Superar La Barrera del Sonido

Historia de los Submarinos Partes, Características y Evolución

Resumen de la Historia de los Submarinos
Partes, Características y Evolución

¿Quién no recuerda las aventuras del capitán Nemo, héroe de la novela de Julio Verne, Veinte mil leguas de viaje submarino? La historia de estas naves es, incluso para los profanos, apasionante.

El submarino es un producto maravilloso de la ciencia mecánica y naval moderna, pero la idea de navegar bajo las aguas tiene más de tres siglos; ya Leonardo de Vinci había estudiado la posibilidad de  que el hombre se  aventurase por los  abismos submarinos. Hoy se está casi seguro de que el primer constructor de sumergibles fue el holandés Cornelio Drebbel (1572-1634), quien había construido para el rey Jacobo I de Inglaterra un barco submarino con el cual recorrió la distancia que separa Greenwich de Westminster, navegando sin incidentes bajo las aguas del Támesis.

El francés De Son construyó en Rotterdam, en 1653, un barco de este tipo propulsado por una rueda de alabes.En Estados Unidos de Norteamérica, David Bushnel construyó hacia 1775 el primer submarino que fue utilizado contra Inglaterra durante la guerra de la Independencia americana. Este barco, llamado Tortuga (American Turtle), sólo podía transportar una persona.

invento del submarino

El americano Roberto Fulton, constructor del primer barco a vapor, ideó igualmente un submarino, el Nautilus; pero los gobiernos francés e inglés, a quienes se lo había ofrecido, rechazaron la invención porque juzgaron ese medio de combate poco leal y porque era absurda la idea de que existieran naves sumergibles.

En 1800 Roberto Fulton presentó a Napoleón I el plan de un submarino, el Nautilus. El proyecto fue ejecutado y los ensayos probaron el valor del invento. Otros proyectos y otras tentativas se sucedieron en Francia, en Baviera y en Suecia. El Zambullidor, cuya propulsión por primera vez no era ejercida por un hombre sino por un motor de aire comprimido, se construyó en Rochefort y se lanzó en 1863.

Casi en la misma época, durante la guerra de Secesión americana, un torpedero sumergible pequeño llamado David, logró luego de numerosos ensayos y múltiples aventuras, hundir un barco de guerra. La violencia de la explosión fue fatal para el mismo David, que al estar demasiado cerca del navio que torpedeaba, se hundió también con los nueve hombres de a bordo.

Los proyectos y los ensayos continuaron desde esa época, trayendo nuevas mejoras tanto en los medios de inmersión y de propulsión como en el casco. En Francia los acumuladores eléctricos constituyeron para los submarinos el medio de propulsión que debía permitirles funcionar sumergidos sin peligro. En 1885 el ingeniero Goulet los aplicó por primera vez a un submarino minúsculo. Un año más tarde, en Francia, Gustavo Zédé dirigía la construcción del Gymnote concebido por Dupuy de Lome.

Tenía 17 metros de largo y desplazaba 30 toneladas. Su velocidad en inmersión era de 4,5 nudos. Estaba provisto en cada extremo de un prisma a reflexión total, antepasado del periscopio del submarino actual.

¿Existe alguna diferencia entre los términos sumergible y submarino? Los dos vocablos son equivalentes, pero se ha hecho corriente el uso de la palabra submarino para los tipos que tienen una reserva de empuje menor, es decir que son menos aptos para recorrer grandes distancias en superficie.

Esos modelos han sido superados y ahora se dice corrientemente tanto submarino como sumergible. ¿Cuáles son las características que debe presentar un submarino para ser un buen instrumento de navegación? Se las puede enumerar del siguiente modo: buena velocidad en superficie, rapidez de inmersión, gran autonomía que asegure un vasto radio de acción, abundantes reservas de aire, espacio habitable y cómodo para la tripulación.

La forma debe ser estudiada para asegurar la velocidad de navegación en superficie y la estabilidad en la inmersión. Por otra parte la estructura debe ser concebida para que resista a las fuertes presiones que soporta el casco a medida que el submarino se hunde en las aguas.

Por lo general el sumergible está constituído por un casco interno en forma de huso, cuyo corte es mas menos circular y otro extremo que se prolonga más allá de las paredes internas, en las dos extremidades y le da la forma de un torpedo. El espacio entre los dos cascos esta dividido en compartimientos estancos que se llenan de agua cuando el submarino se sumerge; asimismo se encuentran ahí los depósitos de combustibles.

El problema más importante que los constructores deben afrontar es el de la inmersión a la profundidad requerida, que debe ejecutarse rápida y fácilmente. El submarino, como cualquier otro cuerpo, flota mientras su peso sea inferior al peso del agua que corresponde a su volumen. En virtud de un principio físico, es necesario por consiguiente aumentar mucho su peso para lograr la inmersión.

Para ello se llenan de agua tanques adecuados, una vez que las aberturas hacia el exterior han sido cuidadosamente cerradas. En el curso de la segunda guerra mundial, Alemania había construido submarinos de bolsillo que podían sumergirse en 25 segundos y aguantar hasta 3 días bajo el agua.

Si un sumergible navega a escasa profundidad puede, para descubrir a sus adversarios, recurrir a uno o varios periscopios. Cuando no son utilizados, se los hace entrar en el casco y la abertura se cierra automáticamente. Pero en tiempo de guerra, como la condición esencial del submarino es la de ser invisible, el periscopio puede presentar inconvenientes, puesto que deja una estela fácil de localizar sobre todo por aviones.

Cuando el sumergible navega en inmersión, la profundidad media es de 40 metros, aunque ahora es posible descender a más de 100 metros. Para dirigirlo hacia el enemigo, se recurre a los hidrófonos, que permiten percibir las vibraciones producidas por las hélices de los barcos y las de los motores. En los modelos más recientes se utilizan aparatos ultrasónicos, mediante los cuales es posible determinar la dirección y la distancia de un obstáculo, de modo comparable a la acción del radar.

En la torrecilla de comando pueden estar instalados las antenas de radio y uno o dos tubos para el periscopio y el schnorkel, conducto doble que rige la purificación del aire y la evacuación de los gases provocados por el funcionamiento de los motores Diesel, que el submarino tiene para navegar en superficie. Cuando debe deslizarse en inmersión dispone de motores eléctricos que funcionan con acumuladores.

Durante la segunda guerra mundial se adoptaron aparatos consistentes en dos tubos que se podían hacer bajar y entrar en el casco cuando no se empleaban, uno de los cuales servía para evacuar el humo producido por los motores a explosión, mientras el otro permitía introducir aire fresco en el submarino. Así se posibilitaba la navegación en inmersión durante varios días con evidentes ventajas para la seguridad.

La más reciente conquista en el campo de la propulsión es el Nautilus, el sumergible americano impulsado por energía atómica. Este progreso le asegura una gran autonomía en inmersión y abre nuevos horizontes a toda la navegación submarina.

Queda sobreentendida la realización de prodigios técnicos para ubicar, en el restringido espacio de que se disponía, un lugar habitación casi confortable para la tripulación, que debe encontrar en el submarino todo lo necesario para la subsistencia. El sumergible lleva reservas de víveres y de agua dulce y tiene comedores de oficiales lo bastante cómodos como para que la vida a bordo sea aceptable.

El peligro mayor en la navegación submarina es la irrupción del agua en el interior del casco. Un medio eficaz de defensa son los compartimientos estancos, que impiden al agua inundar todo el navio. Para que el submarino pueda volver a la superficie se extrae aquélla mediante bombas de aire comprimido. Si esto no es ya posible, el sumergible señala su posición mediante una boya que contiene un aparato telefónico ligado al navio. Se emplean también señales de humo.

En caso de accidente, para dar a la tripulación oportunidad de salvarse, es necesario disponer de medios rápidos para ascender a la superficie o esperar socorro. Por eso cada submarino está provisto de dispositivos para la purificación del aire, como también de aparatos de salvamento individuales que permiten a la tripulación abandonar el navio.

submarino partes

Este corte a lo largo de un submarino permite hacerse una idea de la disposición de las piezas, que comprenden: doble fondo para los depósitos de agua de lastre y agua potable, la cámara de torpedos, los tanques de aire comprimido, los depósitos de municiones y de acumuladores, los motores Diesel y los motores eléctricos, la sala de maniobras, los comedores para la tripulación. Sumergido el submarino, la visión de los objetos que están en la superficie se efectúa con el periscopio.

Ver: Imagen de las Partes de un Submarino

¿Cuáles son los objetivos para un sumergible en tiempo de guerra? Establecer barreras submarinas a la entrada de los puertos, cerca de las costas, explorar los mares surcados por barcos enemigos, torpedear a los barcos de guerra aislados o en convoyes, fijar minas, transportar armas. Les está prohibido destruir los barcos de comercio sin una previa inspección de la patente. Pero esta regla de honestidad internacional no ha sido siempre observada.

A comienzos de la primera guerra mundial, las grandes potencias marítimas tenían una flota submarina de regular importancia. Durante la guerra se descubrió que su efectividad como medio de ataque era superior a todo lo previsto y en consecuencia, después de 1918, las potencias trataron de desarrollar aún más su flota submarina.

Luego vino la segunda guerra mundial. El submarino desempeñó nuevamente misiones importantes. La extensión de las zonas de ocupación y la importancia de las fuerzas en pugna tuvieron, como consecuencia, destrucciones espantosas de navios de superficie pero también pérdidas  en submarinos  igualmente  considerables.

El submarino es sobre todo un arma ofensiva. Su armamento consiste, en un cierto número de tubos lanzatorpedos, cañones y ametralladoras antiaéreas. Alemania, al final de la guerra, empleaba torpedos acústicos que eran atraídos automáticamente hacia los navios enemigos por el ruido de las hélices.

En todos los océanos se desarrollaban cazas a menudo agotadoras que duraban muchos días, incluso semanas, hasta descubrir al enemigo. Cuando no se trataba de un solo navio, el sumergible evitaba el ataque inmediato para no dar la alarma; seguía al convoy sin abandonarlo y cuando otros submarinos alertados se unían a él se desencadenaba el ataque.

El Mediterráneo fue el más mortal de los campos de acción, pues su superficie, relativamente restringida, permitía a los enemigos la vigilancia constante del pasaje de navios y la transparencia de las aguas facilitaba a los aviones ubicar a los submarinos.

A los episodios de heroísmo debemos agregar los de solidaridad humana, cuando las tripulaciones de los sumergibles se sacrificaron generosamente para no abandonar a los náufragos de los navios torpedeados, aun con peligro de sus vidas. Tales episodios prueban que si el furor de destrucción y la violencia se han desencadenado, no se llega nunca a ahogar completamente el sentimiento de fraternidad.

ETAPAS DE FLOTACIÓN DE UN SUBMARINO

http://historiaybiografias.com/archivos_varios5/submarino3.jpg

ALGO MAS SOBRE SUBMARINOS…

Roberto Fulton, norteamericano nacido en 1775, es también considerado como el prier  hombre que fabricó un submarino prácico, hizo demostraciones con él a Napoleón: destruyó un buque fijándole una carga a su fondo , mas tarde repitió la experiencia ante el Almirantazgo británico.
Cuando un submarino está en la superficie se ve que tiene la forma de un gran cigarro con la timonera blindada en el centro del navio y de la cual salen dos columnas: son los periscopios de los cuales se levanta uno u otro solamente cuando el barco está apenas bajo la superficie del mar. uno es un periscopio de gran poder y largo alcance que puede ser apuntado hacia el cielo para advertir la presencia de aviones enemigos.

El otro es un periscopio de bajo poder y corto alcance, o de ataque, en cuyo ocular se hallan las líneas graduadas que permiten al capitán observar mejor su objetivo y le facilita el cálculo del instante de disparo de los torpedos.

Fuera del casco de presión y contenidos en lo que parecen ser protuberancias en cada costado, están los grandes tanques de lastre. Cuando se halla en la superficie el submarino flota como cualquier otro barco. En razón de que sus tanques están vacíos no pesa más que el agua que desplaza. Para sumergirlo se hace entrar agua en los tanques de lastre (que están abiertos por el fondo) hasta que el peso total del navio sea ligeramente mayor que el agua desplazada.

De popa a proa están los tanques accesorios que ayudan a mantener el buque horizontal. Si se llena el delantero y se vacía el trasero, la proa se hará más pesada y la nave zambullirá. Esos tanques, que se hallan dentro del casco, están conectados por cañerías, de manera que la nave puede ser nivelada bombeando el agua de uno a otro sin aumentar el peso total.

Los tanques grandes son inundados mediante válvulas que permiten la entrada del agua del mar, y se los vacía por medio de aire comprimido. Una vez sumergido el submarino no tiene estabilidad natural; un aumento de la velocidad o una alteración en la dirección, el movimiento de dos o tres miembros de la tripulación, de un lugar del barco a otro, puede producir una alteración de la inclinación que debe ser corregida inmediatamente moviendo los estabilizadores (aígo así como timones horizontales) para asegurar que el navio conserve su nivelación.

La mayor parte de los submarinos es propulsada por motores diesel, pero como éstos necesitan aire sólo pueden ser usados cuando la nave está en la superficie; para moverse bajo las aguas se utilizan motores eléctricos que funcionan por baterías. En consecuencia debe ascender a la superficie de vez en cuadno para recargar las baterias por medio de un generador diesel. Ya este problema no existe en los submarinos modernos que emplean energía nuclear.

Fuente Consultada:
LO SE TODO Tomo III Editorial CODEX Historia del Submarino
Enciclopedia Tecno-Científico Volumen VII Editorial CODEX

Porque se Produce el Eco? Aplicaciones Rebote del Sonido

Muchas veces, al gritar, sentimos el eco que al cabo de un instante nos imita. Normalmente, las ondas sonoras de nuestra voz se transmiten en línea recta, perdiéndose en la distancia. En ese caso no oímos ningún eco. Pero si algo hace que las ondas sonoras vuelvan, lo percibiremos.

Éste es, pues, el reflejo de las ondas sonoras emitidas, que vuelven luego de chocar contra una superficie como la de un edificio o las laderas de una montaña. En este sentido, las ondas sonoras se comportan muy similarmente a las luminosas, que son desviadas por un espejo, por ejemplo. La velocidad de la luz es tan fantástica que todo el proceso parece instantáneo. El sonido viaja más lentamente, su velocidad en el aire es de alrededor de 330 metros por  segundo.

Si disparamos un revólver, las ondas sonoras viajarán a través del aire con esa velocidad, y al cabo de un segundo se encontrarán a 330 metros de distancia. Si en ese momento son reflejadas por un obstáculo, tardarán otro segundo en volver hasta el sitio en donde se disparó el tiro, de modo que el eco se escuchará dos segundos después que el sonido original. El tiempo empleado por el sonido en ir y volver puede servirnos para encontrar la distancia que nos separa del obstáculo.

esquema del eco

CONDICIONES Y CÁLCULOS
El oído puede percibir y distinguir unas 10 sílabas por segundo; por lo tanto, la percepción de una sílaba exige 1/10 de segundo. Para que exista un eco monosílabo será preciso que el sonido reflejado llegue al oído 1/10 de segundo más tarde que el sonido directo, y como en 1/10 de segundo el sonido recorre unos 33 m., tendremos que la pared reflectora deberá hallarse, por lo menos, a la mitad de 33, o sea a 16,5 m. del observador. Cuando la distancia es menor, el sonido reflejado se superpone al directo.

Si la superposición es exacta, el eco (llamado entonces resonancia) aumenta la intensidad del sonido sin oscurecerlo; pero si la coincidencia de ambos sonidos no existe, las resonancias restan claridad al sonido directo. Este efecto pernicioso de las resonancias se evita, en las salas de audiciones que poseen malas condiciones acústicas, cubriendo las paredes con tapices que eviten la reflexión del sonido.

REFLEXIÓN
Al reflejarse, el sonido no siempre tiene que volver sobre sus pasos. Respeta las mismas leyes de reflexión que la luz (el ángulo de incidencia es igual al de reflexión) . Si la onda sonora incidente es guiada por algún medio, comprobaremos que se comporta exactamente igual que la onda luminosa.

Las superficies duras y brillantes son, generalmente, buenas reflectoras del sonido; en cambio, las blandas y rugosas lo absorben. En una habitación grande vacía será posible advertir el eco de la voz del que habla, pero si la habitación estuviera llena de gente, probablemente no se notaría el eco, porque las ropas de las personas absorberían gran parte del sonido.

ECOS MÚLTIPLES
En circunstancias especiales puede oírse más de un eco del mismo sonido, es decir, un eco múltiple. Estos ecos se hacen cada vez   más   débiles,   hasta   perderse.   Tienen lugar cuantío hay más de una superficie desde donde se pueda reflejar el sonido. Con cada reflexión, gran parte del sonido es absorbido, de modo que los sucesivos ecos van siendo cada vez más débiles.

ECO  EN  EL AGUA
El eco-sonda, o sonda ecoica, para determinar la profundidad del agua, funciona con el mismo principio. En este caso, un oscilador produce una onda ultrasónica, que es reflejada por el fondo y captada nuevamente por un micrófono ubicado en el casco del barco. Las ondas ultrasónicas son aquellas de frecuencia demasiado alta como para ser captadas por el oído humano. Se las utiliza porque no son amortiguadas por el agua tan rápidamente como las ondas sónicas. El sonido viaja mucho más rápidamente en el agua que en el aire.

En aquélla, su velocidad es de alrededor de 1.500 m./seg., más de cuatro veces superior. La información provista por los ecos es recogida por un aparato, que la traduce a signos inscriptos sobre un rollo de papel.

APLICACIÓN  PRÁCTICA
Los barcos desprovistos de radar pueden utilizar un método similar para estimar la distancia que los separa de un témpano o un acantilado, midiendo el tiempo que tarda en llegar el eco de la sirena de niebla desde el obstáculo. Un ejemplo: si el eco regresa 10 segundos después de haber hecho sonar la sirena, el sonido debe haber recorrido 10 seg. x 330 m./seg. = 3.300 m., de modo que el barco está a 1.650 m. (3.300 /2) del témpano o acantilado.

La profundidad del agua se determina enviando ondas ultrasónicas y midiendo el tiempo que tardan en regresar.

Aquí se forma un eco múltiple por la” repetida reflexión del sonido en las paredes del cañón.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°41 El Eco y sus aplicaciones

El Submarino Atomico o Nuclear Funcionamiento El Nautilius Polo Norte

FUNCIONAMIENTO DEL SUBMARINO ATÓMICO  – VIAJE AL POLO NORTE

En agosto de 1958 un inmenso objeto negro y alargado pasó lentamente bajo la corteza de hielo del polo Norte. Había navegado 1.500 Km. sin emerger y cumplía la fantástica tarea de cruzar el polo por debajo del agua. Era el Nautilus (foto izq.), estadounidense, el primer submarino atómico de la historia.

La idea de utilizar energía atómica para hacer marchar a los submarinos fue de Philip Albelson, en 1946. Sólo cuatro años más tarde, sin embargo, esta idea fue concretada en la construcción del primer submarino atómico, con la orientación del almirante H. Rickover.

El empleo de la energía atómica apresuró la solución de los dos grandes problemas que siempre preocuparon a los constructores de submarinos: las reservas de combustible y la existencia de dos tipos de motores. Los modelos antiguos usan motores Diésel cuando navegan por la superficie, y motores eléctricos bajo el agua.

Este sistema no permite grandes velocidades, exigiendo frecuentes ascensos a la superficie, cuando falta oxígeno o cuando la energía eléctrica se acaba. En el caso de los submarinos atómicos, la autonomía es prácticamente ilimitada.

Cómo funcionan: Con la eliminación de motores endotérmicos y motores eléctricos, se creó para los submarinos atómicos un sistema generador de vapor. El calor necesario para lograr su funcionamiento es proporcionado por una pila nuclear capaz de producir energía por muchos meses, dando a los submarinos una autonomía de más de 100.000 millas náuticas (casi el doble en Km.).

El sistema atómico de propulsión está constituido por dos circuitos cerrados que no necesitan oxígeno o agua del exterior ni tampoco aparatos de, descarga; por lo tanto, es el sistema ideal para los submarinos. En el primer circuito circula agua, sodio u otras sustancias cuya temperatura es elevada por encima del punto de ebullición.

Este líquido, encerrado bajo presión, no se transforma en vapor. Su calor se transmite al líquido que circula en el segundo circuito, y éste sí es transformado en vapor, el cual llega a la turbina y acciona la hélice. Para el funcionamiento de ese motor son suficientes algunos kilos de óxido de uranio, que permiten dos años de navegación.

La estructura : El submarino atómico tiene dimensiones bastante mayores que los de tipos anteriores. El submarino estadounidense Lafayette alcanza un desplazamiento de 8.200 toneladas. El francés Le Redoutable, llega a 9.000 toneladas. Tiene forma alargada, para una penetración óptima en el agua, y lleva en la popa una hélice de cuatro metros de diámetro. La velocidad que desarrolla es elevada, llegando a veces a más de treinta nudos, o sea, cerca de 56 Km./h. Los submarinos tradicionales alcanzaban 7 a 8 nudos: aproximadamente 13 a 15 kilómetros por hora.

La exigencia de mayor velocidad provocó otra modificación en la construcción de los submarinos: en vez de cuatro timones pequeños, la mayoría de los submarinos atómico lleva solamente dos timones de profundidad que sobresalen de la torre como grandes aletas horizontales. En esa posición, los timones no dificultan el fluir del agua a lo largo de la estructura. La torre, antes llena de salientes a causa de las armas e instrumentos que cargaba, hoy es lisa. Se ha transformado en una especie de aleta vertical y fina, necesaria para la estabilización del submarino.

La necesidad de navegar sumergido durante muchos meses exige espacio para todas las actividades de la tripulación, incluidos los ocios. Normalmente, el submarino nuclear dispone de dos tripulaciones que se alternan, a fin de evitar la fatiga de los individuos. Mientras los antiguos submarinos podían descender sólo 150 metros, los actuales pueden alcanzar profundidades de algunos centenares.

Esta es una gran ventaja para la actividad bélica, ya que navegando a gran profundidad el submarino se convierte en un blanco más difícil. Sin embargo, el submarino atómico tiene un grave defecto: el ruido de sus, máquinas, que en el silencio de los mares se propaga con gran facilidad. Navíos y helicópteros que estén a la escucha o que utilicen boyas sonares pueden localizarlo a la distancia.

Los astilleros estudian actualmente la forma de hacer’ más silencioso a este tipo de submarinos. Un submarino atómico estadounidense llega a costar casi 100 millones de dólares. Gran parte de esta suma se destina al equipo extremadamente complejo que se instala a bordo de la nave con la finalidad de dirigirla y lanzar mísiles y torpedos. El interior de un submarino nuclear parece un escenario de ciencia-ficción: hileras de computadoras, registradores y aparatos para el control de blancos. Todas las operaciones —desde la purificación del aire hasta la medición de la oscilación del submarino, y desde el control de los reactores hasta la regulación de la trayectoria de los mísiles— son efectuadas por computadoras electrónicas.

El armamento: Aunque ya se ha pensado en su utilización para fines pacíficos, los submarinos nucleares sólo fueron planeados, hasta ahora, con objetivos militares. Como integrantes de la moderna marina de guerra, se dividieron en dos grandes grupos: submarinos de ataque y submarinos lanzamisiles. La finalidad de los primeros es localizar y destruir navíos y submarinos enemigos, y están armados con torpedos. Los segundos tienen funciones estratégicas, y están provistos de misiles balísticos. Los submarinos de ataque cargan hasta 48 torpedos, capaces de dar en un blanco usando un equipo electrónico que capta el sonido o el calor de las máquinas de los navíos enemigos. Los mísiles utilizados por los submarinos atómicos son de dos tipos.

Unos son grandes mísiles balísticos que, lanzados por el submarino sumergido, vuelvan a través de miles de kilómetros hacia su lejano objetivo. Generalmente, tienen carga atómica y pueden utilizarse para atacar blancos que distan hasta 5.000 kilómetros. Los otros se usan en combinación con los torpedos.

El complejo misil-torpedo se llama subroc, abreviatura de subaqueous rocket (cohete submarino). Cuando los instrumentos de a bordo localizan un navío enemigo, el submarino se aproxima hasta 30 ó 40 Km. de su blanco y lanza el misil. Al funcionar así, el submarino actual prescinde del periscopio: los instrumentos modernos permiten acercarse al blanco sin necesidad de verlo. Esto es importante, porque el periscopio mide sólo veinte metros de alto y al utilizarlo, el submarino se acerca peligrosamente a la superficie del mar.

¿Y el futuro? : Es probable que los submarinos atómicos continúen siendo, por mucho tiempo, un arma exclusiva de las flotas de las naciones más poderosas. Pero ya se han dado los primeros pasos para la utilización no militar de los modernos submarinos. En Estados Unidos, por ejemplo, ya se usan los submarinos ató micos para la exploración del fondo del mar. Algunas compañías petroleras están proyectando la construcción de grandes submarinos para el transporte de petróleo desde los nuevos yacimientos de Alaska hasta los puertos cercanos a las refinerías. En un futuro no muy lejano también se podrá utilizar el submarino atómico para el transporte de mercaderías perecederas.

HISTORIA DEL NAUTILIUS: Terminada la Segunda Guerra Mundial con la terrible demostración de las capacidades del átomo, a principios de 1946 varios ingenieros navales reciben la orden de reunirse en una base militar secreta donde conocerían los reactores nucleares, pronto se pensó en utilizar esta energía como propulsora de submarinos por su propiedad de no necesitar oxigeno durante la fisión. Con este fin, la marina inició en 1948, un programa en Washintong en el Laboratorio de Investigación Naval, al mando de este programa estaba el capitán Hyman G. Rickover quien llegó a controlar todo el programa nuclear de la marina.

Adelantándose a su época y gracias a su tenacidad y empeño, consiguieron que en 1954 se botase el Nautilus, no sin enfrentarse a duras oposiciones desde todos los ámbitos, que consideraban el proyecto algo descabellado. Una vez convencidos, después de cuatro años de trabajo, la marina encargo a Rickover (imagen) y su equipo la construcción del primer submarino atómico en un plazo de cinco años.

Nadie, excepto el propio Rickover pensaba que ese plazo fuese factible, debido a lo descomunal de un proyecto en el que participarían miles de personas.

Se crearon unas instalaciones en Idaho en las que se construyó un duplicado del casco del Nautilus y se diseñó todo el sistema para que se adaptase en su interior. Esto suponía que todas las piezas de los reactores ya existentes debían ser rediseñados para adaptarse a las caprichosas formas de un submarino.

Rickover insistió en el control de calidad, también exigió un trabajo de ingeniería de la mejor clase, así como, hizo gran hincapié en tener una formación extremadamente competente de la futura dotación. Su equipo hizo todo lo posible para que este proyecto funcionase y lo hiciese bien, demostrando que aquel submarino podía ir al mar con total confianza y desempeñar su misión como submarino de combate.

Una de las principales preocupaciones del equipo de Rickover era evitar la radiación a toda costa. A este respecto cuando surgió el dilema de si debían cerrar la tapa del reactor con juntas o soldarla, se reunió a varios fabricantes de juntas que aseguraban que sus productos garantizaban el sellado. Rickover entró en la sala y les preguntó “¿Estarían dispuestos a permitir a sus hijos viajar en ese submarino?” a lo que los asistentes contestaron “suéldela”.

En 1952 se colocó la quilla del submarino en medio de una gran campaña publicitaria. Pero hasta la primavera de 1953 no se puso en marcha por primera vez el reactor Mark 1 en el centro de pruebas. Por fin, el 21 de enero de 1954 se botó el primer submarino nuclear, y a finales de 1955 el Nautilus se unió a la flota. Desde este día el submarino batió de inmediato todos losrecords de velocidad y permanencia sumergido. Con su primer núcleo de uranio navegó 62000 millas náuticas y casi todas en inmersión. Pronto se le consideró “el primer submarino verdadero”. Aunque se trataba más bien de un prototipo, sus capacidades demostraron que los conceptos de la guerra submarina y antisubmarina iban a cambiar drásticamente.

El propio Rickover afirmaba en 1956 “En mi opinión el Nautilus no es sólo un nuevo submarino que puede recorrer distancias prácticamente ilimitadas bajo el agua, yo lo considero una nueva arma y que puede tener un efecto tan profundo en las tácticas y estrategias navales como lo ha tenido el avión en la guerra”.

Los tripulantes acostumbrados a los submarinos convencionales opinaban del Nautilus que era una especie de trasatlántico. Tenía ventilación individual en todos los camastros, una sala común donde se proyectaban películas de cine, máquina de helados y muchas comodidades nunca vistas en un submarino. Los alimentos eran de la mejor clase y en aquella enorme sala las comidas se convertían en un acontecimiento social. La tripulación pronto lo apodó “Lola” en referencia a la canción “Lola consigue todo lo que quiere” ya que el proyecto contaba con toda clase de apoyos y un presupuesto muy generoso.

Pero pronto se terminarían aquellos momentos de tranquilidad y celebraciones. En la Unión Soviética se lanzó el primer satélite artificial, el Sputnik, mientras tanto el Nautilus operaba bajo el hielo del Ártico. Cuando el presidente Eisenhower se enteró de la posibilidad de cruzar por debajo del Polo Norte dio la orden. Su país debía responder de inmediato.

Después de algún intento, el Nautilus cruzó bajo el Polo Norte el 3 de agosto de 1958, este histórico acto demostró definitivamente la importancia estratégica del submarino nuclear. Operó hasta los años ochenta y en la actualidad el Nautilus está atracado en Groton Connecticut y se ha convertido en un museo que rinde homenaje a la flota submarina de los Estados Unidos.
(Fuente Consultada: Daniel Prieto)

UN POCO DE HISTORIA SOBRE LA EVOLUCIÓN DE LOS BARCOS: Desde el comienzo, los barcos de vapor tuvieron ventajas obvias sobre los barcos de vela. Por ser menos dependientes de los vientos favorables o adversos, cumplían mejor los horarios establecidos y nunca se quedaban encalmados.

Sin embargo los primeros vapores tenían también algunas desventajas. A mediados del siglo xix, el arte de construir barcos de vela llegó a su máxima perfección, y los mejores de los elegantes clíperes, construidos sobre el Clyde o en los astilleros de Boston, podían mantener una velocidad de 15 a 18 nudos en la mayoría de los viajes largos. En cambio los desgarbados y anchos vapores de ruedas rara vez podían viajar mucho más rápido que de 10 a 12 nudos. También los barcos de vela estaban en el mar tanto tiempo como sus provisiones lo permitieran, que podía ser varios meses; pero los vapores habían de permanecer en el mar solamente tanto como durara la provisión de carbón para las calderas.

A medida que la hélice reemplazó a la rueda de paletas, los vapores pronto aumentaron su velocidad, en parte porque la hélice era más eficiente que la rueda de paletas, en parte porque los barcos con hélice poseían un mejor perfil hidrodinámico y en parte también porque, en el ínterin, se habían perfeccionado los motores.

Y a medida que los vapores se hicieron más y más veloces, obtuvieron cargamentos cada vez más abundantes y valiosos. Para fines del siglo pasado, ya transportaban más del 80’% de todos los cargamentos, y los barcos de vela menos del 20 %. Luego, en los primeros años del siglo, se introdujeron las turbinas de vapor, y dieron a los barcos aún mayor ventaja en velocidad.

Así, el vapor había ganado la batalla de la velocidad; pero las velas eran todavía dueñas del cetro en la lucha de los barcos para ver cuál podía permanecer más tiempo en el mar. Pero, hace más de 50 años, comenzaron a botarse barcos de una clase diferente, provistos no de máquinas de vapor, sino de motores de combustión interna para mover la hélice. Estos pueden viajar los mejores barcos de motor modernos sin reabastecerse de combustible —hasta 30.000 kilómetros. Ahora, en nuestra época, el uso de reactores atómicos ha abierto la posibilidad de construir barcos capaces de navegar muchas veces alrededor del mundo sin reabastecerse.

Aunque los hombres de ciencia habían resuelto el problema de dominar la energía atómica con propósitos pacíficos pocos años después de la segunda guerra mundial, se tardó mucho más en producir un pequeño reactor apropiado para dar energía a un barco, y asegurarse de que se podría instalar sin exponer a la tripulación al peligro de la radiactividad. Así que hasta enero de 1955 el primer barco de energía atómica, el submarino americano “Nautilus”, no hizo su primer viaje de prueba. Sin embargo, en los años subsiguientes, un buen número de barcos atómicos comenzaron a circular.

El viaje más notable del “Nautilus”, que aparece en la ilustración de arriba, se hizo debajo de la capa de hielo que cubre el polo norte. El viaje demandó gran coraje, pues se pensaba que no se podría salir a la superficie hasta pasar el otro cabo de la capa de hielo. Pero el “Skate” lo hizo exactamente en el polo norte geográfico.

Otro submarino atómico norteamericano, el “George Washington”, que puede hacer viajes larguísimos y disparar proyectiles “Polaris” sin subir a la superficie. El rompehielos ruso “Lenin”,  puede navegar durante dos años sin reabastecerse de combustible. El diagrama del centro muestra cómo usa su propio peso para despejar un camino a través del hielo.

Fuente Consultada:
Sitio WEb Wikipedia
Revista Conocer Nuestro Tiempo
Diccionarioo Enciclopédico Espasa Calpe
El Triunfo de la Ciencia Tomo III Globerama Edit. CODEX

Historia del Globo Aerostático Viaje al Polo en Globo y Dirigible

Historia del Globo Aerostático
Viaje al Polo en Globo

HISTORIA DE LA ÉPOCA: En 1782, a los hermanos Joseph-Michel (1740-1810) y Jackes-Etienne Montgolfier (1745-1799) se les ocurrió pensar que si se calentaba el aire, se expandía y se hacía más liviano que el aire frío. Para demostrarlo, introdujeron aire caliente en una bolsa de papel y comprobaron que se elevaba.

Aprovecharon, entonces, este mismo principio para construir el primer globo aerostático. Después de numerosos ensayos elevaron en Annonay, su ciudad natal en Francia, un globo fabricado con papel y tela de embalaje.

El 19 de septiembre de ese mismo año, en Versalles, ante los reyes de Francia, repitieron la experiencia, pero en esta ocasión del globo pendía una barquilla en la que ubicaron un cordero, un gallo y un pato. El aeróstato recorrió 3 kilómetros y aterrizó sin novedad. Dos meses después, el 21 de noviembre, tuvo lugar el primer vuelo tripulado por el hombre, el físico francés Jean Francois Pilatre de Rozier (1756-1783) y un compañero; los tripulantes recorrieron alrededor de 9 kilómetros en 25 minutos.

Primer Globo Aerostatico

Primer Globo Aerostático

Rápidamente se fueron perfeccionando los aeróstatos, y en los primeros años del siglo XIX se efectuaron ascensiones hasta cerca de 10.000 metros. En algunas de ellas, los navegantes murieron por asfixia. Los dirigibles aparecieron a fines del siglo pasado (Santos Dumont), y en esos mismos años se alcanza la altura de 18.500 metros con un globo portador de aparatos registradores, que anotaron una temperatura de 60 grados bajo cero. Todos esos aparatos se basan en el principio de Arquímedes, y, por lo tanto, se los infla con gases menos densos que el aire (si se los inflase con aire, ninguno subiría un solo metro).

Otro francés, el físico Jacques Alexander César Charles (1746-1823) alargó la duración de los vuelos al colocar una hoguera en la barquilla que mantenía el airecaliente por más tiempo. También construyó, el 27 de agosto de 1783, el primer globo de hidrógeno. El reemplazo del aire por este gas, mucho más liviano, mejoró la capacidad de ascensión de los globos.

Restaba, ahora, encontrar la manera de dirigir el rumbo de los globos. El ingeniero francés Henry Giffard construyó en 1852 el primer aeróstato fusiforme. Impulsado por una máquina de vapor y alimentado con hidrógeno como gas sustentador, el aeróstato se elevó sobre el hipódromo de París y alcanzó una velocidad de 10 km/h.

En este sentido trabajó el inventor alemán Ferdinand Adolf August Heinrich von Zeppelin (1838-1917), quien confirió a los globos una forma aerodinámica. Para lograrlo, utilizó aluminio, que es un material resistente y liviano. Su primer dirigible parecía un gran cigarro del cual pendía la barquilla con el motor y una hélice, hoy recordado como Zeppelin. Los dirigibles dejaron de usarse sobre todo por los grandes desastres que ocasionaron.

El más impactante fue la célebre explosión del Hindenburg en Nueva Jersey, el 6 de mayo de 1937. Actualmente se utilizar, para publicidad, transporte de carga pesada y para investigación. En este sentido, los globos meteorológicos funcionan de un modo curioso: un globo de hidrógeno se eleva transportando una radiosonda.

En la ascensión, la sonda emite señales a la estación terrestre donde éstas son decodificadas y convertidas en valores de presión temperatura y humedad. Al cabo de 90 minutos, el globo ha alcanzado una altitud de 27 a 30 km. Allí, la presión atmosférica es muy baja, e globo estalla, y la sonda desciende a tierra suspendida de un paracaídas.

Los observatorios meteorológicos sueltan diariamente varios globos, para sondear la atmósfera y determinar la dirección y velocidad de los vientos a distintas alturas. Una de las finalidades de esta operación es informar a los aviones sobre las condiciones del tiempo que deben afrontar.

También se envían los llamados radiosondas, que son globos-portadores de instrumental para explorar las altas capas de la atmósfera. Como a medida que el globo asciende, la presión exterior es cada vez menor, el volumen del globo se hace cada vez mayor, al dilatarse el gas interior. Llega un momento en que la dilatación es mayor que la que puede soportar el material, y el globo estalla. Los aparatos caen con paracaídas, y así es posible recuperar el instrumental (aunque a veces cae en lugares despoblados).

Últimamente se ha desarrollado una nueva técnica en la exploración de las más altas capas de la atmósfera, a las que hasta hace unos pocos años ni se soñaba en llegar. Se hace mediante cohetes y satélites artificiales. El instrumental, que se acondiciona cuidadosamente en su interior, recoge datos valiosísimos sobre las condiciones del aire en tan altas regiones.

BREVE HISTORIA DE LA AEROSTACIÓN.
Después de los experimentos de Montgolfier, los ensayos se sucedieron con rapidez. El día 21 de noviembre de 1783 tuvo lugar la primera ascensión de un globo tripulado por el hombre. Pilatre de Rozier y el marqués de Arlandes mostraron gran valor al subir a «La Montgolfiera», construido por su inventor. La envoltura era de algodón y tenía unos 15 m de diámetro.

En su parte inferior el globo estaba dotado de una pequeña galería circular desde donde los aeronautas alimentaban y cuidaban un pequeño hornillo destinado a mantener caliente el aire que proporciona la fuerza ascensional. En nuestros días causa asombro considerar el hecho de que dos hombres se atreviesen a tripular un globo que si se mantenía en el aire era gracias al auxilio de un simple brasero.

Pocos días después, de diciembre de 1783, Charles y Robert efectuaron una magnífica ascensión en un globo muy perfeccionado pues constaba de una envoltura impermeabilizada hinchada con hidrógeno, red y barquilla. Además, y en previsión de cualquier posible contingencia, instalaron válvula de seguridad y se proveyeron de lastre, cuerda-freno y áncora. A partir de entonces fueron numerosísimas las ascensiones que*se llevaron a cabo con fines deportivos o científicos. El célebre físico Gay-Lussac llegó hasta 6.500 m de altura y llevó a cabo mediciones y observaciones relativas a la composición del aire, humedad, variaciones de la aguja magnética, “etcétera.

El día 13 de junio de 1784, Pilatre de Rozier y Romain perecieron al intentar cruzar el Canal de la Mancha. El globo que tripulaban estaba lleno de hidrógeno y en su interior se hallaba un lóbulo con aire caliente. El hornillo destinado a mantener constante la temperatura provocó la explosión del globo y ocasionó la primera catástrofe aérea de la Historia.

Mejor suerte cupo a Blanchard y a su compañero Jefries, quienes lograron efectuar la travesía del Canal de la Mancha desde Dover a Calais. El propio Blanchard llevó a cabo la primera ascensión sobre suelo americano, cubriendo en forma admirable el trayecto de Filadelfia a Nueva Jersey, donde entregó un mensaje para Jorge Washington. Otro récord memorable fue el conseguido por Carlos Green, quien en 1836 logró recorrer a través del aire los 700 km. que separan Londres de Nieder-hausen (Alemania). El día 2 de septiembre de 1894, un globo tripulado por Francisco Arban sobrevoló por vez primera el macizo de los Alpes.

El inglés Tomás Harris fue el protagonista de una historia de amor desarrollada en las alturas. Durante una ascensión efectuada en compañía de su novia, se produjo un pequeño desgarrón en la envoltura del globo, el cual comenzó a descender. Cuendo Tomás Harris tras arrojar todo el lastre vio que la caída era inevitable, se lanzó al vacío en un desesperado intento de aligerar así el peso del globo y salvar la vida de su amada.

La ascensión que con carácter científico efectuó Tissandier en 1875 terminó también trágicamente puesto que si bien logró alcanzar la altura de 9.000 m, la falta de oxígeno ocasionó la muerte por asfixia a dos amigos que le acompañaban.

Ante los frecuentes accidentes que se producían surgió la necesidad de contar con un medio eficaz que amparase al aeronauta y le permitiera saltar del globo.

La invención del paracaídas se debe a J. Garnerín, quien lo ensayó por primera vez el día 22 de octubre de 1797. El acontecimiento tuvo lugar ante el público de París que contempló lleno de asombro el lento descenso del audaz inventor sujeto a una gigantesca sombrilla.

Viaje en Globo aerostatico

Henri Giffard (1825-1882) exhibe su diseño de globo, cuya canasta tiene capacidad para albergar a 50 personas, en el Jardín des Tuileries, durante la Exposición Universal de París 1878. El ingeniero francés realizó, además, el primer vuelo controlado de un dirigible, el 24 de septiembre de 1852: un recorrido de 24 kilómetros desde Paris de donde partió su nave, llena con hidrógeno, a 8 kilómetros por hora, e impulsada por un pequeño motor a vapor.

LA EXPEDICIÓN ANDRÉE AL POLO NORTE. De entre los numerosos vuelos realizados mediante globos, destaca el llevado a cabo por el ingeniero sueco Andrée, quien en compañía de sus amigos Frankel y Strindberg planeó una arriesga-dísima expedición al Polo Norte en la que los tres iban a perecer de frío e inanición.

En el año 1896 iniciaron los preparativos trasladándose a la Isla de los Daneses, en Spitzberg, donde colocaron el globo Oernen, de 4.500 metros cúbicos, los instrumentos y los víveres. Sin embargo, no pudieron emprender la ascensión hasta junio del año siguiente, con bastante mala suerte pues al ascender se rompieron la mitad de las cuerdas-freno dispuestas para ahorrar lastre y facilitar la dirección del globo. En las primeras horas, los exploradores enviaron noticias mediante palomas mensajeras; unos días más tarde, fueron halladas un par de boyas. Después, el silencio más absoluto corroboró la suposición de que habían sufrido un grave accidente.

El mundo ignoró los detalles de la tragedia por espacio de 34 años, hasta que en 1930 los tripulantes de un buque cazafocas hallaron en la Isla Blanca restos de la expedición. En aquellas inmensas soledades y bajo la lona de-una tienda abatida se hallaban los cadáveres de los héroes junto a los cuales estaban el libro de notas de Andrée, la carta de navegar de Strindberg y unas películas. Un poco más allá y cubiertos por la nieve, aparecían los trineos y la canoa. Las fotografías y los escritos han permitido conocer con detalle el desarrollo de la tragedia.

Consiguieron llegar a los 82° 55′ y 7″ de latitud (800 Km. del Polo), después de un accidentadísimo vuelo de 65 horas que acabó al abatirse el aeróstato debido al peso de la capa de hielo que se formó sobre la envoltura. Desembarcaron el día 14 de julio, y el 21 emprendieron la retirada hacia el Sur. La marcha, como muy bien puede suponerse fue difícil y penosa. A pesar del intenso frío y de la carencia de alimentos consiguieron llegar a la Isla Blanca el día 5 de octubre. Su capacidad de resistencia fue verdaderamente extraordinaria ya que la última nota escrita lleva fecha del 17 de octubre.

DESCRIPCIÓN DE LA TRAGEDIA EN EL POLO NORTE: A fines del siglo XIX la exploración polar creaba fascinación y curiosidad a toda la comunidad científica de la época. Los buques expedicionarios habían partido uno tras otro hacia el helado silencio del Ártico, y no se había vuelto a saber mas de ellos durante meses o años. Cuando al final regresaban derrotados y maltrechos, los exploradores contaban sus aventuras en la impenetrable inmensidad de hielo, hablaban de los témpanos, traidores y movedizos, que imposibilitaban la navegación.

“De vez en cuando se aireaba la idea de que tal vez una expedición aérea tuviera éxito donde previamente habían fracasado las marinas, pero la cosa no pasaba del comentario porque, después de todo, no había globo que hubiera permanecido en el aire el tiempo que un viaje polar requeriría, y mucho menos en latitudes en que la capa de hielo que se formaría en la superficie del aeróstato, podía provocar un aterrizaje forzoso y, con mucha probabilidad, catastrófico. Pero existía también el problema de los vientos dominantes.

Salomón August Andrée.Las expediciones aerostáticas que se dirigieran al Polo tendrían que confiar con optimismo en que una de las corrientes del sur llevaría el globo hasta aquella región, para luego proseguir la marcha hasta los poblados más septentrionales. Los obstáculos parecían insuperables para cualquiera que no tuviera el entusiasmo del sueco Salomón August Andrée.

Andrée había visitado a Estados Unidos durante su mocedad y se había hecho amigo del aeronauta norteamericano John Wise. Posteriormente había formado parte de la expedición que estudió los fenómenos polares en Spitsbergen, junto a la costa norte de Noruega. Más tarde había trabajado como ingeniero jefe en la oficina sueca de patentes. Era enérgico, valiente y con voluntad de hierro. Tanto por sus estudios como por su temperamento, Andrée estaba formidablemente dotado para la aventura que se había propuesto.

En 1895 Andrée dio a conocer el plan de su expedición polar, en globo, en una serie de conferencias, bien recibidas, en las que mezclaba la ciencia con el patriotismo. Los suecos, decía en ellas, se han «caracterizado durante siglos por el más intrépido valor», estaban acostumbrados a los caprichos del clima polar «y la propia naturaleza les había enseñado a soportarlos». Esta llamada al orgullo nacional y la excelente reputación de Andrée, contribuyeron a que se recaudaran las ayudas necesarias para financiar la expedición entre ellas la del Rey Osear de Suecia y del filántropo Alfred Nobel.

El globo que iba a transportar a Andrée y a dos compañeros cuidadosamente seleccionados, estaba hecho ex profeso para el viaje. La meticulosa especificación que Andrée había preparado para el aeróstato -al que puso el nombre de Ornen (Águila)- preveía una envoltura de 4.814 m3, hecha de seda china doble, para proporcionarle resistencia y durabilidad. El globo no tenía válvula en la parte superior, al objeto de que la nieve no la atascara, pero llevaba dos en la zona inferior de la envoltura. Por encima de la red había otra capa de seda para proteger más al aeróstato contra la nieve y el hielo.

Andrée pensaba regular la altitud con tres cuerdas de arrastre, unidas por secciones, cada una de las cuales tendría 335 m de longitud. Llevaría también otras sogas más cortas. De la barquilla sobresalían tres palos horizontales, a los que iban sujetas tres velas cuadradas, con las cuales se esperaba poder modificar hasta 30° la derrota.

La góndola de mimbre era cerrada, cilíndrica, de 1,60 m de profundidad. En ella irían tres trineos, un barco de lona, tres literas, herramientas, armas, otros artículos y comida suficiente para cuatro meses. La partida sería en el verano de 1896, desde un lugar situado en el extremo noroeste de Spitsbergen, a unos 1.297 km del Polo. Andrée calculaba con optimismo que el viento constante del sur los llevaría al Polo en tres días.

El aterrizaje, como dependía de la dirección del viento, podría realizarse en cualquier lugar de Siberia, Canadá o Alaska. El Ornen fue inflado con hidrógeno y quedó alojado en «un hangar para globos», de 30 m de alto, esperando a que soplara la brisa deseada. Pero no sopló ni en todo el mes de julio ni en todo el mes de agosto, con lo que terminó el efímero verano ártico y se hizo tarde para comenzar la expedición.

En 1897, Andrée, que entonces tenía 43 años, y sus tripulantes Nils Strindberg y Knut Fraenkel volvieron a Spitsbergen para volver a probar fortuna. El entusiasta Strindberg, de 24 años, era profesor de educación física en la universidad de Estocolmo y un consumado fotógrafo. Fraenkel, de 27 años, era musculoso, de profesión ingeniero y aficionado al alpinismo. Para prepararse para la expedición ambos hombres habían ido a París, a aprender aerostación. El 11 de julio, después de seis semanas de espera, empezó a soplar el tan largamente esperado viento del sur. El momento había llegado y, en consecuencia, se procedió a sacar el globo de su cobertizo. Los tres exploradores subieron a bordo, mientras la tripulación de tierra esperaba órdenes sosteniendo las maromas de amarre.

A la 1:46 de la tarde, Andrée dio la señal para soltar al Ornen y éste comenzó a subir perezosamente por encima del puerto y fue flotando hacia el nordeste. De repente, la nave bajó de modo imprevisto y tocó el agua para luego rebotar y volver a subir ayudada por la tripulación que arrojó más de 200 kilos de lastre. Los ayudantes de tierra estuvieron mirando con emoción al globo hasta que éste no fue más que un punto en el horizonte del Norte.

Todo parecía ir bien, pero Andrée ya sabía que no era así. Las secciones de la parte inferior de las tres largas maromas de arrastre -que en el plan de Andrée eran vitales para regular la altitud y la dirección -se habían desprendido, no se sabía por qué, y yacían en la costa como grandes serpientes enroscadas. El Ornen continuó su vuelo libre hacia lo desconocido.

Los millones de personas que, en todas las partes del mundo, habían seguido ávidamente a través de los periódicos los preparativos de la expedición, quedaban ahora a la espera de noticias de los exploradores. Estas no podrían llegar más que, o con palomas mensajeras o metidas en las boyas que arrojara el globo. La expedición no disponía de otros medios de comunicación.

Cuatro días después de la salida del Ornen, el capitán de un buque noruego mató a una paloma que se había posado en las jarcias de su velero. En un pequeño cilindro atado a la pata del animal había un mensaje de Andrée. Había sido escrito el 13 de julio, al mediodía, en un punto situado a unos 370 Km. al norte del lugar de despegue. «Buena velocidad hacia el E. 10° S.

A bordo todos bien. Este es el tercer mensaje por paloma mensajera», decía la nota.

Las otras dos no llegaron, y el verano transcurrió sin que se supiera más de los expedicionarios. Después llegó el otoño y, tras él, la larga noche del invierno ártico. Siguió sin saberse nada de Andrée y su tripulación.

Si continuaban vivos tendrían que estar matando osos para alimentarse, y metidos en algún improvisado refugio para poder soportar el frío.

Por supuesto, era posible sobrevivir en aquellas condiciones, porque otros ya habían sobrevivido. El padre de Strindberg se mostraba optimista: «Habrá que esperar un año, por lo menos», escribió, «para empezar a preocuparse, e incluso entonces no habglobo aerostaticorá que ponerse demasiado pesimista».

Pasó más de un año. Salieron barcos en busca de los exploradores y volvieron sin encontrar ni rastro de ellos. En febrero de 1899 llegaron noticias trágicas: los miembros de una tribu nórdica habían encontrado los cadáveres de tres suecos al norte de Siberia.

La noticia era falsa. Tres meses después salió a la costa de Islandia una boya con un mensaje de Andrée, pero había sido escrito 12 horas después de la partida de los desaparecidos. Al año siguiente  apareció un mensaje parecido en una playa noruega. Para entonces ya habían transcurrido tres años y la creencia de que los exploradores habían perecido era cada vez más firme.

Durante 33 años no se supo nada del Ornen, pero en el verano de 1930, un par de cazadores de morsas, de un buque noruego tropezaron con los esqueletos de los tres exploradores en el sombrío corazón ártico de la isla de White, a unos 450 Km. de donde había despegado el globo.

Los diarios, los cuadernos de notas y las cartas que los tres hombres habían escrito eran aun legibles y según constaba, el Ornen, que al perder accidentalmente las cuerdas de arrastre se había visto aligerado en 540 kg, había subido la primera tarde del vuelo a 700 m, mucho más de lo que Andrée tenía previsto.

El viento había impulsado al globo hacia el noroeste el primer día, luego hacia el oeste y después hacia el este de nuevo. Había permanecido 13 horas inmovilizado, al quedar trabada una de las cuerdas que colgaban de él de un gran trozo de hielo.

La densa niebla impedía la visibilidad y el agua nieve había recubierto la superficie del globo de una carga tal de hielo, que había hecho descender varias veces a la nave y a la atestada góndola chocar contra los salientes helados del terreno. Y esto había ocurrido 8 veces en 30 minutos.

En la ropa interior llevaba cosida una A, y en el bolsillo, un diario. En él aparecían las últimas palabras escritas por Salomón August Andrée, el aeronauta sueco, que junto con Knut Frankel y Nils Strindberg, había desaparecido en 1897, cuando trataban de llegar al Polo Norte. Se aclaraba así el misterioso final de la expedición salida 33 años antes de Spitsbergen.

Junto a los restos de Andrée se encontraban los de sus acompañantes y varios cilindros metálicos que contenían negativos fotográficos impresionados. Un experto fotógrafo de Estocolmo consiguió revelar 20 negativos. Algunas de las fantasmales fotografías, deterioradas por los años de permanencia en la humedad y el frío árticos.”

OTRA HISTORIA, PERO CON DIRIGIBLES
AL POLO EN DIRIGIBLE. Durante el año 1926 el explorador noruego Amundsen efectuó una expedición polar que tuvo gran resonancia. Gracias a la munificencia del norteamericano Ellswort que financió la empresa, pudo adquirirse el dirigible N-i construido por Nobile. Tenía 19.000 m3 y 106 m de longitud e iba provisto de tres motores de 240 HP, dispuestos en barquillas independientes y desarrollaba la velocidad de 100 km/h.

El N-i, adquirido por Noruega y bautizado con el nombre de Norge, partió de Roma, llegó felizmente a Oslo y siguió luego hasta Spitzberg. El día n de mayo la aeronave emprendió el vuelo desde Kingsbay hacia el Polo Norte, que fue alcanzado al cabo de 15 horas de navegación, sobre deslumbrantes blancuras. Aunque el viaje de regreso se vio dificultado grandemente por la sobrecarga debida a la costra helada que se formó en la parte superior de la envoltura, el Norge consiguió aterrizar en Teller (Alaska) después de 71 horas de lento vuelo.

El general italiano Nobile, que había participado en la expedición dirigida por Amundsen, quiso organiza* por su cuenta un vuelo al Polo. El día 15 de abril de 1928, el dirigible Italia salía de Milán, ciudad que patrocinaba la empresa, para dirigirse a Spitzberg. Una vez allí y tras unos vuelos de exploración sobre las tierras de Francisco José, Nicolás II y Nueva Zembla, el 23 de mayo el Italia se dispuso a cubrir la última etapa hasta el Polo, del que no iba a regresar jamás.

En efecto, después de 16 horas de vuelo, la aeronave alcanzó el Norte geográfico de la Tierra, en cuyo lugar lanzó la cruz ofrecida por el Papa y la bandera de Italia. Durante el regreso se desataron fuertes borrascas de viento y nieve. Sobre el Italia se formó una espesa capa de nieve helada que le hizo perder altura, hasta que una ráfaga de viento huracanado le estrelló contra un banco de hielo. A consecuencia del golpe el dirigible se partió en dos, y mientras el sector donde se hallaban Nobile y ocho tripulantes más quedaba sobre los hielos, la otra sección con el resto de la dotación, se remontó de nuevo y desapareció para siempre.

El sobrecogedor silencio que siguió a los desesperados «SOS» lanzados por el radiotelegrafista de la aeronave tuvo la virtud de movilizar a numerosos equipos de salvamento que partieron en busca de los accidentados. Amundsen voló inmediatamente en auxilio de Nobile y pereció.

El día 20 de junio, ante la expectación del mundo entero, el comandante italiano Maddalena, que participaba en la búsqueda, consiguió localizar con su hidroavión a los supervivientes del dirigible que fueron auxiliados con víveres y medicamentos, lanzados en paracaldas. Tres días después, el aviador escandinavo Lundborg logró aterrizar con su avioneta provista de skis, sobre el banco de hielo donde se hallaba el grupo. Nobile, en forma todavía incomprensible y ante el estupor unánime del mundo civilizado, abandonó a sus compañeros y se salvó con el avión de Lundborg.

Para colmo de desgracias, y con ocasión de efectuar un segundo viaje sobre el improvisado campo, el avión de Lundborg capotó al aterrizar, quedando a su vez prisionero de los hielos hasta el 6 de julio en que fue salvado por otro aviador que también tuvo la audacia de aterrizar sobre el banco de hielo.

A consecuencia de diferencias surgidas entre los náufragos, éstos se dividieron en dos grupos. El encabezado por Malmgren, inició una marcha dantesca entre aquellas frías soledades, hasta alcanzar el rompehielos ruso Krasin (13 de julio). El drama no había terminado, ya que Malmgren rendido por el frío y la fatiga, había pedido a sus compañeros que le abandonasen y prosiguieran el camino hacia la salvación. Nobile, caído en desgracia y abrumado por el peso de tanta responsabilidad, se trasladó a vivir a Rusia.

Fuente Consultada:
Grandes Épocas de la Aviación Tomo 40 Los Aeronautas II
Química I Polimodal  de Alegría-Bosack-Dal Fávero-Franco-Jaul-Rossi

VIAJE A CABALLO CRIOLLO UNEN BUENOS AIRES CON WASHINGTON EN 1925-1928

DOS CABALLOS CRIOLLOS UNEN BUENOS AIRES CON WASHINGTON EN 1925-1928

En 1928 tuvo lugar el raid más formidable que hayan realizado en la historia del mundo el hombre y el caballo.

Un profesor suizo radicado en la República Argentina, Aimé Félix Tschiffely (1896-1954), con dos caballos criollos, Mancha y Gato pertenecientes a la estancia “El Cardal” del doctor Emilio Solanet, realizaron esta fabulosa hazaña de resistencia.

Tschiffely partió de la Sociedad dad Rural en Palermo el 25 de abril de 1925 y llegó a Washington el 29 de agosto de 1928, después de tres años, cuatro meses y cuatro días.

Recorrió una distancia de más de 25.000 kilómetros, atravesando los desiertos más inhóspitos del globo, subiendo a más de cinco mil metros sobre el nivel del mar y transitando por selvas pobladas de indios salvajes.

De Buenos Aires, pasando por Rosario y Santa Fe, arribó a Jujuy y pasó a Bolivia. En el Perú atravesó el desierto de Matacaballos, 160 kilómetros de arena sin agua y con 52 grados de calor; lo hizo de noche y en una sola etapa.

Desde Cartagena hasta Panamá viajó en barco y luego pasó por Costa Rica, Nicaragua, El Salvador, Guatemala y México. El plan inicial tenis como destino la ciudad de Nueva York, pero, con buen criterio, Tschiffely le puso fin en Washington, pues viajar a caballo por las carreteras de Estados Unidos atestadas de autos era suicida.

El presidente Calvin Coolidge recibió al jinete, y el alcalde de Nueva York, Jimmy Walker, le ofreció una recepción y le entregó una medalla. Este viaje actualíz6 el proyecto de realizar la Carretera Panamericana, hoy una realidad. Después del raid, el jinete regresó a Inglaterra, donde se casó con una cantante argentina y regresó al país en 1938 y 1943 para ver a Mancha ya Gato.

Estos dos caballos tenían 15 y 16 años al iniciar el raid y habían pertenecido a un cacique patagón llamado Liempichún. En el viaje usó un ‘chirigote’ silla de montar muy usada en Entre Ríos.

El periódico LA RAZÓN, comenta: “Buenos Aires, admira los valores sustanciales del hombre: espíritu de empresa, coraje y tenacidad, agasaja a Aimé Tschiffely, criollo de corazón como tantos extranjeros que amaron la tierra gaucha. Nada detuvo su avance a través del continente, montando en Gato o en Mancha. Las largas marchas en los suelos pedregosos de los declives de montaña, en medio del sol abrasador de los trópicos, los valles dilatados, los ríos impetuosos y profundos, todo ha sido salvado; y los caballos criollos, exponentes de la resistencia, de la bondad, de lo útil de la raza, triunfan en una prueba en la que habrían caído vencidos animales selectos de cualquier origen, que no ostentaran en sus corrientes de sangre el blasón noble de sus antecesores árabes. Miles de leguas pisadas por los cascos endurecidos, hasta llegar a la Quinta Avenida, que detuvo su agitado tránsito para ver pasar las figuras legendarias, extrañas en otro marco que no fuera el de la pampa infinita. Buenos Aires, a su vez, siente el orgullo y la emoción de la hazaña, volcando sus sentimientos, por lo menos esa pureza que ningún filósofo le ha negado, al dar la bienvenida al raidista y a los valientes caballitos criollos “del galope largo y el instinto fiel”, como lo cantó el poeta y como lo probaron en todas las rutas de América, para asombro de propios y extraños.”

Linbergh Cruzó Sin Escalas y Solo el Oceano Atlantico en Avion

Charles Lindbergh (1902-74)

En 1903, cuando Charles tenía un año de edad, el único avión existente en el mundo, tenía una autonomía de un minuto. Cuando cumplió los 25 años, la aviación había alcanzado un grado de desarrollo tal, como para que este entusiasta se fuera en 33 horas de N.York a Paris sin escalas, con su Spirit Of St. Louis.

Todo esto no fue gratis; unos cuantos murieron en este desarrollo, y los intentos por el premio Orteig de 25.000 U$s. (todos con varios tripulantes y motores) habían fracasado, generalmente en forma trágica.

Los rugientes veintes estaban faltos de un héroe, y este vino a llenar el lugar. Veamos como hizo, este solitario que prefirió un solitario motor. A los 21 años, hizo su primer vuelo solo, a los 22 chocó en el aire y bajó en paracaídas, a los 23 no pudo salir de un tirabuzón y volvió a bajar en paracaídas, e inició el correo entre St. Louis y Chicago donde al año siguiente también bajó en paracaídas.

En 1926 y con 2000 hs voladas, no cree que el Atlántico le depare sorpresas; para competir por el premio Orteig solo le falta el avión. Nueve empresarios de St Louis lo patrocinan, encarga un monoplano de ala alta a Ryan Co de San Diego, California y a su diseñador Donald Hall, con quien establece armoniosa sintonía.

El Spirit Of St. Louis se construyó a toda prisa, en mayo, pues otros pilotos como el explorador del Artico, Richardr Byrd, también competían por el premio, sin embargo el único que pensaba cruzalo solo era Lindbergh. El motor, un Whirlwind de 9 cilindros y 220 HP a 1800 rpm; el resto alivianado al máximo para dejar capacidad portante para llevar los 1750 litros =1400 Kg. de nafta mas 100 Lt. de aceite necesarios. Se suprime la radio, el sextante, el tapizado, el parabrisas se reemplaza por un tanque de nafta; también se suprime el sistema eléctrico y la pintura.

Toda comodidad, cedió lugar a la aerodinamía y liviandad. Costo de todo el avión: 10.500 dol. Tras las primeras pruebas, vuela sin escalas a St Louis calibrando el consumo, y luego a N.York.

Con muy poco preámbulo, con el primer pronóstico meteorológico aceptable, el 20 de mayo sale desde la pista de césped de 1500 m de Roosevelt Field hacia París, y después de 33 horas y media, aterriza en Le Bourget. Durante todo el viaje estuvo luchando para no dormirse , la borrasca, la niebla, y la inestabilidad del avión  dificultaron aun más su tarea, muchos pensaron que estaba loco, pero cuando llegó fue recibido por una multitud entusiasta de 100000 personas. Los coleccionanistas casi le destrozan su Spirit.

La velocidad media, fue de 173 kph. Las consecuencias de este vuelo, son tremendas. Se transforma en el ídolo mundial Lucky Lindy, cosa que a él poco parece importarle.

A partir de este momento aparece un antes y un después; la aviación comienza a ser tomada en serio como un medio de transporte de personas; en los próximos tres años nacerán las principales aerolíneas del mundo y recién entonces los pasajeros descubren que el avión de transporte existe.

Se desarrolla mucha tecnología que se intercambia, especialmente con la industria automotriz. Lucky Líndy quedará como máximo referente de la aviación por el resto de su vida.

Cuando Nixon y el Congreso de EE.UU. debieron decidir en 1970 si aportaban dinero para el SS116 consultaron a Lindy y éste respondió que no se debía gastar dinero de los contribuyentes en una actividad no rentable; el tiempo le daría la razón.

Tuvo ideas políticas cuestionables y fue influenciado por Alexis Carrel sobre la superioridad del hombre blanco.

Nota: La hazaña de Lindbergh no fue solo cruzar el océano sin escalas, sino que lo hizo solo, la audaz tentativa captó la atención mundial, pero en realidad Lindbergh no fue el primer aviador en realizar un vuelo transatlántico sin escalas. John Alcock y Arthur Whitten Brown, dos aviadores británicos, lograron volar desde Lesters Field, cerca de Saint Johns, Nueva Escocia a Clifden, Irlanda del 14 al 15 de junio de 1919 en su avión Vickers Vimy IV (un bombardero modificado). Por haber logrado este vuelo, Alcock y Brown ganaron el premio de 10.000 libras esterlinas del periódico londinense Daily Mail, recibiendo el premio de manos del mismo Winston Churchill. Se encuentra una estatua de Alcock y Brown en el aeropuerto de Heathrow, cerca de Londres, Inglaterra en honor al primer vuelo trasatlántico.

PARA SABER MAS… Charles A. Lindbergh no fue el primero que cruzó el Atlántico en aeroplano ni el primero que realizó una travesía sin escalas. (Ambas proezas ya se habían realizado en 1919). No obstante, fue el primero que lo cruzó solo. La audaz tentativa captó la atención mundial hasta un nivel sólo comparable a la firma del armisticio. El 20 de mayo de 1927, Lindbergh despegó de Roo-sevelt Field en Long Island (Estados Unidos) a las 7.54. Cuando aterrizó en el aeródromo Le Bourget de París 33 horas y media después, lo esperaba una multitud entusiasta de cien mil personas.

Los coleccionistas casi destrozan su avión, el Spirit of St. Louis. En junio, cuatro millones de neoyorquinos le dieron la bienvenida con un desfile. La prensa lo trató como a un nuevo Colón, unaimagen equivalente a su ambición. Lindbergh quería una nueva Era: la del vuelo transoceánico.

Empezó a pensar en la idea cuando hacía rutas aéreas postales entre St. Louis y Chicago. Más tarde escribió: «¡Imagínate ser capaz de poder sobrevolar la tierra a voluntad, aterrizando en este o en aquel hemisferio!». Cuando leyó que un hotelero neoyorquino oriundo de Francia ofrecía un premio de 25.000 dólares por un vuelo sin escalas entre su ciudad de adopción y París, Lindbergh se propuso ganarlo. Tras conseguir el apoyo financiero de unos hombres de negocios de St. Louis, empezó a buscar a un fabricante que construyera un aeroplano según sus indicaciones. Muchos se negaron pensando que estaba loco. Finalmente, una compañía californiana, la Ryan Airlines, aceptó.

El Spirit of St. Louis se construyó a toda prisa: en mayo, otros pilotos, como el explorador del Ártico Richard E. Byrd, también competían por el premio. Sin embargo, el único que planeaba un vuelo solitario era Lindbergh y la prensa se concentró en él. La víspera de su viaje histórico no pudo dormir, cuando inició su travesía de 5.782 km ya estaba agotado y durante todo el vuelo estuvo luchando para permanecer despierto. La borrasca, la niebla y la inestabilidad del aeroplano dificultaron aún más su tarea.

Lindbergh se convirtió en un héroe internacional y promovió los viajes aéreos comerciales ante reyes, financistas y todo el que lo escuchara. Realizó vuelos de reconocimiento con su mujer, Anne Morrow, y estableció rutas que todavía se utilizan. En 1935, la Pan Am inauguró el servicio de pasajeros a través del Atlántico, y el sueño de Lindbergh se hizo realidad. 

OTRA HAZAÑA….

Howard Hughes, productor de cine, fabricante de aviones y multimillonario, también estableció un récord como piloto. Hughes cerró la época de los aviadores heroicos el 14 de julio de 1938, cuando aterrizó con su bimotor Lockheed en el campo Floyd Bennett de NuevaYork tras dar la vuelta al mundo en tres días, 19 horas y 17 minutos, la mitad del tiempo que había empleado Wiley Post en su viaje solitario de 1933. Más tarde, Hughes aclaró: «Cualquier piloto aéreo comercial hubiera podido hacer lo mismo». Hughes aprovechó las experiencias de sus predecesores y sus fondos ilimitados. Su Lockheec 14 estaba equipado con los instrumentos de navegación más modernos: estuvo en contacto permanente con emisoras de radio en tierra y en barcos.

La Teoria del Flogisto La Quimica Moderna Teoria de Combustión

TEORÍA DEL FLOGISTO

Según las antiguas concepciones griegas, todo lo que puede arder contiene dentro de sí el elemento fuego, que se libera bajo condiciones apropiadas. Las nociones alquímicas eran semejantes, salvo que se concebían los combustibles como algo que contenía el principio de “azufre” (no necesariamente el azufre real). (imagen: Ernst Sthal)

Una preocupación central de la química en el siglo XVIII era el proceso de combustión. Cuando las sustancias se calentaban hasta el punto de incandescencia, los científicos vieron que emitían algo —vapores o humo—, y lo interpretaron como una pérdida de la sustancia original.

Ese «algo» que supuestamente se perdía en el proceso de combustión se llamó flogisto, una palabra acuñada en 1697 por el químico alemán Ernst Stahl. Pero qué era exactamente ese flogisto seguía siendo materia de debate. Para algunos, era un elemento en sí mismo; para otros, era una esencia contenida en los materiales combustibles, sin la cual la combustión era imposible.

Georg Ernst Stahl (1660-1734), siguiendo a su maestro Becher (1635-1682), creyó que las sustancias estaban formadas por tres tipos de “tierra”, más el agua y el aire. A una de las tres tierras, aquella que Becher había llamado “combustible”, la rebautizó como flogisto (del griego, que significa “quemado” o “llama”), al que le asignó el noble y supremo propósito de ser el agente y el sostén de la combustión. La combustión, según Stahl, consistía en un intercambio de flogisto, que fluía entre los materiales con la soltura (aunque con más calor) del éter; quemarse era dejar escapar flogisto (que como un humo invisible se mezclaba con el aire), y lo que un químico moderno llamaría reducción consistía en incorporar el flogisto flotante como para tenerlo listo para una nueva combustión.

El concepto del flogisto dio lugar a algunas anomalías. Si fuera un componente de los materiales combustibles, al perderse durante la combustión, los residuos tenían que pesar menos de lo que pesaban las sustancias antes de quemarse, y ése era el caso de algunas, como la madera. Pero ciertos metales, cuando se calentaban, se convertían en una sustancia blanda llamada calx; en estos casos, el residuo pesaba más que el metal original. Esta anomalía fue ignorada por muchos defensores de la teoría del flogisto. Otros la racionalizaban sugiriendo que el flogisto tenía un peso negativo, provocando que el residuo pesase más cuando el flogisto se había consumido.

Algunos historiadores afirman que la teoría del flogisto puede considerase como la primera gran teoría de la química moderna. A principios del siglo XVIII, el médico Georg Ernst Stahl (1660-1734) siguiendo las ideas de su maestro J.J.Becher (1635-1682), propuso una explicación conjunta de la calcinación de los metales, la combustión de los cuerpos combustibles y la respiración de los animales, basada en la existencia de un “principio de la combustibilidad” que denominó “flogisto”. De acuerdo con sus ideas, los metales estaban formados por flogisto y la cal correspondiente, de modo que, cuando se calcinaban, el flogisto se desprendía y dejaba libre la cal. Del mismo modo, para obtener el metal a partir de la cal, era necesario añadirle flogisto, el cual podía obtenerse a partir de una sustancia rica en este principio, como el carbón.

La gente que creía fehacientemente en la existencia del flogisto —la esencia del calor— era consciente de que una vela colocada en un recipiente sellado se apagaba pronto. Ellos lo interpretaban como una prueba de que el aire del recipiente se había saturado con el flogisto de la vela era incapaz de recibir más y la combustión ya no era posible. Aplicando este razonamiento, en químico inglés Priestley concluyó que su gas era aire que contenía poco flogisto o ninguno, y por consiguiente se sentía «hambriento» del flogisto de la vela. Por tanto, llamó a su nuevo gas «aire deflogistizado».

Mirando retrospectivamente, cuando la mayoría de las personas educadas hoy día comprende el papel del oxígeno en la combustión y todos los estudiantes de química saben que la combustión es un proceso de cambio químico, cuyo resultado no produce pérdidas o ganancias significativas de masa, es fácil sentirse superior a aquellos tempranos buscadores de la verdad. Pero eran personas capaces, y sus razonamientos tenían sentido bajo la luz del limitado conocimiento que poseían.

Fuente Consultada: Historia de las Ciencias Desiderio Papp

Problemas Tecnicos en los Primeros Ferrocarriles Argentinos Historia

La idea de aplicar la máquina de vapor al transporte se llevó por primera vez a la práctica ya en 1769 bajo la forma de un complicado artefacto, destinado a correr sobre railes, construido por un francés, Nicolás Cugnot.

Posteriormente, el inglés Richard Trevithick fabricó locomotoras (1801-1808), si bien estas últimas habían sido pensadas sólo para el servicio de las minas de hulla y tenían una aplicación limitada.

Sin embargo, a pesar de la victoria de Stephenson, hubo que resolver muchos problemas de ingeniería antes de que los caminos de hierro pudieran desempeñar un papel importante en el comercio. Primeramente, por ejemplo, las ruedas con pestañas que se usaban para mantener los vagones, en la vía se subían sobre los railes en las curvas, y tuvo que transcurrir algún tiempo antes de descubrirse que las ruedas debían quedar holgadas sobre los carriles. y que podían acoplarse a dispositivos giratorios debajo de los coches.

También los frenos dejaban mucho que desear presionaban contra las ruedas, y no fueron seguros y de fácil manejo hasta que George Westinghouse perfeccionó el freno de aire comprimido (1886). Además los enganches tenían tanto juego que al arrancar el tren los vagones recibían tan fuertes .sacudidas, sobre todo los últimos, que los viajeros eran violentamente proyectados hacia atrás.

El tendido de puentes y la perforaci6n de túneles planteó a su vez dificultades a los primeros constructores de líneas férreas. Los puentes de piedra no resistían bien la vibración; los de ‘madera estaban expuestos a la acción de la intemperie y del fuego; además, abrir agujeros en el suelo con barrenas de mano era, por no darle un calificativo más duro, un trabajo agotador.

Sin embargo, con el tiempo los puentes fueron construyéndose de hierro y acero (el de Brooklyn, colgante, de acero y de 486 m de longitud, quedó terminado en 1883); la excavación de túneles se simplificó con el invento de la barrena de aire comprimido… Por si estas dificultades técnicas no hubieran bastado, produjese cierta hostilidad del público hacia los ferrocarriles en sus primeros años de existencia. No sólo los campesinos residentes a lo largo de las líneas férreas se quejaban de que las máquinas calentadas con leña, espantaban con su chisporreteo a caballos y vacas, sino que se aducían toda suerte de argumentos contra la nueva forma de transporte.

Algunos militares llegaron a creer que el traslado de la tropa por ferrocarril Volvería a los hombres tan muelles que no servirían ya para la lucha. Varios médicos de renombre temieron que los pasajeros contrajesen enfermedades pulmonares por efecto del aire húmedo de los túneles y algunos moralistas advirtieron que los tramos oscuros ofrecían a los hombres groseros una ocasión irresistible de besar a las señoras, e incluso llegaron a aconsejar a las presuntas víctimas de tales abusos que se pusieran alfileres entre los dientes cuando el tren penetrase en un túnel.

 Fuente Consultada:

Shepard B. Clough, en “La Evolución Económica de la civilización occidental”

Historia del ferrocarril Maquina de vapor Stephenson Argentino Ferrocarril

La idea de aplicar la máquina de vapor al transporte se llevó por primera vez a la práctica ya en 1769 bajo la forma de un complicado artefacto, destinado a correr sobre railes, construido por un francés, Nicolás Curgot. Posteriormente, el inglés Richard Trevithick fabricó locomotoras (1801-1808), si bien estas últimas habían sido pensadas sólo para el servicio de las minas de hulla y tenían una aplicación limitada. El nacimiento del ferrocarril, el primer vehículo terrestre movido por una fuerza no procedente de un animal, se encuentra estrechamente ligado a la invención de la máquina de vapor, ideada en el siglo XVII por James Watt

El empleo de carriles para guiar vehículos remolcados o arrastrados y reducir el rozamiento de las ruedas, se remonta a épocas muy antiguas. Ya los egipcios utilizaban carriles de piedra, e incluso metálicos, con este fin (se han encontrado restos de carriles de bronce en las inmediaciones de las pirámides de Gizeh y en el istmo de Suez). Sin embargo, el verdadero nacimiento de los ferrocarriles, tal y como se conocen en la actualidad, tuvo lugar con la invención de la locomotora.

Al comienzo del siglo XIX, Gran Bretaña estaba todavía en plena revolución industrial. Los caminos embarrados resultaban totalmente inadecuados para atender las necesidades de transporte de mercancías y personas y los canales presentaban el inconveniente de las esclusas para salvar las diferencias de nivel.

Los carriles para guiar vehículos existían ya en Gran Bretaña desde hacía 200 años. Ejemplo de ello son los de madera que se usaban para llevar el carbón de las minas con caballerías hasta el medio de transporte acuático más próximo: un canal, el mar o un río. Con el tiempo, los carriles de madera se sustituyeron por raíles de hierro y se les añadió un reborde que servía de guía a las llantas de las ruedas.

Los precedentes del tren

Historia del ferrocarril Maquina de vapor Stephenson Argentino Ferrocarril

Ya durante el Renacimiento, Leonardo da Vinci ideó, sin llegar nunca a realizar su proyecto, la primera máquina capaz de moverse sin recurrir a la fuerza de un animal.

 Posteriormente, a mediados del siglo XVIII , el inventor francés Jacques de Vaucanson, que había dedicado sus esfuerzos al diseño de autómatas, concibió una suerte de vehículo impulsado por un sistema similar a de los mecanismos de relojería.

Poco después, un sacerdote de nacionalidad Suiza J. H. Génevois, planeó un aparato similar, accionado por un procedimiento un tanto extravagante: dos molinos de viento de pequeño tamaño que se disponía sobre su parte superior.

El ferrocarril

Dejando al margen experimentos más o menos fantásticos que se remontan en el tiempo, la invención del ferrocarril tuvo lugar a comienzos del siglo XIX. Esta nueva forma de transporte, que habría de alcanzar pronto una enorme difusión precisaba, además de la fuerza impulsora de la máquina de vapor, de otro elemento: un tipo específico de superficie por la que deslizarse, pues las carreteras de la época eran incapaces de soportar un vehículo de tanto peso.

Los carriles de madera se conocían en Europa desde finales de la Edad Media; en este momento serían sustituidos por los de hierro, aplicados ya en el campo de la minería, donde estaban provistos de una sección de forma especial que aumentaba la adherencia de las ruedas de las vagonetas. De hecho, podría considerarse que éstas fueron los primeros trenes en miniatura.

A partir de la observación del trabajo en las minas, el ingeniero británico Richard Trevithick ideó la primera locomotora de vapor que se desplazaba por raíles, en 1804. Cuatro años después realizó la presentación del nuevo vehículo, formado por una locomotora que arrastraba una vagoneta a lo largo de un breve recorrido. Aunque el sistema acabó descarrilando, la experiencia alentó nuevos intentos, que culminaron en la puesta en marcha de las primeras locomotoras destinadas no ya a la simple demostración, sino a la comunicación entre núcleos a distancia.

La construcción de una locomotora aplicada al transporte de carbón constituyó un importante paso adelante. Fue obra del ingeniero británico George Stephenson (1814), que por su trabajo en la mina estaba familiarizado con el funcionamiento del motor de vapor. Su potencia era de 40 caballos. (Ver: George Stephenson)

Sin embargo, a pesar de la victoria de Stephenson, hubo que resolver muchos problemas de ingeniería antes de que los caminos de hierro pudieran desempeñar un papel importante en el comercio. Primeramente, por ejemplo, las ruedas con pestañas que se usaban para mantener los vagones, en la vía se subían sobre los railes en las curvas, y tuvo que transcurrir algún tiempo antes de descubrirse que las ruedas debían quedar holgadas sobre los carriles. y que podían acoplarse a dispositivos giratorios debajo de los coches.

También los frenos dejaban mucho que desear presionaban contra las ruedas, y no fueron seguros y de fácil manejo hasta que George Westinghouse perfeccionó el freno de aire comprimido (1886). Además los enganches tenían tanto juego que al arrancar el tren los vagones recibían tan fuertes .sacudidas, sobre todo los últimos, que los viajeros eran violentamente proyectados hacia atrás

La difusión de un revolucionario medio de transporte

Finalmente, en 1825 fue abierto al público el primer ferrocarril a vapor: un conjunto de vagones arrastrados por una locomotora que utilizaba esta energía, que cubrió la distancia entre las poblaciones inglesas de Stockton y Darlington Cinco años más tarde quedó inaugurado el tramo Liverpool-Manchester, que aseguró el tráfico regular de mercancías y pasajeros entre ambas localidades; la locomotora, la célebre Rocket, había sido construida por el mencionado Stephenson. Con las mejoras apropiadas, el prototipo sería utilizado en las máquinas futuras.

A mediados del siglo XIX se construyeron muchos kilómetros de vía férrea, en torno a 1850 el ferrocarril de vapor había llegado ya a todos los continentes.

tren

Uno de los principales problemas de las locomotoras, su excesivo peso para la fragilidad de los carriles de hierro colado, se solventó cuando se empleó hierro forjado en la fabricación de éstos. Más adelante se hicieron de acero, lo que con tribuyó a aumentar su solidez y duración. En cuanto a la velocidad, de los 28 Km. del tren Manchester-Liverpool se pasó, en la década de los cincuenta, a alcanzar casi los 100 Km./h.

Así pues, la etapa central del siglo XIX supuso el triunfo absoluto de la locomotora de vapor, que abarató notablemente el transporte, facilitó las comunicaciones y contribuyó a modificar los hábitos de las personas, al convertir el viaje en algo asequible. Paulatinamente el acento dejó de ponerse únicamente en el aspecto técnico, y los convoyes ferroviarios destinados al transporte de pasajeros ganaron en comodidad, algo absolutamente necesario para los trayectos de larga duración.

En este sentido, la construcción del Pioneer, un vagón de gran amplitud y con altos niveles de confort, ideado en 1863 por George-Pullman, marcó un avance decisivo. Llegaron después los vagones-restaurante y los coches-cama; puede afirmarse que a finales del siglo XIX viajar en tren resultaba cómodo en líneas generales.

Nuevas formas de energía aplicadas al ferrocarril

A pesar de todos los avances logrados, el exceso de peso y volumen de la locomotora de vapor y lo costoso de las instalaciones para el abastecimiento de combustible y agua, unido al bajo rendimiento y al alto grado de contaminación de estas máquinas, favorecieron la aparición de nuevas tecnologías. En torno a 1940 la fabricación de locomotoras de vapor quedó interrumpida tanto en América como en Europa.

Los primeros trenes que utilizaron energía eléctrica datan de finales del siglo pasado; la primera línea férrea de estas características entró en funcionamiento en 1881, cerca de Berlín. No obstante, el primer ferrocarril con servicio regular fue el que unió, en 1895, Baltimore y Ohio, en los Estados Unidos.

GRANDES LOCOMOTORAS AMERICANAS DE FINES DEL SIGLO XIX

locomotoras americanas del siglo xix y xx

Diferencias en aspecto y en construcción entre las locomotoras europeas y las americanas
Las locomotoras construidas en la Gran Bretaña para los ferrocarriles británicos tienen frecuentemente los cilindros y los engranajes para las válvulas colocados bajo la caldera, entre las ruedas y las bielas acopladas a los pernos forjados en el cuerpo principal de los ejes. Las barras laterales para acoplar las ruedas motoras van colocadas al exterior, como es corriente en América. Se afirma que esta disposición de las piezas hace a la locomotora algo más estable en su acción que cuando los pernos están al exterior.

Por otra parte, el cuerpo de bomba es más inaccesible, y a causa de ser más cortas las bielas, la fricción es algo mayor. Ambos sistemas de disposición tienen sus defensores. Últimamente, sin embargo, parece ser que se extiende en la Gran Bretaña y en el continente europeo la tendencia a adoptar la práctica de colocar el cuerpo de bomba en el exterior. Cualesquiera que puedan ser las ventajas de la construcción interior, éstas son claramente contrarrestadas por la facilidad con que pueden hacerse los reparos y ajustes cuando el cuerpo de bomba está acoplado al exterior de la locomotora.

Esta diferencia en la disposición de las piezas da por resultado alguna diferencia de estilo entre las locomotoras de construcción americana y las de construcción británica, apareciendo las últimas más sencillas, aunque ciertamente, a los ojos americanos, de aspecto no tan agradable como las locomotoras destinadas al tráfico de pasajeros de los tipos «Pacific» y «Mountain», ni tan impresionantes como las enormes locomotoras «Mallet Compound».

Grandes cambios en los métodos de construcciones de las locomotoras, a contar desde la primera época: El gran desarrollo en tamaño y en potencia de la locomotora es paralelo, naturalmente, al que ha experimentado todo lo concerniente al ferrocarril. Las presiones han aumentado hasta que las 200 libras por pulgada cuadrada sea una cosa común y corriente; el peso de los carriles, hasta 64 kilogramos por metro, y el peso y dimensiones de los vagones y furgones han aumentado igualmente, así como su perfección. Naturalmente, habían de esperarse grandes cambios análogos en los métodos de construcción de las locomotoras, y en no muy pocos años, la mayor parte de los talleres destinados a la producción de maquinaria general, sin equipo especial determinado, en los cuales fueron construidas las primeras locomotoras, han desaparecido por completo.

Pero las fábricas Baídwin continuaron desarrollándose, y en un tiempo tuvieron competidores, tales como Brooks, Rogers, Dickson, Schenectady y otras fábricas bien conocidas en su época. Actualmente (~1930) no existen sino dos grandes Compañías constructoras de locomotoras americanas, que prácticamente absorben esta industria en el país. Estas Compañías son: Baldwin Locomotive Works, en Filadelfia, y la American Eocomotive Compani, cuyo establecimiento principal se halla en Schenectady. Hasta 1921, la Compañía Baldwin, por sí sola, ha construido 55.000 locomotoras, y su capacidad productora actual es de 3.500 por año. La Compañía Locomotora American puede producir aproximadamente el mismo número.

CRONOLOGÍA DEL FERROCARRIL

1769 — James Watt inventa la máquina de vapor.

1804 — Richard Trevithick adapta la máquina de vapor a una locomotora y la prueba el 21 de febrero en Gales. Es capaz de arrastrar cinco vagones con diez mil kilos de hierro y setenta personas a 8 km/h. La vía se rompió bajo el peso y se abandonó el invento.

1811 — John Blenkinsop diseña la primera locomotora que funciona con éxito entre Middleton y Leeds, donde había la vía férrea más antigua del mundo, fundada en 1758 para arrastrar vagones con caballos. Es la primera de dos cilindros de la historia y tenía dos ruedas dentadas que engarzaban con los dientes de la vía, pues tenía miedo de que resbalara.

1825 — El 25 de septiembre se inaugura la primera línea férrea entre una mina de carbón cerca de Darlington y el muelle de Stockton.

1826 — Se inaugura la Granite Railway, primera línea férrea en Estados Unidos, para transportar granito desde Quince, Massachussets a un muelle del río Neponset en Milton.

1829 — Se inaugura el 15 de septiembre la línea entre Liverpool y Manchester, de 49,5 km, la primera en transportar pasajeros y el primer ferrocarril moderno.

1830 — Primera línea férrea comercial en Estados Unidos entre Baltimore y Ohio. Posee el primer puente diseñado para ferrocarril del mundo.

1837 — El 19 de noviembre se inaugura el primer ferrocarril en territorio español en Cuba, entre La Habana y Bejucal.

1844 — Se elige el ancho de vía ibérico, que será más ancho que el europeo, mucho antes de tener el primer tren. Tendrá seis pies castellanos, que son 1,67 metros. El ancho europeo es de 1,435 m.

1848 — El 28 de octubre se inaugura el primer ferrocarril de la península, entre Barcelona y Mataré.

185O — Se inaugura el primer ferrocarril de América Latina, en México, entre Veracruz y San Juan.

1855 — Se estrena un tramo de la primera línea férrea de América del Sur, entre Chile y Valparaíso, que no completará sus 187 Km. hasta 1863.

1863 — El 1 de enero se inaugura en Londres el primer ferrocarril subterráneo.

1879 — Werner von Siemens construye en Alemania la primera locomotora eléctrica.

1960 — Primer tren bala o Shinkansen en Japón, que desde 1964 une las ciudades de Tokio y Osaka.

1981 — Se inaugura el primer tren de alta velocidad en Francia, el TGV, entre Paris y Lyon.

1984 — Primer tren de levitación magnética o Maglev en Birmingham, Inglaterra. En 2007 funcionarán sólo dos, uno en Munich y otro en Shangai.

1994 — Se inaugura el Eurostar que enlaza París y Londres bajo el Canal de la Mancha con un tren de alta velocidad.

EL VAPOR COMO FUERZA MOTRIZ: El elemento de vital importancia y que permitió el desarrollo de este medio fue la fuerza motriz: el vapor. Este había adquirido ya considerable auge como auxiliar de la industria minera, en la que se usaban máquinas de vapor a baja presión para bombear el agua de los trabajos subterráneos. El ingeniero de minas Richard Trevithick fue el primero que concibió la idea de hacer un motor de alta presión y montarlo sobre ruedas.

LOCOMOTORA DE STEPHENSON

Primera Locomotora de Stephenson

Las dos primeras locomotoras de vapor de Trevithick eran en realidad vehículos de carretera. La idea de una máquina de vapor sobre carriles surgió de una apuesta. Un herrero del sur de Gales, Samuel Homphray,impresionado por las posibilidades de este invento, apostó con un amigo que se podía construir una máquina sobre carriles capaz de transportar una carga de diez toneladas a Merthyr Tydfil por el nuevo carril de tranvía de Penydarren. La hazaña se logró el martes 21 de febrero de 1804 con una locomotora especialmente construida por Trevithick.

En los años que siguieron se hicieron experimentos en varias líneas de ferrocarriles mineros. George Stephenson, el más importante de los primeros constructores de ferrocarriles era, como Trevithick, ingeniero de minas. Su principal aportación consistió en sintetizar la mejor información de que se disponía para así desarrollar, no sólo una locomotora útil y fiable, sino también el concepto del ferrocarril impulsado por vapor.

El año 1825 fue el de su primer gran triunfo: la inauguración del ferrocarril de Stockton a Darlington, el primero con tracción a vapor. El tren inaugural iba arrastrado por la Locomotion de Stephenson, y precedido por un hombre a caballo que portaba una bandera roja.

Fuente Consultada:
Gran Enciclopedia Universal
PIONEROS, Inventos y descubrimientos claves de la Historia – Teo Gómez
Revista Enciclopedia El Árbol de la Sabiduría Fasc. N°11 Historia del Ferrocarril

Historia de los Primeros Faros Marinos Tipos Materiales Construciòn

El encanto de la vida del mar no perdería sus atractivos si no existieran, entre otros peligros, el de embarrancar en las rocas de la costa, los bancos de arena y los profundos remolinos. Desde que los primitivos navegantes lanzaron sus naves a través del mar, atentos vigilantes, desde tierra, trataron de auxiliarles facilitándoles medios de llegar al puerto. En aquellos remotos tiempos, indudablemente, se valían para ello de hogueras, que encendían en los puntos elevados de la costa; y ya, en una antigua poesía, se hace mención de un faro—el de Segeum, en Troad—, que fue quizá el primero que, mantenido con regularidad, sirvió de guía a los marineros.

La más famosa de estas construcciones destinadas a señales se construyó en el año 275 antes de Jesucristo, en la pequeña isla de Pharos, en la entrada del puerto de Alejandría. Se dice tenía 182 metros de altura, y su nombre quedó para denominar otras semejantes. Fue destruida en el siglo XIII por un terremoto. Los romanos construyeron muchas torres de esta clase, una de las cuales, de sección cuadrada, con cerca de 39,50 metros de altura, construcción de piedra que data probablemente del siglo IV, se conserva todavía en La Coruña. El Estado español la restauró, preservándola con una protección exterior de granito y poniéndola en condiciones de servicio después de cientos de años de estar apagada. Es el faro más antiguo que existe.

Todos estos antiguos faros, y muchos de los modernos, se han establecido en tierra; generalmente en una elevación, fuera del alcance de las olas. El más antiguo de los faros cimentados en el mar es la hermosa torre de Cordouan, asentada sobre el fondo de roca en la desembocadura del río Oironda, a 100 kilómetros de Burdeos, en Francia. Comenzó su construcción en el año de 1584 y se terminó en 1611.

La primitiva cúpula fue reemplazada por una alta torre de 63 metros de altura, con un fanal a 59,75 metros sobre la marea alta. Hasta el siglo XVIII la luz se producía por una hoguera, alimentada con troncos de roble, y, después, hasta ser modernizada, con fuego de carbón. Durante los siglos XVII y XVIII se construyeron en Europa muchos faros que, como el descrito, quemaban leña o carbón en cestillos de hierro.

El primer faro que se construyó en Norteamérica fue el de la isla de Little Brewster en 1716, a la entrada del puerto de Boston. En él se instaló un gran cañón para hacer señales en tiempo de nieblas espesas. La primitiva torre fue destruida durante la revolución, siendo reconstruida en 1783. Durante el período colonial, diez torres más se elevaron en la costa del Atlántico, pero todas ellas han sido destruidas o derribadas, excepto cinco, que son: Sandy Hook, cabo Henlopen, del promontorio Portland, Tybee y cabo Henry. Las primitivas torres de Sandy Hook y cabo Henlopen se utilizan todavía; de las demás, unas están abandonadas y otras medio derruidas. El faro de Sandy Hook es el más antiguo de América.

DIVERSOS TIPOS DE FAROS

TIPOS DE FAROS

Los faros, como hemos dicho, pueden establecerse en tierra firme, o sobre rocas o bancos de arena, y expuestos directamente a los embates del mar. Los primeros varían muchísimo en cuanto a su altura y disposición general. Si el edificio está situado en un punto elevado de la costa, la torre no precisa tener gran altura, como se puede ver en el grabado del faro de Punta Reyes, de California, o en el cabo Mendocino, del mismo Estado. La torre de este último sólo tiene seis metros de altura, pero está sobre un cantil que se eleva 128,60 m. sobre el mar y es el faro situado a mayor altura en los Estados Unidos. (hasta 1930)

En la costa del Atlántico, sin embargo, como en su mayor parte es baja, se hace preciso que los faros, construidos en tierra, sean por sí mismos de gran elevación, si han de ser eficaces. Ejemplo de éstos es el de cabo Hatteras; tiene 61 metros de altura y es, por tanto, el más alto, de Norteamérica. Otros de estructura notable son los de cabo Henry y cabo Charles, en Virginia, y la bellísima torre de Punta Pigeon, en California. El pequeño faro de Manan, sobre la costa de Maine, es también una hermosa edificación de granito de 35 metros de altura.

El faro de Tillamook, en la costa de Oregón, está colocado sobre una gran roca, expuesta a las furias del mar y separado una milla de tierra firme; dicha roca, alta y acantilada, hace muy difícil y peligroso el desembarque. La torre se eleva 41,45 metros sobre marea alta, y, a pesar de ello, en 1887, las olas, rompiendo contra la estructura, causaron averías de consideración, y en 1912, el aprovisionamiento del faro estuvo suspendido durante siete semanas, porque los encargados por el Gobierno para realizar la operación no pudieron aproximarse a la roca, a causa de un violento temporal.

También el faro del arrecife de St. George, separado de tierra unas seis millas en la costa norte de California, se encuentra en las mismas condiciones. Se terminó en 1892, y su coste fue de unos 700.000 dólares, resultando la obra, de esta clase, más cara de los Estados Unidos. Muchas de las construcciones en la costa no son más que sencillas estructuras bien estudiadas para instalar el fanal y los aparatos acústicos necesarios en caso de niebla, además de las indispensables viviendas para los torreros y sus familias.

Los faros enclavados directamente en el mar son siempre más interesantes que los de tierra firme, no tanto por las particularidades de su estructura, sino, tal vez, por la simpatía que inspiran sus servidores, expuestos, constantemente, a toda clase de peligros. Son muy numerosos los faros de este género, pero el de las rocasEddystone, a 22 kilómetros de Plymouth, Inglaterra, es, entre ellos, el más famoso. Este peligroso arrecife, expuesto a los violentos temporales de sudoeste, queda completamente sumergido durante las mareas equinocciales. Él faro primitivo que se construyó sobre dichas rocas en 1695-1700 fue arrastrado por el mar, pereciendo sus ocupantes.

El segundo, construido en gran parte de madera, bajo la dirección del ingeniero Juan Smeaton, era una estructura de sillares de piedra, que pesaban, próximamente, una tonelada cada uno, y cuyas hiladas estaban engatilladas entre sí por medio de espigas de madera, y el que, en 1881, ha substituido a éste, descansa sobre una base de 13 metros de diámetro y 6,70 metros de altura, apoyándose directamente sobre el mismo arrecife, en el cual se hace firme mediante fuertes pernos de bronce. Pesa 4.668 toneladas, y su luz se eleva 55,70 metros sobre el nivel de la marea alta.

La obra de cantería de esta singular construcción está ejecutada de manera que existe una trabazón completa de todos los sillares por el corte especial de ellos. Otros faros de este mismo género son el de la roca Bell ySkerryvore, sobre la costa de Escocia, y el de la roca Bishop, en las islas Scilly.

Entre los faros de América, enclavados en el mar, el más conocido es el del arrecife de Minots, frente a Cohasset, en la bahía de Massachusetts. La primera luz que señalaba estos bajos, y que aparecía sólo en la baja marea, estaba instalada sobre pilastras metálicas fijas en excavaciones practicadas en la misma roca; se terminó este faro en 1848, y, nueve años después, una galerna lo llevó mar adentro, ahogándose los torrerosque le ocupaban.

El faro actual, de fina estructura, se terminó en 1860, y su ejecución fue empresa de las más difíciles en su clase. Las hiladas inferiores van asentadas cuidadosamente sobre la roca y fijos a ella los sillares mediante sólidos pernos. Tiene su torre 32,60 metros de altura, y, en ella, se ha dispuesto las habitaciones de lostorreros solamente, habiéndose construido viviendas para sus familias frente al faro y en la costa próxima.

En los Grandes Lagos hay dos excelentes modelos de faros que, como los anteriores, están construidos sobre bajos fondos. El que marca el escollo Spestade, en el extremo norte del lago Hurón, es una torre de piedra, sumergida 3,35 metros en el agua, a diez millas de la orilla, y expuesta a la acción de los grandes témpanos de hielo. Para cimentar esta torre, se construyó un gran cajón o ataguìa alrededor del lugar de emplazamiento, agotándose después el agua por medio de bombas, quedando al descubierto, a 3,35 metros bajo el nivel del lago, la roca sobre la que se cimentó cuidadosamente la torre de mampostería. Terminada en 1874, aquel mismo invierno soportó valientemente las embestidas de los hielos.

El faro de la roca Stannard, terminado en 1882, marca el bajo más peligroso del Lago Superior. Está situado a 24 millas (38,4 kilómetros) de la orilla, siendo el que dista más de tierra en los Estados Unidos. Como el del arrecife Spectacle, este faro descansa sobre un fondo cubierto por 11 pies de agua, y fue construido por el mismo procedimiento que aquél.

faro

El problema que se presenta al proyectar una obra de esta índole varía mucho si la cimentación sumergida descansa sobre arena o grava, o ha de levantarse sobre fondo de roca. La más notable construcción sobre arena es la de Rothersand, a diez millas de la costa de Alemania, en la desembocadura del río Weser. Este banco de arena está cubierto por 20 pies de agua, y el primer intento que se hizo para cimentar, con un cajón sumergido, fracasó por completo.

En 1883, sin embargo, se ideó un cajón de palastro de 14,30 metros de largo, 11,27 metros de ancho y 18,89 metros de profundidad, que fue remolcado hasta el banco de arena y sumergido unos 23,27 metros, a contar desde la baja mar. A 2,45 metros sobre el borde inferior, había un diafragma que, cerrándolo por la parte superior, formaba la cámara de trabajo, provista de un tubo cilíndrico, en el que se dispuso un cierre de aire estanco, y permitía entrar y salir a los obreros.

faros

La arena se desalojaba por presión neumática, y, a medida que el cajón bajaba, se iba prolongando, por la parte superior, con nuevas planchas de hierro. Cuando el cajón llegó a profundidad conveniente, se rellenó de mampostería y hormigón. La torre es una construcción metálica, protegida de bloques, en la que está montado el reflector a 23,75 metros sobre la marea alta. Se ilumina con luz eléctrica, estando alimentado este faro por cables submarinos que transmiten la corriente desde la costa próxima.

El faro del banco Fourteen-Foot, en la bahía de Delaware, se construyó por este mismo procedimiento en 1887. En éste, sin embargo, el cajón fue de madera, con un borde cortante de siete pies de altura. Sobre esta especie de balsa, se colocó un cilindro de hierro de 10,66 metros de diámetro y 5,50 metros de altura, y todo así dispuesto, se remolcó al lugar donde se sumergió, llenándole de agua.

Cuando estuvo bien asentado sobre el fondo, se agotó la cámara inferior, excavándose después la arena, que era transportada al exterior por una tubería. Conforme se profundizaba la excavación, los bordes cortantes de la cámara se hundían en la arena, y esta acción era favorecida por la carga del cilindro de hierro, cuyo interior iba rellenándose de hormigón.

El faro del bajío Diamond, frente al cabo Hatteras, trató de fundarse siguiendo este mismo sistema, pero no pudo conseguirse debido a la fuerza de las olas y violentas corrientes del Océano.

Estos problemas de cimentación sobre fondos de poca consistencia pueden resolverse, en muchos casos, por el empleo de pilotes a rosca o barreno, que consisten en fuertes columnas de hierro provistas, en su extremo inferior, de una especie de rosca de paso muy largo, que permite, literalmente, atornillarse en el fondo arenoso del mar, armándose después, sobre estas columnas, la estructura superior. La primera construcción de esta clase fue la de Brandywine Shoai, en la bahía de Delaware, en 1,80 metros de agua.

En lugar de construir los faros, como hasta ahora se ha venido haciendo, con piedra, ladrillo y cemento armado, parece que existe la tendencia de substituir estos materiales por el hierro; las nuevas construcciones en que interviene casi exclusivamente este último ofrecen mucha más seguridad y son más ligeras. El faro de Punta Arena, en California, fue el primero que se construyó en los Estados Unidos con cemento armado, habiéndose empleado este mismo sistema en todos los faros a lo largo del canal de Panamá. También se ha utilizado el cemento armado en el faro de la isla de Navassa, entre Haití y Jamaica; fue construido a expensas del Gobierno norteamericano, sobre aquella isla rocosa, porque situada, precisamente, en la ruta natural desde Colón a la entrada del canal de Panamá, constituye un peligro constante para la navegación. La elegante torre se ha construido con el mayor cuidado, teniendo en cuenta los violentos huracanes frecuentes en aquellos lugares, y tiene una altura de 45,70 metros. Su luz es de 47.000 bujías, con un radio de 50 kilómetros.

Fuente Consultada:
Historia de las Comunicaciones Transportes Terrestres J.K. Bridges Capítulo “Puentes en la Antigüedad”
Colección Moderna de Conocimientos Tomo II Fuerza Motriz W.M. Jackson , Inc.

Lo Se Todo Tomo III

Vuelo sin escalas alrededor del mundo Burt Rutan y su Voyager

Vuelo sin Escalas Alrededor del Mundo: Burt Rutan y su Voyager

Amelia Earhart Cruzar El Canal de la Mancha Exploración de África Expedición Atlantis

BURT RUTAN

Nacido en Estacada, Oregon (unos 50 Km. al sureste de Portland) y criado en Dinuba, California, Rutan demostró desde edad temprana un interés agudo en aeronaves. Antes de cumplir los ocho años, diseñaba y construía modelos de aviones.

Elbert R. Rutan, más conocido por Burt, comenzó a volar  en 1959, se graduó de ingeniero aeronáutico en 1965, trabajó en la base Edwards de la Fuerza Aérea de California hasta 1974 en que armó su propia empresa y diseñó y construyó numerosos aviones de formas no convencionales usando materiales compuestos.

En 1982 formó Scaled Composites en el desierto de Mojave para diseñar nuevos aviones: uno de los primeros fue el Beechcraft Starship en 1983

En 1984 presentó su Voyager construido para dar la vuelta al mundo sin reabastecerse. Tras dos años de puesta a punto, logró la hazaña en 1986, al mando de su hermano Dick Rutan y Jeana Yeager.

avión Voyager

Datos del Voyager diseño canard bimotor en tandem. Costo: U$S 2.000.000 El motor principal, un Teledyne Continental de 100 HP refrigerado a agua y de uso permanente; el secundario a aire y de uso solo en los momentos necesarios con 139 HP.

Peso del planeador: 420 Kg.. Peso de los 2 motores: 400kgr. Peso total vacio 820 Kg.. Peso del combustible al despegar: 3.200 Kg. en 17 tanques. Peso total al despegue: 4200 Kg.

Datos del viaje: el despegue tomó 5500m. Tardó tres horas en ascender 8000 pies. Recorrido: 40.200 Km. Duración: nueve dias y cuatro minutos. Combustible remanente al aterrizar: 48 Kg.; Vel. media 214 kph.

Rutan hizo también el Space Ship One con el que llevó en junio de 2004, pasajeros civiles al espacio exterior (más de 100 km. de altura) y luego repitió el viaje varias veces, en lo que parece el inicio de una nueva posibilidad de turismo aventura.

El británico Richard Branson patrocinó la vuelta al mundo en solitario, que cumplió Steve Fosset en 2005 con máquina construida por Rutan, y anuncia para 2007 viajes comerciales al espacio exterior a 130 Km. de altura, a un precio de U$S 200.000 con 4 minutos carentes de gravedad.

Primera Mujer en Dar la Vuelta al Mundo en Avion Historia del Vuelo

Primera Mujer en Dar la Vuelta al Mundo en Avión

LA MAÑANA del 2 de julio de 1937, en Lae (isla de Nueva Guinea) Amelia Earhart encendió los motores de su Lockheed Electra. Escuchó durante unos momentos el ronco rugir de los motores, y luego enfiló el avión plateado hacia el extremo de la pista. Cargado con casi 4 mil litros de combustible, el Electra recorrió lentamente el trayecto hasta el rocoso malecón que señalaba el fin de la pista.

A menos de 50 metros del precipicio, Earhart se remontó en el aire. La nave se desplomó por un momento antes de iniciar el ascenso, lento pero continuo, hacia las nubes. Minutos después, desaparecía de vista. La pequeña congregación de observadores vitoreó.

Earhart y su navegante, Fred Noonan, se dirigían a la isla Howland a 4,113 kilómetros de distancia -el trayecto más largo de su viaje alrededor del mundo. Hasta ese día, ningún piloto había volado alrededor del mundo siguiendo su línea más ancha, el ecuador, como lo estaba haciendo Earhart, y ninguna mujer había circunnavegado el planeta.

Al finalizar su viaje de 46,670 kilómetros, podría sumar ese récord a su lista de logros aeronáuticos, que incluían el primer “solo” transatlántico realizado por una mujer. También sería su última proeza, como confió a un reportero al iniciar el viaje, ya que deseaba vivir de manera más reposada al volver a casa. Su sueño jamás se realizó. Quienes presenciaron su despegue aquella brumosa mañana en Lae, fueron los últimos en ver a Earhart y a Noonan. El avión desapareció en algún lugar del Pacífico.

avion de amelia

SE HIZO FAMOSA PORQUE VOLABA y su desaparición la volvió legendaria. A más de 60 años de que
Amelia Earhart remontara el aire en su reluciente Electra por última vez, el público no ha
dejado de devorar los relatos de sus asombrosas aventuras. Certificada como aviadora a
escasas dos décadas del primer vuelo de los hermanos Wright, Earhart utilizó su fama para
promover la aviación y la igualdad para las mujeres pilotos.
(Fuente Consultada: Revista National Geographic Enero 1998)

El primer intento  de vuelo transcontinental En 1928, una mujer, por primera vez en la historia, fue pasajera de uno de los primeros vuelos que atravesaron el océano Atlántico, catorce años más tarde logró recorrer sola la gran extensión de agua intercontinental. Resultó ser el símbolo de la nueva mujer independiente de principios del siglo XX. Desapareció en 1937 en la región sudeste del océano Pacífico intentando culminar su viaje transcontinental.

ameliaLa pasión de Amelia: Amelia Earhart nació en 1898 en Atchison (Kansas, Estados Unidos) y estudió en la Universidad de Columbia y en la Escuela de Verano de Harvard. Desarrolló una pasión por los asuntos aéreos desde su juventud, por lo que se desempeñó arduamente en variados oficios —operadora telefónica, administrativa—para poder financiar su deseo de volar.

Amelia Earhart, quien en 1932 se convirtió en la primer mujer en cruzar el Atlántico volando en solitario y sin escalas. Murió cinco años después, con solo 39 años, cuando intentaba ser la primera mujer en dar la vuelta al mundo en avión, esta vez con un copiloto.

Fue reconocida por numerosos méritos entre los que se destacan los primeros vuelos de Hawai a California, y de este estado, a México. También estableció un nuevo récord de velocidad del vuelo transcontinental desde América.

Fue asesora de mujeres estudiantes en la Universidad de Purdue que procuraban organizarse para reclamar por sus derechos civiles. En 1937 puso en práctica el proyecto más asombroso de su carrera: pretendía circunvolar la Tierra en un Lockheed L10 Electra para poder testear los efectos orgánicos y mecánicos de un vuelo de larga duración con el empleo del avión como un laboratorio móvil. Acompañada de un navegante, Earhart partió y cumplió la mayor parte del trayecto pero el avión nunca llegó a destino.

Las últimas noticias acerca del vuelo fueron proporcionadas por la administración australiana en Papua-Nueva Guinea. Se enviaron numerosos equipos de rescate pero ninguno pudo encontrar alguna pista cierta acerca de los tripulantes y el avión.

Distancia: 35.000 km. Países: Estados Unidos, Puerto Rico, Venezuela, Surinam, Brasil, Senegal, Mali, Chad, Sudán, Etiopía, Pakistán, India, Birmania, Tailandia, Singapur, Indonesia, Australia y Nueva Guinea.

La circunvalación aérea Amelia tomó la decisión de no esperar hasta el año siguiente para respetar el plan previsto. Debido a las condiciones climáticas hostiles era un riesgo volar sobre la región caribeña y el continente africano. Por lo tanto, dispuso hacerlo hacia el Este (en sentido contrario a lo pautado) para regresar a su país avanzando por el Oriente.

Después de la entrega del Electra reconstruido, el 21 de mayo de 1937, Amelia partió desde Los Ángeles (California, Estados Unidos) hacia el estado de Florida. Unos días atrás había expuesto que ese sería su último viaje de larga distancia, necesario para cumplir un profundo deseo latente.

El 1°. de junio Amelia, y su navegante Fred Noonan (1893-1937) despegaron del aeropuerto de Miami (Florida) con destino a California después de viajar alrededor del mundo. El recorrido sobrevolaba San Juan (Puerto Rico), el extremo nordeste brasileño, alcanzaba África y continuaba hacia el Mar Rojo. Desde ese lugar se proyectaba otro comienzo pues nadie antes había volado sin detenerse desde la península arábiga hasta la India.

La ciudad de Karachi localizada al sur de Pakistán fue abandonada por el Electra el 17 de junio, con destino a los centros urbanos de Calcuta, Rangún, Bangkok, Singapur y Bandoeng (Indonesia). La partida desde Bandoeng se retrasó por unos cuantos días debido a las condiciones climáticas adversas que ofrecía el monzón (viento periódico del océano índico).

Durante ese lapso se revisaron y ajustaron algunos instrumentos de medición específicos para vuelos de larga distancia y luego, Amelia se enfermó de disentería (enfermedad infecciosa que se caracteriza por la inflamación y ulceración del intestino grueso), por ello tuvo que permanecer cuidada por un médico.

El 27 de junio, ambos tripulantes del Electra dejaron atrás el territorio indonesio y se adentraron en el cielo australiano. Los instrumentos de medición fueron nuevamente testeados en la escala Darwin (extremo norte de la isla continente). Asimismo. Earhart empacó los paracaídas puesto que no tendrían ninguna utilidad en la etapa sucesiva.

Dos días más tarde, ya habían recorrido 35 mil kilómetro;-solo quedaban 11 mil para cumplir el viaje alrededor del mundo Aterrizaron en Lae (Nueva Guinea) y Amelia envió desde allí su último artículo al periódico estadounidense Herald Tribune (Tribuna del heraldo) acompañado de una serie de fotografías que retrataban su cansancio y su deterioro físico.

El bote de la Guardia Costera de los Estados Unidos, Itasca, desde hacía unos días estaba anclado frente a la costa de Howland con objeto de servir de contacto radial para el vuelo. Sin embargo, la interferencia que provocó el propio Electra en el precario sistema de radio existente en la región, impidió cualquier comunicación posible. Últimos contactos

A la hora 0 —del horario de Greenwich— del día 2 de julio, Amelia partió desde Lae con combustible suficiente como para cumplir veinte horas de vuelo sin escalas. Siete horas después, el Electra reportó su curso a 30 kilómetros al suroeste de las islas Nukumanu.

Si bien se supo que antes de partir Amelia había recibido el pronóstico para la región, aún se desconoce si supo acerca del aumento de la velocidad del viento (16 kilómetros por hora) que posteriormente tuvo lugar. Alas ocho realizó el último contacto radial con Lae informando que se encontraba a 3600 metros de altura rumbo a la isla de Howland. No existe evidencia alguna acerca del trayecto preciso del avión después de Nukumanu. El Itasca recibió algunas transmisiones cortas con señal de variada intensidad pero los guardacostas no pudieron establecer su localización debido a la precariedad de la indicación por radio.

Casi doce horas más tarde se registró el siguiente mensaje que provenía del Electra: “KHAQQ llamando a Itasca. Debemos estar sobre ustedes pero no podemos verlos! el combustible está bajando”. Alas 20.14, el equipo de guardacostas recibió la última transmisión de voz de Amelia informando su posición; continuó conectado infructuosamente hasta las 21.30, momento en que determinó que el avión debía haber efectuado un aterrizaje forzoso en el océano Pacífico y se disponía a organizar el rescate de los tripulantes.

El presidente de los Estados Unidos, Franklin Roosevelt, dictaminó que nueve buques navales y sesenta y seis aviones fueran a explorar la región, tarea que se cumplió durante quince días. El esposo de Amelia continuó buscándola pero en octubre desistió de encontrarla con vida. Realizó una compilación de las cartas que Amelia le había enviado desde las escalas que había efectuado durante su histórico vuelo transcontinental, y publicó una obra llamada “Ultimo vuelo”, donde puede leerse “Por favor, entiende que estoy advertida acerca de los riesgos… quiero hacerlo porque quiero hacerlo. Las mujeres debemos tratar de hacer cosas como los hombres lo han hecho. Cuando ellos fracasan, su desilusión debe ser solo un desafío para los demás“.

Explicaciones acerca de la desaparición Entre las hipótesis que se ofrecieron para intentar explicar lo que había sucedido, durante aquella época también se creyó que los japoneses atacaron al Lockheed Electra porque habían pensado que se trataba de una misión de espionaje enviada por el gobierno de los Estados Unidos.

Las especulaciones al respecto imaginaron a Earhart tomada prisionera y que había sido mantenida con vida hasta después de finalizada la Segunda Guerra Mundial (1945). Tiempo después se estableció que el avión se había ido a pique a 50 ó 100 kilómetros de la costa de la isla de Howland. La tripulación aérea contaba con un bote salvavidas pero nunca fue encontrado. Algunos investigadores consideraron que el combustible que contenían pudo haber permitido mantener a flote la aeronave.

OTRAS PIONERAS DE LA AVIACIÓN: Las mujeres se sumaron muy pronto al entusiasmo que despertaba la aviación en los primeros años del siglo XX. La primera en volar en avión (sin pilotear) fue la estadounidense Edith Ogilby Berg. Vestida de calle, en septiembre de 1908 viajó como acompañante del pionero Wilbur Wright durante una exhibición en la ciudad francesa de Le Mans.

De delicada figura y hermosos ojos negros, la baronesa francesa Raymonde de Laroche (1886-1919), obtuvo el brevet N° 36 de la Federación Aeronáutica Internacional tras rendir su examen de piloto en marzo de 1910. Fue la primera mujer en el mundo a quien se le concedió. Sin embargo, desde octubre del año anterior ya volaba sola. Murió en 1919, al estrellarse su avión contra una colina.

En 1912 tuvo lugar en Londres un Congreso de Aviadoras. Asistieron numerosas damas pilotos que intercambiaron sus experiencias bajo la presidencia de la primera aviadora británica, Hilda Beatrice Hewlett (164-1943).  La estadounidense Harriet Quimby (1875-1912) fue la primera que obtuvo su brevet en EE.UU., durante 1911.

Un año después, el 16 de abril, se hizo Argentina, el mérito de haberse transformado en la primera mujer aviadora correspondió a Amalia Celia Figueredo de Pietra (1895-1985). El 1° de octubre de 1914 rindió examen y obtuvo el brevet Internacional de Piloto.

Fuente Consultada: Grandes Enigmas de la Historia de Alfred L. Daves
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia – Enciclopedia Encarta – Enciclopedia Consultora

Primer Vuelo Sin Escala Para Cruzar el Oceano Atlantico

Primer Vuelo Sin Escala Para Cruzar el Océano Atlántico

HISTORIA DEL PRIMER VUELO TRANSOCEÁNICO SIN ESCALA ACOMPAÑADO

Primer vuelo a través del Atlántico sin detenerse fue efectuado apenas 16 años ;después de que los hermanos Wright hicieron su primer recorrido de 37 m por aire sobre las arenas de Kitty Hawk, Carolina del Norte. (icografía: Brown y Alcock)

 Arthur Whitten BrownDicho vuelo fue realizado por el capitán inglés John Alcock, veterano de la guerra Guerra Mundial, y el teniente Arthur Whitten Brown, piloto que renuncio a  su nacionalidad estadounidense para incorporarse a la Real Fuerza Aérea británica durante ese conflicto bélico.

En 1919 cinco equipos ingleses compitieron por un premio de 10 000 libras esterlinas ofrecido por un periódico a quien hiciera el vuelo. El primer intento fue de este a oeste, pero el avión cayó al frente a la costa irlandesa, así que otros equipos decidieron volar desde Terranova hasta Irlanda aprovechando vientos dominantes: un avión chocó al despegar, y a otro le falló el motor tras 960 Km. de vuelo, por lo que su tripulación tuvo que ser rescatada en el mar. El tercero era un biplano de cabina abierta al que sus tripulantes —Alcock y Brown— le adaptaron dos motores de Rolls-Royce.

No obstante el mal tiempo, Alcock decidió despegar el 14 de junio, acicateado por el hecho de saber que un hidroavión estadounidense acababa de hacer la primera travesía trasatlántica, aunque con escalas: había tenido que interrumpir su viaje y aterrizar en las Azores tras 57 horas y 16 minutos de vuelo continuo.

Alcock y Brown calcularon que podían hacer el viaje en menos tiempo. Durante varias horas esperaron a que amainaran los vientos contrarios, y después despegaron aprovechando una corriente a favor de 64 km/h desde una pista llena de baches en un lugar llamado Monday’s Pool. cerca de Saint John.

Una vez que comenzaron a volar en mar abierto, Brown hizo rápidamente todas las observaciones que pudo del océano y el horizonte, pero pronto un denso banco de niebla ocultó las aguas y gruesos nubarrones taparon el sol. El primer contratiempo surgió una hora después del despegue: se. desprendió una pequeña hélice que había sido colocada sobre un ala para impulsar el generador de un radiotransmisor inalámbrico, por lo cual podían recibir mensajes pero no enviarlos.

El segundo problema ocurrió una hora después, cuando el motor de estribor comenzó a hacer un fuerte ruido debido a un tubo de escape roto que finalmente cayó al mar.

Los dos hombres tenían un teléfono para comunicarse, pero por el estruendo de los motores preferían no usarlo: durante la mayor parte del vuelo se comunicaron con ademanes y notas.

Cuando anocheció, Brown encendió una lámpara eléctrica para estudiar su mapa y revisar los motores desde la cabina. Al amanecer el avión entró en una nube tan densa que no podían ver las puntas de las alas ni la del fuselaje, y peor aún, perdieron el sentido de la horizontalidad y el aparato comenzó a balancearse con violencia (Alcock calculó más tarde que durante unos minutos volaron de cabeza). Después el avión perdió velocidad e inclinó la nariz; por las vueltas que daba la aguja de la brújula, la tripulación dedujo que estaban volando en círculos.

De pronto el avión salió de la nube: allí estaba el mar, al parecer en sentido vertical, así que Alcock tuvo que nivelar rápidamente el aparato. El biplano estaba a sólo 15 m por encima de las olas y volaba rumbo a América; entonces Alcock hizo dar vuelta al aparato y reanudó el viaje hacia el este.

Apenas acababan de recuperarse del susto cuando el avión se encontró bajo una tormenta de nieve y granizo. La nieve se acumuló en el medidor de combustible, fijado fuera de la cabina, por lo que a ratos Alcock tenía que salir de ésta y arrodillarse en el fuselaje para limpiar el medidor.

Para colmo, el hielo cubrió los tacómetros instalados encima de los motores, y taponó los tubos que activaban el anemómetro y los carburadores. Para poder limpiarlos Alcock tuvo que arrastrarse a lo largo de las alas.

Cuando podían, los dos pilotos comían sandwiches y chocolates y bebían café. Alcock procuraba no apartarse de los controles del aparato, y mantenía permanentemente un pie sobre la barra del timón y una mano sobre la palanca de mando. Cuando los tanques traseros se vaciaron, el avión se fue de cabeza, y un buen rato Alcock maniobró la rueda de control para enderezarlo.

Entonces divisaron dos puntos en el horizonte: eran las islas Eashal y Turbot, frente a la costa de Irlanda. Diez minutos después, a las 8:25 am., el biplano cruzó la costa y se dirigió hacia un campo situado cerca de una estación de comunicación inalámbrica en Clifden, en el condado de Galway.

Alcock maniobró para hacer un aterrizaje perfecto, pero el campo resultó ser un pantano: con un chapoteo el avión se inclinó y enterró la nariz en el fango. El combustible de un tubo roto inundó la cabina, pero Alcock ya había apagado la corriente eléctrica y no se incendió.

caida de un avion

El avión se había desviado sólo 16 Km. del curso que Brown había planeado en Terranova. Él y Alcock se estrecharon las manos solemnemente. El personal de la estación llegó corriendo, y una vez que se cercioraron de que no había heridos, les preguntaron: “¿De dónde vienen?” Uno de los pilotos contestó: “De América.” Las sonrisas escépticas que provocó la respuesta se transformaron en felicitaciones cuando comprobaron que en efecto habían cruzado el Atlántico.

Los aviadores estaban entumecidos y agotados, y llevaban 40 horas sin dormir. Habían tardado 15 horas y 57 minutos en recorrer 3.024 km, y permanecieron en el aire durante 16 horas y 28 minutos. Su marca fue la mejor hasta que Charles Lindbergh hizo ,solo, su histórica travesía en 1927. Cinco días después de su aterrizaje Alcock y Brown fueron nombrados caballeros. Alcock murió en 1919, y Brown en 1948.

CÓMO SE ORIENTARON PARA CRUZAR EL OCÉANO: Si el piloto de una aeronave pequeña comete un error de sólo un grado en la lectura de su brújula, puede desviarse de su curso hasta 1.5 Km. después de casi 100 Km de vuelo.

El vuelo de Alcock y Brown cubrió cerca de 3 000 Km. sobre un océano sin relieves, expuestos al error por los vientos en contra. Sin una navegación experta quizá no hubiesen llegado a las islas irlandesas, Haberse apartado sólo 16 Km. de su curso fue una hazaña excepcional.

Para seguir el curso que trazaron entre Terranova e Irlanda, Brown se valió tan sólo del cálculo y de la observación astronómica, comprobando el uno con la otra,

Para asegurarse de que volaban en la dirección correcta usó constantemente la brújula. El anemómetro le indicaba la velocidad aparente, pero él tenía que calcular el efecto del viento, que podía acelerar o retardar el avance. Un indicador de deriva le servía para saber cuánto se apartaban de su curso, y con ayuda de su reloj podía determinar la distancia recorrida y la dirección precisa de vuelo desde el último cálculo. Entonces podía comunicar a Alcock que corrigiera el rumbo y marcaba su posición en el mapa.

Como no había puntos de referencia para confirmar los cálculos, Brown localizaba un “punto fijo” en el cielo con un sextante, que mide el ángulo de una estrella o de cualquier otro cuerpo celeste por encima del horizonte. Tomando lecturas de tres estrellas conocidas y contando el tiempo exacto de cada una, podía consultar las cartas de navegación y trazar tres líneas sobre el mapa. El punto de intersección indicaba la posición del avión.

Fuente Consultada:
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia – Enciclopedia Encarta – Enciclopedia Consultora