Teoría Deriva Continental

Plataforma Submarina Argentina Geología y Riqueza

Plataforma Submarina Argentina

CONCEPTO Y RECURSOS NATURALES DE LA PLATAFORMA CONTINENTAL

Si consideramos aun muy esquemáticamente a la Tierra, llegaremos a la conclusión de que su superficie no es homogénea, Posee convexidades y concavidades. Las primeras constituyen las tierras emergentes, o sea, los continentes; las segundas, están cubiertas por grandes masas de agua: los océanos. Existe, estructuralmente, una faja de contacto que se localiza en la zona donde las curvaturas cambian de sentido, es decir, en la transición entre convexidades y concavidades. Esta faja se denomina plataforma submarina.

Geológicamente la plataforma continental, también llamada submarina, es la superficie del territorio  costero que se va extendiendo debajo del océano, como consecuencia de la prolongación natural de esas costas. En una superficie submarina que va avanzando hacia adentro del mar, con una suave pendiente que casi no supera a 1° de inclinación.

El ancho de esa superficie sumergida es medida en kilómetros a partir de la costa del continente hasta  el comienzo de un gran escalón submarino, denominado talud continental, donde la pendiente del lecho del océano es mas vertical y la profundidad cambia notablemente, llegando hasta el fondo marino profundo, zona que geológicamente tiene otra composición. Este talud separa a la plataforma continental del fondo marino profundo denominado: llanura abisal

De acuerdo con la Ley del Mar de Naciones Unidas, plataforma, talud y hasta una porción de la emersión continental puede ser reivindicado por los Estados ribereños y a tal fin la República Argentina ha presentado los planos correspondientes, y en marzo de 2016, la Comisión del Límite Exterior de la Plataforma Continental (CLPC), dependiente de las Naciones Unidas, dictaminó sobre cuáles son los límites marítimos de la Argentina y estableció que la plataforma continental, Islas Malvinas, Georgias del Sur y Sandwich del Sur, y Antártida Argentina son parte de nuestro territorio. Con esto, el país aumentó su plataforma marítima en un 35%, es decir, exactamente 1.782.000 kilómetros cuadrados. 

 La plataforma continental argentina  se extiende en dirección N-S desde la desembocadura del Río de la Plata hasta el sur del archipiélago de Tierra del Fuego. La plataforma continental argentina   tiene una superficie aproximada de 1.000.000km², una longitud máxima de 2.300 km en el sentido NNE-SSO, y un ancho promedio de 440km en sentido E-O, con un mínimo cercano a los 180km frente a las costas de la península Mitre (este de la Isla Grande de Tierra del Fuego), y un máximo de 880km, en el sector norte de las islas Malvinas. Presenta una profundidad máximacercana a los -250m inmediatamente al oeste de las islas Malvinas.

plataforma submarina argentina

Más allá de la costa, el relieve continental se prolonga debajo del mar en la plataforma continental. Esta se caracteriza por su gran extensión, que se estima en más de milllón de kilómetros cuadrados, y por su pendiente suave, con una profundidad de aproximadamente 200 metros. Su ancho varía entre los 210 km, frente a Mar fe Plata, y los 850 km, a la latitud de ias islas Malvinas.

esquema de la plataforma submarina argentina

Sobre la plataforma continental el estado ribereño ejerce derechos exclusivos de soberanía para la exploración y explotación de los recursos naturales allí existentes (artículo 77 de la Convemar). Los fondos oceánicos que queden más allá de los límites que fijen los estados están bajo la jurisdicción de la Autoridad Internacional de los Fondos Marinos y son considerados para beneficio de toda la humanidad. El fondo oceánico profundo con sus crestas oceánicas y su subsuelo, queda fuera de la jurisdicción de los estados.

CARACTERÍSTICAS: La plataforma submarina es simplemente continente inundado por el mar. En la plataforma submarina argentina el mar apenas alcanza los 200 m. de profundidad, sus aguas albergan importantes recursos pesquero y es una zona de nuestra soberanía naciona.

A lo largo de la historia geológica del planeta el nivel del mar vario con frecuencia, y las plataformas submarinas emergieron de la superficie o quedaron hundidas en otros momentos. La constitucion geológica de la plataforma submarina es igual a la de los continentes y por eso mismo es muy diferente a la de los fondos marinos profundos.

Mientras estos fondos están constituídos por rocas volcánicas, la constitución de las plataforma está formada por rocas plutónicas , metamórficas y grandes pilas de rocas sedimentarias profundamente enterradas. Gran parte de los sedimentos continentales terminan en la plataforma por la accion de los ríos y de los vientos.

Los sedimentos mas gruesos como arena y canto rodado son generalmente acumulados cerca de la costa y en la plataforma, en cambio los sedimentos mas finos quedan  suspendidos en el mar por mucho tiempo y son desplazados por las corrientes hacia zonas alejadas, donde terminan formando parte del fondo oceánico.

La plataforma ha ocultado durante muchísimo tiempo un material mas importante que los sedimentos, que tiene desde hace mas de un siglo un importante uso como energía no renovable, y que lo conocemos como petróleo.

Durante la Segunda Guerra Mundial cuando el mundo necesitaba mas anergía y el precio del crudo de petróleo comenzó a aumentar, el hombre comenzó a mirar el fondo del mar, porque los geólogos ya sabían que el las profundidades del océano había grandes posibilidades para la explotación del ese oro negro.

A partir de 1942 se diseñaron las primeras plataformas petroleras modernas y la Argentina no fue ajena a este proceso, pues nuestra plataforma era un importante reservorio de petroleo y gas. El lugar para iniciar la actividad fue la boca del Estrecho de Magallanes y el Golfo de San Jorge en sur de la Patagonia.

Hacia el océano la plataforma está limitada por el Talud y la Elevación Continental, y a su vez la zona entre ambos límites forman lo que llamamos el Margen Continental, este se extiende desde los 35° de latitud sur, donde tiene un ancho de 500 Km., hasta la punta sur del Golfo de San Jorge donde alcanza los 850 Km de ancho. A partir de alli se extiende hacia el este formando un arco que se une con la península antártica, arco que se conoce como el Arco de Scotia.

El margeN continental argentino, puede dividirse en dos partes, una al sur y otra al norte del paralelo 49 de latitud sur. Al sur, en el arco de Scotia,  se encuentran los archipiélagos de las Islas Sandwich del Sur, Georgias del Sur, Islas Orcadas y el archipélago de las Islas Malvinas.

La parte norte se extiende por mas de 1.500.000 km² y tiene un talud pronunciado, alli bajo el agua hay un enorme y variado paisaje verde que nada tiene que envidiarle lo que vemos en la superficie. La historia de la nuestra plataforma submarina, se remonta a unos 250 millones de años atrás, donde existía un solo continente que se llamaba Gondwana, que reunía a los actuales continente de América del Sur, Africa, la Antártida, la India y Australia.  Unos 100 millones de años despúes el desmembramiento de esas masas territoriales , vino a formar los acéanos Atlántico e Indico, mas la separación de las masas continentales. Esa separación creo importantes movimentos y la formación del Arco de Scotia.

La parte norte es la que sufrido menos desplazamientos, pero en la zona sur del paralelo 49 las masas continentales se deslizaban lateralmente unas con otras, dando lugar al Pasaje de Drake, que separa la Antártida de América del Sur, al arco volcánico de las Islas Sandwich del Sur, y a la plataforma submarina mas austral.

movimiento de masas territoriales

Con el tiempo, hasta nuestros días el océano fue moldeando su lecho, y las costas de Argentina, creando una gran plataforma submarina, cuna de una gran fuente de energía y de un importante medio de subsistencia.  La plataforma submarina argentina es la mas rica del mundo en Fitoplacnton y Zooplancton, es decir plantas y animales microscópicos muy buscados por el hombre.

A principio del siglo XX comenzó la pesca en el Mar Argentino que está contenido en la plataforma argentina, extrayendo con redes merluzas y lenguados, desde entonces Argentina se incorporó en el mercado mundial como un importante exportador, abriendo nuevos puertos, como el de San Antonio y Puerto Deseado y construyendo barcos mas grandes y modernos.

La plataforma submarina argentina, a pesar que no está a la vista, es parte fundamental de la economía nacional, su petroleo, sus peces, sus aguas, su relieve y sus islas, son parte de la riqueza, no solo de Argentina, sino también del Planeta, que vive transformaciones cada vez mas rdicales y que exige dia tras dia, que mieremos, conoscamos y cuidemos los recursos naturales.

Esta enorme región escondida en la profundidad del mar, esconde paisajes que aun tiene mucho para ofrecer y sorprender.

EL MAR ARGENTINO:
El Mar Argentino o mar epicontinental se extiende sobre la plataforma continental. Sus aguas presentan importantes variaciones en cuanto a temperatura y composición química, lo cual permite el desarrollo de una fauna y una flora abundante y diversa.

Por ejemplo, las variaciones de temperatura se deben, en gran medida, a la presencia de diferentes corrientes marinas. En el Mar Argentino se presentan, con dirección opuesta, la corriente cálida del Brasil, que avanza hacia el sur, y la corriente fría de Malvinas, que se desplaza hacia el norte; la corriente Patagónica, de alcance local, lleva aguas frías, en sentido casi paralelo a la costa. Además, cerca de la costa, la salinidad del agua (es decir, la proporción de sales) es menor que mar adentro, entre otras causas por el aporte de las aguas dulces continentales.

Estas variaciones en la temperatura y en el tipo y la cantidad de minerales permiten, junto a otros factores, la formación de una variedad de zonas o ambientes acuáticos donde viven distintas especies de peces de valor comercial. Por ejemplo, en las aguas del sector bonaerense, más próximas a la superficie, viven anchoítas, bonitos, caballas, anchoa lisas, pejerreyes y comalltos.

En las aguas más profundas se encuentran especies de origen subtropical, favorecidas por la corriente de Brasil, como la corvina negra, el besugo, la pescadilla y el mero; también, algunas especies de origen subantártico, debido a la presencia de la corriente de Malvinas, como la merluza bonaerense, la merluza de cola, la castañeta y el abadejo.

ALGO MAS SOBRE EL TEMA…

Los rayos del sol penetran en el océano brindándole la posibilidad de albergar vegetales cuyo metabolismo se basa en el proceso de fotosíntesis. Este grado de penetración varía según la turbiedad de las aguas, pero se estima que con aguas muy claras llégamenos del 1 % de la energía luminosa de la superficie hasta el límite de los 200 metros de profundidad. Más allá, prácticamente no hay luz. Por ello, la importancia de la plataforma submarina, ya que en ella se albergan los vegetales que integran el plancton junto con pequeños animales que no tienen movilidad propia y que se alimentan de los primeros. Toda unacadena se estructura a partir de ellos, que da, directa o indirectamente, posibilidades de alimentación a especies de mayor tamaño y gran movilidad, como son los peces.

La fauna y flora bentónica, es decir la que se arrastra por el fondo marino, tiene en la plataforma condiciones de luminosidad que le permiten desarrollarse. Como conclusión, puede afirmarse que las áreas de mayor riqueza ictícola del océano se localizan en las plataformas submarinas. La pesca es una actividad económica de gran importancia, que adquiere cada vez mayor auge debido al aumento de la población en el mundo, que requiere más y más proteínas para nutrirse. Además, la presencia de petróleo en vastos sectores de la plataforma, así como otros minerales de gran valor, ha abierto nuevas perspectivas de explotación a estas fajas de terreno sumergido.

Según lo establecido en convenios internacionales, como el de Ginebra, de 1958, los países ribereños poseen soberanía sobre las plataformas que corresponden a sus líneas costeras. Incluso se permite ampliar la zona de explotación hasta profundidades mayores, donde la pesca resulte posible.

Muchos países, particularmente aquellos que poseen altos cordones montañosos próximos a la costa, como Chile, cuentan con estrechas plataformas, ya que por lo general, a grandes alturas en el continente corresponden grandes profundidades en el océano. En Estados con costas de llanura, como la Argentina, la plataforma es amplia y la cubren mares epicontinentales de jurisdicción local.

Fuente Consultadas:
Video del Canal Encuentro Sobre Geografía Argentina
La Enciclopedia del Estudiante Tomo 21 Geografía Argentina
Enciclopedia Joven Editorial Cuántica Fasc. N°36 La Plataforma Submarina
Sitio Web: http://www.plataformaargentina.gov.ar/es/plataforma

 

La Erosión del Hielo Accion Erosiva de los Glaciares

La Erosión del Hielo
Acción Erosiva de los Glaciares

Durante la larga historia de la Tierra los climas del mundo han sufrido muchos cambios. Pero pocos pueden compararse con el que tuvo lugar hace menos de un millón de años, cuando las temperaturas descendieron, principalmente en el norte, y la Tierra entró en la Edad Glacial.

hielo en la montaña - erosion

Como caía cada vez más nieve en invierno y se fundía menos en verano, se formaron grandes masas de hielo que se trasladaban lentamente hacia el sur. Cuando alcanzaron su mayor extensión, vastas zonas de Asia, Europa y América del Norte (más de veinte millones de kilómetros cuadrados, en total) quedaron sepultadas por el hielo.

Las exuberantes regiones subtropicales se trasformaron en desiertos helados a medida que las temperaturas árticas dominaban la Tierra y los climas templados retrocedían hacia el Ecuador.

Como gigantescas excavadoras las masas de hielo arrancaban la tierra al avanzar y la arrastraban hacia el sur. Arrasaban bosques, aplanaban las cimas de las colinas, ahondaban los valles, trasportaban enormes piedras a lo largo de centenares de kilómetros, desde su lugar de origen hasta lejanos paraderos. La Edad Glacial acabó hace unos diez mil años, pero muchos parajes, en el hemisferio norte, atestiguan todavía que el hielo en movimiento puede esculpir la tierra.

Puede sorprender el hecho de qué el hielo erosione una roca mucho más dura que él. El fenómeno se explica  observando la gravilla y los cantos que se unen firmemente al hielo, y trasforman un glaciar en movimiento en una lima gigante y flexible, con un poder considerable para desgastar la roca. Pero el hielo también corroe por sí mismo. Un glaciar arranca bloques de roca al deslizarse por las orillas de un valle.

rotura de roca por el hielo

La velocidad de un glaciar depende, en gran parte, de la velocidad de su deslizamiento. Por esto, los glaciares de Groenlandia (algunos de los cuales avanzan a la velocidad de veinte metros al día) son varias veces más demoledores que los glaciares de los Alpes, que sólo recorren un metro al día.

Una masa de hielo continental que avanza lentamente suaviza el relieve. Uno de los resultados más característicos de la erosión glaciar es el valle en forma de U, con su fondo plano salpicado de cantos y limitado por márgenes escarpadas. Pero estos valles eran lechos de ríos antes de que la erosión de los glaciares los modificara.

Probablemente, los valles más espectacularmente moldeados por el hielo son los fiordos, con sus paredes escarpadas, de rocas desnudas que dominan el agua profunda. Los glaciares erosionaron los fiordos por debajo del nivel del mar porque el hielo, en el seno del agua, mantiene las 9/10 partes de su volumen bajo la línea de flotación. Pero muchos fiordos son inmediatamente profundos cerca de su desembocadura, donde una barrera de rocas o escollos, frecuentemente cubierta de materiales arrastrados, ha elevado el valle casi hasta el nivel del mar.

Este umbral es debido a una disminución en el espesor del hielo cerca de la desembocadura del glaciar. Muchos valles glaciales tienen cascadas, que caen por sus márgenes desde valles tributarios situados a un nivel superior. Estos valles colgados, que originan algunas de las cascadas más importantes del mundo, son debidos probablemente al hecho de que el tamaño es un factor significativo en la posibilidad de un glaciar de erosionar el suelo.

los glaciares

El glaciar que ocupó el valle principal fue mucho mayor que sus afluentes y tuvo, por tanto, mayor fuerza destructora. Por esto, al fundir el hielo, el fondo de los valles tributarios quedó a un nivel más elevado que el del valle principal. La diferencia de alturas entre ambos valles depende de la diferencia de tamaño de los glaciares que discurrieron a través de ellos. Pero la explicación completa de los valles colgados no puede ser tan sencilla.

Se ha sugerido que la diferencia de niveles podía ser debida, en parte, al hecho de que los valles tributarios contenían glaciares cuando el del valle principal había fundido ya. Como la corriente de agua es un agente de erosión más potente que el hielo, el valle principal por el que corriese un río habría sufrido una erosión más profunda que los valles tributarios en los que se encontraban glaciares. Esto, probablemente,  es  parcialmente   cierto, ya que los valles tributarios que están orientados de espaldas al Sol (es decir, aquellos que pueden conservar los glaciares durante más tiempo) se encuentran a veces a una altura mayor que los que se hallan en el lado opuesto del valle principal.

Acción Erosiva del Hielo

Otra señal que deja la erosión glaciar es el circo. Éste es una profunda cavidad en una región montañosa y se encuentra, frecuentemente, en las alturas heladas. Muchos sirven de lecho a pequeños lagos, excepto cuando se encuentran en el origen del valle de un glaciar.

Los circos tienen tendencia a seguir desgastando la ladera de la montaña, a medida que sus paredes “estallan” por la acción del hielo y son “desplumadas” por la nieve en movimiento. A veces ocurre que dos circos llegan a aproximarse tanto que sólo quedan separados por una estrecha pared rocosa, que se conoce con el nombre de cresta. Si hay circos alrededor de la montaña, ésta tiene una cima piramidal.

Mesa Glacial

La glaciación no es sólo un proceso destructivo, sino que el material arrastrado desde un lugar puede ser depositado en otro, cuando funde el hielo. Las llanuras inglesas y las del Norte de Europa están revestidas por una arcilla pedregosa arrancada de lugares como Escandinavia (que aún hoy día carece de tierra fértil). Ocurre  un hecho  similar en América del Norte, donde el material arrancado en el Canadá proporciona ahora una tierra fértil en la parte central de Estados Unidos.

La arcilla pedregosa, o tillita, es una mezcla de aluviones de todas clases, que van desde el fino polvillo de roca hasta grandes rocas que pueden pesar muchas toneladas. Pero los dos tipos principales son: tillita básica (que es rica en arcilla) y la tillita superglaciar (que es más pedregosa).

La mayoría de la arcilla fue arrastrada por el agua producida al fundirse el hielo. A veces, esta arcilla pedregosa está moldeada por las corrientes de agua en forma de montículos que semejan dorsos de ballena y que, generalmente, tienen menos de dos kilómetros de longitud y, raramente, más de 60 metros de altura. Cuando se encuentran agrupados, forman lo que se denomina, adecuadamente, topografía en “cesta de huevos”.

La acumulación de restos de rocas trasportados y depositados por los glaciares recibe el nombre de morrenas o morenas. La arcilla pedregosa depositada en el fondo de un glaciar forma la morrena de fondo. Las morrenas laterales resultan de los fragmentos de roca que caen a los lados del glaciar y, cuando dos glaciares se encuentran, las morrenas laterales se unen para formar la morrena central.

Luego, en la desembocadura del glaciar los detritos se acumulan para formar una morrena terminal. si el frente helado permanece estacionario durante un tiempo suficiente. Muchos de los lagos que existen en el mundo se han formado por la acción de las morrenas, que han actuado como presas naturales.

El agua de deshielo de un glaciar, o de una masa de hielo, juega su propio papel en la erosión y en el depósito de materiales. Los eskers son largas y tortuosas lomas de arena y grava, que corren más o menos en la misma dirección del hielo. El material está depositado por el agua que se encuentra encerrada en un estrecho canal debajo del hielo.

A veces los eskers tienen la forma de burbujas; estas burbujas marcan la desembocadura de la corriente sub-glaciar durante los períodos de inmovilidad, cuando la velocidad a la que avanza el glaciar, o la masa de hielo, está compensada exactamente por la velocidad a la que funde el hielo. Los conos de todos muestran que la corriente subglaciar abandona su estrecho canal bajo el hielo.

Una brusca disminución de la velocidad, al surgir el agua sobre la tierra, motiva el abandono del material trasportado. La acción erosiva del agua de fusión puede ser considerable cuando el desagüe normal queda obturado por el hielo y debe formarse un nuevo canal de evacuación.

Fuente Consultada:
Revista TECNIRAMA N°54 Enciclopedia del Ciencia y La Tecnología – La Labor Erosiva del Hielo

Cuadro sinoptico Placas Tectonicas Deriva Continental Litosfera

La litosfera no es una capa continua y uniforme, sino que está dividida en grandes fragmentos o placas litosféricas.

Dichos fragmentos tienen unos 100 Km. de espesor y tienen movilidad propia o independientes entre si, pues están flotando sobre  la astenosfera (que es una zona de unos 600 Km. de espesor, donde se encuentran materiales silicatados en estado semilíquido), en forma similar a como lo hacen los grandes bloques de hielo que flotan sobre el agua. Cada una de las placas está totalmente rodeada de otras, y sus formas y tamaños son variados e irregulares.

La importancia de esta teoría radica en que permite explicar de forma satisfactoria muchos fenómenos de nuestro mundo que con anterioridad constituían una incógnita. Así, por ejemplo, gracias a la tectónica de placas resulta aceptable que en otras eras geológicas todos los continentes estuvieran unidos formando una masa única, que después se dividió y originó la distribución de las tierras emergidas que existe en la actualidad.

Asimismo la tectónica de placas explica de manera satisfactoria la concentración de las principales cordilleras en determinadas zonas de nuestro planeta, además de ofrecer una hipótesis creíble sobre cómo se formaron. Del mismo modo, la distribución de los terremotos y los volcanes en determinadas áreas de la superficie terrestre encuentra explicación en el marco de la tectónica de placas.

CUADRO SINOPTICO SOBRE ESTE TEMA:

cuadro sinoptico placa tectonicas

Teoría Deriva Continental

Isobaras Mapas de Climas de Argentina Isotermas Isohietas Conceptos

¿ESTÁ CAMBIANDO EL CLIMA DE LA TIERRA? Los climatólogos, o investigadores del clima, sostienen, con pocas reservas, que, a lo largo de los últimos cien años, la temperatura media global ha aumentado en aproximadamente medio grado Celsius. Este calentamiento se atribuye, al menos en parte, a actividades humanas como la combustión del carbón, del petróleo y del gas natural en las centrales térmicas de producción de electricidad, así como la de los combustibles de los automóviles y otros medios de transporte. Y se espera que, a causa del constante aumento de la población y del avance de la Tecnología, un nuevo incremento de 1 a 3,54 °C tenga lugar hacia el año 2100.

Pero, por otra parte, el calentamiento también estaría asociado a una mayor actividad tectónica del planeta, con un aumento inusitado de erupciones volcánicas en distintos lugares. E incluso se infiere una relación con las tormentas solares y la intensidad y el tamaño de las erupciones en el Sol.

Un archivo detallado de los fenómenos meteorológicos del último siglo ha permitido a los climatólogos comprender la magnitud del cambio climático. Y estos datos son analizados mediante complejas ecuaciones matemáticas a la vez que se realizan simulaciones del sistema climático con la ayuda de las computadoras.

En especial, están centrando su atención en el aumento de las temperaturas mínimas, que revisten gran interés por su incidencia en la agricultura. En este sentido, los climatólogos llegaron a la conclusión de que las temperaturas mínimas crecen más de prisa que las -máximas, hecho probablemente relacionado con los cambios de la cobertura de las nubes (éstas tienden a mantener los días más frescos, al reflejar la luz solar, y las noches más cálidas, al bloquear la pérdida de calor del suelo) y con el enfriamiento debido a la evaporación (el incremento de la humedad en el suelo inhibe el ascenso de temperatura durante el día porque parte de la energía solar se invierte en la evaporación de dicha humedad).

El cambio climático también afecta la distribución de las lluvias y otras precipitaciones: en algunas regiones aumentarían, para disminuir en otras, con la consiguiente alteración de la distribución global y la aparición de sequías e inundaciones.

La relación entre la temperatura y los temporales es más complicada. En un mundo más cálido, la diferencia de temperatura entre los trópicos y los polos cubriría un menor intervalo, con lo que se debilitarían los temporales. Por otra parte, en la alta atmósfera se invertiría la diferencia, lo que influiría de manera opuesta. La actividad humana -a través de, por ejemplo, la emisión de aerosoles- también contribuiría a estos cambios inciertos.

Si bien la precipitación media en forma de nieve tenderá a disminuir por el calentamiento, es esperable una mayor frecuencia de aguaceros copiosos, que pueden provocar inundaciones, erosionar los suelos y causar mortandad humana.

Finalmente, conforme el clima se vaya haciendo más cálido, se prevén cambios en la actividad de los ciclones tropicales (huracanes del Atlántico y tifones del Pacífico).

El problema es que el desplazamiento de los ciclones a zonas extratropicales determinará una mayor superficie expuesta.
El incremento de los gases de invernadero provocaría cambios en la distribución de las precipitaciones.

Fuentes: “Clima caótico”, Investigación y Ciencia, N.° 232, enero de 1996. “El clima que viene”, Investigación y Ciencia, N.° 250

PARA SABER MAS…
ALGUNOS CONCEPTOS IMPORTANTES

Tiempo atmosférico
El ser humano, las plantas y los animales terrestres viven inmersos en ese gran océano gaseoso constituido por la atmósfera. Las condiciones físicas del aire son cambiantes y se modifican fácilmente. Los factores más importantes que forman y modifican el tiempo atmosférico son: la temperatura, la presión y la humedad. Sus combinaciones pueden formar a su vez nuevos factores, determinando el estado del tiempo, que se encuentra en permanente evolución. El tiempo, condición de la atmósfera en un momento dado, cuando se lo considera en sus características constantes y persistentes, nos proporciona el clima de una zona o región. Su causa determinante, y por ende del clima, es la acción solar, la radiación luminosa y calorífica del astro mayor.

Temperatura
Es el primero y más decisivo de los factores del tiempo. Los rayos solares en la atmósfera calientan el aire, el cual se dilata, disminuye en densidad y tiende a elevarse, pasando el aire frío a ocupar las zonas más bajas.

Determinar la temperatura constituye un dato importantísimo para la meteorología. Los aparatos que se utilizan para tal fin son los termómetros (escalas de Celsius, Reamur, Farenheit, etc.). La temperatura se toma a distintas horas del día, a niveles diferentes de altura, máximas y mínimas, etc. Éstas siguen anualmente un ritmo más o menos uniforme, denominado régimen técnico. Existen temperaturas máximas y mínimas, y entre éstas, temperaturas medias constantes. La máxima se registró en Azizia (desierto de Libia), donde en 1922 el termómetro llegó a 57°; la más baja, en la estación soviética “Vostok” (Antártida) y fue de -87,4°C.

Entre estas máximas y mínimas se sitúan casi todas las temperaturas de la Tierra. La diferencia entre las medias extremas se llama amplitud absoluta. La denominada amplitud media anual es la diferencia entre la media del mes más cálido y la del mes más frío. Las temperaturas medias anuales son las que mejor reflejan las condiciones de un clima, pues señalan si es frío, caluroso o templado.

Las isotermas
En la medición de las temperaturas, más que los datos aislados, interesan las medias diarias, mensuales y anuales. Si trazamos sobre un mapa una línea que únalos puntos que tienen igual temperatura media mensual, obtendremos unas líneas apenas sinuosas denominadas isotermas. El ascenso y descenso de las líneas en los océanos se explica por las distintas corrientes marinas, cálidas y frías, que originan, respectivamente, un aumento y una disminución de la temperatura.

Las isotermas de invierno indican que los fríos más intensos se registran en las regiones polares, y de manera especial en los continentes del hemisferio septentrional.

El geógrafo Kúppen, al observar las variaciones de temperatura en todo el planeta, estableció una clasificación que divide varias regiones o zonas térmicas en una zona ecuatorial, dos zonas subtropicales, dos templadas, dos frías y dos polares.

Presión atmosférica
Muchísimos kilómetros cúbicos de aire gravitan sobre la superficie de la Tierra. Si esa tremenda cantidad de peso no nos aplasta se debe a que la presión se ejerce en todas direcciones y la contrarresta la presión interna de los líquidos de nuestro organismo.

Torricelli probó en 1644 la existencia de la presión atmosférica y midió su valor. El fundamento del barómetro de mercurio establece que cualquier variación en la presión de la atmósfera se registra por un ascenso (aumento de presión del aire) o un descenso (disminución) de la columna barométrica.

En la actualidad se emplean barómetros metálicos, barógrafos o barómetros registradores que señalan sobre papel una curva donde pueden observarse los cambios de presión. También están los altímetros, que, en vez de registrar la presión, establecen la altura. La unidad de presión atmosférica usada en meteorología se denomina milibar. Un bares la presión que ejerce un millón de dinas sobre un cm2 de superficie. La presión norma! del aire es de 760 mm.

Las isóbaras son líneas que los especialistas trazan sobre el mapa y unen puntos de igual presión. Así se obtienen curvas irregulares, elípticas y concéntricas que señalan áreas de baja y alta presión. Se supone que las oscilaciones diurnas de presión son producidas por el calentamiento general de la atmósfera, aunque no faltan quienes las relacionan con una marea de origen solar. Lo más lógico es atribuí rías a la evolución diurna del calor del Sol (por la noche la presión aumenta, con un máximo hacia las 10 de la mañana).

El aire recalentado tiende a ascender (zona de baja presión), mientras que el aire frío, al pesar más, origina una región de alta presión. A lo largo de la zona ecuatorial suele mantenerse un área de bajas presiones. Al N y S de los trópicos las zonas son de alta presión. Hacia Los polos se observan áreas de presiones muy bajas.

De todos modos, la distribución de presiones varía mucho, debido a la irregularidad de la corteza terrestre, el relieve, los cursos de agua, etc. Si e\ globo terrestre fuese perfectamente esférico y sin mares ni relieves, las bajas presiones se ubicarían en el ecuador; las altas, más allá de los trópicos y nuevamente las bajas en los polos. Por suerte no ocurre así, y esta variedad es la que origina los constantes cambios climáticos y atmosféricos.

La humedad
El agua es uno de los componentes más importantes de la atmósfera., en especial en las capas inferiores de ésta. El agua, cualquiera sea su estado (gaseoso, líquido o sólido) forma parte de la atmósfera y proviene de la permanente evaporación que se produce en la Tierra, por la humedad que ésta contiene en los océanos, ríos y lagos. Aunque su estado natural es el del vapor, suele presentarse en forma de niebla, nubes, nieve, lluvias, etcétera.

La importancia del vapor acuoso en la vida humana es inmensa (grado de humedad, pluviosidad, nieves, etc.). Por la acción del calor solar las aguas de ríos, mares y lagos se evaporan y van a formar parte de la atmósfera. A esa enorme zona expuesta a la evaporación hay que agregarle las áreas regadas por las lluvias, ja transpiración de los animales y plantas, y la propia respiración, que despide, asimismo, abundantes cantidades de vapor acuoso. Éste se reparte de manera poco uniforme a lo largo y a lo ancho de la Tierra. Varía de uno a otro punto, en un mismo sitio en días, y aun en horas consecutivas.

Se dice que el aire está saturado cuando la capacidad de absorción de vapor acuoso por la atmosfera es limitada y la evaporación termina. Este punto de saturación no es fijo: se acrecienta con la temperatura y disminuye con la presión.

Se denomina humedad absoluta de la atmósfera la cantidad total de vapor de agua que contiene, en un momento dado, determinada parte de la atmósfera. Los máximos se registran en las “zonas del ecuador y decrecen hacia los polos. Son más elevados en verano que en invierno y también durante el día, en que se evapora mayor cantidad de agua que durante la noche.

El vapor acuoso se halla principalmente en la capa inferior de la troposfera (al nivel del mar y en la superficie de las aguas). Su presencia no siempre indica la existencia de nubes o humedad. Como al aumentar la temperatura también aumenta la capacidad de absorción del aire respecto del vapor acuoso, además de conocer la humedad absoluta hay que saber la proporción de dicho va por con tenida en la atmósfera, comparada con la que tendría en caso de estar saturada (estado higrométrico o humedad relativa). Este concepto tiene gran importancia en Meteorología.

Sintetizando, la humedad relativa es la relación existente entre la cantidad de vapor acuoso que contiene la atmósfera (humedad absoluta) y la que tendría sí estuviese saturada -(capacidad máxima de absorción en dicho momento). La temperatura a la cual una masa de aire contiene el 100 % de humedad relativa se denomina punto de rocío. En horas de la noche, y al bajar la temperatura, el vapor acuoso que hay en la atmósfera se condensa y origina las gotitas que forman el rocío. Si la condensación tiene lugar por debajo de cero grado, las pequeñas gotas se hielan y se transforman en escarcha.

El hidrógeno
Para determinar el estado higrométrico del aire se utilizan instrumentos llamados higrómetros y psicómetros. Los de mayor precisión están constituidos por dos termómetros iguales y contiguos. Uno llamado seco (termómetro común) y el otro húmedo, cuyo depósito protegido por una tela porosa, prolongado hacia la parte inferior, está sumergido en un vaso con agua. Luego se leen los dos termómetros, se consultan unas tablas de doble entrada, y en los cruces de ambas líneas de las temperaturas se leen los valores correspondientes al estado higrométrico que se busca. Hay otros instrumentos basados en la contracción o dilatación que experimentan algunos cuerpos (cabellos) como resultado de la sequedad o humedad del ambiente.

La niebla
Se denomina así el vapor acuoso que, contenido en la atmósfera, tiende a condensarse a nivel del suelo y origina unas nubes relativamente espesas que se desplazan por los desniveles del terreno. Este vapor, al encontrar zonas frías, se condensa y da lugar a esos humos o gases, de color blanco. En los centros urbanos, calzadas y aceras aparecen mojadas, y las partículas de humo que surgen de casas y fábricas se unen al polvo levantado por el tránsito, formando núcleos de condensación que atraen fuertemente el vapor acuoso y lo retienen. Esto explica que los centros urbanos industriales tengan nieblas o brumas más densas que los centros rurales. Las famosas nieblas londinenses tienen sus gotitas recubiertas de una película de aceite que impide su evaporación. Las brumas de Bilbao responden a parecido origen.

El origen de las nieblas de Terranova es diferente, ya que éstas provienen del choque de masas de aire frío con otras de aire caliente. E! fenómeno afecta de manera importantísima la navegación aérea. La lucha contra él es tenaz y prosigue mediante el uso de ultrasonidos, el empleo en aeródromos de lámparas de criptón de gran potencia, nieve carbónica, etc. De todos modos, estos procedimientos son todavía ensayos y en muchos de los casos su alto costo económico los hace prohibitivos para su aplicación.

Otros Temas Relacionados:

Mapa Uso del Suelo En El Mundo

Mapa Problemas Ambientales En El Mundo

Mapa de la Población En El Mundo

Mapa Volcanes Activos En El Mundo

Flora y Fauna de Argentina

Hidrografía de Argentina

Orografía de Argentina

Folklore Argentino

 

Climas del Mundo Mapa Distribución Zonas Climáticas Frio Calido

TIPOS DE CLIMAS DEL MUNDO – LAS ZONAS CLIMÁTICAS – MAPA

La palabra clima es de origen griego y, en su sentido etimológico, significa “inclinación”. Pero no obedece a una mera casualidad que se haya divulgado su uso con su significado actual; la distinta inclinación con que las radiaciones solares llegan a las zonas terrestres de diferente latitud, o a una misma zona pero en diferentes estaciones, es la causa principal de la temperatura media que caracteriza a la zona considerada; y la temperatura es el elemento predominante del clima.

Los factores que influyen en las condiciones atmosféricas son múltiples, por lo que también el clima resulta influido no sólo por la temperatura, sino por el porcentaje de humedad, por las características del suelo, por la presencia y calidad de la vegetación, por la altitud y por la posición geográfica y topográfica de cada lugar. Se entiende por clima el conjunto de condiciones meteorológicas más frecuentes en una región determinada.

GRANDES ZONAS CLIMÁTICAS DE LA TIERRA:
1-TENIENDO EN CUENTA SOLO LA TEMPERATURA
:
Se ha dicho que uno de los factores determinantes del clima es la temperatura. Esta depende de la intensidad de la radiación solar, que varía de acuerdo con la latitud y con la época del año, y también de la composición de las capas atmosféricas que dicha radiación ha de atravesar para llegar hasta nosotros. Por término medio, se ha calculado que sólo un 43%  de la radiación conjunta que rodea a la Tierra, llega al suelo; la restante, o sea el 57%, experimenta diversas vicisitudes, pues es reflejada, refractada y absorbida por las capas que atraviesa; pero de la parte que llega al suelo, un porcentaje notable resulta igualmente reflejado, por lo que la atmósfera está continuamente surcada por radiaciones de todas clases y en todas direcciones. Esto es de gran importancia para nuestro planeta, porque impide un paso demasiado brusco del día a la noche.

climas del mundo: cálido, templado y frio polar

Observa el mapa de arriba: Como la intensidad de la radiación solar incidente varía en continuidad desde el ecuador, donde es máxima, hasta los polos, donde es mínima, la superficie terrestre puede dividirse (en el sentido de la latitud) en cinco grandes zonas, delimitada cada una de ellas por dos paralelos, o sea una zona cálida, situada a caballo del ecuador; dos zonas templadas, boreal (al norte del ecuador) y austral (al sur del ecuador) , que ocupan fajas intermedias entre el ecuador y los polos; dos zonas glaciales, ártica (polo norte) y antártica (polo sur), con su centro respectivo en los Polos Norte y Sur. A los fines de simplificar podemos decir que el clima terrestre tiene tres tipos de zonas donde el clima es diferente: zona cálida, zona templada y zona fría.

2-CLIMA CONSIDERANDO LA PRECIPITACIONES:

mapa de climas del mundo

EL CLIMA: El tiempo atmosférico, como el viento, las precipitaciones, tormentas, etc. y sus factores determinantes, los cuales, considerados a lo largo de los años en una zona geográfica, señalarán una media o general que se llama clima.

Este clima está influido, como ya dijimos, por factores atmosféricos y por los que surgen de la geografía física de la región. La proximidad del mar, la latitud, la continentalidad, etc., desempeñan importante papel en la determinación del clima de un lugar. La conjunción de varios de ellos origina gran número de variaciones de tipo climatológico. Sin profundizar con exceso, se puede establecer que hay una serie de regiones terrestres que presentan condiciones climáticas semejantes.

La correlación de dos factores determinantes, temperatura y lluvias, conduce a considerar tres tipos climas cálidos, templados y fríos; que a su vez se dividen en lluviosos, secos y desérticos; monzónicos, marítimos y continentales; de montaña y de llanura, también suelen llamarse: Ecuatorial, Tropical, Mediterráneo, Oceánico, Continental, Polar y Alta Montaña.

He aquí una descripción de los más característicos.

CLIMAS CÁLIDOS: Presentan una elevada temperatura constante con una amplitud térmica anual inferior a los 10 ºC, precipitaciones muy abundantes y humedad excesiva. Las frecuentes y abundantes precipitaciones y el excesivo calor originan espesos bosques y frondosa vegetación. Los aguaceros se suceden casi sin intermitencias y el cielo es muy nuboso debido a la fuerte radiación recibida por el suelo. Los ríos son de gran caudal (Amazonas); la fauna y la flora, exuberantes. El hombre se adapta con dificultad a estas condiciones climáticas.

Ecuatorial y subecuatorial. Temperatura promedio de 25 ºC durante todo el año. Lluvias excesivas y de convección durante todo el año en forma regular y humedad siempre elevada.

Tropical. A medida que nos alejamos del ecuador hacia los trópicos de Cáncer y de Capricornio, las temperaturas siguen manteniéndose altas, aunque la amplitud térmica es menos marcada y las lluvias menos abundantes, preferentemente en verano.

Subtropicales. Transición de climas cálidos a templados, con veranos no muy calurosos e inviernos tibios.

Subtropical sin estación seca. Las lluvias se reparten todo el año. Subtropical con estación seca. Las lluvias están restringidas al invierno, y se distingue una estación seca definida (el verano).

CLIMAS TEMPLADOS Reúnen las condiciones de temperatura y humedad más favorables para el hombre, y se dan cuatro estaciones. Los veranos son cálidos y los inviernos fríos, pero soportables. Algunos autores consideran también el mediterráneo y el chino como sistemas templados especiales.

Aun cuando distintos entre sí, reúnen ciertas condiciones comunes que permiten agruparlos. Se caracterizan por la notable variación de sus temperaturas durante todo el año; alternan una época fria (invierno) con otra calurosa (verano), separadas por dos dé transición (primavera y otoño). Las lluvias varían de una zona a otra.

La complejidad de las condiciones atmosféricas y la irregular distribución de tierras y mares dan origen a diversas modalidades climáticas: un tipo mediterráneo (lluvias invernales, temperaturas benignas); otro oceánico (abundantes lluvias, escasa variación térmica) y un tipocontinental (pocas lluvias, importantes oscilaciones termométricas). Entre uno y otro tipo existen zonas intermedias e interfieren innumerables variaciones.

Oceánico. Se caracteriza por la influencia moderadora del océano, que determina escasa amplitud térmica y lluvias abundantes durante todo el año. De transición. Reúne características intermedias entre el oceánico y el continental.

Continental. Inviernos largos y rigurosos y veranos con altas temperaturas. Amplitudes térmicas muy marcadas por la lejanía del mar o por un relieve que impide su influencia moderadora. Lluvias en verano y nevadas frecuentes en invierno.

CLIMAS FRÍOS Inviernos largos y rigurosos, con precipitaciones níveas, y veranos cortos y templados. Tienen ¡guales características que los climas templados y son propios de las altas latitudes donde el invierno alcanza mayor duración (seis meses o más). Los vientos dominantes provienen del O. y humedecen las costas de ese sector. Hay una variedad oceánica (más benigna y húmeda) y otra continental (extremando las condiciones que se dan en ei clima templado), en donde los inviernos son rigurosos y la oscilación anual muy acentuada (Moscú). En líneas generales, esta zona se extiende desde los 50° hasta el Círculo Polar.

Los ríos se hielan durante meses. La nieve no abunda, ya que las precipitaciones decrecen en invierno y los registros máximos se producen en el estío. La sequedad invernal permite el asentamiento de grupos humanos en Canadá y Siberia, zona ésta llamada “taiga”, con grandes bosques de coniferas y variada fauna.

Nival ó polar. Temperaturas muy bajas todo el año. En la estación cálida, son inferiores a 5 ºC. Los veranos son cortos y derriten sólo la capa superficial de nieve (el suelo a profundidad permanece helado: permafrost).

Continental. Amplitud térmica anual superior a los 20 ºC que puede llegar a más de 40 ºC a causa de la lejanía del mar y su influencia moderadora. Inviernos largos y muy fríos, con intensas nevadas.

Oceánico. Inviernos relativamente moderados por la influencia del mar y de las corrientes marinas cálidas. Precipitaciones abundantes, como lluvias y nevadas. De alta montaña. De características similares al frío polar, con nieves permanentes y glaciares.

CLIMAS DESÉRTICOS La ausencia casi total de precipitaciones es el rasgo distintivo. Cambios bruscos de temperatura diaria: durante el día son muy altas y por la noche en extremo bajas. Cálido. Temperaturas altas durante todo el año. Frío. Temperaturas bajas durante todo el año.

Si nos apartamos de la zona de lluvias el clima intertropical se transforma en desértico. Su extensión abarca más del 40% de la superficie de África, Asia y Australia, y aun de América. Por la extrema aridez de los desiertos su escasa vegetación se adapta a las condiciones de sequía. Las plantas son, en su mayoría, xerófilas.

Los grandes desiertos del planeta son, entre otros, el del Sahara, el de la península arábiga, el de Kalahari, el central australiano, los de Libia y Gobi, el de Atacama en Chile, y el de Colorado, en California (EE.UU.).

Aunque hay desiertos fríos y cálidos, la característica común que los une es su aridez y sequedad. Las lluvias escasean pero suelen precipitarse en forma de aguaceros. Cuando lo hacen, las aguas no llegan a empapar el suelo y se evaporan.

La irregularidad de las precipitaciones pluviales hace improductivas las tierras. Los Guad (del árabe uad: río) saharianos son ríos o torrentes que no llegan al mar, pues mueren en mitad del desierto; el Nilo constituye una excepción. Dado que la falta de agua condiciona la vida en los desiertos, la gente adopta un tipo de vida nómada, salvo en los oasis, donde se asientan algunas tribus. El viento, que es el principal agente de erosión, acumula arena en algunas zonas y deja, en otras, las piedras que resisten a su empuje.

CLIMA EN LAS REGIONES POLARES Y EL CLIMA DE MONTAÑA:

Regiones polares: Están constituidas al S. por la Antártida y al N. por un mar helado, con islas y penínsulas marginales. Enfrío reina en todas las épocas del año y hay pocas estaciones meteorológicas. El verano dura de dos a tres meses, pero el Sol no desaparece jamás en el horizonte y sus rayos inciden de manera oblicua en las regiones. Es el denominado “Sol de Medianoche”.

El suelo permanece helado hasta 50 y 100 metros de profundidad y el calor del verano solamente derrite las capas más superficiales del hielo. Son ios parajes más inhóspitos del globo y la vida en ellos es sumamente difícil, tanto para los seres humanos como para los animales. Algunos grupos que consiguieron vencer estas dificultades (esquimales) viven de la caza y de la pesca.

Clima de montaña: Las montañas diversifican las temperaturas que los monzones han unificado climáticamente. Merced a ellas algunas zonas del ecuador tienen en la altura un clima templado, o ciertas regiones desérticas, en las tierras altas, un clima mediterráneo.

Las montañas crean condiciones distintivas en el clima de una región. En las.grandes cordilleras se puede hallar escalonada toda una inmensa variedad de climas, que de otra manera habría que buscar a lo largo de muchos kilómetros. A cada altitud corresponde un determinado tipo de fauna, vegetación y cultivos.

Todo ascenso implica una disminución de la presión atmosférica. Esta disminución barométrica condiciona algunas de las peculiaridades de los climas de montaña. La menor densidad del aire es igual a una menor capacidad de absorción del calor del Sol, y las temperaturas decrecen por lo común con la altitud. Estas condiciones presentan resultados generales distintos, ya se trate de climas de montañas ecuatoriales o de montañas de regiones frías.

Muchos grupos humanos (incas, aztecas, etc.) eligieron las montañas de las bajas latitudes para su asentamiento. En la zona templada, las regiones elevadas no son centro de culturas importantes ni de asentamiento de población. En las tierras altas, cubiertas de nieve, la oscilación diurna, con los bruscos ascensos de temperatura y la rapidez con que se funde el hielo, da origen a las denominadas “nieves penitentes”, formas caprichosas que adquiere la nieve. Como en toda zona ecuatorial, abundan las precipitaciones pluviales. Las lluvias caen siempre con mayor asiduidad en la vertiente expuesta a los vientos; la altura supone, además, un aumento de aquéllas.

De acuerdo con su orientación, hay montañas que muestran señalada diferencia entre la ladera que recibe el Sol (“solana”) y la contraria (“umbría”). El contraste se aprecia en los cultivos y en la población, que prefiere asentarse en las solanas.

La disminución de humedad con la altitud y su condensación antes de alcanzar la cumbre suele dar lugar en las vertientes opuestas a la aparición de un viento seco y cálido (“fohen”, “chinook”, etc.).

Profesora de Geografía: Claudia Nagel
Fuente Consultada: MUNDORAMA Geografía General Editorial Quevedo SRL

Mapa Uso del Suelo
En El Mundo
Mapa Problemas Ambientales
En El Mundo
Mapa de la Población
En El Mundo
Mapa Volcanes Activos
En El Mundo

 

Mapa Politico de Argentina Provincias y Capitales Republica Argentina

La República Argentina, situada en el extremo sur del continente, es el cuarto país americano en extensión, después de Canadá, Estados Unidos y Brasil. Limita al N. con Bolivia y Paraguay; al E. con Brasil, Uruguay y el Atlántico; al S. con el Atlántico y con Chile y al O. con Chile.

Su territorio presenta una configuración más o menos triangular, cuyo vértice llega hasta cerca del Círculo Polar Ártico. De norte a sur, entre Jujuy y Tierra del Fuego, alcanza su mayor desarrollo, con 3.694 km; su anchura máxima, en la latitud de Corrientes, es de 1.423 km. Las fronteras argentinas con los países vecinos se estiman en 9.37Ó km, y el litoral marítimo alcanza los 5.117 km.

Por sus características físicas el territorio argentino puede dividirse en seis regiones muy diferenciadas:

1) la tropical del N., de extensos bosques y llanuras aptas para cultivos propios de las zonas cálidas;
2) la montañosa del O. y NO., de cumbres imponentes, elevadas mesetas y profundos valles;
3) la fluvial del E., con notables ríos, suelos fértiles, algunas colinas y elevación serrana hacia el NE.;
4) la llanura del centro o pampeana, la más rica extensión agrícola-ganadera del país;
5) la Patagonia, arenosa, de clima frío, seco y ventoso, que concentra la cría del ganado lanar, y
6) los lagos del sur, zona muy fría, de ventisqueros y en parte boscosa.

MAPA POLÍTICO Y RUTAS

mapa politico de la republica argentina

Puede Acceder a Este Mapa Mas Grande

La división política de la REPUBLICA ARGENTINA
El espacio geográfico argentino se divide políticamente en 23 provincias y un distrito federal, la ciudad de Buenos Aires, que es la capital de la nación. Tanto las provincias corno la ciudad de Buenos Aires son autónomas, dictan su propia constitución y sus leyes, tienen un gobierno propio y representantes en el Congreso y el Senado de la Nación.

Las provincias se dividen, a la vez, en unidades políticas menores, llamadas departamentos. Por razones históricas, en la provincia de Buenos Aires, se denominan partidos. La provincia más joven es Tierra del Fuego, que dejó de ser territorio nacional en 1990 y abarca también las islas del Atlántico Sur y la Antártida Argentina.

En las últimas décadas se asiste a un proceso de descentralización del territorio, es decir que algunas funciones básicas, antes prestadas por el Estado nacional, como el servicio educativo, fueron transferidos a cada jurisdicción provincial, a partir del supuesto de que, desde el poder local, se está más cerca de los problemas y necesidades de la gente y se pueden respetar los particularismos de la idiosincrasia de cada comunidad. La relación entre la Nación y las provincias debe ser equilibrada y favorecer el diálogo entre sus respectivos representantes, de modo de facilitar la concreción de políticas de desarrollo.

También debe serlo entre las provincias. Lamentablemente, en ocasiones, la falta de manejo integrado de los recursos naturales compartidos, generó conflictos entre los pobladores de dos jurisdicciones colindantes. Es el caso de la guerra del agua , que se produjo en 1996 entre las provincias de Santiago del Estero y Santa Fe, porque en la primera regulaban el agua del río Salado para el riego durante una sequía excepcional, impidiendo el abastecimiento de los pobladores santafesinos. También, por el exceso de agua, se produjeron incidentes en el paralelo 28 que limita Chaco y Santa Fe, cuando durante las devastadoras inundaciones, los pobladores chaqueños, derribaron terraplenes y drenaron el agua hacia Santa Fe.

La Antártida y las islas del Atlántico Sur
La Argentina es un país reclamante ce soberanía en la Antártida. Sus reclamos se fundamentan en argumentos sólidos: su proximidad geográfica (junto con Chile son los países más cercanos al continente)  la continuidad geológica de sus estructuras físicas; la herencia histórica derivada de los tratados acordados en tiempos de la dominación española; la ocupación, presencia y actividad científica permanente (ininterrumpida desde 1904); la exploración, realizada en múltiples expediciones que alcanzaron incluso el Polo Sur; el salvamento de expediciones extranjeras cuyos buques quedaron atrapados por los hielos de los mares antárticos.

mapa antartidaSin embargo, la comunidad internacional no reconoce soberana alguna en la Antártida. Esto se debe a que este tiene un régimen internacional establecido por el Sistema Antártico, del cual la Argentina es miembro original desde 1961.

En un comienzo, doce países firmaron en Washington (Estados Unidos) un Tratado, por el cual siete (entre ellos la Argentina) reclaman soberanía sobre un sector del espacio político antártico.

Otros países no reclaman sector ni reconocen la soberanía de nadie, como los Estados Unidos y Rusia. La situación es más compleja porque el territorio reclamado por la Argentina se superpone con los reclamos de Chile y Gran Bretaña.

Por otro lado, la comunidad internacional presiona para que la Antártida sea declarada patrimonio de la humanidad, es decir que sea internacionalizada.

Este criterio va tomando fuerza creciente. Mientras tanto, el Protocolo firmado en Madrid en 1992, prolonga por cincuenta anos el congelamiento de las pretensiones de soberanía, y las prohibiciones ce desarrollar actividades militares y explotar los recursos naturales, evitando así el deterioro de este frágil ambiente. En la actualidad se intenta fortalecer la cooperación científica entre los numerosos países que tienen presencia en la Antártida.

La Argentina continúa sin resolver también la cuestión de la soberanía sobre las islas Malvinas y otras islas del Atlántico Sur. Heredadas de la corona española y ocupada; por la nueva nación, fueron usurpadas por los ingleses en 1833. Desde entonces nuestro país reclamó por distintos medios sus derechos sobre los archipiélagos australes.

La frontera es el área dinámica que se extiende a ambos lados de un límite, con un intenso movimiento de las poblaciones que la habitan. Es frecuente que los pueblos que viven en la frontera compartan expectativas comunes, paisajes, costumbres, lenguas y tradiciones similares, y una fuerte actividad comercial que los relaciona.

En las fronteras, las aduanas controlan la entrada y salida de las personas y mercaderías que cruzan de un país a otro. No obstante, es frecuente el contrabando, producido particularmente por las diferencias económicas existentes entre los países vecinos. Estas se manifiestan por ejemplo en el tipo de cambio, relacionado con el valor de la moneca de cada país.

En las fronteras boliviana y paraguaya, se desarrolla el llamado contrabando hormiga con largas filas de personas pasan productos en grandes bultos sobre sus cabezas, para revenderlos en donde la diferencia de precios lo justifica.

Las personas que viven en la zona de frontera reciben muchas emisoras de radio y canales de televisión de los países vecinos. La influencia cultural que esto provoca se manifiesta en las lenguas en contacto. En la frontera con el Brasil se habla el “portuñol”, una mezcla de castellano (español) y portugués, con muchos términos tomados del guaraní.

Si bien a cada lado de la frontera late el corazón por la bandera del propio país, esto se comprueba, por ejemplo, cuando los países vecinos juegan las eliminatorias del mundial de fútbol), la frontera es un punto de encuentro y sus habitantes tienen problemas e intereses comunes, estén a uno u otro lado del límite. Con la consolidación  del  Mercosur,   se  construyeron  numerosos  puentes  que fortalecen los intercambios fronterizos, entre ellos el que une la ciudad de Posadas con la de Encarnación en Paraguay. (Fuente Consultada: SOCIEDAD EN RED 3° ciclo EGB 9 Editorial A-Z)

Mapa Area Metropolitana de Buenos Aires Principales Accesos a Bs.As.

El 8 de julio de 2000 se planteó en los medios de comunicación la posibilidad de dividir al partido bonaerense de La Matanza. Este partido equivale a la segunda ciudad del país en población, con más de un millón de habitantes. Busquen en los archivos periodísticos información sobre ese tema. Conversen en grupo sobre los datos obtenidos y establezcan una posición sobre las ventajas y desventajas de esa decisión.

mapa area metropolitana

El Área Metropolitana de Buenos Aires (AMBA)
El Área Metropolitana de Buenos Aires constituye un espacio urbano continuo que abarca distintas jurisdicciones: la Capital Federa, (ciudad autónoma de Buenos Aires) y diversos partidos de la provincia de Buenos Aires, que forman por extensión el Gran Buenos Aires. La Capital Federal, con tres millones de habitantes, refleja en los últimos tres censos un marcado estancamiento en su crecimiento poblacional.

Esto se relaciona con que distintos sectores de su población se relocalizan en el Gran Buenos Aires: los de más altos ingresos emigran a los barrios privados cerrados, dotados de mayor seguridad y espacios verdes; los de menores ingresos, no pueden sostener e_ precio de los alquileres urbanos y se reasientan en aquellas áreas de la periferia urbana, donde el valor de la tierra es menor.

En el Gran Buenos Aires se reconocen tres anillos o coronas urbanas. El primera corresponde a los partidos más próximos a la Avenida General Paz v al Riachuelo, límite entre jurisdicciones. Están muy urbanizados, pero su crecimiento poblacional se mantiene estancado en las últimas décadas. En el segundo anillo existen mayores problemas de infraestructura y se incrementan los asentamientos precarios.

El tercer anillo abarca municipios ubicados a unos 50 km del centro porteño En ellos el crecimiento urbano es constante y ocupa áreas del medie rural. En construcción de modernas autopistas que mejoraron el acceso a la Capital Federal, favoreció el crecimiento explosivo de los barrios privados, como en Pilar y Escobar. En este anillo, la segregación espacia, expresa una fuerte polarización social, a ambos lados de una vía férrea contrastan los countries y las villas de emergencia.

En la “mancha urbana”, área de edificación continua, se reconocen zonas más pobladas v de ocupación más intensa. Corresponden a los ejes de circulación, en particular la red ferroviaria. Así la “mancha” adquiere forma de crecimiento tentacular, distinguiéndose entre los distintos ejes, espacios con ocupación más discontinua.

Cifras y Datos de América del Sur Estadisticas de Paises Americanos

mapa de america del sur

DATOS DE LOS SIGUIENTES PAÍSES

Venezuela Colombia Perú Brasil Argentina Paraguay Ecuador Guayanas

ASPECTO GENERAL.  Esta parte del continente americano tiene la forma de un triángulo apuntado hacia el sur, situado entre el Atlántico y el Pacífico y entre los 129 de latitud norte-sur de 67°, ,en su mayor parte comprendida en la zona tórrida.

Entre las dos partes del continente americano, la del norte y la del sur, resaltan ciertas analogías. Las dos están apuntadas hacia el sur; los macizos montañosos más importantes corren en ambas por la parte Occidental y los ríos más caudalosos fluyen por la Oriental hacia el Atlántico. Rasgo común a ellos son los grandes altiplanos estrechados entre las ramificaciones de las cordilleras.

La costa es menos accidentada en el sur del continente que en el norte. La altitud es menor, y finalmente los ríos de la vertiente del Pacífico no tienen en la parte sur la importancia que en la del norte.

Montañas sudamericanas. La zona montañosa de esta parte del continente está constituida principalmente por la cordillera de los Andes, que se extiende en una longitud de más de 7.000 Km. desde Venezuela y Colombia, al norte, hasta el extremo sur de la Tierra del Fuego. En Colombia se dibujan claramente tres ramales con dirección Norte-Sur entre los que corren los ríos Magdalena y Cauca; estos ramales se denominan, de este á oeste, Cordillera Oriental, Cordillera Central y Cordillera Occidental, las cuales convergen en Pasto. A partir de este punto la cordillera sigue en dos cordones de picos muy elevados, entre los que queda el valle de Quito, como custodiado por los conos del Cotopaxi, Pichincha,Chimborazo, etc.

Al penetrar en el Perú los Andes forman tres cordilleras (Oriental, Central y Occidental, como en Colombia) extendidas hasta Pasco, y en cuyos valles se abren paso algunos de los afluentes del curso superior del Amazonas. A partir de Pasco, y siguiendo hacia el Sur, se destacan ahora dos cordilleras, una oriental y otra occidental o marítima.

Las altiplanicies comprendidas entre los ramales de los Andes se ensanchan ahora alcanzando en Solivia la máxima separación y encerrando cuencas cerradas, como la del lago Titicaca, entre Bolivia y Perú. Pasada esta meseta los ramales convergen de nuevo en el volcán Copiapó. Entre Chile y la Argentina se elevan los picos más altos de la cordillera, siendo el más elevado el Aconcagua, de 7.035 metros de altura sobre el nivel del mar. A partir de aquí empieza a cobrar cuerpo una anti cordillera litoral, mientras desciende sensiblemente la del Este o Continental. A medida que los Andes se acercan al sur -del continente pierden brío y las comunicaciones entre ambas vertientes se facilitan, llegando a pasar por sus cañadas al Pacífico algunos pequeños ríos que nacen en la Argentina.

Ríos más importantes. Los ríos principales Sudamericanos desembocan en el Océano Atlántico, y enumerados de norte a sur son los siguientes: el Magdalena, que, procedente de la región septentrional andina, desemboca en el Mar de las Antillas (dependencia del Atlántico); el Orinoco, con, 2.200 Km. de curso, que recoge las aguas de los llanos y montañas de Venezuela y desemboca directamente en el Atlántico; el Amazonas, de un enorme curso (7.350 km.) y el de mayor caudal del mundo, que recoge las aguas de numerosos e importantes afluentes, unos que riegan los líanos del Brasil y otros procedentes de la región andina; el San Francisco, que corre por tierras del Brasil de sur a norte y tuerce luego al este, hacia su desembocadura; el sistema hidrográfico del Plata, cuyos principales ríos tributarios — Paraguay, Paraná y Uruguay — tienen su origen en Brasil, y el Colorado y el Negro, de procedencia andina.

En general los ríos mencionados son de curso lento por fluir en llanuras, y la mayoría de elevado caudal por recoger las abundantes precipitaciones de la zona tórrida o de regiones vecinas.

Lagos. Tiene Sudamérica pocos lagos en relación á su extensión. El Titicaca, en Bolivia, forma una cuenca prácticamente cerrada, pues sólo algunas de sus aguas se derraman por el río Desaguadero. Al norte, en Venezuela, se encuentran el Valencia y el Maracaibo, este último comunicado con el mar de las Antillas. Al sur se destacan los notables lagos patagónicos, famosos por su belleza, entre ellos el Argentino, San Martín, Llanquihue, Nahuel Huapi, Viedma, Cardial, etc.

Regiones climáticas y productos. — El clima de Sudamérica en general es cálido y húmedo a causa de hallarse la mayor parte del continente dentro de la zona tórrida. Pero multitud de factores contribuyen a diversificarlo e imprimirle caracteres muy variados.

A continuación señalamos las principales regiones climáticas y sus productos más característicos.
Región del Amazonas. — Comprende la cuenca de este río la más extensa del planeta. Es cálida y lluviosa durante todo el año y se halla cubierta de selvas impenetrables. Su riqueza en especies vegetales es incalculable. El árbol de la goma procede de esta región y rinde hoy grandes beneficios en Java, Sumatra, Ceilán, Península de Malaca, etc.
En los árboles de estas selvas moran enormes serpientes, aves de todas clases y diversas especies de monos. Abundan en los ríos grandes tortugas, yacarés y una especie de cetáceo, el buto o delfín del Amazonas. Otros animales típicos de esta región son el tapir y la serpiente acuática llamada anaconda.

Región de las sabanas o llanos del Orinoco. — En esta región se advierten sensibles diferencias de estaciones. Una estación seca alterna con otra lluviosa. Durante la primera los abundantes pastos se agostan y durante la segunda los numerosos ríos se desbordan. Abundan los bosques de tipo tropical, y los pastos permiten la cría de ganado en gran escala. Hacia la desembocadura del Orinoco la vegetación aumenta y los bosques se transforman en selvas de tipo ecuatorial.

Región de las costas del Pacífico peruano-chilenas y de la Puna. — Esta región se caracteriza por su extrema sequedad, sobre todo en la puna, meseta alpina comprendida entre la Argentina, Bolivia y Chile. La cordillera al obligar a los vientos dominantes (procedentes del Atlántico) a remontarse a gran altura los despoja de su humedad, por lo cual las precipitaciones no son muy comunes. Es una zona de actividad volcánica con frecuentes terremotos.

La corriente fría de Humbold, que sube de los mares australes, próxima a las costas del Pacífico, mantiene en ellas una baja temperatura y determina en invierno alguna humedad (en forma de nieblas o garuas)- que no llega a precipitarse «n lluvias. En los valles de los ríos de curso rápido que van al Pacífico se produce algodón, caña de azúcar y café. De ahí que la escasa población se concentre en estos valles.

La Puna presenta grandes oscilaciones de temperatura del, día a la noche y del verano al invierno. La vegetación es mísera. El terreno es rocoso en gran parte y está cubierto de salitre. Abundan el azufre (por tratarse de zonas volcánicas) y el bórax, pero su explotación es difícil por las dificultades de aclimatación del hombre. La llama y la chinchilla — animal éste de rica piel — son las especies zoológicas características de esta región.

Región de Chile central. — De clima mediterráneo, o sea con lluvias y fríos en invierno y veranos cálidos y secos. Trátase de una región rica en frutas, vinos, productos de granjas, huerta y legumbres de toda clase.

Región de Chile meridional. — Es húmeda y de temperatura baja y poco variable. Abundan mucho los bosques y los pastos. Hacia su extremo sur presenta golfos de tipo fiord, o sea estrechos y profundos, encajonados entre paredes montañosas. En ella existen muchos lagos de gran belleza que constituyen un foco de turismo de gran atracción.

Región de la Mesopotamia argentina y cuchillas del Uruguay. — Se extiende entre los ríos Paraná, Uruguay, Río de la Plata y costa Atlántica; presenta un relieve ondulado y suave. El clima es continental moderado. La vegetación varía gradualmente desdé los pastos del Sur hasta los bosques tropicales del Brasil. Se trata de una región ganadera, por predominar la vegetación herbácea. Uno de sus productos de alcance económico es la notable yerba mate obtenida del árbol Ilex paraguariensis. En el territorio uruguayo está caracterizada por las cuchillas de Santa Ana; Grande y de Aedo.

Región pampeana. — Comprende las extensas llanuras de la Argentina, de muy escasa vegetación arbórea, situadas desde el Chaco hasta el Río Colorado por el sur. Es la zona ganadera por excelencia; también produce trigo, maíz, lino, girasol, etc.
Hay además otras regiones como la brasileña, o del Sudeste del Brasil lindante con el Atlántico, donde se produce café en gran escala, cacao y bananas; la de las Guayarías, calurosa y seca en invierno y con lluvias primaverales; la de las mesetas y terrazas patagónicas, desértica en unos puntos y semidesértica en otros; la de las islas Malvinas, y la de las islas Galápagos.

Región del Chaco. — Esta región se extiende por Brasil, Bolivia, Argentina y Paraguay, lindando con la base de los Andes al Oeste, Matto. Grosso al Norte, el curso del Paraguay al Este y el del Salado del Norte al Sur, Tiene temperatura elevada, grandes pantanos y comarcas secas y semidesérticas. El régimen de lluvias es periódico. Según el grado de humedad del suelo varía la vegetación, pasando de los matorrales espinosos en los sitios secos a los bosques impenetrables en los húmedos. El subsuelo contiene petróleo. Se crían grandes rebaños de ganado en las praderas y se cultiva el algodón, el arroz y el maní. La industria maderera ofrece inmensas posibilidades.

Región de las “caatinga’ o desiertos  del Brasil. — Está situada al Nordeste del Brasil; se caracteriza por la escasez e irregularidad de las lluvias. Las plantas típicas son xerófílas, es decir: resistentes a la sequía, como cactus, palmeras y otras, La sequedad ambiente es tal que los cadáveres de los animales expuestos al sol se desecan y momifican en vez de descomponerse.
Región andina. — Se extiende desde el Norte hasta el extremo Sur por las alturas y mesetas de la cordillera andina, con sólo la interrupción correspondiente a la Puna del Norte argentino, ya mencionada.

Como además de la altura recorre muy distintas latitudes, ofrece gran variedad de clima, desde el húmedo y frío del Sur entre Argentina y Chile, al húmedo y cálido de Venezuela y Colombia, pasando por el continental del centro, donde las lluvias escasean. Los cultivos varían a tenor del clima, tanto en el sentido de la latitud, como en el de la altura. En las mesetas de Bolivia y Perú se cultivan algunas gramíneas; en los valles se dan cultivos de tipo tropical y en las laderas de este mismo tramo orientadas al Este se cultiva la coca.

El subsuelo es extremadamente rico, pero su exploración en gran escala ofrece grandes dificultades por la altura y el aislamiento. El petróleo, el estaño y los metales preciosos rinden grandes beneficios. Los animales característicos son la llama, la vicuña y el guanaco.

Continente Americano Datos Geograficos de America del Norte y Sur Continente Americano Datos Geograficos de America del Norte y Sur Continente Americano Datos Geograficos de America del Norte y Sur Continente Americano Datos Geograficos de America del Norte y Sur Continente Americano Datos Geograficos de America del Norte y Sur Continente Americano Datos Geograficos de America del Norte y Sur
América Europa Asia Oceanía África Antártida

 

Curiosidades de inventos de cientificos genios matematicos Mujeres

La Supersticiones Mas Populares
Cual Es Su Origen?
Datos Curiosos Para Compartir Con Amigos
Lista con algunos conceptos científicos curiosos
Amores Trágicos
Romeo y Julieta – Marco Antonio y Cleopatra y otros
Lugares Misteriosos
La ciudad oculta del China-El Kremlin-Machu Pichu
Días Especiales del año
Dia de los enamorados-Inocente-Acción de Gracia
Que Sucios Éramos
La Higiene Personal en la Historia
Muros Históricos
Porque son famosos estos muros?
Curiosidades Increíbles
De animales-seres humanos-ciencia
Disputas Matemáticas
Disputas por la resolución de ecuaciones de tercer grado
La Estatua de la Libertad
De quien fue la idea?
Por Que Se Dice…?
El porque de algunas expresiones populares
Anécdotas de Vida
Fábulas para no olvidar
Citas y Aforismos
Así piensa la gente
El Rey de la Elegancia
George Brummell
Test:Cuanto Sabes de la Vida?
Te va interesar
El Poder Curativo de la Risa
Sonreir es bueno…
El Primer Envenenador Argentino
Historia de un hombre
Historia del Pibe Cabeza
El Marqués de Sade
La Batalla de Mbororé
Agradezcamoles a los guaranies
El Canal de Panamá
Historia de su construcción
Grandes Tragedias del Siglo XX
El Titanic-Hindenburg-Tenerife-Seveso-Chernobyl
Henry Ford
Pasión por la Mecánica
Alfred Nobel
El Inventor de la Nitroglicerina
La Evolución de la Historia Escrita
Desde el lápiz hasta la PC
Historia de Santos
La vida de algunos santos populares
La Vuelta al Mundo de a Pie
Como lo lo logró?
Enigmas de la Humanidad
Descripción de algunos fenómenos que aun no tienen explicación
Porque Ha Dejado de Volar El Concorde?
La Caída de un grande de la historia de la aviación comercial
Como nació Harry Potter?
Una apasionante historia de aventura para todos
La Divina Proporción o Proporción de Oro
Que tiene de Divina?
Hechos Destacados del Siglo XX
Breve resumen de los hechos más notables
Cuánto sabes del Triángulo de las Bermudas?
Un misterio develado?
Las Siete Maravillas del Mundo
Las Grandes Obras del Mundo Antiguo
El Vuelo de un Héroe:John Glenn
El primer americano en el espacio
Conceptos Para Entender el Código Da Vinci
El priorato de Sion, los gnosticos, y otros
Recordar La Historia Mediante Las Expresiones
Una forma distinta de recordar la historia
El Problema Matemático Más Difìcil de la Historia
El Teorema de Fermat
Historia del Ajedrez
Un juego apasionante
Grandes Matemáticos Con Ideas Física Geniales
Pascal-Torricelli-Huygens-Los Bernoulli-Newton
Algunos Datos Curiosos Sobre Las Guerras
Datos comparativos
Que fue una Ordalía o Juicio de Dios?
Como perdonaba Dios a los pecadores en la Edad Media?
La Alimentación de los Marineros Antiguos
Grandes Aventuras Marinas – La vida en los barcos
La Evolución de la Comunicación Escrita
Manual – Mecánica – Virtual
Diccionario de Términos Infrecuentes
Alan Turing y La Máquina Enigma
La lucha por descifrar claves secreta en la Segunda Guerra Mundial
La Biblioteca de Jorge Luis Borges
Los Libros Preferidos de Borges- Vamos a armarla entre todos
La “Belle Epoque”, Los Años Locos, La Sociedad de Consumo
Dos etapas felices de la historia
Los Órganos de los Cinco Sentidos
Vista-Oído-Olfato-Tacto-Gusto
Fenómenos Inexplicables Para La Ciencia
Cadáveres Incorruptos, Círculos en el Trigo, Curaciones Milagrosas
Curiosidades de la Historia
Personajes, Leyendas, Mitos y Verdades de la Historia
Algunas Curiosidades Interesantes
Las Primeras Cincuenta Veces
Datos Curiosos del Planeta Tierra
Hitos Históricos
Lista de los Sucesos Históricos Más Notables
Cifras Astronómicas del Universo
Los números en las medidas del espacio
La Vida de la Abejas y Hormigas
Un orden para imitar
Diez Fechas Para Recordar
Diez Esenciales Documentos Históricos
1905-2005 Centenario de la Teoría de la Relatividad
A 100 años de esta revolucionaria teoría física
Cohete Saturno V en la Misión Apolo XI
Así salimos del poder gravitatorio terrestre
Las Poderosas Bombas V1 y V2 de Alemania
La Línea Maginot Francesa
Su Verdadera Historia
La Vida en el Mar en el Siglo XVI
Mujeres Asombrosas del Milenio
Cual fue su legado?
La Biblioteca de Alejandría
El mayor centro cultural en la historia
Enfermedades en la Antigüedad
Escarlatina. Paludismo y Viruela en Atenas y Roma
Japón Bombardea Con Globos A California (EE.UU.)
Un Plan Bélico Muy Ingenioso
El Zeppelin: Historias de Dirigibles
La Alquimia en la Edad Media
Los Primeros Pasos Hacia La Química Práctica
Airbus A380: Avión Comercial Más Grande del Mundo
Ya Hizo Sus Primeros Vuelos Experimentales
Artefactos Explosivos en la Segunda Guerra Mundial
Evolución Tecnológicas de las Armas de Guerra
Breve Descripción de la Evolución Tecnológica
La Sífilis en la Historia
Iván el Terrible-Enrique VIII-Pedro de Mendoza
A que llamamos Burguesía?
Un Concepto Amplio Para Analizar
Que es la Commonwealth?
Porque nació y su evolución
El Coliseo Romano
Descripción de su origen y construcción
El Ferrocarril
El Transporte de la Sociedad Industrial
El Cuerpo Humano: La Sangre
Su Composición
La Torre de Eiffel
Que motivó su construcción y algunas de sus características constructivas
Las Fibras Ópticas
El Futuro de las Transmisiones de Ondas
Las Fibras Sintéticas
Nuevos Materiales Con Excelentes Propiedades
Breve Historia del Papel
Su Evolución en la Historia
La Materia y los Cuatro Elementos Fundamentales
Tierra-Aire-Fuego y Agua
La Medicina Hipocrática y los Cuatro Humores
Billis Amarilla-Negra-Sangre y Flema
La Producción Científica o Taylorismo
El Capitalismo y las Nuevas Técnica de Producción
La Lengua y el Lenguaje
Origen de las lenguas y su evolución
El Rayo Láser
Funcionamiento y Aplicaciones Actuales
El Marketing
Conoce los secretos de la venta masiva
La Luminiscencia
Un Fenómeno Interesante
Las Misiones en el Mundo
La Difusión de la Religión ene l Mundo
Los Mitos
Porque nacieron, que intentaban explicar?
Los Monasterios
La Iglesia en la Edad Media
La Curiosa Vida de un Santo Llamado Simeón
El Hombre Que Vivió 30 años Arriba de una Columna
La Opera
El Género Musical del Siglo XVIII
Dr. Julio Palmaz
Científico Argentino Inventor de la Angioplastía Con Stent
Los Astronautas en el las Estaciones Espaciales
La vida de estos humanos en el espacio
Algunos Inventos Importantes De Uso Diario
Explicación y planos de inventos fantásticos
Medidas de Longitud, Peso y Volumen
Breve Historia de las Unidades Antiguas
Dos Destacadas Hazañas Aéreas
Cubrir grandes extensiones sin escalas
Los Dinosaurios
Aquellos Terribles Lagartos del Mesozoico
Victorias Pírricas
Cuando Ganar Nos Cuesta Perder Todo
Organizaciones Mundiales: ONU-OTAN-Las ONG
Con que Finalidad se crearon?
El Control Bucal
Un chequeo que le puede salvar la vida
Buscando Vida Extraterrestre
La
Inquieta Curiosidad Humana Por La Vida Lejos de la Tierra
El Krill
Una Abundante Fuente de Proteínas Para Nuestra Alimentación
Concepto del Tiempo
El Tiempo Analizado Según Diferentes Culturas
La basura Espacial y basura Electrónica
Miles de Toneladas de Desechos Tecnológicos Por Espacio y Tierra
Biografía del Sol
Descripción del la Vida de la Estrella
Que No Dio La Vida
Historias del Siglo XX
Cenit y Ocaso de una Epoca
El Telescopio Espacial Hubble
Los Logros de Este Maravilloso “Ojo Espacial”
La Regla de Bode
Una Fórmula que no debería funcionar
Newton y La Fuerza de Gravedad
Cuan grave es esta fuerza?
Cinco Países del Mundo
El más extenso, el más rico, el más poblado, el más..
Idiomas Oficiales del Mundo
Lista de Todos Los Idiomas
Utilizados En Cada País
China e India, Costumbres y Religiones
El budismo, el hinduismo
y el confusionismo
Guerra del Opio en China
La Primera Guerra Por Droga
Siglo XXI: Lo que se viene
Ciencia y Tecnología Unidas Para El Bienestar
de la Humanidad
Kalashnikov
El arma mas popular del siglo XX
Nuevos Condones Express
Prácticos Preservativos Para La Lucha Contra el HIV
El Índice de Masa Corporal
Advierten que no es una buen parámetro para la salud
Origen del Comercio
Desde el trueque hasta la moneda metálica
Humanos Al Limite
Cuando el hombre exige su capacidad, esfuerzo y agilidad al máximo
Sonidos Maravillosos
Música de la Tierra-El Stradivarius-Gaitas Escocesas
Adolf Hitler, Corría Sangre Judía Por sus Venas?
Quien era el padre de este triste dictador?
Querès Trabajar en Google?
Como Google contrata gente capacitada y creativa para su empresa?
La Ciudad de Pompeya Sepultada En Cenizas
La Erupción Inesperada del Volcán Vesubio
en el Año 79
La Conquista del Canal de la Mancha
Los Primeros Nadadores Que Cruzaron el Canal
La Expedición al Valle de los Reyes
Horward Carter Encuentra La Tumba Real de Tutankamon
El Asalto a Akaba
Lawrence de Arabia lucha contra los turcos
La Verdad Incómoda
Los Cuestionamiento al Film de Al Gore
Las Especies y la Eugenesia
La Reproducción de los Mejores
Desastres Naturales y Tragedias Mundiales
El Hombre Frente a la Naturaleza Cuidemos el Planeta
Globalización, territorio, nación y estado
Es lo mismo nación que estado?
El Flogisto
Teoría del Calor: La Sustancia Que Nunca Existió
La Viruela y La Vacuna
Como se encontró una defensa contra esta cruel enfermedad
Dos Símbolos de Nuestra Era Tecnológica
Historia de la Construcción De La Torre de Eiffel y el Atomium
La Medicina a Principios del Siglo XX
Los Avances Mas Importantes de la Medicina
Los Grandes Inventos en los Inicios del Siglo XX
Automóviles-Comunicaciones-Medicina-Agroquimicos
La Bolsa de Valores
Funcionamiento del Mercado Bursátil
Diamante Cullinan
El Diamante Mas Grande Del Mundo
Las Imágenes del Monte Rushmore
Como las esculpieron?
La Isla de Pascua
Como fueron colocados los monolitos?
Las Grandes Teorías Científicas de la Historia
Las Teorías que Han Explicado la Naturaleza
Con Mas Claridad
Taxis en el Mundo
Diversos tipos de transporte urbano en otros países
Asesinos Seriales Famosos
Descripción de
Hechos Crueles y Sádicos Históricos
Las Mentiras de los Gobiernos
Una Sutileza:Desinformar Para Gobernar…
Bellas Historias de Vida Para Ser Contadas
Historias de Sacrificio, Valentía y Dolor, por Amor al Prójimo
Origen y Evolución de la Industria Automotriz
Nacimiento de Ford, Fiat, Morris y Volkswagen
Tony Melendez: Un Ejemplo de Vida
Los Efectos de la Talidomida
Magnicidios Que Conmovieron Al Mundo
Gandhi-Nicolas II-Isaac Rabin-Lennon….
UNESCO
Sitios Patrimonios de la Humanidad
Origen de Algunas Comidas Comunes
Curiosidades sobre los nombres y orígenes
Historias Secretas de la Segunda Guerra Mundial
Narraciones de Anécdotas de la Segunda Guerra
El Hombre En Ambientes Adversos
Vivir en el Espacio, Fondo del Mar, Desiertos y Polos
Historia del Origen de Algunas Marcas Clásicas
Ford, IBM, Playboy, TIME, y otras clásicos
Grandes Errores de la Humanidad
Comentarios sobre notables equivocaciones
La Historia del Oro y el Hombre
La Influencia del Oro en la Vida del Hombre
Circos en Argentina
Circo de Moscú-Sarrasani-Orfei
Casos de Canibalismo y Antropofagia
Diferencias conceptual
Los Archivos Secretos del Vaticano
Los Documentos Históricos Ocultos
Los Boy Scouts en el Mundo
Historia de los Orígenes del Movimiento
Los Inventos Chinos
Que no inventaron los chinos?
El Embarazo
Etapas del Desarrollo de un Bebe
Documentos Históricos
Cartas Escritas Por Grandes Personajes de la Historia
Harenes, Eunucos y Sultanes
Breve Descripción de la Vida de los Sultanes
Conceptos de Internet
Para Principiantes Conceptos Básicos
Inventos Accidentales
Descripción de los Inventos Nacidos de la Casualidad
La Batalla del Río de la Plata
El Hundimiento del Graf Spee en Aguas del Río de la Plata
El “Eurotúnel
Como nació está increíble obra del la ingeniería moderna
El Mundo de los Porque?…
Descripción de algunas cuestiones curiosas
Primeros Auxilios
Técnicas Básica Para Actuar en Caso de Emergencias
Todo a lo Grande!
Grandes Ideas, Errores, Enigmas, Mujeres, Tragedias, Obras e Inventos
Las Enfermedades Mas Habituales
Breve Descripción de Las Patologías Mas Comunes
Historia y Evolución de los Barcos
Historia desde la Balsa Hasta la Fragata
Remedios eran los de antes…
Descripción de aquellos increíbles medicamentos de nuestros abuelos
La Catacumbas Romanas
Origen de estos cementerios cristianos
El Sexto Sentido Animal
Señales en el Camino de la Humanidad
Costumbres de Vida de los Amihs
Historia de estos grupos de inmigrantes que rechazan la modernidad
10 Datos Curiosos Sobre el Planeta
6 Partes del Cuerpo Que Quizá No Necesite
Preguntas Curiosas
Breve Descripción de Las Inquietudes Más Comunes
Preguntas Raras, Pero Fáciles
Respuestas a las Preguntas Más Extrañas
Los 10 Mas Interesantes
Las Mejores Curiosidades Sobre Diversos Temas
Misceláneas Curiosas
Más y mas curiosidades para salvar tus dudas e inquietudes
10 Razones Para Reírse Más
Historia de los Aviones Boeing
Evolución de los Grandes Aviones de Línea Comerciales
Los Siete Pecados Capitales
La Cultura Machista
Diferencia entre el Hombre y el Macho
Locura Consumista
Empleado de Walt Mark Muerto por una Avalancha de Consumidores
Historia de la Bicicleta
Historia del Nacimiento de la Bicicleta
¿Que es el Carpooling?
Nueva Tendencia de viajar hasta el trabajo

 

Volcanes Mas Grandes del Mundo Tabla Cuevas Mas Profundas del Planeta

LOS VOLCANES:  Los volcanes son una de las manifestaciones más impactantes de que el interior del planeta está vivo. La salida del magma la superficie a través de ellos puede provocar fenómenos que arrasan toda la vida alrededor: explosiones, incandescentes, lluvias de fuego y ceniza, aluviones. Por eso, desde tiempos remotos, el hombre ha temido a los volcanes, e humeantes cráteres como la entrada al infierno. Cada volcán tiene un ciclo durante el cual modifica la topología y el clima y luego el mismo se extingue.

En el interior de la Tierra se encuentra en su mayor parte en estado liquido e incandescente a elevadísimas temperaturas. A esa inmensa masa de roca fundida, que además contiene cristales disueltos y vapor de agua, entre otros gases se la conoce como magma terrestre. Cuando parte de ese magma surge hacia el exterior a través de los fenómenos volcánicos, se la llama lava; 1000 °C es la temperatura media de la lava líquida

Al alcanzar la superficie de la corteza o el fondo oceánico , la lava comienza a enfriarse y se convierte así en diversos tipos de roca sólida, según su composición original. Ésta es la base de los procesos por los que se ha formado la superficie de nuestro planeta y por los cuales sigue en permanente cambio. Los científicos estudian la lava para conocer en profundidad nuestro planeta.

La lava es la sangre de toda erupción. Está cargada de vapor y de gases como el dióxido de carbono, el hidrógeno, el monóxido de carbono y el dióxido de azufre. Al salir, estos gases ascienden violentamente a la atmósfera, formando una nube turbia que descarga, a veces, copiosas lluvias. Los fragmentos de lava que son arrojados fuera del volcán se clasifican en bombas, brasas y cenizas.

Algunas partículas, grandes, vuelven a caer dentro del cráter. La velocidad eje la lava depende en gran parte de la pendiente de la ladera del volcán. Hay corrientes de lava que pueden llegar a los 150 Km. de distancia.

 volcan activo

Según la opinión de los geólogos, las materias que existen debajo de la corteza terrestre se encuentran en un estado particular, llamado de fluidez latente, por efecto del cual suelen comportarse como sólidos, pero con clara disposición a fundirse en cuanto la presión y la temperatura a que están sometidas, o ambas a la vez, se alteren de modo conveniente.

Cuando las masas superiores del Sial, que constituyen la corteza terrestre, cambian de posición como consecuencia de movimientos orogénicos, las masas inferiores adquieren una mayor plasticidad, se vuelven fluidas y adquieren las características propias de lo que se ha dado en llamar magma.

Cuando esto sucede, el magma líquido penetra en las hendiduras y cavidades de la litosfera, llegando muchas veces a atravesarla por completo hasta salir a la superficie. Entonces se produce el fenómeno volcánico. El vulcanismo no es más que la salida del magma a la superficie. Se llaman volcanes los conductos de filtración, visibles desde fuera, a través de los cuales se produce la salida del magma al exterior, o sea, la erupción.

Esta puede ocurrir a través de una fisura (erupción lineal), a través de una zona más o menos extensa (erupción areal) o también por un conducto de sección de forma aproximadamente circular (erupción central). La forma externa de los volcanes puede adoptar diversos aspectos, de acuerdo con la naturaleza de las rocas existentes en aquel sector, el tipo de magma que irrumpe y otros muchos factores concurrentes.

Actividad volcánica
Los volcanes en actividad arrojan lavas o cenizas permanentemente y durante los cortos periodos de descanso las fumarolas continúan saliendo del cráter. Hay volcanes que despiertan después de largos períodos de tiempo (Vesubio). A los que no han vuelto a entrar en actividad desde hace mucho tiempo se los considera apagados. No obstante, hay fenómenos que revelan cierta actividad subterránea, como ser las fuentes termales o de agua caliente. Son claros ejemplos las Termas de Reyes (50° de temperatura en Jujuy, 60° en Villavil, Catamarca, 70° en Las Maguinas, Neuquén. todos de la República Argentina). Y también los ge /seres, fuentes termales que surgen del suelo intermitentemente y cuyas aguas ascienden a una temperatura de 100°C. Es claro ejemplo el Gran Geiser de Islandia.

Los volcanes suelen anunciarse con temblores de tierra, sacudidas, aumento de temperatura, ruidos subterráneos y movimientos bruscos del mar. El ascenso del magma o lava a la superficie ocasiona perturbaciones geofísicas, anomalías magnéticas y variaciones en la intensidad gravitacional. Aun el incremento de las fumarolas no garantiza la certeza de que habrá erupción. A menudo el magma interno a punto de ser proyectado por la chimenea se acerca al borde del cráter y se solidifica.

Signos más próximos son las explosiones de los gases y valores sometidos a presiones y temperaturas elevadísimas en el interior del volcán. Estos gases, al salir, expulsan las materias que taponan la chimenea volcánica y elevan sobre el cráter gigantescas columnas de humo, piedras y polvo, que caen luego sobre muchos kilómetros cuadrados de extensión y en bloques que llegan a pesar más de 30 toneladas. Esta especie de proyectiles recibe el nombre de bombas volcánicas.

Otra materia arrojada por los volcanes es ceniza (pulverización, en finas gotitas de la lava solidificada). Las escorias son residuos de materia fundida. Su apariencia es vacuolar, ya que provienen del magma que ha retenido y expulsado grandes cantidades de gases. Otras materias son la piedra pómez (escorias porosas) y las puzolanas, fragmentos más pequeños y lisos. Estas substancias, después de caer en las proximidades del cráter, sirven para elevar el cono volcánico. Las cenizas se mezclan con las lluvias y forman los conocidos fufos, capas de barro volcánico depositadas como los terrenos sedimentarios.

A la fase de emanación de gases le sigue la efusión de líquido, el cual está formado por rocas fundidas entre 1.000°C y 2.000°C, que rebasa los bordes del volcán y corre por las zonas aledañas como un verdadero río de fuego.

Composición mineralógica
La lava tiene un alto contenido de silicatos, que son minerales livianos formados de rocas y constituyen el 95% de la corteza terrestre. En proporción, el otro elemento importante es el vapor de agua. Los silicatos determinan la viscosidad de la lava, es decir, su capacidad de fluir, cuyas variaciones han originado una de las clasificaciones más difundidas: la lava basáltica, andesítica y riolítica, ordenadas de menor a mayor contenido de silicatos.

VOLCANES GRANDES E IMPORTANTES DEL PLANETA
Volcán, ubiación Altura en m
Acatenango (Q-1972), Guatemala 3.976
Agua (Q), Guatemala 3.766
Agung Gunung, (A-1964), Bali, Indonesia 3.142
Akutas, (A -1974), Is. Aleutianas, EU 1.293
Alaid, (A -1982), Is. Kuriles 2.339
Alcedo, (A -1954), Is. Galápagos, Ecu 1.127
Ambrym o Marun (A – 1953) Vanuatu (Oc. Pacífico) 1.270
Antisana (Q), Ecuador 5.704
Antofalla (A), Argentina 6.100
Apo (Q), Filipinas 2.954
Ardjuno- Welirang, Java – Indonesia 3.038
Arenal (A- 1982), Costa Rica 1.640
Asamayama (A- 1983) Japón 2.542
Askja (A- 1961), Islandia. 1.510
Aso, (A- 1981), Japón. 1.592
Atitlán, (Q – 1853), Guatemala 3.537
Augustina, (A- 1976), Alaska, EU. 1.227
Awu (A- 1968), Indonesia. 1.320
Azufral, (Q) Colombia 4.070
Azufre o Lastarria, Chile- Argentina. 5.697
Baker (H), Washington, (EU) 3.285
Barú (Q), Panamá 3.475
Beerenberg (A – 1970) Jan Mayen (Mar de Noruega) 2.277
Bezymianny (A- 1983) Rusia 2.800
Bromo (H- 1950) Java – Indonesia 2.392
Calbuco (A- 1961), Chile 2.003
Callaqui, (Q), Chile 2.085
Camerún (A – 1982), Camerún 4.100
Canlaon (A- 1969), Filipinas 2.460
Casablanca (A- 1960), Chile 1.990
Cayambe (F), Ecuador 5.790
Cerro de Llullaillaco (Q), Argentina – Chile 6.739
Cerro Negro (A – 1982), Nicaragua 976
Citialtepec o Pico de Orizaba (Q), Mexico 5.610
Cofre de Perote, Mexico 4.250
Concepción u Ometepe (A- 1977), Nicaragua 1.610
Conchagua (A – 1974), El Salvador 1.250
Cosigüina (A – 1983), Nicaragua 859
Cotecechi (A-1955), Ecuador 4.939
Cotopaxi (A – 1975), Ecuador 5.897
Cumbai (A- 1926), Colombia 4.764
Chiles (Q), Colombia 4.750
Chimborazo (Q), Ecuador 6.310
Chokal (Q), Japón 2.230
Choshuenco, Chile 2.415
Dempo (A- 1940), Sumatra, Indonesia 3.159
Domuyo, Argentina 4.709
El Mocho, Chile 2.422
Erebus (A- 1982) Antártida 3.794
Estrómboli (A – 1975), Italia 924
Etna (A- 1975), Sicilia, Italia 3.323
Faial (A- 1958), Isla Azores 1.043
Fernandina (A- 1977), Is. Galápagos, Ecuador 1.494
Fogo (A- 1977), Is. Cabo Verde 2.829
Fuego (A- 1977), Guatemala 3.763
Fujiyama (Q), Japón 3.776
Galeras (A- 1953), Colombia 4.276
Galung-gung (A- 1982), Java – Indonesia 2.168
Gede (A- 1949), Java – Indonesia 2.958
Góngora (Q) Costa Rica 1.728
Guallatiri (A-  1960), Chile 6.063
Hekla (A-1981), Islandia 1.491
Huila (Q) Colombia 5.750
Ichinskaya (F), Rusia 3.621
Illamna (A- 1981), Alaska, EEUU 3.053
Irazú (A- 1967), Costa Rica 3.492
Izaico (A. 1966), El Salvador 1.910
Iztaccíhualt (Q), Mexico 5.230
Karthala (A- 1977), Islas Comoras 2.361
Katla (A- 1918), Islandia 900

mapa de volcanes

Distribución mundial de los volcanes activos. Casi el 80% de los volcanes se encuentran alineados en las márgenes del océano Pacifico, formando el Cinturón de Fuego del Pacífico. En menor medida, se hallan también en el interior de las placas litosféricas, en donde se observan fenómenos volcánicos vinculados con la acción de los puntos calientes.

De los aproximadamente 500 volcanes activos que hay actualmente en el mundo, solamente una pequeña proporción están en erupción en un momento determinado, anualmente del orden de 20 ó 30. Una erupción, momento en que el volcán arroja lava y gases volcánicos por su cráter, es de una duración bastante corta en relación con la vida del volcán.

El período en que el volcán «duerme» es normalmente mucho más largo que el que está en erupción, y puede durar decenas e incluso millares de años. Un volcán que no ha entrado en erupción en «tiempos históricos» se dice que está extinguido, pero esta definición es en realidad extremadamente vaga, pues lo que se considera «tiempo histórico» puede ser mucho más corto que el período en que un volcán puede permanecer dormido.

CUEVAS DEL PLANETA
Las más profundas
Nombre y situación Profundidad en m
Réseau Jean-Bernard, Alta Saboya, Francia 1.534,97
Réseau des Folliis, Francia 1.402,08
Snezhnaya, Cáucaso, Abjasia 1.280,16
Sistema Huautla, Mexico 1.219,81
Sima de Ukerdi, España 1.184,76
Avenc B 15, España 1.150,00
Las más largas
Nombre y situación Longitud en Km.
Sistema Flint- Mammoth, Kentucky, EEUU 354
Optimisticeskaja, Drestrovsko-Prisernomorskaja, Ucrania 143
Holloch, Muotathal, Suiza 136
Corte esquematico de un volcán

Corte esquematico de un volcán

Terremotos Mas Importantes en Argentina Cómo actuar frente a un sismo

Los terremotos tienen lugar porque las placas tectónicas se encuentran en constante movimiento y, por lo tanto, chocan entre sí, se deslizan unas contra otras y, en algunos casos, se superponen. La corteza terrestre no refleja todos los movimientos que le suceden, pero acumula la energía que se desprende de ellos dentro de sus rocas hasta que ya no pueden soportar más la tensión. En ese punto, la energía es liberada a través de los lugares más débiles de la corteza terrestre, haciendo que el suelo se mueva repentinamente, originándose un terremoto.

Terremotos y áreas de riesgo sísmico en la Argentina

Para muchas personas, los terremotos son extraños fenómenos que sólo ocurren en regiones alejadas del planeta. Sin embargo, nuestro país tiene una larga historia de movimientos sísmicos, en especial en las regiones centro-oeste y noroeste, donde se registra la mayor actividad. Incluso en zonas de bajo riesgo han tenido lugar movimientos sísmicos, como el que ocurrió el 5 de junio de 1888 cuando la Ciudad de Buenos Aires se vio afectada por un terremoto que tuvo su epicentro en el Río de la Plata.

Algunos de los movimientos sísmicos ocurridos en nuestro país han sucedido en zonas alejadas de las grandes ciudades y poco pobladas, quizá por eso se les haya dado muy poca difusión.

En el siglo pasado, el 20 de marzo 1861, un terremoto de gran intensidad destruyó por completo la ciudad de Mendoza dejando gran cantidad de muertos y causando también numerosos daños a la ciudad de San Juan.

Sin embargo, éste no fue ni el primero ni el último de los grandes terremotos. Una de las mayores catástrofes ocurridas en nuestro país fue causada por el terremoto de San Juan, el 15 de enero de 1944. La actividad sísmica afectó a la ciudad capital y a sus alrededores. En ese entonces, en aquel lugar vivían unas 90.000 personas. El terremoto dejó un saldo de más de 10.000 muertos, el 80 % de la ciudad quedó en ruinas, las viviendas destruidas y los edificios públicos y puentes transformados en escombros.

Como respuesta a esta terrible catástrofe, el gobierno nacional decidió crear un organismo denominado “Consejo de Reconstrucción de San Juan”, el cual dependía del Poder Ejecutivo Nacional. Entre las funciones del organismo figuraba la de elaborar un código de edificación para la provincia de San Juan, tendiente a que todas las construcciones fueran resistentes a los sismos, o sismorresistentes. Dicho organismo también debía controlar que se cumplieran las reglamentaciones que el código establecía para las construcciones.
 

PRINCIPALES TERREMOTOS OCURRIDOS EN ARGENTINA

13 de septiembre de 1692 Poblado de Talavera del Estero, en Salta, y ciudad de Salta
22 de mayo de 1782 Ciudad de Mendoza
4 de julio de 1817 Ciudad de Santiago del Estero
19 de enero de 1826 Región de Trancas, Tucumán
20 de marzo de 1861 Ciudad de Mendoza
14 de enero de 1863 San Salvador de Jujuy
9 de octubre de 1871 Ciudad de Oran, Salta
6 de julio de 1874 Ciudad de Oran, Salta
5 de julio de 1888 Centro del Río de la Plata, Ciudad de Buenos Aires y Montevideo
2 7 de octubre de 1894 Noroeste de San Juan; afectó a toda la provincia y causó daños menores en Catamarca, Córdoba, San Luis y Mendoza
11 de agosto de 1907  Localidades de Montero y La Cocha, Tucumán
17 de diciembre de 1920 Noreste de Mendoza
30 de mayo de 1929 Localidades de Villa Atuel y Las Malvinas, sur de Mendoza
11 de junio de 1934 Localidad de Sampacho, al sureste de Córdoba
15 de enero de 1944 Destrucción de la ciudad de San Juan
17 de diciembre de 1949 Tierra del Fuego
19 de noviembre de 1973 Este de Salta y de Jujuy
17 de agosto de 1974 Localidad de Oran, Salta
23 de noviembre de 1977 Ciudad de Caucete, San Juan, y toda la provincia en general
26 de enero de 1985 Departamentos de Godoy Cruz y Las Meras, Mendoza, y Gran Mendoza en general
8 de junio de 1993 San Juan y Mendoza

RECOMENDACIONES FRENTE A UN SISMO
ANTES DE UN SISMO:

Establecer un plan de emergencia sísmica para el lugar.
Ubicar y señalizar zonas seguras o libres de riesgo.
Designar responsables para cortar los servicios de agua, gas, luz y otros suministros.
Disponer de luces de emergencia, linternas y radio a transistores.
Verificar periódicamente el funcionamiento de puertas y portones.
Señalizar y mantener libre de obstáculos las vías de escape.
Establecer un plan de emergencia familiar.
Participar activamente del funcionamiento del Plan de Emergencia Sísmica.

DURANTE UN SISMO

Tener calma y proceder de acuerdo con lo establecido en el plan de emergencia.
No permanecer en lugares donde existan objetos cuya caída pueda provocar accidentes.
No salir a balcones bajo ninguna circunstancia y no usar ascensores. Si se encuentra en un lugar con aglomeración de personas (autoservicios, templos, cines, etc.), permanecer en el lugar y aplicar las medidas de protección. No acudir inmediatamente a la salida. Ser solidario con los semejantes frente a la emergencia.


DESPUÉS DE UN SISMO

Intentar resolver los problemas inmediatos, pues la ayuda puede tardar en llegar.
Verificar si hay heridos y practicar los primeros auxilios. No caminar descalzo ni a oscuras.
Controlar que no haya pérdidas de agua, gas y electricidad.
Observar si el edificio está deteriorado y actuar en consecuencia, de manera ordenada.
No usar, salvo en caso de extrema necesidad, el teléfono, vías de transporte y senados públicos.
No encender fósforos ni conectar llaves eléctricas. Utilizar linternas a pilas o baterías para iluminarse.
Estar informado a través de cualquier medio, ya que puede recibir noticias y recomendaciones importantes; no propagar rumores infundados.
Obedecer las instrucciones del personal encargado de manejar la emergencia sísmica.

 
Fuente Consultada: Biología y Ciencias de la Tierra Estructura – geología y Evolución – Área: Polimodal

Grandes Terremotos de la Historia Terremotos Históricos Mas Fuertes

GRANDES TERREMOTOS DE LA HISTORIA

Los terremotos tienen lugar porque las placas tectónicas se encuentran en constante movimiento y, por lo tanto, chocan entre sí, se deslizan unas contra otras y, en algunos casos, se superponen. La corteza terrestre no refleja todos los movimientos que le suceden, pero acumula la energía que se desprende de ellos dentro de sus rocas hasta que ya no pueden soportar más la tensión. En ese punto, la energía es liberada a través de los lugares más débiles de la corteza terrestre, haciendo que el suelo se mueva repentinamente, originándose un terremoto.

La Eruoción del volcán La Soufriere:  situado en la isla de Guadalupe, océano Pacífico nordoriental. Ocurrida el 17 de agosto de 1976, obligó a evacuar 72.000 habitantes de las zonas aledañas, en previsión de un maremoto anunciado por el equipo de científicos que trabajaba en Point a Pitre, y que por fortuna no se produjo.

La explosión se escuchó a más de 15 km de distancia y la mayor cantidad de víctimas estuvo representada por habitantes que, pese a los avisos y exhortaciones de las autoridades, se negaron a abandonar sus viviendas. Jaurías de perros erraban buscando alimentos en medio de las poblaciones desiertas y sus lúgubres aullidos sólo eran oídos por las brigadas de salvamento que recorrían la zona.

El doctor Robert Brouyse, catedrático de la universidad de París y iefe del equipo de vulcanólogos. realizó un vuelo en helicóptero sobre el pico del volcán, a 1.468 m de altura, envuelto en una densa nube de gases sulfurosos. En previsión de que se reanudaran las erupciones, el dispositivo de seguridad quedó montado largo tiempo. Goetz Buchbinder, sismólogo, declaró que según sus estudios la erupción del volcán La Soufriere obedeció al movimiento de la Placa Atlántica, que se halla debajo de la Placa del Caribe.

Cuando una placa se mueve, la que se encuentra en la posición inferior termina por fundirse, pues la presión la envía a regiones más profundas. A consecuencia de estos movimientos candentes, la lava sale a través de la zona de fractura.

LAS ONDAS SÍSMICAS: Durante el terremoto se producen tres tipos de ondas sísmicas. Las ondas primarías o longitudinales se deben al efecto de compresión y expansión de las rocas próximas al hipocentro, y se transmiten en todas direcciones. Son éstas las ondas sonoras, que viajan más rápidamente que las restantes, y las cuales producen los grandes ruidos o truenos sísmicos que se escuchan, a veces, antes de que se produzca la sacudida del terremoto en la superficie terrestre.

Las ondas secundarias viajan transversalmente por la corteza terrestre y como son más lentas que las primeras, son registradas después por los sismógrafos. Estas ondas producen sacudidas de !a litosfera. Las ondas largas o superficiales son las últimas registradas por el sismógrafo, ya que se mueven mucho más lentamente que las anteriores. Se producen al llegar las ondas secundarias a la superficie y pueden propagarse a toda la circunferencia terrestres. Son también las más destructivas.

El estudio de los sismógrafos,  ha permitido aumentar nuestros conocimientos sobre la estructura de nuestro planeta. La propagación de las ondas sísmicas en el interior de la tierra indica que el planeta en cuya superficie vivimos está constituido por capas de distinta densidad.

Se ha comprobado, por ejemplo, que las ondas largas, que viajan a unos 3.2 Km. por segundó en la superficie de los continentes, se propagan más rápidamente a través de los fondos oceánicos, la cual prueba que bajo los océanos la litosfera está formada por material más denso (sima).

Las ondas primarias y secundarias atraviesan los primeros 2.900 Km. a una velocidad que aumenta con la profundidad, lo cual prueba que esta zona es sólida, pues las ondas secundarias no atraviesan los líquidos. A partir de los 2 900 Km. las ondas secundarias no siguen propagándose y las primarias pierden la mitad de su velocidad, lo que indica un cambio en la composición del núcleo central de la tierra, .que debe estar constituido de un material distinto (níquel y hierro, según se cree).

En los últimos años se ha venido aplicando el principio del sismógrafo a descubrir la estructura de la litosfera, para determinar la existencia de áreas que indiquen la posibilidad que contengan depósitos de minerales. Este sistema de exploración se utiliza especialmente en la búsqueda de petróleo.

EFECTOS DE LOS TERREMOTOS:

De todos los fenómenos naturales ninguno aterroriza mas que el de los terremotos. Afortunadamente la gran mayoría de los mismos se producen en el fondo del oceánicos (maremotos9 o en regiones deshabitadas. Los terremotos pueden ocasionar cambios en el relieve, grietas externas, deslizamientos y avalanchas, variaciones en los cursos de lo ríos y otros fenómenos igualmente impresionantes.

Los efectos más desastrosos de los terremotos se producen en las áreas densamente pobladas. En 1923, un terremoto sacudió la isla de Honshu, en el Japón. Este sismo, cuya intensidad se prolongó apenas 16 segundos, afectó una zona donde vivían más de siete millones de habitantes y destruyó más de 450 000 edificios en las ciudades de Tokio y Yolcohama, matando más de ciento cincuenta mil personas.

Los incendios que se produjeron por los cortocircuitos del tendido eléctrico no pudieron ser combatidos eficazmente por la falta de agua, ya que el sismo había dislocado las tuberías de los acueductos. Igualmente fueron destruidas las vías férreas y aun las carreteras.

Cuando los terremotos se producen en los fondos oceánicos o cerca de las áreas costeras pueden dar lugar a grandes desastres, al originar grandes olas, llamadas tsunamis en japonés. Una de estas olas se abatió sobre Lisboa, la capital portuguesa, una hora después de un fuerte terremoto, en 1755, y fue la causa principal de la muerte de unas sesenta mil víctimas, que produjo el sismo.

Entre otros grandes terremotos, registrados en el presente siglo, figuran el de San Francisco, California, en 1906, el cual causó la destrucción de la ciudad, por los grandes incendios que lo siguieron, y originó más de setecientas muertes. La ciudad de Messina, en Italia, fue destruida, en 1908, perdiéndose más de cien mil vidas. En siglos anteriores se registraron en la India terremotos muy destructivos, en uno de los cuales perecieron trescientas mil personas.

En la América del Sur se han registrado terremotos muy violentos, especialmente en CKile, donde la ciudad de Valparaíso na sido destruida en varias oportunidades. En la América Central Kan destruido los terremotos varias veces la Ciudad de Guatemala y a Cartago. Costa Rica. La ciudad de San Salvador, capital de la República de El Salvador, ka sufrido muy fuertes terremotos y es raro la semana en que no se registran en ella microsismos, al punto de ser denominada la zona en que está enclavada «Valle de las Hamacas». En la isla de Jamaica, un terremoto causó mil víctimas en 1907.

La ciudad de Santiago de Cuta ha sido sacudida por numerosos macrosismos o temblores de tierras desde su fundación, pero los terremotos intensos han sido escasos afortunadamente. Estos terremotos se producen por el desplazamiento de los bloques fallados de la corteza terrestre en la Fosa de Barlett, situada al sur de Cuba. El último terremoto violento, que causó grandes daños materiales y algunas víctimas, ocurrió en Santiago en el mes de febrero de 1932.

Aunque hasta hoy no ha podido la investigación científica anticipar la ocurrencia de los terremotos, lo cual algunos sismólogos consideran una posibilidad futura, los daños provocados por los terremotos se han aminorado considerablemente con la construcción de edificios más resistentes. Se sabe, por ejemplo, que las construcciones levantadas sobre rocas firmes resultan menos afectadas que las edificadas sobre cimientos poco profundos y en rocas no consolidadas. También los edificios de estructura de acero o aquellos de estructura sólidamente entramada, resisten mejor los efectos de los sismos.

TABLA CON LOS PEORES TERREMOTOS DE ESTE SIGLO XX:

AÑO LUGAR MAGNITUD MUERTES AÑO LUGAR MAGNITUD MUERTES .
1906 San Francisco, E. U. A. 8.3 700 1970 Perú 7.7 50 a 70.000
1908 Italia 7.5 83.000 1976 China 7.8 242.000
1920 China 8.6 180.000 1978 Irán 7.7 15 .000
1923  Japón  8.3  99.000  1979  Ecuador 7.9 600 
1927 China 8.3 200.000 1980 Argelia 7.7 3.500
1931 Nueva Zelandia 7.9 255 1980 Italia 7.2 3.000
1932 China No se sabe 70 000 1981 Irán 7.3 2.500
1935 Paquistán 7.5   20 a 60.000 1983 Japón  7.7  58
1952 California, E.U.A 7.7 11 1983 Turquía 7.1 1.300
1962 Chile 8.5 4 a 5.000 1985 Chile 7.4 177
1964 Alaska 8.5 178 1985 México 8.1 4.287
1968 Irán 7.4 12.000 1988 Armenia, U.R.S.S. 7.0 25.000

Conociendo la intensidad de las ondas de choque de un terremoto, se ruede determinar su magnitud, que es la cantidad de energía liberada en su epicentro. Se mide en la escala de Richter —de 1 a 10 grados—, creada por el sismólogo estadounidense Charles Richter en 1935. La escala es logarítmica; un sismo de 8 grados es 10 veces más intenso que uno de 7, 100 veces más intenso que uno de 6, etc.

La escala más popular: Nacido en 1900 en Hamilton (Ohio), Charles F. Richter estudió física en la Universidad de Stanford, en California, y desde 1927 , hasta su jubilación trabajó en el Laboratorio Kresge de la Institución Carnegie, en Pasadena, más tarde convertido en el Seismological Laboratory (Laboratorio de Sismología) dependiente del Instituto de Tecnología cíe California. Allí se inició Richter, primero como asistente de investigación, junto a renombrados colegas como Beno Gutenberg y Hugo Benioff.

El laboratorio de sismología en Caltech tenía la intención de emitir informes periódicos sobre los terremotos en el sur de California, por lo que Richter y Gutenberg se abocaron a esa tarea. La pareja de científicos empezó a pensar cómo diseñar una tabla segura y confiable que midiera los cientos de temblores que se producen al año. Hasta entonces, la única forma de evaluarlos era mediante una escala que había desarrollado Giuseppe Mercalli en 1902. Esta escala clasifica los terremotos del 1 al 12, dependiendo de cómo los edificios y la gente responden ante el temblor. Así por ejemplo, una sacudida que balancea las lámparas del techo se clasificaba con una magnitud de 1 y 2, mientras que otro seísmo que destruye grandes edificios se clasifica de magnitud 10.

La escala desarrollada por Richter y Gutenberg, que luego se reconocería sólo como la escala de Richter, proporcionaba datos más certeros. La forma de construcción de esta escala fue el resultado de varias observaciones; de tener en cuenta que el comportamiento de la amplitud máxima registrada por un sismógrafo depende de dos causas: la distancia entre el foco y el aparato y, además, de algo intrínseco del temblor. Así por ejemplo, un terremoto de magnitud 3 es aquel que a una distancia de 100 km imprime en un sismógrafo una amplitud máxima de un milímetro. Es decir que el tipo de observación -una amplitud-permite relacionarlo de forma directa con la energía, por lo que puede decirse que la magnitud es una forma simplificada de cuantificar la energía liberada.

Otras pasiones

Richter, que estuvo casado con una maestra, también disfrutaba de la música clásica, la lectura de ciencia ficción y la poesía. Entre los papeles privados que a su muerte en 1985, fueron donados al archivo del Caltech, había un gran número de poemas, escritos a lo largo de su vida. Sólo algunos de ellos llegaron a ver la luz en revistas literarias de escasa circulación.

TABLA II

TERREMOTOS MAS IMPORTANTES DESDE LA ERA CRISTIANA

Fecha Lugar Efectos
79
518
586
1268
1290
1531
1541
1556
1737
1755: 1° noviembre
1883: 26/28 agosto
1891: 28 octubre
1902: 8 mayo
1906: 18 abril
1908: 28 diciembre
1920: 16 diciembre
1923: 1° setiembre
1935: 31 mayo
1939: 24 enero,
1939: 27 diciembre
1944: 15 enero
1949: 5 agosto
1950: 15 agosto
1954: 9 setiembre
1958: 26 julio
1960: 29 febrero
1962: 1° setiembre
1970: 31 mayo
1972: 23 diciembre
1975: 6 setiembre 1976:
1976 4 febrero
1976: 17 agosto
Pompeya (Italia)
Skupi (Yugoslavia)
Corinto (Grecia)
Sicilia (Italia)
Chii (China)
Lisboa (Portugal)
Guatemala
Shen-Si (China)
Calcuta (India)
Lisboa (Portugal)
Indias Neerlandesas
Japón
Martinica
California (EE.UU.)
Mesina (Italia)
Kansu (China)
Japón
Quetta (India)
Chile
Turquía
San Juan (Argentina)
Ecuador
India
Argelia
Skopje (Yugoslavia)
Marruecos
Irán
Perú
Managua
Turquía
Guatemala
Filipinas
Destrucción total de la ciudad.
Causó más de 40.000 muertes.
Cerca de 45.000 muertes. Hubo alrededor de 65.000 muertos.
100.000 muertes, aproximadamente.
Ocasionó 30.000 muertes.
Destrucción de la ciudad. 850.000 muertes.
Causó cerca de 30.000 muertes.
Arrasó la ciudad y arrebató 60.000 vidas humanas.
La explosión del volcán Rakata destruyó dos tercios de la isla de Krakatoa. Ocasionó 36.000 muertes.
Afectó a Mino y la bahía de Ise. Destruyó 2.000 casas y produjo 7.500 muertes.
La erupción de Mont Pelee arrasó la ciudad de Saint-Pierre. Mató 40.000 personas.
Causó incendios devastadores en San Francisco. Costó 1.500 vidas. Destruyó Mesina y Reggio, ocasionando 85.000 muertos.
Causó grandes deslizamientos de tierra y produjo 100.000 víctimas. Destruyó Yokohama y gran parte de Tokio. Murieron 95.000 personas.
Asoló esta ciudad, hoy de Pakistán, y ocasionó 50.000 muertes.
Devastó 130.000 km2, destruyó Chillan y produjo 30.000 muertos. Destruyó la ciudad de Erzincan y ocasionó 100.000 muertes. Destruyó la .ciudad capital. Causó más de 10.000 muertes. Arrasó 50 poblaciones y causó 6.000 muertos.
Afectó a la provincia de Assam y perdieron la vida 30.000 personas.
Afectó el Norte del país y produjo 1.600 muertes.
Arruinó esta ciudad y ocasionó más de 1.000 víctimas.
Destruyó Agadir y mató más de 20.000 personas.
Asoló una zona de 20.000 km2 al oeste de Teherán. Produjo unos 10.000 muertos.
Devastó el departamento de An-cash y destruyó 250 poblaciones, entre ellas Yungay. Causó 50.000 muertes.
Arrasó las tres cuartas partes de esta ciudad y ocasionó cerca de 20.000 muertos.
Causó alrededor de 3.000 muertes. Más de 24.000 muertos.
 Aproximadamente 2.000 muertos.

Fuente Consultada: Gran Atlas de la Ciencia National Geographic.

tabla cronologica de grandes terremotos

Consecuencias de la Erupcion de un Volcan Composicion de la Lava

La Erupción de Un Volcán – Los Desequilibrios Ecológicos

Los volcanes
Las erupciones volcánicas constituyen uno de los fenómenos geológicos que más han impresionado al ser humano, por su grandiosidad y por los terribles efectos que provocan.

El vulcanismo es un hecho geológico que tiene lugar en la corteza terrestre y que se manifiesta arrojando a la superficie material fundido o magma como resultado de intensos desequilibrios en el seno de la corteza, originados durante las fricciones que ocurren entre las grandes masas geológicas sometidas a fenómenos de compresión y deslizamientos.

Generalmente los volcanes aparecen como promontorios muy elevados, formados por la solidificación del magma expulsado.

Desde antiguo estas erupciones han sido muy temidas por el hombre, y hasta el mito se ha ocupado de ellas. Recordemos el Hefesto o Vulcano de la mitología grecorromana: el fuego de las fraguas de sus herrerías salía al exterior y hacía temblar la Tierra.

Cómo es un volcán
Un cono volcánico se forma por la acumulación del magma solidificado. En su cima se halla el cráter, que se prolonga hacia el interior por la chimenea por donde ascienden las materias en fusión o los gases. Muchas veces, en torno del cráter principal se originan cráteres secundarios o parásitos formados por las bifurcaciones de la chimenea central. La montaña que forma el volcán en ignición tiende naturalmente a crecer en altura y volumen. El Chimborazo (Ecuador) mide 6.267 metros.

La rapidez con que se forman estos montes volcánicos suele ser sorprendente. El cono del Monte Nuovo (Nápoles) surgió en la noche del 27 al 28 de setiembre de 1538, ante los azorados ojos de los pobladores. El Parícutin (México, febrero de 1943) es otro ejemplo.

Hay conos volcánicos de una regularidad perfecta (Cotopaxi en Ecuador) y otros que tienen deformaciones debidas a los distintos agentes de la erosión. Existen otros que presentan en sus flancos conos secundarios o adventicios cuyo número puede variar a menudo (Etna).

Las dimensiones de los cráteres varían: algunas son enormes (Vesubio, Poás). Los cráteres volcánicos sin conos son de explosión están formados por gases que han arrojado los fragmentos del fondo rocoso en torno de la chimenea volcánica sumamente abierta, pero sin producto sólido alguno procedente del magma interior Otros volcanes curiosos son los denominados volcanes-calderas. Provienen del hundimiento o explosión de la zona central de un gran cono volcánico, de cual solamente quedan los flancos.

El sábado 22 de octubre de 2005, el volcán Sierra Negra, en las islas Galápagos, luego de 27 años de inactividad, comenzó a expulsar cenizas y gases. Tres días después, la lava comenzó a fluir. Este, sin embargo, no fue el único ejemplo eruptivo del año. Una semana antes, un grupo de observadores de El Salvador anunció que la columna de gases del volcán Santa Ana o Ilamatepec era muy débil y difusa. (ver mapa de Volcanes Activos)

Tres horas después era ya de 300 metros. Las piedras y cenizas que arrojó el Santa Ana mataron a dos personas. No obstante, desde el mes de junio se había intensificado su vigilancia debido a que se habían registrado microsismos de mayor intensidad de los que suele mostrar ese volcán.

Éstas fueron dos de las cinco erupciones volcánicas que tuvieron lugar el año pasado. En los últimos 10.000 años se han activado 1.415 volcanes en el mundo. Una de las peores fue la de 1815 cuando el Tambora, en Indonesia, se cobró la vida de 92.000 personas.

Animación Educativa Sobre Los Volcanes

Lago Toba, la más salvaje

Más cerca en el tiempo fue la explosión del Pinatubo, en Filipinas, que tuvo un saldo de 800 víctimas fatales. Algunos, como éste, entran en erupción cuando ya nadie se lo espera. Otros, como el Estrómboli, el Etna o los de Hawaii, se activan con frecuencia.

¿Pero qué ocurre en las entrañas de la Tierra? Sucede que nuestro planeta se comporta como un alto horno; a unos 100 km de profundidad, las rocas se funden para formar el magma, que tiene tendencia a ascender hacia la superficie y escapar aprovechando las zonas más frágiles de la corteza terrestre.

Y, en ciertas ocasiones, dicen algunos especialistas, la Tierra experimenta una erupción tan salvaje que hasta cambia el clima y amenaza la existencia sobre el planeta. Hace 75.000 años se produjo la mayor erupción de la historia en el Lago loba, Sumatra. Hay quienes opinan que existe otra en ciernes y que es probable que tenga un volcán que yace bajo el Parque Yellowstone, en EE.UU.

Más de 40 especialistas afirman que este supervolcán ya ha entrado en erupción varias veces. Las últimas mediciones confirman que el suelo del parque emite entre 30 y 40 veces más calor que el promedio de Estados Unidos. “No queremos ser catastrofistas —dice uno de los geólogos—, pero debemos reflexionar sobre la posibilidad de que sea el turno de un volcán”.

Lava en estudio El Etna, arriba, ha entrado en erupción varias veces en los últimos 100 años. La imagen de la izquierda muestra un volcanólogo recogiendo lava para estudiarla posteriormente. 

 LA LAVA DE LOS VOLCANES:  En el interior de la Tierra se encuentra en su mayor parte en estado liquido e incandescente a elevadísimas temperaturas. A esa inmensa masa de roca fundida, que además contiene cristales disueltos y vapor de agua, entre otros gases se la conoce como magma terrestre. Cuando parte de ese magma surge hacia el exterior a través de los fenómenos volcánicos, se la llama lava; 1000 °C es la temperatura media de la lava líquida

Al alcanzar la superficie de la corteza o el fondo oceánico , la lava comienza a enfriarse y se convierte así en diversos tipos de roca sólida, según su composición original. Ésta es la base de los procesos por los que se ha formado la superficie de nuestro planeta y por los cuales sigue en permanente cambio. Los científicos estudian la lava para conocer en profundidad nuestro planeta.

La lava es la sangre de toda erupción. Está cargada de vapor y de gases como el dióxido de carbono, el hidrógeno, el monóxido de carbono y el dióxido de azufre. Al salir, estos gases ascienden violentamente a la atmósfera, formando una nube turbia que descarga, a veces, copiosas lluvias. Los fragmentos de lava que son arrojados fuera del volcán se clasifican en bombas, brasas y cenizas. Algunas partículas, grandes, vuelven a caer dentro del cráter. La velocidad eje la lava depende en gran parte de la pendiente de la ladera del volcán. Hay corrientes de lava que pueden llegar a los 150 Km. de distancia

Composición mineralógica
La lava tiene un alto contenido de silicatos, que son minerales livianos formados de rocas y constituyen el 95% de la corteza terrestre. En proporción, el otro elemento importante es el vapor de agua. Los silicatos determinan la viscosidad de la lava, es decir, su capacidad de fluir, cuyas variaciones han originado una de las clasificaciones más difundidas: la lava basáltica, andesítica y riolítica, ordenadas de menor a mayor contenido de silicatos.

Poder destructor de los volcanes
La predicción de las actividades volcánicas puede reducir o evitar las pérdidas de vidas, pero poco puede hacer sin embargo para controlar los daños de los elementos y bienes inamovibles. Se ha intentado incluso desviar las corrientes de lava utilizando chorros de agua para enfriarla, y formar una sólida pared de lava solidificada bombardeando a continuación los costados de la colada para dividirla en varias corrientes de menor tamaño.

Durante la erupción del Etna de 1971 se vieron anegados por la lava casas, viñedos y carreteras. Nada pudo hacerse para prevenirlo, pues la desviación de las corrientes de lava es ilegal en Sicilia. Las coladas de lava y los espesos mantos de escoria inutilizan la tierra para su explotación agrícola durante muchos años; el ritmo de recuperación es más rápido en las regiones tropicales húmedas, pero muy lento en climas severos.

Tanto la avalancha de lodos como la colada de lava, se originaron por una erupción surgida de una fisura (aún humeante) que apareció en la parte superior del flanco del Villarica. Las erupciones más destructivas son las grandes erupciones explosivas con desprendimientos de piroclastos, que dan lugar a coladas de cenizas y a avalanchas de lodos. La mortalidad de estas erupciones depende de la densidad de población de la zona; la que produjo mayor número de víctimas mortales tuvo lugar en Indonesia.

Durante la erupción del Tambora en 1815 murieron 12.000 personas, pero otras 70.000 fueron víctimas de las enfermedades y el hambre que siguieron a esta gigantesca erupción. Para minimizar el riesgo de las avalanchas de lodo en Kelu, Java, se construyeron una serie de túneles que drenaron el lago surgido en el cráter del volcán.

Las eras geologicas del planeta Tierra Primeros seres vivos organicos

ORIGEN DE LA TIERRA – LAS ERAS GEOLÓGICAS – SU EVOLUCIÓN

Ver un Amplio Cuadro Sintesis Con Las Características de cada Etapa

LAS ERAS GEOLÓGICAS:

La edad de la tierra se calcula en más de cuatro mil quinientos millones de años. Las ciencias geológicas que estudian cómo fue evolucionando nuestro planeta durante este larguísimo período de tiempo, tasan sus investigaciones en las rocas y en los fósiles contenidos en algunas rocas.

Por el estudio de las rocas se ha podido conocer:
1) la enorme antigüedad de la tierra;
2) las temperaturas existentes en las distintas épocas;
5) los movimientos registrados en la corteza terrestre, los cuales han dado origen a la formación de montañas y depresiones; y
4) las variaciones en la distribución de las tierras y las aguas sobre la superficie de nuestro planeta, ocurridas en períodos de tiempo muy largos.

La antigüedad de la tierra ha sido posible calcularla estudiando la constitución de las rocas radioactivos. Los átomos de uranio se transforman en átomos de plomo con un ritmo constante, de tal manera que, comparando la cantidad de plomo contenido en un mineral de uranio, se puede calcular cuándo se formó la roca que lo contiene. De este modo se cree que las rocas más antiguas de la tierra, conocidas hasta hoy, se formaron hace más de cuatro mil millones de años, lo cual indica que la tierra es mucho más antigua.

Mediante el estudio de los fósiles contenidos en las rocas sedimentarias se han conocido:
1) las diferentes especies animales y vegetales que vivieron en las distintas épocas; y
2) las variaciones ocurridas en el clima de las diferentes regiones.

Un fósil es cualquier resto o impresión de origen animal o vegetal, preservado bajo la corteza terrestre al formarse las rocas sedimentarias.

En las rocas sedimentarias abundan los fósiles. Como en cada época vivieron ciertas especies animales y vegetales típicas, que no existieron en otras, los geólogos pueden determinar en qué época se formó la roca, observando los fósiles típicos que presente.

La evolución de la tierra en el tiempo ha sido reconstruida por la geología histórica, al ser estudiadas las capas formadas por las rocas sedimentarias. Estas rocas, depositadas en los fondos de los mares y lagos durante millones y millones de años, están situadas unas sobre otras, formando estratos, y Kan sido comparadas en su conjunto con un enorme libro.

Las rocas formadas en cada época serían como las páginas del libro. Las rocas más antiguas se encuentran en las capas más profundas y las más recientes muy cerca de la superficie. Sólo cuando las rocas han sido muy perturbadas por fenómenos posteriores, su orden puede aparecer cambiado.

La historia de la tierra consta de cuatro grandes etapas denominadas eras, las cuales tuvieron distinta duración. Las eras geológicas reciben los nombres de Protozoica, Paleozoica, Mesozoica y Cenozoica.

Era Protozoica: Esta era se divide en dos etapas: Arcaico y Precábrico.

Arcaico: Los primeros millares de millones de años de la tierra. La tierra debió ser, en sus comienzos, una esfera de gases incandescentes, semejantes a los que forman el sol, del cual se desprendió al igual que los demás planetas, según las hipótesis más aceptadas.

Debido a su tamaño relativamente pequeño, la tierra comenzó a enfriarse pronto. Los gases primitivos se convirtieron en líquidos, etapa durante la cual la luna debió desprenderse de la tierra. Más tarde, las materias líquidas comenzaron a enfriarse en la superficie y a solidificarse, formando las primeras rocas. Los vapores que se escapaban de esas rocas se convertían en nubes muy densas, formando una atmósfera semejante a la que se supone cubre el planeta Venus actualmente. A partir de entonces, y durante millares de millones de años, no hubo vida sobre la tierra; de ahí el nombre de Azoica (sin vida) que se da a esta primera era.

Aparición de los océanos y de las primeras manifestaciones de vida. Las rocas que formaban la superficie de la tierra continuaron enfriándose, hasta que el vapor de agua que contenía la atmósfera comenzó a precipitarse en forma de lluvia.

El agua procedente de estas lluvias iniciales, escurriéndose desde las zonas altas a las bajas, fue a depositarse en las depresiones de la corteza, para formar ormar los océanos primitivos. De las profundidades del planeta brotaban rocas fundidas (magma), originando grandes volcanes; y la corteza terrestre se arrugaba, formando estos plegamientos altísimas montañas.

Precámbrico: En esta era debieron aparecer las primeras manifestaciones de vida en forma de seres de una sola célula, semejantes a las bacterias actuales, los cuales no podían dejar huellas fósiles.

Los fósiles más antiguos conocidos son de fines de esta era, y corresponden a impresiones de algas marinas muy rudimentarias.

El enfriamiento de nuestro planeta continuó. Aunque las grandes explosiones volcánicas disminuyeron, inmensas cantidades de rocas fundidas traían de las profundidades del planeta minerales de hierro, plata, cobre, oro y otros metales que hoy conocemos. Estas rocas, que antes de consolidarse pasaron por el estado de fusión, son denominadas rocas ígneas, o sea, rocas formadas por el fuego.

Las lluvias, cada vez más intensas, al caer sobre las partes elevadas de la corteza, arrastraban los materiales sueltos y los iban depositando en los fondos de los mares, dando origen a las rocas sedimentarias.

Esta era, denominada Proterozoica, o de la vida elemental, debió durar, al igual que la anterior, unos 650 millones de años. En ella aparecieron organismos más complejos, como las esponjas y corales y las primeras plantas con raíces.

Era Paleozoica: La era de los peces y de los grandes helechos. Durante un largo período no se produjeron en la tierra grandes conmociones. Los océanos cubrían extensas zonas de la superficie terrestre y la erosión iba reduciendo intensamente el relieve de las áreas emergidas.

En los mares de esa era vivían cantidades enormes de animales provistos de conchas o caparazones, cuyos restos, al depositarse en el fondo de los océanos, formaron profundas capas de rocas calizas. En las costas se depositó gran cantidad de arena. Más tarde, según indican los fósiles, aparecieron los peces en los océanos y plantas mayores en las tierras. Los insectos se multiplicaron.

En los finales de esta era se formó la mayor parte de la hulla o carbón mineral de que disponemos hoy. En este período, llamado carbonífero, cuyo clima era caliente, hubo extensos bosques de helechos arborescentes, que medían hasta 30 metros de altura. Los restos de estos helechos fosilizados en las zonas cenagosas, después de quedar cubiertos por arcillas y arenas, formaron la hulla, que actualmente es extraída de sus yacimientos por los mineros.

Durante esta era aparecieron los primeros animales vertebrados, que podían vivir lo mismo en tierra que en el mar: los anfibios.
La temperatura, que se mantuvo relativamente cálida, favoreció la multiplicación de las especies tanto vegetales como animales. Después, el clima se enfrió considerablemente, y muchas de estas especies se extinguieron.

La era Paleozoica (de la vida antigua), duró más de 360 millones de años.

Era Mesozoica: La era de los reptiles gigantescos. Durante millones de años los animales más notables que vivieron sobre la tierra fueron unos reptiles gigantescos, de figuras grotescas, que habitaban en tierra firme y en los lagos. Algunos poseían alas y podían volar. Entre estos reptiles figuraron los animales mayores que han vivido sobre los continentes. Muchos de sus esqueletos han sido descubiertos. Algunos de los reptiles más pequeños evolucionaron en esta época, hasta convertirse en los antecesores de las aves actuales.

Sobre la tierra firme aparecieron unos pequeños seres de sangre caliente y cubiertos de pelos, que alimentaban con leche a sus pequeñuelos. Eran los mamíferos, a los que pertenecería el hombre millones de siglos después.

En los últimos tiempos de esta era hubo gran actividad volcánica, y se produjeron grandes plegamientos y fallas en la superficie terrestre. Entonces se formaron las mayores montañas que hay sobre la tierra: los Himalayas de Asia, los Andes de la América del Sur y las Rocosas de la América del Norte.

La era Mesozoica (de la vida media), duró unos 120 millones de años.

La tierra adopta sus caracteres actuales. (Era Cenozoica.) En esta era, que es la más reciente de la historia de la tierra, se han producido distintos períodos en los cuales la temperatura descendió tanto, que grandes masas de hielo (glaciares) avanzaron desde los polos. En el hemisferio norte estas glaciaciones cubrieron gran parte de la América del Norte, Europa y Asia.

Los mamíferos se multiplicaron durante estas épocas frías, siendo notable, entre ellos, el mamut, antepasado de los elefantes actuales.

En esta era los continentes y los océanos adquirieron su forma actual y aparecieron casi todos nuestros animales domésticos: caballo, perro, gato, cerdo y muchos más.

La era Cenozoica (de la vida reciente), abarca los últimos 60 millones de años de la historia de la tierra. Hará cerca de dos millones de años surgieron sobre la tierra los primeros seres parecidos al hombre. Mucho más tarde, hará unos 50.000 años, encontramos ya los primeros hombres, que conocían e! uso del fuego y de la piedra.

Algunos autores estiman que, a partir del cese de las glaciaciones hará unos 30.000 años cuando los hombres comenzaron su lenta marcha la civilización , dando comienzo a la era actual.

Cuadro de Animales y Plantas

CRONOLOGÍA DE LA TIERRA

Era Período Época Millones de Años Principales Acontecimientos
Protezoica  Arcaico
Precámbrico
  4500-3500
3500-590
Origen del Sistema Solar. Origen de las primeras células vivas. Dominio de las bacterias. Aparición de las células eucariotas. Primeros seres pluricelulares.
Paleozoica Cámbrico   570-505 Incremento súbito de fósiles de invertebrados. Gran variedad de algas marinas.
  Ordocivico   505-438 Dominio de los invertebrados. Primeros vertebrados.
  Silúrico   438-408 Primeras plantas e invertebrados terrestres.
  Devónico   408-360 Primeros vertebrados terrestres.
  Carbonífero   360-286 Bosques de helechos arbóreos. Desarrollo de los anfibios e insectos. Aparición de los primeros reptiles
  Pérmico   286-248 Origen de las coníferas. Proliferación de los reptiles. Extinción de muchas formas de invertebrados.
Mesozoica Triásico   248-213 Bosques de gimnospermas y de helechos arbóreos. Origen de los dinosaurios y mamíferos.
  Jurásico   213-144 Dominio de los dinosaurios y las coníferas. Primeras aves.
  Cretácico   144-65 Primeras plantas con flores. Extinción de los dinosaurios.
Cenozoica Terciario Paleoceno 65-54 Radiación de los mamíferos primitivos.
    Eoceno 54-37 Dominio de las plantas con flores.
    Oligoceno 37-24 Surgimiento de los grupos modernos de mamíferos e invertebrados.
    Mioceno 24-5 Proliferación de peces óseos.
    Plioceno 5-2 Dominio de mamíferos y aves.
  Cuaternario Pleistoceno 2-0,01 Aparición de los humanos.
    Reciente 0,01 – hoy

cuadro de las eras geológicas

Ver un Amplio Cuadro Con Las Características de cada Etapa

Cuadro Estratigráfico

tabla geologica

Ver Una Tabla Geológica

Fuente Consultada:
La Tierra y Sus Recursos Levi Morrero
Biología II Ecología y Evolución Bocalandro-Frid-Socolovsky

Estructura Interna de la Tierra Corteza Manto y Nucleo Litosfera

Estructura Interna de la Tierra Corteza Manto y Nucleo Litosfera

El estudio de los terremotos ha permitido definir el interior de la Tierra y distinguir tres capas principales, desde la superficie avanzando en profundidad, en función de la velocidad de propagación de las ondas sísmicas.

Dichas capas, apreciables en un corte transversal, son: corteza, manto y núcleo. También la información que nos proporcionan los meteoritos puede ser de gran utilidad para conocer la composición de los materiales del interior de la Tierra.

Los métodos de datación sitúan la edad de algunos meteoritos en unos 4500 millones de años coincidente con la edad de la tierra. Se cree que la composición de muchos meteoritos es idéntica a la de algunas capas del interior terrestre. (foto arriba: cráter en Arizona por el impacto de un un meteorito, tiene aproximadamente 1,5 Km. de diámetro, y se cree que su masa era de 300.000 ton. y viajaba a una velocidad de 60.000 Km/h.)

La corteza

Con el nombre de corteza se designa la zona de la Tierra sólida situada en posición más superficial, en contacto directo con la atmósfera, la hidrosfera y la biosfera. La corteza terrestre presenta dos variedades: corteza oceánica y corteza continental.

La corteza oceánica

La corteza oceánica tiene un grosor aproximado de 10 km; no obstante, esta cifra decrece notablemente en determinados puntos del planeta, como en el rift valley, en el área central de las dorsales oceánicas, donde alcanza un valor prácticamente equivalente a O. En dicha zona, el magma procedente del manto aflora directamente.

En la corteza oceánica se pueden distinguir diversas capas. Los sedimentos que forman la primera tienen un espesor situado entre 0 y 4 km; la velocidad media de propagación de las ondas sísmicas alcanza los 2 km/s.

A continuación se localiza una franja de basaltos metamorfizados que presentan entre 1,5 y 2 km de grosor; la velocidad de las ondas es en este punto de 5 km/s. La tercera capa de la corteza oceánica, formada por gabros metamorfizados, mide aproximadamente 5 km; en ella, la velocidad media queda comprendida entre 6,7 y 7 km/s. Cabe mencionar una última parte, donde se registra la máxima velocidad (8 km/s); está constituida por rocas ultra básicas cuyo espesor ronda el medio kilómetro.

La corteza continental

Con un espesor medio de 35 km, la corteza continental incrementa notablemente este valor por debajo de grandes formaciones montañosas, pudiendo alcanzar hasta 60-70 km. Aparece dividida en dos zonas principales: superior e inferior, diferenciadas por la superficie de discontinuidad de Conrad.

En este plano existe un brusco aumento de la velocidad de las ondas sísmicas, que, no obstante, no se registra en todos sus puntos. Consecuentemente, puede afirmarse que no hay una separación nítida entre ambas capas. La corteza superior presenta una densidad medía de 2,7 kg/dm3 y, en el continente europeo, su espesor medio se sitúa en algo más de 810 km. Los materiales que la constituyen son rocas sedimentarias dispuestas sobre rocas volcánicas e intrusivas graníticas. La corteza inferior contiene rocas metamorfizadas cuya composición es intermedia (entre granito y. diorita o gabro); su densidad equivale a 3 kg/dm3.

El manto

En un nivel inmediatamente inferior se sitúa el manto terrestre, que alcanza una profundidad de 1900 km. La discontinuidad de Mohorovicic, además de marcar la separación entre la corteza y el manto terrestres, define una alteración en la composición de las rocas; si en la corteza —especialmente en la franja inferior— eran principalmente basálticas, ahora encontramos rocas mucho más rígidas y densas, las peridotitas. Hay que hacer notar que la discontinuidad de Mohorovicic se encuentra a diferente profundidad, dependiendo de que se sitúe bajo corteza oceánica o continental. El manto se puede subdividir en manto superior e inferior.

El manto superior se prolonga hasta los 650 o los 700 km de profundidad. En este punto, la velocidad de las ondas sísmicas se incrementa, al aumentar la densidad. A su vez, en el manto superior pueden diferenciarse dos regiones; en la superficial, el incremento de velocidad es constante con relación a la profundidad, mientras que en la inferior la velocidad decrece súbitamente. Como resultado de la fusión que experimentan las peridotitas en esta última capa, su rigidez disminuye con relación a la capa superior.

El grosor del manto inferior varía entre 650-700 km —bajo la astenosfera— y 2.900 km —en la discontinuidad de Gutenberg, que marca la separación entre el manto y el núcleo—. En la parte interna de esta capa, tanto la densidad —que pasa de .4 kg/dm3 a 6 kg/dm3, aproximadamente— como la velocidad aumentan de manera constante.

El núcleo

Los principales elementos constitutivos del núcleo terrestre son dos metales: hierro y níquel. A partir del límite marcado por la discontinuidad de Gutenberg, la densidad experimenta un súbito aumento, desde 6 a 10 kg/dm3, aproximadamente. Por otra parte, la velocidad de las ondas sísmicas primarias experimenta un rápido descenso —se pasa de 13 km/s a 8 km/s—, al tiempo que no se registra propagación de ondas secundarias hasta profundidades de 5.080 km. En este último punto, conocido como discontinuidad de Lehmann, la velocidad de las ondas primarias vuelve a incrementarse, situándose en torno a los 14 km/s en el centro del globo terrestre.

Existe un núcleo superior y un núcleo inferior; el primero, con ausencia de ondas secundarias, aparece fundido, mientras que el segundo se encuentra en estado sólido.

La investigación de los fondos oceánicos

La aplicación de grandes avances tecnológicos al estudio de los océanos ha permitido, en las últimas décadas, conocer a fondo aspectos enormemente relevantes de su geología y su morfología. Como resultado, existen en la actualidad mapas precisos de los fondos oceánicos. Elementos característicos de la geografía submarina son los márgenes continentales, las cuencas oceánicas y las dorsales.

Los márgenes continentales

La prolongación de los continentes por debajo del nivel del mar constituye los márgenes continentales, formados por corteza continental. Se distinguen tres zonas principales: la plataforma, el talud y la elevación.

La plataforma continental, una zona que se inclina paulatinamente hasta llegar al talud, puede no presentarse o, por el contrario, alcanzar una extensión de cientos de kilómetros. Aparece recubierta por materiales resultantes de la erosión de la tierra emergida, que han sido transportados por los cursos fluviales.

En torno a —200 m aparece el talud, una pendiente horadada por los denominados cañones submarinos, por los que «viajan» sedimentos procedentes de la plataforma o bien consecuencia de grandes desprendimientos submarinos provocados por los terremotos. La acumulación de sedimentos determina el surgimiento de abanicos, por la forma que adquiere el depósito, que conforman la elevación continental, a veces muy extensa pero generalmente con poca pendiente.

Las cuencas

Las cuencas, cuya profundidad puede superar los 4.000 m, están formadas por corteza oceánica. En ellas pueden individualizarse diversas formas, desde antiguos volcanes, que hoy son montañas submarinas, hasta áreas deprimidas de perfil estrecho y alargado, las denominadas fosas oceánicas, que marcan el punto de contacto entre las placas litosféricas.

Las dorsales oceánicas

Por su parte, las dorsales oceánicas son cadenas montañosas de considerable longitud —de hecho, las más largas del planeta—, que se extienden de forma ininterrumpida por los océanos, a través de unos 80.000 km; su anchura es de 2 .000 km aproximadamente. Están formadas por crestas de origen volcánico, con una altitud media aproximada de 2.000 m sobre el fondo. No obstante, en algunos puntos de la Tierra, por ejemplo en Islandia, pueden llegar a emerger. Las dorsales, centro de actividad sísmica de notable intensidad, aparecen cortadas por numerosas fallas de gran tamaño, denominadas fallas transformantes.

LITOSFERA Y ASTENOSFERA

La franja superior de la superficie terrestre se encuentra dividida en dos partes:

• La litosfera, formada por la corteza y la zona externa del manto superior, es bastante rígida, presenta aproximadamente 100 km de espesor y en ella, la velocidad de las ondas sísmicas aumenta constantemente en función de la profundidad.

• La astenosfera es la franja inferior del manto superior, que se encuentra fundida parcialmente. Se extiende hasta los 400 km, punto en el que el manto recupera sus características de solidez y rigidez, puesto que la velocidad de las ondas sufre una nueva alteración muy brusco.

MODELOS DE LA ESTRUCTURA DE GEOSFERA
Al interior de la tierra también se la conoce con el nombre de geosfera, y si se intenta hacer un estudio directo, solo se puede profundizar un pocos kilómetros, por lo que son necesarios métodos indirectos. Acá se presentan los dos modelos que intentan explicar como es la estructura interior de nuestro planeta.

Está claro que el interior terrestre está formado por varias capas, y en esto coinciden todos los modelos. Pero las investigaciones sobre el interior de la Tierra se han centrado en dos aspectos. en la composición de los materiales que forman las distintas capas del planeta y en el comportamiento mecánico de dichos materiales (su elasticidad, plasticidad, el estado físico…)

Por eso, se distinguen dos tipos de modelos que presentan diferentes capas, aunque coinciden en muchos puntos: el modelo estático y el modelo dinámico.

Capas en el modelo estático

La corteza es la capa externa de la Tierra. Se diferencian dos partes: la corteza continental, con materiales de composición y edad variada (pueden superar los 3.800 millones de años) y la corteza oceánica, más homogénea y formada por rocas relativamente jóvenes desde un punto de vista geológico.

Por debajo de la corteza se encuentra el manto, mucho más uniforme, pero con dos sectores de composición ligeramente distinta: el manto superior, en el que destaca la presencia de olivino, y el superior, con materiales más densos, como los silicatos.

Por último, la capa más interna es el núcleo, que se caracteriza por su elevada densidad debido a la presencia de aleaciones de hierro y níquel en sus materiales. El núcleo interno podría estar formado por hierro puro.

Capas en el modelo dinámico

La capa más externa es la litosfera, que comprende la corteza y parte del manto superior. Es una capa rígida. La litosfera descansa sobre la astenosfera, que equivale a la parte menos profunda del manto. Es una capa plástica, en la que la temperatura y la presión alcanzan valores que permiten que se fundan las rocas en algunos puntos.

A continuación se encuentra la mesosfera, que equivale al resto del manto. En la zona de contacto con el núcleo se encuentra la región denominada zona D”, en la que se cree que podría haber materiales fundidos. La capa más interna es la endosfera, que comprende el núcleo interno y el núcleo externo. Los estudios de propagación de las ondas sísmicas han puesto de manifiesto que la parte externa de la endosfera (el núcleo externo) está compuesta por materiales fundidos, ya que en esa zona se interrumpe la transmisión de algunas de las ondas.

Mohorovicic y la estructura de la Tierra: El 8 de octubre de 1909, se produjo un intenso terremoto a 40 km al sur de Zagreb, en Croacia (que entonces formaba parte del Imperio Austrohúngaro). Otro terremoto ocurrido previamente en Zagreb había determinado la instalación de un sismógrafo en el observatorio meteorológico de la ciudad, dirigido por Andrija Mohorovicic. En su calidad de director del observatorio, Mohorovicic recibió de todas las estaciones de Europa los registros del terremoto de 1909. Después de analizarlos detalladamente, realizó un interesante descubrimiento. Como esperaba, los registros reflejaban dos tipos de ondas: de compresión (P), en las que las partículas oscilan a lo largo de la línea de propagación, y de distorsión (S), en las que el movimiento se produce en ángulo recto con respecto a la línea de propagación.

Luego advirtió que había en realidad dos tipos de ondas P. A escasa distancia del epicentro, la primera onda en llegar se desplaza a una velocidad de 5,5 a 6,5 km por segundo. A una distancia de unos 170 km, esta onda es superada por una segunda onda, que se desplaza a 8,1 km/s. Más allá de este punto, hasta los 800 km, es posible detectar las dos ondas, pero luego las más lentas se desvanecen. Mohorovicic interpretó este fenómeno como la prueba de que las ondas más lentas se desplazan directamente hacia el sismógrafo, mientras que las más veloces son refractadas a una profundidad de unos 50 km. En su honor, la capa refractora recibió el nombre de discontinuidad de Mohorovicic, o Moho. Investigaciones posteriores demostraron que la profundidad del Moho (el límite entre la corteza terrestre y el manto superior) varía entre 30 y 50 km.

PARA SABER MAS…
LAS EDADES RELATIVAS Y ABSOLUTAS DE LA TIERRA: ERAS Y PERÍODOS

Cuando se dice que el hombre pisó la Luna durante la era atómica se está dando una fecha imprecisa, relativa, ya que podría ser ubicada en cualquier punto del transcurso temporal de dicha era; en cambio, al decir que el hombre pisó por vez primera la Luna el 20 de junio de 1969, se está ante una fecha absoluta. Así como sucede con los acontecimientos históricos, los fósiles y los terrenos pueden fecharse en su edad absoluta y en su edad relativa.

Pero las técnicas para desentrañar la edad absoluta constituyen un logro reciente. Antes del descubrimiento del método del carbono 14, el método del plomo, del helio, del estroncio, etc., los científicos sólo podían valerse de una cronología relativa fundada en difíciles estudios de la superposición de las rocas sedimentarias, del contacto con las precedentes si eran rocas eruptivas, del grado de evolución de los fósiles, etcétera.

A partir de este estudio y teniendo en cuenta grandes cambios, como la formación de una cadena montañosa, la desaparición de un grupo de fósiles, etc., la historia de la Tierra se divide en cuatro grandes eras: precámbrica, paleozoica, mesozoica y cenozoica, que se divide en los períodos terciario, cuaternario y reciente. Los períodos son las divisiones internas de cada era. Así, por ejemplo, la era primaria se divide en los períodos cámbrico, silúrico, devónico, carbonífero y pérmico. A su vez los períodos se dividen en pisos.

Con mayor precisión deberíamos emplear la palabra “era” para designar la duración de una serie, período para señalar la duración de un sistema y edad para la duración de un piso.  Los modernos métodos de la determinación de las edades absolutas se basan en la siguiente comprobación científica. Se sabe que la desintegración del uranio 238 (elemento inestable que se modifica por el escape constante de protones y neutrones) da como resultado el radio, que a su vez origina el plomo 206 (elemento estable, pero distinto del plomo de origen no radiactivo, o sea el plomo 204), más un escape de helio 4 durante el proceso:

Uranio 238 = plomo 206 más 8 helio 4. El uranio 235 se transforma en el plomo 207 y el torio deviene plomo 208. La desintegración de estos elementos radiactivos es un fenómeno perfectamente conocido. Como se sabe, un gramo de uranio 238 produce anualmente 0,014 x 10-8 g de plomo 206 y 1,2 x 10-4 mg3 de helio (10-8 equivale a 1/108 y 108 corresponde a 1 seguido de 8 ceros, es decir 100 millones).

De esta fórmula se puede deducir la antigüedad de una roca según sea su proporción de uranio 238 y plomo 206. Pero es necesario además realizar el correspondiente análisis espectográfico para determinar si el elemento originario era el uranio 238 (que da plomo 206), el uranio 235 (que da plomo 207), el torio 232 (que da plomo 208) o todos estos elementos combinados. Éste es el llamado método del plomo.

Otro método tiene en cuenta las proporciones de uranio y helio, pero tropieza con la dificultad de no poder precisar qué cantidad de helio perdió la roca durante su formación. Éste es el método del helio.

El método del estroncio utiliza la transformación de rubidio en estroncio. El método del carbono 14 (fue descubierto en 1947 por el químico estadounidense Williard Libby) se aplica para determinar la antigüedad de los restos de seres vivos. Parte de la siguiente apreciación: todos los organismos vivos absorben, durante su vida, carbono 12 (estable) y carbono 14 (radiactivo). Pero la proporción de carbono 14 y la de carbono 12 (constante en la naturaleza) es la siguiente: un billón de átomos de C 12 por un átomo de C 14.

Cuando el ser muere, el carbono 14 del cuerpo comienza a disminuir en cantidad por un proceso de desintegración, ya que no es renovado. La mitad de este carbono desaparece durante el transcurso de 5.600 años, las tres cuartas partes, a los 11.200 años, los siete octavos a los 16.800 años, etc. En la práctica, por ejemplo, se reduce a carbón una muestra de hueso, madera, etc., y se lo introduce en un contador Geiger, determinándose de este modo su edad.

Este método es aplicado desde 1948, pero tropieza con una seria limitación: sólo puede remontarse a 15.000 o a 16.000 años atrás. Desde que en 1939 el físico estadounidense Alfred Otto Nier efectuó una medición completa y precisa de los isótopos del plomo, en los minerales de uranio y plomo se pudieron construir geocronómetros bastante sensibles que fueron sucesivamente perfeccionados por la electrónica.

Estos geocronómetros, mediante los métodos “potasio-argón”, “rubidio-estroncio” y “uranio-plomo”, pueden determinar la edad de las rocas, fechando incluso Ja data de aquellas de más de 10.000.000 de años. Como todos estos métodos de medición del tiempo se refieren a la edad de las capas de rocas sedimentarias, las etapas previas por las cuales pasó nuestro planeta antes de la formación de las capas sedimentarias pertenecen, casi por completo, al campo de la hipótesis.

El Origen del Planeta Tierra

Composición Mineral de la Corteza Terrestre

Nombre de las Placas Tectonicas Ubicacion y Teoria Resumen

La deriva continental: Desde la prehistoria, la búsqueda de minerales metálicos proporcionó a los mineros un amplio conocimiento empírico de la estructura de la corteza terrestre: la forma en que diferentes rocas se disponen en estratos una encima de otra, la posibilidad de que las vetas minerales se abran paso a través de los estratos, y así sucesivamente.

Pero el fundador de la geología como ciencia fue James Hutton, (imagen) que trabajó en Escocia durante la segunda mitad del siglo XVIII. Sus ideas fueron desarrolladas en el siglo XIX por otros precursores, como los geólogos británicos Charles Lyell y Archibald Geikie.

Sus investigaciones entraron en conflicto con las creencias más establecidas sobre la edad de la Tierra y las fuerzas que la habían modelado. Según la opinión predominante, la historia geológica sólo podía interpretarse como una sucesión de catástrofes, entre ellas, el diluvio universal en tiempos de Noé.

Durante los años 60, las ideas científicas sobre la corteza terrestre cambiaron espectacularmente al confirmarse ciertos vagos conceptos que se habían desarrollado durante los tres últimos siglos.

Desde que en 1620 el filósofo inglés Francis Bacon advirtiera que África y América del Sur parecen dos piezas de un enorme rompecabezas, muchos trabajaron sobre esta idea. El más influyente fue el meteorólogo alemán Alfred Wegener, quien en 1915 propuso la teoría de la «deriva continental», según la cual todos los continentes estuvieron unidos en algún momento del pasado. La idea encontró dos partidarios, durante los años 20 y 30, en el geólogo británico Arthur Holmes y el geólogo sudafricano Alexander du Toit.

La aceptación comenzó en 1960, cuando el geofísico norteamericano Harry Hess comprobó que ciertos descubrimientos hechos por oceanógrafos durante la década anterior se ajustaban perfectamente a la idea de la deriva continental.

Entre estos hallazgos figuraba el hecho de que la cordillera que discurre por el centro del océano Atlántico forma parte de un sistema montañoso que puede observarse en todos los océanos, así como el hallazgo de que la corteza terrestre debajo de los océanos es notablemente delgada.

Hess sugirió que las cordilleras oceánicas estaban situadas sobre corrientes de convección ascendentes en el manto y que el material que afloraba, empujado por estas corrientes, se solidificaba en la superficie para formar nueva corteza; esta nueva corteza, a su vez, se desplazaba lateralmente con respecto a la línea de actividad. Estas ideas indicaban que la corteza en las proximidades de las cordilleras era muy reciente y que sería más antigua cuanto más lejos se encontrara del sistema montañoso. Hess denominó a este concepto «expansión del lecho oceánico».

En 1963, los geólogos británicos Fred J. Vine y Drummond H. Matthews descubrieron que la corteza oceánica a ambos lados de la cordillera atlántica estaba magnetizada en bandas paralelas, presentando cada banda una polaridad opuesta a la de sus vecinas. En 1966, se sabía ya que la polaridad del campo magnético de la Tierra se ha invertido varias veces en el pasado reciente, por lo que se dedujo que cada parte nueva de la corteza, en el momento de su formación, asumía la polaridad magnética reinante en su época.

En 1967, el geofísico norteamericano Hugo Benioff observó que los hipocentros de los terremotos en una región sísmica están localizados sobre un plano inclinado que desciende por el borde del continente. El sismólogo japonés Kiyoo Wadati realizó la misma observación, pero el fenómeno recibe solamente el nombre de Benioff.

La «zona de Benioff» representa una zona antigua de la corteza en proceso de sumergirse en el manto terrestre y ser destruida. En esos puntos, el material fundido de la corteza se abre paso hacia la superficie y forma volcanes.

Todos estos fenómenos se combinaron en un único concepto a fines de los años 60. La superficie de la Tierra consiste en varias placas, cada una de las cuales se crea continuamente a lo largo de una cordillera oceánica y se destruye continuamente en una zona de Benioff. El término «placa» fue acuñado por el geólogo norteamericano W. Jason Morgan y, en la actualidad, el concepto en su totalidad recibe el nombre de «tectónica de placas».

mapa tectonicas de placas

Sucesora de la teoría de la deriva continental, la teoría de la tectónica de placas, enunciada a principios de la década del ’70 por varios científicos, postula la existencia de placas litosféricas que se desplazan en forma más o menos independiente unas de otras sobre la blanda astenosfera. También explica la distribución global de los volcanes y de los terremotos.

La litosfera no es una capa continua y uniforme, sino que está dividida en grandes fragmentos o placas litosféricas. Estos fragmentos tienen cierta independencia unos de otros y se desplazan flotando sobre la astenosfera, en forma similar a como lo hacen los grandes bloques de hielo que flotan sobre el agua. Cada una de las placas está totalmente rodeada de otras, y sus formas y tamaños son variados e irregulares.

Existen ocho grandes placas litosféricas: la Pacífica, la Europa-africana, la Antártica, la Asiática, la Norteamericana, la Sudamericana, la Indoaustraliana y la de Nazca, y algunas placas menores, como la del Caribe, la Filipina, la de Cocos y la Arábiga.

1 Placa norteamericana 2 Placa pacífica 3 Placa de Nazca 4 Placa sudamericana
5 Placa africana 6 Placa arábiga 7 Placa eurasiática 8 Placa antártica
9 Placa indoaustraliana ____ Convergente ______ Divergente  
bordes tectonicos divergente

Bordes convergentes o destructivos. Dos placas con bordes comunes se acercan y colisionan. Una de las placas desciende y se Introduce debajo de la otra (subducción). Se produce este fenómeno cuando el borde de una placa oceánica, que es densa y delgada, choca contra una placa continental, menos densa y más gruesa: la primera se introduce por debajo de la segunda, se ablanda y se funde en el manto. Durante este proceso, se destruye litosfera oceánica. Esto ocurre, por ejemplo, con la placa de Nazca que choca y se introduce debajo de la placa Sudamericana.

bordes tectonicos divergente

Bordes divergentes o constructivos. Dos placas con bordes comunes se alejan o divergen y se forma entre ambas una brecha, a través de la cual asciende el material del magma. Éste se solidifica y se adhiere a los bordes de las placas oceánicas, proceso denominadoacreción, con lo cual se forma nueva litosfera oceánica. Esto ocurre, por ejemplo, con los bordes divergentes de la placa Sudamericana y la Africana.

bordes tectonicos frontera transformacion

Bordes transformantes. Los bordes comunes de dos placas se desplazan uno al lado del otro, lateralmente. En este caso, las placas no chocan ni se alejan: no se crea ni se destruye litosfera; sin embargo, este desplazamiento genera enormes fricciones que liberan energía en forma de terremotos. Uno de los ejemplos más conocidos de bordes transformantes es la falla de San Andrés, en California, producida por el desplazamiento lateral de la placa Pacífica y la Norteamericana.

 LOS BORDES DE PLACAS: BORDES DE LAS PLACAS
En las zonas en que están en contacto dos placas, es decir en sus bordes,,tienen lugar los principales fenómenos geológicos que modelan la superficie del globo. Según sean los movimientos relativos de dos placas en contacto, tenemos tres tipos de bordes.

Los bordes divergentes o constructivos corresponden a las dorsales oceánicas medias. En ellas se da un abundante vulcanísmo, que genera kilómetros cúbicos de basaltos, de composición muy uniforme. Y esta acumulación de basaltos, que presentan el aspecto de lavas almohadilladas por haberse vertido en el mar, forma la nueva corteza oceánica y hace que las dos placas adyacentes se muevan en sentidos opuestos. Al vulcanismo se le suma una actividad sísmica poco profunda.

Los bordes convergentes o destructivos corresponden a las zonas de subducción. Cuando dos placas que se desplazan en sentidos opuestos entran en contacto, una de las dos se hunde bajo la otra y va a destruirse en el manto.

La convergencia va acompañada de violentos fenómenos. Al hundirse, la placa inferior provoca rozamientos que se traducen en movimientos sísmicos. Provoca, también, la producción de magma, que alimenta volcanes de carácter frecuentemente explosivo.

Comprime y deforma fuertemente la placa superior, originando en ella un levantamiento que se convierte en cordillera. Si ambas placas son oceánicas, como en el Pacífico occidental, el levantamiento es un arco insular, erizado de múltiples volcanes, que emerge progresivamente.

Si una placa oceánica entra en contacto con otra continental, la placa oceánica se hunde por debajo de ésta y origina la formación de una imponente cordillera en el borde de la placa continental: es, por ejemplo, el caso de los Andes. Pero la prosecución del movimiento puede hacer que entren en contacto dos continentes y que, al colisionar ambas masas, el movimiento quede bloqueado: así ocurrió en el Himalaya.

Añadamos, por último, que en algunas zonas las placas en contacto se deslizan lateralmente una con respecto a otra. Son los bordes conservadores, así llamados porque en ellos no se da destrucción ni construcción. Dichos bordes quedan materializados por grandes fallas verticales, o fallas transformantes, a lo largo de las cuales se producen intensas fricciones que provocan violentos seísmos. La falla de San Andrés es un buen ejemplo.

Las Erupciones Volcanicas Mas Fuertes de la Historia Mas Famosas y Grandes

Grandes Erupciones Volcánicas

La lava cae y se desplaza llevando consigo todo lo que encuentra a su paso. Esto sucede en forma pausada e ininterrumpida, arrasando ciudades enteras, poblaciones, bosques y miles de vidas humanas. Uno de los ejemplos más famosos fue la erupción del monte Vesubio en el año 79 a: C.; que eliminó del planeta a dos ciudades y dos culturas, las de Pompeya y Herculano. Ya en el siglo XX, la erupción del monte Pelee destruyó en pocos minutos la ciudad de Saint Pierré en Martinica y mató al instante a casi toda su población. Detalles de algunas de las erupciones más relevantes

Erupciones Volcánicas

Erupciones Volcánicas

Vesubio año 79 d. C.
El año 79 d. C., el volcán Vesubio entró en erupción violenta y repentinamente, arrasando con nubes de cenizas calientes el romano centro comercial de Pompeya y enterrando bajo lodos volcánicos la pequeña ciudad residencial de Herculano, Hasta esta erupción los romanos habían considerado al Vesubio como un volcán extinguido: .no se tenía constancia de erupciones, y su cono, que había sufrido una fuerte erosión, estaba densamente poblado de vegetación, que incluía extensos viñedos en la parte inferior de sus laderas. El año 63 tuvo lugar un violento terremoto local, que produjo diversos daños en las ciudades que rodeaban al Vesubio. Los terremotos continuaron sucediéndose durante varios años; hoy esos fenómenos serían interpretados como indudables avisos de una próxima actividad volcánica.

La población local de aquella época no cayó en la cuenta de esta relación, quizá porque consideraban como absolutamente cierto que el volcán estaba extinguido. De esta forma la gran nube que surgió de la montaña alrededor del medio día del 24 de agosto constituyó para ellos un «shock» que los dejó estupefactos. La erupción es descrita con gráficos detalles por Punió el Joven en su carta a Tácito, que es probablemente el primer informe de una erupción volcánica realizado por un testigo ocular. Los detalles de este relato se han visto confirmados por el análisis de las rocas producto de la erupción, y de acuerdo con ellos parece que durante esta erupción tuvieron lugar muchos fenómenos que han podido ser observados en erupciones posteriores.

Se ha dicho con frecuencia que Pompeya quedó sepultada por depósitos de cenizas aéreas, mientras Herculano lo fue por una avalancha de lodo. Sin embargo, investigaciones recientes sugieren que los depósitos de coladas de lodo en Herculano pudieran ser de ignimbrita, y es probable que otras ciudades cercanas al Vesubio fueran también destruidas por nubes ardientes. Algunos pasajes de las cartas de Punió son asombrosamente similares a descripciones de nubes ardientes hechas por testigos modernos. Las extensas excavaciones llevadas a cabo en Pompeya  nos dan una clara idea de la belleza y prosperidad de esta zona antes de la erupción.

Las excavaciones en Herculano  se ven muy retrasadas por el hecho de haberse construido la ciudad de Resina exactamente encima de los restos de la ciudad romana. Una parte del borde exterior de una gigantesca caldera sobrevive en la parte norte del Vesubio recibiendo el nombre de Monte Somma; su formación se atribuye comúnmente a esta erupción del año 79. En el lado sur un nuevo cono volcánico, conocido como Gran Copo, se ha formado en épocas posteriores a la formación de la caldera.

¿La Atlántida?
Una enorme erupción, que tuvo lugar alrededor del año 1470 a. C. en la Isla de Thera, destruyó completamente una civilización, dando origen posiblemente a la leyenda de la Atlántida. La isla se colapso a causa de la erupción, formándose una inmensa caldera de 80 kilómetros cuadrados, inundada por el agua del mar y rodeada de escarpadas paredes de cenizas volcánicas.

El cataclismo arruinó la próspera civilización minoica, centrada durante la tardía Edad del Bronce en la isla de Creta, isla que fue devastada en su mayor parte por enormes olas y enterrada bajo espesas capas de cenizas. Las leyendas griegas aluden a esta tragedia, pero tanto la erupción como la civilización minoica cayeron en el olvido, hasta que investigaciones arqueológicas llevadas a cabo en este siglo las sacaron a la luz.

Un viajero griego, Solón, visitó Egipto probablemente el año 590 a. C., y allí oyó hablar a los historiadores egipcios de un desastre que en los tiempos antiguos destruyó el pueblo de Keftiu, situado «lejos hacia el Oeste», acabando con el comercio que existía entre ambos pueblos. Así nació la idea de unas islas perdidas en el mar, que Platón convirtió, alrededor del año 380 a. C., en la épica saga de la Atlántida.

Krakatoa en 1883
El Krakatoa es un volcán del mismo tipo que el de Thera. Ambos tenían una larga historia de pequeñas erupciones que fueron progresivamente formando grandes conos volcánicos, compuestos de basaltos y andesitas, seguidas por gigantescas erupciones que constituyeron auténticos cataclismos y provocaron el colapso del edificio volcánico, para a continuación volverse a formar lentamente un nuevo cono volcánico.

La última gran erupción del Krakatoa es lo suficientemente reciente como para estar bien documentada. Los efectos de la erupción se extendieron por todo el mundo. La explosión final, el domingo 27 de agosto de 1883, se oyó a 4,700 km. de distancia.

La onda expansiva y las olas marinas producidas por dicha explosión dieron la vuelta al globo; originales puestas de Sol, producidas por la presencia de finas arenas en la atmósfera, se pudieron observar incluso en Londres, y grandes islas flotantes de pumita fueron arrastradas por las corrientes de los océanos durante meses. La mayor parte de las 36.000 víctimas fueron debidas, sin embargo, a los tsunamis provocados por la explosión. Estos tsunamis, olas de hasta 35 metros de altura, arrasaron las costas de Java y Sumatra.

Valle de las Mil Chimeneas en 1912
El Valle de las Mil Chimeneas surgió en Alaska, en las cercanías del volcán Katmai, durante una erupción de este último. Tres grandes explosiones, que se pudieron oír a 950 km. de distancia, señalaron el comienzo de una erupción de coladas de cenizas calientes, que cubrieron el valle, alcanzando en algunos puntos espesores de más de 200 m. Las coladas de cenizas mantuvieron su calor durante muchos años; el agua subterránea, que se había filtrado hasta alcanzar esas zonas, se calentó lo suficiente como para escapar a la superficie en forma de innumerables fumarolas, las «Diez Mil Chimeneas».

Las cenizas aéreas afectaron a un área mucho mayor: el más próximo asentamiento humano de tamaño apreciable, Kodiak, a 160 km. del volcán, permaneció envuelto en una sofocante oscuridad durante dos días. El magma de esta erupción se acumuló inicialmente en una cámara magmática bajo el mismo volcán Katmai, pero no fue expulsado a la superficie por su cráter sino que a través de fisuras alcanzó un salidero alejado 10 km. de la cima del volcán originando un nuevo volcán, Novarupta. Al vaciarse la cámara magmática se produjo la fragmentación y el hundimiento de la cima del Katmai, formándose una caldera de 6 km. de diámetro y 800 m. de profundidad.

Nacimiento del Paricutín en 1943
Durante muchos años una pequeña fosa existente en un valle de una zona agrícola de México intrigó a los habitantes del valle, por su persistencia en reaparecer al poco tiempo de haber sido rellenada con tierra. El día 20 de febrero de 1943, un poco después de las cuatro de la tarde, se abrió a través de dicha fosa una grieta, por la que escapaba una pequeña columna de cenizas grises.

A las 24 horas, la lava estaba fluyendo de la base de un cono de escorias basálticas de 50 metros de alto, que se había formado durante este tiempo sobre la fisura. En unos pocos meses el nuevo volcán forzó a sus habitantes a desalojar Paricutín, localidad situada a 3 km. del volcán, y en junio de 1944 la capital del distrito, la ciudad de Para ngaricutiro, había sido completamente destruida por la lava. En septiembre de ese mismo año, la lava cubría ya una superficie de 25 km2, y las nuevas coladas se iban apilando sobre las antiguas.

Al cabo de dos años el volcán Paricutín alcanzó su máxima altura, 500 metros, y el ritmo de la erupción comenzó a declinar, hasta que, exactamente en su noveno aniversario, la erupción cesó bruscamente. El Paricutín ha sido el primer volcán que ha podido ser observado científicamente desde su nacimiento.

Destrucción de St. Fierre, Martinica, en 1902
La ciudad de St. Fierre y sus 30.000 habitantes fueron prácticamente borrados del mapa en unos pocos segundos, a las 7,50 de la mañana del día 8 de mayo de 1902, por una «nube ardiente» surgida del cercano volcán de Monte Peleé. El volcán había estado emitiendo cenizas y gases desde el 23 de abril, hasta el punto que los animales se desplomaban moribundos en las calles, a causa de los gases venenosos provenientes del volcán.

A pesar de esto no se había dado orden de evacuar la ciudad, pues era inminente la celebración de unas importantes elecciones en las que sólo se podía votar en su propio distrito. La actividad explosiva se incrementó en el cráter durante los días 5, 6 y 7 de mayo, dando lugar a coladas de lodos, que ocasionaron algunas víctimas
en las cercanías del volcán. La nube ardiente del 8 de mayo surgió repentinamente de una hendidura en la pared del cráter desplazándose ladera abajo a lo largo del valle de la Riviére Blanche; pasado St. Fierre giró bruscamente a la derecha internándose en el mar y dejando el valle de la Riviére Blanche cubierto de espesos y sofocantes depósitos de ignimbrita.

El frente de la nube lo constituía una onda de gases calientes y cenizas suspendidas que se expandía rápidamente en dirección a St. Fierre desvastando completamente la ciudad. La temperatura del gas que formaba la ola frontal era lo suficientemente elevada como para fundir el vidrio y determinados metales; dejó tras ella solamente una fina capa de ceniza que cubría el terreno como una ligera capa de nieve. El 14 de mayo, una semana después de la erupción, aún se desprendían volutas de humo de las brasas en que se habían convertido las ruinas de la ciudad. En los meses siguientes el volcán continuó expulsando nubes ardientes, aunque normalmente fueron menos violentas que la primera.

Este ciclo eruptivo, que presenta en primer lugar una fase de actividad gaseosa con desprendimiento de cenizas, seguido por una nube ardiente con gran desprendimiento de gases, y que termina con la formación de un domo y un pitón, es un proceso típico que se repite en muchos volcanes.

COMO ACTUAR FRENTE A LAS ERUPCIONES VOLCÁNICAS:

Entre 50 y 60 volcanes entran en erupción cada año: de 20 a 30 producen a veces flujos letales de lava y la misma cantidad generan explosiones más violentas, que crean nubes de ceniza asfixiantes. También existe la posibilidad de que haya emanaciones de lodo e inundaciones.

Qué hacer. Pronóstico de erupción
1. Manténgase informado. Escuche la radio, mire televisión o use Internet para obtener información actualizada.
2. Preste atención a las advertencias oficiales. Esté preparado para evacuar el lugar. Planifique qué llevará, adonde irá y cuáles son las rutas más seguras para llegar allí. Siga de inmediato todas las órdenes de evacuación emitidas por las autoridades. Si no es necesario evacuar el lugar, igualmente es fundamental contar con suministros de agua, comida y baterías.
3. Prepare un equipo de supervivencia. Debe incluir gafas de seguridad y mascarillas (tapabocas) desechables para cada persona además de los artículos habituales.

Caída de cenizas
1-Protéjase. Si se encuentra afuera cuando empiece a caer la ceniza, póngase ropa para cubrirse lo más posible y, si tiene un paraguas, ábralo para protegerse de las partículas filosas de roca. De ser posible, póngase gafas y una máscara. Si no tiene una máscara, átese una bufanda o un pañuelo humedecido en agua sobre la boca y la nariz. Use anteojos en lugar de lentes de contacto.

2. Busque refugio. Si puede, resguárdese dentro de un edificio o un auto. Si se encuentra de vacaciones cuando empiecen a caer las cenizas, quédese adentro (a menos que haya algún riesgo de que el techo colapse) y mantenga todas las ventanas bien cerradas. Cierre las entradas de aire y chimeneas con cartón y cinta adhesiva.

3. Prevenga los daños estructurales.’ Si está de vacaciones y se está alojando en un departamento o en un lugar con techo con poca inclinación, limpie periódicamente el techo para quitar las cenizas y evitar que colapse por el peso. Cuando las cenizas se mezclan con agua, se vuelven más pesadas y se pueden solidificar como cemento.

4. Evite viajar. No maneje a menos que sea esencial o que le indiquen que debe evacuar el lugar. Si está manejando, hágalo lentamente y evite levantar cenizas ya que podrían afectar el motor. Use los faros y cerciórese de que haya líquido de parabrisas. Use mucha agua para mantener el parabrisas despejado.

Placas Tectonicas de Estados Unidos Modifican El Ancho del Continente

Placas Tectónicas de Estados Unidos, Modifican El Ancho del Continente

El crecimiento de Norteamérica: En los últimos 200 millones de años el continente se ha ensanchado hacia el oeste en choques reiterados con masas terrestres menores. algunas de las cuales parecen haber llegado de miles de kilómetros de distancia.

De acuerdo con la teoría de la tectónica de placar las masas continentales terrestres cabalgan sobo grandes placas de la corteza que mantienen un persistente movimiento.

Por lo que hoy se ve, el crecimiento de los continentes no es lento ni constante. Nuevas pruebas de muestran que ha sido episódico y que el último capítulo importante del crecimiento de Norteamérica empezó hace 200 millones de años escasos.

Prácticamente toda la costa pacífica, desde la Baja California, en el sur, hasta la punta septentrional de Alaska, y extendiéndose por el interior hasta una distancia media de unos 500 kilómetros, se injertó, pieza a pieza, en el continente preexistente por adición de grandes bloques prefabricados de corteza, la mayoría de ellos desplazados millares de kilómetros al este y al norte desde su lugar de origen en la cuenca pacífica. Las dimensiones horizontales de los bloques oscilan entre centenares y millares de kilómetros.

Muchos de los bloques son de origen oceánico: corteza oceánica, islas, mesetas, dorsales o arcos insulares. Otros, pocos, son fragmentos evidentes de continentes. Algunos habían viajado varios miles de kilómetros sin experimentar apenas deformación ir terna. Tras entrar en contacto con Norteamérica, be bloques solieron fragmentarse y disponerse en delgadas bandas paralelas al margen continental.

Durante la colisión, y después de ella, sufrieron rotación en muchos casos. Así pues, el oeste de Norteamérica es una amalgama de bloques de acreción que se ha modelado hasta su configuración actual, en el transcurso de los últimos 200 millones de años por el impacto de placas oceánicas, portando cada bloque una carga de rocas exóticas.

El proceso a lo largo del cual el borde de un continente se modifica por el transporte, la acreción y la rotación de grandes bloques de la corteza, suele hoy llamarse tectónica de microplacas; los bloques pueden denominarse litosferoclastos, pues son fragmentos de litosfera.

En su margen activo, una placa oceánica se sumerge bajo una placa continental y ésta raspa de aquélla sedimentos y fragmentos de corteza basáltica del océano profundo, que se adhieren al margen continental. Simultáneamente, la placa que se sumerge bajo el margen continental se calienta y se funde parcialmente, desencadenando fenómenos de vulcanismo y orogénesis generalizados. Ejemplo clásico de ello son los Andes de la costa occidental de Sudamérica.

Placas Tectónicas Plantearemos aquí cuatro cuestiones fundamentales. ¿Cómo identificar los distintos litosferoclastos que acrecieron hasta constituir la amalgama tectónica del oeste norteamericano? ¿Cómo establecer dónde se originaron loslitosferoclastos y cuánto se han desplazado? ¿Cuáles son las relaciones estructurales entre los litosferoclastosacrecidos? ¿Cómo se agregaron éstos al borde continental en crecimiento?

Dar respuesta a esas preguntas exige una estrecha colaboración entre especialistas de diversas ramas de Las ciencias que estudian atierra. Geólogos, geofísicos y paleontólogos disponen, cada grupo, de métodos propios para identificar pedazos de la corteza terrestre transportados hasta su emplazamiento actual desde lugares muy distantes.

Veamos un ejemplo, real y sencillo: la Baja California y la angosta franja de California situada al oeste de la falla de San Andrés se deslizan hacia el norte a una velocidad de unos 5 centímetros por año con respecto al resto de Norteamérica. De proseguir el avance, dentro de cincuenta millones de años las rocas de California habrán acrecido a lo largo del margen continental de Alaska.

La discontinuidad entre las rocas “nativas” de Alaska y las rocas californianas “forasteras” se pondría de manifiesto por tres vías principales. Primero, habría discontinuidades abruptas en la serie rocosa, en forma de grandes fallas, lo que implicaría historias geológicas muy diferentes para litosferoclastos que entonces serian vecinas. Segundo, habría  continuidades parecidas en los fósiles de plantas y animales; se distinguirían fácilmente, de las formas templado-frías de las rocas nativas de Alaska, las formas tropicales de las rocas desplazadas. Tercero. uno y otro tipo de roca mostrarían características magnéticas marcadamente diferentes.

Aunque el proceso de choque, acreción y crecimiento continental es complejo y no se comprende en sus detalles, sin duda la interpenetración y el transporte de materiales fueron considerables. El resultado final es la generación de corteza nueva, engrosada por cabalgamientos hasta adquirir proporciones continentales, y su adición al continente antiguo. La hipótesis de acreción de litosferoclastos, pieza por pieza, en el oeste norteamericano probablemente ayuda a descifrar el origen y evolución de las grandes cordilleras del mundo, muchas de las cuales quizá hayan atravesado una historia similar.

Fuente: En Investigación y Ciencia, Nº 76