Origen del Universo

La Edad del Bronce Consecuencias en el Arte y la Guerra

LA EDAD DEL BRONCE: NUEVAS TÉCNICAS , ARMAS Y ARTE

Esta metalurgia nace cerca de la actual meseta de Armenia, para extenderse rápidamente hacia Oriente y Occidente. Las gran riqueza minera del oeste se hace velozmente conocida. Desde las “cunas de la cultura” -Mesopotamia y Egipto– no tardan en llegar contingentes de colonizadores prehistóricos.

La isla de Chipre, las llanuras de Alemania y los territorios británicos (estos últimos colmados del preciado estaño) se hicieron muy pronto tan importantes que sus tribus primitivas fueron reemplazadas por pueblos mucho más avanzados. .. .Nueve partes de cobre .. .una de estaño.

He aquí la fórmula más acabada que se empleo en los antiguos talleres de fundición, no sin antes haber pasado por una etapa de interminables pruebas, seguidas de otros tantos fracasos. Con esta aleación “mágica” que da por resultado el bronce, vinieron muchos adelantos, pero también se hizo más terrible aún uno de los peores flagelos de la humanidad: la guerra.

Las hachas se perfeccionaron haciéndose armas mortíferas en manos de sus poseedores. Ya no se trataba de emprenderla a los golpes con el enemigo. Ahora una sola estocada de espada o hacha terminaba la pelea en cinco segundos. Quedaban menos prisioneros y más cuerpos sin vida tendidos en el campo de batalla.

En los túmulos, cajones de piedra enterrados en una loma –las tumbas de la época-, se lian descubierto las armas, los cascos y otros utensilios de aquellos guerreros incansables. En ese tiempo también se generalizó el uso de los caballos y los carros, lo que trajo como consecuencia el desarrollo de los caminos -algunos de ellos, base de rutas trazadas en la actualidad- y, en definitiva, del comercio en general. Este último permitió la comunicación entre las ciudades y la expansión de la cultura.

Los objetos comerciales fueron las alhajas –jade y pedrería– y las armas. Al hablar de Edad del Bronce usamos un concepto cronológico que sólo tiene valor local.   Mientras que el uso de éste aleación por las culturas que poblaron la Mesopotamia asiática en la Antigüedad data de varios milenios, en Japón recién se introdujo el bronce unos cuatro siglos antes de nuestra era y hay tribus australianas, amazónicas y africanas que tomaron contacto con los aviones de los occidentales antes que con el bronce.

De ellos se puede decir que saltaron del Megalítico a la Era Espacial. Por tanto, cuando se hable de la Edad del Bronce de un pueblo determinado, es aconsejable precisar algo más la cronología, tomando como referencia hechos culturales coetáneos de otras civilizaciones.

Pero no fue solamente en el campo bélico donde la aparición del bronce transformó la ida de aquellos pueblos que, trabajosamente, habían descubierto los secretos de la preparación, del moldeo y del cincelado a esta aleación. En  efecto, el nuevo material permitió al hombre de aquellos tiempos producir objetos artísticos menos frágiles y más elaborados.

arte en la edad e bronce

El descubrimiento de los metales sumó nuevos y variados útiles y objetos artísticos a ios ya realizados con las antiguas técnicas y materiales.

La variedad de dichas creaciones plásticas es sorprendente y prueba de la nobleza del material es que lo adoptaron las más diversas culturas. Su uso en el campo artístico se conservó hasta épocas muy posteriores a la aparición del hierro, metal que por su mayor dureza poco tardó en reemplazar al bronce en la fabricación de armas.

Entre las piezas ornamentales de bronce mejor logradas se cuentan algunas estatuillas provenientes de las estepas euroasiáticas que representan combates de animales, unas pocas de las cuales han llegado hasta nuestras manos y se conservan en los grandes museos del mundo.

Otro campo en el que el bronce aun no ha sido desplazado por otros metales es la ya milenaria técnica de la fabricación de campanas. Todavía quedan artesanos en el Viejo Mundo que, aprovechando la experiencia acumulada por varias generaciones de antepasados -en la mayoría de los casos los secretos de estas artesanías se fueron transmitiendo de padres a hijos dentro de una misma familia-, siguen fabricando gigantescas campanas de
bronce, algunas de las cuales llegan a pesar varias toneladas.

También los grandes escultores siguen mostrando una marcada preferencia por el bronce, material que resiste muy bien los efectos de la intemperie y que tiene consistencia suficiente como para permitir hacer gitantescas estatuas huecas.

El punto de funsión relativamente bajo de esta aleación permite trabajarla con sencillos métodos artesanales, aun tratándose de piezas de grandes dimensiones. Si a lo antedicho se suman las nuevas aplicaciones que día tras día se dan al bronce, cuyas propiedades se fueron modificando mediante al agregado de otros metales a la aleación (el llamado bronce Admiralty, por ejemplo, que se usa en las construcciones navales porque el agua de mar no lo corroe, está compuesto por un 70% de cobre, un 29% de cinc y apenas un 1% de estaño), es fácil comprender que a los arqueólogos e historiadores del futuro les resultará tan difícil precisar la fecha del comienzo de la Era del Bronce como la de su fin.

LA Edad del bronce

Las nuevas técnicas no se emplearon solamente con fines pacíficos. El perfeccionamiento de las armas hizo que, a partir de entonces, las guerras fueran cada vez más cruentas y dirigidas a la total exterminación del enemigo.

EL SECRETO DE LOS CHINOS

Cuando empezaron a llegar a manos de los historiadores y arqueólogos occidentales antiquísimas estatuillas y objetos ornamentales de bronce hechos por los chinos se planteó un interrogante al que por muchas décadas no se pudo dar una respuesta satisfactoria: ¿como habían logrado aquellos artesanos fundir piezas tan complicadas? A través del análisis de las tradiciones orales y escritas de aquellos pueblos, se descubrió finalmente el secreto.

El artista hacía primero un modelo en cera de la pieza a fundir, con todos los detalles tanto estructurales como decorativos. Luego la recubría con un barro arcilloso que, al secarse, formaba un molde herméticamente cerrado, con excepción de unos pocos conductos que se hacían introduciendo, antes que el barro fraguara, delgadas varillas que atravesaban la pared del molde.

Calentando fuertemente éste, la cera que estaba en el interior se fundía y escapaba por los conductos, de los que previamentese habían retirado las varillas. Por esos mismos conductos se vertía finalmente el bronce fundido y, una vez que se enfriaba la pieza, se rompía el molde para sacarla.

Esta ingeniosa técnica concebida en plena Edad del Bronce fue readaptada en los últimos años por la industria metalúrgica para producir directamente por fundición piezas que, cuando se las fundía por los métodos convencionales, requerían un largo y costoso proceso de maquinado para darles sus formas definitivas.

Fuente Consultada:
Enciclopedia Ciencia Joven Fasc. N°8 Edit. Cuántica

Uso de las Fuerzas Naturales Aplicaciones Viento, Calor y Agua

APLICACIONES DE LA ENERGÍA NATURAL: CAÍDA DE AGUA, VIENTOS Y CALOR

Cómo el Hombre Utiliza las Fuerzas de la Naturaleza: A lo largo de una gran parte de ‘la historia, la única fuerza que estaba al servicio del hombre fue la de sus propios músculos. Durante el período neolítico comenzó a usar la fuerza muscular de varios animales, asnos, bueyes, caballos y camellos.

Luego, en los primeros estadios de la civilización, fabricó el hombre las primeras máquinas simples para ayudar a sus músculos a sobrellevar las tareas más dificultosas. Entre las más importantes, figura la palanca. Fue con simples artefactos y con el trabajo de los esclavos como levantó varias de las colosales obras de la antigüedad.

Posiblemente, la primera de las fuerzas naturales que usó para relevar el esfuerzo muscular, fue el poderío del viento. Rápidamente, debe el hombre haber notado cómo los árboles se inclinan y las ramas se rompen si los azota el vendaval y cómo las hojas son arrastradas aun cuando sople la brisa más suave. Así aprendió a aprovechar el poder del viento para hinchar las velas de los barcos. Con el tiempo, inventó aparejos y velas más perfeccionados, de manera que pudo primero navegar haciendo ángulo con el viento y eventualmente, después de muchos siglos, virar casi directamente contra él.

maquinas simples usadas por el hombre

En algunos de los antiguos centros de civilización, usaban molinos de viento muy simples; pero fue más tarde, en el siglo XIII, cuando entraron en uso en Europa. Tiempo después, se construyeron molinos más perfeccionados cuya parte superior podía ser movida para captar el viento en cualquier dirección que éste soplara.

energia eolica

Las corrientes y caídas de agua también se utilizaron desde tiempos remotos. En muchas partes del mundo, pueblos que viven aún en forma primitiva, usan balsas que son impulsadas por la fuerza de la corriente; muy posiblemente nuestros antecesores usaron medios similares.

Muchos navegantes primitivos, especialmente aquellos que vivían en las orillas del Pacífico, aprovechaban las corrientes oceánicas que les eran conocidas cuando tales corrientes seguían la misma ruta que ellos deseaban tomar.

La tremenda fuerza de las caídas de agua debe haber sido también evidente para los hombres de la antigüedad, pero no hay datos seguros de su uso hasta después de la invención de la rueda en la Mesopotamia. Luego, con el correr del tiempo, los artesanos construyeron ruedas con paletas para impulsar el agua, las que se utilizaron en un principio para irrigar los terrenos. Estas ruedas hidráulicas fueron lo suficientemente poderosas para arrastrar las pesadas y toscas maquinarias de los molinos y se pusieron en uso en muchas partes de Europa, muy a principios de la Edad Media.

energia hidraulica

La caída del agua hace girar una turbina que a su vez su movimiento genera energía eléctrica

Hoy, los ingenieros han hallado métodos completamente nuevos para utilizar el poder del agua. Haciendo represas en los grandes ríos y embalsando sus aguas, han creado enormes desniveles que se emplean para mover turbinas y generar electricidad. En zonas montañosas que se hallan alejadas de campos carboníferos, tales como en las Hébridas y en partes de Noruega y Suecia, trabajos de este tipo producen energía hidroeléctrica a bajo costo, y atraen a las industrias pequeñas.

Ver: Energía Mareomotriz

Aún el hombre moderno ha hecho uso de la fuerza colosal que la naturaleza provee mediante los saltos de agua; pero, en el norte de Francia, se están realizando planes muy avanzados para producir electricidad en gran escala, utilizando esta fuente de recursos.

Desde fines de la Edad Media, cuando las lentes comenzaron a fabricarse en una escala considerable, los niños pequeños gustaban dirigir la luz del sol sobre un papel o madera seca para producir una débil llama. Hoy, en el sur de la Rusia, en Francia y en otras partes, enormes espejos cóncavos concentran los rayos solares sobre enormes fuentes de agua hirviendo para obtener vapor y con ello poner en movimiento turbinas para la producción de electricidad.

USO DE LA ENERGÍA CALÓRICA: No hay duda de que los inventores desconocidos que se ingeniaron para aprovechar la fuerza del viento y la del agua, fueron grandes benefactores para sus semejantes. Pero, en cierto sentido, su tarea fue más fácil que la de inventores posteriores que usaron por primera vez otras formas de energía.
El viento mueve naturalmente las cosas y utilizar su fuerza era, simplemente, hacer mover las cosas que el hombre quería que se moviesen; la corriente oceánica fluye en una dirección fija y usarla significaba, sencillamente, hacer conducir a los hombres y a los objetos fabricados por ellos, en la misma dirección.

Los hombres que primero se ocuparon de hacer trabajar el calor, se enfrentaron con un problema mucho más difícil. Tenían que convertir una forma, de energía, el calor, en otra totalmente diferente, es decir, en energía mecánica capaz de realizar una tarea.

A fines del siglo XVII ya se habían cavado minas muy profundas, y extraer el agua de ellas era una necesidad imprescindible. Una bomba común no puede elevar el agua más que a unos 10 metros, y el único método posible para drenarla era usar varias bombas sucesivamente, cada una de las cuales elevara el agua 10 metros más alto que la anterior. Este método requería un arduo trabajo y los inventores de este período se pusieron a pensar en una posibilidad mejor.

A principios del siglo XVIII un francés, Papin, y dos ingleses, Savery y Newcomen, fabricaron bombas en las que el vapor hacía presión en un gran gabinete y expulsaba el aire hacia afuera; cuando se derramaba agua fría sobre el gabinete, el vapor se condensaba y se hacía un vacío. La presión de la atmósfera impulsaba entonces el agua de la mina dentro del gabinete vacío.

corte de una olla a presión

Ejemplo: presión del agua en estado de ebullición

Cierta vez, justamente a mediados de siglo, mientras James Watt, un fabricante de instrumentos de Glasgow, estaba reparando un modelo de bomba de vapor de Newcomen, tuvo una idea que significó un notable adelanto. En lugar de enfriar el gran recipiente de vapor y volver a calentarlo cada pocos minutos, agregó otro recipiente pequeño donde el vapor estaría constantemente condensado; así se ahorraría tiempo y combustible. .

Pasaron unos cuantos años hasta que Watt comenzó a fabricar máquinas que utilizaban el vapor para impulsar un pistón y mover una rueda. A partir de ese momento, los motores de vapor se usaron en escala creciente para impulsar las máquinas de las nuevas industrias.

Luego, durante el primer tercio del siglo XIX, George Stephenson y algunos otros ingenieros lograron construir locomotoras de vapor capaces de transportar pesadas cargas a lo largo de vías, a velocidades que excedían en mucho a las que el hombre había alcanzado antes.

Nuestros abuelos gustaban contar cómo James Watt, mientras era aún un niño, se inspiró para utilizar la energía del vapor de agua al ver cómo éste levantaba la tapa de una marmita, al hervir el líquido. No hay ningún documento que nos permita tomar por cierta esta historia, pero podemos imaginárnoslo a Watt como un hombre de mediana edad observando la marmita, reflexionando sobre los grandes cambios que el vapor de agua había traído e imaginando los que traería en el futuro.

La utilización de la electricidad fue una hazaña aún más difícil y que no podemos considerar ligada a un solo hombre. Desde la época de los griegos, se sabía que algunas sustancias, cuando se frotaban con otras, atraían o repelían pedazos pequeños de materia.

En el siglo XVIII, el inventor italiano Galvani produjo electricidad mediante pequeñas baterías eléctricas. Pero no fue sino hasta bien entrado el siglo XIX que un inglés, Michael Faraday, demostró que una corriente puede producirse por la rotación de un imán; y así, en 1881, una poderosa dínamo fue puesta en acción en la primera usina.

Fuentes Consultadas:
El Mundo en su Tiempo – Uso de las Fuerza Naturales – Tomo III Globerama  – Edit. CODEX –

Ver: Alimentos Naturales Explotados Por El Hombre

Ver: Combustibles Naturales Que se Extraen de la Tierra

El Mesolítico Características, Alimentos, Utensillos, Armas

CARACTERÍSTICAS DE LA VIDA EN EL MESOLÍTICO

Muchas dificultades ofrece reconstruir los comienzos de la evolución cultural del hombre a partir de la época en que empezó a poblar la superficie terrestre. En una primera y larguísima etapa desconocía la vida común organizada, no cuidaba rebaños ni sembraba pero, debido a su inteligencia superior y a su aptitud para emplear un lenguaje hablado, pudo adaptarse a la naturaleza e iniciar una lenta y difícil marcha hacia una vida mejor.

Por el conocimiento transmitido a través de sucesivas generaciones y la habilidad de sus manos flexibles, el hombre alcanzó un nivel de progreso que comprende su cultura primitiva, así denominada porque debe ubicarse al comienzo de la historia de la humanidad.

Por ejemplo según el material que el hombre de aquella lejana época empleaba en sus armas y utensilios, la ciencia prehistórica distingue la Edad de Piedra y la Edad de los Metales.

Cuando estudiamos la Edad Media, que comprende el período histórico posterior al auge dé la cultura greco-latina, se nos suele indicar que se trata de una época de oscuridad y retroceso. En realidad, se trata de una etapa de lenta transformación del proceso cultural, en la que se produce una concentración de valores, que se ha visto como una detención. Algo así como cuando retrocedemos para tomar impulso y dar un gran salto.

caracteristicas del mesolitico

En la prehistoria también se produjo una Edad Media con estas características. Se la conoce con el nombre de Edad de Piedra Intermedia o Mesolítico y tuvo lugar después del décimo milenio a. de C, entre los períodos Paleolítico (de la piedra tallada) y Neolítico (de la piedra pulida). Ya aparecido el Cro Magnon, un tipo humano muy similar al actual, mucho más evolucionado que el de Neanderthal, los métodos de tallado de las piedras ya no constituían ningún secreto.

Desde el hacha hasta la lezna, pasando por las puntas de flecha, los buriles y otras herramientas, todos los elementos eran fabricados por manos bastante diestras que sacaban el máximo provecho del sílex, el pedernal, la obsidiana y otras rocas.

También la madera y el hueso formaban parte de los materiales usados por este hombre primitivo. La regularidad del clima le dio confianza en el suelo que habitaba y así comenzó a hacerse sedentario. De esta época data una práctica que le abrió nuevos horizontes: el pastoreo.

Es en esta Edad Media cuando el hombre descubre que más fácil que cazar resulta criar los animales para usarlos cuando los necesite.

Casi al mismo tiempo se produjo la observación atenta de la vida vegetal, que llevó al hombre al cultivo. También se valió de las ramas y hojas fibrosas para efectuar trenzados y con ellos construyó viviendas y vestidos. En ambas empresas el cuero fue un valioso auxiliar.

El fuego, cuyo origen cierto es motivo de serias controversias, ya alumbraba los campamentos de esta época y constituía un nuevo factor de dominio sobre el resto de las criaturas vivientes. Con trigo, cebada, cabras, vacas, ovejas y cerdos, esta civilización se extendió por África, Asia, Europa (hasta Noruega) y América, aunque en este último continente la evolución se produjo con más lentitud.

mesolitico

Sus yacimientos se reconocen por estar semi-cultos en montañas de valvas de moluscos, usados como alimento por la familia mesolítica. El perro, descendiente del lobo, comienza a ser, en estos tiempos remotos, el mejor amigo del hombre y lo ayuda en la caza o tirando de sus trineos.

Un miedo ancestral a la muerte y a todo lo sobrenatural ya se ha apoderado de nuestro antecesor, el cual respeta ciegamente los ritos funerarios de su tribu y entrega ofrendas a los dioses invocando sus poderes mágicos. Todo esto se revela en los monumentos conservados en muchos sitios, ante todo en Europa y Asia, lo que atestigua la existencia de una intensa vida espiritual.

Quizá la fijación de este concepto de la inmortalidad del alma haya sido el paso más importante dado en esta etapa, que ayudó al hombre a concretar los grandes progresos del Neolítico.

La posibilidad de vivir bien alimentado, gracias a la agricultura y el pastoreo, dejó tiempo libre para pensar. Esta fue la gran conquista del Mesolítico.

Historia de los Materiales Naturales Usados Por El Hombre

HISTORIA DE LOS MATERIALES NATURALES MAS USADOS POR EL HOMBRE

La naturaleza siempre ha suministrado al hombre abundancia de materiales, pero rara vez en forma inmediatamente adecuada a sus necesidades. A los materiales de la naturaleza, el hombre ha tenido que agregar su propio trabajo y su propia inventiva para obtener precisamente lo que necesitaba. Desde tiempos muy remotos, el hombre ha hecho uso no sólo de las plantas y los animales, sino también de elementos no vivientes del mundo que lo rodea: piedras, arcilla y arena de la superficie terrestre; pedernal, carbón y metales de la profundidad de la tierra.

La arcilla es de poca utilidad, a menos que el hombre pueda modelarla y cocerla y transformarla en vasijas duraderas o en ladrillos. No es mucho lo que el hombre pudo hacer con una piedra, excepto arrojarla para cazar algún pequeño animal, hasta que aprendió a romperla, para hacerle un borde filoso, como el de un cuchillo.

vida del hombre en el neolitico la ceramica

Ni siquiera los miles de plantas y animales diferentes pudieron proveer al hombre cumplidamente de comida hasta que aprendió bastante acerca de ellos: cómo seleccionar las plantas que necesita y cómo cultivarlas precisamente donde las necesita; cómo procurarse y cómo alimentar a los animales que pueden ayudarle, y cómo sacar de ellos un mayor provecho.

tejedor en el neolitico

El hombre utiliza una de los cientos de plantas que cultiva —lino— y uno de las docenas
de animales que ha domesticado —la vaca—.

El hombre ha cultivado el lino y cuidado vacas desde el período neolítico. De lino el hombre saca tres cosas: alimento para el ganado, aceite, que puede mezclar con varios pigmentos para hacer pinturas, e hilo. Puede no haber sido necesario ingenio alguno para usar la paja del lino como forraje, porque debe suponerse que el ganado hambriento lo consumía espontáneamente. Pero debe haber demandado gran ingenio descubrir cómo transformar los productos de desecho del lino en duras tortas, que pueden ser conservadas hasta el invierno, cuando los pastos son pobres. Obtener aceite del lino demandó la creación de cierto tipo de prensa, y transformar el lino en una tela, destreza en varias artesanías, incluyendo el hilado y el tejido.

Cuando el hombre por primera vez cuidó vacas es dudoso que haya obtenido leche de ellas, porque el ganado que vive en estado salvaje generalmente produce sólo lo suficiente para alimentar a sus terneros. De manera que debieron pasar muchos siglos de cuidados hasta que los primitivos granjeros comenzaran a obtener leche en abundancia. Muchos más debieron pasar hasta que aprendieran a hacer y conservar manteca y queso. Y la leche se ha usado para hacer helados sólo durante los últimos dos o tres siglos, lo que constituyó un lujo, hasta que, en los últimos 50 años años, se divulgaron las heladeras y aquéllos pasaron a ser un alimento habitual.

vaca en antiguo egipto

Ciertamente el hombre usó pieles de animales para hacer su vestimenta y para cubrir sus refugios ya en el Paleolítico, pero el arte de hacer cuero suave, limpio y flexible se ha perfeccionado solamente en tiempos civilizados.

Tal vez el ejemplo más notable de la habilidad del hombre para transformar materias primas es la manera de utilizar las selvas que le ofrece la naturaleza. Los grandes bosques nórdicos, que se extienden a través del Canadá, la Unión Soviética y grandes áreas de Finlandia y Escandinavia cubren casi diez millones de kilometros cuadrados de tierra. Los bosques tropicales cubren enormes áreas del Brasil, África Central e Indonesia.

Durante muchos miles de años el hombre usó la vasta provisión de madera del mundo para combustible, muebles y construcciones. Actualmente, con el carbón, el gas, el petróleo, la electricidad y la energía atómica a su disposición, el hombre quema relativamente poca madera. Con el transcurso de los siglos, a medida que se ampliaba el número de nuevos materiales, la madera jugaba cada vez un papel menor en la construcción. Aun en la fabricación de muebles la madera, en cierto modo, ha dejado su lugar a los metales y a los materiales plásticos.

uso madera en la antiguedad

Sin embargo, aunque algunos de los antiguos usos de la madera están declinando, el hombre, en realidad, utiliza los bosques actualmente más que lo hizo nunca en el pasado. Cada año muchos millones de toneladas de pulpa de madera se usan en la industria química, en la producción de varios productos celulósicos, incluyendo celuloide, rayón, plásticos, explosivos, adhesivos y barnices.

Además la madera nos provee de considerables cantidades de azúcar, glicerina, ácidos grasos y alcohol. Los corchos hechos de corteza de alcornoque; trementina, que es, la resina oleosa de los pinos; madera terciada, chapas y fósforos provenientes de árboles de distintas clases. Todas las otras figuras están dedicadas a la fabricación del papel. El volumen de esta industria se ha multiplicado cientos de veces en el siglo pasado.

El arte de hacer papel comenzó hace casi 2.000 años en la China y el material principal usado entonces eran los trapos, que se empapaban en agua durante un largo período, y luego se convertían en pulpa. El secreto de la fabricación del papel se extendió a Bagdad, durante el tiempo del gran imperio árabe, y de aquí a España y el resto del mundo occidental.

uso del papel en china antigua

Durante varios siglos los trapos fueron la principal materia prima para su fabricación, pero hoy en su mayor parte nuestro papel, y prácticamente todo el usado en la producción de periódicos y revistas, se hace de pulpa de madera, a menudo mezclada con cantidades relativamente pequeñas de caolín y otras substancias. Los molinos papeleros generalmente se construyen cerca de corrientes de agua, de modo que la madera de allende los mares pueda traerse por barco directamente hasta sus puertas.

Los países productores de papel más importantes son Canadá y los Estados Unidos, que, juntos, producen las dos terceras partes de la provisión mundial. Luego siguen Finlandia,  y Japón.

Otro material muy utilizado para telas, fue la seda natural, de origen oriental. Según la tradición china, la seda se descubrió en el año 2640 a C., en el jardín del emperador Huang Ti. De acuerdo con la leyenda. Huang Ti pidió a su esposa Xi L.ingshi que averiguara qué estaba acabando con sus plantas de morera. La mujer descubrió que eran unos gusanos blancos que producían capullos brillantes. Al dejar caer accidentalmente un capullo en agua tibia, Xi Lingshi advirtió que podía descomponerlo en un Fino filamento y enrollar éste en un carrete. Había descubierto cómo hacer la seda, secreto que mantuvieron bien guardado los chinos durante los siguientes 2000 años. La ley imperial decretó que todo aquel que lo revelara sería torturado hasta morir.

Hay un producto sumamente importante en las selvas tropicales del cual nada sabían los europeos hasta que Cristóbal Colón regresó de su segundo viaje al Nuevo Mundo: el caucho. Ciertas tribus indígenas de la América ecuatorial hacía mucho que sabían extraer el líquido pegajoso que nosotros llamamos látex de la cauchera o hevea.

Se dice que algunos indios extendían el látex sobre la planta de sus pies y lo dejaban endurecer, fabricando de este modo las” primeras suelas de goma.

Durante casi dos siglos y medio los europeos poco se interesaron por el nuevo material. Luego dos franceses publicaron un tratado acerca del caucho, en el cual le daban el nombre de caoche, de dos palabras peruanas que significan “madera que fluye”.

Desde 1750 hasta hace unos 50 años el caucho se recolectaba exclusivamente en Brasil. Los “seringueros” o caucheros penetraban en las selvas en compañía de nativos, hacían incisiones en las plantas de hevea, calentaban el látex sobre el fuego, formaban grandes bolas y las embarcaban en el puerto de Manaos, a orillas del Amazonas.

Durante el siglo XVIII dos franceses, Hérissant y Maquer, hallaron la manera de disolver el caucho en trementina y éter, y un inglés, Samuel Peel, descubrió cómo usar esa solución para impermeabilizar. En 1823, un escocés, Carlos Mackintosh, fabricó una substancia impermeable mejor con caucho tratado con benzol y empezó a producir abrigos impermeables en gran escala. Aún más importante es que ideó un proceso por el cual el látex puede ser mantenido en estado líquido durante largos períodos. Así el caucho puede ser convenientemente exportado en tanques adonde se necesite.

Un norteamericano, llamado Carlos Goodyear  descubrió cómo dar más dureza y resistencia a la goma, calentándola con azufre y varios productos químicos, proceso al que llamamos vulcanización. En esta etapa, se había aprendido muchísimo acerca de la manera de preparar el caucho, pero aún no se había hallado su aplicación en gran escala.

Mas el ciclismo y el automovilismo iban a surgir y los caminos aún eran deficientes. En 1888, un escocés, Juan Boyd Dunlop, patentó la primera cubierta neumática de goma de resultado satisfactorio, y desde entonces la demanda del caucho aumenta sin cesar.

Uso del algodon en la antiguedadLos hombres civilizados usaron el algodón mucho antes de enterarse de la existencia del caucho. Efectivamente, telas hechas con aquél existieron en la India antes de Cristo. Sin embargo, hasta hace dos siglos estas telas eran un lujo que relativamente poca gente podia permitirse.Tres cosas fueron necesarias para abaratar el algodón: áreas más extensas de cultivo, métodos más rápidos de separación de las semillas de la borra o pelusa que las rodea y mejores métodos de hilado y tejido.

Hasta florecer, la planta del algodón necesita un clima cálido y gran cantidad de lluvia. Una vez que las flores han caido y sus vainas fibrosas se han formado, necesita calor y tiempo seco. De modo que las zonas donde se desarrolla bien son limitadas. Pero durante los siglos XVII y XVIII una extensa región ideal para su cultivo se halló en el sudeste de los Estados Unidos.

La inmensa cantidad de mano de obra requerida para separar las semillas de la borra fue suministrada por los esclavos negros traídos a América, desde la costa occidental de África.

Mientras tanto, los refugiados protestantes de Flandes, muchos de los cuales eran hábiles obreros del algodón, se habían establecido en las regiones donde, desde antiguo, se tejía la lana de Inglaterra. Pronto Lancashire se convirtió en el centro manufacturero de algodón más importante del mundo, y allí constantemente se inventaban nuevas técnicas.

Otro material que ha jugado un rol importante en la vida del hombre fue en carbón, un combustible sólido de origen vegetal. En eras geológicas remotas, y sobre todo en el periodo carbonífero (que comenzó hace 362,5 millones de años), grandes extensiones del planeta estaban cubiertas por una vegetación abundantísima que crecía en pantanos, que mediante un proceso natural de movimientos y presiones durante millones de años se transformó en un combustible vital para la sociedad. Existen diferentes tipos de carbón que se clasifican según su contenido de carbono fijo: turba, lignito, antracita, grafito, etc. y todos han tenido utilidad. (Ampliar: carbón)

A mediados del siglo XVIII, sir Ricardo Arkwright (imagen abajo) inventó un nuevo aparato de hilar que se podía accionar hidráulicamente, y poco después, Jacobo Hargreaves y Samuel Crompton produjeron aún mejores máquinas de múltiples husos. A los pocos años, Edmundo Cartwright inventó un nuevo telar movido por energía hidráulica.

Richard Arkwright (1732-1792), inventor

De modo que hacia los comienzos del siglo XIX Lancashire estaba en condiciones de elaborar más algodón del que América podía cultivar. Lo único que detenía la producción era el hecho de que las semillas todavía debían separarse a mano de la borra, y por más intensamente que un esclavo trabajase no podía preparar más que unos pocos kilogramos de algodón en una semana entera.

Más aún, los días de la esclavitud ya estaban contados. En 1833 terminó en todas las partes del Imperio británico y en 1865 cesó en toda América.

Por este tiempo Eli Whitney había inventado su famosa desmotadora. Trabajando con ella un hombre podía preparar más algodón en una hora que antes en varios días. Desde entonces las plantaciones de algodón crecieron rápidamente en América. Sin embargo, la demanda fue tal, que se convirtieron en regiones algodoneras muchas tierras de la India, Egipto, Nigeria, Sudán y el Congo.

Al tejer, miles de hilos se colocan paralelamente entre sí en un gran marco, para formar la urdimbre de la tela. Un eje, colocado detrás del telar, gira lentamente, dividiendo estos hilos en dos o más capas, que suben y bajan alternadamente. Una lanzadera que arrastra un hilo pasa entre las capas a cada movimiento y así los nuevos hilos, que constituyen la trama, se entrelazan con los de la urdimbre y queda formada la tela.

Gran Bretaña ya no ocupa el supremo lugar en la manufactura del algodón. Otros países europeos producen, en conjunto, tres veces más tejidos de algodón que Gran Bretaña, mientras que los Estados Unidos y el Japón son también grandes productores de los mismos.

Respecto a los metales, muy pocos metales se encuentran en la naturaleza en estado puro o casi puro. Fue sólo cuando el hombre aprendió a hacer fuego y construir fraguas cuando pudo extraer cobre, estaño y hierro de sus minerales. De manera que en los primeros tiempos todos los metales eran escasos, y, en sentido muy real, todos los metales eran preciosos. Pero durante varios miles de años la gente civilizada en todas partes ha considerado dos metales —el oro y la plata— como especialmente preciosos, en parte por su escasez y en parte porque pueden ser labrados y transformados en adornos hermosos. Y precisamente porque se los ha considerado así, el oro y la plata han jugado un papel importante en la historia del hombre.

La forma más primitiva del comercio era por trueque o directo intercambio de mercaderías. Pero el intercambio puede ser muy difícil y hacer perder mucho tiempo. Si un agricultor primitivo tenía más ganado del que necesitaba y no suficiente trigo para hacer pan, solamente podía resolver su dificultad cuando encontraba a otro hombre con demasiado trigo y muy poco ganado. Aun entonces, probablemente, habría una larga discusión acerca de cuántas vacas eran equivalentes a determinadas bolsas de trigo, puesto que el valor del trigo variaría de año en año y de lugar en lugar, según que la cosecha hubiese sido buena, mala o regular.

Hace tres o cuatro mil años, mercaderes de la Mesopotamia hallaron un método para superar tales dificultades. Advirtieron que en todas partes la gente quería plata, de manera que antes de emprender sus viajes comerciales cambiaron sus propias mercancías por pequeñas barras de plata, que se transportaban con facilidad. Casi todos los pueblos con los que se encontraban estaban dispuestos a aceptar la plata a cambio de toda clase de mercancías y servicios.

Más tarde, para evitar la molestia de pesar la plata cada vez que compraban cosas, estos mercaderes estamparon el peso y una garantía de pureza en cada barra de plata. Fueron estas barras estampadas las que sugirieron la idea de las monedas de oro y plata, hace unos dos mil años tales monedas ya se usaban en muchas partes de Europa y Asia, y hasta la fecha el oro, especialmente, continúa siendo uno de los más importantes medios de intercambio.

El oro se encuentra principalmente en las arenas aluviales -—arenas que las aguas de los ríos han desprendido de las rocas en tiempos pretéritos— y en ciertas capas profundas de cuarzo. Los países más productores de oro en la actualidad son Sudáfrica, Canadá, los EE. UU. y Australia, y muy probablemente la Unión Soviética, que tiene vastas zonas auríferas en los montes Urales y hacia el este del lago Baikal. Los mayores poseedores de oro son Suiza (cuya reserva de oro es igual a la de todos los países de Asia juntos), los EE. UU. y Bélgica.

El oro y la plata siempre han sido considerados como símbolos de riqueza. Pero si por riqueza queremos decir capacidad de vivir una vida más satisfactoria, entonces los metales más comunes, como el plomo, el cobre y el hierro, han hecho más por el bienestar general de la humanidad que lo que jamás hayan hecho el oro o la plata.

Con plomo se hicieron los primeros aljibes higiénicos y sistemas de cañerías de agua; con el cobre y el estaño el hombre avanzó de la Edad de Piedra a la de Bronce; con el hierro se hicieron las máquinas y motores que dan, en nuestro tiempo, preponderancia a las industrias dentro de la civilización. Estos metales llamados comunes, junto al aluminio —el nuevo metal— constituyen todavía el grueso de la riqueza en metales que el hombre extrae de la tierra.

Además de usar metales extraídos de los minerales que se encuentran bajo tierra, el hombre ha explotado los mismos materiales que forman la corteza terrestre. Durante muchos cientos de años, ha usado granito y piedra arenisca para las construcciones y los caminos; piedra caliza y mármol para la estatuaria; calizas para la producción de cal; arena y cuarzo para la fabricación del vidrio; arcilla para hacer vasijas y ladrillos.

Son los materiales comunes de la naturaleza los que más han contribuido al bienestar y progreso del hombre; pero las piedras raras de la tierra son las que él valora más: los rubíes y diamantes, zafiros y esmeraldas, amatistas y berilos.

Sin embargo, como al oro y la plata, a las piedras preciosas les ha tocado un papel especial en la historia del hombre y un índice de esto se puede ver hoy en los letreros de los comercios: “Joyero y relojero”. La artesanía del joyero ha florecido durante 4.000 años y los joyeros de la antigua Grecia, Egipto y Mesopotamia se contaban entre los más hábiles artesanos de su tiempo.

Realmente debían serlo, porque las diminutas piedras preciosas que manejaban tenían que estar elegante y firmemente engarzadas en oro y plata, de modo tal, que sólo un mínimo de su brillante superficie quedara oculta. Así, cuando se necesitaron algunas pequeñas herramientas de precisión, los joyeros fueron los hombres más aptos para hacerlas.

Así también, en los siglos XVI y XVII, en Europa, cuando se empezaron a usar los relojes de bolsillo, fue el joyero quien naturalmente debía dedicarse al nuevo oficio de relojero, la primera industria de instrumentos de precisión y la predecesora de toda la ingeniería de precisión del mundo moderno.

Las piedras preciosas deben su valor a su belleza y escasez; y casi todas ellas son formas raras de substancias comunes. La amatista —que en griego significa preventivo de la intoxicación— es una forma cristalina del cuarzo, que contiene ciertas impurezas; el rubí y el zafiro, también formas cristalinas, son óxido de aluminio, el cual forma parte de todas las arcillas; y el diamante, la más cara de todas las piedras preciosas, es un cristal de carbono puro, químicamente casi idéntico al carbón.

El diamante ocupa un lugar muy especial entre las piedras preciosas, porque es el más duro de todos los materiales conocidos y se puede usar para cortar substancias que no cederían a la hoja del mejor acero. Más de dos tercios de los diamantes que se sacan de las minas de todo el mundo vienen del Congo, donde son extraídos de sedimentos aluviales.

La mayor parte de la producción consiste en diamantes industriales. Sudáfrica, con sus famosas minas de Kimberley, produce principalmente diamantes no industriales de gran calidad, a menudo extraídos de cráteres y galerías de volcanes extinguidos. Brasil, que fue en un tiempo la fuente más importante de tales diamantes, ocupa ahora el segundo lugar, después de Sudáfrica.

Fuente Consultada:
La Técnica en el Mundo Tomo I CODEX – Globerama – Editorial Cuántica

Origen de la Sociedad Humana y Caracteristicas de Vida

PRIMEROS GRUPOS HUMANOS Y SUS PROGRESOS TÉCNICOS PARA LA VIDA

Antes que el hombre pensase en vivir en comunidad y dar forma jurídica a sus relaciones sociales, debió esforzarse para sobrevivir. Sin que podamos asegurar qué antigüedad tiene la Tierra ni cuánto hace que existe vida humana en ella, esqueletos encontrados en Java, Palestina o Pekín, atestiguan que ciertos seres aproximadamente humanos iniciaron su lucha por la existencia hace alrededor de medio millón de años.

Los hielos que descendían del Norte y la lucha contra un medio hostil obligaban a concentrar todas las energías en la obtención de calor, ropa, alimentos y techo, sin tener aún tiempo para hacer pinturas rupestres, pensar en la existencia de Dios o imaginar reglas de convivencia cuyas formas jurídicas llegarían a ser, con el correr de los siglos, “Instituciones”.

En las llamadas “Cinco Tierras” -Egipto, Siria, Costa de Arabia, Mesopotamia y el Punjab- se progresó durante la época paleolítica, pero ignoramos dónde tuvo lugar el primer cultivo del grano, la domesticación de animales salvajes, el comienzo de la alfarería, o el paso de los útiles de piedra a los de metal. Y si la atribución es difícil cuando se trata de elementos materiales, más oscura resulta aún en el plano del pensamiento o las iniciativas sociales.

Resultan difusos, pues, los contornos de las primeras formas institucionales y la arqueología y la leyenda son los apoyos principales para abordar las primeras organizaciones humanas, ya que la vida política y su consecuencia institucional aparecen muy tarde como manifestaciones de una disciplina autónoma.

En la horda encontramos la primera expresión de sociabilidad; eran grupos reducidos, compuestos por seres primarios que estaban unidos por el instin’to de conservación.

Dentro de la horda, las costumbres empezaron a evolucionar hasta gestar el clan, mejor organizado y más numeroso, a cuya cabeza aparece ya la idea del conductor, que es al mismo tiempo jefe, juez y sacerdote.

En el clan, el centró y símbolo es a menudo el tótem, generalmente un animal de la región al que se representa por medio de esculturas y que tiene un sentido religioso.

Cuando los grupos nómades y pastoriles se hacen agricultores y adoptan la vida sedentaria, el clan se divide en familias patriarcales. El Estado empieza ya a perfilarse. A través de las etapas de tribus, ciudades o naciones, el jefe del clan pasa a ser rey.

Al monarca, la autoridad le vendrá directamente de la divinidad, que le dicta las reglas que se imponen con forma de tabú; es decir, consideradas como prohibiciones; es también la aurora del Derecho, concebido en preceptos rudimentarios, sin una sanción concreta pero con amenazadores presagios en caso de transgresión.

Los tabúes resultaban así normas de convivencia que se imponían a través del sentimiento religioso y se convertirían luego en normas jurídicas (“No robar”, “No matar”), aunque la ley escrita apareció mucho más tarde.

EJEMPLOS GRÁFICOS

origen de la sociedad humana horda

clan sociedad humana

sociedad humana tribu

EVOLUCIÓN Y PROGRESO DE LA SOCIEDAD

A través del Paleolítico, el progreso del hombre como artesano fue penosamente lento. Mal equipado como estaba para la caza y la pesca, necesitaba casi todo su tiempo para procurarse el sustento.

Sin embargo, el hombre del Paleolítico logró varios inventos que, al menos, echaron los cimientos del progreso. Él fue quien descubrió cómo hacer un borde cortante filoso, rompiendo una piedra con otra; él fue quien halló la manera de hacer fuego y utilizarlo.

En la naturaleza el fuego es cosa rara, porque ella pocas veces lo produce, si se exceptúan los rayos y las erupciones volcánicas. Sin embargo, de alguna manera el hombre primitivo descubrió cómo hacer un fuego menps terrible, una pequeña hoguera, que podía controlar. Lo más probable es que hiciese el descubrimiento por casualidad, al ver cómo las chispas de piedras que se golpeaban entre sí hacían arder la hierba seca cuando caían en ella. Pero sea como fuere que el descubrimiento se produjera, éste fue, sin duda alguna, de inmensa importancia.

Capacitó al hombre para asar carne cruda y dura y hacerla sabrosa y tierna; le dió calor y luz por la noche y mantuvo alejados de su caverna a los animales salvajes mientras dormía. El hombre del Neolítico, el primer agricultor y pastor, no sólo mejoró los escasos inventos de su antepasado, sino que también realizó otros muchos, y así el ritmo del progreso se aceleró. Su antecesor había estado obligado a usar sus propios músculos para todo trabajo pesado, pero él descubrió cómo uncir al arado bueyes, asnos y caballos y cómo hacerles arrastrar grandes pesos.

Dicho antecesor había aprendido a usar troncos como rodillos, y ahora él aprendió a cortar una sección del tronco y hacer así la primera rudimentaria rueda. Tal vez antes de que se usaran ruedas en los carros ya se emplearon para ayudar a dar forma a los objetos de alfarería. Y cuando el alfarero neolítico hubo dado forma a sus vasijas usó la antigua invención del fuego para cocerlas y darles dureza.

Para la poca vestimenta que poseía el hombre del Paleolítico dependía de las pieles de los animales que cazaba. Pero el hombre —o probablemente la mujer— del Neolítico inventó dos nuevas artesanías: el hilado y el tejido.

La figura de abajo representa a un hilandero y a un tejedor trabajando. El hilandero emplea un huso y una rueca para convertir finas fibras de lino o lana en una larga y fuerte hebra ininterrumpida. El tejedor ha extendido muchas hebras como ésta, de arriba abajo, en un marco de madera y está ocupado en entretejer otras hebras por encima y por debajo alternadamente.

tejedor en el neolitico

Con afiladas herramientas, aptas para derribar troncos, y con telas tejidas o pieles cosidas, para las velas, el hombre neolítico logró hacer la primera embarcación propiamente dicha, una gran balsa impulsada por el viento y capaz de contener tal vez más de una docena de personas. No sabemos exactamente qué métodos de navegación usaron los primeros marinos, pero debieron tener un conocimiento considerable de los movimientos del Sol y de las estrellas para poder orientarse.

vida en el neolitico

El hombre del Neolítico usó la fuerza animal para arar y arrastrar carros y el poder del viento para impulsar barcazas. También desarrolló el hilado, el tejido y la alfarería. Hacia el fin de este período ya era diestro en irrigar y en medir el tiempo.

vida del hombre en el neolitico la ceramica

LOS PROGRESOS TÉCNICOS: Para el fin del Neolítico y el comienzo de la Edad de Bronce, los habitantes de Egipto, que necesitaban un calendario exacto para regular las épocas de siembra y de recolección en sus bien irrigados campos, habían aprendido lo suficiente de astronomía para saber que un año dura 365 días y %, y no exactamente 365. También sabían lo suficiente para diseñar relojes de sol muy exactos, que utilizaban durante el día, y relojes de agua, que les daban cuenta del paso de las horas, aunque el sol no alumbrara.

Si inquirimos por qué el progreso fue mucho más rápido en el período Neolítico que en el Paleolítico, las respuestas surgirán sin dificultad. Primero, el hombre del Neolítico tenía objetos nuevos que había ideado, como, por ejemplo, el torno del alfarero. Luego fabricó materiales, nuevos, tales como telas tejidas. Finalmente, dominó nuevas formas de energía: la propia de los animales para el arado y el acarreo, la fuerza del viento para mover las embarcaciones y el poder del agua para irrigar las tierras.

carros antiguos en el neolitico

Ver: Primeros Carros

la agricultura: irrigacion de campos

Ver: Consecuencias Sociales de la Primitiva Agricultura

El progreso casi siempre depende de las nuevas ideas, los nuevos materiales y las nuevas fuentes de energía, pero las tres cosas no van siempre juntas. En su mayor parte, el progreso de la Edad de Bronce dependió del nuevo material, el bronce. Pero fueron necesarias nuevas ideas antes de que los hombres pudieran hacer hornos para fundir el cobre y el estaño de los minerales, y se necesitaron nuevas ideas para modelar y forjar el metal y convertirlo en herramientas y utensilios útiles.

Mas no fue necesaria ninguna nueva fuente de energía y ninguna se encontró. Para fundir y trabajar el metal el hombre se supeditaba aún a la antigua energía del fuego. Lo mismo puede decirse de toda la Edad de Hierro. El hombre tuvo que producir hornos de temperaturas mucho más altas para fundir el hierro, y tuvo que encontrar nuevos modos de dar forma y de afilar sus herramientas. Pero una vez más no hubo necesidad de nueva fuente de energía, y ninguna se halló.

En efecto, todo el progreso logrado en las grandes civilizaciones de Egipto, Mesopotamia, India, China, Grecia y Roma dependió enteramente de muchas ideas nuevas y muy pocos materiales nuevos. Por supuesto, el hombre altamente civilizado también logró usar la energía con más eficacia que su antecesor de la Edad de Piedra.

Por ingeniosos sistemas de poleas, cremalleras y palancas, pudo usar la energía muscular de los animales no solamente para arrastrar pesos en el llano, sino también para elevar el agua de los pozos y el mineral de las minas, y a su tiempo, con la ayuda de turbinas y de aspas de molino, el hombre empleó la energía del agua en movimiento y la fuerza del viento para impulsar muchas clases de máquinas. Pero subsiste el hecho de que desde los tiempos neolíticos hasta después de Shakespeare, el hombre no descubrió ninguna fuente de energía nueva.

No es extraño que hacia el fin de la Edad Media, muchos pensadores se entregaran a estudiar más y más acerca de toda clase de materiales y a buscar nuevas formas de energía. Los árabes, que eran entonces el pueblo más ilustrado del mundo, tomaron la iniciativa en esta búsqueda. Luego, desde los centros de cultura de los musulmanes de España, se extendió a todas las partes de la Europa occidental la idea de buscar deliberadamente nuevos conocimientos.

Allí eran conocidos como alquimistas los hombres que establecieron los primeros laboratorios para realizar una forma primitiva de lo que ahora se llamaría investigación científica. Hoy es fácil reírse de ellos, porque a menudo se lanzaban a descubrir ciertas cosas muy extrañas, tales como la panacea que curaría todas las enfermedades, la piedra filosofal, que convertiría los metales en oro, y el elixir de la vida, que la conservaría eternamente. A veces, también la astrología y la magia negra tomaban parte en sus extraños experimentos.

Entre los alquimistas se cuentan algunos grandes hombres, como, por ejemplo, Alberto Magno y Rogelio Bacon. De entre la confusión y magia que los rodeaba, hombres como éstos hicieron surgir los comienzos de la química y física modernas. Y pocos siglos después —un lapso muy breve en la historia del hombre— estas ciencias nos han dado varias y maravillosas fuentes de energía y una multitud de nuevos materiales para nuestro uso.

Fuente Consultada:
Enciclopedia Ciencia Joven N°1 Primeros Grupos Humanos Edit. Cuántica
La Técnica y el Mundo Tomo I Edit. CODEX Globerama

El Arte Rupestre Primeros Dibujos del Paleolítico Finalidad

EL ARTE RUPESTRE – LAS PINTURAS PALEOLÍTICAS

El arte del hombre del paleolítico, fue  desarrollado entre los años 32.000 y 11.000 a.C., durante el último periodo glacial.Basicamente existen dos tipos, uno conocido como arte mueble que consiste en objetos tallados en hueso, cuernos de animal, piedra o bien moldeados en tierra arcillosa.

El otro tipo conciste en pinturas, grabados y dibujos pintandos sobre la superficie de cuevas en las montañas, lugares que el hombre usaba como refugio y protección de los ataques de animales. A estas creaciones del hombre del etapa paleolítica se las llama: arte rupestre, arte que se encuentra en casi todo el mundo, pero que es muy abundante en Europa occidental.

Respecto a su origen hay dos líneas de debate, una que supone (al no aparecer figuras humanas), que es como un rito propiciatorio a la caza, actividad sumamente importante porque permitía la supervivencias de su especie y la otra  también un rito, pero  mágico-religioso, donde se celebraba por ejemplo el paso de la adolescencia a la adultez.

En 1860 se  descubrieron  las primeras piezas del arte paleolítico, como ser probablemente herramientas y útiles paleolíticos así como huesos de animales del periodo glacial, y estos descubrimientos activaron el interés por la excavación en cuevas y abrigos rocosos en busca de arte prehistórico.

Hablar de dibujos y pinturas rupestres predispone a pensar en la decoración de las cavernas donde habitaron, hace miles de años, los hombres de las cavernas. Y, también, en los bisontes, renos y jabalíes, realizados en tamaño natural sobre las paredes de la cueva de Altamira, en las montañas cántabras o en el valle de Dordoña, al sudoeste de Francia; en los rinocerontes de la gruta de Rouffignac; en los caballos al galope y en los bueyes salvajes, de Lascaux, o en los elefantes, grabados sobre roca, en pleno Sahara.

arte rupestre

También en las estilizadas figuras humanas descubiertas en España, Italia o en África; primero rústicos cazadores y luego agricultores y pastores, a veces en extrañas posiciones, como participando en algún rito de iniciación mágica.
Resulta difícil penetrar en el misterio de esta pintura si, antes, no se trata de evocar a los hombres que fueron sus autores. Durante el paleolítico, la supervivencia del grupo humano dependió de la caza.

El reno, el bisonte, el búfalo, constituyen las presas codiciadas. Los hombres jóvenes del clan son cazadores. Esto implica un desafío a la naturaleza, un apoyarse en la sagacidad, en la vista, en el olfato, en el valor y en el denuedo. La familia tribal depende de ese hombre libre que sale con las primeras luces a cazar o a morir. Y entonces, es lógico que el artista primitivo, se sintiera tocado y magnetizado por esa gesta silenciosa que no tenía por fin el prestigio o la gloria, sino sencilla y hondamente, la perduración del núcleo humano que esperaba el alimento frente al más viejo enemigo de la humanidad: el hambre.

Sólo entendiendo a este cazador denodado se entenderá la advocación que significan esas imágenes zoomórficas (de animales) representadas en la piedra. Usaban las zonas mas saliente de la roca para darle un vista mas tridimensional. Es la reconstrucción de un mundo cerrado, de un ámbito real, duro, difícil y admonitorio.

Luego, cuando llega el neolítico, esta actitud cambia radicalmente. Aparece el hombre que ha aprendido a sembrar y a cosechar. Con la agricultura surge la especulación, la espera mientras fructifica el grano; y, si la cosecha es abundante, el acopio, el granero, el tiempo que se vuelve seguridad. Entonces, no casualmente, surgen elementos
geometrizantes entre los motivos rupestres. Es que ha nacido la medida y la dirección. El grupo humano se hace sedentario.

Los motivos figurativos continúan la tradición de la sociedad de cazadores. Sin embargo, la realidad ha cambiado. Al disminuir el peligro y la incertidumbre, aumentan la prosperidad y la seguridad del grupo. Pero queda del extinto resplandor nómade una fuerza que, de tanto en tanto, reaparece en sucesivas etapas de la creación artística.

Muchas veces, estos dibujos y pinturas se encuentran en los lugares más insólitos: al fondo de la caverna o contra un techo, tan bajo, que no permite estar de pie. Según Gombrich, es improbable que estas pinturas rupestres hayan sido realizadas con fines decorativos. “Resulta más verosímil -afirma- que sean residuos de aquella creencia universal que atribuye poderes a la creación de imágenes; en otras palabras, que esos cazadores primitivos esperaban que, con sólo pintar a sus presas,los animales verdaderos sucumbirían también a su poder”.

Esta simple conjetura se torna verosímil comparándola con un hecho de carácter etnográfico: la comprobación de que, en la actualidad, existen pueblos que siguen pintando y grabando representaciones parecidas, en cavernas, con idéntico fin. También suelen hacerse en reductos hasta donde nunca llega el sol y, para realizar el trabajo, se utiliza la luz de alguna antorcha.

Pasado y presente, Arqueología y Etnografía, unidos por el vínculo común de las costumbres del hombre. Antaño como hogaño: las mismas técnicas, parecidos brazos y motivos, iguales tinturas. Los óxidos y carbonates de hierro, los derivados del manganeso y algunos huesos calcinados produjeron infinitas variedades de ocres, amarillos, anaranjados, azules y negros.

Según Van Loon, se emplearon como envases para esta pintura algunas cañas huecas y, a modo de paletas, trozos planos de piedras. “Son los útiles y elementos -dice- que hubiese utilizado un pintor moderno”.

arte rupestre en altamira (España)

Esta imagen es solo una parte de un conjunto de pinturas en las cuevas de altamira. Representa a un grupo de bisontes, seguramente como ellos lo veían cuando iban a su caza. Datadas en más de 15.000 años de antigüedad, estas representaciones fueron ejecutadas con gran habilidad y con la utilización de los colores, obtenidos de minerales ferrosos y cuprosos de la zona.

Vamos a agregar que en el arte rupestre franco-cantábrico (sur de Francia y Cornisa Cantábrica española) las pinturas son polícromas, no forman escenas sino que son animales independientes y a veces superpuestos. Casi no aparece la figura humana. No se representa movimiento, las figuras son muy realistas y cada cueva muestra cierta especialización en una determinada especie (Altamira bisontes). Las figuras están en lugares apartados y recónditos.

Todo indica que las cuevas eran como santuarios dedicados a ritos mágicos para propiciar la caza. Probablemente el brujo era el propio pintor. Ante estos prodigiosos bisontes, llenos de elegancia y de tuerza, fruto de una enorme maestría e imaginación, cabe preguntarse si los hombres del paleolítico eran, como algunos piensan, brutos, toscos y salvajes.

Fuente Consultada:
Enciclopedia Ciencia Joven Fasc. n°35 Arte Rupestre Edit. Cuántica

Período Cuaternario Características, Vida y Fauna

A pesar de su relativa brevedad (mas o menos 1 millón de años), la era cuaternaria tiene una importancia excepcional en la historia de nuestro planeta, porque en ella tuvo lugar la aparición y el desarrollo del género Homo. Las grandes masas continentales apenas modificaron su posición con respecto a la era terciaria, pero se vieron invadidas por grandes masas de hielo, que avanzaron en cuatro períodos llamados glaciares y retrocedieron en otros tres denominados interglaciares. Estas masas de hielo modelaron los paisajes de buena parte de la Tierra, dejándolos tal como hoy los conocemos. A ellas se debe la aparición de formas tan características como los lagos glaciares, las rías y los fiordos, los valles glaciares, las terrazas fluviales, etc.

Por lo reciente de este período y por la importancia de los primeros momentos del hombre sobre la Tierra, se han dedicado a investigarlo no solos los geólogos, sino también los antropólogos, historiadores, biólogos, geógrafos, arqueólogos, etc.

El primer problema que se les plantea es el de establecer la cronología, es decir, la situación, en el tiempo, de los distintos acontecimientos del cuaternario, para datar con alguna exactitud los estratos y los restos de cualquier región geográfica.

Las especies han tenido relativamente poco tiempo para evolucionar, durante el cuaternario, hacia formas muy distintas de las que existían al final del terciario. Muchas de ellas son prácticamente idénticas a las actuales. Por ello, los científicos han tenido que utilizar métodos especiales para el estudio del cuaternario.

En la región alpina del sur de Europa se han reconocido cuatro claros avances del hielo durante el período. Estos avances de los hielos hacia el sur estuvieron separados por épocas de clima más benigno, o períodos interglaciales. Estas cuatro ondas de frío se han comprobado en otras regiones de Europa y en Norteamérica, aunque hay dudas acerca de su simultaneidad o correspondencia, en algunos casos.

El perídodo cuaternario o actual está considerado como uno de los períodos de la era cenozoica, su duración se está prolongando por algo más de un millón de años. Se divide en dos subperíodos: el pleistoceno (del griego: pleitos: muchísimo, y kainós: nuevo) y el glacial.

En los comienzos del pleistoceno el hombre estaba atravesando por la etapa de la Piedra Antigua (más conocida como paleolítico), por lo cual de esta época datan los primeros y numerosos restos culturales de la humanidad. Aparecieron y se extinguieron grandes mamíferos.

La Tierra adquiere su configuración definitiva: aparecen los estrechos de los Dardanelos y del Bósforo, Gran Bretaña se separa del continente europeo y parte del continente atlántico queda sumido en el mar. Salvo algunas zonas ecuatoriales, todas las demás experimentan las consecuencias de un notable descenso de la superficie terrestre.

Los mamutes, que se nutrían de coniferas, y los rinocerontes se cubrieron de pelos para soportar las bajas temperaturas reinantes. Se formaron las primeras estepas y desde entonces datan las acumulaciones de marfil fósil de los ríos rusos Obi, Yenisei y Lena.

Se produjeron cuatro grandes glaciaciones que reciben el nombre de los ríos alpinos donde se las estudió. Por orden cronológico y de importancia son las de Gunz, Mindel, Riss y Wurm. Estaban separadas por períodos de deshielo en los que abundaban las precipitaciones (fenómeno identificado con el Diluvio Universal, presente en casi todos los mitos antiguos).

Con las glaciaciones muchas especies desaparecieron, pero otras se adaptaron, como el mamut, el rinoceronte, el reno, el magaterio, el bisonte y el oso de las cavernas. Numerosas teorías tratan de explicar las glaciaciones; una de las más acertadas las atribuyen a las diferencias de temperatura del calor solar llegado a la Tierra.

El período cuaternario se divide en un intervalo, “pleistoeeno”, muy largo, y otro intervalo, el “holoceno”, de duración muy breve. Durante los tiempos pleistocénicos, tuvieron lugar los fenómenos glaciales que ocupan la mayor parte del cuaternario. El holoceno está formado por los últimos miles de años, después de retirarse los hielos.

El subperíodo holoceno (en el que aún estamos), llamado también aluvial, comienza ni bien terminan las glaciaciones y hasta ahora tiene unos 25.000 años de duración. La fauna, la flora y el clima son prácticamente los mismos de hoy. En este período alcanza un elevado grado de evolución la rama de los homínidos.

La caza de un mamut

Desde el terciario esta rama, gracias a mutaciones bruscas y casi imperceptibles, llegó hasta el Homo Sapiens, al cual pertenecen todas las razas actuales.

EL CUATERNARIO
Períodos Datación Principales acontecimientos
Pleistoceno 1.100.000 Primeros ejemplares del género Homo Comienzan las grandes glaciaciones
Holoceno 10.000 Se extinguen algunos grandes mamíferos, como el mamut

Su duración se cifra escasamente en un millón de años, un lapso insignificante si se compara con los 1.600 millones atribuidos por algunos autores a la Era Arcaica. En ella se producen dos hechos cumbres: la invasicc de los fríos y la aparición del Hombre. El glaciarismo cuaternario fue un fenómeno aúr. no explicado en forma satisfactoria. Las montaña; formadas gracias a los plegamientos alpinos del Terciario se cubrieron de nieves y al mismo tiempo los hielos del casquete polar avanzaron hacia el ecuador. Fue una auténtica, aunque lenta, invasión. Un frío intenso reinó en gran parte de la Tierra y los animales se replegaron hacia zonas más benignas.

Con excepción del hombre, en el Cuaternario no aparecen ya nuevas formas de vida. Sí surgen, sobre todo en sus comienzos, algunas especies nuevas, en particular de gran tamaño: mamuts y rinocerontes lanudos. Lo más característico de la fauna de este período es su migración hacia el ecuador, a raíz del avance de los hielos, y la aparición de especies bien adaptadas al frío, como el reno.

Pero lo realmente decisivo es la evolución biológica, intelectual y social del hombre, que pasa de Homo habilis, capaz de producir herramientas rudimentarias, a Homo erectus, con una capacidad craneal relativamente importante, y finalmente a Homo sapiens, que es la especie a la que pertenece todo el genere humano. Con respecto al estadio anterior de la evolución, lo más característico del género Homo es la expansión del cerebro y la adquisición del bipedismo. (ver: evolución del hombre)

DEPÓSITO  DE   LOS  GLACIARES
La presencia de materiales arrastrados por los glaciares en sitios donde actualmente no existen hielos es la mejor prueba de que, en algún momento, el clima no fue como el actual. Las morrenas terminales son depósitos de materiales trasportados por el hielo de los glaciares, que se han acumulado en la línea terminal.

Están lavados, en parte, por las aguas de fusión del hielo, y comprimidos y deformados por los avances oscilatorios de la lengua del glaciar. Existen también morrenas laterales, acumulaciones que se han producido en los bordes de un glaciar que llena un valle. Pero las más importantes son las morrenas de fondo, que cubren el lecho del glaciar y que, en su parte inferior, están constituidas por los productos de fricción del hielo sobre el terreno en que descansa; suelen ser muy extensas.

En  nuestros días, sólo hay glaciares en las altas montañas y en las proximidades de las zonas polares; en conjunto, tienen poca importancia. No ocurrió así en los momentos de las glaciaciones cuaternarias, porque gran parte de los territorios de las zonas templadas estuvo cubierta por las enormes masas de hielo, que, en Europa, tenían sus centros de origen en Escandinavia, en los Alpes y en las tierras escocesas. Con todo, era el centro de Escandinavia el más importante. En algunas ocasiones, llegaban a fusionarse todas estas  zonas.

La presencia de una capa de arcilla con bloques o materiales de glaciares comprimidos evidencia, sin ninguna duda, que los hielos invadieron alguna vez la región. Si existen dos lechos de morrenas de fondo, se examina cuidadosamente la capa intermedia. A veces, resulta posible demostrar que, durante la formación de esa capa intermedia, el clima fue suave, lo que se deduce por el tipo de animales o plantas fosilizados. De esta manera, puede reconstruirse, en parte, el pasado climático de esa región.

En conexión con la Edad del Hielo, hoy varias características que muestran cómo los niveles de mar y tierra están cambiando constantemente. Tenemos ejemplos en las playas levantadas y en los bosques hundidos, originados por un cambio del nivel del mar respecto a la tierra. Sin embargo, no hay tina sola explicación, sino que es ,más probable que se trate de la combinación de dos factores. Primero, durante el período interglacial se producía gran ‘cantidad! ‘de agua por la fusión del hielo, que aumentaba el nivel del mar. Después, el peso de los glaciares que avanzaban empujó las tierras hacia abajo, de tai modo que, aparentemente, el nivel del mar subió. El examen cuidadoso de las características geológicas de este tipo ha ayudado a los geólogos a trazar  la   historia   de   la   Edad   del   Hielo.

EXAMEN DE LA FAUNA Y LA FLORA FÓSILES
Más que por la determinación de los ejemplares, cuyo valor es limitado como base para una cronología, teniendo en cuenta las condiciones especiales del cuaternario y su corta duración, los restos animales encontrados sirven para conocer cuáles eran las condiciones climáticas, basándose en sus preferencias.

Muchas de las especies modernas existían ya al comienzo del cuaternario; por la interpretación se sabe, por ejemplo, que el rinoceronte lanudo (Tichorhinus antiquitatis) se adaptó a la vida de la estepa y de la tundra, mientras que otros dos rinocerontes (Dicerorhinus etruscus y D. merckii) se adaptaron a los bosques abiertos.

Rinoceronte Lanudo

La estructura de los dientes y del cuerpo del mamut nos indica, que fue un animal de la estepa y de la tundra. De este elefante lanudo se han encontrado restos en perfecto estado de conservación, entre sedimentos helados, que conservaban su pele y cuya carne era aún comestible.

En cuanto a la flora, los datos más interesantes son los que han proporcionado los restos de polen conservados en turberas. En algunos sedimentos se pueden hacer sondeos a gran profundidad, tratar la materia orgánica con ácidos, para destruirla, y dejar al descubierto los diminutos granos de polen, cuya gran resistencia los ha preservado durante miles de años.

El examen al microscopio de las delicadas esculturas y relieves del polen permite distinguir las especies o los géneros (muchos de ellos viven hoy) e, incluso, determinar la composición y las proporciones cuantitativas de la vegetación que los produjo. Se puede saber, por ejemplo, que los sedimentos situados en una profundidad determinada se formaron cuando existía un bosque de pinos, de robles o un matorral de plantas esteparias.

TERRAZAS  FLUVIALES
Una gran parte de la estratigrafía del cuaternario se basa en la terrazas climáticas de los ríos, o en los diferentes niveles del depósito de sedimentos en sus proximidades, producidos por las oscilaciones climáticas propias de este período. Las épocas de grandes fríos (glaciaciones) tuvieron por consecuencia la reducción del caudal de algunos ríos; pero, en otras épocas húmedas y cálidas, el caudal aumentó.

Al extenderse el hielo escandinavo, se desarrolló sobre él un anticiclón barométrico, y el clima se hizo frío y seco. Los bosques desaparecieron, incluso de las tierras bajas. Los desiertos y las estepas cubiertas de bajos matorrales

alcanzaron mayor  extensión. como el caudad de lod ríos era insuficiente, los materiales arrastrados se acumularon en  los cursos medios. Al volver el clima húmede y cálido, aumentó el caudal de los ríos la vegetación contribuyó a que la erosión fuese menor y, por tanto, disminuyeron los materiales de arrastre. Entonces, los ríos profundizaron su  cauce.

El resultado de estas alternancias climáticas fue la formación de los distintos niveles o terrazas, que so fundamentales para el estudio del cuaternario. La sucesión de estas terrazas permite determinar el número de períodos fríos. Su desarrollo más claro está en la zona sur de Alemania, región cuyo estudio proporcionó la clave para la comprensión de los fenómenos climáticos periódicos  del cuaternario.

CAMBIOS   CLIMÁTICOS   DURANTE   EL CUATERNARIO
Por el estudio de las terrazas fluviales, en la región alpina (donde se presentan con gran claridad), se llegó a la conclusión de que hubo cuatro grandes glaciaciones o avances del hielo.   Estas glaciaciones estuvieron separadas por períodos cálidos, denominados interglaciales.

Han surgido grandes dificultades al pretender relacionar las cuatro grandes glaciaciones , cuyos vestigios aparecen netamente en la zona alpina de Europa, con los estratos, restos y señales climáticas de las restantes zonas del mundo que se han estudiado hasta la fecha.

Esta relación se ha establecido en parte. Actualmente, el período cuaternario se divide en un largo sub-período, el pleistoceno (que comprende la llamada Edad del Hielo) y el holoceno, breve lapso de unos pocos miles de años, que comprende desde la. última retirada de los hielos hasta nuestros días.

A su vez, el pleistoceno se ha dividido, atendiendo a la presencia de fósiles y a razones climáticas, en tres etapas que tienen casi la misma duración. El pleistoceno superior, que es el más reciente, comprende la última glaciación. De él son característicos el mamut, el gamo (casi idéntico al actual), varios rinocerontes lanudos, el hombre de Neanderthal y, con él, el Homo sapiens u hombre actual.

Gamo

El pleistoceno medio comprende la penúltima glaciación y el penúltimo período interglacial. Durante él vivieron algunos tipos de elefantes distintos del mamut, una clase de gamo diferente del de nuestros días, y también hombres del tipo del actual o, al menos, muy parecidos.

En el pleistoceno inferior tuvieron lugar la antepenúltima glaciación y el antepenúltimo período interglacial, así como la llamada glaciación temprana. Su fauna estaba compuesta por elefantes ligeramente distintos, un nuevo gamo, el tigre de enormes colmillos, y los discutidos Pithecanthropus erectus (hombre de Java) y P. Pekinensis (hombre de Pekín),   antecesores  del  hombre  actual.

Fuente Consultada:
Revista TECNIRAMA N°22 Enciclopedia de la Ciencia y La Tecnología -La Vida en el Cuaternario-
Enciclopedia MUNDORAMA Geografía General – La Eras Geológicas –
Enciclopedia Temática Color MARRED  El Universo y la Tierra

Primeras Organizaciones Sociales Estado, Tribus, Bandas

LAS ORGANIZACIONES SOCIALES DE LAS PRIMEAS CIVILIZACIONES

La repercusión de la agricultura fue vital para el establecimiento de poblaciones de mayor densidad y extensión. En las zonas más fértiles, donde la agricultura podía abastecer al un mayor número de personas, florecieron   extensos   asen mientos. Esas zonas se hallaban en Oriente Próximo y en el nordeste de China, donde el clima templado y los cauces fluviales proporcionaban unas  condiciones  ideales.

Las orillas de los ríos y los lagos eran zonas especialmente populares para establecer asentamientos, ya que, además de ofrecer una provisión regular de agua, el suelo era de mejor calidad. A medida que los asentamientos crecieron en las llanuras aluviales, los alrededores de los grandes ríos, el Eufrates, el Tigris, el Nilo y el río Amarillo, devinieron centros de población.

El surgimiento de la civilización
El término «civilización» hace referencia a sociedades más complejas. En estas, los individuos empezaron a pertenecer a culturas organizadas con organismos públicos como ejércitos y administraciones gubernamentales, así como lugares de culto. Se instauró un sistema de clases según el cual algunos miembros de la sociedad tenían más riqueza, poder y estatus que otros. Otro avance que aceleró la llegada de la civilización fue el comercio. Las dos técnicas claves para su desarrollo en esta época fueron la metalurgia y la cerámica.

Los artesanos con medios para producir objetos deseables o necesarios destacaron en estas economías  del trueque tempranas. Por otro lado, las comunidades en las que la a productividad agrícola era particularmente elevada tendieron a aprovecharse de otras menos privilegiadas. En algunas regiones, el desarrollo del regadío fue una herramienta esencial para garantizar una cosecha regular y abundante.

Toda civilización se caracteriza por el desarrollo de la tecnología y un medio de registrar los cambios, las reglas y los ritos: la escritura. Las primeras civilizaciones auténticas del mundo antiguo dan fe sin excepción del inicio del desarrollo de sistemas de escritura.

LOS ORÍGENES: La agricultura y la ganadería significaron el nacimiento de toda una serie de trabajos y profesiones no asociadas ya a la producción de alimentos, ya que, por primera vez en la historia, había suficiente comida para toda la población, incluida aquella que no se dedicaba de forma directa a su suministro. Con el transcurso del tiempo, aquel modo de vida resultó ser hasta diez veces más productivo que el cazador-recolector previo.

El cultivo y la cría de animales permitieron a las familias aumentar el número de hijos, porque ya no era necesario cargar con ellos de un lado a otro; ahora podían almacenar los alimentos en graneros y así añadir un nuevo miembro más cada dos años o incluso antes. A todo ello se sumaban las ventajas de vivir en una aldea o un pueblo en los que siempre había vecinos alrededor para ayudar en el cuidado de los niños.

A medida que la población aumentaba, aquellos que no se dedicaban a las labores del campo o la ganadería tenían la posibilidad de convertirse en artesanos, fabricantes de cerámica, joyas, ropa, etc., para los demás miembros de la comunidad, así como de explorar ciertos desarrollos tecnológicos, como ruedas, carros y armas, fabricados a partir de materiales que aprendieron a extraer de la tierra, tales como cobre, bronce y hierro.

A ellos se sumaron los comerciantes, que comenzaron a distribuir los productos realizados por los artesanos junto a cualquier excedente de productos alimentarios. El comercio se tradujo en viajes, en barcos, en el desarrollo de la escritura, la matemática y el dinero. Otra clase de trabajo era el orientado a la esfera divina, de manera que se procuraba que la aldea o el pueblo mantuviera unas buenas relaciones con las divinidades para incrementar las posibilidades de gozar de una abundante cosecha y minimizar las eventuales catástrofes. Aquellos sacerdotes primitivos contribuyeron a dar origen a la mayoría de las principales religiones del mundo.

El incremento demográfico hacía imprescindibles nuevas formas de organización y control. Emergieron los primeros reyes y emperadores, con sus correspondientes aristócratas y burócratas encargados de recaudar impuestos, dictar leyes y administrar justicia.

ORGANIZACIÓN EN AMÉRICA: Los diversos grupos humanos que habitaban América antes de la llegada de los europeos, presentaban profundas diferencias. Éstas tenían que ver con:

•  La forma en que obtenían sus alimentos: cazadores, recolectores, horticultores, pastores y agricultores.

•  La forma en que se organizaban para la toma de decisiones: bandas, tribus, jefaturas, Estados.

De este modo, en un mismo momento coexistían en América bandas de cazadores-recolectores, como los querandíes en la región pampeana; o jefaturas de agricultores, como ios diaguitas en el noroeste del actual territorio argentino, y agricultores intensivos con una organización social muy compleja, como los aztecas y los incas.

Cultivo del Maíz

LA OBTENCIÓN DE LOS ALIMENTOS
A través de la historia, los hombres desarrollaron diferentes formas de proveerse los alimentos necesarios para la subsistencia. A partir de ellas, los antropólogos realizan la siguiente clasificación de los grupos humanos:

• Cazadores y recolectores: Aplican diferentes técnicas para recolectar vegetales, cazar o pescar. Para ello utilizan sólo la energía muscular, auxiliada de instrumentos muy rudimentarios: algunos pocos utensilios y armas, como, por ejemplo, arcos y flechas, hachas de piedra, bastones para cavar, etc.

• Agricultores: Emplean una tecnología que permite roturar el suelo y explotar grandes extensiones de tierras de diversas características. La aplicación de esta nueva tecnología requiere un nivel importante de organización del trabajo. En los pueblos agricultores existen siempre grupos de trabajadores especializados, encargados de la construcción de canales para la llegada de agua, de terrazas en las laderas de montañas y cerros, etc. Pero la característica más importante de estos pueblos es que poseen una organización social muy diferente y más compleja que la de los anteriores, que se basa en la producción de excedentes.

• Horticultores: Cultivan semillas, raíces o tubérculos con el bastón de cavar o la azada. Sólo aplican la fuerza muscular y carecen de medios para roturar el suelo, remover la tierra y abrir surcos, lo que explica su escasa producción. Para limpiar el terreno cortan y queman la maleza, técnica que empobrece el suelo y hace imposible su cultivo durante períodos superiores a tres años. Este hecho lleva a que la población deba trasladarse permanentemente en busca de nuevas tierras productivas. Generalmente, estos pueblos recurren también a la caza y a la recolección para la obtención de alimentos.

• Pastores: Basan su subsistencia en la cría de animales domesticados en grandes rebaños, de los que extraen leche, sangre, pieles y carne. Para los pueblos pastores resulta fundamental que el ganado esté bien cuidado y protegido y disponga de pastos. Por otra parte, es muy importante la existencia de abundante agua en la zona en que se realiza este tipo de actividad.

LA ORGANIZACIÓN SOCIAL PARA LA TOMA DE DECISIONES:
En todo grupo humano existe la necesidad de tomar decisiones que ordenen las relaciones de las personas entre sí y distribuyan las tareas.

No siempre existieron personas encargadas especialmente de tomar las decisiones de una comunidad tal como en la actualidad lo hacen los funcionarios que ocupan cargos en el gobierno de un Estado. A través de la historia se fueron dando diferentes formas de organización que algunos investigadores sociales clasifican en:

Bandas: Son grupos de familias que se asocian transitoriamente y que, según las circunstancias, se separan, uniéndose con otras familias en bandas diferentes. Constituyen bandas las comunidades cazadoras y recolectoras.
El tamaño de las bandas varía de acuerdo con la abundancia de recursos y oscila entre las 30 y las 150 personas. En las bandas no hay personas especializadas para tomar las decisiones, sino que éstas se toman en reuniones de familias. Muchas veces, los desacuerdos en estas decisiones son los que ocasionan la división de la banda.

Las bandas suelen tener un líder, pero esto no significa ningún privilegio para la persona que ocupa esa posición, ya que tiene que trabajar y compartir los alimentos como todos los demás. Generalmente, el líder es una persona experimentada, cuya autoridad se limita a calcular cuál es la mejor época para trasladarse de un lugar a otro o a elegir el tipo de alimentos a consumir gfc  primero y cómo se distribuirán.

• Tribus: Cuando en las comunidades aumenta la cantidad de alimentos que se producen, por la domesticación de animales y el cultivo de vegetales, se incrementa el número de sus integrantes. Al constituirse grupos más numerosos se hacen necesarios algunos cambios en la organización para la toma de decisiones. Se constituyen, de este modo, las denominadas “aldeas”, que confían las decisiones a un líder o a un consejo, formado por varias personas, por ejemplo, ancianos.

• Jefaturas: Cuando la capacidad para producir bienes aumenta, se requiere una mayor organización para intercambiar y distribuir los productos. Se hace necesario, también, que determinadas personas ejerzan la autoridad. Se desarrollan, así, las denominadas “jefaturas”. Éstas se diferencian de las tribus porque el jefe tiene un conjunto de privilegios que lo separa de los demás y porque quien lo sucede es un miembro de su familia, generalmente, su hijo. La jefatura se caracteriza por la desigualdad social y económica, ya que los emparentados con el jefe supremo tienen mayores beneficios y bienes que el resto de la población.

• Estados: La toma de decisiones que afecta a toda la población de un territorio es realizada por personas dedicadas exclusivamente a esta tarea, con poder para exigir y obtener obediencia y, en caso necesario, para usar la fuerza, lo que se considera legítimo por las funciones que ejercen.

Fuente Consultada:
Atlas de Historia del Mundo – Editorial Parragon
Todo Sobre Nuestro Mundo de Crhistopher LLoyd
Pensar La Historia Argentina desde una Historia de América Latina Moglia-Sislián-Alabart

Principales Cráteres en el Planeta Por Impactos de Meteoritos

EL IMPACTO DE LOS METEORITOS: Se define como meteorito a un trozo de material, a menudo procedente de algún asteroide, lo bastante  grande como para sobrevivir al pasar la atmosfera terrestre.

Los meteoritos son fragmentos de rocas del espacio interplanetario que el azar ha traído a la Tierra. Son de tres tipos: piedras —con mucho las más abundantes (92,8% de las caídas observadas)—, hierros (5,7%), y hierros líticos (1,5%).

Las piedras se componen en gran medida de silicatos —como la olivina, el piroxeno y el feldespato— y otros minerales conocidos en rocas ígneas lunares y terrestres. Más del 85% de las piedras son «condritas», que se distinguen de otras rocas ígneas por la presencia de pequeñas inclusiones esféricas de material de silicato llamadas cóndrulos. Los meteoritos de hierro son esencialmente aleaciones de hierro con hasta un 20% de níquel.

La mayoría de estos se componen de dos minerales de níquel-hierro intercalados laminarmente que muestran una superficie con dibujo en zig-zag al ser partidos y pulidos. Los meteoritos de hierro lírico se componen de níquel-hierro y silicatos en proporciones aproximadamente iguales: algunos presentan discretos granos de olivina dentro del níquel-hierro. Muchas piedras y hierros líricos presentan cortezas lisas o rugosascomo resultado de la ablación (fusión superficial) a su paso por la atmósfera de la Tierra. Algunos hierros presentan hendiduras cortantes formadas de la misma manera.

La datación isotópica de meteoritos revela edades mineralógicas de unos 4.600 millones de años, tanto como las rocas lunares datadas como más antiguas, e iguales a la edad que se le calcula a la Tierra y, presumiblemente, a los demás planetas.  La mayoría de los meteoritos se formaron probablemente mucho más tarde, cuando cuerpos originarios, pequeños pero de diferentes tamaños, del cinturón de asteroides entre Marte y Júpiter co-lisionaron y estallaron.

Caen en la Tierra un millón de meteoritos al año y, aunque raramente se ven, de vez en cuando causan daños. Los grandes han ocasionado cráteres, de los que el Cráter del Meteoro de Arizona de hace 20.000 años, con 1,2 kilómetros de diámetro y 174 metros de profundidad, es el ejemplo más gráfico. Algunos pequeños han caído sobre seres vivos. Una vez se rumoreó que un meteorito acertó a un gato.

Un caballo recibió un impacto en New Concord, Ohio, en 1860. Y aunque la mayor parte de los meteoritos proceden de asteroides, en 1911 un perro murió en Egipto al caerle un meteorito procedente de Marte. También han caído sobre seres humanos. Un hombre de Mhow, en la India, fue alcanzado en 1827, y en 1954 una ama de casa de Alabama dormía en el sofá de su cuarto de estar cuando una piedra procedente del espacio exterior atravesó el tejado y le impactó en la cadera, dejándole una impresionante quemadura. Fue un brusco despertar.

La mayoría son partículas pequeñas casi como de polvo y son rápidamente incineradas por el intenso calor friccional del vuelo atmosférico a alta velocidad. Sus incandescentes muertes, marcadas por brillantes estelas de luz, son las «estrellas fugaces» o «meteoros» del cielo nocturno.

Sólo unos pocos de los mayores meteoroides o sus restos fragmentados sobreviven al violento paso a través de la atmósfera para llegar a la superficie de la Tierra como meteoritos, e incluso así, alrededor de dos tercios caen en los océanos. Anualmente, rara vez se registran y recuperan más de diez caídas de meteoritos.

La caída de un meteorito se puede ver como una bola de fuego con largas colas incandescentes de materiales de desecho de la ablación. Se puede producir un sonido como de un trueno, de un silbido o de un resquebrajamiento, a veces acompañados por explosiones de «onda de choque supersónica».

Los lugares de hallazgos de meteoritos, de los que en la actualidad se conocen casi 2.500, se distribuyen de una manera fortuita, pero las tectitas parecen estar confinadas a «áreas de dispersión» en ciertas regiones geográficamente limitadas: las caídas de tectitas no han sido nunca observadas.

Las marcas de impactos de meteoritos en la superficie de la Tierra son muy poco corrientes, en gran medida porque los procesos geológicos normales conducen a su desaparición: sólo cráteres de mayor tamaño sobreviven durante algún tiempo, generalmente en condiciones de clima y de geología de superficie favorables, tal y como ejemplifica el cráter Meteor de Arizona, de 20.000 años de edad.

Sin embargo, investigaciones sistemáticas en muchas partes del mundo, sugieren ahora la presencia de hasta 60 estructuras de origen meteorítico, algunas de las cuales se asocian a la presencia de fragmentos de níquel-hierro y minerales que muestran el efecto de altas presiones coherentes con una modificación por impacto.

Mapa de los Principales Crateres

Principales cráteres de impacto en la superficie terrestre:

crater terrestre

Vredefort (Sudáfrica)  
De 300 km de diámetro y unos    2.000 millones    de    años de antigüedad.

crater terrestre

Sudbury (Ontario, Canadá)     
De unos 250 km de diámetro y    originado    hace    más    de 180 millones de  años.

crater mexico

Chicxulub (Golfo de México)  
De unos 170 km de diámetro y originado hace unos 65 millones de años, entre los límites de los tiempos mesozoicos y los fanerozoicos. Este gran cráter se relaciona con la gran catástrofe nz ógica que afectó a la Tierra al final del  período Cretácico, durante la cual se extinguieron numerosos grupos de organismos, entre ellos los dinosaurios.

Mankouagan (Quebec, Canadá)
De unos 100 km de diámetro originado hace unos 200 millones de años.

Propigai (Rusia)
De unos 100 km de diámetro y de alrededor de unos 35 millones de años de antigüedad.

Acraman (Australia)
De unos 90 km de diámetro y originado hace unos 570 millones de años, a inicios de los tiempos fanerozoicos.

Puchezh-Katunki (Rusia)
De 80 km de diámetro y originado hace unos 220 millones de años.

Siljan (Suecia)
De 55 km de diámetro y originado hace unos 368 millones de años.

Saint Martin (Canadá)
De 40 km de diámetro y formado hace unos 220 millones de años.

Teague (Australia)
De 30 km de diámetro y originado hace unos 1685 millones de años.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway – Crítica
La Luna, Marte y Los Meteoritos Geological Museum – Akal
Historia Universal Los Orígenes Tomo I – Salvat

Biografia de Ray John Naturalista Obra Cientifica

Al comenzar el siglo XVIII , los estudios de historia natural constituían más bien hallazgos aislados, y debemos agradecimiento a John Ray, hijo de un herrero de Essex, Inglaterra, por haber puesto cierto orden en aquel conjunto de conocimientos inconexos.

Naturalista Ray John

Por la precisión de sus observaciones y la claridad de sus descripciones, su trabajo fue muy valioso para los naturalistas que lo sucedieron. Linneo, el gran clasificador sueco, encontró mucho material aprovechable en los escritos de Ray. John Ray nació en 1627 e ingresó en Cambridge en 1644.

Fue un buen alumno en materias clásicas y, al finalizar, se dedicó a la enseñanza de griego, matemáticas y humanidades. Su interés por la historia natural comenzó en 1650, debido a una enfermedad que lo forzó a un período de reposo y vida al aire libre. Se interesó por la vegetación de los alrededores de Cambridge y continuó su estudio di’rante algunos años.

En 1660 publicó el “Cambridge Catalogue” (“Catálogo de Cambridge”), en el que se relacionan y describen las plantas de la zona; fue el primer catálogo de su clase, que preparó el camino para la “Synopsis of Bristish Plants” (“Compendio de las plantas británicas”), publicado por Ray después de innumerables viajes a través de todo el país. Realizó muchos de estos viajes con sus dos mejores amigos: Francis Wülughby y Philip Skippon.

En 1662, Ray abandonó la universidad y pasó a depender económicamente de su amigo Wülughby. Ambos decidieron realizar un.estudio completo de la vida vegetal y animal, y, en compañía de Skippon, embarcaron para un viaje de tres años por Europa.

Aunque, en principio, Ray sólo estaba interesado por las plantas, pronto sintió una profunda curiosidad por la vida animal y tomó cuidadosas notas a lo largo de su viaje, que formaron la base de todo su trabajo futuro. En 1667 fue elegido miembro de la Royal Society y, en años posteriores, presentó muchas comunicaciones a dicha sociedad científica.

Wülughby murió en 1673, y Ray tomó sobre si la tarea de continuar los escritos. Publicó “Ornithology” (“Ornitología”) e “History oj Fishes” (“Historia de los peces”) con el nombre de Wülughby, y también escribió unos tratados sobre reptiles e insectos, aunque su “Historia de los Insectos” no se pjblicó hasta después de su muerte, acaecida en 1705.

Ray explicó por primera vez la naturaleza verdadera de los capullos, tan frecuentes en las orugas.
Son ninfas de un insecto parásito,   que   pone   sus   huevos   sobre   la   oruga.

Ssry no abandonó su trabajo botánico y, en 1682, publicó “Methodus Plantarían”, en el que resume estructura y clasificación de las plantas. En el curso de su trabajo, descubrió la diferencia básica entre las mono-cotiledóneas y las dicotiledóneas. El primer volumen de “Historia de las plantas” —quizá, el trabajo más famoso de Ray— apare-
ció en 1686, seguido muy pronto por el “Compendio de las plantas británicas”.

plantas dicotiledonea

Ray fue el primero en señalar la diferencia fundamental entre monocotiledóneas y dicotiledóneas,
los dos grupos principales de las fanerógamas.

A estas obras tan conocidas acompañaron escritos sobre fósiles, discusiones teológicas, proverbios ingleses y otros variados asuntos. Casi todas fueron escritas en latín, por lo que el trabajo de Ray tuvo una rápida difusión fuera de su patria.

Por la precisión de sus escritos y descripciones, Ray conquistó un lugar de honor entre los grandes naturalistas. En 1844, un grupo de naturalistas que lo admiraba fundó, en su honor, la Ray Society, cuyos fines son alentar el estudio de la historia natural publicando una variedad de trabajos en el campo de la  biología.

Fuente Consultada
Enciclopedia TECNIRAMA Fasc. N° 110 El Naturalista John Ray

Determinar la antiguedad de un fósil Edad Arqueológica

El arqueólogo reconstruye las características y las actividades de los pueblos de la antigüedad, indicándonos cómo vivían, qué herramientas utilizaban, las habilidades que habían adquirido, incluso las enfermedades que padecían y las creencias que profesaban. Los antecedentes para conseguir estos conocimientos son los restos que dejaron aquellos pueblos: huesos, herramientas, ornamentos, vasijas, construcciones.

En su trabajo, el arqueólogo necesita la ayuda de toda una serie de científicos, tales como geólogos, zoólogos, botánicos, químicos, físicos. El conocimiento científico especializado proporciona datos a partir de las fuentes más insospechadas.

RESTOS  HUMANOS Y DE ANIMALES
Los huesos rotos de los guerreros vencidos pueden revelar exactamente los tipos de armas que se utilizaban e, incluso, las tácticas de combate. Las enfermedades también dejan su huella en los esqueletos, como en el caso de la lepra y la tuberculosis.

El raquitismo, que es una malformación de los huesos, se puede diagnosticar fácilmente. Esta enfermedad es producida por una carencia de vitamina D; la existencia de raquitismo en una comunidad antigua indica un bajo nivel de alimentación. Los dientes de los hombres antiguos pueden orientarnos acerca de su dieta. Los que comían principalmente carne tenían buenas dentaduras, pero a medida que aumentó la dieta de cereales, fue alterándose la dentadura.

Los huesos de los animales se suelen encontrar asociados a las comunidades del hombre, y de su identificación se deduce el componente principal de la dieta de éste. Los restos pueden ser de animales trashumantes que emigraban en busca de pastos, como, por ejemplo, los bisontes y los renos. Es probable que la comunidad humana también hiciera una vida nómada en busca de la caza.

A veces, los huesos son de animales domésticos, que no sufrían la vida azarosa y de lucha por la existencia como sus parientes salvajes; consecuentemente, pueden observarse modificaciones en sus esqueletos. Por ejemplo, las áreas para la inserción de los músculos son más reducidas. Los huesos proporcionan otros datos, que hacen pensar que la comunidad había domesticado animales.

No es probable que se encuentre una gran cantidad de huesos de animales jóvenes en lugares donde vivió un pueblo cazador, que posiblemente buscaría y capturaría los animales más grandes, adultos, para comerlos. Una gran proporción de huesos de ovejas sugiere que las hembras eran reservadas para ordeñarlas.

edad arqueologica

CÓMO SE  HACE UN  CALENDARIO ARQUEOLÓGICO
Hay dos procedimientos para determinar la cronología de un hallazgo arqueológico. Uno fija la edad exacta de un objeto, es decir, su antigüedad en años (cronología absoluta). El otro establece la antigüedad de un objeto en relación con otros (cronología relativa).

El físico nuclear ha suministrado al arqueólogo el mejor procedimiento para determinar la edad absoluta de los objetos: el del carbono-14. La mayor parte de los átomos de carbono tiene una masa atómica de 12, pero la radiación cósmica, al chocar con la atmósfera, produce una variedad de carbono radiactivo, que tiene una masa atómica de 14. Parte de este isótopo radiactivo es absorbido por las plantas, en forma de gas carbónico.

Los animales absorben carbono-14 al comer las plantas. Cuando los organismos mueren, ya no absorben más carbono radiactivo. El carbono absorbido se desintegra con el tiempo, produciendo nitrógeno.

La   velocidad  de  desintegración  es  constante  y,  trascurridos 5.568 años, la mitad del carbono radiactivo se ha desintegrado; al cabo de otros 5,568 años, la mitad del restante. Midiendo la cantidad de carbono radiactivo en maderas viejas, huesos, turba, astas, grano y carbón, puede deducirse aproximadamente la cantidad que se ha desintegrado y el tiempo trascurrido.

En América, los botánicos han establecido una escala absoluta de tiempos, hasta el año 1000 a. de J.C. Los anillos anuales de los árboles varían en espesor según los climas de las estaciones del pasado. Existen distintas conformaciones en la madera, debidas a cambios del clima. Con frecuencia, en los climas secos se ha conservado la madera que utilizaron los hombres de antiguas comunidades para construir sus edificios. Comparando la madera con los cortes de los troncos de árboles se puede averiguar   su   antigüedad   (dendroaronología) .

Para determinar la cronología relativa, el arqueólogo desarrolló sus propios métodos; por ejemplo, puede calcular la edad de las herramientas ateniéndose a su estilo y eficacia. Del mismo modo que se evidencia el desarrollo posterior de un avión reactor respecto a un biplano, puede comprobarse si una herramienta, en una región determinada, es posterior a otra. Los botánicos y los químicos practican otros métodos.

Aquéllos estudian los granos de polen. Cuando el hombre no interviene, los cambios del polen que se acumula en una región dependen de las alteraciones del clima. Desde fines de la Edad Glacial, el clima se ha hecho más cálido. En muchos sitios, a las plantas árticas siguieron plantas subárticas y luego plantas de clima templado.

Paulatinamente, los bosques evolucionaron, hasta tras-formarse en los que conocemos hoy. Los restos arqueológicos pueden encontrarse en lugares donde aparece polen en cantidad. La edad de los restos se relaciona entonces con la escala climática. A veces, la cronología del polen (e incluso la de los residuos) puede  determinarse  por radiactividad.

Los químicos han contribuido con métodos que incluyen la determinación de pequeñas cantidades de uranio, flúor o nitrógeno en los huesos. Durante largos períodos, los huesos y los dientes enterrados absorben lentamente vestigios de flúor y uranio. La cantidad depende de la abundancia de estos elementos en una zona dada y del tipo de circulación de agua en la misma. La antigüedad relativa de fragmentos tomados de las mismas regiones se puede determinar teniendo en cuenta las cantidades absorbidas.

El nitrógeno está presente en los huesos, en forma de proteínas. Los huesos recientes tienen un contenido en nitrógeno de alrededor de 4-5%. Esta proporción disminuye a medida que las proteínas se descomponen. La velocidad de descomposición depende de las condiciones físicas, químicas y bacteriológicas que caracterizan el medio   ambiente”.
Fuente Consultada
Revista TECNIRAMA (CODEX) Enciclopedia de la Ciencia y Tecnologia N°

Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia

El enigma del origen del Universo siempre fue tema de estudio y discusión para los científicos. Hasta el presente, la teoría que mejor ha podido explicar este acontecimiento es la propuesta por el físico George Gamow (1904-1968), llamada teoría del Big-Bang o de la Gran Explosión. Está basada en las observaciones del astrónomo Edwin Hubble (1889-1953), quien demostró que las galaxias se alejan unas de otras continuamente.

BIG BANG

13.700 millones de años

Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL SISTEMA SOLAR 4500 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COLISIÓN PLANETARIA ORIGINA LA LUNA 4500 millones de años
PRIMEROS SIGNOS DE VIDA MICROSCÓPICA 3700 millones de años
PRIMEROS ORGANISMOS PLURICELULARES 500 millones de años
ALGUNOS ANIMALES EMERGEN DEL AGUA 400 millones de años
LA MAYOR EXTINCIÓN EN MASA 252 millones de años
APARICIÓN DE LOS DINOSAURIOS 240 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
DESARROLLO Y EXPANSIÓN DE LAS FLORES 150 millones de años
EVOLUCIÓN DE LOS MAMÍFEROS 150 millones de años
EXTINCIÓN DE LOS DINOSAURIOS 65 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EXPANSIÓN DE LOS MAMÍFEROS POR LA TIERRA 55 millones de años
INICIO DE LA EDAD DEL HIELO 40 millones de años
LOS MONOS BAJAN DE LOS ÁRBOLES 7 millones de años
PRIMEROS HUMANOS PREHISTÓRICOS (homo habilis) 2.5 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EVOLUCIÓN DEL LINAJE MODERNO EN ÁFRICA 130.000 años
DATACIÓN DE LA PINTURA RUPESTRE MAS ANTIGUA 30.000 años
NACIMIENTO DE LA AGRICULTURA Y GANADERÍA 10.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ARMAS DE BRONCE, CABALLOS Y CARROS 3.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COMIENZAN LOS JUEGOS OLÍMPICOS EN GRECIA 2.700 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL BUDISMO 2.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL CRISTIANISMO 2.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EL IMPERIO ROMANO ALCANZA SU APOGEO 2.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL ISLAM 1.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LAS CRUZADAS 1.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA PÓLVORA Y EL PAPEL LLEGAN A OCCIDENTE 800 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CONQUISTA EUROPEA DEL NUEVO MUNDO 500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CULTIVOS, ANIMALES Y ENFERMEDADES SE GLOBALIZA 400 años
REVOLUCIONES FRANCESA Y AMERICANA 250 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ERA DE LOS IMPERIALISMO OCCIDENTALES 250 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COMIENZA LA REVOLUCIÓN INDUSTRIAL 200 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
PRIMERAS VACUNAS 200 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA POBLACIÓN MUNDIAL SUPERA LOS 1000 MILLONES 180 años
FERROCARRIL, ELECTRICIDAD Y AUTOMOVILES 150 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
PRIMER VUELO CON MOTOR 100 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
GUERRAS MUNDIALES 80 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
DESCUBRIMIENTO DE LA ENERGÍA ATÓMICA 60 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ERRADICACIÓN MUNDIAL DE LA VIRUELA 40 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COLAPSO DE LA UNIÓN SOVIÉTICA 25 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA POBLACIÓN MUNDIAL SUPERA LOS 6000 MILLONES 10 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CIENTÍFICOS PREDICEN LA SEXTA EXTINCIÓN EN MASA 5 años

Aún hoy, después de tanto avances científicos y progresos en la exploración del espacio,  el origen del universo sigue siendo mi misterio. Los astrónomos no pueden más que recurrir a diversas hipótesis. Según la teoría del Big Bang, el universo que se observa en la actualidad se habría formado hace diez mil o veinte mil millones de años, debido a una explosión que formó una “bola de fuego primigenia” en cuya composición entrarían protones, electrones, fotones y neutrones, a una temperatura extremadamente alta; más de un millón de grados. Este gas, en permanente expansión, sería el que, al condensarse, dio origen a las galaxias y, dentro de ellas, a las estrellas y los planetas.

Los astrónomos no se han puesto de acuerdo acerca de la duración de esta expansión: ¿será indefinida, o en algún momento se detendrá? Algunos sugieren que podría detenerse poco a poco. Otros predicen que a la detención le seguiría una contracción y toda la materia volvería, entonces, a su condensación inicial; luego se produciría otra explosión, y el ciclo recomenzaría. También hay quienes sostienen que el universo no tendría principio ni fin, y que permanecerá por siempre en el estado actual. No obstante, debido a que el universo no es estático y hay una creación continua de materia para reemplazar a las galaxias que se alejan, las dos primeras teorías se consideran más consistentes.

Una galaxia es un inmenso sistema conformado por billones de estrellas. Las hay de diversos tipos: irregulares, espirales, elipsoidales; la Vía Láctea, que nos contiene, es una galaxia espiral. Los centros de las galaxias suelen ser luminosos; y en varias de ellas hay indicios de que se hubieran producido explosiones.

Las galaxias forman “racimos” con distinto número de componentes: de una veintena a miles. La Vía Láctea forma parte de un grupo de veinticuatro miembros, denominado Grupo Local, en el cual la más importante es la galaxia de Andrómeda, que tiene el doble del tamaño de la nuestra. En torno a las estrellas, pueden apreciarse nubes de gas y polvo, a veces visibles como en el caso de la nebulosa de Orión. Son estas nubes las que, al condensarse, dan origen a las estrellas.

Imagen del Universo

Nuestro sistema solar está conformado por el Sol y ocho planetas que gravitan a su alrededor. Los planetas siguen órbitas que, casi en su totalidad, están situadas en el mismo plano; y todos se desplazan en torno al Sol en el mismo sentido. El tiempo que tardan en dar una vuelta constituye el año de cada planeta: Mercurio, el más cercano, demora tres meses terrestres. Además de los planetas, entre Marte y Júpiter circulan cuerpos pequeños, bloques de rocas cuyo diámetro no suele pasar los pocos kilómetros. Se cree que estos asteroides son los restos de un planeta que, o bien se fragmentó, o no llegó a formarse jamás.

En la periferia del sistema existen, además, una serie de cuerpos que no alcanzan la categoría de planeta, como es el caso de Pintón, “degradado” recientemente, además de otros, descubiertos en los últimos años gracias a los nuevos instrumentos de detección, como Eris, Sedna y Xena. Además hay cuerpos de menor tamaño, como los meteoros. Son rocas que, al entrar en la atmósfera terrestre, se inflaman por el roce del aire y se convierten en estrellas fugaces. Los cometas, por su parte, son bloques sólidos cuya materia comienza a evaporarse a medida que se aproximan al Sol, lo que genera su característica cabellera de gases. Vienen do muy lejos, de más allá de los límites del sistema solar; algunos son periódicos, como el cometa Halley, que se aproxima al Sol cada 75 años.

El trabajo del astrónomo ha variado mucho desde que se estudiaba el movimiento de los astros a simple vista. Los medios de observación actuales —radiotelescopios, receptores espaciales, telescopios ópticos— surgieron del aporte de disciplinas variadas, como la óptica, la mecánica de precisión, le electrónica. Tanto la recolección como la interpretación de datos ya no corren por cuenta de astrónomos individualistas, sino que surgen del trabajo coordinado de un equipo interdisciplinario.

El astrónomo nunca podrá recurrir a la comparación directa del objeto de estudio ni podrá ver por sí mismo la estructura de un astro ni visitar un agujero negro, por lo que constante” mente debe recurrir a la reformulación de sus modelos teóricos. Esto implica un alto grado de interacción de las diversas ciencias, lo que hace de la astronomía actual una disciplina dinámica y en constante evolución, que con el tiempo puede brindar los frutos más inesperados.

EVOLUCIÓN DEL COSMOS

Tiempo cero

Existen cuatro fuerzas unificadas: la fuerza de gravedad, que atrae a los cuerpos; la nuclear débil, que mantiene unidas las partículas subatómicas; la nuclear fuerte, que une los núcleos atómicos y la electromagnética, que atrae a las cargas positivas y negativas. La materia y la energía están concentradas en un pequeño volumen. La temperatura es superior a los 1.011 °C. Se produce una gran explosión o Big-Bang. A partir de allí, el Universo comienza a expandirse.
10-43  10-43segundos después del Big-Bang. La fuerza de gravedad se independiza del resto de las fuerzas. El Universo se visualizaría del tamaño de una uva.
10-35  10-35segundos después del Big-Bang. Se independiza la fuerza nuclear fuerte. Abundan los quarks, los electrones, los positrones y los neutrinos.
1 segundo  1 segundo después del Big-Bang. El electromagnetismo y la fuerza nuclear débil se separa.  Se fusionan las primeras partículas formando los protones y los neutrones.
1 minuto 1 minuto después del Big-Bang. Se forman los núcleos de helio (He) y deuterio (H)
30 minutos 30 minutos después del Big-Bang. Continúa la expansión, la temperatura del Universo baja a 3 . 108 °C.
4 . 105 años después del Big-Bang. Se forman átomos de hidrógeno (H) y sus isótopos y helio (He). Comienza a separarse la radiación de la materia: se liberan microondas, que se expanden en todas las direcciones.
106 años después del Big-Bang.  Las nubes de gas (de hidrógeno y helio) se atraen por fuerzas gravitatorias. Aparecen las primeras galaxias y quasares. Se forman los primeros elementos químicos más pesados que el hidrógeno y el helio. Continúan la expansión y el enfriamiento.
109 años después del Big-Bang.  Se origina la Vía Láctea, galaxia espiral en la cual se encuentra el Sistema Solar.
109 años después del Big-Bang.  Se originan el Sol y los planetas (entre ellos la Tierra). En las estrellas se producen fusiones nucleares que dan origen a los restantes elementos.
109 años después del Big-Bang.  Se forman las primeras moléculas orgánicas en a Tierra
Época actual. 15 . 109 años después del Big-Bang.  Continúa la expansión. La temperatura de las radiaciones de microondas (descubiertas en 1965) es de apenas -270°C. Diámetro estimado del Universo actual: 30.000 millones de años luz (cada año luz equivale a 9,463 x 1012 Km.). El futuro del Universo es incierto. Algunas teorías estiman que seguirá expandiéndose, otras dicen que se contraerá y otras que ocurrirán ambas cosas alternativamente.

Fuente Consultada:
Grandes Inventos Que Cambiaron El Mundo Michael Spiers
Todo sobre nuestro mundo de Christopher LLoyd

 

Predecir Terremotos Tsunamis Detectar a Tiempo Movimiento Terrestre

Así como hoy se puede predecir el tiempo, se cree también que será posible que un día puedan predecirse los terremotos con cierto grado de fiabilidad. Se han realizado intensos esfuerzos en muchos países para detectar síntomas precursores de los terremotos, pero no se ha conseguido establecer un esquema coherente, y los resultados prácticos en la predicción de terremotos son, por el momento, muy limitados. Muchos de los fenómenos que se consideran como precursores de terremotos están relacionados con la dilatancia, esponjamiento que se produce en las rocas como consecuencia del incremento de las tensiones internas a que se ven sometidas. Otros síntomas, no relacionados probablemente con la dilatancia, pueden ser las sacudidas previas, la fluencia del terreno e incluso el comportamiento inhabitual de los animales. Actualmente desconocemos si existe una serie de síntomas que invariablemente deban preceder a un terremoto; son necesarias, por tanto, más pruebas.

El 24 de enero de 1556, un terremoto sacudió la provincia china de Shansi. El enorme número de víctimas que ocasionó —alrededor de ochocientos mil— lo convirtió en el sismo más mortífero que registra la historia.

Casi 1.500 años antes de este terrible hecho, el 24 de agosto del año 79, la erupción inesperada del volcán Vesubio, en el sur de Italia, enterró bajo un manto de lava y de cenizas las ciudades de Pompeya y Herculano, que permanecieron escondidas durante quince siglos. Los terremotos y las erupciones volcánicas tienen muchas cosas en común.

Pueden resultar tremendamente destructivos, violentos y aterradores, pero, ante todo, son inevitables. Sin embargo, a pesar de no poder impedir su ocurrencia, se los puede predecir Tanto en el caso de los sismos como de las erupciones volcánicas, existen varias señales claras que anticipan el desastre.

Predicción de terremotos: En otros tiempos, los chinos, como muchos otros pueblos, creían que los terremotos podían augurarse por medio de la astrología. En la actualidad, en cambio, los intentos por predecir un sismo se basan fundamentalmente en la observación de los diversos cambios que experimenta la corteza terrestre antes de un fenómeno de esta magnitud.

Hoy se trabaja con la predicción a largo y a corto plazo. Para la primera, resulta imprescindible disponer de registros históricos que certifiquen la ocurrencia de anteriores terremotos en la región, y realizar un análisis estadístico del patrón futuro de estas mismas ocurrencias.

Otro análisis similar incluye el concepto de vacío o laguna sísmica (seismic gap) es decir, la no ocurrencia de terremotos durante un lapso más o menos prolongado, en zonas tectónicamente activas, puede indicar un período de acumulación de energía que finalmente se liberará en la forma de un gran terremoto. Una de las pistas principales son los temblores de baja intensidad o sacudidas precursoras, que preceden a los terremotos y que pueden adelantárseles incluso varios años.

Estos pequeños movimientos anteceden la liberación brusca, en forma de vibraciones sísmicas intensas, de la tensión acumulada durante años en el interior de la Tierra Para algunos sismólogos, estas variaciones menores provocan una alteración en la velocidad de propagación de las ondas sísmicas. Por lo tanto, las fluctuaciones en el patrón de ondas podrían interpretarse como una advertencia. La predicción a corto plazo es la más importante y difícil.

Los sismólogos estudian los datos acumulados de otros terremotos, como movimientos lentos del terreno, emanaciones de gases, variaciones del nivel freático, etcétera Muchos especialistas sostienen que en el lugar donde va a originarse un sismo, y en sus alrededores, los materiales sólidos que componen las rocas se dilatan y deforman. Esta dilatación, que se manifiesta, entre otras cosas, como un aumento de volumen, produce variaciones medibles, en la corteza terrestre, de diversos parámetros, como la velocidad de las ondas sísmicas, la resistividad eléctrica y los niveles del suelo y del agua. Si estas alteraciones llegaran a comprobarse, podrían resultar sumamente útiles para predecir la ocurrencia de un terremoto.

En la misma línea de pensamiento, los científicos analizan también la modificación en la concentración de ciertos gases, como el radón, un gas inerte y radiactivo, que aumenta a medida que las rocas acumulan esfuerzos. Predicción de erupciones volcánicas Aparentemente, existiría una relación entre los terremotos y la erupción de los volcanes. Si esta relación se continuara, los observatorios podrían monitorear los movimientos sísmicos para confeccionar un pronóstico de erupciones medianamente confiable. Por otro lado, una teoría propone que las mareas solares y lunares, que poseen un ciclo definido, y el acercamiento a la Tierra de un planeta de gran masa también favorecerían de alguna manera la actividad volcánica. Una vez más, de comprobarse este hecho. se podrían prever con antelación las grandes erupciones, además de los cambios climáticos ligados a ellas, por ejemplo, las sequías y las inundaciones.

Pero otros signos de posible erupción parecen más frecuentes y seguros. La emisión de gases que cambian de composición química a medida que ésta se acerca (por ejemplo, pocas semanas antes de la gran erupción del volcán Pinatubo, en 1991, se detectaron grandes cantidades de gases sulfurosos, que incluso contaminaron lagos cercanos y acabaron con todo signo de vida). Otro fenómeno asociado al “prevulcanismo” es el abultamiento, inclinación y levantamiento de la superficie del edificio volcánico, por la actividad de los gases y el ascenso del magma, lo que a su vez eleva la temperatura del suelo.

Como podemos ver no existe una “bola de cristal” que nos permita predecir con certeza el despertar de un volcán dormido o las sacudidas violentas del planeta Pero todos los especialistas están de acuerdo en algo: la Tierra nos da muchas señales. Sólo es cuestión de saber descifrarlas.

ALGUNAS EXPERIENCIAS: El primer paso, esencial, por otra parte, para avanzar en el estudio de predicción de terremotos, consiste en identificar una región en la que su historia sísmica sugiera la posibilidad de que un terremoto pueda tener lugar en un plazo corto, para poder instalar convenientemente todos los instrumentos necesarios . En China se han obtenido notables éxitos en la predicción de terremotos; indudablemente el incentivo es alto en ese país que tiene una larga historia de desastres producidos por este fenómeno, por lo que se han dedicado a este trabajo enormes recursos de mano de obra, tanto profesional como amateur.

Antes de ocurrir el terremoto de Haicheng …”en 1975, se habían estudiado una serie de terremotos de la zona a partir del que tuvo lugar en Bo Hai en 1969 y otros anteriores a él , y se había localizado una especie de trayectoria progresiva en dirección noreste. Mediante trabajos de campo para determinar las deformaciones del terreno, y otra serie de síntomas, se llegó a establecer en junio de 1974 que un terremoto de magnitud 5 a 6 tendría lugar en la zona norte de Bo Hai en un plazo de uno o dos años.

En febrero de 1975 una serie de pequeños temblores fueron correctamente identificados corno una secuencia de sacudidas previas; este hecho provocó la decisión de evacuar a la población, instalándola en tiendas de campaña a pesar de las crudas condiciones meteorológicas invernales. A lo largo de ese día más de un millón de personas acamparon en las afueras de la ciudad, y al principio de la tarde tuvo lugar la primera gran sacudida de magnitud 7,3 y con un foco a 12 Km. de profundidad.

Trágicamente, el terremoto que tuvo lugar en Tangshan el año siguiente, y en el que murieron 240.000 personas, no pudo ser predicho, en parte debido a la aparente ausencia de sacudidas previas y de otros síntomas precursores. Fuertes temblores se sintieron también en Beijing (Pekín) que hicieron que los residentes de esa zona se trasladaran temporalmente a campamentos provisionales durante el período posterior al terremoto .

INTENTOS DE CONTROL SATELITAL: Lanzado en 1976, el Satélite Geodinámico Láser (LA-GEOS) está concebido para proporcionar información sobre los desplazamientos de la corteza terrestre, y puede conducir al desarrollo de técnicas que permitan predecir los terremotos.

Para ello se hacen rebotar en el satélite rayos láser y se cronometra su retorno a la Tierra, con lo que se mide la distancia que separa el satélite de distintas estaciones terrestres de seguimiento. Este valioso procedimiento para la predicción de seísmos sería posible gracias a la reciente puesta a punto de todo un sistema para comunicar estaciones terrestres y lunares con satélites por medio de láseres. La capacidad de un sistema láser es 100 veces mayor que la de un sistema convencional de mícroondas y extiende su eficacia más allá del sistema solar.

Las técnicas de medición láser-satélite se han propuesto también como un posible medio de detectar las ondas de gravedad, es decir, el hipotético equivalente gravitatorio a la radiación electromagnética. En teoría, las manifestaciones violentas de energía gravitatoria agitarían los satélites en sus órbitas.

Sin embargo, tales efectos pueden resultar demasiado tenues para que sean registrados por las actuales técnicas de láser y, hasta la fecha, la labor más convincente para verificar la existencia de las ondas gravitatorias la ha realizado el profesor Joseph Weber, de la Universidad de Maryland. Empleando dos cilindros de aluminio sólido y tres toneladas y media de peía, situados a mil kilómetros de distancia entre sí y totalmente aislados de vibraciones locales, Weber logró detectar (con un equipo tan sensible que era capaz de registrar movimientos de una centésima del diámetro del núcleo atómico) vibraciones simultáneas en los cilindros que no podían atribuirse a ningún fenómeno conocido.

Una causa de las vibraciones pudieran ser explosiones de energía gravitatoria. Si posteriores experimentos lo confirman, podemos estar a las puertas de una revolución en el campo de la física tan grande como la preludiada en el siglo XIX por el descubrimiento de la radiación electromagnética.

En lo que respecta al conocimiento de la gravedad, nos encontramos tan sólo un poco más avanzados que los antiguos griegos en lo concerniente a la electricidad: les resultaba familiar la electricidad estática y la magnética, pero no sabían nada de su tercera manifestación, las invisibles ondulaciones que hacen posible la radio, la televisión y muchos otros fenómenos que hoy ya no nos sorprenden. Si la sociedad ha de experimentar una nueva revolución, sus raíces tecnológicas bien pudieran afirmarse en las actuales investigaciones para detectar las ondas gravitatorias.

ALGO MAS…
La señal producida por un terremoto típico (suponiendo que no sea suficientemente potente para causar daños al aparato) presenta tres tipos de ondas. Las primeras ondas que llegan al observatorio son las ondas longitudinales, que se propagan de la misma forma que las sonoras (es decir, vibran en la dirección de la propagación).

Después, llegan las ondas transversales, que vibran en ángulo recto, respecto a la dirección de propagación. Estas últimas son las menos potentes y el tiempo que transcurre entre ambas, determina la distancia del foco al observatorio.

Este tipo de ondas se denomina ondas principales. Los terremotos fuertes se pueden observar en forma de ondulaciones “visibles” que se propagan por sobre la superficie terrestre.

Estas ondas se propagan por la vía más larga, alrededor de la capa más exterior de la corteza terrestre, y llegan al observatorio algún tiempo después que las otras ondas, que pasan a través de la Tierra. Las ondas principales son las que producen mayores daños. La velocidad de las ondas sísmicas es distinta en las diferentes clases de ellas; las longitudinales recorren 12.000 metros por segundo; las transversales 6.500, y las superficiales 3.800.

La velocidad de todas ellas decrece con la distancia al epicentro hasta llegar a un valor mínimo, a partir del cual aumenta con dicha distancia hasta hacerse constante. Llama la atención la extraordinaria velocidad de las ondas longitudinales, tres veces superior a la de las superficiales y más del doble de la velocidad de propagación del movimiento en las rocas más elásticas conocidas.

Lo primero se explica porque las longitudinales viajan por el interior de la Tierra, desde el hipocentro (foco) a los distintos puntos de su superficie, y esto explica también que aumente, con la distancia del epicentro, a partir de un cierto punto, puesto que entonces la línea, según se propaga la onda sísmica, atraviesa mayor longitud de rocas de profundidad, que son más densas y elásticas.

Lo segundo nos obliga a admitir la existencia, en el interior de la Tierra, de una sustancia muy densa y de una rigidez mayor que la de todas las rocas conocidas; es decir, el núcleo terrestre no puede ser fluido ni pastoso, pues, en este caso, las ondas caminarían con mayor velocidad en el núcleo que en la corteza terrestre, y la experiencia demuestra, precisamente, lo contrario.

 Ver: Terremotos Históricos

Terremotos Mas Importantes de Argentina

Fuente Consultada:
Biología y Ciencias de la Tierra -Estructura y Dinámica de la Tierra Santillana
Los Terremotos Akal Geological Museum

Historia del Trineo Resumen Origen Primeros Transporte de Carga

HISTORIA DEL TRINEO:

Una migración de humanos  en el -7000 es el origen de la población de América se produce Sur, de las islas del Pacífico, y por vía marítima. También se sabe que otras migraciones se habían producido anteriormente por el Norte, pudiéndose calcular que se remontan a 9-000 u 8.000 años a. de J. C, y utilizando a buen seguro eltrineo. De ahí que la necesidad de superar terrenos o mares helados acuciase la genialidad inventiva del hombre. Nació así el trineo, y si no precisamente la barca, fruto de una civilización posterior y más evolucionada, sí al menos algunos tipos rudimentarios de balsas y maderos flotantes. Estos fueron los primeros medios de transporte.

Será oportuno detenernos un momento en el trineo, advirtiendo que cuanto se refiere a las balsas será descrito en otro lugar.
Los primeros trineos se deslizaban silenciosos en las selvas de coníferas de la Europa septentrional; se construyen vaciando la corteza de los árboles y, además de facilitar el viaje sobre los hielos y la nieve, haciéndolo más rápido y seguro, sirven para transportar los animales cazados. Con bastante rapidez el hombre descubre que también pueden utilizarse como medio de transporte sobre la hierba, el barro y los terrenos cenagosos, tal como aún hoy se utilizan en Laponia, en el Asia septentrional y en la Columbia Británica. La idea de añadir varillas y guías deslizantes para reducir el rozamiento parece relacionarse con el uso de cuernos de animales o, más probablemente en el Norte, con la utilización de las curvadas mandíbulas de las ballenas. Si bien en un primer tiempo el trineo era empujado o arrastrado por un hombre, no transcurre mucho tiempo sin que el perro sea uncido a él, aunque no el reno, domesticado mucho más tarde.

El trineo es el predecesor del esquí, del que se han hallado varios ejemplares, pertenecientes al período neolítico, en Finlandia, Noruega y casi todos los países del norte de Europa. En aquella época el trineo había llegado ya a un grado notable de perfección; era ligero y llevaba alzada la proa para que pudiera superar ágilmente las asperezas e irregularidades del terreno. El esquí, por el contrario, era aún muy primitivo y basto, estando formado por dos guías anchas y cortas fijadas al pie por medio de ataduras; sin embargo, en Riihimaki (Finlandia), se han encontrado ejemplares en los que el pie se apoya en una concavidad de madera en cuyos bordes se habían fijado correas. El material utilizado era siempre madera de pino. Ya en las postrimerías del neolítico el esquí había evolucionado de tal forma, que se diferenciaba muy poco del que se usa actualmente. Cambió el tipo de madera y asimismo el engranaje, constituido por relieves de hierro peraltado, dotado de estrías para fijar el pie.

Del trineo derivan, además del esquí, diversos tipos de vehículos deslizantes que se difundieron de modo extraordinario, y no sólo en el Norte. Egipto y Sumer hacían un uso especial del trineo, transportando material de construcción, estatuas colosales y pesos enormes. En Mesopotamia fue adoptado un tipo de trineo arrastrado por bueyes; en Ur, la reina Shub-ad poseía — nos encontramos ya en el siglo III a. de J.C.—un hermosísimo carro-trineo dotado de guías muy recurvadas. Trineos mucho más pequeños se usaban corrientemente en Egipto para el transporte del trigo.

El principio de la reducción del rozamiento, haciendo que sobre el terreno se deslice una superficie lisa y aguda, se aplica también a otros medios de transporte que parecen derivar del trineo, aunque no falta quien sostiene que algunos de ellos sean anteriores. Un tronco con la rama en forma de horquilla constituyó sin duda el primer trineo utilizado en los campos de Europa hasta épocas relativamente recientes. Los travois empleados por los indios americanos se diferencian poco de este tipo, y son arrastrados por perros o caballos. De estos rudimentarios medios de transporte proviene la «narria», constituida esencialmente por dos ramas de árbol arrastradas por un buey o un caballo y ligadas entre sí por unos barrotes transversales, que forman la superficie utilizada para depositar la carga.

Continuando de nuevo el examen del desarrollo humano, nos encontramos que alrededor del año 7000 a. de J.C. empiezan a formarse en el Medio Oriente las primeras comunidades de pastores y agricultores, fenómeno producido como consecuencia de la domesticación del ganado lanar y cabrío y del cultivo de los cereales. Aún se trata de pueblos nómadas, pero el paso de la caza y la recolección al pastoreo y al cultivo de la tierra, la llamada revolución neolítica que liga los hombres a la tierra, produce notables transformaciones en la civilización.

En efecto, dos milenios más tarde observamos que el progreso ha sido enorme: el arte de la cerámica evolucionó considerablemente y las artes plásticas moldeaban ya sus primeras figuras con gran maestría, mientras, algo más tarde y siempre en el Medio Oriente, aparecían las primeras manufacturas textiles y de mayólica.
Nuestra exposición ha dado fin. Nos aproximamos al año 3000 a. de J.C. Es la época de la rueda, que ve el florecimiento de grandes civilizaciones.

Un trineo de Laponia

Un trineo de Laponia en forma de piragua. Construido a base de un tronco de árbol ahuecado, no posee trenes de deslizamiento, pero resbala sobre su base. El trineo, primer medio de transporte utilizado por el hombre, se deslizaba también sobre la hierba y terrenos arcillosos. 

Un "tobogán», el trineo

Un “tobogán», el trineo utilizado por Ion indios cllipeva para trasladarse sobre terrenos nevados. T\to medio de transporte, muy difundido en In región de los grandes lagos, estaba formado por Uni larga tibia, curvad» un tu parte delantera y arrastrada por mujeres o por perros. 

trineo esquimal

Un trineo esquimal de transporte. La necesidad de reducir el rozamiento del terreno y de aumentar la estabilidaddel vehículo sugirió la idea de aplicar, sobre el fondo del trineo, dos mandíbulas de ballena,  que al cabo de poco tiempo fueron sustituidas por auténticas guías metálicas favorecieron el deslizamiento sobre el terreno.

Fuentes Consultadas:
Historia de la Comunicaciones Transportes Terrestres J.K. Bridges
Historia y Cronología de la Ciencia y los Descubrimientos de Isaac Asimov

La teoría de la Evolución Darwin Charles La Selección Natural

Está generalmente reconocido que los seres vivos evolucionan y que las formas sencillas dan lugar a formas cada vez más complejas. ¿Cómo sucede esto? He aquí la cuestión que intrigó a Carlos Darwin, el gran naturalista, durante muchos años. Darwin creía firmemente en la evolución, pero por largo tiempo fue incapaz de explicarla. Al cabo de muchos años desarrolló su famosa Teoría de la evolución por selección natural, basada en el modo prodigioso en que los animales se adaptan a su ambiente. La evolución es el proceso por el que una especie cambia con el de las generaciones. Dado que se lleva a cabo de manera muy lenta han de sucederse muchas generaciones antes de que empiece a hacerse evidente alguna variación.

UN POCO DE HISTORIA…Desde la antigüedad, el modo de originarse la vida y la aparición de la gran variedad de organismos conocidos, constituyó un misterio que, en menor o mayor medida, despertó curiosidad de los científicos.

Sin embargo, las supersticiones, los prejuicios, los dogmas religiosos y las teorías que se aventuraban debido a la imposibilidad de probarlas con el nivel de conocimiento de aquellas épocas, hicieron que la cuestión quedara a menudo en el olvido o que, simplemente, se aceptara la imposibilidad de averiguar los orígenes.

No fue hasta épocas relativamente recientes cuando el hombre pudo finalmente abordar esta cuestión con unos criterios fiables y unos conocimientos científicos suficientes para demostrar sus hipótesis.

Es así como podemos afirmar, que antes del siglo XIX existieron diversas hipótesis que intentaban explicar justamente esta cuestión, “el origen de la vida sobre la Tierra”. Las teorías creacionistas que hacían referencia a un hecho puntual de la creación divina; y por otra parte, las teorías de la generación espontánea que defendían que la aparición de los vivos se producía de manera natural, a partir de la materia inerte.

Una primera aportación científica sobre el tema es el trabajo de Oparin (1924), El origen de la vida sobre la Tierra, donde el bioquímico y biólogo ruso propone una explicación, vigente aún hoy, de la manera natural en que de la materia surgieron las primeras formas pre-biológicas y, posteriormente el resto de los seres vivos. En segundo aspecto de la generación espontánea de la vida tiene una respuesta convincente desde mediados del siglo XIX.

Esto es así, gracias a Pasteur y fundamentalmente a Darwin quienes realizaron experimentos al respecto. Este último, naturalista británico realizó una obra de vital trascendencia (1859): El origen de las especies. La cual tiene por objetivo aportar una explicación científica sobre la evolución o denominada “descendencia con modificación” (término utilizado para explicar estos fenómenos).

Los pinzones de Darwin son un grupo de pájaros que se encuentran en las islas Galápagos y que contribuyeran grandemente a ¡a formación de la teoría de la evolución. En esas islas existen pocas aves de otra de otra clase y los pinzones han evolucionado en varias direcciones, de modo que ahora los hay granívoros, frugívoros, insectívoros, etc. Sus picos varían de forma, de acuerdo con le función. Se distinguen varias especies y subespecies. La semejanza general entre ellos sugiere que han evolucionado recientemente, a partir de un antepasado común.

Evolución de los pinzones de Darwin

Sin lugar a dudas que existieron importantes antecedentes del tema, aunque siempre se manifiesta el honor de haber realizado esta teoría de manera científica e inexorable, a Charles Darwin. No muy lejos, fue su abuelo –Erasmo Darwin- quien aportó las primeras muestras de interés científico por estos temas. No obstante, quien fue precursor de una corriente de pensamiento sobre el estudio de la evolución de los seres vivos, es Jean Baptiste de Monet, caballero de Lamarck (1744-1829).

Su tesis fundamental es la transmisión de los caracteres adquiridos como origen de la evolución (es decir, que las características que un individuo adquiere en su interacción con el medio se transmiten después a su descendencia); denominada este principio como Lamarckismo.

La causa de las modificaciones de dichos caracteres se encuentra en el uso o no de los diversos órganos, tesis que se resume en la siguiente frase: «La función crea el órgano». Lamarck resume sus ideas en Filosofía zoológica (1809), el primer trabajo científico donde se expone de manera clara y razonada una teoría sobre la evolución.

Así, por ejemplo, los lamarckistas explicaban la aparición del cuello largo en las jirafas como un proceso paulatino de adaptación de un animal a ir comiendo hojas situadas cada vez más altas. Lo que supondría que sus hijos heredarían un cuello más largo aún.

jirafas comiendo

Lemack suponía que el esfuerzo de las jirafas para alcazar la hojas mas altas, hacía que sus cuellos se estirasen unos centímetros, y que luego ese estiramiento era transmitido a sus descendientes.Las ideas de Lamarck fueron criticadas por Weissman, quien posteriormente demostró que los caracteres adquiridos no pueden heredarse. Las células del cuerpo (o somáticas) están completamente separadas de las reproductoras (gametos: óvulos y espermatozoides) y solamente estas últimas transmiten rasgos hereditarios a la generación siguiente.

En realidad según la teoría de Darwin las que tenían el cuello y las patas algo más largos que las otras, podrían alimentarse de hojas de acacia, (las otras se desnutrían) lo que les ayudaría a sobrevivir mejor en las épocas de sequía. Actuó de esta manera la selección natural, que permitió a los mejor adaptados, los más altos, reproducirse.

lamarck teoria de los caracteres adquiridos

Lamarck, que vivió de 1744 a 1829. De acuerdo con ella, si un hombre hace gimnasia intensamente y desarrolla sus músculos, sus hijos tendrán también músculos potentes. En otras palabras, los caracteres adquiridos durante la vida de un individuo pueden ser heredados. Esta teoría recibe, por ello, el nombre de teoría de la herencia de los caracteres adquiridos. Evidentemente, es cierto que los músculos pueden ser desarrollados mediante ciertos ejercicios, pero lo que no está demostrado en absoluto es que estas modificaciones puedan heredarse.

En lo que respecta al científico británico, Charles Darwin, viajando a bordo del Beagle, durante largos años (1831- 1836) recogió datos botánicos, zoológicos y geológicos que le permitieron establecer un conjunto de hipótesis que cuestionaban las ideas precedentes sobre la generación espontánea de la vida.

La diversidad observada durante esos veinte años siguientes se intentó explicar de manera coherente mediante la formulación de los datos obtenidos. Una de las etapas que más influyó en el fue su paso por las islas Galápagos, donde encontró 14 subespecies distintas de pinzones, que se diferencian únicamente en la forma del pico. Es decir, que cada una de ellas, estaba adaptada a un tipo de alimentación y vivía en un hábitat diferente en las diversas islas.

Sin embargo, en 1858, Darwin se vio obligado a presentar sus trabajos, cuando recibió el manuscrito de un joven naturalista, Alfred Russel Wallace (1823/1913), que había llegado de manera independiente a las mismas conclusiones que él, es decir, a la idea de la evolución por medio de la selección natural.

La obra de Malthus sobre el crecimiento de la población, fue la base que habría tomado para sus estudios, tanto Darwin como Wallace. La misma establece que este factor (crecimiento de la población) tiende a ser muy elevado, la cual al disponibilidad de alimento y espacio son limitados lo mantendrá constantes, de aquí surge esta proposición de la idea de competencia. Ambos científicos de acuerdo a esta base argumental sustentan sus teorías estableciendo dos aspectos relevantes, dando por sentado que los seres vivos pueden presentar clones.

Justamente la noción de competencia establecida anteriormente por Malthus y finalmente esta última idea, es lo que los lleva a establecer que estas variaciones pueden ser ventajosas o no en el marco de dicha competencia. Entonces la conquista por los recursos necesarios para la vida, dará como resultado una lucha que determinará una selección natural la cual favorecerá a los individuos con variaciones ventajosas y eliminará a los menos eficaces. Pese a ello, no todo es compartido por ambos, ya que existe un punto discordante entre ellos. Y es que esta idea de Darwin de selección natural expresada en su obra El origen del hombre (1871), nunca fue compartida por Wallace.

Al respeto, Darwin argumenta que algunos caracteres son preservados sólo porque permiten a los machos mayor eficacia en relación con las hembras. Pero cabe decir, que ciento cincuenta años después, hay quienes aún lo veneran y quienes lo deploran, pero El Origen de las especies sigue aún ejerciendo una influencia extraordinaria.

Cuando Darwin regresó de su viaje por América del Sur y el Pacífico, era capaz de empezar a responder una pregunta muy sencilla que no parecía tener una respuesta fácil: ¿por qué las plantas y los animales cambian? El problema se le presentó al advertir que en América del Sur encontraba muchas especies que conocía, pero con algunas diferencias. Asimismo, en las Galápagos pudo clasificar dieciséis especies de pinzones y se preguntó por qué un pájaro, que conocía de Europa, presentaba tal grado de variación.

Uno de los hechos que impresionó a Darwin, durante su largo viaje fue la variedad de formas y de especies análogas que pueden agruparse alrededor de un mismo prototipo. Esta variación morfológica es fácil de observar también, por ejemplo, en los animales domésticos.

En las palomas caseras existen innumerables razas que se diferencian por la forma de la cola, por el tipo de rizado o lisura del plumaje, por el color, por la existencia de moños o carnosidades (carúnculas) en la cabeza, además de otras características.

Mediante una serie de cruzamientos, es posible convencerse de que estas formas descienden todas de la forma silvestre: la paloma saxícola o paloma de las rocas (Columba livia). El autor de la perpetuación de estas variaciones es el hombre, que las dirige y conserva, según su voluntad y sus intereses; y lo mismo actúa sobre otros animales domésticos o sobre las plantas cultivadas. Darwin buscó, durante mucho tiempo, la fuerza que en la naturaleza podría reemplazar la acción selectiva del hombre, evidente en las plantas cultivadas y en los animales domésticos.

LA TEORÍA DE DARWIN

Darwin parte de las ideas, del economista Thomas Malthus. Malthus postulaba que la población crece en forma geométrica y se preguntaba qué sucedería con el crecimiento de la población humana en un habitat cerrado, como por ejemplo una isla. La conclusión era que el crecimiento estaría limitado por la cantidad de alimento, que crece en proporción aritmética. Si la cantidad de alimento es restringida, debemos suponer que llegará un momento en que existirán más animales con necesidad de alimentarse que alimento disponible.

Entonces, se producirá una competencia entre los individuos por el alimento, y algunos individuos resultarán vencedores y los otros morirán de hambre. De esta idea, Darwin concluye que sobrevivirán aquellos individuos con características más favorables, idea conocida como la “supervivencia del más apto”. Sin embargo, hay que tener en cuenta que, a menudo, se registran variaciones, hecho que Darwin había observado en las Galápagos.

Conectando este hecho con la idea de la supervivencia del más apto, se deduce que aquellos individuos que poseen las características más favorables compiten en mejores condiciones y, al cabo del tiempo, se produce la selección natural; es decir, los más aptos ocupan todo el habitat y los menos “adaptados” desaparecen.

Un Ejemplo de la Selección Natural: Entre las perdices se observa, ocasionalmente, la aparición de individuos completamente blancos o albinos, o cuyo plumaje tiende a ser blanco. Estos casos se presentan, por lo demás, en muchos otros animales. Sin embargo, el porcentaje de perdices blancas es siempre muy pequeño. Se puede comprender fácilmente que, en caso de ataque por un ave de rapiña, cuando las perdices se ven obligadas a buscar refugio entre la maleza y los accidentes del terreno, las de color blanco están mucho menos favorecidas y tienen muchas más probabilidades que las otras de ser el punto de mira y la presa inmediata del halcón atacante.

Sin embargo, la variación blanca sigue apareciendo de vez en cuando entre las perdices, aunque la selección natural, que trabaja en contra de ella, le impida “fijarse” o convertirse en una característica importante. Si se tratase, sin embargo, de animales que por habitar en altas latitudes (tierras circumpolares) o altas montañas se vieran obligados a pasar una época de su vida en la nieve, el color blanco podría ser una característica favorable que los ayudaría a pasar inadvertidos.

De hecho, la coloración blanca se presenta frecuentemente en esa clase de animales, ya sea de modo estacional o fijo. Se puede suponer que la selección natural ha favorecido su fijación. Las variaciones que tienen lugar en todos los animales hacen, por tanto, que se adapten más o menos al ambiente que los rodea. Los que están bien adaptados tienen más probabilidades de vivir y reproducirse, y pueden transmitir estas variaciones favorables a su descendencia. De esta manera, una especie cambia gradualmente y acaba por estar muy bien adaptada al medioa ambiente.

Desarrollo de la teoría de la evolución

A finales del siglo XIX, el llamado neodarvinismo primitivo, que se basa en el principio de la selección natural como base de la evolución, encuentra en el biólogo alemán A. Weismann uno de sus principales exponentes. Esta hipótesis admite que las variaciones sobre las que actúa la selección se transmiten según las teorías de la herencia enunciadas por Mendel, elemento que no pudo ser resuelto Darwin, pues en su época aún no se conocían las ideas del religioso austríaco.

Durante el siglo XX, desde 1930 a 1950, se desarrolla la teoría neodarwinista moderna o teoría sintética,: denominada así porque surge a partir de la fusión de tres disciplinas diferentes: la genética, la sistemática y la paleontología. La creación de esta corriente viene marcada por la aparición de tres obra. La primera, relativa a los aspectos genéticos de la herencia, es Genetics and the origin of species (1937). Su autor, T. H. Dobzhansky, plantea que las variaciones genéticas implicadas en la evolución son esencialmente mínimas y heredables, de acuerdo con las teorías de Mendel.

El cambio que se introduce, y que coincide posteriormente con las aportaciones de otras disciplinas científicas, es a consideración de los seres vivos no como formas aisladas, sino como partícipes de una población. Esto implica entender los cambios como frecuencia génica de los alelos que determinan un carácter concreto. Si esta frecuencia es muy alta en lo que se refiere a la población, esto puede suponer la creación de una nueva especie.

Más adelante, E. Mayr desarrollará en sus obras Systematics and the origin of the species (1942) y Animal species evolution (1963) dos conceptos muy importantes: por un lado, el concepto biológico de especie; por otra parte, Mayr plantea que la variación geográfica y las condiciones ambientales pueden llevar a la formación de nuevas especies. De este modo, se pueden originar dos especies distintas como consecuencia del aislamiento geográfico, o lo que es lo mismo, dando lugar, cuando intentamos el cruzamiento de dos individuos de cada una de estas poblaciones, a un descendiente no fértil.

Atendiendo a las condiciones ambientales, en consonancia con las ideas de Dobzhansky., la selección actuaría conservando los alelos mejor adaptados a estas condiciones y eliminando los menos adaptados. En 1944 el paleontólogo G. G. Simpson publica la tercera obra clave para poder comprender esta corriente de pensamiento: en Tempo and mode in evolution establece la unión entre la paleontología y la genética de poblaciones.

Durante la segunda mitad del siglo XX se han planteado dos tendencias fundamentales, la denominada innovadora y el darvinismo conservador. La primera de ellas, cuyo máximo exponente es M. Kimura, propone una teoría llamada neutralista, que resta importancia al papel de la selección natural en la evolución, dejando paso al azar.

Por su parte, el neodarvinismo conservador, representado por E. O. Wilson, R. Dawkins y R. L Trivers, queda sustentada en el concepto de «gen egoísta»; según esta hipótesis, todo ocurre en la evolución como si cada gen tuviera por finalidad propagarse en la población. Por tanto, la competición no se produce entre individuos, sino entre los aletos rivales. Así, los animales y las plantas serían simplemente estrategias de supervivencia para los genes.

GENÉTICA Y EVOLUCIÓN: A pesar de que la teoría de Darwin demostró claramente que la variación natural era la base del cambio evolutivo no daba explicaciones acerca de cómo ocurren estas variaciones, ni de la forma en que se heredan. Los trabajos posteriores en genética han mostrado, sin embargo, cómo tiene lugar la variación y en qué forma estos cambios repentinos pueden llevar a la aparición de nuevas características.

Cada célula del organismo contiene un cierto número de corpúsculos llamados cromosomas. Cada especie tiene un número fijo de ellos y existen procesos especiales que aseguran que cada nueva célula reciba la cantidad completa que le corresponde. Cada cromosoma contiene numerosos genes, moléculas muy grandes que controlan las características de todo el organismo. Por ejemplo, hay genes que controlan el color del cabello, la forma de los dientes, etc. A veces, un solo gen es responsable de una característica; en otras ocasiones, varios genes actúan conjuntamente.

Durante la reproducción se originan diferentes combinaciones de genes, que dan lugar a ligeras variaciones (continuas) en la descendencia. A veces, sin embargo, un gen varía de forma radical, e, incluso, puede ocurrir que un cromosoma entero cambie, se rompa o desaparezca. Tales cambios repentinos se llaman mutaciones y son responsables de la aparición de nuevas características (variación discontinua).

La mayoría de las mutaciones que aparecen en un organismo son desfavorables, incluso letales, por interferir el funcionamiento del organismo. Sin embargo, de un modo ocasional y raro aparece una mutación útil que resulta favorecida por la selección natural. En ese caso, y con el transcurso del tiempo, puede llegar a incorporarse a la configuración normal de la especie.

Pruebas de la evolución

Son pruebas basadas en criterios de morfología y anatomía comparada. Los conceptos de homología y analogía adquieren especial relevancia para la comprensión de las pruebas anatómicas. Se entiende por estructuras homólogas aquellas que tienen un origen común pero no cumplen necesariamente una misma función; por el contrario, las estructuras que pueden cumplir una misión similar pero poseen origen diferente, serían análogas. De esta manera, las alas de los insectos y las aves serían estructuras análogas, mientras que las extremidades anteriores de los mamíferos, que presentan un mismo origen pero que llevan a cabo funciones diversas —locomotora, natatoria, etc.—, constituirían estructuras homólogas.

En relación a las pruebas embriológicas, hay que distinguir entre ontogenia —las distintas fases del desarrollo embrionario— y filogenia, concepto que hace referencia a las distintas formas evolutivas por las que han pasado los antecesores de un individuo, es decir, su desarrollo evolutivo. En los vertebrados, cuanto más cerca de la fase inicial se sitúan los embriones, más parecidos son; posteriormente, se van diferenciando progresivamente cuanto más cerca de la fase de adulto terminal se encuentran.

Otra de las pruebas clásicas es el estudio de los fósiles. El análisis de los distintos estratos geológicos demuestra la presencia de fósiles de invertebrados en los más antiguos; gradualmente, van apareciendo en los más recientes peces primitivos, y, finalmente, los fósiles correspondientes a los mamíferos y las aves.

EVIDENCIAS SOBRE ESTA TEORÍA:

En El origen de las especies, Darwin decía: “No vemos ninguno de estos lentos cambios en el momento en que ocurren sino hasta que el transcurso del tiempo los ha marcado”.

Muchas personas, tal como lo pensaba Darwin, suponen que todo ocurrió en un pasado distante, Los biólogos actuales, por su parte, sostienen que la evolución no solo es un fenómeno del pasado, sino que continúa hoy en día. Así, pueden citarse ejemplos del proceso evolutivo llevado a cabo en tiempos coitos, como los originados por la fuerte intervención producida por el hombre sobre el ambiente durante los siglos XIX y XX.

Uno de los ejemplos más conocidos es el de la polilla del abedul, cuyo nombre científico es Biston betularía. Los bosques británicos, cuyos árboles en general están cubiertos de líquenes de color claro, son el habitat natural de estas polillas de hábitos nocturnos. Antes de la Revolución Industrial (mitad del siglo XIX), la mayor parte de la población de polillas era de color claro, con algunas motas oscuras. Debido a que las polillas descansaban durante el día sobre los troncos de los árboles, no eran vistas por las aves depredadoras. Sin embargo, entre la población de polillas, se podían encontrar algunos individuos mutantes de Color oscuro, que eran fácilmente detectados y devorados por las aves.

Durante la Revolución Industrial, la floreciente industria británica comenzó a quemar grandes cantidades de carbón como combustible. Debido a la falta de control de la contaminación, el hollín se diseminó por los bosques, lo que provocó la muerte de los líquenes claros. De este modo, solo quedaron a la vista los troncos de los árboles, que se ennegrecieron por la contaminación.

La polilla de color claro contrastaba con el color oscuro de los troncos y era fácilmente detectada por los depredadores, pero no así la oscura: estas últimas, que hasta ese momento habían sido escasas, sobrevivían y se reproducían, y pasaban esta característica a sus descendientes. Hacia el final del siglo XIX, el 98 % de las polillas en los alrededores de la ciudad de Manchester eran de color oscuro. Esta tendencia de las variedades de color oscuro de reemplazar a las de color claro es conocida como melanismo industrial. Pero es importante recordar que la coloración negra de las polillas no fue producida por la contaminación: la selección natural “trabaja” sobre variaciones que ya existen en las poblaciones. Las medidas adoptadas en la última mitad del siglo XX para el control de la contaminación han revertido esta situación, y en las poblaciones de Biston betularía de las islas británicas, los individuos de color claro han vuelto a ser mayoría.

Existen otros ejemplos que ponen de manifiesto en tiempos cortos el proceso evolutivo, tales como la resistencia de algunos insectos a los insecticidas o la resistencia de las bacterias a algunos antibióticos.

El Origen del Planeta Tierra

Fuente Consultada:
TECNIRAMA N°90 Enciclopedia de la Ciencia y la Tecnología – Como actua la evolución –
CONSULTORA Enciclopedia Estudiantil Tmo II Los Seres Vivos
Gran Enciclopedia Universal (Espasa Calpe) – Teoría de la Evolución –
Sitio Web Wikipedia.

Nombre de las Placas Tectonicas Ubicacion y Teoria Resumen

La deriva continental: Desde la prehistoria, la búsqueda de minerales metálicos proporcionó a los mineros un amplio conocimiento empírico de la estructura de la corteza terrestre: la forma en que diferentes rocas se disponen en estratos una encima de otra, la posibilidad de que las vetas minerales se abran paso a través de los estratos, y así sucesivamente.

Pero el fundador de la geología como ciencia fue James Hutton, (imagen) que trabajó en Escocia durante la segunda mitad del siglo XVIII. Sus ideas fueron desarrolladas en el siglo XIX por otros precursores, como los geólogos británicos Charles Lyell y Archibald Geikie.

Sus investigaciones entraron en conflicto con las creencias más establecidas sobre la edad de la Tierra y las fuerzas que la habían modelado. Según la opinión predominante, la historia geológica sólo podía interpretarse como una sucesión de catástrofes, entre ellas, el diluvio universal en tiempos de Noé.

Durante los años 60, las ideas científicas sobre la corteza terrestre cambiaron espectacularmente al confirmarse ciertos vagos conceptos que se habían desarrollado durante los tres últimos siglos.

Desde que en 1620 el filósofo inglés Francis Bacon advirtiera que África y América del Sur parecen dos piezas de un enorme rompecabezas, muchos trabajaron sobre esta idea. El más influyente fue el meteorólogo alemán Alfred Wegener, quien en 1915 propuso la teoría de la «deriva continental», según la cual todos los continentes estuvieron unidos en algún momento del pasado. La idea encontró dos partidarios, durante los años 20 y 30, en el geólogo británico Arthur Holmes y el geólogo sudafricano Alexander du Toit.

La aceptación comenzó en 1960, cuando el geofísico norteamericano Harry Hess comprobó que ciertos descubrimientos hechos por oceanógrafos durante la década anterior se ajustaban perfectamente a la idea de la deriva continental.

Entre estos hallazgos figuraba el hecho de que la cordillera que discurre por el centro del océano Atlántico forma parte de un sistema montañoso que puede observarse en todos los océanos, así como el hallazgo de que la corteza terrestre debajo de los océanos es notablemente delgada.

Hess sugirió que las cordilleras oceánicas estaban situadas sobre corrientes de convección ascendentes en el manto y que el material que afloraba, empujado por estas corrientes, se solidificaba en la superficie para formar nueva corteza; esta nueva corteza, a su vez, se desplazaba lateralmente con respecto a la línea de actividad. Estas ideas indicaban que la corteza en las proximidades de las cordilleras era muy reciente y que sería más antigua cuanto más lejos se encontrara del sistema montañoso. Hess denominó a este concepto «expansión del lecho oceánico».

En 1963, los geólogos británicos Fred J. Vine y Drummond H. Matthews descubrieron que la corteza oceánica a ambos lados de la cordillera atlántica estaba magnetizada en bandas paralelas, presentando cada banda una polaridad opuesta a la de sus vecinas. En 1966, se sabía ya que la polaridad del campo magnético de la Tierra se ha invertido varias veces en el pasado reciente, por lo que se dedujo que cada parte nueva de la corteza, en el momento de su formación, asumía la polaridad magnética reinante en su época.

En 1967, el geofísico norteamericano Hugo Benioff observó que los hipocentros de los terremotos en una región sísmica están localizados sobre un plano inclinado que desciende por el borde del continente. El sismólogo japonés Kiyoo Wadati realizó la misma observación, pero el fenómeno recibe solamente el nombre de Benioff.

La «zona de Benioff» representa una zona antigua de la corteza en proceso de sumergirse en el manto terrestre y ser destruida. En esos puntos, el material fundido de la corteza se abre paso hacia la superficie y forma volcanes.

Todos estos fenómenos se combinaron en un único concepto a fines de los años 60. La superficie de la Tierra consiste en varias placas, cada una de las cuales se crea continuamente a lo largo de una cordillera oceánica y se destruye continuamente en una zona de Benioff. El término «placa» fue acuñado por el geólogo norteamericano W. Jason Morgan y, en la actualidad, el concepto en su totalidad recibe el nombre de «tectónica de placas».

mapa tectonicas de placas

Sucesora de la teoría de la deriva continental, la teoría de la tectónica de placas, enunciada a principios de la década del ’70 por varios científicos, postula la existencia de placas litosféricas que se desplazan en forma más o menos independiente unas de otras sobre la blanda astenosfera. También explica la distribución global de los volcanes y de los terremotos.

La litosfera no es una capa continua y uniforme, sino que está dividida en grandes fragmentos o placas litosféricas. Estos fragmentos tienen cierta independencia unos de otros y se desplazan flotando sobre la astenosfera, en forma similar a como lo hacen los grandes bloques de hielo que flotan sobre el agua. Cada una de las placas está totalmente rodeada de otras, y sus formas y tamaños son variados e irregulares.

Existen ocho grandes placas litosféricas: la Pacífica, la Europa-africana, la Antártica, la Asiática, la Norteamericana, la Sudamericana, la Indoaustraliana y la de Nazca, y algunas placas menores, como la del Caribe, la Filipina, la de Cocos y la Arábiga.

1 Placa norteamericana 2 Placa pacífica 3 Placa de Nazca 4 Placa sudamericana
5 Placa africana 6 Placa arábiga 7 Placa eurasiática 8 Placa antártica
9 Placa indoaustraliana ____ Convergente ______ Divergente  
bordes tectonicos divergente

Bordes convergentes o destructivos. Dos placas con bordes comunes se acercan y colisionan. Una de las placas desciende y se Introduce debajo de la otra (subducción). Se produce este fenómeno cuando el borde de una placa oceánica, que es densa y delgada, choca contra una placa continental, menos densa y más gruesa: la primera se introduce por debajo de la segunda, se ablanda y se funde en el manto. Durante este proceso, se destruye litosfera oceánica. Esto ocurre, por ejemplo, con la placa de Nazca que choca y se introduce debajo de la placa Sudamericana.

bordes tectonicos divergente

Bordes divergentes o constructivos. Dos placas con bordes comunes se alejan o divergen y se forma entre ambas una brecha, a través de la cual asciende el material del magma. Éste se solidifica y se adhiere a los bordes de las placas oceánicas, proceso denominadoacreción, con lo cual se forma nueva litosfera oceánica. Esto ocurre, por ejemplo, con los bordes divergentes de la placa Sudamericana y la Africana.

bordes tectonicos frontera transformacion

Bordes transformantes. Los bordes comunes de dos placas se desplazan uno al lado del otro, lateralmente. En este caso, las placas no chocan ni se alejan: no se crea ni se destruye litosfera; sin embargo, este desplazamiento genera enormes fricciones que liberan energía en forma de terremotos. Uno de los ejemplos más conocidos de bordes transformantes es la falla de San Andrés, en California, producida por el desplazamiento lateral de la placa Pacífica y la Norteamericana.

 LOS BORDES DE PLACAS: BORDES DE LAS PLACAS
En las zonas en que están en contacto dos placas, es decir en sus bordes,,tienen lugar los principales fenómenos geológicos que modelan la superficie del globo. Según sean los movimientos relativos de dos placas en contacto, tenemos tres tipos de bordes.

Los bordes divergentes o constructivos corresponden a las dorsales oceánicas medias. En ellas se da un abundante vulcanísmo, que genera kilómetros cúbicos de basaltos, de composición muy uniforme. Y esta acumulación de basaltos, que presentan el aspecto de lavas almohadilladas por haberse vertido en el mar, forma la nueva corteza oceánica y hace que las dos placas adyacentes se muevan en sentidos opuestos. Al vulcanismo se le suma una actividad sísmica poco profunda.

Los bordes convergentes o destructivos corresponden a las zonas de subducción. Cuando dos placas que se desplazan en sentidos opuestos entran en contacto, una de las dos se hunde bajo la otra y va a destruirse en el manto.

La convergencia va acompañada de violentos fenómenos. Al hundirse, la placa inferior provoca rozamientos que se traducen en movimientos sísmicos. Provoca, también, la producción de magma, que alimenta volcanes de carácter frecuentemente explosivo.

Comprime y deforma fuertemente la placa superior, originando en ella un levantamiento que se convierte en cordillera. Si ambas placas son oceánicas, como en el Pacífico occidental, el levantamiento es un arco insular, erizado de múltiples volcanes, que emerge progresivamente.

Si una placa oceánica entra en contacto con otra continental, la placa oceánica se hunde por debajo de ésta y origina la formación de una imponente cordillera en el borde de la placa continental: es, por ejemplo, el caso de los Andes. Pero la prosecución del movimiento puede hacer que entren en contacto dos continentes y que, al colisionar ambas masas, el movimiento quede bloqueado: así ocurrió en el Himalaya.

Añadamos, por último, que en algunas zonas las placas en contacto se deslizan lateralmente una con respecto a otra. Son los bordes conservadores, así llamados porque en ellos no se da destrucción ni construcción. Dichos bordes quedan materializados por grandes fallas verticales, o fallas transformantes, a lo largo de las cuales se producen intensas fricciones que provocan violentos seísmos. La falla de San Andrés es un buen ejemplo.

LAS SEMILLAS Y FRUTOS MAS IMPORTANTES DE LA HUMANIDAD Alimentacion Quinua

SEMILLAS Y FRUTOS MAS IMPORTANTES DE LA HISTORIA

semillas mas importantes de la historia

-7000 China y Corea: Las enorme dimensiones de la población actual se deben tanto al cultivo del arroz como a los fertilizantes artificiales. Esta planta puede alimentar a mas seres humanos por hectárea que cuaquier otro cultivo. (Ver: Arroz)

semillas mas importantes de la historia

-7000 en Próximo Oriente: Las variedades resultado de la selección artificial que hoy cononemos solo empezaron a cultivarse despúes del periodo frio “Younger Dryas” hace unos 12.000 años. Esta labor produjo una variedad domesticada con espigas largas que se mantenían unidad firmemente al tallo (lo que hacia que cocecharlas y molerlas sea mas fácil)

semillas mas importantes de la historia

-5000 en Centroamérica: Conseguido laboriosamente a partir del teocinte silvestre por los primitivos agricultores centroamericanos, el maiz se convirtió llegado el momentos en el cultivo basico de todos los pueblos indigenas de América. Para el siglo XVo, los exploradores europeos habían difundido el maiz por todo el mundo.

semillas mas importantes de la historia

4000 a.C. en Asia, Oriente Próximo y Europa: Aunque el uso medicinal del opio se remonta a los primeros granjeros del Neolitico, es hacia el siglo XIX que el extraido de las cabezas de adormidera se convierte en una mercancía de primera importancia a nivel internacional. La morfina otro derivado, continua siendo uno de los analgésicos mas utilizados del mundo.

semillas mas importantes de la historia

3000 a.C. en Sudámerica y 1600 d.C en Europa: Los nativos del sudámerica cultivaron selectivamente centenares de variedades de este tubérculo de gran valor nutritivo , pero los colonos del siglo XVI sólo exportaron cuatro de ellas a Europa. En el siglo XIX esta falta de diversidad provocó la aparicón en Europa de plagas desvastadoras que arruinaron cosechas y forzaron a cientos de miles a emigrar a América y Australia.

Ver: Hambre en Irlanda

La Papa

semillas mas importantes de la historia

3000 a.C. en el Sudeste Asiático: La deforestación que se llevó a cabo en Nuevo Mundo con el fin de crear plantaciones de caña de azúcar modificó de forma impresionante el paisaje e inició una nueva era de esclavitud, que finalmente se desbordaría en el conflicto armado en la guerra civil americana.

semillas mas importantes de la historia

Morera 2500 a.C. en China: Se dice que fue Leizu, una emperatiz china , quien descubrió como se podía convertir en hilos de seda los capullos que tejía la larva de una polilla que se alimenntaba con hojas de morera. Más tarde , se descubrió un procesi para la fabricación de papel que utilizaba la corteza de este árbol. El papel es una de las mayores contribuciones al desarrollo económico y la forestación global.

semillas mas importantes de la historia

Antes de 1000 a.C. en China: Los gobernantes chinos usaban esta hoja de camelia con fines medicinales , y los monjes budistas la aprovechaban para mantenerse despiertos durante sus oraciones. Para el siglo XIX los británicos se habían vueltos adictos al té, tanto que el proveniente de China se obtenia a cambio del opio cultivado en Bengala , lo que era ilegal y provocó la Guerra del Opio.

Ver: Planta de Té

semillas mas importantes de la historia

-700 en el Mediterráneo: Las aceitunas son un fruto de gran valor energético que crece en terrenos accidentados y cuyo cultivo no exige un esfuerzo desmesurado. La riqueza producto de las aceitunas proporcionó a las antiguas ciudades griegas tiempo y ocio suficientes para el desarrollo de investigaciones cientificas y nuevos experimentos sociales incluidos la democracia y el republicanismo.

semillas mas importantes de la historia

1600 d.C. Sudamérica: Este extrato de la corteza del quino proporcionó a los colonos europeos su primera protección eficaz contra la malaria, una enfermedad transmitida por el mosquito. La quina se convirtió en un pasaporte para la colonización de Africa, por parte de los europeos y, en última instancia, hacia las circunstancias que darían origen a lo que en la actualidad conocemos como el Tercer Mundo.

Fuente: Todo Sobre Nuestro Mundo Cristopher Loyd

EL TRIGO, LA SEMILLA MAS FAMOSA: Se ha dicho que los cereales no sólo alimentan a los hombres, sino que, además, los unen, y a veces les ayudan a escribir su historia. De esta manera se habla de las civilizaciones del trigo, del arroz y del maíz.

El trigo, que se cree que es originario del Asia Menor, se extendió pronto por Europa y hoy es considerado el cereal europeo característico, por lo que se dice que la civilización de Europa es la civilización del trigo. El arroz, cultivado inicial-mente en Indonesia, predomina en Asia, donde se ha desarrollado la llamada civilización del arroz. El maíz es el cereal americano por excelencia: desde su posible región original, Perú, se extendió por las Américas, y fue el sostén económico de la civilización del maíz que encontraron en pleno florecimiento los europeos.

Hace más de 6.000 años, en plena edad Neolítica, el trigo era cultivado en el Cercano Oriente, pues en muchas tumbas de aquella época se han encontrado granos de trigo. Después de extenderse por Asia, Europa y África, fue traído a América y llevado a Australia.

El trigo necesita para producir entre 50 y 70 cm. de lluvia y por lo menos 90 días sin heladas. Durante su crecimiento el tiempo debe ser húmedo y fresco, pero para madurar necesita tiempo seco y sol brillante. Las áreas trigueras predominan en las latitudes medias, y que más allá de los 65° de latitud no se puede cultivar trigo. En las latitudes bajas es posible cultivar trigo en las mesetas, lo que explica la producción de Colombia, Venezuela, Centroamérica y Etiopía. En la India se cultiva en las regiones altas, porque las lluvias monzónicas llegan cuando ya ha sido cosechado el grano.

El trigo no es muy exigente en cuanto a suelos, siempre que no sean demasiado húmedos o secos. Las áreas ideales son las de suelos negros (chernozem) ricos en humus. El trigo es el cereal de más consumo en el mundo, y el que entra en mayor escala en el comercio internacional. Esta popularidad del trigo ha sido explicada porque contiene mucho valor alimenticio en relación con su volumen y peso; no se deteriora fácilmente y es fácil de almacenar.

Las grandes regiones productoras de trigo son actualmente: 1) las llanuras centrales de Estados Unidos y Canadá (Praderas); 2) las llanuras del Danubio y del sur de Rusia (Ucrania); 3) los países del Mediterráneo; 5) las Pampas de Argentina; 6) el noroeste de la India y 7) el sureste de Australia.

Hasta el siglo pasado el cultivo del trigo estaba casi limitado a Europa, pero el proceso de la revolución industrial produjo tres factores que abrieron nuevas zonas trigueras en Estados Unidos, Canadá, Argentina y Australia.

Estos factores fueron: 1) la posibilidad de perforar pozos artesianos profundos para regadíos en regiones semi-áridas que hoy están cubiertas por extensas siembras de trigo; 2) el avance del ferrocarril que Hizo accesibles las regiones situadas hacia el interior de los continentes y facilitó el transporte del trigo hasta los puertos y 3) la mecanización del cultivo y la cosecha, mediante el empleo de arados múltiples de acero, tirados primero por caballos y después por tractores, y la invención de las segadoras-trilladoras (combinadas).

En estas zonas trigueras nuevas el cultivo se realiza en forma extensiva y mecanizada, con lo cual se logra gran rendimiento con el empleo de pocos trabajadores. La enorme producción de las zonas trigueras de América y Australia, continentes con, escasa población relativa, ha permitido establecer un activo comercio internacional del trigo, pues aunque Europa produce cerca de la mitad del total mundial, por su gran densidad de población

necesita importar cantidades adicionales. Los principales países exportadores son Estados Unidos, Canadá, Argentina, Australia y la URSS; y los mayores importadores son el Reino Unido, Alemania, Italia, la India, Japón y Bélgica.

Fuente Consultada: La Tierra y Sus Recursos Levi Morrero

Abajo: Multimedia en Flash Para PC

La Seleccion Natural Mediante El Uso de un Arma Biologica Natural

Si un parásito matase a todos los huéspedes a los cuales encuentra, entonces también él perecería. Existen al menos dos estrategias que pueden adoptar los parásitos para asegurar su permanencia, y ambas dependen de su propio estilo de vida.

Por un lado, si el parásito es muy rápido para multiplicarse y pasar a otro huésped y si, al mismo tiempo, hay una cantidad infinita de nuevos huéspedes no infectados donde anidar, el parásito puede mantener un estado de alta virulencia generación tras generación. Sin embargo, la realidad es que si este tipo de parásitos tuviera el suficiente éxito, se haría cada vez más difícil encontrar una cantidad ilimitada de nuevos huéspedes no infectados.

Lo lógico en este caso es que la población huésped disminuya, y por lo mismo la “comida” potencial del parásito también disminuirá. Por ello, el mantenimiento de un estado de alta virulencia termina siendo contraproducente para el propio parásito. Así, si cualquiera de los preceptos mencionados no se cumple, al parásito no le queda otro camino que atenuar su virulencia.

En este caso cuenta con la complicación de que el huésped también tendrá tiempo para combatirlo, por lo que los parásitos deberán utilizar este tiempo para cambiar y adaptarse también a las nuevas respuestas del huésped. Por lo mismo, casi todas las relaciones de coevolución, con el tiempo, terminan en la atenuación de las respuestas entre predador y presa. Para ilustrarlo veamos una serie de desventuras ocurridas en Australia.

Los diseñadores de políticas ambientales australianas no les temían a los riesgos y por ello se embarcaron en un proyecto que, para controlar un desbalance grave del equilibrio ecológico, implicó una serie de peligros que no se tuvieron en cuenta y generaron nuevos desequilibrios. No hubo conejos en Australia hasta 1859, cuando un señor inglés importó apenas una docena de estos encantadores animalitos desde Europa, para distraer a su esposa y agraciar su hacienda. Los conejos se reproducen muy rápido, apenas un poco más rápido de lo que tardamos en reconocer el problema que generan. Y ese “apenas” es más que suficiente.

En poco más de un lustro (1865), el mencionado caballero había matado a un total de 20.000 conejos en su propiedad y calculó que quedaban todavía otros 10.000. En 1887, en Nueva Gales del Sur solamente, los australianos mataron 20 millones de conejos. Llegado el siglo XX aparecieron nuevas herramientas de combate contra las plagas. En la década de 1950, la vegetación de Australia estaba siendo consumida por hordas de conejos. En ese año el gobierno trató de hacer algo para detener a los simpáticos animalitos. En Sudamérica, los conejos locales están adaptados a un virus con el que conviven desde hace mucho tiempo. este se transmite cuando los mosquitos que toman la sangre de un conejo infectado lo depositan sobre un conejo sano, ya sea por deposición o por la nueva picadura. Este agente infeccioso, denominado virus de la mixomatosis, provoca sólo una enfermedad leve en los conejos de Sudamérica, que son sus huéspedes normales.

La mixomatosis ha generado una de las mayores catástrofes ecológicas de la historia y el desmantelamiento de las cadenas tróficas en el ámbito mediterráneo, donde el conejo era la base de la alimentación de rapaces y carnívoros. De nuevo el responsable de esta catástrofe fue el ser humano al ser introducida la enfermedad en Francia en 1952, desde donde se extendió por toda Europa. Dicha enfermedad se había llevado a Australia anteriormente para erradicar el conejo allí, que era plaga.

Sin embargo, es mortal para el conejo europeo, que fue el que se implantó en Australia. Así que en Australia se liberaron en el campo una gran cantidad de conejos infectados con el virus de la mixomatosis, esperando que [os mosquitos autóctonos hicieran el trabajo de esparcir el agente infeccioso. En un comienzo, los efectos fueron espectaculares y la población de conejos declinó de manera constante: llegó a ser menos del 10% de la población original, cuando comenzó el tratamiento en gran escala. De esta manera se recuperaron zonas de pastura para los rebaños de ovejas, de los cuales depende en gran medida la economía de Australia.

Sin embargo, en poco tiempo aparecieron evidencias de que algunos conejos eran más resistentes a la enfermedad. Como estos conejos eran los que más se reproducían, sus crías también resultaron resistentes al virus de la mixomatosis. Cuando el fenómeno se estudió en forma global, se observó que no sólo los conejos se volvían más resistentes, sino también que el virus iba atenuando su virulencia generación tras generación. Así, había ocurrido un doble proceso de selección. El virus original había resultado tan rápidamente fatal que el conejo infectado solía morir antes de que tuviese tiempo de ser picado por un mosquito y, por lo tanto, de infectar a otro conejo; la cepa del virus letal, entonces, moría o desaparecía junto con el conejo. Por otra parte, en la preparación original de virus debería de haber algunos más atenuados.

En las condiciones de muy alta mortalidad de los conejos, las cepas virales de efectos más atenuados tenían una mejor probabilidad de sobrevivir, dado que disponían de mejores oportunidades y, fundamentalmente, de más tiempo para encontrar un nuevo huésped. De tal manera, la selección comenzó a operar en favor de una cepa menos virulenta del virus. Por su parte, un conejo que sobrevive a una infección inicial queda “protegido” como si hubiera sido vacunado, por lo que no vuelve a enfermarse fácilmente. Además es probable que los sobrevivientes hayan sido los que más resistencia intrínseca tuvieron al virus original. De esta manera su descendencia también debía ser más resistente, por lo que cuando estos conejos comenzaron a proliferar, todos los conejos australianos fueron adquiriendo resistencia al virus de la mixomatosis. Hace poco tiempo, como resultado de la rápida coevolución, la relación huésped-parásito se estabilizó, por lo que los conejos volvieron a multiplicarse, y regeneraron la población existente antes del comienzo del ataque.

En definitiva, se utilizó un arma biológica tremendamente activa, pero las consecuencias distaron mucho de ser las esperadas. De hecho, no se contuvo la proliferación de los conejos y se mantuvo el riesgo del desequilibrio ambiental comenzado hace 150 años, y; por el contrario, se generó una adaptación de los animales, se los tomó más fuertes para resistir a una plaga como el virus de la mixomatosis A pesar de las enseñanzas que debieron haber quedado después de este tremendo fracaso, hace poco tiempo se intentó nuevamente en Australia repetir la metodología para eliminar Los conejos con un nuevo patógeno cuya dinámica poblacional se desconocía casi por completo. Es obvio que hay gente a la que le encantan los riesgos. El problema es cuando al asumirlos se involucra a demasiadas personas, o, como en este caso, a un ecosistema completo.

satira a darwin
Portada en una revista, publicado con ironía la teoría de Darwin

A lo largo de la evolución, y mediante el proceso de selección natural, los organismos de las distintas especies han ido adquiriendo modificaciones morfológicas, fisiológicas y comportamentales con las cuales han logrado responder y adaptarse a las características Particulares de su medio.

ESTRATEGIA ADAPTATIVA DE PLANTAS Y ANIMALES
FACTOR EFECTOS ADAPTACIONES DE LAS PLANTAS ADAPTACIONES DE LOS ANIMALES
Escasez de Agua Deshidratación.
Estrés hídrico.

Reducción de la superficie foliar, por la que las plantas transpiran: espinas.Esclerofilia (hojas duras, coriáceas o revestidas con ceras o quitina, que las protegen de la radiación intensa y de la desecación)

Plantas con metabolismoCAM (los estomas de las hojas sólo se abren de noche para captar el CO2, con lo que se evita la pérdida de agua que se produciría si los estomas se abrieran durante las horas de mayor radiación solar).

• Piel estratificada, con varias capas de células (por ejemplo, en los vertebrados).• Productos de excreción concentrados, como el ácido úrico o le urea en lugar del amoníaco.

• Elevada reabsorción intestinal de agua en las heces.

• Obtención de agua metabólica a partir de la oxidación del hidrógeno de los alimentos.

Temperatura Temperaturas altas: deshidratación desnaturalización de las enzimas.
Temperaturas bajas: cristalización del agua en los tejidos, retardo del metabolismo.
Las mismas que para la escasez de agua. Al calor y al frío: cambios comportamentales (mayor actividad diurna durante el invierno y mayor actividad nocturna o crepuscular durante períodos cálidos); regulación social de la temperatura: vida en grupos, sobre las ramas de los árboles o en cuevas; vida subterránea.
Escasez de Alimentos, baja disponibilidad de nutrientes Crecimiento y desarrollo deficientes.Inanición. Plantas carnívoras, como respuesta a la escasez de nitrógeno en pantanos, bosques con suelos empobrecidos, etcétera.Asociación con bacterias fijadoras ; de nitrógeno en leguminosas: nódulos radiculares. Asociación con hongos (micorrizas) en distintas plantas. Almacenamiento en cuevas y guaridas, como en las hormigas y otros insectos sociales.Acumulación de reservas en la grasa corporal.
Salinidad •  Efecto osmótico: tendencia de los tejidos a perder agua en ambientes muy salinos (medio hipertónico), y a ganar agua e hincharse en ambientes poco salinos (medio hipotónico).•  Efecto iónico: toxicidad en plantas (especialmente por Cl y Na4). Secreción de iones a través de glándulas especializadas.Suculencia: planta de aspecto globoso; incorporan agua para diluir la concentración de sales. Vida marina (medio hipertónico): beben agua de mar y luego secretan el exceso de sales a través de las branquias y las glándulas de la sal; producen una orina concentrada.Agua dulce (medio hipotónico): no beben agua y absorben sales a través de la piel y las branquias; producen una orina diluida.

Fuente Consultada:
Ahí viene la plaga Colección: “Ciencia que ladra….” Mario Lozano

Accion del Medio Ambiente en la Vida del Hombre Adaptacion Humana

Adaptación del Hombre Al Medio Ambiente
Acción del Medio Ambiente

LA VIDA DEL HOMBRE SEGÚN SU MEDIO AMBIENTE: Si analizamos el tipo de vida de los habitantes de una región cualquiera podemos advertir fácilmente la estrecha relación que mantiene con el medio geográfico. Muchas regiones poseen actualmente una población económicamente poco desarrollada , debido a las condiciones desfavorables del medio. Esto es lo que ocurre en las selva, en la tundra , y en los desiertos, regiones donde el paisaje natural apenas ha sido afectado por la actividad de la población, que vive bajo la influencia aplastante de una naturaleza hostil.

En las regiones donde el medio se ha mostrado más acogedor se ha desarrollado notablemente la civilización y el hombre parece haber logrado un ajuste favorable con la naturaleza. Este ajuste, sin embargo, no ha sido fácil, porque para alcanzarlo ha debido el hombre trabajar intensamente. Pero ni aun el trabajo humano hubiera sido suficiente para libertar totalmente al hombre de su medio.

medio ambiente y el hombre

El hombre civilizado necesita de todo el rendimiento de su inteligencia en forma de invenciones, descubrimientos, avances en el conocimiento de las leyes de la naturaleza y el mejoramiento de su organización social, para multiplicar la efectividad de su esfuerzo. Todo este progreso tecnológico, propio de nuestra civilización industrial, ha permitido al hombre moderno utilizar las ventajas que la naturaleza le ofrece y sortear los obstáculos que le presenta.

El hombre civilizado ha podido crear el paisaje cultural de muchas regiones derribando los bosques, exterminando los animales dañinos y domesticando los útiles, irrigando las tierras secas, drenando ciénagas, construyendo puentes y embalses, fabricando redes de ferrocarril y carreteras y tendiendo instalaciones telefónicas y eléctricas. Ha construido ciudades, puertos y fábricas, creado instituciones sociales, dictado leyes y desarrollado las industrias, pero el hombre no ha dominado todavía, ni dominará nunca, el medio geográfico.

Las grandes características de la superficie terrestre y los procesos de la naturaleza que constituyen los elementos fundamentales del paisaje natural, permanecen invariables después de más de un millón de años de haber aparecido sobre la tierra los primeros seres semejantes al nombre.

El progreso de la humanidad es, pues, el resultado no de la conquista de la naturaleza por el hombre, sino de que el hombre ha ido comprendiendo mejor la naturaleza y ha colaborado inteligentemente con ella. Al basar su economía sobre las leyes naturales, de acuerdo con las características geográficas de cada región, el hombre ha logrado una mayor producción y, por lo tanto, un nivel de vida más alto.

La habitación humana. Además de alimentación y vestido, el hombre necesita descansar diariamente, entregándose al sueño. Desde su aparición sobre la tierra el hombre necesitó un refugio para estas horas en que podía estar a merced de los animales o de otros hombres. Las ramas más altas de los árboles y las cavernas debieron ser sus primeras habitaciones. Más tarde el hombre comenzaría a construir su vivienda de acuerdo con los recursos que el medio le ofrecía.

La adaptación de la habitación a las condiciones del medio es uno de los hechos geográficos más evidentes, pues el tipo de vivienda está estrechamente influenciado, entre otros factores, por el clima y la vegetación, así como por el tipo de ocupación de nivel de civilización de los habitantes de cada región.

En las regiones de clima frío las paredes de las casas son gruesas, presentan muchas ventanas para dar paso a la luz y los techos son muy inclinados para que no retengan la nieve. En las latitudes medias las casas poseen menos ventanas y los techos son menos inclinados; en las regiones de clima mediterráneo las casas son relativamente pequeñas, pintadas de blanco o de colores claros y los techos son casi siempre horizontales En las bajas latitudes hay la tendencia a construir grandes corredores en torno a las casas, y patios centrales para aliviar el fuerte calor.

Las casas difieren tanto por su forma como por sus materiales, ya que el hombre debe adaptar su construcción a los recursos disponibles en la región. Esta variedad incluye casas de madera, de piedra, cavernas excavadas en las rocas, casas de adobe, tiendas de pieles, chozas de techo de paja, iglús de hielo y rascacielos de acero y concreto.

La casa de madera predomina en las regiones de bosques. En algunos casos, como en los templos del Japón, las construcciones de madera alcanzan enorme tamaño. En Suecia y Noruega, en el norte de Rusia y de Canadá, y en Alaska, los bosques de coníferas suministran madera para la construcción de las casas. En el sur de Estados Unidos, predominan todavía las casas de madera.

En las zonas que bordean el Mediterráneo, en cambio, donde el bosque es de poco rendimiento  y hay abundancia de rocas como la arenisca y la arcilla, predominan las casas de piedra; y en algunas zonas del sur de Europa se encuentran muchas casas construidas perforando las rocas, en forma de cavernas artificiales.

En las regiones áridas, donde la madera y la piedra escasean, es costumbre construir las casas con ladrillos de arcilla secada al sol. En la antigua Mesopotamia se construía ya en esta forma y el método se mantiene en el Oriente Próximo, en el norte de África y aun en China. Las casas de adobe de los indios pueblos del Suroeste de Estados Unidos, son excelentes ejemplos de este tipo de habitación.

En las estepas, donde todavía los pastores nacen la vida nómada, se encuentran las tiendas de pieles o fieltro. Las yurtas o tiendas redondas de los mongoles pertenecen a este tipo de habitación, fácil de armar y desarmar y de transportar.

En las bajas latitudes, en regiones cálidas y lluviosas, es común la casa construida de maderas y cubierta de hojas secas de palma. Este tipo de construcción se encuentra en América, África, en el sureste de Asia y en las islas del Pacífico.

Los pueblos pescadores primitivos que vivían en las márgenes de los lagos fabricaban sus casas sobre pilotes, encima del agua. Estos palafitos se encuentran aún entre los pueblo aborígenes de distintas regiones.

Los esquimales construyen sus casas permanentes de piedra y tierra para el invierno, pero pueden construir en pocos minutos refugios temporales de hielo (iglús). En los cortos veranos árticos viven en tiendas de pieles.

El desarrollo de la civilización ha estimulado el crecimiento de las ciudades. Al aumentar el valor de la tierra la tendencia actual en las grandes ciudades, es a fabricar casas más altas, para ahorrar espacio. El ejemplo más característico de este crecimiento vertical de la habitación humana lo ofrece la ciudad de New York con sus numerosos rascacielos.

Condiciones Para La Vida en el Planeta Factores Ambientales Basicos

la vida en el planeta

TEMA RELACIONADOS

La Aparición De La Vida
La Teoría De La Evolución De Charles Darwin
La Terapia Genética
La Eutanasia o Muerte Digna
El Origen Del Hombre En El Planeta
El Proyecto Genoma Humano

La Clonación Humana y Animal
La Eugenesia o Reproducción de las Mejores Especies 

LA VIDA EN EL PLANETA TIERRA: Separar el mundo inerte del mundo organizado parecía, hasta nace pocos lustros, una tarea muy sencilla: un elefante es un ser vivo y una roca no. Mas al profundizar en el conocimiento de los seres infinitamente pequeños, se llega a dudar y se ve como algo sumamente confuso la línea divisoria entre los dos mundos. Hay cuerpos que no es posible determinar de un modo claro si son seres vivos o moléculas inorgánicas muy complicadas. Pertenecen al mundo de las proteínas.

Los virus, por ejemplo, son microbios sumamente pequeños. El productor de la poliomielitis, que tantos quebraderos de cabeza ha proporcionado a médicos y biólogos, mide una centésima de miera. Son necesarios, por tanto, 100.000 de ellos puestos en fila para formar un milímetro. Se comprende que sólo el microscopio electrónico haya sido capaz de hacerlos visibles.

Las nucleoproleínas, sustancias químicas formadas por moléculas sumamente complicadas, en algunos casos se comportan exactamente igual que los virus y se ha llegado a dudar si son seres vivos o sólo compuestos químicos. Los doctores Fraenkel y Williams, de los Estados Unidos, afirmaron que hablan obtenido en sus laboratorios nucleoproteínas vivas por síntesis, es decir, hablan creado vida, pero en una forma tan rudimentaria., que sólo podían existir sobre otras materias vivas. Se trataba, por tanto, de algo que está en la borrosa línea que separa lo vivo de lo inerte.

Pero esta imitación o creación de vida simplicísima en el laboratorio se halla a gran distancia de la complejidad de un ser vivo tan sencillo como puede ser una ameba o un hongo.
Se conocen las manifestaciones de la vida y se señalan sus notas características, pero los científicos están acordes en no saber qué cosa es en sí la vida.

Porque ésta presupone, además de una cierta organización de los elementos que forman el cuerpo vivo, la unidad de intención, es decir, la tendencia por la que todas las partes contribuyen a una finalidad. En un huevo, por ejemplo, se encuentran uña serie de sustancias (azúcares, grasas, proteínas y agua) que son los compuestos orgánicos indispensables para que exista la vida.

Éstos tienden a transformarse en un polluelo, que es un microcosmos complicadísimo en el que billones de células trabajan ordenadamente para cumplir ese fin o tendencia que da por resultado un pollo adulto. ¿Por qué no se descomponen dichas sustancias y dan lugar a carbono, hidrógeno, oxígeno, nitrógeno y pequeños rastros de fósforo, azufre, calcio, etc.? ¿Por qué tienden a complicarse en lugar de descomponerse?

En esta tendencia, que supone organización, se encuentra oculto el gran secreto de la vida.

Los cuatro grandes elementos del mundo viviente son el Carbono, el Oxígeno, el Hidrógeno, y el Nitrógeno. Sin ellos no puede existir vida alguna y es tan importante el papel que juegan en la Biología, que el 99 % de todo ser vivo está formado por estos cuatro cuerpos simples.

En el mundo impera una ley implacable de cambio, de evolución, que somete a todas las cosas y resulta imposible de evitar y menos prever en cuanto a su duración y término. En los seres inertes, la erosión, los elementos atmosféricos, la gravedad, etc., determinan este desgaste continuo que se da en las montañas, en los monumentos y en cualquier obra humana o de la naturaleza.

Los seres inertes no pueden luchar contra este desmoronamiento constante y fatal, pero los seres vivos sí, y para evitarlo se nutren y asimilan sustancias que les son necesarias. Durante su infancia y juventud, esta asimilación les proporciona energía suficiente no sólo para vivir, sino para crecer. Es en la vejez cuando la nutrición no es suficiente para detener la caída del ser vivo hacia la muerte, donde se precipita por un proceso natural, de desasimilación, pérdida y decadencia.

Los seres vivos necesitan, pues, extraer del ambiente los cuatro elementos antes citados y que permitirán al laboratorio de su cuerpo transformarlos en sustancia propia.

La asimilación del Oxígeno y del Hidrógeno por entrar estos elementos en la formación del agua, no constituyen problema, pero ni el Carbono, ni el Nitrógeno pueden captarse directamente del mundo natural. Los procesos por los cuales los seres vivos se ingenian para apropiarse estos elementos y el ciclo de cambios constantes por los que pasan de unos vivientes a otros, constituye uno de los hechos más admirables de la Biología.

La biosfera es la región de la Tierra que alberga a los seres vivos. En sentido estricto, es la zona comprendida entre los fondos marinos abisales, situados a unos 11.000 m de profundidad y la altura máxima terrestre, que es de casi 9.000 m de altura sobre la superficie del mar. En realidad estos 20 Km. de espesor máximo se reducen enormemente si consideramos, por un lado, que la gran mayoría de los mares y océanos no son tan profundos y por otro, que los seres vivos que habitan el medio terrestre no lo hacen más allá de unos 200 m por encima del suelo.

En cualquier caso la biosfera constituye una capa muy delgada si la comparamos con el resto de capas que forman nuestro planeta y está formada por gran cantidad de ambientes distintos donde los seres vivos desarrollan sus actividades de maneras muy diversas.

La biosfera no es una capa homogénea, debido a que los organismos tienden a acumularse en determinados lugares donde las condiciones para la vida son más adecuadas. Estas condiciones vienen determinadas básicamente por los denominados factores ambientales, de los cuales los más importantes son: la temperatura, la luz, el agua y la presión.

La temperatura
La Tierra posee unas condiciones únicas para el desarrollo de la vida sobre su superficie si la comparamos con otros planetas del sistema solar. Esto se debe entre atrás cosas a que, por su distancia del sol f por la existencia de las capas atmosféricas, disfruta de un régimen de temperaturas adecuado.

El desarrollo y mantenimiento de la vida requiere que la temperatura se mantenga centro del intervalo comprendido entre a temperatura extrema mínima de O °C f la temperatura extrema máxima de 50 °C aproximadamente.

A temperaturas inferiores a los O °C, el agua, cuya proporción es mayoritaria en los organismos, se congela, mientras que por encima de los 50 :C, las estructuras biológicas más importantes que forman la materia viva, como las proteínas, que veremos en caratillos posteriores, sufren un proceso denominado desnaturalización, por el cual pierden tanto su estructura física como las propiedades. Existe una temperatura óptima entre los 5 y los 30 °C, en la que la mayoría de los seres vivos desarrollan sus funciones a la perfección.

Hay que tener en cuenta además que el proceso vital en cualquier organismo se compone de una gran cantidad de reacciones químicas que, como tales, dependen muy directamente de la temperatura a la que se realicen. De esta manera y siempre dentro del intervalo de temperaturas óptimas, a mayor temperatura, mayor velocidad de reacción y viceversa.

la vida en el planeta tierra

Los mamíferos pueden conservar el calor de sus cuerpos con independencia de la temperatura ambiental, pudiendo vivir en lugares muy fríos, como es el caso de los osos polares.

No obstante, es fácil encontrar en el seno de la biosfera zonas donde se sobrepasen, no sólo el rango de temperaturas óptimas, sino también el de temperaturas extremas, por lo que la gran mayoría de los organismos han desarrollado diferentes estrategias para mantener sus funciones vitales de manera adecuada bajo dichas condiciones.

Entre los seres vivos, son los animales por la variedad y complejidad de sus funciones, los que han tenido que desarrollar mecanismos más eficaces para el control de su temperatura interna. Dependiendo de cómo realizan este control, podemos distinguir entre animales poiquilotermos, como los reptiles, y homeotermos, como los mamíferos. A los primeros se les conoce vulgarmente como animales de sangre fría y a los segundos como animales de sangre caliente.

Los poiquilotermos se caracterizan por carecer de mecanismos eficientes para el control de su temperatura interna por lo que su metabolismo depende mucho de la del exterior, viéndose obligados, muchas veces, a pasar períodos de inactividad cuando las condiciones son extremas. En cambio, los homeotermos, consiguen mantener una temperatura interna siempre constante en torno a los 37 °C, lo cual les permite realizar sus funciones con bastante independencia de las condiciones ambientales.

reptil, la vida en el planeta

A Los reptiles, como el yacaré de la fotografía, no pueden mantener su temperatura interna de manera independiente a la del medio, por lo que únicamente pueden vivir en sitios cálidos.

Los vegetales generalmente combaten las temperaturas poco favorables perdiendo, de manera temporal, sus partes más sensibles (hojas, partes aéreas, etc.) y desarrollando estructuras especiales de resistencia (semillas, yemas, zonas leñosas, etc.).

La luz: La luz constituye un factor ambiental muy importante, ya que es la fuente de energía primaria a partir de la cual las plantas pueden desarrollar el complejo proceso de la fotosíntesis. Mediante este proceso se convierte la energía lumínica en energía química, la cual puede ser utilizada posteriormente en otros importantes ciclos metabólicos, bien por la misma planta o bien por otros organismos. La importancia de la fotosíntesis es tan grande que podemos afirmar sin duda alguna que el mantenimiento de la vida sobre la Tierra depende de este proceso.

La luz también influye en el desarrollo de la morfología de las plantas, determinando la dirección en la que deben crecer los tejidos y brotes permitiendo así una disposición óptima para la captación de energía.

Para los organismos no fotosintéticos, la luz es un factor que posibilita la visión y por tanto la facultad de relacionarse con el medio en el que viven. También interpone en los procesos de regulación de la actividad estacional. La distinta duración de los períodos de iluminación diurna a lo largo del año constituye un fenómeno denominado foto período que actúa como reloj biológico y sirve para desencadenar  importantes fases en la vida del organismo como por ejemplo la reproducen, la muda, la migración, la floración, etc.

En el medio acuático la penetración de a luz es menor que en el medio terrestre, le tal manera que a partir de los 200 m le profundidad reina una oscuridad absoluta. La zona comprendida entre la superficie del agua y la profundidad hasta donde llega la luz se denomina zona fótica, y es donde se acumula la mayor parte de los organismos acuáticos distribuyéndose en estratos o capas según las necesidades de luz que tienen.

La presión: El medio que rodea a los seres vivos ejerce una presión sobre ellos que también influye en la estructura y fisiología de los mismos.

En el medio terrestre, en el que los organismos están rodeados de aire, la presión se denomina presión atmosférica. Su valor varía ligeramente con la altura v la temperatura, de tal modo que al nivel del mar y 0°C, es de 760 mm. de Hg ( 1atmósfera), pero disminuye progresivamente a medida que ascendemos y también a medida que la temperatura aumenta. La  presión que se registra en el medio acuático se denomina presión hidrostática y su valor depende sólo de la altura de la capa de agua que hay por encima del organismo. S

u valor aumenta de manera lineal una atmósfera cada 10 m.  profundidad, de tal manera que a unos 10 m. la presión llega a ser de una tonelada por cada cm;. lo cual no impide que puedan vivir algunos organismos especialmente adaptados.

Esta variación de presión, si la comparamos con la que se produce en el medio terrestre, es muy grande, lo que provoca que la mayoría de los organismos acuáticos desarrollen sus actividades únicamente a la profundidad que están preparados para soportar, pudiendo perecer si la abandonan accidentalmente. Esta situación se hace drástica en los organismos que poseen cavidades internas rellenas de aire, como es el caso de muchos peces, mamíferos cetáceos y aves buceadoras. Estos organismos pueden morir aplastados o sufrir trastornos fisiológicos desastrosos si se sumergen a una profundidad excesiva.

El agua: El agua es la sustancia que se encuentra en mayor proporción formando parte de la materia de todos los seres vivos. En algunos casos puede llegar a constituir más del 90% del volumen total del organismo. Su importancia queda patente si consideramos la gran cantidad de funciones que realiza: sirve de disolvente en las reacciones bioquímicas que se producen en el interior de la célula; es el medio de transporte de los nutrientes y desechos en muchos organismos; interviene en la transpiración y fotosíntesis de las plantas; sirve de esqueleto hidrostático en muchos invertebrados; constituye el medio en el que viven los organismos acuáticos y, por último, sirve de controlador de la temperatura ambiental y corporal dada su elevada capacidad calorífica.

Todo organismo mantiene un equilibrio por el que se pierde y se incorpora agua continuamente durante el desarrollo de sus actividades vitales y que recibe el nombre de equilibrio hídrico. Todos los seres vivos, desde los protozoos unicelulares hasta los mamíferos más grandes poseen mecanismos para controlar eficazmente dicho equilibrio. Su mantenimiento es más fácil en los organismos marinos que en los que viven en agua dulce.

En los organismos terrestres es donde se dan los mecanismos de regulación más sofisticados, porque son los que más fácilmente pueden perder el agua que contienen (por transpiración, respiración, etc.) sufriendo, además, mayores dificultades para incorporarla. Es por ello que la disponibilidad de agua constituye un importante factor que condiciona enormemente la distribución de los organismos terrestres.

Fuente Consultada: DIDÁCTICA Enciclopedia Temática Ilustrada Editorial Oriente