Teorema de Thales

Grandes Matematicos Griegos: Pitagoras, Thales, Euclides, Arquimedes

GRANDES MATEMÁTICOS DE GRECIA ANTIGUA
Pitágoras, Thales, Euclides, Arquímedes

LA CIENCIA EN ALEJANDRÍA
ALEJANDRÍA, CAPITAL DE LA CIENCIA

Alejandría fue la capital intelectual del mundo helenístico y el más importante centro de los descubrimientos científicos de la antigüedad. Ptolomeo (el sabio), el primero de los Lágidas, fundó el Museo (edificio consagrado a las musas), e inició la gran transformación de la ciudad en ese sentido.

El museo comprendía el jardín botánico, el zoológico, un observatorio, habitaciones para sus miembros, gabinetes de trabajo, un gran comedor y sobre todo una incomparable biblioteca de cerca de 700 000 volúmenes. Los sabios, dedicados enteramente a sus investigaciones, y rodeados de condiciones excepcionales, realizaron notables trabajos. Todo manuscrito que llegaba a Alejandría se incorporaba inmediatamente a la biblioteca. Se hacía una copia que se entregaba a su dueño y el original quedaba en la biblioteca.

Numerosos eruditos se dedicaron a revisar los textos de las grandes obras. Fundaron la Filosofía, ciencia de las bellas letras. Aristarco preparó una edición de Hornero. Otros sabios se dedicaron a las matemáticas y a la astronomía. Euclides organizó las nociones de Geometría en una serie de teoremas rigurosamente encadenados.

Arquímedes, un siciliano que estudió ciencias en Alejandría, pero pasó su vida en Siracusa donde lo mató un soldado romano, calculó la superficie del cilindro y la esfera, y estableció el principio que lleva su nombre. Este extraordinario sabio, el más grande quizás de la antigüedad, fue también notable ingeniero que inventó aparatos de guerra, más tarde utilizados por los romanos.

Aristarco de Samos concibió la teoría de que el sol estaba fijo en el centro del universo, sin llegar a demostrarlo. Hiparco dio nombre a más de ochocientas estrellas y fijó su posición. Erastótenes de Cirene (Q I), llegó a calcular con una precisión asombrosa el largo del meridiano, con un error de apenas 400 Km. sobre un total de 40.000 Km.

Aristóteles no sólo fue un gran filósofo. Es notable su interés por las ciencias biológicas. Sus estudios sobre el mundo animal, en especial los insectos, revelan una seria curiosidad científica. En la isla Mitilene pasó dos años junto al mar, antes de enseñar a Alejandro, y allí adquirió numerosos y profundos conocimientos sobre ciencias naturales.

Son interesantes sus estudios sobre moluscos, cangrejos y langostas, sobre los peces (hábitos y migraciones) y sobre la abeja] en el que analiza las varias calidades de la miel, según las flores de donde se extrae el néctar. Así, pues, con sabios como Euclides, Arquímedes y Aristóteles, las ciencias, separadas de In filosofía, adquirieron un inusitado esplendor. Estos conocimientos teóricos, sin embargo no tuvieron aplicación practica.

No sintieron la necesidad de aprovecharlos, porque la esclavitud les solucionaba muchos problemas. En la técnica los griegos se mostraron poco creadores.

La civilización griega alcanza un nuevo brillo en el período helenístico. En Oriente, las clases dirigentes sometidas políticamente a los griegos se helenizan. Roma, conquistadora de monarquías helenísticas, adopta su civilización y la lleva a Occidente.

En este vasto imperio, desde la India a Gibraltar, la acción helenística se ejercerá en forma desigual. Será superficial en Oriente, donde las masas populares se mantienen fieles a sus viejas civilizaciones; en Occidente será en cambio, más profunda y duradera. Al seguir el curso de la historia vemos que la herencia de Grecia se ha convertido, a través de numerosos “renacimientos”, en parte integrante de nuestra civilización.

Matemáticos Geniales de la Historia Bernoulli, Newton, Huygen, Torricelli, Pascal

Matemáticos Geniales de la Historia
Bernoulli, Newton, Huygen, Torricelli, Pascal

grandes matematicos de la historia

Ilustres Matemáticos Que Aportaron Grandes Ideas Para Interpretar la Naturaleza

LA APASIONADA CURIOSIDAD DE ALBERT EINSTEIN Y SU CAPACIDAD DE ASOMBRO

En este caso tenemos una situación inversa, un gran físico, enamorado desde su infancia de la geometría euclidiana y la matemática a través de un libro que le entrega su tío, quien en Munich tenía un negocio en sociedad con el padre de Albert.

En la biografía de Banesh Hoffmann sobre la vida de Einstein dice: ….el joven Albert encontró una ayuda indudable en su tío Jakob. Al parecer, antes de que Albert estudiara geometría, tío Jakob le había hablado del teorema de Pitágoras: la suma de los cuadrados de los catetos de un triángulo rectángulo es igual al cuadrado de la hipotenusa, o en otras palabras  si en un triángulo ABC el ángulo C es un ángulo recto, entonces AB2 = AC2 + BC2.

Albert quedó fascinado. Tras ímprobos esfuerzos, encontró la forma de demostrar el teorema —proeza extraordinaria, dadas las circunstancias, y que llenaría de satisfacción al niño y a su tío—. Sin embargo, por extraño que parezca, esta satisfacción debió de ser insignificante comparada con la emoción que experimentó más tarde con un pequeño manual de geometría euclidiana, que le absorbió por completo.

Tenía entonces doce años, y el libro le produjo un impacto tan fuerte como el de la brújula magnética siete años antes. En sus Notas autobiográficas habla entusiasmado del «santo librito de geometría», y dice: «Había afirmaciones, por ejemplo la de la intersección de las tres alturas de un triángulo en un punto, que -sin ser evidentes- podían demostrarse con tal certeza que parecía absurda la menor duda. Esta lucidez y certeza me produjeron una impresión indescriptible.»

A quienes sientan aversión instintiva hacia las matemáticas, esta pasión por la geometría tiene que resultarles increíble -algo parecido al amor del herpetólogo hacia las serpientes-. Como Einstein eligió el camino fácil, pero honrado, de describir la impresión como indescriptible, recurriremos a una descripción de Bertrand Russell, que tuvo una experiencia semejante y casi a la misma edad. «A los once años de edad comencé a estudiar a Euclides… Fue uno de los grandes acontecimientos de mi vida, tan deslumbrante como el primer amor. Nunca había imaginado que hubiera algo tan maravilloso en este mundo.» Y no olvidemos las palabras de la poetisa estadounidense Edna St. Viricent Millay: «Sólo Euclides ha contemplado la Belleza al desnudo.»

Siendo niño, Albert leyó libros de divulgación científica con lo que más tarde describiría como «atención embelesada». Estos libros no llegaron a sus manos de forma accidental. Se los había proporcionado deliberadamente Max Talmey, perspicaz estudiante de medicina que durante algún tiempo acudió todas las semanas a casa de los Einstein. Talmey tuvo prolongadas discusiones con el pequeño Albert, orientándole y ampliando sus horizontes intelectuales en una edad crucial para su formación. Cuando el propio Albert llegó a dar clases de matemáticas superiores, Talmey orientó las conversaciones entre ambos hacia el campo de la filosofía, en el que todavía podía defenderse. Recordando aquellos días, Talmey escribió: «Le recomendé que leyera a Kant. Albert sólo tenía trece años, y sin embargó, las obras de Kant, incomprensibles para la mayoría de los mortales, le parecían muy claras.»

Un sorprendente resultado de los libros científicos sobre el impresionable Albert fue que de repente se volvió antirreligioso. No se le escapaba que la historia científica no coincidía con la bíblica. Hasta entonces, había encontrado en la religión el consuelo de la certeza. Entonces comprendió que  tenía que renunciar a ella, al menos en parte, y esto le produjo un intenso conflicto emocional. Durante cierto tiempo no sólo dejó de ser un creyente, sino que se convirtió en un escéptico lleno de fanatismo, profundamente receloso ante toda autoridad.

Unos cuarenta años después, llegó a decir con ironía: «Para castigarme por mi desprecio de la autoridad, el destino me convirtió a mí mismo en una autoridad.» Su desconfianza inicial hacia la autoridad, que nunca le abandonó por completo, resultaría de gran importancia. Sin ella, no habría adquirido la enorme independencia de espíritu que le dio el valor necesario para poner en tela de juicio las opiniones científicas tradicionales y, de esa manera, revolucionar la física.

Una página del «sagrado libro de geometría» en la que aparece una anotación de Albert sobre el teorema 3: «Esta demostración no tiene sentido, pues si podemos suponer que los espacios del prisma se pueden convertir en una superficie lisa, habría que decir lo mismo del cilindro.»

Matematicos de la Edad Media La Matematica Medieval Fibonacci Pacioli

Matemáticos de la Edad Media
Fibonacci y Pacioli

matematico fibonacci matematico pacioli
Leonardo de Pisa (Fibonacci)
1170-1250
Luca Pacioli
1445-1517

LA MATEMÁTICA EN LA EDAD MEDIA: En su crepúsculo, el siglo v asiste al dramático fin del Imperio Romano de Occidente. Con la invasión de los bárbaros desciende sobre Europa la milenaria “noche medieval”, la larga noche de estancamiento y decadencia de todas las ramas del saber.

Cuando Alejandría sucumbe ante los musulmanes y el emperador JUSTINIANO cierra, en el año 529, las antaño famosas escuelas de Atenas, sólo Constantinopla custodia la preciosa herencia de la cultura antigua. Hasta la toma de la ciudad por los turcos en 1453, y la consiguiente difusión por Occidente de manuscritos y conocimientos griegos, el mundo queda sumido en densas sombras, cuya penumbra sólo es surcada por la luz que enciende un pueblo extraño a Europa: los árabes.

Las tres centurias que siguen al fin del Imperio de Occidente y que preceden a la aparición de los árabes en escena, son la época más estéril en la Historia de las Ciencias. Sobre la ruina de las instituciones sociales y políticas del mundo romano se eleva poderosa la nueva organización de la Iglesia; subordinados a sus finalidades, todos los esfuerzos intelectuales convergen en su seno.

En el concepto de los padres de la Iglesia -moralistas eminentes, pero ignorantes en la ciencia como es hoy un niño de diez años- el mundo físico es el escabel de Dios y sus fenómenos parecen menos dignos de estudio que los problemas teológicos, únicos capaces de servir a la salvación de las almas.

El universo para el hombre medieval sólo tiene una extensión de algunos miles de kilómetros; su pasado abarca algunos millares de años y su fin, una amenaza para los pecadores, está muy cercano. En este pequeño mundo, destinado a pronta e inevitable destrucción, ¿qué sentido, qué utilidad, podrían tener las ciencias? La astronomía se reducía a reglas para establecer el calendario de la Iglesia, a algunos preceptos indispensables para los navegantes, o aun a una quimérica doctrina acerca de las influencias astrales sobre los destinos humanos.

Las matemáticas quedan, en el Occidente cristiano, dentro de los límites de la aritmética elemental, seguidas de especulaciones neoplatónicas sobre las propiedades místicas de los números. Algunas definiciones de triángulos, cuadriláteros, círculos y sólidos constituyen todo el edificio, antaño tan soberbio, de la geometría. La química se identifica con la búsqueda del oro alquímico o de una panacea universal.

La Matemática en el Medioevo europeo
En el continente europeo, la Matemática no tiene un origen tan antiguo como en muchos países del Lejano y Medio Oriente, alcanzando sólo éxitos notorios en la época del medioevo desarrollado y especialmente en el Renacimiento.

En la Edad Media se puede observar cierto oscurantismo cultural, sin duda debido a los acontecimientos bélicos y sociales de la época. Sólo en algunos monasterios religiosos se escribieron algunos manuscritos, testimonios de un primer despertar cultural.

La Matemática interesa en Europa por el contacto con los árabes. Hasta esa época se conocía la Geometría de los griegos a la que no se le había agregado casi nada, el sistema de numeración decimal, posicional y con cero de los hindúes y generalizado por los árabes, el Álgebra y la Trigonometría de los árabes. Los números eran los naturales, racionales, irracionales, todos positivos. Los negativos eran soluciones falsas.

A partir de los siglos XII y XIII, principalmente por el contacto con los árabes, los occidentales comienzan a dar fundamentos, ya visualizados hasta entonces de la Matemática.

El punto de arranque de la Matemática en Europa fue el desarrollo de los Centros de Enseñanza, París en 1200, Oxford en 1214, etc.

Con anterioridad, tan solo algunos monjes se dedicaron a estudiar las obras de Ciencias Naturales y Matemática de los antiguos. Uno de los primeros centros de enseñanza fue organizado en Reimsgs por Gerberto de Aurillác (940-1003) donde fundamentalmente se hacen traducciones. Cerberto fue profesor durante 10 años en Reims, luego obispo de esa ciudad y de la de Raveno, y al final de su vida se convirtió en el Papa Silvestre II. Conoció y propagó la notación decimal que aprendió en España durante su estancia en un convento catalán en 967.

Esto ocurre en el siglo X. Fue posiblemente el primero en Europa que enseñó el uso de los numerales hindú-arábigos. Sin embargo hubo que esperar a que los musulmanes rompieran la barrera lingüística, hacia el siglo XII, para que surgiera una oleada de traducciones que pusieran en marcha la maquinaria matemática. Esta época fue caracterizada por las traducciones.

Se comienza a traducir todo. Las obras griegas ya habían sido traducidas al árabe. Hay que traducir todo del árabe, se traducen en España. Las traducciones se hacen al latín pasando por el idioma local. Por ejemplo al español, y de ahí al latín. El trabajo de los traductores fue sensacional y se da entre los siglos XI y XIII.

Uno de los lugares donde esto ocurre es en la Escuela de traductores de Toledo100, durante el reinado de Alfonso X el Sabio. Entre los traductores de Toledo se destaca Gerardo de Cremonam (1114-1187), que tradujo del árabe más de 80 obras.

Sus trabajos de investigación y traducción permitieron que obras fundamentales de la antigua cultura griega fueran rescatadas del olvido y transmitidas a la Europa medieval a través de España.

A partir de estas versiones, y gracias a las mismas, España transmitió a Europa todos aquellos saberes que cubrían campos como la Geografía, la Astronomía, la Cartografía, la Filosofía, la Teología, la Medicina, la Aritmética, la Astrología o la Botánica, entre otros. Esta escuela fue el origen y la base del renacer científico y filosófico drías famosas escuelas de Chartresm y, más tarde, de la Sorbona.

Durante el siglo XIII surgió la figura de Leonardo de Pisa (1180 1250) más conocido como Fibonacci. Otro contemporáneo, aunque no tan excepcionalmente dotado fue Jordano Nemorarius (1225-1260).

quien debemos la primera formulación correcta del problema del plano inclinado. El profesor parisino Nicole Oresmes (1323-1382) generalizó el concepto de potencia, introduciendo los exponentes fraccionarios, las reglas de realización de las operaciones con ellos y una simbología especial, anticipándose de hecho a la idea de logaritmo.

Cuando se traducen los Elementos de Euclides, la fundamentación axiomática lleva a pensar que lo que él hizo para la Geometría, se podría hacer con los números, surge la idea de fundamentar axiomáticamente a los números naturales.

Ya en el siglo XV, época de las grandes navegaciones, la Trigonometría fue separada de la Astronomía, alzándose como ciencia independiente de la mano de Müller (conocido comoRegiomontano) (1436-1474).

Famosos Matematicos de la Historia Wiles Teorema de Fermat

Famosos Matemáticos de la Historia
Wiles y El Teorema de Fermat

arquimedes matematico griego Carl Gauss Matematico Aleman Leohnard Euler matematico
Arquímedes de Siracusa
(287- 212 a C.)
Gauss Carl
(1777-1855)
  Euler Leonhard
(1707-1783)

EL GRAN MATEMÁTICO DEL SIGLO XX
FAMOSO POR RESOLVER UNO DE LOS PROBLEMAS MAS DIFÍCIL DE LA HISTORIA:
EL ÚLTIMO TEOREMA DE FERMAT

 Historia Wiles Teorema de FermatEn 1971 Wiles entró en el Merton College, Oxford y se graduó en 1974.Luego ingresó al Clare College de Cambrige para hacer su doctorado. Para explicar su demostración sobre el enunciado de Fermat, estuvo dos días dando una conferencia a los mas grande matemáticos de la época.

Era tan larga que debió partir su explicación en dos conferencia. Para ellos recurrió a las herramientas matemáticas más modernas de la época, a la cual tuvo que incorporarle nuevos conceptos muy complejos, aun para las más grandes de esta apasionante ciencia de los números.

Fermat, tenía razón.

HISTORIA DE SU TRABAJO MATEMÁTICO: Después de siete años de ardua labor Wiles había logrado demostrar el teorema, pero luego de algunos análisis mas profundos encontró que la solución tenía un error, que no podía salvar con sus conocimientos matemáticos de ese momento. Wiles comenzó aplicando una teoría conocida como de Iwasawa, pues le parecía que esta podía ayudar a verificar su objetivo, pero lamentablemente no fue así. Wiles había dedicado dos años de esfuerzos a un callejón matemático sin salida.

En el verano de 1991, después de un año de estancamiento, Wiles se encontró con el método de Kolyvagin y Flach y abandonó la teoría de Iwasawa para adoptar esta nueva técnica. Al año siguiente la demostración fue anunciada en Cambridge, y él fue declarado héroe. Antes de dos meses se había demostrado que el método de Kolyvagin-Flach fallaba, y desde entonces la situación no había sino empeorado. Todos los intentos por reparar el Kolyvagin-Flach habían fallado.

Todo el trabajo de Wiles, excepto la etapa final que involucraba el método de Kolyvagin-Flach, todavía valía la pena. Si bien ni la conjetura de Taniyama-Shimura ni el último teorema cíe Fermat habían sido resueltos, Wiles había suministrado a los matemáticos toda una serie de nuevas técnicas y estrategias que podían explotar para demostrar otros teoremas. Wiles no tenía por qué sentir vergüenza de su fracaso, y estaba comenzando a aceptar la posibilidad de ser derrotado.

Como premio de consolación quería por lo menos entender por qué había fracasado. Mientras Taylor volvía a ex plorar y a examinar métodos alternativos, Wiles decidió pasar el mes de septiembre mirando una vez más la estructura del método de Kolyvagin-Flach para tratar de precisar exacta mente por qué no funcionaba. Él recuerda vividamente esos aciagos días finales: “Estaba sentado en mi escritorio un lunes por la mañana, el 19 de septiembre, examinando el metodo de Kolyvagin-Flach. No era que creyera que lo podía hacer funcionar, pero pensé que por lo menos podía explicar por qué no funcionaba. Pensé que estaba aferrado a una última esperanza pero quería quedar tranquilo. De repente, de una manera totalmente inesperada, tuve una revelación increíble. Me di cuenta de que, a pesar de que el método de Kolyvagin-Flach no estaba funcionando, era lo único que necesitaba para hacer funcionar mi teoría Iwasawa original. Me di cuenta de que lo que tenía del método cíe Kolyvagin-Flach era suficiente para hacer que mi enfoque original al problema, de hacía tres años, funcionara. Así que cíe las cenizas cíe Kolyvagin-Flach parecía surgir la verdadera respuesta al problema”.

Por sí sola, la teoría de Iwasawa había sido inadecuada. El método cíe Kolyvagin-Flach por sí solo también era inadecuado. Juntos se complementaban el uno al otro perfectamente. Fue un momento de inspiración que Wiles nunca olvidará. Mientras narraba estos momentos sus recuerdos eran tan poderosos que se conmovió hasta las lágrimas. “Era tan indescriptiblemente bello, era tan sencillo y elegante. No podía entender cómo lo había pasado por alto y simplemente lo miré, incrédulo, durante veinte minutos. A lo largo del día caminé por el departamento, regresando cada rato a mi escritorio a mirar si todavía estaba ahí. Todavía estaba ahí. No podía contenerme, estaba muy entusiasmado. Fue el momento más importante cíe mi vicia laboral. Nada de lo que haga en el futuro significará tanto”.

Esto no sólo representaba el cumplimiento de un sueño de infancia y la culminación de ocho años de esfuerzo concertado, sino que después de haber estado al borde de la rendición, Wiles había luchado de nuevo para demostrarle su genialidad al mundo. Los últimos catorce meses habían sido el período más doloroso, humillante y deprimente de su carrera matemática. Ahora una idea brillante le había puesto fin a su sufrimiento.

“Así que la primera noche regresé a casa y me dormí’ pensando en ello. Lo verifique de nuevo a la mañana siguiente y alrededor de las once quedé satisfecho, bajé y le dije a mi esposa, ‘¡Lo logré! ¡Creo que la encontré!’ Fue tan inesperado que ella pensó que yo hablaba de algún juguete de los niños o algo así y dijo: ‘¿Lograste qué?’ Yo le dije: ‘Arreglé mi demostración. Lo logré’ “.

Al mes siguiente Wiles pudo cumplir la promesa que había incumplido el año anterior. “Se aproximaba el cumpleaños de Nada otra vez, y recordé que la última vez no ir había podido dar el regalo que ella quería. Esta vez, un minuto tarde para nuestra cena en la noche de su cumpleaños, pude darle el manuscrito completo. Creo que este regalo .-gustó más que cualquier otro que le hubiera dado antes”.

———– 0 ———–

SOBRE THALES DE MILETO

Según la tradición, el primero de los Siete Sabios de Grecia fue Tales de Mileto, quien introdujo entre los griegos el Interés por las matemáticas que él mismo había adquirido a raíz de sus viajes a Egipto y Babilonia. Poco se conoce con certeza de su vida; nació en Mileto, en Asia Menor, hacia el 620 a.C. y murió a los setenta y ocho años.

Destacó en su juventud como hombre de negocios y participó en la vida pública, abandonando al parecer esas actividades en la madurez para dedicarse a los estudios filosóficos y matemáticos. Se atribuye a Tales el enunciado de diversas proposiciones geométricas relativas a las propiedades de ios ángulos y las rectas en el plano, como son en particular que:

1) los ángulos adyacentes a ¡a base de un triángulo isósceles son iguales;
2) los ángulos opuestos por el vértice formados por dos rectas que se cortan son iguales;
3) dos triángulos que tienen iguales un lado y los ángulos adyacentes a él, son iguales.

Su hallazgo más importante, por el que se dice que ofreció a los dioses el sacrificio de un buey, fue el de que todo ángulo inscrito en una circunferencia de modo que sus lados pasen por los extremos de un diámetro será un ángulo recto. Es ésta una propiedad conocida ya por los babilonios, aunque no consta que se preocuparan por demostrarla; el mérito específico de Tales consistió seguramente en aportar algún tipo de prueba lógica para éste y otros de los teoremas que se le atribuyen, convirtiéndose así en el fundador de la matemática deductiva.

Diversos testimonios cuentan que Tales, durante su viaje a Egipto, midió la altura de las pirámides a partir de la longitud de sus sombras, lo que implica reconocer la proporcionalidad de los lados homólogos de dos triángulos que tienen los mismos ángulos, en el sentido en que establece el hoy llamado teorema de Tales.

teorema de Thales

Ver: El Último Teorema de Fermat

Fuente Consultada:
El Último Teorema de Fermat Simon Sinhg
Enciclopedia Interactiva del Tercer Milenio AURION

Gran Matematico Griego Arquimedes de Siracusa Obra Cientifica Logros

Gran Matemático Griego
Arquimedes de Siracusa – Obra Científica

Gran Matematico Griego Arquimedes de Siracusa Obra CientificaARQUÍMEDES (287 a.C-21 2 a.C)

Nació y murió en Siracusa. Fue sin duda el mayor matemático y físico de la antigüedad. Arquímedes, aristócrata en cuerpo y alma, era hijo del astrónomo Feidias. Se dice que era pariente de Hierón II.

De todos modos se hallaba en excelentes relaciones con Hierón II y su hijo Gelón, quienes tenían por él gran admiración.

Aprendió probablemente de su padre un sin fin de disciplinas matemáticas, para proseguir sus estudios en la escuela de Alejandría, Egipto.

En Egipto hizo su primer gran invento, la coclea, una especie de máquina que servía para elevar Las aguas y regar ciertas regiones del Nilo, donde no Llegaba el agua durante las inundaciones. De vuelta a Siracusa, alternó inventos mecánicos con estudios de mecánica teórica y altas matemáticas.

Entre sus inventos cabe destacar numerosas máquinas de guerra, un método para la determinación del peso específico de los cuerpos y un planetario mecánico. Su historia está llena de anécdotas y algunas de sus frases han pasado a la historia: Dame un punto de apoyo y moveré la Tierra, que resume el principio de la palanca, formulado por Arquímedes.

Según la tradición, Arquímedes es el tipo perfecto del gran matemático que el pueblo Concibe. Se olvidaba de comer cuando estaba ensimismado en La Matemática.

Su falta de atención por el vestido quedó de manifiesto cuando hizo su descubrimiento fundamental de que un cuerpo que flota pierde de peso una cantidad igual a la del líquido que desaloja (principio de Arquímedes) salió del baño, en el cual había hecho el descubrimiento al observar su propio cuerpo flotante, y corrió por las calles de Siracusa, completamente desnudo, gritando: Eureka,… eureka (lo encontré,… lo encontré). Lo que había encontrado era la primera Ley de la Hidrostática.

Refiere la historia que un orfebre había adulterado el oro de una corona para Hierón II mezclándolo con plata, y el tirano, al sospechar el engaño, había planteado a Arquímedes el problema. Cualquier estudiante sabe cómo se resuelve, mediante un simple experimento, y algunas fáciles cuentas aritméticas, basadas en el peso específico.

Arquímedes fue una especie de águila solitaria. Siendo joven había estudiado breve tiempo en Alejandría Egipto, donde contrajo dos amistades íntimas, Conan, un matemático de talento por quien Arquímedes5 tenía un alto concepto personal e intelectual, y Eratóstenes, también buen matemático. Estos dos, particularmente Conan, parece que fueron los únicos hombres a quienes Arquímedes participó sus pensamientos seguro de ser Comprendido Algunos de sus trabajos más complicados fueron comunicados por cartas a Canon. Más tarde, cuando Canon murió, Arquímede5 mantuvo correspondencia con Dositeo, un discípulo de Conan.

Sus publicaciones son obras cortas, especie de monografías.

De las espirales: genera la espiral, conocida como la espiral de Arquímedes, por movimientos.

Juega Con La Espiral de Arquímedes

Es la curva que describe un punto que se mueve, con velocidad constante, sobre una recta que a su vez gira con velocidad constante. Combina dos movimientos, el circular uniforme de la semirrecta alrededor del origen y el rectilíneo uniforme del punto sobre la semirrecta.

Su ecuación en coordenadas polares es r=a.Þ donde r es la distancia al origen, a una constante y theta (Þ) es el ángulo girado.

Muy sorprendente para los matemáticos, fueron sus resultados sobre la espiral uniforme, recogidos en su libro “Sobre las espirales”, en el que entre sus 28 proposiciones varias se refieren a las áreas de las espirales. Resultados tan complejos como estos:

El área barrida por el radio de la espiral en su primera revolución es la tercera parte del área del círculo cuyo radio es el radio final de esta revolución…”

“El área barrida por el radio en la segunda vuelta es 6 veces el área de la primera vuelta”.

“El área barrida en la segunda revolución está en razón 7/12 con el círculo cuyo radio es la posición final del radio vector”

De la esfera y el cilindro: se dedica a La geometría y completa la obra de Euclides. Elabora una geometría del espacio con rigor. Relaciona áreas de distintas figuras. Busca una relación entre las áreas del cilindro y de La esfera.

Arquímedes partió de una semiesfera de radio R y colocó a su lado un cono recto y un cilindro circular recto, ambos con base de radio también R:

Cortó las tres figuras con un plano paralelo a la base del cilindro (que quedara a distancia d de la parte superior de las tres figuras) y estudió cómo serían las secciones que este plano crearía en cada una de las figuras:

Volumen cilindro = Volumen semiesfera + Volumen cono

El área lateral del cilindro es igual al área de la esfera inscripta.

Arquímedes estaba tan orgulloso de este descubrimiento que mandó se inscribiera en su tumba: volumen de la esfera es 2/3 del cilindro.

De la cuadratura del círculo: vincula el problema de hallar un cuadrado de área igual área que La de un círculo. Esto significa encontrar un segmento que tenga la longitud de La circunferencia. El problema depende de ir. No se puede hacer con regla y compás por ser ir trascendente, porque no se puede obtener como raíz de una ecuación algebraica. Arquímedes da un procedimiento para determinar ir por sucesiones formadas por perímetros de polígonos regulares inscriptos y circunscriptos en una circunferencia. AL dividir por el diámetro se obtienen sucesiones numéricas y éstas definen ir como elementos de separación. Así fijó el valor de Pi (entre 3 1/7 y 3 10/71.

De la parábola: en este libro plantea un procedimiento semejante al actual de integración para calcular el área de un recinto plano Limitado por un arco de parábola y una recta. Divide La región en triángulos y va calculando sus áreas hasta aproximarse al área buscada.

De las conoides y esferoides: trata las cuádricas de revolución. De Las 5 trata solo 3. El elipsoide haciendo girar una elipse, eL hiperboloide de 2 hojas, haciendo girar una parábola y el paraboloide haciendo girar una parábola.

Arenario: en este trabajo explica la diferencia entre un número finito y un número infinito. Se refiere a la cantidad de granitos de arene que entran en una semilla de amapolas y cuántas de éstas en el globo terráqueo. Como no los puede determinar establece el sistema de octavas:

 

Con este procedimiento pensaba hallar un número para contar los granitos de arena.

Además encontró métodos para hallar las raíces cuadradas aproximadas, lo que muestra que se anticipó a la invención hecha por tos hindúes, respecto a tas fracciones Continuas periódicas En Aritmética sobrepasó extraordinariamente la incapacidad del método no científico griego de simbolizar los números al escribir o incluso escribir grandes números, e inventó un sistema de numeración capaz de tratar números tan grandes como se deseara.

En mecánica estableció algunos de los Postulados fundamenta les, descubrió tas leyes de la palanca, y aplicó sus principios mecánicos para calcular las áreas y centros de gravedad de diversas superficies planas y sólidos de diversas formas. Creó toda la ciencia de la hidrostática, y la aplicó para encontrar las Posiciones de reposo y de equilibrio de cuerpos flotantes de diversos tipos.

A partir del siglo XIII se recuperó su obra en Europa Occidental, pero no fue hasta el XVI cuando los matemáticos volvieron a adquirir la suficiente capacidad para entenderla.

La vida de Arquímedes era tan tranquila como debe ser la de un matemático que ha hecho lo que él hizo. Toda la acción y tragedia de vida quedan coronadas en su muerte. En el año 212 a.C. estalló la segunda Guerra Púnica.

Roma y Cartago estaban en guerra, y Siracusa, la ciudad de Arquímede5 tentadoramente situada cerca del camino de la flota romana. ¿Por qué no sitiarla? Eso hicieron los romanos. Orgulloso de sí mismo, el jefe romano, Marcelo, estaba seguro de una rápida conquista. Considerando su fama, esperaba que los tímidos ciudadanos Pusieran en sus manos la llave de la ciudad. Hierón II no lo hizo así. Estaba bien preparado para la guerra y de una manera que el práctico Marcelo no podía soñar.

Los necios habitantes de Siracusa se entregaban a una fiesta religiosa en honor de Artemisa. La guerra y La religión siempre han dado lugar a un peligroso cocktail; sorprendidos en la fiesta, Marcelo hizo una carnicería.

La primera noticia que tuvo Arquímedes de que la ciudad había sido tomada fue la sombra de un soldado romano que se proyectaba sobre sus dibujos en la arena. Un relato dice que eL soldado, al pisar Los dibujos, dio Lugar a que Arquímedes exclamara excitadamente: No borres mis círculos.

Otros afirman que Arquímedes se negó a obedecer la orden de un soldado, para que le acompañara a presencia de Marcelo, hasta que hubiera resuelto su problema. De todos modos Lo cierto es que el irritado soldado desenvainó su sable y dio muerte al inerme geómetra que a La sazón tenía 70 años. Así murió Arquímedes en Siracusa cuando Los romanos la capturaron en 212 a.C.

DESCRIPCIÓN DEL PRINCIPIO DE ARQUÍMEDES:

Figura Abajo: Un cuerpo sumergido en un líquido pierde una parte de su peso igual al peso del volumen del líquido desalojado. Obsérvese como varia el brazo de la balanza cuando la piedra está sumergida.

PRINCIPIO DE ARQUÍMEDES: Existe en física un importante principio que fue descubierto por Arquímedes, el más grande físico y matemático de la Antigüedad. Dicho principio dice que un cuerpo sumergido en un líquido recibe un empuje hacia arriba igual al peso del líquido desalojado.

Si, por ejemplo, sumergimos un huevo, que puede tener un volumen de 60 centímetros cúbicos, en el agua, recibirá un empuje hacia arriba igual al peso de 60 centímetros cúbicos de agua; es decir, 60 gramos. Y si el huevo pesa 50 gramos, el empuje resultante será de 60 — 50 = 10 gramos, que es suficiente para mantenerlo a flote; el peso específico del huevo es menor que el del agua.

Si en vez de un huevo de gallina se hubiese tratado de otro de igual forma y volumen, pero de plomo, es evidente que se hubiera ido al fondo, ya que el empuje del agua hubiera sido mucho menor que su peso.

En este hecho se basa un modo muy simple para saber si un huevo es o no fresco. El huevo fresco tiene un peso específico ligeramente superior al agua, y por esto se sumerge; el que no es fresco, en el cual ha entrado aire o se han producido gases de descomposición, tiene densidad menor que la del agua, y flota.

Del principio de Arquímedes poseemos numerosísimos e importantes ejemplos y aplicaciones. Las naves, también de hierro, flotan porque su peso total es menor que el peso del volumen de agua que desalojan.

En los submarinos se necesita introducir agua en el momento de la inmersión, a fin de que aumente el peso total del mismo y así supere al del agua desalojada.

Por el mismo motivo, los globos y dirigibles se mantienen en el aire: se llenan de gas (hidrógeno, helio) cuya densidad es menor que la del aire.

Pero hay más todavía. Esto, que sucede para los cuerpos sólidos de forma y volumen bien definidos, ocurre también para las masas de líquidos y gases que presentan en su seno zonas o partes de distintas densidades.

¿Por qué el humo sale y las chimeneas “tiran”? El humo y los gases de la combustión son más calientes y por lo tanto menos densos que el aire circundante; por esto son empujados hacia arriba por el aire frío. Si el humo sale por una chimenea, se puede calcular con exactitud el empuje o presión (depresión, para ser más correctos) al pie de la chimenea midiendo la temperatura del humo y del aire ambiente.

Así también, al verter agua fría en una vasija donde hay agua caliente, el agua vertida “cae” al fondo, quedando situada debajo de la caliente.

Del mismo modo se explican dos importantísimos fenómenos, cuales son los de las corrientes marinas y de los vientos. Se trata de masas fluidas, de agua o aire, puestas en movimiento debido a su diferencia de densidad, respecto a las masas cercanas, cuando son calentadas por la irradiación solar.

Vista la importancia del concepto de peso específico, estudiemos la manera de medirlo.

Biografia Euclides Fundador de la Geometria Matematico Griego

Biografía Euclides – Fundador de la Geometría

Sobre la vida de este eminente matemático, poco se sabe. Las únicas y escasas noticias que le atañen proceden del matemático Pappus, del siglo IV. De acuerdo con las afirmaciones de este estudioso, buena parte de la vida de Euclides transcurrió en Alejandría, de Egipto. En esta ciudad fundo una escuela de matemática que fue, durante largos siglos, una de las más célebres del mundo.

Un día, deseoso el rey Tolomeo I de informarse acerca de los ya tan famosos principios de geometría del gran matemático griego, visitó la escuela de Euclides. En cierto momento, no pudiendo el rey seguir la lección, rogó al maestro que le explicara la demostración en forma más sencilla. Dícese que Euclides contestó: “Lo lamento, pero en esta disciplina no puede haber una manera especial para los reyes”.

Siempre según afirmaciones del matemático Pappus, nunca habría tratado Euclides de obtener ganancias ni de sus estudios ni de sus enseñanzas. Enseñaba a sus discípulos que el verdadero estudioso no debe buscar recompensas materiales.

EUCLIDES (325 a.C. – 265 a C.): Euclides es, sin lugar a dudas, uno de Los tres mayores matemáticos de la Antigüedad junto a Arquímedes y a Apolonio. Quizás sea el más nombrado y también uno de Los mayores de todos los tiempos.

Se conoce poco de La vida de Euclides, sin embargo, su obra sí es ampliamente conocida. Todo Lo que sabemos de su vida nos ha Llegado a través de los comentarios de un historiador griego llamado Proclo. Sabemos que vivió en Alejandría, al parecer en torno al año 300 a.C. convocado por Tolomeo para fundar una escuela de estudios matemáticos LLamada Primera Escuela de Alejandría. Por otra parte también se dice que estudió en la escuela fundada por Platón.

El nombre de Euclides está indisolublemente Ligado a la geometría, al escribir su famosa obra Los Elementos. Este es el libro más famoso de La Historia de la Matemática. Esta obra está constituida por trece libros, cada uno de los cuales consta de una sucesión de teoremas y en éL se exponen las bases esenciales de la geometría.

A veces se añaden otros dos, Los Libros 14 y 15 que pertenecen a otros autores pero por su contenido, están próximos al último libro de Euclides.

En ella se enuncia el postulado de Euclides: por un punto del plano sólo se puede trazar una paralela y una sola, a una recta. Este postulado es la base de La geometría euclideana.

El contenido de Los Elementos, se ha estado (y aún se sigue de alguna manera) enseñando hasta el siglo XVIII, cuando aparecen Las geometrías no euclideanas.

Fue Lobachevskí el que dio La solución al problema del y postulado: El postulado no puede ser probado y Lo que es más curioso, si consideramos La proposición opuesta

(que por un punto del plano se puede trazar mas de una paralela a una recta dada) se pueden desarrollar otras geometrías que no contienen contradicción alguna. La conclusión es importantísima: existe más de una geometría lógicamente concebible.

Pocos de los teoremas que aparecen en sus textos son propios. Lo que Euclides hizo fue, en realidad, reunir en una sola obra todos los conocimientos acumulados desde La época de Thales. El único teorema que La tradición asigna definitivamente a Euclides es el Teorema de Pitágoras que se demuestra en Las proposiciones 47 y 48 del primer libro de Los Elementos. Aunque La mayoría de Los tratados versan sobre geometría, también prestó atención a problemas de proporciones y a lo que hoy conocemos como Teoría de números.

Euclides recoge gran parte de Los conocimientos pitagóricos sobre tos números y define los números primos y compuestos de forma geométrica: un número entero es compuesto cuando tiene divisores distintos de éL mismo y de la unidad, es decir cuando se puede dibujar como un rectángulo numérico.

Los Elementos ha tenido más de 1.000 ediciones desde su primera publicación en imprenta en 1482. Se puede afirmar, por tanto, que Euclides es el matemático más Leído de la historia.

Los Elementos ha sido la primera obra matemática fundamental que ha Llegado hasta nuestros días, el texto más venerado y que mayor influencia ha tenido en toda la historia de La Matemática De hecho, después de la Biblia, es Los Elementos de Euclides la obra que más ediciones ha Conocido desde que Gutenberg inventara La imprenta. Los Elementos están Constituidos por XIII Libros que contienen 465 proposiciones todas verdaderas, que han resistido e! paso del tiempo como ninguna otra científica permaneciendo vigente e insuperada a lo largo de más de 2300 años.

Esta obra es importante, no tanto por la originalidad de sus contenidos, sino por la sistematización el orden y la argumentación la que está constituida Los Elementos no contienen únicamente un resumen sumario y exhaustivo de toda La Geometría griega. En realidad contienen una gran síntesis no sólo de la producción geometría griega hasta el siglo III a. C. sino también de un compendio, usando e! lenguaje geométrica de toda La Matemática elemental: Geometría plana y espacial, Aritmética y Álgebra.

Euclides construye sus argumentaciones basándose en un conjunto de axiomas (principios o propiedades que se admiten como ciertas por ser evidentes) y a partir de los cuales se deduce todo lo demás que llamó Postulados.

A Continuación enunciamos los famosos cinco Postulados de Euclides

I.- Dados dos puntos se pueden trazar una recta que los une.

II.- Cualquier segmento puede ser prolongado de forma continua en una recta ilimitada en la misma dirección.

III.- Se puede trazar una circunferencia de centro en cualquier punto y radio cualquiera.

IV.- Todos los ángulos rectos son iguales.

V..- Si una recta, al cortar a otras dos, forma los ángulos internos de un mismo lado menores que dos rectos, esas dos rectas prolongadas indefinidamente se cortan del lado en el que están los ángulos menores que dos rectos.

Este axioma es conocido con el, nombre de axioma de las paralelas y también se enunció más tarde así:

V-. Por un punto exterior a una recta se puede trazar una única paralela.

Este axioma, que al parecer no satisfacía al propio Euclides, ha sido el más controvertido y dió pie en los siglos XVIII y XIX al nacimiento de las Geometrías no euclideanas.

Los Elementos consta de trece libros sobre geometría y aritmética.

LIBROS del I al VI: Geometría plana.

o El libro I trata de triángulos, paralelas, incluye postulados, etc.

o El. libro II trata del álgebra geométrica.

o EL libro III trata de la geometría del circulo.

o El libro IV de los polígonos regulares.

o EL libro V incluye una nueva teoría de las proporciones, aplicable tanto a las cantidades mensurables (racionales) como a las inconmensurables (irracionales).

o El libro VI es una aplicación de la teoría a La geometría plana.

LIBROS del VII al X:

o Del VII al IX :Tratan de la teoría de los números (aritmética), se discuten relaciones como números primos, (Euclides prueba ya en un teorema que no hay una cantidad finita de números primos), mínimo común múltiplo, progresiones geométricas, etc.

o El libro X trata de Los segmentos irracionales, es decir, de aquetlos que pueden representarse por raíz cuadrada.

LIBROS del. XI al. XIII : Geometría espacial.

o En el libro XII aplica un método que abarca la medida de Los círculos, esferas etc.

Los Elementos es una verdadera réflexión teórica de y sobre Matemática. Prácticamente en la totalidad de su obra, que consta de 465 proposiciones, 93 problemas y 372 teoremas, ¡no aparecen números! Euclides, además, escribió sobre música y óptica, tiene una obra titulada Sofismas que, dice Proclo, sirve para ejercitar la inteligencia.

Para acabar podemos citar un par de anécdotas que nos ilustrarán, aún más, sobre la vida y gestos de Euclides:

En una ocasión, el rey Ptolomeo preguntó a Euclides si había un camino más breve que el que él utilizaba en Los Elementos para estudiar Geometría, él respondió que no existen caminos reales en la Geometría. Con este juego de palabras, Euclides le vino a decir al rey que no existen privilegios en la Geometría.

En otra ocasión, uno de sus estudiantes preguntó a Euclides qué ganaba con Lo que había aprendido de la Geometría: EL maestro ordenó a su esclavo que Le entregase una moneda (óbolo) a aquel estudiante, para que ganara algo con lo que aprendía de Geometría, dando a entender que aquel muchacho no había entendido nada de la grandeza de La Geometría y de lo desinteresado de ésta.

LA OBRA
Puede afirmarse que el primer tratado completo de geometría se debe a Euclides. Sus “Elementos de geometría” fijaron para siempre los fundamentos de esta ciencia. La obra está constituida por 13 libros. Los primeros cuatro tratan sobre geometría plana. Los cinco siguientes presentan los principios fundamentales de la aritmética y teoría de las proporciones. El libro X, que parece ser el más original, y los 3 últimos están dedicados a la geometría del espacio. Todos los elementos principales de esta ciencia que aún hoy aprendemos en la escuela primaria y en las superiores se hallan en esta obra.

El primer libro, por ejemplo, enuncia los teoremas relativos a la igualdad y desigualdad de los triángulos, a las rectas paralelas, a la igualdad de las superficies de los paralelogramos y de los triángulos de igual base y altura, y otros teoremas similares.

En el cuarto libro se indica la manera de construir los polígonos regulares (cuadrado, triángulo equilátero, pentágono, hexágono, etc.) inscriptos o circunscriptos en el círculo.

En los libros que versan sobre geometría del espacio, además de la enunciación de los principios fundamentales, se halla un estudio particular sobre las relaciones entre el volumen de las pirámides y el de los prismas.
También los libros dedicados a la aritmética son una mina de nociones (por ejemplo, la descomposición de los números en factores primos, búsqueda del máximo común divisor y mínimo común múltiplo). La mejor evidencia de que la obra de Euclides ha conservado toda su importancia fundamental está en el hecho de que aún en nuestro siglo goza de gran consideración entre los más ilustres estudiosos de la geometría.

Euclides y los Números perfectos

En el libro IX de Los Elementos, Euclides en su proposición , proporciona un método original. para encontrar números perfectos.

“Si tantos números como se quiera a partir de una unidad

se disponen en proporción duplicada hasta que su total resulte primo, y el total multiplicado por el último produce algún número,  el producto será perfecto”

Es decir: “Si la suma de las n primeras potencias de 2 es un número primo, entonces el producto de la suma por la última potencia sumada es un número perfecto”.

Si (1+2+22+… +2n) es primo,

entonces (1+2+22+… +2n).2n es perfecto

euclides trabajando

Un día que uno de sus alumnos estudiaba displicentemente la geometría porque no le procuraría ninguna ganancia, Euclides rogó a un esclavo que le entregara algunas monedas. Después hizo entender al discípulo que se había equivocado de escuela. Sábese además que Euclides fue varón de extraordinaria modestia. De los “Elementos de geometría”, su obra magistral, solía decir que se trataba de una simple recopilación de las nociones geométricas ya conocidas. Pero la verdad, aunque él quisiese ignorar sus méritos, era que toda su obra fue producto de su genio y tesón. No se conoce el año de su muerte. 

NOTACIÓN COMPLEMENTARIA

Proclo (c. 410-485), último de tos filósofos clásicos griegos importantes, el exponente más representativo de la escueta ateniense del neoplatonismo.

Ciudad y principal puerto del norte de Egipto, situada en el delta del río Nilo, en una toma que separa el lago Mareotis del mar Mediterráneo.

Tolomeo  Sóter (c. 367-283 a.C.), rey de Egipto (305-285 a.c.), fundador de la dinastía Tolemaica

Platón (c. 428-c. 347 a.C.), filósofo griego, uno de los pensadores más creativos e influyentes de la filosofía occidental.

Biografia Matematico Griego: Pitagoras de Samos Vida y Obra

Biografía Matemático Griego:
Pitágoras de Samos – Vida y Obra

“Tendrás un hijo de gran belleza y extraordinaria inteligencia; será uno de los  hombres más sabios de todos los tiempos.” Esto fue el anuncio que la sacerdotisa de Apolo hizo a Mnesarco y a su esposa, dos habitantes de la isla do Samos, en el mar Egeo. lira el año 580 a. de J. C, y ese mismo año la esposa de Mnesarco tuvo un niño al que dieron el nombre de Pitágoras.

Dieciséis años después, tal como lo había predicho la sacerdotisa, Pitágoras era ya famoso en toda la isla por su ingenio excepcional. Sus maestros, que no estaban ya en condiciones de responder a sus preguntas, decidieron mandarlo a la escuela de Tales, el sabio más famoso de aquella época.

En poco tiempo, Pitágoras consiguió aturdir también a Tales. El gran sabio de Mileto no sólo reconoció que ya no tenía nada que enseñar a su discípulo, sino que debía estudiar sus descubrimientos matemáticos y geométricos. Precisamente en esos años el joven Pitágoras ideó la famosa tabla numérica (llamada pitagórica) que permite efectuar todas las operaciones fundamentales con los primeros nueve números. Y no sólo eso. En ese mismo período enunció numerosos teoremas de geometría, como, por ejemplo, el que demuestra que la suma de los ángulos de cualquier triángulo es igual a dos ángulos rectos.

O como ese otro, según el cual el cuadrado construido ‘sobre la hipotenusa de un triángulo rectángulo es equivalente a la suma de los cuadrados construidos sobre los otros dos lados (catetos) . Y otros. Pitágoras quiso también conocer la ciencia y las religiones de los pueblos más civilizados, y con tal objeto decidió emprender un largo viaje.

Biografia Matematico Griego: Pitagoras de Samos Vida y ObraPITÁGORAS DE SAMOS (580 a.C- 520 a.C.)

Filósofo griego nacido en La Isla de Samos y muerto en Metaponto. Se lo considera el primer matemático puro, aunque no haya quedado ninguno de sus escritos. La sociedad que lideró estaba regida por códigos secretos que hace que su figura sea muy misteriosa.

La figura de Pitágoras está envuelta en un hato de Leyenda, misticismo y hasta de culto religioso. Y no es tan extraño si pensamos que fue contemporáneo de Buda, de Confucio y de Lao-Tse estos fundadores de las principales religiones orientales)

EL padre de Pitágoras fue Mnesarchus y su madre Pithais, quien era nativa de Samos. Mnesarchus fue un mercader proveniente de Tiro. Dice una historia que Llevó maíz a Samos, y como gratitud fue declarado ciudadano de Samos.

Se pueden distinguir tres etapas en su vida: la  primera en el mundo griego, la segunda de viajes a Babilonia y Egipto y La tercera en Lo que más tarde Se Llamó la Magna Grecia , con un intermedio en Samos entre la segunda y la tercera etapa.

De pequeño Pitágoras viajó mucho con su padre. Hay registros de Pitágoras en Tiro, donde aprendió con los hombres ilustrados de Siria. También habría visitado Italia con su padre.

Tres filósofos se encontraban entre sus maestros. Uno fue Pherekydes. Los otros dos filósofos son Thai es y su discípulo Anaximandro, ambos vivían en Mileto, quienes Lo introdujeron en las ideas matemáticas.

Pitágoras conoce a Thales en Mileto entre Los 18 y 20 años. En este época, Thales era un anciano y contribuyó al interés de Pítágoras por la Matemática y La Astronomía y le aconseja viajar a Egipto para profundizar estos temas. Anaximandro Le dio clases de Geometría y Cosmología y muchas de sus ideas influyeron en Pitágoras.

Pitágoras viaja a Egipto en el 535 a.C. Esto es unos años antes de que el tirano Policrates tomara eL control de Samos. Pitágoras va a Egipto con una carta de recomendación de Policrates, de quien era amigo. Había una alianza y estrechos vínculos políticos, en esa época, entre Egipto y Samos. Allí visitó muchos templos y se vincutó con los sacerdotes, de quienes tomó muchas ideas que impuso posteriormente a su sociedad.

En el 525 a.C. Cambíses, invadió Egipto. Polícrates abandonó su alianza con Egipto y envió 40 barcos para unirse a Los persas en su invasión. Después que Cambises II ganó La Batalla de Pelusium en el Delta del Nilo, y capturó Hlliápolis y Menfis, Los egipcios fueron derrotados y Pitágoras fue tomado prisionero y Llevado a Babilonia.

En el 520 Pitágoras retorna a Samos desde Babilonia. No se sabe como obtuvo su liberación de Babilonia. Policrates fue asesinado en 522 a.C. y en el verano del mismo año murió Cambises II (se suicidó tuvo un accidente). La muerte de estos dos tiranos debe haber sido la razón por la cual Pitágoras regresó. Darío de Persia tomó el control Samos después de la muerte de Polícrates.

Pitágoras hizo un breve viaje a Creta luego de su regreso a Samos para estudiar el sistema de leyes vigentes. Cuando retornó a Samos, Pitágoras se trasladó a La polis (ciudad-estado) Crotona42, colonia griega en eL sur de Italia, alrededor del 518 a.C. Estas colonias gozaban entonces de una gran prosperi36 Potícrates de Samos (reinó entre 535 a.C.-522 a.C.) fue un gobernante sabio y popular.

dad, sobresaliendo entre ellas Síbaris, famosa en el mundo griego por sus riquezas y su vida lujosa. Crotona era su principal rival y vecina. Allí llegó Pitágoras con un sistema de pensamiento más o menos perfilado después de su larga experiencia por Oriente y Egipto. La ciudad le pidió que expusiera sus ideas y, según la tradición, Pitágoras dirigió por separado cuatro grandes discursos a los jóvenes, al Senado a las mujeres y a los niños. El contenido de estos cuatro discursos tal como ha sido transmitido por diversos conductos, está Lleno de recomendaciones morales de gran perfección, derivadas fundamentalmente de la necesidad de ajustar la conducta humana a tos cánones de armonía y justeza que se derivan de La naturaleza misma de las cosas e ilustradas con elementos específicos de la mitología de los habitantes de Crotona. Como consecuencia de este primer contacto surgió, al parecer> no sólo en Crotona, sino en toda Italia un gran entusiasmo por Pitágoras.

En Crotona vivía Milán, un hombre rico y muy famoso, porque había sido el campeón de Los juegos olímpicos en doce ocasiones. Mitón estaba interesado en la Filosofía y la Matemática, y cedió parte de su casa a Pitágoras, para que crease su propia escueta. Allí fundó una Sociedad religiosa y filosófica.

La Sociedad que fundó (Hermandad Pitagórica) tenía un credo muy estricto y un rígido código de conducta, pero era igualitaria e incluía varias mujeres. Una de ellas era Teano, la hija de Milán con quien Pitágoras se casó.

Superado un período de prueba, se permitía a los nuevos iniciados en la secta oír la voz del Maestro, oculto tras una cortina. Años después, más profundamente purificadas sus almas por la regla pitagórica, se les permitiría ver a Pitágoras.

La Hermandad Pitagórica era una comunidad religiosa y uno de los ídolos que veneraban era el Número. Los pitagóricos creían que, merced a la Matemática, el alma podría ascender a través de las esferas hasta unirse finalmente a Dios. La secta estaba caracterizada por el retiro, el ascetismo y el misticismo.

Los pitagóricos dividieron el saber científico en cuatro ramas: La aritmética o ciencia de los números -su lema era todo es número -, la geometría, La música y la astronomía.

La perfección numérica, para los pitagóricos, dependía de los divisores del número.

Los pitagóricos estudiaron propiedades de los números que nos son familiares actualmente, como Los números pares e impares, números perfectos, números amigos, números primos, números figurados: triangulares, cuadrados, pentagonales. Estos últimos solo conservan un interés histórico.

Pero para los pitagóricos los números tenían otras características que no se aceptan en La actualidad, sostenían que cada número tenían su propia personalidad, masculina o femenina, perfecto o incompleto, hermoso o feo. El diez era el mejor número porque contiene en sí mismo (os cuatro primeros dígitos, 1+2+3+4=10, y estos escritos en forma triangular forman un triángulo perfecto.

El número de oro fue descubierto en La antigua Grecia, por Pitágoras. El símbolo de la Escuela de Pitágoras y por  medio del cual se reconocían entre sí el símbolo de esta hermandad era la estrella de 5 puntas inscripta en un pentágono que ellos llamaban pentalfa (cinco alfas). Calcularon la relación que existía entre una diagonal y un lado del pentágono y encontraron que era siempre La misma. Lo llamaron razón áurea.

La razón áurea

Este cociente o razón se Llama La razón áurea. El número que resulta F = 1,61803398875… se llama número áureo o número de oro. (A F también se le representa por La Letra griega “fi”)

La muerte de Pitágoras fue debida a una revuelta popular, debido a que el pueblo de Crotona pensaba que tas tierras conquistadas por una guerra con un pueblo vecino, se iban a entregar a Los pitagóricos. Los amotinados, rodearon la casa de Mitón, taparon las salidas y te prendieron fuego. Pitágoras y muchos de sus discípulos murieron. Los supervivientes huyeron y esto sirvió para divulgar sus conocimientos. Las teorías pitagóricas sólo se conocieron a través de sus discípulos.

A Pitágoras se le atribuye La invención de las palabras Filosofía (amor por la sabiduría y Matemática lo que se aprende, un matemático es el que aprende). Inventó estas palabras para describir sus actividades intelectuales.

EL mayor éxito científico atribuido a Pitágoras fue su estudio del sonido, descubriendo que las cuerdas de instrumentos musicales producían sonidos de tonos más agudos cuando se las acortaba. Gracias a sus observaciones, el estudio del sonido ha permanecido inalterable hasta nuestros días. Pitágoras pensaba que todo el universo se apoyaba en tos números y sus relaciones, procediendo a revestir a los números de ciertas propiedades mágicas, lo que llevó de una manera indirecta a la investigación sobre las propiedades matemáticas de aquellos.

Los pitagóricos adhirieron a ciertos misterios, proponían la obediencia y el silencio, la abstinencia de comida, simplicidad en la vestimenta y posesiones y la frecuente auto-examínación Creían en la inmortalidad y la reencarnación del alma. Pitágoras decía haber sido Euphorbus, un guerrero de la Guerra de Troya.

Pero Lo que colmó de gozo a Pitágoras, hasta el punto de mandar sacrificar un buey a los dioses, fue la demostración del famoso teorema. En geometría, el gran descubrimiento de la Escueta fue que la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los catetos -conocido actualmente como el Teorema de Pitágoras-. Aunque este teorema era conocido por los babilonios 1000 años antes, Pitágoras fue el primero que lo demostró.

Por desgracia, el secreto que imponía las normas de la sociedad ha hecho imposible que esta demostración llegue a nuestro conocimiento, aunque podemos deducir que no sería muy distinta de la que Euclides nos brinda en sus Elementos. Sin duda es el teorema que cuenta con más número de demostraciones.

Scott Loomis reunió y publicó a principios del siglo XX 367 demostraciones.

A partir del teorema aparece el problema de la raíz cuadrada de

2, un número inconmensurable. Los griegos no pudieron darte solución

a este problema. Los irracionales no tenían explicación para ellos, eran parte del alagas (lo que no se puede explicar).

Se descubrió así de manera tajante la irracionalidad. Este descubrimiento de la irracionalidad condujo inevitablemente a La elaboración de la teoría de la divisibilidad.

Los números perfectos

– El número 496 es un número perfecto

– ¿Y qué quiere decir un número perfecto?, preguntó el poeta. ¿En qué consiste la perfección del número?

– Número perfecto, explicó Beremiz, es el que presenta la propiedad de ser igual a La suma de sus divisores, excluyéndose, claro está, de entre ellos el propio número. Así, por ejemplo, el número 28 presenta 5 divisores menores que 28; 1, 2, 4, 7, 14

La suma de esos divisores es precisamente igual a 28. Luego 28 pertenece a la categoría de los números perfectos. El número 6 también es perfecto. Los divisores de 6, menores que 6, son : 1, 2, 3, cuya suma también es 6. Al lado del 6 y el 28 puede figurar el número 496, que también es perfecto.

Los números triangulares

Los números triangulares se generan a partir de la serie de tos números naturales puestos en línea, y por continuas adiciones de los términos sucesivos, uno a uno, desde el principio, de manera que por sucesivas combinaciones y adiciones de otro término a la suma, los números triangulares se van completando en orden regular.

Los números triangulares son, pues, suma de La serie de Los naturales hasta uno determinado: Por ejemplo 28 = 1 + 2 -e- 3 + 4 + 5 + 6 + 7. Por eso decimos que el 28 es número triangular de lado 7.

En lo que sigue designaremos abreviadamente Los números triangulares con eL número de que se trate seguido de su lado entre paréntesis. Así eL 28, que es número triangular de lado 7, se expresara como 28(7).

Otros números triangulares son: 120(15), 153(17), 276(23), 666(36).

Los números cuadrados y pentagonales

EL concepto es similar aL de tos números triangulares. El 1, 4, 9, 16, el 25, … son números cuadrados, eL 1, 5, 12, 22, 35, … son números pentagonales.

Números Amigos

Cada uno de ellos es igual a la suma de los divisores propios del otro, por ejemplo 12 y 16, 220 y 284.

La Armonía Musical

Pitágoras descubrió que exisitía una estrecha relación entre la armonía musical y la armonía de los números. Si pulsamos una cuerda tirante obtenemos una nota, cuando la longitud se la cuerda se reduce a la mitad es decir en relacion 1:2 obtenemos 1/8. Si la longitud era 3:4 obtenemos la cuarta y si es 2:3 tenemos las quinta.

PASAJES DE LA VIDA DE PITÁGORAS: El maestro había podido comprobar en Samos que nadie le quería escuchar porque no le entendían, o se negaban a prestarle atención considerándole aburrido. En el momento que se vio rodeado de veintiocho alumnos que le amaban paternalmente, que le necesitaban vivamente para continuar saciando su hambre de sabiduría, lo primero que les exigió fue que no contasen a nadie, ni siquiera a sus padres, lo que allí se estudiaba.

Gracias a que todos estos jóvenes mostraban una mejor actitud en sus trabajos caseros, agrícolas o artesanales, debido a que los compartían con las clases en la cueva o Hemiciclo, se consideró que habían mejorado. Claro que lo habían hecho. Lo que resulta un tanto problemático de aceptar es que estuviesen practicando las rígidas normas pitagóricas de no comer carne, ni habas. Es posible que al ser tan jóvenes se vieran libres de mantener una alimentación vegetariana.

La belleza como meta
Pitágoras entendía la belleza, en su sentido humano, como la exaltación del individuo hasta su propia perfección. Para conseguirla debía servirse de dos elementos complementarios: el desarrollo total de sus facultades físicas, morales e intelectuales, y procurando imitar el modelo divino.

Como creían todos los iniciados griegos, el ser humano dispone en su interior de la simiente de esa belleza. Por medio de ciertas técnicas pedagógicas se podía conseguir extraerla y, luego, desarrollarla de la forma más positiva. Era muy consciente el Sabio de Samos que con el cultivo armónico de todas las facultades físicas e intelectuales, el hombre y la mujer podían perfeccionarse, empezando por la belleza del cuerpo. El filósofo alejandrino Plotino lo definió de esta manera:

Retírate para conseguir examinar tu interior y no dejes de contemplarte. En el caso de que no te considerases demasiado bello, procura imitar al creador de una estatua: observa el modelo de la belleza para reproducirlo sin el menor error. Para lograrlo elimina trozos de mármol, pule ciertas zonas, suaviza una línea, completa otra y no se detiene hasta alcanzar la meta deseada: la perfecta reproducción. Como él ha actuado, abandona lo inútil, pon derecho lo torcido, da luz a las sombras y nunca dejes de cincelar la estatua que es tu propio cuerpo. Debes perseguir que sobre ti resplandezca el divino fulgor de la virtud, para así poder certificar que la divinidad se halla presente en el santuario que forman tu cuerpo y tu mente.

Pero la belleza también podía encontrarse en la palabra, ya que tenía mucho de música. Pitágoras recomendaba: Habla sólo cuando la palabra valga más que el silencio. Concederemos un mayor valor a esta frase clave si tenemos en cuenta que el Iniciado fue llamado el “Hijo del Silencio”.

Por lo que afecta a la belleza corporal, sabía de antemano el Maestro de Samos los secretos de su lenta configuración. Se obtenía por medio de ciertos ejercicios físicos, un ambiente artístico, los conocimientos que concedían mayor importancia a lo espiritual que lo material y algunos controles alimenticios.

La leyenda refiere que Pitágoras aprendió en Egipto, Persia y Babilonia a manipular el agua como si fuera una lira. Conocía los secretos para armonizar las fuentes, graduar el sonido delicado de la brisa en los jardines, cultivar el canto de los pájaros amaestrados y tañer una serie de instrumentos de Asia, de África y de Europa, propicios a la armonización de los gestos a través de la danza.

Pero la danza no formaba parte de las enseñanzas que recibían esos primeros veintiocho alumnos, aunque sí de los otros miles que llegarían más tarde, en diferentes lugares de Grecia e Italia. Entonces se comprobaría que el baile místico, aunque fuese practicado individualmente por hombres y mujeres, todos ellos pitagóricos, ayudaba a la belleza del cuerpo humano.

El simbolismo de los números
Pitágoras estaba convencido de que entre los dioses y los números existía una relación misteriosa, en la que se basaba la ciencia de la aritmancia o la magia procesal. Uno de sus seguidores, Proclo, convirtió en palabras esta teoría: “Antes de los números matemáticos se encuentran los números animados.”

El historiador Porfirio llegó a más al escribir: Los números de Pitágoras hemos de verlos como unos símbolos jeroglíficos, por medio de los cuales se representaba la totalidad de las ideas relacionadas con la auténtica naturaleza de las cosas.

Se sabe que los antiguos sabios concedían un doble sentido a los números, y los pitagóricos se hicieron famosos en todo el mundo por servirse de esta teoría. No obstante, en el segundo aspecto de tan singular ciencia, al exacto conocimiento de los números animados sólo accedían los iniciados. Este poder era revelado a los más puros, al creer que su sentido universal y su simbología no debía vulgarizarse. Adquirían el derecho a conocerlos aquellos que habían superado las cuatro pruebas fundamentales del óctuple sendero. Esto les permitía adquirir una fuerza superior y el grado más elevado de la virtud.

Además de los pitagóricos futuros, que todavía no lo eran los veintiocho primeros alumnos de la Cueva de Samos o Hemiciclo de Pitágoras, todas las escuelas iniciáticas del mundo, lo mismo en oriente como en occidente, veían en los números la concreción y la abstracción, lo simple y lo más abso luto, lo terreno y lo celestial. En esencia creían que los números representaban las leyes que rigen los efectos y las causas.

Por este motivo no podía alcanzar la apopteia (estado de perfección y conocimiento de los principios superiores de la existencia en un plano general) aquel que no fuese antes mate mático (oyente silencioso) en su estado puro.

Fuente Consultada: PITÁGORAS Grandes Iniciados Patricia Caniff

Notación Complementaria

Isla de  Samos está ubicada al sureste de Grecia, en el mar Egeo, cercana a la costa de Turquía.

Mesaponto, Ciudad del sur de Italia.

Buda (c. 563-c. 486 a.C.), fundador del budismo, nacido en el parque Lumbini cerca de Kapitavastu, en la actualidad Ñepal, cerca de la frontera india.

Confucio, en chino Kongfuzi (c. 551-479 a.C.), filósofo chino, creador del confucionismo y una de las figuras más influyentes de la historia china.  Loo-Tsé o Laozi (c. 570-c. 490 a.C.), filósofo chino considerado el fundador del taoismo.

Tiro, ciudad del sur del Líbano, junto al mar Mediterráneo.

Magna Grecia, nombre dado en la antigüedad a las colonias griegas del sur de la península Itálica.

Antigua ciudad griega de Jonia, en la costa oeste de Asia Menor (parte de la actual Turquía).

Cambises JI, rey de Persia (529-522 a.C.), hijo de Ciro II el Grande, a quien sucedió, Para mantener el control sobre el Imperio persa, Cambises II asesinó a su hermano menor, Smerdís (c. 523 a.C.). Después encabezó una expedición contra Egipto.

Babilonia, una de las ciudades más importantes de la antigüedad, cuya localización está hoy en día marcada por una amplia zona de ruinas al este del río Éufrates, a 90 km al sur de Bagdad, en Irak.

Darío I el Grande (c. 558-486 a.C.), rey de Persia (c. 521 – 486 a.c.)

Fuente Consultada: Los Matemáticos Que Hicieron Historia Alejandro E. García Venturini

Biografia de Thales de Mileto: Siete Sabios de Grecia Teorema de Thales

Biografía de Thales de Mileto

THALES DE MILETO (624 a.C – 546 a.C.)

NacióBiografia de Thales de Mileto y murió en la ciudad de Mileto. Sus padres fueron Examyes y Cleobuline. Fue maestro de Anaximandro. Ninguno de sus escritos sobrevivieron , por lo que es difícil saber exactamente cuáles fueron sus descubrimientos matemáticos. Probablemente se le atribuyan descubrimientos que no le corresponden. Lo que sabemos de Thales proviene de Aristóteles. Primero fue a Egipto y desde allí introdujo en Grecia Los estudios sobre Geometría.

La opinión antigua es unánime al considerar a Thales como un hombre excepcionalmente inteligente y como el primer filósofo griego, científico y matemático, pero actuaba como un ingeniero. Es considerado el primero de los Siete Sabios Griegos24. El hecho concreto que más aseguró su reputación fue la predicción de un eclipse de sol. en 585 a.C., que tuvo lugar exactamente el. 28 de mayo del año que él había predicho. Igualmente fue el primero en mantener que la luna brilla por el reflejo del sol.  

Según Proclo, primero fue a Egipto donde entró en contacto con la Geometría que luego introdujo a Grecia. 

Tomó prestada La Geometría de los egipcios y dio en ella un avance fundamental ya que fue el primero en emprender la tarea de demostrar exposiciones matemáticas mediante series regulares de argumentos. En otras palabras, inventó la matemática deductiva. Se le asignan entre otros los siguientes teoremas:  

1. Un ángulo inscripto en una semicircunferencia es un ángulo recto.

2. Todo círculo queda dividido en dos partes iguales por un diámetro.

3. Los ángulos básicos en un triángulo isósceles son iguales.

4. Los ángulos opuestos por el vértice que se forman al cortarse dos rectas, son iguales.

5. Si dos triángulos son tales que dos ángulos y un lado de uno de ellos son respectivamente iguales a dos ángulos y un lado del otro, entonces los dos triángulos son iguales.  

Midió la altura de las pirámides midiendo la altura de sus sombras en el momento en el cual la sombra de una persona es igual a su altura. Este razonamiento no parece surgir de conocimientos geométricos sino más bien de una observación empírica. Creyó que en el. momento en que la sombra de un objeto coincide con su altura, también eso es válido para cualquier objeto, por ejemplo, la pirámide.  

Luego utilizó conceptos similares al de la semejanza de triángulos. También calculó la distancia a un barco en el mar, para lo cual habría utilizado el teorema 3.

A continuación se muestra la demostración que aparece en la Proposición 32 del Libro III de Los Elementos de Euclides del teorema 1:

Como OA y OB son iguales, Los ángulos ABO y BOA también son iguales y como OA y OC son iguales, tos ángulos OAC y OCA son iguales. Por tanto, BAC es la suma de ABC y ACB, teniendo en cuenta que la suma de los tres ángulos de un triángulo BAC debe ser recto.

Creía que La Tierra era un disco plano que flotaba sobre agua y que todas La cosas .venian del agua. Explicaba los terremotos por el hecho de que la Tierra flote sobre agua. Fue el primero en tratar de explicar estos fenómenos en forma racional y no por medios sobrenaturales.

Hay dos anécdotas vinculadas a Thales. Una La cuenta Aristóteles, y dice que Thales usaba sus habilidades para deducir que La cosecha de aceitunas de La siguiente temporada sería muy buena. Entonces compraba todas las prensas de aceitunas, con Lo cual podía hacer fortunas cuando la abundante cosecha llegaba.  

Platón cuenta la otra anécdota: una noche Thales estaba observando el cielo y tropezó. Una sirviente lo Levantó y Le dijo: cómo pretendes entender lo que pasa en el cielo, si no puedes ver lo que está a tus pies.  

Es difícil escribir sobre Thales, como sobre otros personajes de esa época, porque era común acreditarles a hombres famosos descubrimientos que no hicieron. Por ejemplo, no hay constancia histórica de que Thales haya enunciado eL teorema que conocemos como Teorema de Thales, aunque si es cierto que Thales trabajó sobre la proporcionalidad de segmentos al calcular alturas midiendo las sombras.

En el momento de morir pronunció Las siguientes palabras: «Te alabo, ¡oh Zeus!, porque me acercas a ti. Por haber envejecido, no podía ya ver las estrellas desde la tierra. » 

ANOTACIONES COMPLEMENTARIAS

Antigua ciudad griega de Jonia, en la costa oeste de Asía Menor (parte de La actual Turquía).

Anaximandro (c. 611-c. 547 a.C.), filósofo, matemático y astrónomo griego. Nació en Mileto (en La actual Turquía). Discípulo y amigo del filósofo griego Tales de Mileto. Aristóteles (384-322 a.C.), filósofo y científico griego que comparte junto a Platón y Sócrates la distinción de ser los filósofos más destacados de la antigüedad.  

Los Siete Sabios fueron: Bías de Priene, Quitón de Esparta, Cteóbulo de Lindos, Periandro de Corinto, Pitaco de Mitilene, Solón de Atenas y Thales de Mileto.

Proclo (c. 41 0-485), último de los filósofos clásicos griegos importantes, el exponente más representativo de la escuela ateniense del neoplatonismo.

UN VIDEO RELACIONADO

Fuente Consultada: Los Matemáticos Que Hicieron Historia Alejandro E. García Venturini