrida hace 4.700 millones de años. La fragmentación y el colapso gravitacional de una nube interestelar de gas y polvo, provocada quizá por las explosiones de una supernova cercana, puede haber conducido a la formación de una nebulosa solar primordial. El Sol se habría formado entonces en la región central, más densa. La temperatura es tan alta cerca del Sol que incluso los silicatos, relativamente densos, tienen dificultad para formarse allí.

Este fenómeno puede explicar la presencia cercana al Sol de un planeta como Mercurio, que tiene una envoltura de silicatos pequeña y un núcleo de hierro denso mayor de lo usual. (Es más fácil para el polvo y vapor de hierro aglutinarse cerca de la región central de una nebulosa solar que para los silicatos más ligeros.) A grandes distancias del centro de la nebulosa solar, los gases se condensan en sólidos como los que se encuentran hoy en la parte externa de Júpiter.

La evidencia de una posible explosión de supernova de formación previa aparece en forma de trazas de isótopos anómalos en las pequeñas inclusiones de algunos meteoritos. Esta asociación de la formación de planetas con la formación de estrellas sugiere que miles de millones de otras estrellas de nuestra galaxia también pueden tener planetas. La abundancia de estrellas múltiples y binarias, así como de grandes sistemas de satélites alrededor de Júpiter y Saturno, atestiguan la tendencia de la nubes de gas a desintegrarse fragmentándose en sistemas de cuerpos múltiples.

EL SOL

Está en el centro del Sistema. Con una masa del torno al 99,98% del total, es sin duda el astro rey y posee la atracción gravitatoria necesaria para evitar que el conjunto se disuelva y disgregue. Su edad es de aproximadamente unos 4600-5000 millones de años y se encuentra en lo que denominaríamos etapa intermedia o secuencia principal. Su comportamiento como estrella es extremadamente estable, lo que propicia la aparición y continuación de la vida sobre el planeta tierra.

Compuesto principalmente de hidrógeno y helio, su enorme masa le permitió en su día iniciar las reacciones nucleares que le dan las características propias de una estrella. El proceso que tiene lugar en el interior del núcleo solar es muy simple de explicar pero tremendamente complejo al mismo tiempo; Cuando comenzó a colapsarse la materia interestelar que originó el Sol, los átomos de hidrógeno rebotaban unos contra otros, de tal manera que la temperatura fue aumentando gradualmente, al mismo tiempo que por su enorme atracción gravitatoria el conjunto se comprimía más y más, hasta que estuvo lo suficientemente denso y caliente para que los átomos una vez chocaban ya no rebotarán los unos contra los otros debido a que la fuerza de repulsión natural era inferior a la fuerza de atracción gravitatoria, por lo que se combinaban para formar el átomo perteneciente al siguiente elemento de la tabla periódica.

En el caso del hidrógeno, al ser este el más abundante dentro de la esfera solar, su fusión daba como resultado la transformación al helio, su siguiente en la tabla periódica y por consiguiente una importante emisión de calor y luz. Cabe resaltar que el Sol, debido a que su masa no es lo suficientemente considerable, es incapaz de transformar elementos que estén por encima del hierro. Para que el Sol iniciara sus procesos nucleares internos hizo falta un largo período de aproximadamente mil millones de años.

ALGUNOS DATOS DEL SOL

  Descripción Sol Tierra Cociente (Sol/Tierra)
Masa (1024kg) 1.989.100 5,9736 332.950
GM (x 106km3/s2) 132.712 0.3986 332.950
Volumen (1012km3) 1.412.000 1,083 1.304.000
Radio volumétrico promedio (km) 696.000 6.371 109,2
Densidad promedio (kg/m3) 1.408 5.520 0,255
Gravedad (eq.) (m/s2) 274 9,78 28
Velocidad de escape (km/s) 617,7 11,2 55,2
Elipticidad 0,00005 0,0034 0,015
Momento de inercia (I/MR2) 0,059 0,3308 0,178
Período orbital sideral (días) 609,12 23,9345 25,449
Inclinación del eje (grados) 7,25 23,45 0,309
Velocidad rel. estrellas vecinas (km/s) 19,4
Magnitud visual V(1,0) -26,74 -3,86
Magnitud visual absoluta +4,83
Luminosidad (1024J/s) 384,6
Velocidad de conversión de masa (106kg/s) 4300
Producción promedio de energía (10-3J/kg) 0,1937
Emisión en la superficie(106J/m2s) 63,29
Tipo espectral G2 V
Presión central 2,477 x 1011bar
Temperatura central 1,571 x 107K
Densidad central 1,622 x 105kg/m3

 EL MOVIMIENTO DE LOS PLANETAS

Las Leyes de Kepler

En la Edad Media se utilizaba el antiguo modelo geocéntrico para predecir la posición de las estrellas y los planetas en el cielo, incluidos el Sol y la Luna. Sin embargo, era evidente que las predicciones no eran buenas más allá de unos pocos días. Los intentos por construir modelos basados en combinaciones complicadas de movimientos circulares mejoraron algo la situación pero distaba de ser satisfactoria. A pesar de todo, el modelo geocéntrico seguía siendo la regla principalmente porque era el modelo adoptado, por razones filosóficas, por la Iglesia Católica.

Nicolás Copérnico propuso un modelo del Universo que para la época era una lisa y llana herejía: la Tierra y los planetas giran alrededor del Sol en órbitas circulares. Este modelo lograba predecir con mayor precisión los cambios aparentes en la esfera celeste y de una manera matemáticamente mucho más simple, lo cual resultó muy atractivo para la navegación. Copérnico no pudo aportar evidencia observacional de la validez de su teoría, de modo que para la Iglesia se trataba de una simple herramienta de cálculo. Ya sea por este motivo o las obvias ventajas económicas de contar con tablas más simples y precisas, lo cierto es que Copérnico no terminó en la hoguera como el primero en proponer un modelo heliocéntrico: Giordano Bruno.

Galileo Galilei, un italiano cuya pasión por la física era rivalizada sólo por su afición por la buena mesa, enterado de la reciente invención del telescopio, se fabricó rápidamente uno y lo dirigió hacia el cielo. Entre las muchas cosas que vio, descubrió que el planeta Júpiter estaba cortejado por cuatro pequeñas estrellas, a las que llamó estrellas de Médici, en honor al Duque que lo auspiciaba económicamente. Un seguimiento rutinario lo convenció de que las cuatro estrellas no eran sino lunas que orbitaban en torno a Júpiter como la Luna alrededor de la Tierra. Su descubrimiento fue severamente criticado por la Iglesia pero el golpe mortal hacia la teoría heliocéntrica había sido dado: no todo en el Universo giraba alrededor de la Tierra. Era cuestión de tiempo hasta que el heliocentrismo pasara de ser una teoría conveniente a una teoría aceptada como correcta.

A pesar de todo, aunque más simples, las predicciones seguían siendo erróneas. Evidentemente algo no andaba bien con el modelo. Y no se podía decir que las observaciones estuvieran mal hechas. Tycho Brahe era, al igual que Galileo, aficionado a la Astronomía, al buen comer y al mejor vino. Afortunadamente, tenía por costumbre observar en estado de perfecta sobriedad y era muy bueno en lo suyo, aún sin contar con el telescopio, que no aparecería sino hasta unos años después.

Tras la muerte de Tycho, uno de sus discípulos, Johannes Kepler, logró con no poco esfuerzo, recuperar de la familia las notas observacionales para estudiarlas. Kepler contaba entonces con el mejor conjunto de observaciones de Marte de la época, el que usó para deducir sus famosas tres leyes descriptivas del movimiento orbital del planeta rojo.

La Leyes de Kepler (ver explicación detallada en este sitio)

Primera Ley: Los planetas se mueven en órbitas elípticas con el Sol en uno de los focos.
Segunda Ley: El radio vector Sol-Planeta barre áreas iguales en tiempos iguales.
Tercera Ley: El cubo del semieje mayor es proporcional al cuadrado del período orbital.

La Primera Ley: De la primera ley, deducimos que la distancia de un planeta al Sol varía continuamente a lo largo de la órbita. La figura de arriba muestra las características de la elipse. El Sol está en el foco F. El punto de distancia mínima se denomina perihelio, y el de máxima se llama afelio. El semieje mayor, indicado por aen la figura, es promedio de ambos. La distancia del foco al centro de la elipse (el segmento OF), indica el grado de apartamiento de la forma esférica, y su valor en términos del semieje mayor se llama “eccentricidad” de la elipse:

e = OF / a

En la figura vemos que la distancia al perihelio

dp = a .(1 – e)

mientras que al afelio

da = a.(1+e)

La Tierra, por ejemplo, está dos millones y medio de kilómetros más cerca del Sol en el perihelio que en el afelio. ¿Te animas a calcularlo?

La Segunda Ley: No sólo las distancias son variables, sino también la velocidad de los planetas en sus órbitas. Debido a que el momento angular debe conservarse (mantenerse constante), un planeta debe moverse más rápido cuando está cerca del Sol (perihelio), que cuando está en el afelio.

La Tercera Ley: También conocida como Ley Armónica, fue resultado de un esfuerzo de Kepler por encontrar algún tipo de regularidad en la mecánica del Universo. En este caso, encontró que el período orbital de un planeta (tiempo que demora en dar una vuelta en torno al Sol), está vinculado a su distancia promedio al Sol (es decir, el semieje mayor de la órbita), de modo que:

a3 = k. P2

La constante de proporcionalidad k dependerá de las unidades utilizadas. Por ejemplo, si el período se expresa en segundos y la distancia a en km, usando los valores para la Tierra, obtenemos

k = 3,4×109 km3/seg2

Lo cual no es evidentemente muy cómodo de recordar. Sin embargo, si expresamos a en unidades astronómicas y P en años, para la Tierra resulta:

k = 1 UA3/año2. De modo que para cualquier planeta, la 3ra. Ley se convierte sencillamente en

a3=P2  donde a está en UA y P en años.

Ejemplo: la distancia promedio de Neptuno al Sol es de 4.515 millones de kilómetros. Hallar su período orbital

Ampliar: Sobre La Leyes de Kepler

 TABLA CON DATOS SOBRE LOS PLANETAS

Ampliar: Sobre Los Planetas

DATOS CURIOSOS SOBRE NUESTROS SISTEMA SOLAR

Se estima que existen unos 14.000.000.000 de estrellas semejantes al Sol, en nuestra galaxia.

Las estrellas producen energía, casi siempre, por fusión nuclear. Por ejemplo, en la estrella más cercana, el Sol, los núcleos de Hidrógeno se unen formando Helio y liberando energía, consumiendo unos 700 millones de toneladas de Hidrógeno por segundo. Esta fusión se produce en el interior de la estrella y la energía se desplaza lentamente hasta su superficie, hasta que es liberada en forma de luz.

El Sol empezó a quemar Hidrógeno hace unos 4600 millones de años y actualmente está en la mitad de su ciclo de vida. Antes de morir, el Sol se convertirá en una gigante roja y posteriormente en una enana blanca. Igual que el Sol, morirán todas las estrellas y morirán todas las que aún no han nacido. Finalmente, llegará un momento en el que no existan estrellas. El Sol tiene un diámetro, en el ecuador, de 1.391.980 Km., una masa de 330.000 veces la de la Tierra, una gravedad 27,9 veces la de la Tierra y una densidad media de 1,41 (la del agua es 1).

El Sol no está donde lo vemos. Efectivamente, la luz del Sol tarda unos 8,3 minutos en llegar desde el Sol hasta la Tierra, por lo que siempre vemos el Sol donde estaba hace unos 8,3 minutos. Este desfase es mucho más pronunciado en otras estrellas, ya que la luz de otras estrellas tarda mucho más en llegar a la Tierra que la del Sol. Por ejemplo, la luz de la estrella Proxima Centauri, la más cercana a la Tierra (después del Sol), tarda 4,3 años, la estrella más brillante, Sirio A, está a 8,6 años luz y las estrellas de la constelación de Orión están entre 70 y 2.300 años luz.

El Diagrama H-R fue creado en 1905 por el astrónomo norteamericano Henry Russell y el astrónomo noruego Ejnar Hertzsprung. En este diagrama, se representa en un eje vertical el brillo (o luminosidad) de las estrellas y en un eje horizontal la temperatura (o color) de las estrellas. Así, cada estrella se representa como un punto en este diagrama. Representando así a las estrellas se observa que la mayoría de las estrellas cumplen que a mayor temperatura mayor luminosidad. Las estrellas así, como el Sol, se conocen como estrellas de la secuencia principal. También existen estrellas que son frías pero tienen una gran luminosidad y son llamadas “gigantes rojas” y estrellas que son muy calientes pero tienen una luminosidad muy pobre y son llamadas “enanas blancas”.

Las misiones Voyager I y II fueron lanzadas en Agosto y Septiembre de 1977 aprovechando una rara alineación de los planetas que permitía visitar muchos planetas de un sólo viaje. El Voyager I visitó Júpiter en 1979 y Saturno en 1980-81 igual que el Voyager II quien además visitó Neptuno en agosto de 1989. Ambos mandaron a la tierra unos 5 billones de bits de datos (incluyendo unas 100.000 fotos). El Voyager II pasará junto a la estrella Barnard en el año 8571 y junto a Sirio (la estrella más brillante de nuestro cielo nocturno) en el año 296036.

Los asteroides (o planetoides) son como pequeños planetas que giran alrededor del Sol. Más del 95% de ellos giran en unas órbitas situadas entre las de Marte y Júpiter en el llamado anillo principal de asteroides. El más grande de todos se llama Ceres y tiene poco más de 900 kilómetros de diámetro (la Tierra tiene 12756 kilómetros). Los astrónomos están convencidos que los meteoritos que caen a la Tierra (o a otros planetas) proceden en su inmensa mayoría de este cinturón de asteroides. Estos meteoritos al caer crean cráteres, los cuales, si son pequeños son borrados por la erosión terrestre. En la Luna, por ejemplo, al no haber atmósfera no hay erosión y los cráteres se conservan indefinidamente hasta que otros meteoritos los borren. En la Tierra es famoso el crater del desierto del Norte de Arizona (EE.UU.) llamado Meteor Crater que tiene 1200 metros de diámetro, 250 de profundidad y se creó hace entre 20.000 y 30.000 años aproximadamente. Los asteroides son el escenario principal del cuento de Antoine de Saint-Exupéry titulado “El principito” en el que un pequeño personaje vive en un asteroide (exactamente el B 612) con 3 pequeños volcanes (2 en actividad y 1 extinguido) que deshollina cuidadosamente y usa para calentar su desayuno.

Si comparamos el día y el año de los planetas del sistema solar con respecto al de la Tierra obtenemos los siguientes datos aproximados de cada planeta, indicando primero su día y luego su año (ver datos más exactos en la siguiente tabla): Mercurio (59 días, 3 meses), Venus (243 días, 7 meses), Marte (1 día, 1 año y 10.5 meses), Júpiter (10 horas, 12 años), Saturno (10 horas, 29.5 años), Urano (1 día, 84 años), Neptuno (1 día, 165 años) y Plutón (6 días, 248 años). Observe las curiosidades que se plantean: por ejemplo, en Mercurio veriamos un atardecer cada 59 dias (terrestres), mientras que en Saturno hay una puesta de Sol cada 10 horas.

La siguiente tabla contiene algunos datos físicos de los planetas del Sistema Solar. Hay que tener en cuenta que:

UA es la Unidad Astronómica y equivale a la distancia media de la Tierra al Sol (149,6 millones de Kilómetros).

Inclinación orbital: Es la inclinación de la órbita de cada planeta con respecto a la Eclíptica (órbita de la Tierra).

Periodo de rotación: Corresponde a la duración de 1 día (1 vuelta sobre su eje) en ese planeta medido en días de la Tierra. Un día de la Tierra dura 23 horas 56 minutos. Los 4 minutos que faltan para las 24 horas (del alba al alba) se deben al movimiento de traslación de la Tierra alrededor del Sol.

Periodo de revolución: Corresponde a la duración de 1 año (1 vuelta al Sol) en ese planeta medido en días o años de la Tierra.

Radio: No tiene que ser fijo, pues, por ejemplo la Tierra no es una esfera perfecta, sino que está ensanchada en el ecuador. Compárese con el radio del Sol, que es de 695.990 Km.

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución