Temperatura y Escalas

Orígenes de la Ciencia Moderna y La Filosofía Renacentista

Orígenes de la Ciencia Moderna: Filósofos y Científicos

Si la primera parte del siglo XVII es un período de crisis en todos los campos, crisis que prolongan las conmociones del Renacimiento, en la segunda mitad del siglo se proyectan las tentativas de solución.

A la anarquía, a las luchas políticas y sociales, responde el ideal absolutista, el cual alcanza la perfección histórica con Luis XIV, que inspira tanto a los soberanos españoles como a los Estuardo, al emperador como a los pequeños príncipes alemanes.

Al caos y la confusión, nacidos de las ruinas del viejo sistema aristotélico como consecuencia de los trabajos y las investigaciones de Bacon y Galileo, se opone la tentativa de Descartes, buscando un nuevo método científico para elaborar una doctrina racional de conjunto del universo.

El ser humano siempre quiso saber qué ocurrió al principio de todo y, en consecuencia, no tuvo reparo en intentar ver más allá para encontrar la luz. Fue el italiano Galileo Galilei (1564-1642) quien preparó el camino de la ciencia moderna y supo convertir el catalejo del holandés Hans Lippershey (1570-1619) en un telescopio refractor para la observación de los cuerpos celestes en 1609, justo el mismo año en que el astrónomo alemán Johannes Kepler (1571-1630) presentaba sus primeras dos leyes del movimiento elíptico planetario en el libro Astronomía nova.

El físico y matemático inglés Isaac Newton (1642-1727), inventor del primer telescopio de reflexión en 1668, sentó las bases de la ciencia moderna con sus descubrimientos en óptica clásica (la naturaleza de la luz blanca o luz del Sol por medio de un prisma de cristal) y la mecánica clásica (la formulación de las tres leyes del movimiento y la ley de la gravitación universal). Además desarrolló el cálculo infinitesimal en el campo de la matemática pura.

Ya en la segunda década del siglo XX, el físico alemán Albert Einstein revolucionó el sistema del mundo newtoniano con la teoría general de la relatividad y dos predicciones fundamentales: la curvatura del espacio-tiempo alrededor de un cuerpo y el llamado efecto de arrastre de marco, por el que la Tierra, en su rotación, curva el espacio-tiempo. Poco después, el universo fue visto como un todo en expansión gracias a la teoría del Big Bang o Gran Explosión, que se ha establecido como la teoría cosmológica más aceptada.

En filosofía Descartes se lo considera como fundador de la filosofía moderna, quien tendrá una gran influencia después de su muerte (1650). A la copiosidad barroca del arte durante este período de transición, el clasicismo quiere imponer las reglas universales del buen gusto y de la mesura.

En todos los aspectos, tanto en el orden económico, con el mercantilismo estatal, como en el orden militar, en el que los ejércitos disciplinados por la monarquía absoluta quieren reemplazar a las bandas de mercenarios y a los condottieros, todavía dominantes en el trascurso de la Guerra de los Treinta Años, se pueden discernir los esfuerzos hacia el orden y la estabilización.

El triunfo no será más que aparente: detrás de las armoniosas fachadas clásicas y las magnificencias del arte oficial, aparecen, desde finales del siglo, otras crisis, otras con tradicciones que anuncian el período revolucionario de la «Ilustración».

DESCARTES Y EL FUNDAMENTO DEL RACIONALISMO
Renato (René) Descartes (1596-1650) pertenecía a la pequeña nobleza; después de haber cursado sólidos estudios eligió la carrera de oficial del ejército, sirviendo primeramente en Holanda, bajo las órdenes de Mauricio de Orange, y en Baviera, al comienzo de la Guerra de los Treinta Años.

No cesaba de meditar y trabajar en las matemáticas; en Alemania, en un cuchitril al lado de una estufa, tuvo la célebre «iluminación» que le reveló las ideas directrices de su filosofía. Después de una permanencia en Italia, se estableció en Holanda (1629), donde el pensamiento   podía   desenvolverse   más   libremente. Residió allí veinte años, interrumpidos por breves estancias en Francia, enteramente   consagrados   a   la   ciencia   y   a   la filosofía.

Filósofo René Descartes

 En el año 1637 apareció el «Discurso del Método», escrito en francés y no en latín como era costumbre en la época para este género de obras. Rápidamente célebre, admirado por la princesa Isabel, hija del Elector Palatino, fue invitado a Estocolmo por la reina Cristina, la cual le exigía que se levantara todos los días a las cinco de la mañana para enseñarle filosofía.  ¡Su actividad de reina no le debaja libre otros momentos! El duro clima sueco fue la causa de la pulmonía que llevó a la tumba a Descartes   a  los  cincuenta  y  cuatro  años.

Trató de sistematizar todos los conocimientos de su tiempo, de crear una ciencia universal explicando los fenómenos de la naturaleza por medio del razonamiento matemático. Sabio en todo, hizo investigaciones de óptica, creó la geometría analítica, se interesó por la fisiología.

Su método comenzó por la duda radical, la «tabla rasa» de las ideas recibidas, la repulsa del principio de autoridad, para comenzar a partir de la primera certeza resumida en la célebre fórmula: «Pienso, luego existo». Se ajusta a cuatro reglas esenciales:

1)no aceptar nunca, más que ideas claras y distintas, que la razón tenga por verdaderas;

2)dividir las dificultades en tantas partes como sean necesarias para resolverlas (análisis);

3)partir de lo simple para, llegar a lo complejo (síntesis);

4)examinar todo por completo para estar seguro de no omitir nada.

No es cuestión de examinar aquí al detalle una obra que aborda los problemas universales de las ciencias y de la filosofía. A pesar de que Descartes intentó demostrar que las ideas de perfección y de infinito no pudieron ser puestas en el hombre, imperfecto y limitado, más que por Dios, sus explicaciones rigurosamente deterministas del universo, del hombre y de sus pasiones, podían excluir la divinidad y por ello rápidamente se hizo sospechoso (a pesar del entusiasmo de Bossuet) a los ojos de ciertos teólogos.

Y es verdad que inspiró directamente a los materialistas del siglo siguiente. Pascal lo vio muy claro cuando escribió en sus «Pensamientos»: «No puedo perdonar a Descartes; hubiera querido poder prescindir de Dios en toda su filosofía; pero no pudo evitar hacerle dar un papirotazo, para poner al mundo en movimiento. Después de esto, Dios no sirve para nada».

Los contemporáneos se apasionaron por sus teorías sobre el pensamiento y la extensión, los torbellinos, la materia sutil, los animales-máquinas, etc… Por su tentativa de reconstrucción total de las leyes del universo, basándose en algunos principios, se ligaba al espíritu de ordenación del absolutismo. Por su método, principalmente la duda sistemática, abría el camino al pensamiento libre, aunque se defendía siempre de ser ateo. El cartesianismo iba a tener importantes derivaciones.

SPINOZA Y LEIBNIZ Entre los espíritus cultivados se mantenía numeroso contacos , por medio de los libros, viajes y las correspondencias. La lengua  francesa  se extendía  y  sustituía  al latín como lengua erudita, y las Provincias Unidas  eran  un punto  de  confluencia  de ideas.

Los grandes centros intelectuales se desplazaban:  primero fue Italia,  hasta comienzos del siglo xvn, después Francia, y, al final del siglo, los Países Bajos e Inglaterra, donde Newton y Locke iban a coronar los  progresos científicos  y filosóficos.

Las ciudades holandesas que habían albergado a Descartes, con sus universidades, sus imprentas, su burguesía mercantil activa y cosmopolita, y su liberalismo, eran favorables a la floración de las nuevas ideas. En Amsterdam   nació   Spinoza (1632-1677), descendiente de judíos portugueses emigrados. La audacia y la originalidad de su pensamiento, influido por Descartes, le indispuso con  su  ambiente  tradicional (su padre quería hacerle rabino), siendo arrojado de la sinagoga.

Excluido del judaísmo, quedó desde entonces libre e independiente, rechazando las cátedras de la universidad, porque temía verse obligado a abdicar de su independencia; prefería ganarse la vida en La Haya puliendo lentes. En este caso tampoco podemos dar más que una breve reseña de su filosofía, expuesta en varias obras (entre ellas el «Tratado teológico político» y la «Etica»). Siendo, a su manera, un místico panteísta, rechazaba toda religión revelada y denunciaba las incoherencias y las contradicciones del Antiguo Testamento, el cual, según él, no había sido dictado por Dios, sino hecho por judíos deseosos de mostrar su historia y su religión bajo cierto aspecto, en relación con las necesidades históricas.

Lo mismo que Descartes, intentó dar, sin dejar de criticar los puntos de su teoría, una vasta explicación del mundo basada en la mecánica y las matemáticas, obedeciendo a una rigurosa lógica de las leyes de la necesidad, en la que asimilaba a Dios con la sustancia infinita, con la Naturaleza. Negaba la existencia de un Dios personal y del libre albedrío. «Nosotros creemos ser libres porque ignoramos las cosas que nos gobiernan. Si se pudiera tener una idea absoluta del orden general que rige la Naturaleza, se comprobaría que cada cosa es tan necesaria como cada principio matemático».

Quería analizar las pasiones y los sentimientos «como si se tratara de líneas, de superficies, de volúmenes».

Alemania produjo otro gran genio en la persona de Leibniz (1646-1716), nacido en Leipzig, agregado al servicio del Elector de Maguncia y después al del duque de Hannover. Pasó cerca de cuatro años en París, donde trató de disuadir a Luis XIV de intervenir en Alemania. Independientemente de Newton, inventó el cálculo infinitesimal (1684).

Su compleja filosofía está basada en la teoría de las «mónadas», elementos, átomos de las cosas, todas diferentes, creadas por Dios, que es la mónada suprema y quien ha regulado el universo dentro de una armonía preestablecida, agrupando las cadenas infinitas de las mónadas y su movimiento. Diferentes, incompletos, frecuentemente contradictorios, rebasados hoy, pero llenos de intuiciones geniales, todos estos sistemas tienen un punto común: una explicación total, rigurosa, científica, de la Naturaleza y de sus fenómenos, de Dios, de la sustancia, del alma, etc..

En un siglo, los progresos son considerables: el pensamiento humano no se inclina ya ante los dogmas y las tradiciones recibidas, sino que busca libremente por medio de su crítica descubrir las leyes que rigen el universo, como ya lo habían intentado los grandes filósofos griegos.

PRINCIPIOS DE LA CIENCIA MODERNA
Muchos pensadores eran, al mismo tiempo que sabios, matemáticos notables. Paralelamente a su obra filosófica y religiosa, Blas Pascal (1623-1662) establecía las bases del cálculo de probabilidades, demostraba la densidad del aire según las hipótesis de Galileo y de Torricelli, inventaba el barómetro, exponía las propiedades del vacío y de los fluidos, así como las de las curvas.

Otros investigadores, igualmente científicos, profundizaron en los descubrimientos hechos a comienzos del siglo: en medicina, después del inglés Harvey, médico de los Estuardo (muerto en 1657), que había construido una teoría revolucionaria sobre la circulación de la sangre y el papel del corazón, el bolones Malpighi (1628-1694), gracias a los progresos del microscopio, analizaba el hígado, los ríñones, los corpúsculos del gusto, las redecillas de las arteriolas, y comenzaba el estudio de la estructura de los insectos.

El holandés Leuwenhoek descubría los erpermatozoides y los glóbulos rojos de la sangre. Los dos chocaban todavía con los prejuicios tenaces de las universidades, en las que reinaba el aristotelismo que había rechazado los descubrimientos de Harvey. Moliere, en su «Enfermo Imaginario», hará, por otra parte, una cruel sátira de los médicos retrógrados.

cientifico del renacimiento

Biografía
Copérnico
Biografía
Johanes Kepler
Biografía
Tycho Brahe
Biografía
Galileo Galilei

El mundo de lo infinitamente pequeño comienza a entreabrirse, aunque aún no sean más que tanteos en química y fisiología. Redi, médico del gran duque de Toscana, abordaba el problema de la «generación espontánea». Suponía que los gusanos no nacen «espontáneamente» de un trozo de carne en descomposición, sino de huevos que ponen moscas e insectos.

Sin embargo, la mayoría de la gente creía todavía en esta generación animal o vegetal, partiendo de pequeños elementos reunidos. El mismo Redi descubría las bolsas de veneno de la víbora, pero otros aseguraban que el envenenamiento era producido por los «espíritus animales» de la víbora que penetraban en la llaga hecha por la mordedura.

La ciencia comenzaba también a ocuparse de las máquinas: Pascal, Leibniz construían las primeras máquinas de calcular. Cristian Huygens (1629-1695) aplicaba a los relojes el movimiento del péndulo. Miembro de la Academia de Ciencias de París, pensionado por Luis XIV, tuvo que regresar a Holanda, su país natal, después de la Revocación del Edicto de Nantes.

Realizó importantes trabajos matemáticos, estudió la luz, presintió su estructura ondulatoria, desempeñó un papel decisivo en astronomía, tallando y puliendo los cristales de grandes lentes, lo que le permitió descubrir un satélite de Saturno, la nebulosa de Orion, así como el anillo de Saturno. Su ayudante, Dionisio Papin construyó la primera máquina de vapor en la que un émbolo se movía dentro de un cilindro (1687). Los ingleses iban a sacar aplicaciones prácticas para extraer el agua de las minas por medio de bombas. Por último, a finales de siglo, Newton formulaba las leyes de la gravitación universal.

“DIOS DIJO: HÁGASE NEWTON Y LA LUZ SE HIZO”

Esta cita del poeta Alexandre Pope muestra bien claro el entusiasmo que levantó el sistema de Newton, publicado en 1687 con el nombre de Philosophiae Naturalis Principia Mathematica. Isaac Newton (1642-1727), alumno y después profesor de matemáticas de la Universidad de Cambridge, terminó su carrera como «inspector de Monedas» y presidente de la Real Sociedad; fue también miembro del Parlamento.

físico ingles Newton

Isaac Newton

A la edad de veintitrés años lanzó las bases del cálculo diferencial, necesario para investigaciones profundas y mejoró su técnica, mientras que Leibniz llegaba a los mismos resultados por un método diferente. Los dos sabios fueron mutuamente acusados de plagio, a pesar de que sus investigaciones eran independientes aunque casi simultáneas.

Las anotaciones de Leibniz eran, por lo demás, más eficaces y los franceses las adoptaron. La invención del cálculo diferencial  e  integral que se funda en la acumulación de las diferencias infinitamente pequeñas, había de permitir resolver los problemas que planteaban las matemáticas del espacio, con sus cambios de tiempo, de lugar, de masa, de velocidad, etc.. Newton se dedicó entonces a estudiar las cuestiones que sus predecesores habían dejado sin solución: ¿por qué los astros describen curvas en lugar de desplazarse según un movimiento rectilíneo? Se dice que fue la caída de una manzana lo que puso en marcha los mecanismos de su reflexión.

Necesitó veinte años para dar las pruebas de sus teorías sobre el movimiento y la gravitación universal, las cuales iban a ser unánimemente admitidas hasta Einstein.

Albert Eisntein

En el espacio vacío, los cuerpos ejercen una atracción mutua; la fuerza de atracción es tanto mayor cuanto menor es la distancia entre dos cuerpos y mayor la masa del cuerpo que ejerce la atracción, o, dicho de otro modo, esta fuerza es directamente proporcional al producto de las  masas  e  inversamente proporcional  al cuadrado de las distancias. Newton extendía a todo el universo los fenómenos que entonces se creían reservados a la Tierra, siendo el cielo teatro de misterios inaccesibles, como lo creía la Edad Media.

Obtuvo una formulación matemática, gracias al cálculo infinitesimal, y consiguió una comprobación en el estudio del movimiento y de la velocidad de la Luna. Estableció, igualmente, que a cada acción se opone igual reacción. Las teorías de Newton chocan con las de Descartes, el cual explicaba la interacción de los astros por medio de los famosos «torbellinos» que agitaban continuamente la «materia sutil» continua, en la que flotaban los cuerpos. A la publicación de «Principia» siguieron numerosas polémicas.

Los cartesianos afirmaban que este principio de atracción era un retroceso a las «cualidades» ocultas de Aristóteles y, a pesar de los argumentos newtonianos, que demostraban la imposibilidad de concebir el espacio celeste lleno de materia, incluso siendo muy fluida, se continuó negando durante largo tiempo la teoría de la gravitación, como lo hicieron Huygens, Leibniz, Fontenelle, Cassini, Réaumur y otros, hasta la confirmación cada vez más brillante que aportaron las experiencias en el transcurso del siglo XVIII. Newton aplicó también su genio al estudio de la luz, explicando por qué los rayos del sol se descomponen en diferentes colores a través de un prisma. Al margen del análisis espectral, hizo numerosos descubrimientos ópticos.

La fe de Newton permaneció viva. Su sistema no eliminaba la exigencia de una causa primera, de un agente todopoderoso «capaz de mover a su voluntad los cuerpos en su sensorium uniforme e infinito para formar y reformar las partes del universo». La ciencia aceptaba a Dios, que debía crear ininterrumpidamente el movimiento, sin el cual todo se pararía poco a poco por degradación de la enegría. Newton murió a la edad de ochenta y cuatro años, rodeado de inmenso respeto, después de haber abierto un campo ilimitado a los descubrimientos de física y matemáticas.
Fuente Consultada:
Enciclopedia de Historia Universal HISTORAMA Tomo VII La Gran Aventura del Hombre

Historia del Descubrimiento de los Elementos Químicos

Hablar del descubrimiento de elementos antes de Juan Dalton (1766-1844) resultaría contradictorio, pues sólo después de los trabajos de este hombre de ciencia comenzó a definirse dicho concepto. Sin embargo hoy se tienen por tales muchas de las sustancias que ya eran conocidas antes del advenimiento de Cristo. Los metales sólidos, como el oro, la plata, el hierro, el estaño, el cinc, el cobre y el plomo, por ejemplo, ya fueron refinados por los pueblos de antaño, que apreciaban su utilidad o su valor decorativo.

El carbono (en forma de carbón de piedra), el azufre y el metal líquido mercurio también eran usados en aquellas épocas, aunque sin saber que eran elementos, es decir, sustancias básicas de que está hecho el universo. Cuando se contemplaban desde el punto de vista químico, sólo se los consideraba como meros ejemplos de la numerosa cantidad de sustancias que los alquimistas podían utilizar en sus experimentos.

Es cierto que el oro poseía un valor excepcional y gran parte del trabajo de los antiguos investigadores consistía en fútiles esfuerzos por obtenerlo a partir de otros metales más baratos. Pero no se tenía el concepto de cuál era su colocación en el cuadro general, porque ni aun remotamente se tenía idea de que tal cuadro existiese.

El primer elemento descubierto en los tiempos antiguos fue el arsénico. Aunque los griegos ya conocían varios compuestos de éste, probablemente fue Alberto Magno, en el siglo xm, el primero en afirmar que contenía una sustancia de tipo metálico. Químicos posteriores lo consideraron algo así como un metal “bastardo” o semimetal y le aplicaron el nombre de Arsenicum Rex.

En 1604 aparecieron ciertos trabajos, atribuidos a un monje benedictino llamado Basilio Valentine, en los que se describía el antimonio. Se decía que Valentine los había escrito alrededor de 1470, pero la obra fue “editada” por Tholde, un fabricante de sal de La Haya, y hay dudas acerca de si Valentine fue escritor.

Las obras que se le atribuyen también mencionan el bismuto, y si aceptamos que puede haberlas escrito, podríamos considerarlo su descubridor. Sin embargo, en 1556, medio siglo antes de su publicación, el bismuto había sido descripto por un médico alemán, Jorge Agrícola, en un libro sobre metales.

El aumento de la actividad química a partir del siglo XVIII produjo, como era de esperar, rápido progreso en el descubrimiento de nuevas sustancias. Puede explicarse en parte la falta de progreso antes de esa época por la enorme influencia del filósofo griego Aristóteles.

Durante más de mil años su errónea teoría acerca de la existencia de cuatro “elementos” (tierra, aire, fuego y agua) había detenido toda posibilidad de progreso en la química. Si bien en muchos campos del conocimiento dicho filósofo dejó importantes contribuciones, su influencia en la química, durante tanto tiempo indiscutida, resultó ser un grave impedimento para su adelanto.

OTROS DESCUBRIMIENTOS
El fósforo fue el siguiente elemento descubierto. Se le debe al alemán Henning Brand (1669). Medio siglo después, Jorge Brandt, un sueco, descubrió el cobalto. Esta conquista anunció la llegada de la Edad de Oro del descubrimiento de elementos.

En el mismo año (1735) Ulloa descubrió el platino. En los cincuenta años subsiguientes se registraron no menos de diez elementos, entre los cuales cabe mencionar: el níquel (Cronstedt), el hidrógeno (Enrique Cavendish), el flúor (Scheele), el nitrógeno (Daniel Ruthenford), el cloro (Scheele), el molibdeno (Hjelm), el telurio (Von Reichenstein) y el tungsteno (d’Elhujar).

Es interesante recordar la historia del descubrimiento del oxígeno, aunque sólo sea para ilustrar la forma a veces imprevista en que progresa la ciencia. José Priestley, científico notable en muchos campos, consiguió aislar oxígeno calentando óxido rojo de mercurio y demostró que una vela ardía en él con gran brillo y que un ratón podía vivir respirándolo. Hasta aquí sus observaciones eran correctas; pero cuando trató de aplicar estos nuevos hechos a la teoría tradicional de la combustión, se encontró con serias dificultades.

De acuerdo con el pensamiento corriente en aquella época, se suponía que una vela que ardía producía una sustancia denominada flogisto. El aire común, se decía, contenía cierta cantidad de flogisto y podía absorber más de él; luego ya no podía contribuir a la combustión. Priestley llamó a este gas “aire deflogisticado” porque en él la combustión era más violenta y duraba más tiempo que en el aire y porque debía deducirse que, al comenzar, no contenía nada de flogisto.

Años más tarde, Lavoisier explicó la verdadera naturaleza del proceso de la combustión y el papel que en ella desempeña el oxígeno. Al mismo tiempo que Priestley trabajaba en Inglaterra, Carlos Scheele efectuaba experimentos similares en Suecia.

Aunque descubrieron el oxígeno casi al mismo tiempo, un retraso de tres años en la publicación de sus trabajos hizo que Priestley se llevara la mayor parte del éxito. En realidad, la situación es aún más complicada: Juan Mayow, de la Real Sociedad, parece que había obtenido los mismos resultados un siglo antes, aunque rara vez se lo menciona.

La lista que acompaña este artículo nos da una cronología de los elementos y los nombres de sus descubridores. (Para simplificar sólo se indica el nombre del descubridor más generalmente aceptado, aunque en muchos casos tanto éste, como la fecha, están sujetos a discusión.)

NOTAS SOBRE LOS ELEMENTOS: Se llama elemento químico al componente que se encuentra en todas las sustancias simples. Por ejemplo, el componente de la sustancia simple denominada azufre, es el elemento azufre. Un elemento no puede descomponerse en otro. Asi, del azufre, no se obtiene más que azufre. *Si se combinan dos elementos simples, como el azufre y el hierro, obtenemos, al calentarlos, un compuesto qoe se llama sulfuro de hierro. *Los nombres de los elementos suelea tomarse de sus propiedades u orígenes: así hidrógeno, significa engendrador de agua; cloro quiere decir de color verdoso; fosfora significa portador de luz; el germanio designóse así en honor de Alemania; el galio por Francia; el magnesio por una región de Tesalia; el uranio por el planeta Urano; telurio por la Tierra, y helio por el Sol.

CINCO ELEMENTOS IMPORTANTES
Humphry Davy, que con tanto éxito trabajó en muchas ramas de la química y la física, también descubrió cinco elementos (potasio, sodio, bario, boro y calcio) entre 1807 y 1808. Un poco antes, en 1805, Juan Dalton, trabajando en Manchester, dio a conocer su teoría atómica que sirvió para enfocar el problema de los elementos. Dalton afirmó que los elementos químicos están compuestos por diminutas partes indivisibles (átomos) que conservan su individualidad eñ todas las reacciones químicas.

También decía que los átomos de un determinado elemento son idénticos entre sí y de forma diferente a los de otros elementos. Finalmente afirmó que la combinación química es la unión de átomos en cierta proporción establecida. El trabajo de este hombre de ciencia constituye la primera explicación comprensible acerca de qué son los elementos y cómo se comportan. Durante los siglos XIX y XX fueron descubriéndose nuevos elementos.

Un grupo especialmente interesante, el de los gases inertes —que no se combinan químicamente con otros— fue descubierto hace unos sesenta años. Guillermo Ramsay, un químico escocés, ayudó a individualizar el neón, criptón, xen helio y argón. Por la misma época, en 1898, Pedro y Marie Curie consiguieron aislar el radio y el polonio, ambos elementos intensamente radiactivos, con lo que se abrió el camino a la investigación actual en física nuclear. Sólo alrededor de 90 de los elementos químicos que han sido descubiertos se encuentran la naturaleza.

El resto son artificiales, y generalmente se ot nen “bombardeando” átomos e inyectándoles partículas nucleares complementarias. Cambia así la estructura del núcleo y con ello la identidad del átomo. En algunos casos estos nuevos elementos sólo duran una fracción de segundo. Sin ninguna duda los descubridores de elementos artificiales que han logrado más éxitos son los estadounidenses Glenn T. Seaborg (imagen) y A. Ghio Entre ambos han contribuido al descubrimiento de nada menos que de otros nueve.

Glenn T. Seaborg

Ver Una Tabla de Elementos Químicos Moderna

CRONOLOGÍA APROXIMADA DE LOS ELEMENTOS DESCUBIERTOS

Elemento: Año Descubridor
Carbono
Cobre Conocidos a.C.
Oro Conocidos a.C.
Hierro Conocidos a.C.
Plomo Conocidos a.C.
Mercurio Conocidos a.C.
Plata Conocidos a.C.
Azufre Conocidos a.C.
Estaño Conocidos a.C.
Cinc CConocidos a.C.
Arsénico Siglo XIII Alberto Magno
Bismuto 1556 Mencionado por Jorge Agrícola
Antimonio 1604 Mencionado en obra atribuida a Basilio Valentine del siglo anterior
Fósforo 1669 Brand
Cobalto 1735 Brandt
Platino 1735 Ulloa
Níquel 1751 Cronstedt
Hidrógeno 1766 Cavendish
Flúor 1771 Sebéele
Nitrógeno 1772 Rutherford
Cloro 1774 Sebéele
Manganeso 1774 Gahn
Oxígeno 1774 Priestley, Sebéele
Molibdeno 1782 Hjeim
Telurio 1782 Von Reichenstein
Tungsteno 1783 d’Elhujar
Titanio 1789 Gregor
Uranio 1789 Klaproth
Circonio 1789 Klaproth
Estroncio 1790 Crawford
Itrio 1794 Gadolin
Cromo 1797 Vauquelin
Berilio 1798 Vauqueüiit
Niobio 1801 Hatchett
Tantalio 1802 Eckberg
Cerio 1803 Klaproth
Paladio 1803 Wollanston
Sodio 1803 WolloBstoa
Iridio 1804 Tenaant
Osmio 1804 Tetinani
Potasio 1807 Davy
Sodio 1807 Davy
Bario 1808 Davy
Boro 1808 Davy
Calcio 1808 Davy
Yodo 1811 Courtois
Cadmio 1817 Stromeyer
Litio 1817 Arfedson
Setenio 1817 Berzelius
Silicio 1823 Berzelius
Aluminio 1825 Oersted
Bromo 1826 Balard
Torio 1822 Berzelius
Magnesio 1830 Liebig, Bussy
Vanadio 1830 Sefstrom
Lantano 1839 Mosander
Erbio 1843 Mosondp»
Terbio 1843 Mosander
Ratenio 1845 Claus
Cesio 1861 Bunsen, Kirchoff
Subidlo 1861 Bunsen, Kirchoff
Talio 1861 Crookes
Indio 1863 Reich, Richter
Galio 1875 Boisbaudran
Iterbio 1878 Marignac
Hoinvio 1879 Cleve
Samaría 1879 Boisbaudran
Tulio 1879 Cleve
Neodimio 1885 Welsbach
Praseodimio 1885 Welsbach
Disprosio 1886 Boisbaudran
Gadolinio 1886 Marignac
Germanio 1886 Winkler
Argón 1894 Rayleigh, Ramsay
Helio 1895 Ramsay
Criptón 1898 Ramsay, Travers
Neón 1898 Ramsay, Travers
Polonia 1898 P. y M. Curie
Radio 1898 P. y M. Curie, Be
Xenón 1898 Ramsay, Travers
Actinio 1899 Debierne
Radón 1900 Dorn
Europio 1901 Demarcay
Luteeio 1907 Welsbach, Urbain
Protactinio 1917 Hahn, Meitner
Hafnio 1923 Coster, Hevesy
Renio 1925 Noddack, Tacke
Tecnecio 1937 Perrier, Segre
Francio 1939 Perey
Astatino 1940 Corson y otros
Neptunio 1940 McMillan, Abelso»
Plutonio 1940 Seaborg y otros
Americio 1944 Seaborg y otros
Curio 1944 Seaborg y otros
Prometió 1945 Glendenin, Marisd
Berkelio 1949 Thompson, Ghi Seaborg
Californio 1950 Thompson y otros
Einstenio 1952 Ghiorso y otros
Fermio 1953 Ghiorso y otros
Mendelevio 1955 Ghiorso y otros
Nobelio 1958 Ghiorso y otros
Lawrencio 1961 Ghiorso y otros

Fuente Consultada:
Revista TECNIRAMA N°22 Enciclopedia de la Ciencia y La Tecnología -Descubridores Químicos-

Primeros Huevos de Dinosaurios Encontrados Fosilizados

IMPORTANCIA DEL DESCUBRIMIENTO DE LOS HUEVOS DE DINOSAURIOS

En 1923, un miembro de la expedición del Museo Americano de Historia Natural de Estados Unidos, dirigida por el doctor Roy Chapman Andrews, a la zona de areniscas rojas del desierto de Gobi, en Mongolia, encontró un nido completo de huevos de dinosaurio fosilizados.

Los huevos habían sido puestos a fines del período cretácico, hace unos 80 millones de años. Estaban enterrados cerca de la superficie, que había estado expuesta a los efectos de la erosión durante millones de años también. Los dinosaurios fueron animales dominantes —es decir, de gran importancia por su influencia sobre todas las restantes formas de vida— en la era Mesozoica. Se los divide en dos grandes órdenes, siendo, por una parte, parientes de los cocodrilos y, por otra, antecesores de los pájaros.

Los primeros representantes de los dinosaurios que aparecieron en escena eran de tamaño pequeño, pero, en conjunto, se observa en ellos una evolución gradual hacia dimensiones cada vez más gigantescas. Algunos constituyeron los mayores animales terrestres que han existido. Unos eran carnívoros y otros, la mayoría, herbívoros.

Los primeros dinosaurios se caracterizaron por ser bípedos (marchaban de pie sobre las patas posteriores). Sin embargo, se ha observado que a lo largo de su evolución muchos tendieron a adquirir la postura cuadrúpeda, sobre todo los herbívoros. Bastantes carnívoros conservaron la posición bípeda.

La clasificación que se ha hecho de los dinosaurios se basa en las afinidades de su esqueleto y de la estructura de los huesos con los reptiles o los pájaros. Aquellos que presentaban semejanzas con los reptiles se clasifican en el orden de los saurisquios.

huevos de dinosaurios hallados en Gobi Mongolia

El descubrimiento de los huevos de dinosaurio es uno de los raros hallazgos (como el de las impresiones de las membranas interdigitales momificadas) que nos ilustran sobre el modo de vida de estos seres. Quizá si los detalles de su biología estuviesen más claros, podrían conocerse las causas de la desaparición repentina de los dinosaurios, después de un período de florecimiento espectacular. Se ha pensado, fundamentalmente, en cambios climáticos que afectaron de tal modo a la flora, que las especies herbívoras, demasiado especializadas, no, pudieron adaptarse a un cambio de régimen alimenticio. La desaparición de los herbívoros trajo consigo la de los carnívoras que vivían a costa de ellos. La imposibilidad de los dinosaurios de evolucionar, y adaptarse a las cambiantes condiciones, parece radicar en la extremada especialización de su forma de vida. De hecho, es una regla; comprobada por el estudio de los fósiles, que las formas de animales se adaptan mejor a las condiciones cambiantes cuanto menos evolucionadas están, es decir, cuanto menos especializadas se hallan   en   una   forma   de  vida   determinada.

A pesar de los abundantes datos existentes sobre la morfología de los dinosaurios, nuestros conocimientos sobre su biología y costumbres se apoyan, en muchos aspectos, solamente en conjeturas. Se sabe que la médula espinal presentaba, en algunas formas, un ensanchamiento a la altura de la cintura pelviana (caderas), que podía tener un tamaño mayor que el del cerebro (ganglios cerebroides).

Este ganglio actuaría como un centro local de reflejos en las formas gigantes, dado el tiempo considerable que los reflejos habían de tardar en recorrer el largo camino existente entre el cerebro y las patas. Desde que se comenzó a estudiarlos, se supuso que estos antecesores de animales realmente ovíparos (que ponen huevos), fueron ovíparos también, pero no se tuvo una prueba material hasta dicho hallazgo de huevos fosilizados del Protoceratops, pequeño reptil antecesor de los dinosaurios cornúpetas a que nos hemos referido.

El mismo no presenta, sin embargo, traza de cuernos, pero sí el citado repliegue posterior de la cabeza. En una expedición previa a Mongolia ya se había encontrado parte de la cascara de un huevo, pero el descubrimiento, realizado después, del nido entero, en una zona desértica —a cientos de kilómetros de distancia de los habitantes más próximos— sobrepasó las esperanzas.

Por fin se había conseguido la prueba de que, al menos, algunos dinosaurios ponían huevos. Además, este dinosaurio (Protoceratops) los ponía (en cantidad de 15 o más) en un nido, de la misma forma que los ponen las tortugas y muchas aves actuales. Las rocas de color rojo ladrillo donde, se encontraron los huevos se componen de granos de arena fina y roja. Son blandas y se desmenuzan e, indudablemente, fueron formadas por la arena arrastrada por el viento. Mongolia debe de haber sido un desierto muy seco y cálido cuando el Protoceratops vivía.

Probablemente, los huevos fueron enterrados a demasiada profundidad por la arena movediza, de forma que los rayos solares no pudieron incubarlos. Poco a poco se fueron hundiendo cada vez más, a causa de la continua presión ofrecida por la gran carga de arena que soportaban encima y, a su vez, la arena que los rodeaba fue comprimiéndose y trasformándose en roca arenisca.

Entretanto, los huevos mismos fueron rellenándose de arena, al fosilizarse, y conservaron su estructura. Las condiciones de Mongolia resultaban ideales para la formación de fósiles, y de hecho el país es el lugar perfecto para buscarlos. Había muy poca humedad, y el aire, indudablemente, velaba por los restos animales, arrastrando la arena, que los enterraba en enseguida, lo que evitaría su descomposición. Además, desde que se extinguióle! Protoceratops, se ha sumergido uña pequeña extensión de Mongolia,, por lo que las rocas sedimentarias (rocas formadas bajo el agua) se han depositado sobre la arenisca sólo en contados lugares.

El Protoceratops vivía en condiciones desérticas. Sin embargo, debió de haber algunos ríos o lagunas cerca del nido, ya que se han encontrado fósiles de tortugas en los alrededores, y el esqueleto de la cola del Protoceratops hace pensar que este animal pasaba parte de su vida en el agua. Su pico córneo y la escasez de dientes sugieren que era herbívoro, y quizás arrancaba las hojas y las ramas de las plantas o arbustos del desierto.

Además de abandonar el agua para ir a comer, ponía sus huevos en hoyos que cavaba en la arena de las dunas. Colocaba los huevos en círculos, con el extremo más alargado dirigido hacia el centro del nido. La cascara era dura. Los huesos que se encontraron cerca del nido fueron después cuidadosamente conjuntados. Es curioso el hecho de haberse hallado cierta cantidad de esqueletos de jóvenes animales, próximos unos a otrosflo que hace pensar en la existencia de una especie de “colonia infantil”, o de un lugar de cría.

También se han encontrado esqueletos de adultos, que no tenían más qué unos dos metros de longitud. La placa o expansión de la cabeza que protege el cuello está muy desarrollada, y en ella van insertos los músculos de la mandíbula y de la cabeza.

El notable descubrimiento de parte del esqueleto de un dinosaurio con forma de avestruz, el Oviraptor (“ladrón de huevos”), en el nido del Protoceratops, hace pensar que dicho ser estaba realmente robando los huevos del nido. Por desgracia, sólo se ha conservado una pequeña parte de este esqueleto, pero es tan semejante al de otros dinosaurios con forma de avestruz, que el Oviraptor, probablemente, presentaba el aspecto que se le da en el grabado.

SIEMPRE SIGUIERON LOS DESCUBRIMIENTOS EN EL MUNDO

Huevos Hallados en China, Cuando Se Excavaba Para Una Zanja

La ciudad de Heyuan, en China, es conocida popularmente como “la ciudad de los dinosaurios”, debido a los constantes descubrimientos de fósiles en su territorio. Esta vez, unos obreros han descubierto 43 huevos de dinosaurio mientras instalaban un nuevo sistema de cañerías, y muchos están intactos.

Fuente Consultada:
Revista TECNIRAMA N° 67
Enciclopedia de la Ciencia y La Tecnología

Amianto Aplicaciones, Propiedades y Riesgos de Cancer

El amianto o asbesto es conocido por el hombre desde hace por lo menos 2.500 años. A causa de su singular resistencia al fuego, se atribuían a esta sustancia propiedades mágicas. Se dice que el emperador Carlomagno demostró sus poderes sobrenaturales arrojando al fuego un mantel de amianto que recuperó intacto. La resistencia al fuego es la propiedad que más llamaba la atención de los antiguos, pero no es la única cualidad del amianto, que ha probado ser enormemente apto en aplicaciones industriales.

Es un excelente aislante del calor, del sonido y de la electricidad, y su naturaleza fibrosa permite que se pueda trabajar para elaborar telas para trajes, etc. Mezclado con otros materiales como el cemento proporciona un excelente material de construcción. El amianto es flexible, resistente a los ácidos y a los álcalis y no se deteriora  con el  tiempo.

Amianto

Hablar solamente de “amianto” no es precisar mucho, pues el amianto no es una sustancia única. Hay muchas variedades de él, y cada variedad posee en distinto grado las propiedades ya indicadas.

El valor comercial del amianto depende grandemente de dos cualidades: su incombustibilidad y su singular estructura fibrosa. La última permite separarle en fibras o filamentos que, en la variedad usada con más frecuencia, poseen una gran resistencia a la tracción y son muy flexibles.

Podemos decir que las principales propiedades del amianto son:

Incombustibilidad.
Elevado aislamiento térmico.
Elevado aislamiento acústico.
Resistencia a altas temperaturas.
Resistencia al paso de electricidad.
Resistencia a la abración.
Resistencia al ataque de microorganismos.

Debido a estas especiales características, el amianto se ha usado para una gran variedad de productos manufacturados, principalmente en materiales de construcción (tejas para recubrimiento de tejados, baldosas y azulejos, productos de papel y productos de cemento con asbesto), productos de fricción (embrague de automóviles, frenos, componentes de la transmisión), materias textiles termo-resistentes, envases, paquetería y revestimientos, equipos de protección individual, pinturas, productos de vermiculita o de talco. El amianto también está presente en algunos alimentos.

YACIMIENTO Y ORIGEN
El amianto, tal como se encuentra en la naturaleza, es una roca, tan sólida y densa como el granito. Se encuentra subterráneamente en vetas delgadas, incluidas en rocas que tienen una composición química parecida.

Incluso hoy día no hay una idea clara de cómo el amianto se formó en la corteza terrestre. La teoría más generalizada es la de que la roca subterránea se transformó por la acción del agua caliente, que contenía sales disueltas y anhídrido carbónico. Al producirse grietas en la roca, éstas se llenaron de agua, y, durante largos períodos de tiempo, ocurrieron reacciones químicas, que dieron lugar a capas gelatinosas que eventualmente cristalizaron para formar el mineral, fibroso y estrechamente empaquetado, que hoy día conocemos.

VARIEDADES   DE   AMIANTO
El nombre de amianto, en una acepción amplia, puede darse a todo mineral natural capaz de ser manejado o transformado en fibras. Hay, por lo menos, treinta tipos distintos de minerales que forman lo que se llama el grupo asbestiforme, y que tienen grandes semejanzas, pero solamente seis poseen importancia comercial.

En orden de importancia, son:   el crisotilo  o  amianto blanco,  la crocidolita o amianto azul, la amosita, antofilita, tremolita y actinolita. Se dividen en dos grupos principales: los amiantos de crisotilo (o serpentina) y los amiantos anfibólicos.

Las diferencias entre los distintos tipos provienen de la roca o matriz donde el amianto se encuentra. Desde el punto de vista químico, son complicados silicatos de magnesio que, generalmente, contienen uno o varios de los siguientes metales: sodio, aluminio, hierro y calcio.

CRISOTILO
Es la variedad más importante de mineral de amianto, y constituye el 80 ó 90 por ciento de la producción mundial. Se encuentra principalmente en Canadá, en la U.R.S.S. y en Rodesia del Sur. Su color varía desde el blanco puro hasta el verde grisáceo, dependiendo de las impurezas que contenga.

El crisotilo no se altera a temperaturas de hasta 450 ó 500 °C, en que empieza a perder agua estructural. Sus fibras resisten la acción de los álcalis, pero no la de los ácidos, y los ácidos minerales  fuertes  las  disuelven  completamente.

Crisolito o Amianto Blanco

Algunas fibras de crisotilo tienen hasta ocho centímetros de longitud, aunque la mayoría están por debajo de los cuatro centímetros. Son fuertes y flexibles, trabajándose con facilidad, probablemente a causa de las cantidades de talco que se encuentran en ellas.

Estas propiedades, juntamente con su resistencia, longitud, y mala conductividad eléctrica (gran resistencia al paso de la corriente), lo hacen muy adecuado para la manufactura de amianto textil. Cuando se muele la roca, el amianto se descompone en fibras, y la parte de roca adyacente se pulveriza.

De esta forma, ambos se separan fácilmente. Frotando la superficie de la roca, pueden obtenerse fibras extremadamente finas, que, de hecho, son haces de fibras todavía más finas, las cuales pueden separarse a mano. Incluso esas fibras pueden subdividirse a su vez.

Con el microscopio electrónico han podido medirse los diámetros de las fibras más finas, que son del orden de dos millonésimas a veinte millonésimas de centímetro. Las fibras que se usan en la práctica son mucho  más  gruesas.

Los  estudios  modernos  con  el  microscopio electrónico sugieren que. las fibras de crisotilo son huecas, a pesar de que los tubos pueden estar rellenos de material menos cristalino, pero con la misma composición química. Esto serviría de explicación al hecho de que las fibras sean suaves, elásticas y absorbentes. Su resistencia a la tensión es muy grande; por término medio, del orden de la de una cuerda de acero para piano del mismo diámetro, aunque se han obtenido valores de resistencia doble.

AMIANTOS ANFIBÓLICOS
Los amiantos que derivan de este grupo se diferencian de los del crisotilo por su mayor riqueza en sílice, hierro, aluminio, sodio y calcio. Sin embargo, contienen menos magnesio. Cada uno de ellos incluye dos o más de esos metales en diferentes proporciones. La crocidolita, que tiene un color azul peculiar, y la amosita, que varía desde el blanco al pardo amarillento, son las variedades más importantes. Ambos son silicatos de hierro; el primero contiene dos tipos de hierro y sodio, y el segundo, hierro ferroso y magnesio.

La crocidolita posee magníficas propiedades de resistencia al calor, semejantes a las del crisotilo. Los amiantos anfibólicos son más ásperos al tacto y, por’consiguiente, más difíciles de trabajar, y menos aptos para la fabricación de tejidos, a pesar de que sus fibras son más largas y que su resistencia a la tracción es grande (mayor que la de las cuerdas de acero para piano). La propiedad más importante de la crocidolita es su resistencia al ataque por los ácidos.

La crocidolita se encuentra principalmente en Sudáfrica, pero también hay grandes yacimientos en Bolivia y en Australia. La amosita se encuentra solamente en Sudáfrica. La resistencia a la tensión es mediana, pero, para algunas aplicaciones, su resistencia al calor resulta superior a la del crisotilo o la crocidolita. Sus fibras pueden tener hasta 30 centímetros de largo, y se usa principalmente para la fabricación de aislantes térmicos. Dado que la amosita es menos flexible y tiene menor resistencia a la tracción que el crisotilo y la crocidolita, sus aplicaciones son bastante limitadas.

Las fibras de los amiantos anfibólicos no sólo son más largas que las del amianto blanco, sino también más gruesas (de 400 a 100 milésimas de centímetro, en vez de dos millonésimas de centímetro). Son sólidas, y, por lo tanto, duras y elásticas, pero quebradizas.

Riesgos del amianto: Existe el riesgo de contraer determinadas enfermedades específicas provocadas por la inhalación de fibras de amianto: asbestosis, cáncer pulmonar y mesotelioma de pleura y/o peritoneo, además de una irritación crónica de la dermis.

Está compuesto por fibras microscópicas que pueden permanecer en suspensión en el aire el tiempo suficiente para que representen un riesgo respiratorio. Cuando el contacto es prolongado puede provocar son enfermedades del aparato respiratorio. El cáncer de pulmón es la más mortal de las enfermedades que afectan a las personas expuestas al amianto.

Otra enfermedad respiratoria es la asbestosis es una enfermedad asociada directamente a la exposición al amianto. Consiste en el desarrollo de una fibrosis pulmonar tras la inhalación de asbesto que con el tiempo dificultad para respirar.

MINERÍA Y TRATAMIENTOS
La mayoría de las rocas que contienen los minerales del amianto se explotan relativamente cerca de la superficie, por lo que esta minería resulta relativamente económica y sencilla, en comparación -con la minería profunda. Con frecuencia, las explotaciones están al descubierto.

A veces, sin embargo, se practican túneles en el frente de la roca, y el mineral se saca en vagonetas. El mineral bruto, con grandes cantidades de ganga, se pica o se dinamita de la roca, de forma parecida a como se hace con el carbón, y se separa provisionalmente a mano. La roca acompañante se tira y el material se lleva al grupo separador donde se extraer; las fibras largas.

Éstas forman el 3 % del mineral extraído, y son susceptibles de ser tejidas. El resto se tritura y se pasa por tamices. Los residuos se aventan para recuperar las pequeñas cantidades de amianto que puedan quedar. La producción de fibra es pequeña: una tonelada de fibra por cada ocho o hasta treinta toneladas de roca triturada.

La fibra de amianto separada por los tamices se lleva a un molino que funciona como un mortero, y a continuación se pasa a un molino de alta velocidad, donde las fibras se separan aún más.

APLICACIONES DEL AMIANTO
Las fibras largas usadas para tejer reciben un tratamiento más cuidadoso para separar las longitudes desiguales, los fragmentos de roca y las fibras no abiertas. A continuación se cardan, se bobinan y se tejen o trenzan. Generalmente se refuerzan con alguna fibra vegetal o, en algunos casos, con finos hilos de metal.

El tejido de amianto tiene muchas aplicaciones industriales. Se usa en revestimientos aislantes de muchas clases, para juntas y protecciones de calderas. Para estos revestimientos, la cubierta exterior de tejido de amianto se rellena de fibra suelta del mismo material. Los revestimientos están solamente extendidos y tensados, de forma que pueden quitarse fácilmente cuando hay que hacer reparaciones o para su manejo.

Los trenzados de amianto tienen usos muy variados en la industria para empaquetamientos y juntas, especialmente para máquinas de vapor y para bombas. Su resistencia al calor y su larga duración les hace excelentes para tales aplicaciones. Otra aplicación de relieve es en los frenos y embragues, donde las propiedades importantes son las de la resistencia y no alteración por el calor. La lisura del amianto permite que la pieza giratoria encaje sin vibración ni desgaste. La mayoría de las camisas anti-fricción se fabrican con tejido de amianto o se moldean con fibras o resina de este material.

Las fibras cortas de amianto son la mayor parte de las obtenidas en la mina y se usan para hacer tableros y objetos prensados. Hay una demanda creciente de fibrocemento (cemento con fibras de amianto) en la industria, especialmente en la de la construcción. Se usa para cubiertas de tejados y paredes, para edificar depósitos y hangares, así como para compartimientos. Los productos de fibrocemento moldeado se usan en la construcción de canales, desagües, tuberías, depósitos, tubos para cables y acequias.

Los tubos subterráneos de fibrocemento de gran diámetro se fabrican con destino a aprovisionamientos de aguas, cloacas y drenaje. La fibra de amianto puede también esparcirse sobre objetos, especialmente si se desea protección contra el fuego. Cuando la fibra se mezcla con un líquido, cada haz de fibras absorbe cierta cantidad de éste. Esta propiedad hace posible el pegarla sobre estructuras de acero, por ejemplo, o sobre la parte inferior de los pisos, para evitar que las llamas puedan extenderse a otras habitaciones.

El amianto de usa también mucho en el aislamiento del sonido. El amianto esparcido o pegado en las superficies es especialmente útil. Como material absorbente del sonido, se usa en las salas de cine o de conciertos, para eliminar las superficies que reflejan el sonido produciendo eco.

El amianto esparcido se aplica también a superficies frías donde, de otra forma, se acumularía la humedad. El amianto esparcido disminuye el enfriamiento de la capa de aire próxima a la superficie (por ejemplo, en un techo) y, de esta manera, evita la condensación.

El uso de amianto fue absolutamente prohibido en España en diciembre de 2001, si bien algunas de sus variedades se prohibieron antes como el amianto azul en 1984 y el amianto marrón en 1993.

Fuente Consultada:
TECNIRAMA La Enciclopedia de la Ciencia y la Tecnología Fasc. N°56
Sitio web español: http://www.amianto.com.es/

Biografia de Ohm Simón Obra Científica y Experimentos

Una vez Fourier hubo elaborado un sistema matemático que daba cuenta adecuadamente del flujo de calor, parecía que el mismo sistema podía emplearse para describir la corriente eléctrica. Mientras que el flujo de calor de un punto a otro dependía de las temperaturas de ambos puntos y de si el material que los unía era buen conductor del calor, la corriente eléctrica de un punto a otro podía depender del potencial eléctrico de los dos puntos y de la conductividad eléctrica del material intermedio. hm haciendo diversas experiencia de laboratorio, logró al fin determinar la famosa ley que lleva su nombre: “Ley de Ohm”

ley de ohm

Dice así: La magnitud de una corriente I eléctrica que pasa entre dos puntos es igual al cociente entre la tensión (o voltaje V) y la resistencia R del conductor por el que atraviesa dicha corriente. Esta es una ley de fundamental importancia, y una de las primeras que se aprenden al estudiar electricidad.

Hoy es conocida como la ley de Ohm, aunque en 1827, al ser enunciada por Jorge Simón Ohm, pasó inadvertida. De hecho, hubieron de transcurrir 16 años para que dicha ley recibiera 4a consideración que merece. En aquella época se prestaba mayor atención a los científicos jactanciosos y con amigos influyentes que a los de carácter reservado y tranquilo como lo era Ohm. Ohm nació en Erlangen (Alemania), en 1789.

ohm simon

Trabajando con alambres de diversos grosores y longitudes, el físico alemán Georg Simón Ohm (1789-1854) halló que la cantidad de corriente transmitida era inversamente proporcional a la longitud del alambre y directamente proporcional a su sección. De este modo pudo definir la resistencia del alambre y, en 1827, demostró que «la intensidad de la corriente a través de un conductor es directamente proporcional a la diferencia de potencial e inversamente proporcional a la resistencia». Ésta es la llamada ley de Ohm.

Era hijo de un maestro de taller, el cual decidió dedicarlo al estudio de las matemáticas y de la física. Y. el propio padre se puso entonces a estudiar estas disciplinas, para poder enseñar a su hijo lo aprendido, dándole clases cuando el muchacho salía de la escuela.

A la edad de 16 años, Ohm comenzó sus estudios en la Universidad de Erlangen, pero, desgraciadamente, la situación económica de la familia hizo que, al cabo de dos años, tuviera que dejar la universidad para colocarse como profesor en Suiza. Más adelante, pudo completar sus estudios y licenciarse; pero, por segunda vez, la falta de dinero le obligó a abandonar sus investigaciones en la universidad, volviendo, de nuevo, a su puesto de profesor.

Después de pasar 4 años enseñando física en Bamberg, se trasladó al Gimnasio de Colonia, donde llevó a cabo sus más importantes investigaciones.

Cuando Ohm comenzó sus experiencias, la electricidad se describía en términos muy imprecisos. No existía un modo exacto de expresar el comportamiento de una corriente eléctrica, y Ohm resolvió hacer algo en este sentido. Fourier había trabajado ya en la conducción del calor, llegando a la conclusión de que en un material conductor existía un gradiente de temperatura y que la cantidad de calor que conducía dependía de la caída de temperatura a lo largo del conductor.

Ohm se preguntó si la electricidad se comportaría del mismo modo que el calor, y si la diferencia de potencial jugaría aquí el mismo papel que la diferencia de temperatura jugaba en termología.

En sus últimos experimentos, Ohm utilizó como f. e. m. (fuerza electro-motriz) constante la proporcionada por un termopar (termocupla), constituido por cobre y bismuto soldados, una de cuyas uniones iba sumergida en hielo y la otra en agua caliente. Para medir la magnitud de la corriente, utilizó una aguja imantada, suspendida convenientemente. De este modo, Ohm pudo estudiar la magnitud de variación de la intensidad de corriente cuando se introducían en el circuito distintas resistencias.

Ohm era muy meticuloso en la realización de medidas y, a pesar de los instrumentos primitivos que utilizó sus resultados fueron lo suficientemente exactos como para demostrar, de manera concluyente, que la intensidad de corriente es igual al cociente entre la tensión y la resistencia. Ohm comprendió instantáneamente la importancia de su descubrimiento y supuso que le sería concedido un puesto en la universidad; en esta creencia, renunció a su cátedra de profesor en el Gimnasio de Colonia.

Las cosas no sucedieron exactamente así, y Ohm estuvo sin colocación durante 5 años; recién a los 60 de edad fue nombrado catedrático de la Universidad de Munich, cargo que desempeñó hasta su muerte, acaecida 5 años después, en 1854.-

EJEMPLOS PARA EXPLICAR DE LA LEY DE OHM

Fórmula General de Ohm

Un método sencillo de recordar las ecuaciones de la ley de Ohm: tapar: la cantidad buscada y los
dos símbolos restantes darán la fórmula requerida.

A condición de que las manifestaciones Físicas, tales como la temperatura, no varíen, la intensidad de la corriente (la cantidad de electrones en movimiento) que circula por un hilo es directamente proporcional a la diferencia de potencial (es decir, la diferencia de presión eléctrica que origina el movimiento de los electrones) entre las extremidades del hilo.

Este hecho se conoce con el nombre de Ley de Ohm. Veamos un ejemplo de esta ley: supongamos que tenemos un circuito en donde circula una corriente de 4 amperios. Por ejemplo una estufa eléctrica conectada a una red de 240 voltios. ¿Cuál es la intensidad de la corriente, si el voltaje de la red cae a 120 voltios?

La ley de Ohm nos dice que, ya que la diferencia de potencial (voltaje) se reduce a la mitad, la corriente debe reducirse en la misma proporción: se divide por dos. La nueva intensidad es, por lo tanto, de 2 amperios. En cada caso la relación voltaje/intensidad es la misma: 240/4=60 A ó 120/2=60 A

Por lo tanto, la ley de Ohm puede escribirse en forma de ecuación: V/I=constante

Si el voltaje, o diferencia de potencial, se mide en voltios, y la intensidad en amperios, entonces la constante, en vez
de ser simplemente un número, es por definición una medida de la resistencia del hilo; o sea, una medida de la resistencia que opone el hilo al paso de electrones a través de él. La resistencia se mide en unidades que reciben el nombre de ohmios.

Por tanto, diferencia de potencial / intensidad de corriente = resistencia en ohmios

Las resistencias medidas en ohmios se suelen simbolizar por el signo R; la diferencia de potencial en voltios se simboliza, generalmente, por V y la intensidad en amperios por I. Utilizando estos símbolos, la ley de Ohm puede escribirse en forma de ecuación: R=V/I. Que se desprende que V=I . R

En realidad, la corriente I=4 amperios es menor cuando la estufa está fría, ya que la resistencia de la mayoría de los metales aumenta con la temperatura. Por eso la ley de Ohm sólo es exacta cuando no varían las propiedades físicas.

Una resistencia de 60 ohmios presenta una oposición moderadamente alta al paso de la corriente eléctrica; si la estufa tiene una resistencia pequeña, digamos de 2 ohmios, presenta un camino mucho más cómodo y a su través pasa una intensidad mucho mayor.

¿Qué intensidad tiene la corriente que pasa por una estufa (con una resistencia de 2 ohmios) que se conecta a una red de 240 voltios? Como lo que buscamos es una intensidad, que se simboliza con una I, utilizaremos la ecuación:
I =V/R=240/2=120 amperios.

Ésta es una intensidad enorme (que fundiría los fusibles tan pronto como se encendiera la estufa). La mayor intensidad que puede soportar, normalmente, un fusible doméstico es de 15 amperios.

¿Cuál es la resistencia de una estufa eléctrica, que funciona justo a esta intensidad, con un voltaje de red de 240 voltios? Aquí lo que buscamos es la resistencia, simbolizada por una R, así qué lo mejor será utilizar la ecuación que contenga la R=V/I=240/15=16 ohmios (Ω)

También la ley de Ohm proporciona un método cómodo para medir voltajes. Un voltímetro sencillo es, realmente, un medidor de intensidad, o amperímetro. Nos indica la intensidad (I) amperios que el voltaje (V) que se quiere conocer hace pasar por una resistencia conocida (R) ohmios.

La magnitud del voltaje se deduce de la ecuación V=I . R- (No se necesita hacer el cálculo en la práctica, ya que esto se ha tenido en cuenta al calibrar el voltímetro.) Si un amperímetro, cuya resistencia total es de 200 ohmios, registra una corriente de 1/10 amperio, ¿cuál es el voltaje que impulsa a la corriente a través del amperímetro?.

O dicho en otras palabras, ¿cuál es la diferencia de potencial entre los bornes del amperímetro? De la ecuación:
V = I . R (esta ecuación es la preferible, ya que la V aparece en el lado izquierdo), se deduce el voltaje: 1/10 amp. . 200 ohm.=20 voltios.

ANALOGÍA DE LA CORRIENTE CON EL FLUJO DE AGUA

Lo intensidad de la corriente de un río es la cantidad de agua que pasa por debajo del puente en un segundo. La intensidad de una “corriente eléctrica” es la cantidad de electrones que pasa en un segundo por un conductor.

El movimiento del agua está producido por una diferencia de altura entre los extremos del río.
Un movimiento de electrones está producido por una diferencia de potencial entre los extremos de un conductor. La diferencia de potencial recibe el nombre de voltaje.

Cuanto mayor es la diferencia de alturas, mayor es la corriente de agua. Del mismo modo, cuanto mayor es la diferencia de potencial (voltaje), mayor es la corriente eléctrica. Al doblar la diferencia de alturas, dobla el flujo de agua; al doblar la diferencia de potencial (voltaje)/ dobla lo intensidad de la corriente. Ésta es la ley de Ohm.

La “estrechez” del río también controla la cantidad de agua que corre por debajo del puente en un segundo. Si el río es muy estrecho, la corriente es pequeña. Del mismo modo, la “resistencia” de un conductor controla el flujo de electrones. Si la resistencia es muy alta, la corriente eléctrica es débil. Si la resistencia es baja (equivalente a un río ancho), la corriente es intensa.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología – TECNIRAMA N°89 La Ley de Ohm

Vida de Bunsen Roberto Inventor del Mechero Científico

En el siglo XIX floreció en Alemania una aristocracia científica. En aquella época, los químicos eran personajes muy importantes y gozaban de gran estima entre el resto de la población. Pero no sólo eran respetados, sino que, con frecuencia, los científicos notables estaban muy bien remunerados, disfrutando de un elevado nivel de vida. La admiración general que la química despertaba, atrajo a los mejores investigadores de otros países, y nadie podía ser considerado un buen químico si no había realizado estudios en Alemania.

Bunsen Robert

Roberto Guillermo Bunsen (1811-1899) fue uno de los personajes más brillantes de la Alemania del siglo xix. Inició sus estudios de zoología,  física y  química  en su ciudad natal, Goettinga (Alemania), ampliando sus conocimientos en París, Berlín y Viena. Fue nombrado profesor de química de la Universidad de Heidelberg, en 1852.

Fue un experimentador audaz. En el curso de uno de sus experimentos perdió la visión de un ojo, lo que no impidió que repitiera el experimento delante de sus alumnos, aterrorizando a los que ocupaban los primeros bancos. En otra ocasión, estuvo a punto de morir envenenado por arsénico y, durante sus experiencias con este elemento, descubrió que el óxido de hierro hidratado era un antídoto eficaz contra dicho tóxico.

Su nombre es recordado, principalmente, por el aparato de laboratorio ideado por él y llamado, en su honor, mechero Bunsen. El gas era, en aquella época, la fuente de calor más usada en los laboratorios; pero si abrimos una llave de gas y prendemos el chorro que brota por el extremo del tubo, la llamita luminosa que se produce es relativamente fría.

Esto se debe a que no existe suficiente cantidad de oxígeno, en el interior de la llama, para que el gas se queme por completo, y el carbono que no ha ardido se deposita en forma de una capa negra, ennegreciendo los objetos calentados. El mechero diseñado por Bunsen aumenta la eficacia calorífica de la llama, ya que su temperatura es más elevada y no deposita hollín. Para conseguirlo, dispuso una entrada de aire regulable en la base del tubo.

La corriente de gas succiona el aire a través del orificio y, si la mezcla resultante contiene 2,5 veces más aire que gas, la llama que produce un zumbido característico será limpia y de gran poder calorífico. Pero si contiene un exceso de aire, la llama se propagará al interior del tubo, ardiendo en la base, en lugar de hacerlo en el extremo superior; es decir, el mechero se cala. Bunsen estudió el tamaño del tubo y del orificio de entrada de aire, hasta conseguir resultados satisfactorios.

Mas, sus esfuerzos científicos no se concentraron en una sola dirección, sino que trabajó en diversos campos, realizando descubrimientos importantes. Inventó una pila de carbono-cinc y un calorímetro de hielo; obtuvo magnesio metálico en grandes cantidades, empleándolo, en parte, como fuente luminosa; contribuyó al análisis de gases y estudió las solubilidades de éstos en los líquidos. Otra de sus invenciones, el jotómetro de mancha, es un dispositivo que se emplea para comparar la intensidad de dos fuentes luminosas, y todavía lleva su nombre.

En colaboración con Kirchhoff, estudió el espectro emitido por los elementos al calentarlos, encontrando dos espectros no identificados, que les condujeron al descubrimiento del cesio y el rubidio. Tras una vida muy activa, falleció en 1899, a la edad de 88 años.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología TECNIRAMA N°88 Roberto Bunsen

Diferencia entre peso y masa Concepto Físico

El peso y la masa son, probablemente, las palabras más intensamente empleadas por el lenguaje científico. Están en tan íntima relación que, en circunstancias normales, el peso y la masa de un objeto tienen exactamente el mismo valor numérico. 10 kilos de papas tendrán un peso de 10 kilos y una masa de 10 kilos.

Como los valores son los mismos, se tiene la falsa impresión de que las palabras son sinónimas. Si hemos pesado una zapallo con un aparato que funciona mediante el alargamiento de un resorte (cuanto más pesado sea el objeto, el resorte se estira más), entonces medimos realmente el peso. El zapallo tiene un peso de 10 kilos.

Cuando se ponen las papas en el platillo del aparato, el resorte tira del platillo y de su contenido hacia arriba, oponiéndose a su alargamiento. Por otra parte, la fuerza de la gravedad actúa sobre el zapallo, empujándolo hacia abajo. El resorte se larga hasta que estas dos fuerzas opuestas se equilibran exactamente, y el peso se lee como una medida de dicho alargamiento.

balanza de resorte pensado

Esta balanza de resorte mide la fuerza (P) con que es atraída la masa del zapallo, que según la Ley de Newton, es igual a la masa (m) por la aceleración de la gravedad (g) , ósea: P=m.g. Esta balanza mide peso o fuerza, y según donde se haga a medición variará, porque depende del valor de “g”, no es lo mismo pesar en la Tierra que en la Luna, o en cualquier orto planeta, es decir, el peso varía según la masa m y la aceleración g. Cuanto mas masa o mas aceleración, mayor será el estiramiento “x” del resorte.

El resorte mide, por tanto, la magnitud de una fuerza que intenta estirarlo, y por ello el peso debe ser una clase de fuerza. El empuje hacia abajo del zapallo  depende de dos factores: la cantidad de sustancia o materia contenida en las papas y la atracción de la gravedad de la Tierra. La masa del zapallo no depende del lugar donde se encuentre éste; a menos que se les quite algún trozo, la cantidad de materia que las compone será siempre la misma.

En cambio, el campo gravitatorio de la Tierra (la atracción que ésta ejerce sobre un cuerpo) varía. Si dejamos caer una piedra en un pozo sufrirá un incremento de velocidad de 9,8 metros por cada segundo que cae.

Si la piedra cayera desde un satélite en órbita, situado a muchos kilómetros de distancia, entonces, en un segundo, el incremento de velocidad sería muchísimo menor. Esto es debido a que la piedra se encuentra más lejos de la Tierra y la influencia de esta última sobre ella es mucho menor.

A medida que cambia la acción del campo gravitatorio de la Tierra, cambia el peso del objeto. Si utilizamos un dinamómetro, el zapallo pesará ligeramente menos en la cima de una montaña que al nivel del mar. En cambio, la masa es algo que no varía nunca. Es la cantidad de materia que contiene una sustancia.

Un bloque de plomo está compuesto de un número determinado de átomos. Cada átomo tiene 82 protones, 126 neutrones y 82 electrones. En otras palabras, cada átomo tiene cierta cantidad de materia en él. No importa que el bloque de plomo está en el fondo de un pozo, en la cima de una montaña o en la superficie de la Luna: si no se le ha quitado ni añadido nada, contiene la misma materia y, por lo tanto, la misma masa.

Por este motivo, para medir la masa hay que utilizar un aparato que dé la misma medida, cualquiera que sea el lugar donde sea utilizado. A este fin se usa una balanza. El objeto cuya masa se desconoce, se coloca en el platillo izquierdo de la balanza.

balanza de masa

El platillo desciende, y el brazo de ésta se inclina al no haber nada en el otro platillo para equilibrarlo. Unas pesas metálicas (denominación impropia, pues deberían llamarse masas) se colocan en el otro platillo hasta alcanzar el equilibrio: una masa se equilibra con otra masa.

Si se lleva la balanza a un lugar donde la atracción de la gravedad sea mucho menor, el objeto sufre un menor empuje, pero también le ocurre lo mismo a las “pesas” del otro platillo, y se obtiene el mismo resultado. La balanza de precisión se utiliza para medir masas con una exactitud de cuatro diez-milésimas.

Las pesas, por lo tanto, deben tratarse con mucho cuidado. Si se desgastan pierden cierta masa, y en contacto con los dedos se ensucian con la grasitud de las manos y sufren un aumento de masa. Por ello se deben tomar siempre con pinzas. Éste es uno de los motivos por los que las balanzas de mayor precisión se manejan por control  remoto.

Fuente Consultada:
Enciclopedia de la Ciencia y Tecnología TECNIRAMA N°86

Feymann Richard Fïsico Premio Nobel Teoría Electrodinámica Cuántica

El físico norteamericano Richard Phillips Feynman mereció el Premio Nobel en 1965  por sus estudios en el campo de la electrodinámica cuántica. Fue uno de los teóricos  más originales de la posguerra, ya que contribuyó de manera fundamental en muchos campos de la física. Su genial visión de fabricar productos en base a un  reordenamiento de átomos y moléculas dio pie al nacimiento de una de disciplinas científicas más prometedoras de la era moderna: la nanotecnología

Feymann Richard Físico

“Para la existencia de la ciencia son necesarias mentes que no acepten que
la naturaleza debe seguir ciertas condiciones preconcebidas.”

NUEVAS FRONTERAS
Con una curiosidad ilimitada ante los fenómenos de la naturaleza, Richard Feynman hizo contribuciones relevantes en diversos campos de la física y también fue un excelente divulgador, capaz de transmitir su pasión por la ciencia. De una intuición extraordinaria, buscaba siempre abordar los problemas de la física de manera diferente de la de sus colegas, quería presentar las cuestiones conocidas fuera de los caminos ya trillados.

La historia cuenta que durante una reunión de la Sociedad Americana de Física de la división de la Costa Oeste, en 1959, Feynman ofreció por primera vez una visión de la tecnología totalmente nueva, imaginando enciclopedias escritas en la cabeza de un pin. “Hay mucho sitio al fondo”, dijo en aquella célebre conferencia. Pero el fondo al que se refería no era el de la abarrotada sala de actos. Hablaba de otro fondo: el de las fronteras de la física, el mundo que existe a escala molecular, atómica y subatómica.

Un Visionario: Por primera vez, alguien pedía investigación para hacer cosas como escribir todos los libros de la Biblioteca del Congreso en una pieza plástica del tamaño de una mota de polvo, miniaturizar las computadoras, construir maquinarias de tamaño molecular y herramientas de cirugía capaces de introducirse en el cuerpo del paciente y operar desde el interior de sus tejidos.

La conferencia de Feynman está considerada como una de las más importantes y famosas de la historia de la física, que hoy cobra una vigencia no prevista en aquel entonces. Por eso muchos científicos consideran que Richard Feynman marca de algún modo el nacimiento de la nanotecnología, ciencia que se aplica a un nivel de nanoescala, esto es, unas medidas extremadamente pequeñas, “nanos”, que permiten trabajar y manipular las estructuras moleculares y sus átomos.

El futuro es impredecible: A pesar de que Feynman ignoraba en aquel entonces la capacidad de los átomos y las moléculas de unirse en estructuras complejas guiadas por sus interacciones físicas y químicas (algo muy presente hoy en día a escala nanométrica), queda su impresionante clarividencia en saber identificar en la naturaleza un abundante depósito de recursos, poniendo de manifiesto al mismo tiempo su confianza en el carácter ilimitado de la creatividad humana.

PORQUE SE LO RECUERDA:

  1. Es considerado una de las figuras pioneras de la nanotecnología, y una de las primeras personas en proponer la realización futura de las computadoras cuánticas.
  2. Su forma apasionada de hablar de física lo convirtió en un conferencista popular; muchas de sus charlas han sido publicadas en forma de libro, e incluso grabadas para la televisión.
  3. Feynman fue asignado al comité de investigación de la explosión en vuelo del transbordador de la NASA Challenger, en 1986. Demostró que el problema había sido un equipo defectuoso y no un error de un astronauta.
  4. Entre sus trabajos se destaca la elaboración de los diagramas de Feynman, una forma intuitiva de visualizar las interacciones de partículas atómicas en electrodinámica cuántica mediante aproximaciones gráficas en el tiempo.

Cronología:
NACIMIENTO: Richard Feymann nació el 11 de mayo en Nueva York. Descendiente cíe judíos rusos y polacos, estudiu física cu el Instituto Tecnológico de Massa-chusetts v se doctoró en la Universidad de Priiiceton.

PROYECTO MANHATTAN Participó en el proyecto Manhattan, que dio origen a la primera bomba atómica. Posteriormente, en 1950, fue nombrado titular de la cátedra de física teórica en el California Institute of Technology (foto).

PREMIO NOBEL: Recibió el Nobel de Física junto con J. Schwinger y S. Tomonaga, por sus trabajos en electrodinámica cuántica. Se mostró cómo abordar el estudio cuántico y relativista de sistemas con cargas eléctricas.

INTRODUCCIÓN AL CONCEPTO DEL QUARK: Trabajó en el acelerador de partículas de Stanford, período en el que introdujo la teoría de I partones, hipotéticas partículas localizadas en el núcleo atómico que daría pie más tarde al concepto de quark.

MUERTE: Tras luchar denodadamente durante cinco años con un cáncer abdominal, Feynman falleció el 15 de febrero, dos semanas después de dictar su última exposición como docente: su última clase versó sobre la curvatura espacio-temporal.

Fuente Consultada:Gran Atlas de la Ciencia La Materia National Geographic – Edición Clarín –

Historia de Ciencia Tecnica Tecnologia Curiosidades y Avances

Teoría de la Relatividad
Anécdotas Matemáticas
Tres Grandes Matemáticos
Ideas Geniales De Las Ciencias
Inventos Geniales
Medición Radio Terrestre En La Antigüedad
El Número Pi
El Átomo
La Partículas Elementales del la Materia
El Sistema Solar
Astronomía Para Principiantes
Conceptos Informáticos
La Vida de las Estrellas
El Genoma Humano
Estudio del Cuerpo Humano
Seres Humanos en el Espacio
Humanos en el Fondo del Mar
Los Tres Problemas Griegos
La Misión Apolo XI
 El Big Bang
 SQL Para Bases de Datos
 Los Efectos de Una Explosión Nuclear
 El Agua Potable
 Hidrógeno: El Combustible del Futuro
 El Planeta Sedna o Planetoide Sedna?
 La Energía Nuclear y Sus Usos
 El Petróleo:Una Noble Sustancia
 El Movimiento De Los Satélites Artificiales
 Porque hay rozamiento entre dos superficies?
 Consultas En Un Diccionario Medico Etimológico
 Internet y la WEB
 La Inteligencia Humana (Con Un Test)
 Dos Bellos Teoremas (La Raíz de 2 y Los 5 Sólidos Pitagóricos)
 Tres Conceptos Físicos Modernos
 Efecto Fotoeléctrico-Radiación Cuerpo Negro-El Cuanto de Energía
 Conceptos Básicos de Cohetería Moderna
Curiosas Cuestiones Físicas Explicadas Por Yakov Perelman
Tres Principios Físicos Básicos
Pascal-Arquímedes-Bernoulli
Hormigones y Morteros-Cálculo de Materiales por m3
 Centrales Generadoras de Energía
 Los Combustibles Fósiles
 La Célula y La Clonación
 Experimento De Las Esferas de Maldemburgo
 Teoría del Campo Unificado
 La Presión Atmosférica y La Experiencia de Torricelli
 La Teoría Cinética de los Gases
 Fórmula Matemática de la belleza Universal
 Método Gráfico (árabe) Para Resolver Una Ecuación de 2° Grado
 La Inteligencia Artificial
 La Inmunidad Humana
 Motores de Combustión Interna y Eléctricos
 Pilas y Baterías – Principio Físico de Funcionamiento
 Bell o Meucci Quien inventó el teléfono?
 Las Vacunas
 Las Vitaminas
 La Poliomielitis
 La Leyes de Kepler
 Eclipses de Sol y de Luna
 La Medición del la velocidad de la Luz
 Nuestra Querida Estrella: El Sol
 Las Leyes de la Mecánica Clásica de Newton
 Las Leyes del Péndulo Físico
 La Matemática en el Siglo XX – Desafíos Sin Resolver
 Aprende a Resolver Una Ecuación de 2do. Grado
 A que llamamos el pensamiento lateral? Problemas
 Desalinizar El Agua de Mar
 La Economía Como Ciencia
 Conceptos Básicos Sobre La Ciencia
 Teoría de la Deriva de los Continentes
 La Lucha contra las infecciones: los antibióticos
 Últimos avances científicos en medicina (2007)
 La Era Espacial: Las Misiones Espaciales
 Teorías Físicas Que Fracasaron
 Descubriendo Nuevos Metales en el Siglo XVII
 El Experimento del Siglo XXI: “La Máquina de Dios”
 Enanas Blancas, Neutrones y Agujeros Negros

 

Software Calculo de Esfuerzos en Vigas Corte y Momento Flector

USO DEL SOFTWARE ARQUIMEDES

  • Debes ingresar la longitud de la viga
  • Elegir el tipo de carga e ingresar los datos de la misma
  • Puedes ir sumando cargas o distintos estados
  • Si es un tramo de una viga continua, puedes ingresar los momentos en los extremos
  • Pulsando sobre los botones de mto. flector y corte puede ver los diagramas
  • Puedes visualizar e imprimir los diagramas

Picar aquí para comenzar la descarga

Bajar Complementos

Es una versión de prueba, pero ideal para estudiantes de ingeniería
(en las vigas simplemente apoyadas puede aparecer un mínimo momento flector en uno de los extremos, pero debes considerarlo como cero)

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar Software Descargar Complementos

Ver También: Método de Cross Para Vigas

Esfuerzos en una Viga Isotática Online

Volver a Ingeniería Civil

 

Ver Tambien: Cross Para Vigas

Fuerza de rozamiento Importancia Fuerza Concepto Definicion

IMPORTANCIA DE LA FUERZA DE ROZAMIENTO

vida en condicones extremas

Si no existiera rozamiento
Ya hemos visto lo diversas e inesperadas que son las formas en que se manifiesta el rozamiento a nuestro alrededor. El rozamiento toma parte muy importante incluso allí donde nosotros ni lo sospechamos. Si el rozamiento desapareciera repentinamente, muchos de los fenómenos ordinarios se desarrollarían de formas completamente distintas.

El papel del rozamiento fue descrito de una manera muy pintoresca por el físico francés Guillaume: “Todos hemos tenido ocasión de salir a la calle cuando ha helado. !Cuánto trabajo nos ha costado evitar las caídas! ¡Cuántos movimientos cómicos tuvimos que hacer para poder seguir en pie! Esto nos obliga a reconocer que, de ordinario, la tierra por que andamos posee una propiedad muy estimable, gracias a la cual podemos conservar el equilibrio sin gran esfuerzo.

Esta misma idea se nos ocurre cuando vamos en bicicleta por un pavimento resbaladizo o cuando un caballo se escurre en el asfalto y se cae. Estudiando estos fenómenos llegamos a descubrir las consecuencias a que nos conduce el rozamiento.

Los ingenieros procuran evitar el rozamiento en las máquinas, y hacen bien. En la Mecánica aplicada se habla del rozamiento como de un fenómeno muy pernicioso, y esto es cierto, pero solamente dentro de los límites de un estrecho campo especial. En todos los demás casos debemos estar agradecidos al rozamiento.

El nos da la posibilidad de andar, de estar sentados y de trabajar sin temor a que los libros o el tintero se caigan al suelo o de que la mesa resbale hasta toparse con algún rincón o la pluma se nos escurra de entre los dedos.

El rozamiento es un fenómeno tan difundido que, salvo raras excepciones, no hay que pedirle ayuda; él mismo nos la ofrece.

El rozamiento da estabilidad. Los albañiles nivelan el suelo de manera que las mesas y las sillas se quedan allí donde las ponemos. Si sobre una mesa colocamos platos, vasos, etc., podemos estar tranquilos de que no se moverán de sus sitios, a no ser que esto ocurra en un barco cuando hay oleaje.

Imaginémonos que el rozamiento se puede eliminar por completo. En estas condiciones, los cuerpos, tengan las dimensiones de una peña o las de un pequeño granito de arena, no podrán apoyarse unos en otros: todos empezarán a resbalar o rodar y así continuarán hasta que se encuentren a un mismo nivel. Si no hubiera rozamiento, la Tierra sería una esfera sin rugosidades, lo mismo que una gota de agua.”

A esto podemos añadir, que si no existiera el rozamiento los clavos y los tornillos se saldrían de las paredes, no podríamos sujetar nada con las manos, los torbellinos no cesarían nunca, los sonidos no dejarían de oírse jamás y producirían ecos sin fin, que se reflejarían en las paredes sin debilitarse.

Arriba, un trineo cargado sobre un camino de hielo; dos caballos arrastran una carga de 70 toneladas. Abajo, el camino de hielo; A, carril; B, deslizaderas del trineo; C, nieve apisonada; D, fundamento de tierra de la carretera

Las heladas nos dan siempre buenas lecciones de la gran importancia que tiene el rozamiento. En cuanto nos sorprenden en la calle nos sentimos incapaces de dar un paso sin temor a caernos. Como muestra instructiva reproducimos las noticias que publicaba un periódico en una ocasión (en diciembre de 1927):

“Londres, 21. Debido a la fuerte helada, el tráfico urbano y tranviario se ha hecho muy difícil en Londres. Cerca de 1 400 personas han ingresado en los hospitales con fracturas de brazos y piernas”.
“Cerca del Hyde Park chocaron tres automóviles y dos vagones del tranvía. Los automóviles resultaron totalmente destruidos por la explosión de la gasolina …”

“París, 21. La helada ha ocasionado en París y sus alrededores numerosos accidentes …”

Y sin embargo, el hecho de que el hielo ofrezca poco rozamiento puede ser útil para fines técnicos. Un ejemplo son los trineos ordinarios. Otra demostración aun más convincente son los llamados caminos de hielo, que se hacían para transportar los leños desde el lugar de la tala hasta el ferrocarril o hasta el punto de lanzamiento a un río para su transporte por flotación. Por estos caminos , que tienen una especie de raíles lisos helados, un par de caballos puede arrastrar un trineo cargado con 70 toneladas de troncos.

Fuente Yakov Perelman
Física Recreativa

Ir al Menú de Cuestiones Físicas

La fuerza de gravedad, es grande? Fuerza de Atraccion Terrestre

LA FUERZA DE GRAVEDAD, ¿CUÁN GRANDE ES?…

vida en condicones extremas

¿Es grande la fuerza de la atracción?
“Si la caída de los cuerpos no fuera una cosa que vemos a cada instante, sería para nosotros el fenómeno más asombroso”, escribía el célebre astrónomo francés Arago. La costumbre hace que el hecho de que la Tierra atraiga a todos los cuerpos nos parezca un fenómeno natural y ordinario. Pero cuando se nos dice que los cuerpos también se atraen entre sí nos resistimos a creerlo, porque en las condiciones normales de nuestra vida no vemos nada semejante.

Efectivamente, ¿por qué en torno nuestro no se manifiesta constantemente, en las circunstancias normales, la ley de la atracción universal? ¿Por qué no vemos cómo se atraen entre sí las mesas, las sandías, las personas?.

Porque cuando los objetos son pequeños la fuerza de atracción que ejercen es muy pequeña.

Citaré un ejemplo ilustrativo. Dos personas que se encuentren a dos metros de distancia entre sí se atraen mutuamente, pero la fuerza de esta atracción es insignificante. Suponiendo que estas dos personas tienen un peso medio, la atracción será de 1/100 de miligramo. Esto quiere decir que estas dos personas se atraen mutuamente con la misma fuerza con que una pesita de 1/100.000 de gramo presiona sobre el platillo de una balanza.

Solamente las balanzas de extraordinaria sensibilidad de los laboratorios de investigación pueden apreciar un peso tan insignificante.  


La atracción del Sol hace que se curve la trayectoria de la Tierra E. La inercia hace que el planeta tienda a seguir la línea tangente ER

Claro está que esta fuerza no puede hacer que nos movamos del sitio, puesto que lo impide el rozamiento entre las suelas de nuestros zapatos y el suelo. Para que nos movamos, estando sobre un suelo de madera, por ejemplo (la fuerza de rozamiento entre las suelas de los zapatos y el suelo será en este caso igual al 30% del peso de nuestro cuerpo) hace falta que sobre nosotros actúe una fuerza mínima de 20 kg.

Resulta cómico comparar esta fuerza con la de una centésima de miligramo, que es la que ejerce la atracción. Un miligramo es la milésima parte de un gramo, y un gramo es la milésima parte de un kilogramo; por lo tanto, 0,01 mg. será… ¡la mitad de la mil millonésima parte de la fuerza necesaria para hacer que nos movamos del sitio! Siendo así, ¿qué tiene de particular que, en condiciones normales, no nos demos ni la más leve cuenta de la atracción entre los cuerpos terrestres?

Si no existiera el rozamiento sería otra cosa; entonces nada impediría que hasta la más leve atracción provocara la aproximación de los cuerpos entre sí. Pero en este caso la aproximación mutua de dos personas producida por una fuerza de atracción de 0,01 mg sería también muy lenta, es decir, se realizaría con unavelocidad insignificante.

Por medio de cálculos se puede demostrar que, si no existiera rozamiento, dos personas situadas a 2 m de distancia se aproximarían entre sí (por influjo de la atracción mutua) 3 cm durante la primera hora, 9 cm durante la segunda y 15 cm durante la tercera. El movimiento de aproximación se iría acelerando, pero las dos personas no llegarían a juntarse antes de cinco horas.

La atracción entre los cuerpos terrestres se puede notar en aquellos casos en que la fuerza de rozamiento no es un obstáculo, es decir, cuando los cuerpos no se mueven. Un peso colgado de un hilo se halla sometido a la atracción de la Tierra (por eso el hilo está dirigido verticalmente), pero si cerca de este peso se encuentra un cuerpo cuya masa sea grande, aquél será atraído por éste y el hilo se desviará ligeramente de su posición vertical y tomará la dirección de la resultante entre la atracción de la Tierra y la del cuerpo, que será relativamente muy pequeña.

La desviación de una plomada en las proximidades de una gran montaña fue observada por vez primera en el año 1775 en Escocia, por Maskelyne, quien comparó la dirección de dicha plomada con la del polo celeste, por los dos lados de una misma montaña. Posteriormente se realizaron otros experimentos más perfectos, utilizando balanzas especiales, que permitieron determinar exactamente la fuerza de la atracción.

Como hemos visto, la fuerza de la atracción entre masas pequeñas es insignificante. A medida que aumenten las masas crece la atracción proporcionalmente al producto de éstas. Pero hay algunas personas propensas a exagerar esta fuerza. Hasta un científico, aunque no físico, sino zoólogo, intentó demostrarme en una ocasión que la atracción que suele observarse entre los barcos se debe a la atracción universal.

Por medio de cálculos no es difícil demostrar que la atracción universal no tiene nada que ver con esto. Dos navíos de línea de 25.000 t cada uno que se encuentren a 100 m de distancia entre sí se atraerán mutuamente con una fuerza total de… 1400 g. Lógicamente esta fuerza es incapaz de producir el más mínimo acercamiento entre dichos barcos. La causa verdadera de la misteriosa atracción que existe entre los barcos es otra, que explicaremos en el capítulo dedicado a las propiedades de los líquidos.

Pero la fuerza de atracción, que es tan insignificante entre masas pequeñas, se hace muy sensible cuando se trata de masas tan colosales como las de los cuerpos celestes. Baste decir que incluso un planeta tan alejado de nosotros como Neptuno, que gira casi en el límite del sistema solar, nos manda su “saludo” atrayendo a la Tierra con una fuerza de… ¡18 millones de toneladas! A pesar de la enorme distancia que nos separa del Sol, la Tierra se mantiene en su órbita gracias a su atracción.

Si la atracción que ejerce el Sol desapareciera por cualquier causa, la Tierra, siguiendo una dirección tangencial a su órbita actual, se lanzaría a recorrer eternamente la profundidad insondable del espacio cósmico.  

Fuente Yakov Perelman
Física Recreativa

Ir al Menú de Cuestiones Fisicas

Que ocurre cuando volando alto? Yakov Perelman

Volar a las alturas en un Estratostato

atmosfera


En los artículos anteriores hemos viajado mentalmente por las entrañas de la Tierra. Nos ha ayudado a realizar estos viajes la fórmula que relaciona la presión del aire con la profundidad. Ahora vamos a tener el valor de remontarnos a las alturas y aplicando esta misma fórmula veremos como varía la presión del aire en ellas. En este caso la fórmula toma el aspecto siguiente:

p= 0,999 h/8


donde p es la presión en atmósferas y h es la altura en metros. El número decimal 0,999 ha sustituido al 1,001, porque cuando nos trasladamos hacia arriba 8 m la presión no aumenta en 0,001, sino que disminuye en 0,001.
Para empezar resolvamos el problema siguiente: ¿A qué altura hay que elevarse para que la presión del aire se reduzca a la mitad?
Para esto haremos p =0,5 en nuestra fórmula y buscaremos la altura h . Tendremos la ecuación:

0,5 = 0,999 h/8


cuya resolución no presenta dificultades para los lectores que sepan manejar los logaritmos. La respuesta h =5,6 km determina la altura a la cual la presión del aire debe reducirse a la mitad.

Sigamos subiendo tras los valerosos aeronautas soviéticos que en los estratostatos “URSS” y “OAX – 1” establecieron en 1933 y 1934 respectivamente los records del mundo de altura, el primero con una marca de 19 km y el segundo con la de 22 km. Estas altas regiones de la atmósfera se hallan ya en la llamada “estratosfera”.

Por esto, los globos en que se realizaron estas ascensiones no se llaman aeróstatos, sino estratostatos.

Calculemos cuál es la presión atmosférica a esas alturas.

Para la altura de 19 km hallamos que la presión del aire debe ser : 

0,999 19.000/8 = 0,095 atm = 72 mm.


Para los 22 km de altura

0,999 22.000/8 = 0,066 atm = 50 mm.


Pero si leemos las notas de los “estratonautas” veremos que a las alturas antedichas se indican otras presiones. A 19 km de altura la presión era de 50 mm y a la de 22 km, de 45 mm.

¿Por qué no se cumplen los cálculos? ¿En qué consiste nuestro error?

La ley de Mariotte para los gases es perfectamente aplicable a estas presiones tan bajas. Pero cometimos un error al considerar que la temperatura del aire es igual en todo el espesor de los 20 km, cuando en realidad desciende notablemente al aumentar la altura.

Se considera que, por término medio, la temperatura desciende 6,5° por cada kilómetro de elevación.

Así ocurre hasta los 11 km de altura, donde es igual a 56° bajo cero. Después, durante un espacio considerable permanece invariable. Si tenemos en cuenta esta circunstancia (para esto no son suficientes los procedimientos de las matemáticas elementales), se obtiene un resultado que concuerda mucho mejor con la realidad.

Por esta misma razón, los resultados de los cálculos que antes hicimos, relativos a la presión del aire a grandes profundidades, también deben considerarse solamente como aproximados.

Para terminar debemos decir que el “techo” alcanzado por el hombre ahora es mucho más alto. Muchos aviones fabricados en serie vuelan ya a 25-30 kilómetros de altura. Ya en el año 1961 los aviadores soviéticos establecieron el récord del mundo de altura con una marca de 34,7 km.  

Fuente Yakov Perelman Física Recreativa

Ir al Menú de Cuestiones Físicas

 

Como es la vida adentro de una mina profunda. Yakov Perelman

La Vida Adentro de una Mina Profunda

mina profunda

¿Quién ha llegado más cerca del centro de la Tierra? (En realidad, no en las novelas.) Los mineros, naturalmente. Ya sabemos  que la mina más profunda se encuentra en Africa del Sur. Su profundidad es mayor de 3 km.

Al decir esto tenemos en cuenta no la penetración de los taladros de perforación de pozos, que han alcanzado hasta 7,5 km, sino las profundidades a que han penetrado los propios hombres. El escritor francés, doctor Luc Durtain que visitó un pozo de la mina Morro Velho, cuya profundidad es de cerca de 2.300 m, escribía:

“Los célebres yacimientos auríferos de Morro Velho se encuentran a 400 Km. de Río de Janeiro. Después de 16 horas de viaje en tren por sitios montañosos, descendemos a un valle profundo rodeado por la selva. Una compañía inglesa explota aquí filones auríferos a una profundidad a la que antes nunca había descendido el hombre.”

El filón va oblicuamente hacia abajo. La mina lo sigue formando seis pisos. Pozos verticales y galerías horizontales. Un hecho que caracteriza extraordinariamente a la sociedad contemporánea es que la mina más profunda que se ha abierto en la corteza terrestre, el intento más intrépido hecho por el hombre para penetrar en las entrañas de la Tierra, es para buscar oro.
Póngase la ropa de trabajo de lona y la cazadora de cuero. Tenga cuidado; cualquier piedrecita que caiga por el pozo puede herirle. Nos va a acompañar uno de los “capitanes” de la mina. Entra usted en la primera galería. Está bien iluminada. Un viento helado a 4° le hace temblar; es la ventilación para refrigerar las profundidades de la mina.

Después de descender en una estrecha jaula metálica por el primer pozo hasta una profundidad de 700 m, llega usted a la segunda galería. Baja usted por el segundo pozo. El aire está caliente. Ya está usted más bajo que el nivel del mar.

A partir del pozo siguiente el aire quema la cara. Sudando a chorros y agachado, porque el techo es bajo, avanza usted en dirección al ruido de las máquinas perforadoras. Envueltos en un polvo denso trabajan unos hombres semidesnudos; el sudor chorrea por sus cuerpos; las botellas de agua pasan de mano en mano. No toque usted los trozos de mineral recién desprendidos, están a 57° de temperatura.

¿Y para qué esta realidad tan espantosa y abominable?… Cerca de 10 kilogramos de oro al día …”

Al describir las condiciones físicas que existían en el fondo de la mina y el grado de explotación a que estaban sometidos los mineros, el autor francés menciona la alta temperatura pero nada dice de que la presión del aire fuera grande.

Calculemos cuál será esta presión a 2.300 m de profundidad. Si la temperatura fuera la misma que en la superficie de la tierra, de acuerdo con la fórmula que conocemos, la densidad del aire aumentaría en

(1,001) 2.300/8 = 1,33 veces.

Pero en realidad la temperatura no permanece invariable, sino que se eleva. Por esto la densidad del aire no aumenta tanto, sino menos.

En definitiva, tenemos que la diferencia entre la presión del aire en el fondo de la mina y en la superficie de la tierra no es más que un poco mayor que la que existe entre la del aire caliente del verano y la del aire frío del invierno.

Por esto se comprende que esta circunstancia no llamase la atención del visitante de la mina.

En cambio tiene mucha importancia la notable humedad del aire a estas mismas profundidades, que hace que la permanencia en ellas sea insoportable cuando la temperatura es alta.

En una de las minas de Africa del Sur (Johannesburg), de una profundidad de 2.553 m, a 50° de temperatura la humedad llega al 100%; en esta mina se instaló lo que se llama “clima artificial”. La acción refrigerante de esta instalación equivale a 2.000 t de hielo.  

Fuente Consultada:
Física Recreativa de Yakov Perelman

Ir al Menú de Cuestiones Físicas

 

El Mar Muerto, donde nadie de ahoga Porque? Caracteristicas

EL MAR DONDE NADIE SE AHOGA,…¿POR QUE?

vida en condicones extremas

El Agua Salada del Mar en El Que No Se Puede Ahogar Nadie
Este mar existe y se encuentra en un país que conoce la humanidad desde los tiempos más remotos. Se trata del célebre Mar Muerto de Palestina. Sus aguas son extraordinariamente saladas, hasta tal punto que en él no puede existir ningún ser vivo. El clima caluroso y seco de Israel hace que se produzca una evaporación muy intensa en la superficie del mar. Pero se evapora agua pura, mientras que la sal se queda en el mar y va aumentando la salinidad de sus aguas.

Esta es la razón de que las aguas del Mar Muerto contengan no un 2 ó 3 por ciento (en peso) de sal, como la mayoría de los mares y océanos, sino un 27 o más por ciento. Esta salinidad aumenta con la profundidad. Por lo tanto, una cuarta parte del contenido del Mar Muerto está formada por la sal que hay disuelta en el agua.

La cantidad total de sal que hay en este mar se calcula en 40 millones de toneladas.

La gran salinidad del Mar Muerto determina una de sus peculiaridades, que consiste en que sus aguas son mucho más pesadas que el agua de mar ordinaria. Hundirse en estas aguas es imposible.

El cuerpo humano es más liviano que ellas.
El peso de nuestro cuerpo es sensiblemente menor que el de un volumen igual de agua muy salada y, por consiguiente, de acuerdo con la ley de la flotación, el hombre no se puede hundir en el Mar Muerto, al contrario, flota en su superficie lo mismo que un huevo en agua salada (aunque en el agua dulce se hunde).

Mark Twain estuvo en este lago-mar y después escribió humorísticamente las extrañas sensaciones que él y sus compañeros experimentaron bañándose en sus aguas:

“Fue un baño muy divertido. No nos podíamos hundir. Se podía uno tumbar a lo largo sobre la espalda y cruzar los brazos sobre el pecho y la mayor parte del cuerpo seguía sobre el agua. En estas condiciones se podía levantar la cabeza por completo.

Se puede estar tumbado cómodamente sobre la espalda, levantar las rodillas hasta el mentón y abrazarlas con las manos. Pero en este caso se da la vuelta, porque la cabeza resulta más pesada. Si se pone uno con la cabeza hundida y los pies para arriba, desde la mitad del pecho hasta la punta de los pies sobresale del agua; claro que en esta posición no se puede estar mucho tiempo.

Si se intenta nadar de espaldas no se avanza casi nada, ya que las piernas no se hunden en el agua y sólo los talones encuentran apoyo en ella. Si se nada boca abajo no se va hacia adelante, sino hacia atrás.

En el Mar Muerto el equilibrio del caballo es muy inestable, no puede ni nadar ni estar derecho, inmediatamente se tumba de costado”.

En la figura de abajo se puede ver un bañista que descansa comodísimamente sobre las aguas del Mar Muerto. El gran peso específico del agua le permite estar en esta posición, leer el libro y protegerse con la sombrilla de los ardientes rayos del Sol.

El agua de Kara-Bogas-Gol (golfo del Mar Caspio) tiene estas mismas propiedades y las del lago Eltón no son menos saladas, puesto que contienen un 27% de sal.

Un bañista en el Mar Muerto.  Mar Muerto, lago salino situado entre Israel, Cisjordania y Jordania. Con una profundidad oficial que alcanza los 408 m bajo el nivel del mar (según unas mediciones realizadas en 2006, alcanzaría los 418 m), se considera el lugar más bajo de la tierra emergida, sin tener en cuenta la sima antártica Bentley, cubierta hoy día por hielo.

Algo parecido sienten los enfermos que toman baños salinos. Cuando la salinidad del agua es muy grande, como ocurre, por ejemplo, con las aguas minerales de Staraia Russa, los enfermos tienen que hacer no pocos esfuerzos para mantenerse en el fondo del baño.

Yo he oído como una señora que tomó los baños de Staraia Russa se quejaba de que el agua “la echaba materialmente fuera del baño”. Según ella la culpa de esto la tenía … la administración del balneario.

El grado de salinidad de las aguas de los distintos mares oscila un poco y a esto se debe que los barcos no se sumerjan en ellas hasta un mismo sitio. Algunos de nuestros lectores habrán visto el signo que llevan los barcos cerca de la línea de flotación, llamado “marca de Lloyd”, que sirve para indicar el nivel límite de la línea de flotación en aguas de distinta densidad.

Por ejemplo, la marca representada en la fig. 52 indica los niveles límite de la línea de flotación siguientes:  

en agua dulce (Fresh Water)

FW

en el Océano Indico (India Summer)

IS

en agua salada en verano (Summer)

S

en agua salada en invierno (Winter)

W

en el Atlántico del norte en invierno (Winter North Atlantik)

WNA

Antes de terminar este artículo quiero advertir que existe una variedad de agua que aún estando pura, es decir, sin contener otros cuerpos, es sensiblemente más pesada que la ordinaria. Este agua tiene un peso específico de 1,1, es decir, es un 10% más pesada que la común, por consiguiente, en una piscina con agua de este tipo lo más probable es que no se ahogue nadie, aunque los que se bañen no sepan nadar.

Este agua se llama agua “pesada” y su fórmula química es D 2 0 (el hidrógeno que entra en su composición está formado por átomos dos veces más pesados que los del hidrógeno ordinario. Este hidrógeno se designa con la letra D). El agua “pesada” se encuentra disuelta en el agua común en cantidades muy pequeñas. Un cubo de agua potable contiene cerca de 8 g de agua “pesada”.  

Disco de carga máxima en el costado de un buque. Las marcas se hacen al nivel de la línea de flotación. Para que se vean mejor se muestran aparte aumentadas. El significado de las letras se explica en el texto.

El agua pesada de fórmula D 2 O (hay 17 tipos de agua pesada, cuyas composiciones son distintas) se obtiene actualmente casi pura, puesto que la cantidad de agua ordinaria que hay en ella constituye aproximadamente un 0,05%. Este agua se emplea mucho en la técnica atómica, especialmente en los reactores atómicos. Se obtiene en grandes cantidades del agua ordinaria por procedimientos industriales

Fuente Yakov Perelman
Física Recreativa

Ir al Menú de Cuestiones Físicas

 

Curiosa Situacion Física-Vuelo en Globo-Yakov Perelman

CURIOSA SITUACIÓN FÍSICA PARA VOLAR ECONÓMICO

vida en condicones extremas

El procedimiento mas barato de viajar:
El ingenioso escritor francés del siglo XVII, Cyrano de Bergerac cuenta en su “Historia Cómica de los Estados e Imperios de la Luna” (1652), entre otras cosas, un caso sorprendente que, según dice, le ocurrió a él mismo.

Un día, cuando estaba haciendo experimentos de Física, fue elevado por el aire de una forma incomprensible con sus frascos y todo. Cuando al cabo de varias horas consiguió volver a tierra quedó sorprendido al ver que no estaba ni en Francia, ni en Europa, sino en América del Norte, ¡en el Canadá!

¿Se puede ver desde un aeróstato cómo gira la Tierra? (El dibujo no se atiene a escala)

No obstante, el escritor francés consideró que este vuelo transatlántico era completamente natural. Para explicarlo dice que mientras el “viajero a la fuerza” estuvo separado de la superficie terrestre, nuestro planeta siguió girando, como siempre, hacia oriente, y que por eso al descender sentó sus pies no en Francia, sino en América.

¡Que medio de viajar más fácil y económico! No hay más que elevarse sobre la superficie de la Tierra y mantenerse en el aire unos cuantos minutos para que al descender nos encontremos en otro lugar, lejos hacia occidente.

¿Para qué emprender pesados viajes por tierra o por mar, cuando podemos esperar colgando en el aire hasta que la misma Tierra nos ponga debajo el sitio a donde queremos ir?.

Desgraciadamente este magnífico procedimiento es pura fantasía.

En primer lugar, porque al elevarnos en el aire seguimos sin separarnos de la esfera terrestre; continuamos ligados a su capa gaseosa, es decir, estaremos como colgados en la atmósfera, la cual también toma parte en el movimiento de rotación de la Tierra alrededor de su eje.

El aire (o mejor dicho, su capa inferior y más densa) gira junto con la Tierra y arrastra consigo todo lo que en él se encuentra: las nubes, los aeroplanos, los pájaros en vuelo, los insectos, etc., etc.

Si el aire no tomara parte en el movimiento de rotación de la Tierra sentiríamos siempre un viento tan fuerte, que los huracanes más terribles parecerían ligeras brisas comparadas con él (La velocidad del huracán es de 40 m por segundo o 144 km por hora.

Pero la Tierra, en una latitud como la de Leningrado, por ejemplo, nos arrastraría a través del aire con una velocidad de 240 m por segundo, es decir, de 828 km por hora, y en la región ecuatorial, por ejemplo, en Ecuador, esta velocidad sería de 465 m por segundo, o de 1.674 km por hora).

Porque lo mismo da que estemos nosotros fijos en un sitio y que el aire pase junto a nosotros o que, por el contrario, sea el aire el que está quieto y nosotros los que nos movemos dentro de él; en ambos casos el viento será igual de fuerte. Por ejemplo, un motociclista que avance a una velocidad de 100 km por hora sentirá un viento fuerte de frente aunque el aire esté en calma.

En segundo lugar, aunque pudiéramos remontarnos hasta las capas superiores de la atmósfera o la Tierra no estuviera rodeada de aire, el procedimiento de viajar económicamente ideado por el satírico francés sería también irrealizable.

Efectivamente, al separarnos de la superficie de la Tierra en rotación continua seguiríamos, por inercia, moviéndonos con la misma velocidad que antes, es decir, con la misma velocidad a que se movería la Tierra debajo de nosotros.

En estas condiciones, al volver a la Tierra nos encontraríamos en el mismo sitio de donde partimos, de igual manera que cuando damos saltos dentro de un vagón de ferrocarril en marcha caemos en el mismo sitio. Es verdad que por inercia nos moveremos en línea recta (tangencialmente a la superficie terrestre), mientras que la Tierra seguiría un arco debajo de nosotros, pero tratándose de lapsos de tiempo pequeños esta diferencia no se nota.

Fuente Yakov Perelman Física Recreativa

Ir al Menú de Cuestiones Físicas

 

Metodo de Cross Calculo de esfuerzos en Porticos Calculo de Esfuerzos

USO DEL SOFTWARE COLUMBIA PARA PÓRTICOS

1 Ingresas las cantidad de pisos y tramos de tu pórtico (ver ejemplo mas abajo)
2 Ingresas las rigideces de cada barra según corresponda sus vínculos
3 Ingresas los vínculos de las barras externas (empotradas o apoyadas)
4 Ingresas las cargas verticales y horizontales
5 Calculas los momentos finales de empotramiento (picas sobre un botón)
6 Ingresas la altura de cada piso
7 Calculas los esfuerzos de sujeción por piso (picas sobre un botón)
8  Puede visualizar e imprimir los datos obtenidos

(*) El programa tiene un mini manual online de uso para consulta

Metodo de Cross Calculo de esfuerzos en Porticos Calculo de Esfuerzos

Metodo de Cross Calculo de esfuerzos en Porticos Calculo de Esfuerzos

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar Software Descargar Complementos

Ver También: Método de Cross Para Vigas

Volver a Ingeniería Civil

Interseccion Circunferencia y Recta Geometria Analitica Conicas

CALCULADORA DE INTERSECCION DE CIRCUNFERENCIA Y RECTA

CIRCUNFERENCIA: Un circunferencia está formada por una sucesión de puntos que están a la misma distancia de un punto que se llama centro. Existen muchas partes en un círculo.  El radio es un segmento con un extremo en el centro y el otro en el círculo. La cuerda es cualquier segmento con ambos extremos en el círculo. Eldiámetro es una cuerda que pasa por el centro del círculo.

La secante es una línea que interseca dos veces el círculo, y la tangente interseca el círculo en exactamente un solo punto. La tangente es perpendicular al radio en su punto de tangencia. El perímetro de un círculo se llama circunferencia y es igual a la distancia alrededor del círculo.

La figura de abajo muestra unas cuantas partes más del círculo que se emplearán posteriormente.

interseccion circulo y recta

El ángulo central es un ángulo con el vértice en el centro del círculo. El arco es una sección de un círculo y a menudo se le describe en términos del tamaño de su ángulo central. Entonces, podríamos referirnos a un arco de 20° o un arco de Pi/9 rad. (Pi=3.14)  Aclaramos que 1 rad=57° 18´ aprox. y es el ángulo correspondiente para que la longitud del arco sea igual al radio.

Un arco de longitud igual al radio es 1 rad. Un ángulo central divide el círculo en un arco menor y un arco mayor. También nos podemos referir a un arco por sus puntos extremos. En la figura, el arco menor se identifica como AB. El arco mayor se identifica como ABC, donde A y B son los puntos extremos y C es cualquier otro punto sobre el arco mayor. La longitud de un arco se denota colocando una m enfrente del nombre del arco. Entonces, mAB es la longitud de AB. Un sector es la región en el interior del círculo y está limitado por un ángulo central y un arco.

interseccion de circunferencia y recta

Ejemplo de una intersección entre una recta y una circunferencia, usando la aplicación de mas arriba:

Encontrar los puntos en los que la recta y = 2x – 10 corta al círculo con centro en punto de coordenadas (4, -2) y radio 4.472136. (este valor equivale a la raíz cuadrada de 20).

La ecuación del circulo es:

Y entonces se debe resolver el sistema de ecuaciones siguiente:

Resolviendo se obtiene que hay dos puntos de intersección de coordenadas: A (6,2) y B(2,-6)

Para hacerlo desde esta pagina usando el software de arriba, debe ingresar en Circunferencia C1 los valores en el siguiente orden:
radio= 4.47
x = 4
y = -2

Puede hacer clic en el Botón Graficar y observarás la circunferencia , y si deseas puedes cambiar el valor de la escala y volver a hacer clic en graficar para observar como se adapta al plano de trabajo.

Ahora para la recta se ingresan los dos puntos de pasos por ejemplo, cuando x=0, y=-10 y cuando x=2, y=0

Se vuelve a hacer clic en el Botón Graficar y en las casillas de abajo tendrás los valores de los puntos de intersección y la graficación correspondiente.

Tres principios basicos de la física Pascal Arquimides Bernoullie

principios basicos de la física principios basicos de la física principios basicos de la física
Blais Pascal Arquímedes Daniel Bernoullie

EL MODELO CIENTÍFICO: El hombre, desde tiempos remotos, observa los cambios que se producen en todas las cosas que le rodean. Tuvo conocimiento de que el Sol y la Luna se movían en el espacio, pero durante muchos años no pudo dar una explicación a este fenómeno. El camino para descifrar los secretos de la naturaleza es lento.

Los hombres han ido avanzando en la interpretación de estos y otros fenómenos de la naturaleza y, aunque desconocemos aún muchas cosas, el Universo físico del que formamos parte es objeto de estudio. Todas estas ramas del saber se llaman ciencias porque presentan un conocimiento sistemático de algún aspecto del mundo material, basado en la observación y en el razonamiento. Como la ciencia es demasiado amplia para ser estudiada y conocida desde una sola perspectiva se ha dividido en ramas relacionadas entre sí: la geología, la biología, la física, la química son las que llamamos ciencias de la naturaleza.

La geología estudia la Tierra y los fenómenos que ocurren en ella; la biología estudia los seres vivos; la física estudia las modificaciones experimentadas por los cuerpos que no afectan a su naturaleza o a su composición y la química estudia las modificaciones que varían la naturaleza de los cuerpos.

Una característica común a todas las ciencias de la naturaleza es que son ciencias experimentales, es decir, los conocimientos que se han ido acumulando han sido obtenidos mediante la experimentación sistemática. Este procedimiento se denomina método científico experimental. Las fases de este método de investigación en forma esquemática son las siguientes:
observación -s> experimentación -»ley científica -> teoría científica.

La observación. Es el examen atento de los fenómenos naturales. Ante ellos, el científico elabora una hipótesis, palabra que significa en realidad una idea que ha de ser comprobada. La experimentación. Consiste en la repetición sistemática del fenómeno observado en distintas circunstancias, analizando y estudiando los factores que influyen en él. La ley científica. Si el científico ha comprobado que existen regularidades de comportamiento, puede elaborar el enunciado de una ley científica que tenga un carácter general.

Cuando es posible se busca una expresión matemática que enuncie la ley. La teoría científica. Cuando sobre una determinada área concurren diversas leyes aparentemente independientes, se elabora una teoría científica que puede servir de guía para el descubrimiento de nuevas leyes. Todas las teorías tratan de explicar fenómenos observados y las causas que los provocan. Esto no quiere decir que no puedan ser modificadas, puede suceder que se tengan que corregir o ampliar, o en algunos casos rechazar teorías ya enunciadas.

Los métodos de investigación chocan a veces con la imposibilidad de acceder a los objetos que se pretende estudiar bien porque están demasiado alejados o porque son demasiado pequeños (astros, átomos, moléculas).

En estos casos los científicos tienen que encontrar un camino de investigación indirecto que les lleve, si es posible, al mismo fin. Para conseguirlo se han ideado modelos con los cuales puedan describir y explicar determinados fenómenos de forma Intuitiva. De la misma manera que una maqueta de un barco nos puede servir como modelo para compro- bar o experimentar determinados fenómenos sin tener que utilizar un barco real.

Los modelos creados por los científicos tienen que sufren cambios a medida que la ciencia avanza, incluso algunos  se han abandonado definitivamente. Ptolomeo. creó un modelo del Universo en el que la Tierra era el punto central y el Sol giraba a su alrededor. Este modelo era capaz de explicar muchas observaciones, pero se tuvo que abandonar cuando se conoció que los hechos no estaban de acuerdo con el modelo.

De forma análoga, la óptica es capaz de explicar diversos fenómenos de la luz, como la reflexión y la refracción, si adopta como modelo el que representa a la luz como un conjunto de rayos. Sin embargo tiene que adoptar un modelo diferente si quiere explicar otro tipo de fenómenos.

Esto nos indica que un modelo sólo es válido dentro de un campo de trabajo delimitado, y permite, dentro de este campo. hacer pronósticos de fenómenos que la experimentación tiene que confirmar después.

UN POCO DE HISTORIA SOBRE LAS INVESTIGACIONES

ARQUÍMEDES: La física de Aristóteles perjudicó a la ciencia en el curso de la Edad Media cuando sus conceptos fueron asimilados e impuestos a todo el mundo cristiano por Santo Tomás de Aquino. Durante los doscientos cincuenta años que siguieron a su muerte, Aristóteles fue ignorado por los grandes físicos del mundo antiguo: Arquímedes. Ctesibios y Herón de Alejandría. En efecto, estos tres genios fueron más hombres prácticos que soñadores, y puede decirse que el primero y mayor de todos ellos ha consagrado definitivamente la ruptura entre la metafísica y la física. Todo el mundo ha oído hablar del principio de Arquímedes: “Todo cuerpo sumergido en agua recibe de parte de este líquido un impulso de abajo a arriba igual al peso del volumen de agua que desaloja.” Aquí radica el fundamento de la hidrostática y sus aplicaciones han sido innumerables. Al salir Arquímedes del baño portador de las dos coronas de oro y plata que le habían servido para su experimento, muy bien podía recorrer las calles de Siracusa gritando “¡Eureka!”. Aquel día había efectuado realmente un gran descubrimiento.

Arquímedes no sólo redactó su famoso Tratado de los cuerpos flotantes, sino que también inventó el tornillo sinfín y los engranajes multiplicadores y de multiplicadores, y generalizó la teoría de la palanca. Nadie ignora esta famosa frase: “¡Dadme un punto de apoyo y levantaré el mundo!” Arquímedes fue igualmente un gran ingeniero. Cuando el ataque a Siracusa por la flota romana, hizo construir múltiples ingenios destinados a defender la ciudad: ballestas y catapultas que lanzaban flechas y piedras, grúas gigantescas que. lanzando un garfio por entre los aparejos de las trirremes, atraían a éstas hacia las rocas contra las que se estrellaban.

El resto de la flota romana fue incendiado por inmensos espejos parabólicos de bronce, prolijamente pulidos, que concentraban a distancia los rayos del sol siciliano sobre las galeras enemigas.

A pesar que el uso de la palanca como elemento de ayuda para mover pesos, se usa desde tiempos  prehistóricos, atribuimos a Arquímedes el mérito de haber enunciado el principio de la palanca, sin tomar en cuenta el tiempo que este mecanismo llevaba utilizándose antes de su época.

A Arquímedes también se le debe el principio de la flotabilidad, según el cual todo objeto sumergido en un fluido desaloja un volumen de fluido igual a su propio volumen. Esto abrió un camino a la medición del volumen, a la explicación de por qué unos cuerpos flotan y otros no, etcétera. Arquímedes captó de repente el principio cuando él mismo se sumergió en un baño público y se percató de que el nivel del agua ascendía.

La leyenda pretende que brincó fuera del baño y, desnudo como estaba, se fue corriendo a su casa gritando: «¡Eurekal ¡Eureka!» («¡Lo encontré! ¡Lo encontré!»). Le había sido propuesto el problema de averiguar si una corona de oro estaba adulterada con algún metal menos denso, pero se le impuso la condición de no dañar la corona. Para ello debía conocer el volumen, y el efecto de flotabilidad se lo revelaría. (Los antiguos griegos, por cierto, no se preocupaban por la desnudez, de modo que la conducta de Arquímedes no fue tan insólita como cabría imaginar.)

LAS EXPERIENCIAS DEL FÍSICO ALCALDE Y DE BLAS PASCAL
En 1654, Otto de Guericke, alcalde de Magdeburgo (Alemania), inventor de la primera bomba para hacer el vacío, realizó en presencia del emperador un experimento que causó enorme sensación en su época. Utilizó dos semiesferas (por eso se llama experiencia de los hemisferios de Magdeburgo) de metal, huecas, que podían unirse perfectamente. Su diámetro era de 55 cm. Estando llenas de aire, no había ninguna dificultad en separarlas. Luego hacía el vacío y enganchaba caballos que tiraban de cada hemisferio. Se necesitaron dieciséis caballos, ocho de cada lado, para poder separarlas.

Las experiencias de Torricelli llegaron a oídos de Blas Pascal, que en la misma época vivía en la ciudad de Rúan. Entusiasmado con las ideas del físico italiano, repitió las experiencias y se convenció de que aquél tenía razón. Además, aprovechando que en su villa se construían excelentes tubos de vidrio, hizo .construir uno de alrededor de once metros de largo, y realizó la experiencia de Torricelli, pero con agua, comprobando que alcanzaba una altura de 10,33 metros.

Debido a una disputa con físicos que sostenían todavía la vieja doctrina del horror al vacío, Pascal hizo esta experiencia hasta con vino, aplastando los argumentos de los adversarios.

Si la teoría de Torricelli es correcta, pensó Pascal, ¿qué debe ocurrir cuando se hace la experiencia de Torricelli a distintas alturas, subiendo una montaña, por ejemplo? La presión atmosférica debe ir disminuyendo, y por lo tanto la columna de mercurio, que al nivel del suelo tiene una altura de unos 76 cm, debe ir disminuyendo también.

Pascal decidió realizar el experimento, pero por su salud no pudo hacerlo personalmente. Envió a unos amigos, quienes ascendieron al Puy-de-Dome, en la Auvernia, en 1649. Con gran emoción, los expedicionarios comprobaron que, a medida que ascendían por la montaña, el nivel del mercurio bajaba. El descenso alcanzó unos 8 cm al llegar a la cima.

1738: Teoría cinética de los gases
Boyle había supuesto que los gases consistían en átomos ampliamente espaciados, pues esta particularidad explicaba el hecho de que los gases pudieran comprimirse. La noción fue ampliada por el matemático suizo Daniel Bernouilli (1700-1782). Consideró que los átomos que constituyen los gases estaban siempre en rápido y aleatorio movimiento, colisionando unos con otros y con las paredes del recipiente. (Esto se llama teoría cinética de los gases; cinético viene de la palabra griega que significa «movimiento».)

Si la temperatura se eleva, los átomos se desplazan con mayor rapidez y colisionan con más fuerza, y así se separan un poco más el uno del otro. Por esta razón el volumen se incrementa si se eleva la temperatura, y decrece si la temperatura baja, con tal de que la presión siga siendo la misma. Si se impide que el volumen varíe, la presión (la fuerza con que los átomos golpean las paredes) se incrementa al ascender la temperatura y desciende si la temperatura baja. Esta descripción resultó ser correcta, pero un tratamiento matemático adecuado del tema sólo se llevó a cabo 125 años más tarde.

Teorías Físicas Que Fracasaron