Vida de Estrellas

Primer Acoplamiento en el Espacio Historia del Programa

HISTORIA DEL PROGRAMA SOYUZ-APOLLO-PRIMER ENCUENTRO ESPACIAL

En julio de 1975 se concretó un ambicioso proyecto conjunto entre los Estados Unidos y la Unión Soviética, consistente en el acoplamiento en órbita de una cosmonave Apolo con otra Soyuz. En esta misión se pusieron de manifiesto, en las técnicas utilizadas por ambas potencias para la conquista cósmica, diferencias que debieron en gran parte limarse con el objeto de hacer posible el éxito del programa.

Así, fue necesario emplear un módulo de anexión para que los tripulantes de una y otra cápsula pudieran aclimatarse lentamente a las diferencias de presión y de aire utilizado (oxígeno puro en la Apolo y oxígeno con nitrógeno en la Soyuz) y hasta ponerse de acuerdo acerca de la alimentación y los horarios de descanso.

mision soyuz apollo

Ambas naves acopladas

ANTES Y AHORA
La diferencia entre los vuelos orbitales iniciales y los actuales radica en que estos últimos cuestan mucho menos. ¿Por qué? Por la sencilla razón de que antes el cohete lanzador se usaba una soia vez y se perdía. Un cohete Saturno V, por ejemplo, que envió la nave Apolo a la Luna, costaba 300 millones de dólares y luego de terminar su combustible se perdía. Desde la construcción del “Space Shuttle” y otros naves similares se usa muchas veces un mismo equipo como un avión, lo que permite reducir notablemente los costos

Con “siete horas de diferencia partieron las cápsulas; de Baikonur, llevando a bordo a Alexei Leonov y Valeri Kubasov, y de Cabo Cañaveral, conduciendo a Thomas Stafford, Donald Slayton y Vanee Grand. Una vez en órbita hicieron las correcciones necesarias, descansaron y al día siguiente lograron sin dificultades el histórico acoplamiento.

En el aspecto político, significó el comienzo de una nueva era de cooperación; y en el técnico, un verdadero intercambio de conocimientos. Además, por primera vez desde el lanzamiento del primer Sputnik, la Unión Soviética abrió las puertas de su centro espacial de Baikonur no sólo a los científicos y cosmonautas sino también a los periodistas especializados de todo el mundo.

Se trata de un complejo levantado en medio de un desierto, que en nada se parece a la lujuriosa vegetación y los pantanos del Cabo Cañaveral, en Miami. Está situado cerca de la ribera este del Mar Caspio, en un sitio de difícil acceso y prácticamente sustraído a las posibilidades de espionaje desde la superficie o la atmósfera terrestres.

El desarrollo de la misión fue impecable y dejó las puertas abiertas a otro proyecto, ya en marcha, que se concretará cuando la astronáutica indique los nuevos rumbos a seguir.

Porque si bien esta misión significó la última de la serie Apolo, hay que esperar que Estados Unidos complete sus planes con el “transbordador espacial” (programa Shuttle) y que la Unión Soviética desarrolle los suyos con las series Soyuz o con las estaciones espaciales Salyut.

El descenso de la cápsula rusa se realizó tres días antes que el de la estadounidense, la que aprovechó ese tiempo en órbita para efectuar varios trabajos científicos. La Apolo regresó el 24 de julio de 1975 y a pesar de un inconveniente causado por el escape de gas letal que irritó los pulmones de los cosmonautas, el amerizaje en aguas del Pacífico se llevó a cabo con la precisión acostumbrada.

Para los Estados Unidos el programa Apolo-Soyuz representó la culminación de una larga serie de esfuerzos que se inició con las cápsulas Mercurio, de un solo tripulante; siguió con el proyecto Géminis, de dos ocupantes; y culminó con el plan Apolo, cápsula para tres astronautas.

A partir de aquí los programas ruso y norteamericano se bifurcaron; los soviéticos siguieron perfeccionado su navio Soyuz, acoplándolo con otras, cápsulas y dejándolo cada vez más tiempo en órbita: la NASA a su vez, tras un experimento de larga duración con el “Space Lab”, desechó los vuelos clásicos e hizo un paréntesis para reiniciar la actividad en 1980 con el “Space Shuttle” o Trasbordador Orbital.

tripulantes de la mision soyuz apollo

Los cinco tripulantes del programa conjunto pasaron a bordo 44 alegres horas en las que se alternaron los idiomas —inglés y ruso— con una facilidad que sorprendió a los mismos directores del programa. Parecía como si fuera una misión conjunta más que realizaran los cinco hombres del espacio. Alternando algunas bromas de tono político con informaciones sobre la marcha del vuelo y hasta discusiones acerca de cuál comida envasada o deshidratada era la más sabrosa, si la rusa o la estadounidense, se cumplió una misión que tuvo más importancia para la distensión entre Moscú y Washington que para los cosmonautas, quienes ya habían ensayado incontables veces en tierra esta misión, a tai punto que la esposa de Leonov manifestó a los periodistas: “Parece que para ellos es más fácil volar que esperar en tierra”.

Ampliar Este Tema En Este Sitio

Fuente Consultada:
Enciclopedia Ciencia Joven Tomo II Edit. Cuántica

Pioneros de los Viajes Espaciales Inventores de Cohetes

Pioneros de los Viajes Espaciales  – Inventores de Cohetes

Antes de que los hermanos Montgolfier hicieran su primera ascensión, nadie se había elevado nunca más que unos pocos centímetros sobre la superficie terrestre. Un siglo y medio después, miles de aviadores volaban a varios kilómetros por sobre la tierra. Luego, una vez conquistado el aire, los hombres empezaron a soñar en viajar a través del espacio hacia otros mundos.

Al principio parecía que los viajes espaciales no serían, por mucho tiempo, más que un sueño, ya que los problemas que se debían vencer eran dificilísimos. Uno consistía en que todos los motores hasta entonces conocidos tenían que quemar necesariamente algún tipo de combustible, y es bien sabido que ninguno de éstos puede arder en el espacio vacío donde no hay oxígeno con qué combinarse. Otro era el de que todos los aparatos de vuelo inventados hasta ese momento necesitaban aire para volar.

Pero hay una antigua forma de vuelo que no necesita aire. Si desatamos el cuello de un globo de juguete inflado, éste siempre se desplazará en la dirección opuesta a la del aire que escapa de él. Esto, no ocurre porque el aire mencionado empuje el del exterior: es que el de adentro del globo presiona fuertemente contra el frente, por donde no puede salir, pero no contra la parte posterior, o cuello, por donde sí puede escapar. Esta diferencia de presión es la que impulsa al globo hacia el frente.

Tsiolkovsky, hijo de un inspector forestal de Riazán, tras iniciar sus estudios en Moscú, se recibió de profesor de matemáticas, siendo asignado a la escuela de Borovo en 1882. Ya para aquel entonces el científico había llegado a profundizar sus estudios en tal forma que tenía casi terminada la teoría que años después lo hiciera célebre.

Tsiolkovski se dedicó a divulgar sus atrevidas ideas a través de obras de ficción, artículos periodísticos, muchos de los cuales fueron recibidos con luirlas por parte del gran público y con despectivas opiniones  por parte de  sus colegas moscovitas y de otaos países. En Borovo diseñó un dirigible enteramente metálico impulsado a motor de explosión -nítido precursor del Zeppelín germano-, un avión sumamente similar al que luego elevara pollos aires a los hermanos Wright y comenzó a afrontar las dificultades que había que vencer para iniciar los viajes interplanetarios.

Konstantín E. Tsiolkovski (1857-1935), científico e inventor ruso, pionero en la investigación de cohetes y espacial. A los nueve años se quedó casi totalmente sordo y siguió sus estudios en su domicilio; trabajó como profesor de matemáticas de la escuela secundaria hasta su retiro en 1920.

En 1903, una revista de Moscú publicó, con cinco años de arraso, su artículo “La exploración del espacio cósmico por medio de los aparatos a reacción“, en el que se sostenía que el único camino posible para abandonar  la Tierra  era  un cohete impulsado por propelentes líquidos como el oxígeno y el hidrógeno, fórmula utilizada años después por los misiles estadounidenses Centauro y Saturno-1.

En 1898 anticipó también la idea de la alimentación de los cohetes por medio de la presión, deflectores de lanzamiento, la cabina estanca conteniendo oxígeno para el piloto y un dispositivo para la absorción de anhídrido carbónico. De 1911 a 1915 perfeccionó su cohete y propuso un sistema para que el cosmonauta se halle en la cabina en posición horizontal para resistir la aceleración -idea que fue redescubierta 20 años después por el alemán Diringshofen.

Y en 1929 llegó a su momento cumbre, cuando concibió, con una precisión casi increíble, la construcción de un cohete de varias etapas pura escapar de la atmósfera; las escafandras de los astronautas; los satélites artificiales; las estaciones en órbita albergando invernaderos para la eliminación del gas de carbono -tal cual se hace hoy en día en las estaciones Skylab y Salyut-, e incluso la utilización de la energía solar como tuerza motriz de las astronaves, genial intuición hoy ya utilizada tras muchos fracasos de sus inventores.

Es recién en 1919 cuando comienzan a reconocerse los méritos de este pionero, que murió en 1935 convencido de que el destino del hombre está en las estrellas; idea que quedó grabada sobre su tumba, con una muy usada frase suya: “La humanidad no permanecerá siempre en la Tierra”.

El otro precursor, Goddard, había nacido en Massachusetts en 1882 y realizado sus estudios en la ciudad de Boston, al tiempo que su mente se dejaba llevar fantasiosamente por los trabajos de Verne; lentamente penetra en el mundo de los cohetes, representados en esa época únicamente por los de pólvora utilizados en la guerra o por aquel duramente criticado invento del misil a vapor, tipo ametralladora, del alemán Hermán Ganswindt en 1891.

Costeándose sus experimentos con sus escasos recursos, aquel joven llegó a demostrar la importancia de la cóhetería en la astronáutica e, incluso, en la guerra.

Goddard Cientifico

El ingeniero espacial estadounidense Robert Hutchings Goddard publica un libro titulado Método para alcanzar alturas extremas, en el que describe un tipo de cohete que podría alcanzar la Luna.

Tras perfeccionar un cohete con carga explosiva inventó en 1918 la célebre “bazooka”,arma que no se utilizaría hasta la segunda Guerra Mundial. Continuó luego sus experimentos y poco a poco comenzó a vislumbrar las posibilidades de construir un cohete impulsado por combustibles líquidos, y sin conocer las teorías de Tsiolkovski inició en 1920 sus primeros trabajos sobre el tema. Le llevó seis años concretar la idea, pero en 1926 logró algo fundamental en la historia de la astronáutica: el primer misil propulsado con carburante líquido.

A partir de entonces el pionero prosiguió su obra, ya con el apoyo del gobierno norteamericano, y fue obteniendo éxito tras éxito, hasta que la muerte lo sorprendió en 1946, cuando irrumpían en la carrera espacial otra serie de ideas y nombres que darían un fuerte impulso a la astronáutica.

Entre otros importantes avances debidos a la obra de Goddard podemos destacar los que significaron la bomba centrífuga de combustible; el cohete por etapas; las aletas desviadoras del chorro y la dirección giroscópica de loscohetes. Fue, además, el primero en lanzar un cuerpo a una velocidad mayor que la del sonido.

Alemania, creadora de las primeras bombas voladoras, las célebres V-1 y V-2, no surgió en la cohetería por obra de la casualidad. También allí existió un pionero: se llamó Hermán Oberth. Este,que trabajó casi exclusivamente en teoría, desarrolló las ideas del ruso en tal forma que llegó a proyectar íntegramente un cohete de 110 metros de altura, de características casi idénticas a las del Sarurno-5.

Oberth y sus alumnos Riedel, Nebel y Werner von Braun comenzaron a real izar sus proyectos y, en 1931, lanzaron el primer cohete europeo, que rápidamente fue perfeccionado hasta que el gobierno nazi vió -en 1933- la posibilidad bélica de esa arma y estableció una base experimental oficial en Kummersdorf, 28 kilómetros al sur de Berlín.

Allí, un año después la primera bomba V-1 alcanzó una altura de 2.200 metros. Después, a causa de los bombardeos aliados, la base fue trasladada a una isla del mar Báltico, Peeiiemünde, en la que se concretó la V-2, que asoló a Londres, Amberes, Lieja y Bruselas hasta el final de la contienda.

A partir de entonces, los científicos del Tercer Reich pasaron en su mayor parte a Estados Unidos y otros a la Unión Soviética, donde en base a los planos secretos que llevaban en la mente y a lo realizado por especialistas locales como Goddard, Tijoranov y Bajcjovangui, comenzó realmente la carrera espacial que culminaría asombrando al mundo, en 1957, con la puesta en órbita del primer satélite artificial: el Sputnik-1.

bomba V2 alemana

LA BOMBA V-2
Llevada a Estados Unidos por Von Braun y sus compañeros de Peenemunde, la bomba V-2 se convirtió en vital elemento para las naciones victoriosas de la segunda contienda mundial. En efecto, había llegado a producirse en serie y en número de 3.000, de las cuales solamente algunas decenas cayeron en manos de las tropas aliadas tras la “Operación Paperclip”, la que estuvo destinada a llevar a EE.UU. la mayor cantidad de científicos germanos y los documentos secretos sobre esa destructora arma, antes de que cayeran en manos soviéticas.

Y entre esos documentos se hallaban los de dos cohetes aún en experimentación, cuya finalidad, en tiempo no muy lejano, era bombardear la ciudad de Nueva York, además de los proyectos de Eugen Sanger, sobre un bombardero estratosférico, predecesor del X-15 norteamericano. He aquí algunas de las principales características de la V-2: Fuerza de impulsión: 24.401 kg. Impulso específico: 206 segundos. Peso vacío: 4.676 kg. Peso con combustible ycarga: 12.884kg.Tiempo de combustión: 70 segundos. Longitud total: 21 m. Diámetro: 1,65 m. Ancho entre alerones: 3,57 m.

ALGO MAS…

Durante la segunda guerra mundial inventores alemanes e ingleses produjeron aviones que usan un método similar de propulsión. Werner von Braun tuvo parte activa en la producción del arma alemana V-1. De su motor grandes masas de gas escapaban en rápida sucesión de cortos estallidos. A cada estallido la presión era mayor hacia el frente del motor que hacia atrás, dando a la bomba V-1 un impulso hacia adelante.

Von Braum cientifico alemanMientras tanto, en Inglaterra, el capitán Whittle inventó el motor de chorro, en el que un chorro continuo de gas da un impulso ininterrumpido hacia adelante. Motores de este tipo podrían funcionar en el espacio si no necesitaran combinar el oxígeno del aire con su combustible.

Afortunadamente, había todavía otra antigua forma de vuelo que usaba combustible pero no necesitaba oxígeno del aire exterior. Era el cohete, usado por primera vez en la China hace centenares de años.

En los primitivos cohetes el combustible era pólvora, y uno de los ingredientes de ésta —salitre— de por sí contiene bastante oxígeno como para permitir a los otros que ardan sin aire.

Cuando el combustible arde dentro de un cohete, la presión es mayor al frente, donde los gases no pueden escapar, que atrás, donde pueden hacerlo, del mismo modo que ocurría en el globo de juguete que tenía el cuello abierto. De este modo, el cohete da la solución a ambos problemas del vuelo espacial.

Durante la segunda guerra mundial, científicos alemanes, incluyendo a Werner von Braun, produjeron cohetes capaces de volar cientos de kilómetros, en los cuales el combustible líquido ardía con el oxígeno que se había comprimido y almacenado en forma líquida. Uno de ellos, el famoso V-2, está representado en la lámina (arriba, derecha, la figura más grande).

Sputnik satelite artificial rusoDesde entonces los vuelos de cohetes se han desarrollado enormemente, especialmente en Estados Unidos de América y en Rusia. Muchos cohetes modernos constan de tres partes, y cada una de ellas añade su propia tremenda velocidad a la ya aportada por su predecesora.

Con un cohete de este tipo los científicos rusos enviaron el primer satélite artificial de la Tierra, el Sputnik I, en octubre de 1957.

Tanto Rusia como los Estados Unidos han enviado luego muchos más, y hacia fines de 1960 más de 30 circulaban alrededor de la Tierra. Un cohete ya ha hecho impacto en la Luna. Otro ha dado la vuelta alrededor de ella, tomando fotografías del lado hasta entonces nunca visto. Todavía otro se ha transformado en un diminuto planeta que gira alrededor del Sol.

En abril de 1961 el astronauta ruso Yuri Gagarin surcó el espacio interplanetario dando un giro completo en 89 minutos alrededor de la Tierra, y en agosto del mismo año, otro cosmonauta ruso, Gherman Titov, dió 17 vueltas en torno a la Tierra en 25 horas 18 minutos. En febrero de 1962, el estadounidense John H. Glenn dio 3 vueltas alrededor de la Tierra en 4 horas 54 minutos.

Fuente Consultadas:
Enciclopedia Ciencia Joven La carrera espacial Edit. Cuántica Fasc. N°12
El Triunfo de la Técnica Tomo III Globerama Edit. CODEX

El Descubrimiento del Planeta Neptuno La Influencia de Urano

HISTORIA DEL DESCUBRIMIENTO DE NEPTUNO Y PLUTÓN

Mucha sorpresa causó la revelación de Federico Guillermo Herschel cuando descubrió, en 1781, con la ayuda de un telescopio de fabricación casera, un nuevo planeta, nunca visto antes. Este famoso astrónomo tuvo siempre para sus observaciones, la colaboración de su hermana Carolina; la lámina del ángulo inferior izquierdo los muestra a ambos trabajando.

Herchell Guillermo astronomo

Urano, que así fue llamado este nuevo planeta, está tan alejado del Sol —a unos 2.991.200.000 km. con un año 84 veces más largo que el nuestro— que las manchas de su superficie no pueden ser apreciadas con claridad. Tiene algunos cinturones paralelos a su ecuador, de color grisáceo, y parece que está constituido en su mayor parte por el gas metano.

El diámetro de Urano es de 49.700 Km.; está levemente aplanado en los polos y su tiempo de rotación es de unas 10% horas. Contrariamente a otros planetas, cuyos ejes están algo inclinados con relación a las órbitas, los puntos de su eje están dispuestos casi en la misma dirección que su trayectoria, de manera que muchas veces avanza con un polo adelante. Otras veces, también, sus polos apuntan hacia la Tierra, de tal forma que podemos ver la totalidad de un hemisferio; algunas veces lo vemos de costado y entonces el aplanamiento del polo es bien evidente.

Seis años después de descubrir a Urano, Herschel vio dos de sus satélites, llamados Titania y Oberón. Más recientemente se han identificado otros tres, Ariel, Umbriel y Miranda. Cuando éstos dan la vuelta alrededor del ecuador de Urano, podemos observarlos en la totalidad de su curso; esto no es posible para ningún otro satélite.

También difieren de todos los demás satélites en que giran de este a oeste, en lugar de hacerlo de oeste a este. Sus distancias a Urano están comprendidas entre 129.000 y 586.500 km. Están muy alejados para ser medidos, pero tienen probablemente unos pocos cientos de kilómetros de diámetro.

El color azul verdoso de Urano se debe al gas metano presente en su atmósfera fría y clara. Lo que en la imagen parece ser el extremo derecho del planeta es en realidad el límite entre el día y la noche. Por la forma de girar el planeta, la noche y el día duran 42 años cada uno. Los científicos se formaron esta visión de Urano por las imágenes enviadas por el Voyager 2 en 1986, en un momento en el que la sonda estaba a 9,1 millones de kilómetros del planeta.

Apenas fue descubierto Urano, los matemáticos comenzaron a dibujar su órbita; pero pronto se dieron cuenta de que sus movimientos no concordaban con los cálculos. Pensaron entonces que debia haber otro planeta, aún más distante del Sol, que lo alejaba de su curso. De una manera totalmente independiente, dos jóvenes matemáticos, Le Verrier y Adams, se pusieron a la tarea de descubrir este planeta, no por medio del telescopio, sino por puro cálculo.

Esto fue sumamente dificultoso, pero finalmente triunfaron y enviaron sus resultados a los astrónomos, para que los verificaran. Lamentablemente, la verificación del resultado obtenido por Adams no fue continuada; pero en 1846, Galle, del Observatorio de Berlín, trabajando sobre las cifras de Le Verrier, halló este desconocido planeta, de acuerdo con la posición calculada.

El nuevo planeta, llamado Neptuno, el nombre del dios del mar, emplea 164 años y 280 días en dar una vuelta completa alrededor del Sol y está a una distancia media de 4.467.200.000 km. de éste, demasiado lejos para poder conocerlo bien.

Es levemente más grande que Urano, pues tiene unos 53.000 km. de diámetro y tarda 17 horas en dar una vuelta alrededor de su eje. Muy poco puede apreciarse en su superficie, que está constituida, completamente o en su mayor parte, por gases, como los demás planetas grandes.

Tiene dos satélites: Tritón, grande, de por lo menos 4.900 km. de diámetro, más cercano a Neptuno que la Luna a la Tierra, y Nereida, de 321 km. de diámetro, que se traslada describiendo una órbita sumamente alargada, de manera que algunas veces se encuentra a 1.609.300 km. de Neptuno mientras que otras veces se halla a 9.660.000 km.

Neptuno:En 1989 la misión Voyager 2 produjo esta imagen de Neptuno en falso color, mostrando los diferentes componentes de la atmósfera del planeta. El rojo muestra la luz del Sol dispersada por una capa de neblina alrededor del planeta, el azul verdoso indica el metano y las manchas blancas son nubes en la parte alta de la atmósfera.

El descubrimiento de Neptuno provocó, naturalmente, una gran duda en los astrónomos, la de si habría o no otros planetas más alejados del Sol.

Finalmente, hallaron que pequeñas diferencias entre las trayectorias calculadas de Urano y Neptuno y sus actuales movimientos hacían posible esa suposición. Así, en 1905, Percivall Lowell, que era al mismo tiempo astrónomo y matemático, comenzó a probar, por medio de cálculos, la existencia del que llamó “planeta X”. Triunfó en teoría, pero murió antes de que sus resultados pudieran ser confirmados.

No fue sino en 1930 cuando Clyde Tombough, del Observatorio de Flagstaff, en Arizona, anunció que había descubierto el “planeta X”. Examinando fotografías del cielo, vio que lo que había parecido una pequeña estrella era realmente un planeta, que se movía lentamente entre los demás. Las copias de dos fotografías que llevaron al descubrimiento se muestran en el costado superior derecho de la ilustración; fueron tomadas con tres días de diferencia entre sí y se puede apreciar que la pequeña “estrella” señalada por las flechas de color está ubicada en distintos lugares.

Plutón, último planeta del sistema solar, últimamente cuestionado por su pequeño tamaño

Este planeta recientemente descubierto es llamado Plutón, nombre del antiguo dios del averno. La distancia media que lo separa del Sol es de alrededor de 5.920.000.000 de km. y tarda 249 años para recorrer toda su órbita. Tan alejado se halla Plutón, que desde su superficie, el Sol aparecería como una gran estrella, según se ve en la parte inferior de la ilustración; pero ese paisaje es imaginario, puesto que poco se conoce de este planeta y ni siquiera se sabe si tiene satélites o no. Su diámetro, según se cree, es de 4.900 km.

Ver: Sistema Solar Para Niños

Fuente Consultada:
GLOBERAMA Tomo: Cielo y Tierra Nuestro Mundo En El Tiempo y El Espacio
Enciclopedia Microsoft ENCARTA
Enciclopedia Ciencia Joven Fasc. N°38 Los Planetas del Sistema Solar

 

 

 

 

Historia del Telescopio – Inventor y Primeras Observaciones

HISTORIA DEL TELESCOPIO: SU INVENTOR Y LAS PRIMERAS OBSERVACIONES

ORIGEN DEL INVENTO: Despúes de la invención del microscopio no debía pasar mucho tiempo para que se hagan distintas combinaciones de lenetes y aumentaran los objetos distantes, o bien, hacerlos mas próximos.

El descubrimiento parece que se produho en 1608 por accidente. Hans Lippershey (1590-1619) un anteojero holandés, tenía un ayudante que jugaba con los lentes durante sus momento de ocio, y descubrió que si sostenía dos lentes, delante de sus ojos, a una cierta distancia de la otra, y miraba a través de ellas, veía el campanario de una iglesia situada a lo lejos como si estuviera considerablemente más cerca, y además invertida.

Hans Lippershey (1590-1619)

Asustado, se lo contó a su patrón, el cual de inmediato captó la importancia del descubrimiento. Lippershey montó las lentes en un tubo, colocándolas a la distancia adecuada entre sí, y logró el primer telescopio primitivo (de las palabras griegas que significan «ver lejos»).

Los Países Bajos aún se hallaban en rebelión contra España, y Lippershey se dio cuenta de que el telescopio constituiría una importante arma de guerra, al hacer posible la observación de la proximidad de navios o tropas enemigas, antes de poderlos descubrir a simple vista.

Así se lo explicó a Mauricio de Nassau, quien le comprendió y trató de mantener en secreto las características del dispositivo. Este propósito fracasó, sin embargo, pues los rumores se extendieron, y el aparato era demasiado sencillo para no ser reconstruido en seguida.

La astronomía óptica emplea, para captar la luz, dos tipos de instrumentos: el anteojo (o telescopio refractor) y el telescopio reflector, o telescopio propiamente dicho. Consisten básicamente en un tubo provisto en uno de sus extremos (el que apunta al cielo) de un objetivo y, en el otro (próximo al ojo del observador), de un ocular.

El objetivo recoge los rayos luminosos emitidos por los astros observados y los concentra teóricamente en un punto —una pequeña mancha en realidad—, que el ocular amplía.

La naturaleza del objetivo es lo que distingue el anteojo del telescopio: en el primero es una lente —o, más bien, una combinación de lentes— que refracta la luz, mientras que en el telescopio es un espejo en el que la luz se refleja.

Las dimensiones del objetivo determinan las posibilidades máximas del instrumento: la energía, o luz, recogida está en función de su superficie colectora, mientras que de su diámetro depende su aptitud para separar dos fuentes luminosas angularmente próximas (poder separador), o distancia angular mínima entre dos puntos objeto que permita obtener imágenes separadas.

UN POCO DE HISTORIA…
Los Descubrimientos de Galileo Galilei

El científico italiano Galileo Galilei , debido a su formación técnica, pudo entender mejor que Lippershey el principio de funcionamiento este tipo de lente, por lo que pudo construir uno de mayor aumento (30x) y que le permitió observar algunos satélites de Júpiter y los novedosos cráteres de la “perfecta” Luna. Entre otras observaciones futuras, Galileo pudo estudiar Saturnos y sus anillos y las fases del planeta Venus.

Telescopio de Galileo

El mayor de los telescopios de Galileo aumentaba en treinta veces la imagen, pero era muy imperfecto. Desde entonces la astronomía recibió un extraordinario impulso de notables científicos vinculados al desarrollo de lentes y telescopios, que son la base de los modernos instrumentos de nuestros días.

Con todo estos conocimiento publuca un pequeño libro, que se podía leer en un par de horas, de solo 24 hojas llamdo Sidereus nuncius, que significa “El Mensajero de las estrellas”, donde informa sobre los observado cn su nuevo telescopio.

Para ello usa una forma de expresarse sumamente distinta al utilizada hasta el momento, a los efectos que sea comprendida por todos los curiosos de su época, consiguiendo que este libro se convienta en una especie de best sellers del momento. La novedad de esta información, no fue por su originalidad, pues ya otros científicos de su época habían también enfocado el firmamento nocturno, sino que fue el primero en publicar sus observaciones

Un gran científico europeo, que vivía en Alemania, pudo leer esta edición porque Galilei el envía una copia, solicitandolé que diera su opinión al respecto, opinión que resultó positiva, aunque no pudo confirmar esas observaciones ya que no contaba con el moderno instrumento

En una carta muy amable y elogiosa contestó Kepler a Galileo, rogándole que le prestara un telescopio para repetir las observaciones y ofreciéndole ser su escudero. Galileo no sólo no le prestó el telescopio sino que ni siquiera le contestó su carta.

Galileo Galilei

En el año 1609, el físico y astrónomo italiano Galileo Galilei recibió, según dice él mismo, noticias del extraordinario invento holandés. Como no se sabía nada de su construcción, Galileo se puso a meditar sobre el acerca de su construccn tema y tuvo la satisfacción de construir un primer anteojo que aumentaba en tres veces el tamaño de los objetos. Inmediatamente construyó anteojos con los cuales descubrió cráteres en la Luna, las fases de Venus, las manchas del Sol y los s liles de Júpiter. También especie de “orejas” que luego serían identificadas como los anillos que orbitan a Saturno.

En 1611, Galileo muy entusiasmado con sus logros, decide avanzar, y dar un paso importante, mostrando su telescopio en Roma a las mayores autoridades eclesiásticas. Fue muy bien recibido, atendido con una importante cena en su honor y escuchado. Galileo apuntó su equipo hacia el cielo y los invitó a observar, tratando de explicar el nuevo fenómeno que veían por ese misterioso tubo.

Observaron a Júpiter con sus satélites. Más tarde desmanteló el telescopio para que todos pudieran ver las dos lentes que lo formaban. A este instrumento le habían dado el nombre en latín de perspicillum o instrumentum, pero se dice que el nombre de telescopio fue dado por un principe de la zona conocido como Cesi, quien creo el nuevo nobre de telescopio.

Mas tarde se entrevistó primero con el cardenal Barberini, que más tarde sería el papa Urbano VIII; también se entrevistó con el papa Paulo V, en una audiencia muy amistosa.

De vuelta a su Padua, en 1611 siguió estudiando los astros celeste. Decidió estudiar el Sol, pero debió ingeniarse una pantalla para evitar lastimarse la vista con la fuerte energía lumínica con que nos abraza. Pudo descubrir las manchas solares y también su periódo de rotación.

En 1615 un teólogo romano conservador expresó la opinión de que la concepción copernicana debía tratarse como una hipótesis, pues contradecía a la palabra de la Biblia. Galileo insistió en que era real. En el edicto de 1616 el Santo Oficio puso el De revolutionibus orbium coelestium de Copérnico en el índice de libros prohibidos y ordenó a Galileo que no siguiera defendiendo a Copérnico so pena de ser encarcelado.

Galileo se daba cuenta que tarde o temprano el papa se moriría. Pocos años después se cumplieron sus expectativas y su viejo amigo Maffeo Barberini, que tantas veces le había defendido, fue elegido papa. Pero el poder absoluto corrompió a Barberini tan absolutamente que cuando los pájaros del Vaticano interrumpieron sus pensamientos hizo envenenarlos. Barberini —ahora el papa Urbano VIII— confirmó el edicto de 1616.

Galileo se mantuvo en las suyas. Durante seis años, animado por su amistad con el papa, trabajó en un libro titulado Diálogos sobre los dos máximos sistemas del mundo. Allí siguió lo legislado al pie de la letra; presentaba sus ideas como una hipótesis que explicaba un personaje llamado Salviati. El punto de vista de la Iglesia estaba representado por un personaje llamado Simplicio.

El insulto era intencionado y se percibió. En 1632 se prohibía el libro. Al año siguiente Galileo fue procesado por la Inquisición. Negó que creyera en el sistema copernicano, se derrumbó en todos los sentidos y se le ofreció firmar una confesión donde afirmaba: «El Santo Oficio me ha considerado vehementemente sospechoso de herejía; es decir, de haber sostenido y creído que el Sol es el centro del mundo e inmóvil, y que la Tierra no es el centro y se mueve». Se puso de rodillas, leyó el texto en voz alta y lo firmó.

La leyenda dice que entonces susurró: «Eppur si muove» («Sin embargo, se mueve»). Esta historia no es cierta, escribe el físico George Gamow, «y sólo ha dado pie a una vieja anécdota según la cual Galileo estaba observando el rabo que meneaba el perro de un amigo que entró, por equivocación, en el Santo Oficio de la Iglesia». Sin embargo, si Galileo no reaccionó de este modo, hubiera debido hacerlo. Algunas leyendas merecen la pena ser perpetuadas.

Galileo fue condenado a prisión y a repetir siete salmos una vez a la semana durante tres años, pero el papa redujo el castigo del astrónomo setentón a arresto domiciliario.

Galileo pasó el resto de su vida confinado en su villa próxima a Florencia (donde lo visitó una vez John Miltón). Hasta su muerte, su hija la hermana María Celeste lo cuido. (Un accidente geográfico de Venus lleva el nombre ella).

Durante este periodo, Galileo se quedó ciego, probablemente a consecuencia de mirar el Sol. Pero no todos los placeres le fueron negados; hasta su muerte en 1642 tocó el laúd, habilidad que había aprendido de su padre.

ALGO MAS SOBRE LOS TELESCOPIOS ASTRONÓMICOS

REFLECTORES Y REFRACTORES
5e pueden distinguir dos tipos principales de telescopios: refractores (o de lentes) y reflectores (o de espejos). Estos dos tipos combinados constituyen los instrumentos más recientes, como el telescopio de Maksutov. Las imágenes producidas por los telescopios reflectores están libres del efeto de aberración cromática, lo cual, para ciertos tipos de trabajos, constituye una clara ventaja respecto de los refractores ; pero, por otra parte, es::s últimos no presentan los efectos de difracción producirdos en los soportes del segundo espejo de los telescopios reflectores, aunque estos efectos no constituyen necesariamente un obstáculo de importancia.

El telescopio refractor suele ser más conocido; su principio es análogo al que se aplica en la construcción de catalejos, binoculares y anteojos de teatro. La luz procedente del objeto que se observa entra en el aparato a través de la lente objetivo. El objetivo de los telescopios se construye casi siempre corregido, para evitar la aberración cromática (o sea el defecto que suelen presentar muchas lentes que producen la aparición de franjas con los colores del el arco iris).

Hay alguna excepción a este respecto, particularmente en campo de la astronomía solar, pero estos casos caen fue-
a de nuestra atención en este momento. La luz se refracta al atravesar el objetivo, es decir, se desvía; la magnitud de
a desviación depende de la curvatura de la lente objetivo.

Para una lente dada, la desviación proyecta la imagen del objeto en un punto invertida, del mismo modo que lo está la imagen formada sobre la película por la lente de una cámara fotográfica. Si colocamos una placa fotográfica hemos trasformado el telescopio en una cámara fotográfica, y así se lo usa para fotografiar los astros.

En esta época de reflectores gigantes quizá resulte sorprendente saber que tales instrumentos son, por así decirlo, unos recién llegados. El principio en el que se basan es conocido desde hace más de doscientos años, pero los trabajos para su adaptación práctica sufrieron durante largo tiempo toda una serie de reveses técnicos.

Hoy día, los telescopios más grandes son invariablemente del tipo reflector. No parece aventurado afirmar que será muy difícil mejorar el refractor, con un objetivo de más de un metro de diámetro, del observatorio Yerkes, en Williams Bay, Wisconsin. Las razones para esta afirmación son varias y bien fundadas. En primer lugar, el moldear un disco de vidrio de grandes dimensiones es una tarea que requiere pericia extraordinaria y que origina gastos cuantiosos, y, desde luego, es incomparablemente más difícil obtener un gran disco de vidrio ópticamente puro, adecuado para la elaboración de una lente, que el necesario para formar un espejo.

El grosor de una lente aumenta con su diámetro, lo que significa un aumento en la cantidad de luz que es absorbida por el vidrio —lo cual, se comprende fácilmente, es un inconveniente para el astrónomo—. Pero, además, es necesario que la lente, bien centrada, esté sostenida en el extremo del tubo telescópico; un disco de vidrio macizo, sostenido sólo por sus bordes, tiende a deformarse por la acción de su propio peso (la lente del observatorio Yerkes pesa más de 225 Kg.), y cualquier imperfección tiene consecuencias catastróficas sobre la calidad de la imagen formada por la lente.

Estos problemas no se presentan en el caso del telescopio reflector. Para construir un espejo no es esencial la purezaóptica del vidrio, con tal de que la superficie que va a ser trabajada ópticamente reúna ciertas condiciones. La diferencia fundamental entre los dos sistemas es ésta: en un refractor la luz pasa a través de la lente, lo que exige una gran pureza óptica; en un reflector la luz se refleja en la superficie de un espejo, sin que resulte afectada por la calidad del vidrio.

corte de un telescopio refractor

Telescopio “refractor”. La lente objetivo A forma una imagen real en B, la cual se observa mediante la lente de aumento u ocular C.

En el telescopio reflector de Newton. La luz que entra por el tubo del telescopio incide sobre la superficie del espejo, al que se ha dado, con gran precisión, una forma parabólica. Esta superficie está formada por una capa muy fina de plata, o de aluminio (actualmente se prefiere el aluminio, porque la plata se deteriora muy rápidamente por la acción de distintas impurezas presentes en la atmósfera).

Corte de un telescopio reflector

Forma de Newton del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa lateralmente en el telescopio.

El espejo parabólico formaría la imagen en su punto focal A, pero antes de que los rayos alcancen este punto son desviados lateralmente por un pequeño espejo plano B, que está colocado con una inclinación de 45° respecto del eje principal del espejo primario.

De este modo la imagen es examinada con el ocular C en una dirección perpendicular a la de la luz enfocada por el aparato. Este tipo de reflector tiene gran aceptación entre los aficionados, por su sencillez. Sin embargo, los grandes instrumentos modernos no se sujetan exactamente a este esquema; incorporando el sistema óptico de Cassegrain se consigue una mayor versatilidad.

En el sistema de Cassegrain se reemplaza por un espejo convexo el pequeño espejo secundario B, y se practica un orificio en el espejo primario para permitir la observación de la imagen. Así, imagen y ocular se sitúan detrás del espejo principal, lo que proporciona varias ventajas, siendo la más importante la posibilidad de replegar la distancia focal, lo que permite reducir las dimensiones del tubo telescópico, con lo que el instrumento resulta más manejable.

corte de un telescopio sistema cassagrain

Forma de Cassegrain del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa por el extremo del telescopio.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Evolución de la Observacion del Espacio Historia

Cronología de las técnicas de observación
c. 2800 a. C: Stonehenge. La primitiva construcción incluye un foso, un montículo de tierra, 35 toneladas de restos pedregosos y cincuenta y seis pozos, llamados agujeros de Aubrey, que pueden haber sido utilizados para predecir eclipses. Entre 600 y 1000 años después se agregaría el famoso círculo de piedras.

c. 2600 a. C.: Se construye la Gran Pirámide de Gizeh, orientada hacia el Cinturón de Orion y Thuban de Draco el Dragón, la estrella del norte en aquel tiempo.

c. 440 a. C.: Se construye en Saskatchewan, Canadá, la Rueda de la Medicina de la Montaña del Ratón orientada hacia la posición del Sol en el solsticio de verano.

52 a. C. a 132 d. C: Los astrónomos chinos proyectan una esfera armilat para medir las posiciones de los objetos celestes. Empezando por un anillo metálico que representa el ecuador, incluye al final un ani lio que representa la trayectoria de los planetas, otro que reprc senta el meridiano y un reloj de agua.

150 d. C: Equipado con un plinto —un bloque de piedra con un arco calibrado que se utilizaba para medir la altura del Sol— y una regla triangular llamada triquetrum, Ptolomeo anota la posición de las estrellas.

927: Un fabricante árabe de instrumentos llamado Nastulo construye el astrolabio más antiguo que se conoce, un mapa metálico de los cielos que representa el movimiento aparente de las estrellas alrededor de la Polar y en relación con el horizonte.

1000: Los mayas erigen un observatorio en Chichén Itzá, en la península de Yucatán. Conocido como el Caracol, está alineado con el sol en los solsticios así como con las estrellas Castor, Pólux, Fomalhau y Canope.

1391: El Tratado sobre el astrolabio de Geoffrey Chaucer enseña a construir y utilizar el astrolabio para medir la posición de las estrellas.

1576: Tycho Brahe inicia la construcción de Uraniborg, su observatorio insular. Entre el equipamiento hay un cuadrante de pared, una gran esfera armilar y un sextante que abarca 30° de firmamento y va equipado con brazos fijos y móviles para medir las distancias entre las estrellas.

1608: El óptico holandés Hans Lippershey inventa el telescopio.

1609: Galileo Galilei se construye su propio telescopio. Un refractor con dos lentes de cristal (el objetivo convexo y el ocular cóncavo) que aumenta la imagen unas treinta veces.

1611: Johannes Kepler, retinando el telescopio, sustituye el ocular convexo por otro cóncavo, con lo que agranda el campo de visión pero invierte la imagen.

1636: El fraile y matemático francés Marín Mersenne propone la utilización de espejos para construir un telescopio reflector.

1668: Isaac Newton construye un telescopio reflector utilizando un espejo cóncavo en lugar de objetivo. Dado que los distintos colores se refractan de manera distinta, los telescopios refractores que se utilizan en osla época producen alrededor de las imágenes un cerco con los colores del arco iris. El reflector elimina esta aberración cromática porque los colores se reflejan de forma homogénea.

Otra ventaja es que el espejo, a diferencia de las lentes, puede sostenerse por detrás, con lo que produce menos distorsión. El físico francés N. Cassegrain diseña un telescopio en el que la luz se refleja desde un espejo secundario convexo a través de un agujero hecho en el primer espejo, una mejora del gran reflector new-toniano, en el que el ocular quedaba en la parte superior del telescopio, con lo que exigía al observador que trepara a una torre o escalera para mirar. Con el telescopio de Cassegrain el observador se mantiene a nivel del suelo. Según Newton, «La ventaja de este aparato es ninguna».

1733: Chester Moor Hall superpone dos clases de cristal para aumentar la lente del objetivo a la vez que suprime la aberración cromática.

1758: Utilizando el invento de Hall para hacer lentes de flint glass y de crown glass, John Dolland hace una lente acromática, que presenta en la Royal Society.

1789: William Herschel construye un telescopio con un espejo de 49 pulgadas.

1845: William Parsons, conde de Rosse, construye un telescopio reflector con un espejo de 72 pulgadas, el mayor del mundo hasta 1917. Se lo conoce como el Leviatán de Parsonstown.

1888: Se acaba el telescopio refractor de 36 pulgadas del Observatorio de Lick.

1897: Se construye el mayor telescopio refractor del mundo en el Observatorio de Yerkes, en Wisconsin. Tiene un objetivo con una lente de 40 pulgadas y un tubo de 64 pulgadas.

1908: Se acaba el telescopio reflector de 60 pulgadas de Monte Wilson.

1917: Se acaba el telescopio reflector de 100 pulgadas de Monte Wilson.

1930: Bernhard Schmidt inventa el Telescopio Schmidt, que utiliza lentes correctoras para eliminar la distorsión alrededor de los bordes de los espejos y para hacer fotografías claras del firmamento con gran angular.

1936: Después de diseñar el primer radiotelescopio del mundo, el ingeniero Grote Reber, de Illinois, erige un plato metálico de 9,15 metros en su patio trasero y empieza a hacer el mapa de la Vía Láctea, proyecto que completa al cabo de ocho años.

1948: Se acaba el telescopio reflector de 200 pulgadas de Monte Palomar.

1962: Un pequeño cohete detecta rayos X procedentes de más allá del sistema solar.

1970: Se lanza el primer satélite de rayos X.

1978: Se lanza la nave espacial Explorador Internacional de Ultravioletas (IUE), alimentada por energía solar.

Se lanza el Observatorio Einstein, que contiene un telescopio de rayos X de alta resolución.

1980: Una serie de veintisiete observatorios dispuestos en forma de Y, llamada la Gran Formación (Very Large Array), comienzan a operar en Nuevo México.

1981: El dispositivo de carga acoplada (CCD) deja obsoleta la fotografía. Mientras que las fotografías utilizan una fracción de la luz procedente de un objeto para producir un cambio químico en una película, el mucho más sensible CCD responde a casi toda la luz y envía corrientes eléctricas directamente al ordenador.

1983: Es puesto en órbita el Satélite de Astronomía Infrarroja (IRAS).

1989: Se lanza el satélite Explorador del Fondo Cósmico (COBE) de la NASA.

1990: Se pone en órbita desde la lanzadera espacial Discovery el Telescopio Espacial Hubble.

1991: Se pone en órbita desde una lanzadera espacial el Observatorio Compton de Rayos Gamma (GRO), con cuatro detectores de rayos gamma a bordo.

1992: El 14 de abril comienza sus observaciones el Telescopio Keck, con los treinta y seis espejos hexagonales colocados en su sitio. El 24 de agosto, su gemelo el Keck II recibe el primer segmento de sus treinta y seis espejos coordinados.

1993: Diciembre. Astronautas instalan durante un paseo espacial nuevos paneles solares, giróscopos, una nueva cámara y otros instrumentos para corregir la visión del Telescopio Espacial Hubble.

Entre los futuros instrumentos que se espera que estén funcionando el año 2000 se cuentan: el Telescopio Keck II; el Observatorio Estratosférico para Astronomía en el Infrarrojo Lejano (SOFÍA)en órbita; la Instalación Astrofísica de Rayos X Avanzada (AXAF); la Instalación Espacial para Telescopio de Infrarrojos (SIRTF); el Telescopio Sloan de la Universidad de Princeton, diseñado para hacer un mapa del desplazamiento hacia el rojo de un millón de galaxias; y el telescopio de múltiples espejos controlado por ordenador del Observatorio Europeo Austral en Chile, conocido como el VIT (Gran Telescopio).

El Gran Telecsopio que será construído en Chile

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway

Los Telescopios Mas Importantes del Mundo Medidas y Ubicación

TELESCOPIOS REFRACTORES Y REFLECTORES: Los primitos astrónomos utilizaban sus ojos y algunos sencillos instrumentos como el cuadrante para medir ángulos, pero hace unos 350 años, en 1609, Galileo inventó su “tubo óptico” o telescopio de construcción casera, y al dirigirlo al cielo la astronomía inició una nueva era.

Desde aquel entonces el astrofísico ha aprendido a aplicar la fotografía y la electricidad para resolver sus problemas, a separar y analizar la luz solar y de las estrellas, y a utilizar de muy diversos modos otros tipos de radiaciones que nos llegan de las profundidades del espacio.

Las radiaciones procedentes del espacio son, en verdad, las únicas fuentes de información de que disponen los astrónomos para bosquejar su esquema del universo. Dichas radiaciones nos llegan en tres formas distintas: luz, calor y ondas radioeléctricas. Observamos y medimos la luz y el calor con los telescopios ópticos, y las ondas radioeléctricas mediante los radiotelescopios.

Los dos principales telescopios ópticos son el telescopio refractor y el reflector. Ambos recogen la luz proveniente de objetos distantes y la concentran para formar una pequeña imagen. En los dos instrumentos la imagen es aumentada luego mediante un ocular.

Telescopio refractor:
El tipo de telescopio que nos es más familiar es el refractor, con una gran lente en su parte anterior. Esta lente frontal, llamada objetivo por encontrarse más cercana del objeto a observar, recoge la luz y la desvia o refracta hacia el foco. Este principio parece bastante sencillo, pero el llevarlo a la práctica no lo es tanto. La razón de ello estriba en que nadie ha diseñado aún una lente que desvíe todos los colores por igual. La luz violeta y la azul son más desviadas que la luz roja. Por lo tanto si utilizamos una sola lente como objetivo de un telescopio refractor, dicha lente lleva los rayos luminosos de los distintos colores a diferentes focos y vemos una imagen rebordeada por una coloración borrosa.

En los primeros años del telescopio, los astrónomos encontraron en este Icnómeno un gran inconveniente cuando intentaron efectuar observaciones y mediciones de precisión. Sin embargo, en 1733, un inglés, Chester Moor Hall, que se había dedicado al estudio óptico del ojo humano como pasatiempo, encontró la forma de eliminar dicho inconveniente y mejoró notablemente la calidad de la observación.

Ejemplo de funcionamiento de un telescopio refractor

Una gran lente (el objetivo) recoge la luz procedente de una estrella y la desvía hacia el foco produciendo en él una pequeña imagen. Esta se aumenta mediante otra lente (el ocular).

Telescopio Reflector: Otra forma de resolver este problema de la colora ción de los bordes. Si concentramos la luz mediante un espejo cóncavo, en vez de utilizar un objetivo de cristal, podemos dar por resueltos todos los problemas que se plantean al emplear lentes.

El espejo cóncavo nos enviará todos los colores hacia el mismo foco, y aunque todavía debemos recurrir a un ocular construido con lentes, es posible diseñarlo de tal forma que no se produzca ningún efecto de coloración. En este aspecto, por lo menos, el telescopio reflector con su gran espejo cóncavo es preferible al telescopio refractor con sus grandes lentes.

Un telescopio refelctor internamente

En tiempos de Isaac Newton no había lentes acromáticas. Para soslayar el problema que representaba el contorno coloreado, construyó un telescopio que tenía un espejo cóncavo en lugar de una lente. El espejo cóncavo enfocaba la luz de una estrella y la dirigía hacia un espejo plano inclinado, el cual a su vez reflejaba la imagen de la estrella hacia un ocular situado al lado.

TABLA CON LOS PRINCIPALES TELESCOPIOS DEL MUNDO

UBICACIÓN Y NOMBRE ALTITUD DIÁMETRO PROPIETARIO INICIO NOMBRE
Mauna Kea; Hawai, EE UU (W.M. Keck Observatory) 4150 10 Universidad de California y Caltech 1992 Keck Teiescope
Zelenchúkskaia; monte Pastujov, Cáucaso, Rusia 2 070 6,00 1976 Bolshoi Teleskop Azimutalnii(BTA)
Monte Palomar; California, EE UU 1706 5,08 EEUU 1948 Hale
Monte Hopkins; Arizona, EE UU (Fred Lawrence Whipple Observatory) 2 600 4,60 (6 x 1,8) Smithsonian Institution 1979 Múltiple Mirror Teiescope (MMT)
La Palma; Canarias, España (Observatorio Roque de los Muchachos) 2 300 4,20 RU 1988 William Herschel
Cerro Tololo; Chile (Cerro Tololo Interamerican Observatory, CTIO) 2 400 4,00 EEUU 1976
Siding Spring; Nueva Gales del Sur, Australia (Anglo-Australian Observatory) 1 164 3,89 RU-Australia 1975 Anglo-Australian Teiescope
Kitt Peak; Arizona, EE UU (Kitt Peak National Observatory, KPNO) 2 064 3,81 EEUU 1973 Mayall
Mauna Kea; Hawai, EE UU (W.M. Keck Observatory) 4 194 3,80 RU 1979 UK Infrared Teiescope (UKIRT)
Mauna Kea; Hawai, EE UU 4 200 3,60 Canadá-Francia 1979 C.F.H. (Canadá-Francia-Hawai)
La Silla; Chile 2 400 3,57 ESO* 1976
Calar Alto; Sierra Nevada, España 2 160 3,50 RFA 1983
La Silla; Chile 2 400 3.50 ESO* 1988 New Technology, Teiescope (NTT)
Monte Hamilton; California, EE UU (Observatorio Lick) 1277 3,05 EEUU 1959 Shane
Mauna Kea; Hawai, EE UU 4 208 3,00 EEUU (NASA) 1979 IRTF (Infra Red Teiescope Facility)
Monte Locke; Texas, EE UU (Observatorio MacDonald) 2 070 2,72 Universidad de Texas (EE UU) 1969
Crimea; Ucrania (Observatorio de Crimea) 2,60 1961 Shajn
Monte Aragats; Armenia (Observatorio de Biurakan) 1500 2,60 1971

Historia y Construcción del Gran Telescopio en Monte Palomar

ESTÁ EN CONTRUCCIÓN UN NUEVO Y GRAN TELESCOPIO EN CHILE

Comenzó a cosntruirse el telescopio mas grande del mundo, llamado el “telescopio de treinta metros”, que se llama así por los 30 metros de diámetro que tiene su espejo principal, es el resultado de la colaboración entre universidades e instituciones de Estados Unidos, Canadá, China, India y Japón y cuenta con una inversión de 1.400 millones de dólares. En total, tendrá 100 metros de ancho y 492 espejos hexagonales que le darán una resolución diez veces mayor a la que actualmente ofrece el Hubble, de la NASA, lo que sin duda lo convertirá en una de las herramientas más poderosas para explorar el universo. Se espera esté listo para el año 2022.

Ampliación:
Principales telescopios en uso en el mundo

Se inicia por describir los telescopios refractores, que son los más antiguos, y terminaremos por describir los reflectores, más modernos.

El telescopio refractor más grande que se construyó fue el de un metro de abertura, del observatorio de Yerkes, a finales del siglo pasado, con fondos proporcionados a la Universidad de Chicago por el magnate C. T. Yerkes, a petición de George Ellery Hale.

Observatorio de Yerkes

La montura para este telescopio fue construida en el año de 1890 por la compañía Warner and Swasey. Algunas experiencias recientes muy desagradables con las bajas temperaturas en las montañas hicieron que se tomara la decisión de colocar el observatorio a 129 kilómetros al noroeste de Chicago, en un lugar con una altura de tan sólo 75 metros sobre el nivel del mar.

El objetivo de este telescopio fue construido por Alvan Clark en 1985. Las lentes solas pesaban 225 kilogramos sin su montadura, a pesar de haberse construido con un grueso excepcionalmente pequeño, a fin de hacerlas tan ligeras como fuera posible. El 21 de mayo de 1897 hicieron la primera observación tres astrónomos, entre los que se encontraba Hale. Según palabras del mismo Hale, con este telescopio fue posible ver detalles lunares y planetarios que nunca antes habían sido observados.

Otro telescopio refractor históricamente muy importante, construido antes que el de Yerkes, es el del observatorio de Lick, construido también por Clark en 1888 y apoyado económicamente por James Lick, quien murió en 1879, antes de que fuera terminado el proyecto. El observatorio de Lick se instaló en el Monte Hamilton, en Santa Clara, California. Este telescopio tenía un objetivo de 90 centímetros de diámetro.

Ahora haremos una síntesis de los telescopios reflectores más grandes que existen, comenzando por el mayor de todos ellos, que es el de 6 metros de abertura, que se encuentra instalado en la Unión Soviética.

El telescopio reflector de 6 metros de abertura de la Academia de Ciencias de la URSS se comenzó a construir en el año de 1960. Después de muchos estudios para encontrar un buen lugar de observación, se instaló en el monte Semirodniki, a una altura de 2 070 metros al norte de la cordillera caucásica.

El trabajo en la construcción se inició en 1966 y comenzó a funcionar aproximadamente 10 años después. Este inmenso telescopio es hasta la fecha el mayor del mundo y quizá lo sea por mucho tiempo más, pues los problemas prácticos que tiene un telescopio de este tamaño son formidables. El espejo primario de este telescopio es de vidrio borosilicato (equivalente al Pyrex). La parte posterior del espejo es de forma convexa, a fin de que el espejo tenga un grueso aproximadamente constante y con ello minimizar las distorsiones térmicas.

La montura de este telescopio es de tipo altazimut, ya que una ecuatorial de estas dimensiones sería imposible de construir sin que tuviera muy serios problemas de flexiones mecánicas. La montura altazimut tiene menos problemas de flexiones, pero a cambio de ello la compensación por el movimiento diurno de las estrellas tiene que hacerse moviendo en forma alineal muy complicada los dos ejes, al mismo tiempo que se gira también el portaplacas fotográfico. Todo esto se hace simultáneamente con motores independientes, controlados por medio de una computadora.

El telescopio de 5 metros de abertura de monte Palomar fue el más grande del mundo durante casi tres décadas. Cuando se concibió la idea se pensó que era un gran proyecto que requería mucha planeación y esfuerzo.

Quien concibió la idea de construir este telescopio fue George Ellery Hale, quien además se tomó el trabajo de reunir los fondos necesarios.

Uno de los detalles técnicos más importantes era la selección del material para el espejo. Se sugirieron muchos materiales, pero finalmente se decidió utilizar cuarzo fundido, con vidrio Pyrex como alternativa. Varios fracasos en los intentos para fundir el bloque de cuarzo del diámetro requerido hizo que la selección final fuera Pyrex. El coeficiente de expansión del Pyrex es casi cinco veces mayor que el del cuarzo fundido, pero una tercera parte que el del vidrio común. Aumentando el contenido de cuarzo en el Pyrex se logró que el coeficiente de expansión fuera sólo tres veces superior al del cuarzo.

Se fundieron en la compañía Corning Glass, en el estado de Nueva York, dos bloques de Pyrex de 5 metros de diámetro, el primero de marzo de 1934, con la presencia de un gran número de observadores. El tanque donde se estaba fundiendo el vidrio se colocó dentro de un gran horno.

Las 65 toneladas de vidrio se vaciaron durante 15 días en forma continua. Después, tomó otros 16 días llegar a la temperatura de fusión de 1 575 °C. Luego se comenzó a pasar el vidrio fundido del tanque al molde final en crisoles de 300 kilogramos a la vez. El enfriado hasta 800 °C se hizo en cuatro semanas, 10 veces más rápido de lo previsto.
Al examinar la pieza final se detectaron tensiones y pequeñas fracturas internas, por lo que se intentó fundir un segundo bloque. Se pensó que el enfriado debía hacerse en 10 meses.

Cuando ya habían transcurrido siete meses se desbordó el río Chemung, pero se logró con gran esfuerzo que el agua no llegara al horno. Un mes después hubo un gran temblor, que por fortuna no causó ningún daño.
Finalmente, en 1935 se trasladó en un tren especialmente acondicionado el gran bloque de vidrio, de Corning, Nueva York a Pasadena, Cal., adonde llegó en perfectas condiciones.

Mientras tanto, en el California Institute of Technology se había instalado un gran taller óptico con una máquina pulidora que pesaba 160 toneladas, a cargo de J. A. Anderson y Marcus Brown.

El proceso de generar la curvatura deseada significaba profundizar en el centro casi 10 centímetros, desbastando casi cinco toneladas de vidrio. El segundo paso fue afinar la superficie hasta darle forma esférica, por medio de un proceso de esmerilado con granos de esmeril cada vez más finos.

Después, antes de pulir, se emplearon tres meses en lograr una buena limpieza sin granos de esmeril, tanto del espejo como de la máquina. En el proceso final de pulido y parabolizado se utilizaron 31 toneladas de abrasivos y casi 10 años. Se consideró listo para ser probado en noviembre de 1947.

El 3 de junio de 1948 tuvo lugar la ceremonia oficial de inauguración, donde estuvo presente la viuda de Hale y se develó un busto de bronce de su esposo, con una placa bautizando el telescopio con su nombre.

Al principio de los años 60, la Associated Universities for Research in Astronomy, comenzó el proyecto de construir dos telescopios reflectores de cuatro metros de abertura, para ser instalados uno en el observatorio de Kitt Peak en Arizona, y otro idéntico un poco más tarde en el cerro Tololo, en Chile.

Uno de los espejos era de Cervit y el otro de cuarzo fundido, ambos materiales con un coeficiente de expansión térmica despreciable. La inaguración del observatorio de Kitt Peak fue en junio de 1963.

Los principales telescopios refractores


Diámetro en m.
Constructor
Inició operaciones
Nombre oficial
Observatorio

1,01
Alvan Clark & Sons
1897
Yerkes, Univ. de Chicago
,89
Alvan Clark & Sons
1888
Refractor de 83 cm
Lick, en california, EUA
,83
Paul & Prosper Henry
1889
Observatorio de Niza, en Francia
,80
C. A. Stenheil
1899
Instituto Central de Astrofísica en Alemania Oriental
,76
John A. Brashear
1914
Refractor Thaw
Allegheny, en Pennsylvania
,74
Paul & Prosper Henry
1886
Lunette Bischoffsheim
Obs. de Niza en Francia
,71
Sir Howard Grubb
1894
Refractor visual de 64 cm
Old Royal Greenwich, en Inglaterra
,68
C. A. Stenheil
1896
Refractor Grosser
Archenhold Sternware, en RDA
,67
Sir Howard Grubb
1880
Refractor Grosser
Instituto de Astronomía de la Universidad de Viena
,67
Sir Howard Grubb
1925
El telesc. Innes
Estación del Observatorio Astronómico Sudafricano en Johannesburgo, Sudáfrica
,66
Alvan Clark & Sons
1883
Leander Mc Cormick en Virginia, EUA
,66
Alvan Clark & Sons
1873
Ecuatorial de 60 cm
Observatorio Naval de EUA en Washington
,66
Sir Howard Gribb
1899
El refract. Thompson
Observatorio Real de Greenwich, en Inglaterra
,66
J.B. Mc Dowell
1925
Refractor Yale-Columbia
Monte Stromlo, ACT, Australia

Los principales telescopios reflectores


Diámetro en m.
Constructor
Inició operación
Nombre oficial
Observatorio

6,00
Equipo de trabajo óptico de Leningrado
1976
Telescopio Altazimutal Bolshoi
Observatorio astrofísico Especial de la Unión Soviética.
5,08
J. A. Anderson Marcus Brown
1948
George Elery Hale
Monte Palomar, California
4,50
Centro de Ciencias Ópt. U. de Arizona
1979
Telescopio de espejos Múltiples
Kitt Peak, Arizona
4,20
1985
Islas Canarias, España
4,00
Taller Óptico de Kitt Peak
1976
Intermericano de cerro Tololo, Chile
4,00
Taller Óptico de Kitt Peak
1973
Nicholas U. Mayall
Kitt Peak, Arizona
389
Grubb-Parsons
1975
Anglo-Austral
Observatorio Angloaustriaco en Austria
3,80
Grubb-Parsons
1979
Infrarrojo del Reino Unido
Unidad del Observatorio Real de Edimburgo, Hawaii
3,60
Dominion
1979
Canadiense francés, hawaiano
3,57
Recherches et Études Optiques et de Sciences Connexes
1976
ESO 3.6 metros
Europeo del sur, Chile
3,05
Don O. Hendrix
1959
C. Donald Shane
Lick, California
300
Taller Óptico de Kitt Peak
1979
Infrarrojo de la NASA
Mauna-Kea, Hawaii

Fuente Consultada:
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Principales Cráteres en el Planeta Por Impactos de Meteoritos

EL IMPACTO DE LOS METEORITOS: Se define como meteorito a un trozo de material, a menudo procedente de algún asteroide, lo bastante  grande como para sobrevivir al pasar la atmosfera terrestre.

Los meteoritos son fragmentos de rocas del espacio interplanetario que el azar ha traído a la Tierra. Son de tres tipos: piedras —con mucho las más abundantes (92,8% de las caídas observadas)—, hierros (5,7%), y hierros líticos (1,5%).

Las piedras se componen en gran medida de silicatos —como la olivina, el piroxeno y el feldespato— y otros minerales conocidos en rocas ígneas lunares y terrestres. Más del 85% de las piedras son «condritas», que se distinguen de otras rocas ígneas por la presencia de pequeñas inclusiones esféricas de material de silicato llamadas cóndrulos. Los meteoritos de hierro son esencialmente aleaciones de hierro con hasta un 20% de níquel.

La mayoría de estos se componen de dos minerales de níquel-hierro intercalados laminarmente que muestran una superficie con dibujo en zig-zag al ser partidos y pulidos. Los meteoritos de hierro lírico se componen de níquel-hierro y silicatos en proporciones aproximadamente iguales: algunos presentan discretos granos de olivina dentro del níquel-hierro. Muchas piedras y hierros líricos presentan cortezas lisas o rugosascomo resultado de la ablación (fusión superficial) a su paso por la atmósfera de la Tierra. Algunos hierros presentan hendiduras cortantes formadas de la misma manera.

La datación isotópica de meteoritos revela edades mineralógicas de unos 4.600 millones de años, tanto como las rocas lunares datadas como más antiguas, e iguales a la edad que se le calcula a la Tierra y, presumiblemente, a los demás planetas.  La mayoría de los meteoritos se formaron probablemente mucho más tarde, cuando cuerpos originarios, pequeños pero de diferentes tamaños, del cinturón de asteroides entre Marte y Júpiter co-lisionaron y estallaron.

Caen en la Tierra un millón de meteoritos al año y, aunque raramente se ven, de vez en cuando causan daños. Los grandes han ocasionado cráteres, de los que el Cráter del Meteoro de Arizona de hace 20.000 años, con 1,2 kilómetros de diámetro y 174 metros de profundidad, es el ejemplo más gráfico. Algunos pequeños han caído sobre seres vivos. Una vez se rumoreó que un meteorito acertó a un gato.

Un caballo recibió un impacto en New Concord, Ohio, en 1860. Y aunque la mayor parte de los meteoritos proceden de asteroides, en 1911 un perro murió en Egipto al caerle un meteorito procedente de Marte. También han caído sobre seres humanos. Un hombre de Mhow, en la India, fue alcanzado en 1827, y en 1954 una ama de casa de Alabama dormía en el sofá de su cuarto de estar cuando una piedra procedente del espacio exterior atravesó el tejado y le impactó en la cadera, dejándole una impresionante quemadura. Fue un brusco despertar.

La mayoría son partículas pequeñas casi como de polvo y son rápidamente incineradas por el intenso calor friccional del vuelo atmosférico a alta velocidad. Sus incandescentes muertes, marcadas por brillantes estelas de luz, son las «estrellas fugaces» o «meteoros» del cielo nocturno.

Sólo unos pocos de los mayores meteoroides o sus restos fragmentados sobreviven al violento paso a través de la atmósfera para llegar a la superficie de la Tierra como meteoritos, e incluso así, alrededor de dos tercios caen en los océanos. Anualmente, rara vez se registran y recuperan más de diez caídas de meteoritos.

La caída de un meteorito se puede ver como una bola de fuego con largas colas incandescentes de materiales de desecho de la ablación. Se puede producir un sonido como de un trueno, de un silbido o de un resquebrajamiento, a veces acompañados por explosiones de «onda de choque supersónica».

Los lugares de hallazgos de meteoritos, de los que en la actualidad se conocen casi 2.500, se distribuyen de una manera fortuita, pero las tectitas parecen estar confinadas a «áreas de dispersión» en ciertas regiones geográficamente limitadas: las caídas de tectitas no han sido nunca observadas.

Las marcas de impactos de meteoritos en la superficie de la Tierra son muy poco corrientes, en gran medida porque los procesos geológicos normales conducen a su desaparición: sólo cráteres de mayor tamaño sobreviven durante algún tiempo, generalmente en condiciones de clima y de geología de superficie favorables, tal y como ejemplifica el cráter Meteor de Arizona, de 20.000 años de edad.

Sin embargo, investigaciones sistemáticas en muchas partes del mundo, sugieren ahora la presencia de hasta 60 estructuras de origen meteorítico, algunas de las cuales se asocian a la presencia de fragmentos de níquel-hierro y minerales que muestran el efecto de altas presiones coherentes con una modificación por impacto.

Mapa de los Principales Crateres

Principales cráteres de impacto en la superficie terrestre:

crater terrestre

Vredefort (Sudáfrica)  
De 300 km de diámetro y unos    2.000 millones    de    años de antigüedad.

crater terrestre

Sudbury (Ontario, Canadá)     
De unos 250 km de diámetro y    originado    hace    más    de 180 millones de  años.

crater mexico

Chicxulub (Golfo de México)  
De unos 170 km de diámetro y originado hace unos 65 millones de años, entre los límites de los tiempos mesozoicos y los fanerozoicos. Este gran cráter se relaciona con la gran catástrofe nz ógica que afectó a la Tierra al final del  período Cretácico, durante la cual se extinguieron numerosos grupos de organismos, entre ellos los dinosaurios.

Mankouagan (Quebec, Canadá)
De unos 100 km de diámetro originado hace unos 200 millones de años.

Propigai (Rusia)
De unos 100 km de diámetro y de alrededor de unos 35 millones de años de antigüedad.

Acraman (Australia)
De unos 90 km de diámetro y originado hace unos 570 millones de años, a inicios de los tiempos fanerozoicos.

Puchezh-Katunki (Rusia)
De 80 km de diámetro y originado hace unos 220 millones de años.

Siljan (Suecia)
De 55 km de diámetro y originado hace unos 368 millones de años.

Saint Martin (Canadá)
De 40 km de diámetro y formado hace unos 220 millones de años.

Teague (Australia)
De 30 km de diámetro y originado hace unos 1685 millones de años.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway – Crítica
La Luna, Marte y Los Meteoritos Geological Museum – Akal
Historia Universal Los Orígenes Tomo I – Salvat

Usos del Transbordador Espacial Misiones y Programas de la NASA

El Trasbordador Espacial
El Trasbordador Espacial, u orbitador, es el único vehículo espacial en el mundo que se puede volver a usar. Se eleva en el espacio montado sobre un gigantesco cohete y luego es capaz de volver a aterrizar como un avión. Puede estar listo para volver a usarse en sólo seis días y medio.

Carga pesada: Del mismo modo que los astronautas, el Trasbordador Espacial lleva equipaje. Satélites, sondas espaciales o laboratorios espaciales son llevados dentro del compartimiento de cargas.

Super aterrizaje: Frenos de carbón, un timón dividido en dos y alerones especiales reducen su velocidad. Al tocar la pista de aterrizaje se abre un paracaídas.

Protectores térmicos: Un escudo hecho de siliconas cubre al Trasbordador Espacial, protegiéndolo de una temperatura superior a 1.260 °C durante su entrada en la atmósfera.

Arranque: El despegue del Trasbordador Espacial está controlado automáticamente por computadoras a bordo de la nave por un centro de control desde la base en Tierra. La fuerza que desplegan los cohetes durante el despegue es tres veces mayor que la fuerza de gravedad de nuestro planeta.

Los gases calientes que emanan del cohete impulsan la nave espacial hacia arriba.
Toma sólo 50 minutos alcanzar la órbita terrestre.

Ver el Trasbordador Discovery Por Dentro

La flota de transbordadores. Con una flotilla de seis transbordadores, la NASA ha llevado a cabo apasionantes misiones en el espacio. Ésta es la historia resumida de cada uno de ellos.

Columbia. Su primer vuelo fue en 1981. Fue bautizado así en honor al buque que circunnavegó el globo por primera vez con una tripulación de estadounidenses. En 1998, puso en órbita la misión Neurolab para estudiar los efectos de la microgravedad en el sistema nervioso. Neurolab fue un esfuerzo colectivo entre seis agencias espaciales, incluyendo la Agencia Espacial Europea. Se desintegró durante su reentrada a la Tierra en febrero de 2003. Columbia voló 28 veces.

Challenger. Realizó su ‘primera misión en 1982. Recibió el nombre del buque inglés que exploró los mares en el siglo XIX. En 1984, el astronauta Bruce McCandless se convirtió en la primera persona en realizar una salida espacial autónoma en una unidad de maniobra individual. El Challenger voló 10 veces.

Discovery. Entró en acción en 1984. Bautizado en honor a uno de los barcos del explorador británico James Cook que lo condujeron a las islas del Pacífico Sur. En 1998 llevó a Pedro Duque por primera vez al espacio en una misión histórica en la que participó también el ex astronauta estadounidense John Glenn, el primer hombre de EE. UU. en orbitar la Tierra. Discovery llevó a cabo 30 misiones.

Atlantis. Su primer vuelo fue en 1985.Lleva el nombre del velero del Instituto Oceanográfico de Woods Hole, que fue el primer barco en ser usado para investigaciones marinas en Estados Unidos. En 1995 llevó al espacio la primera de nueve misiones para atracar en la Estación Espacial Mir. Atlantis viajó 26 veces.

Endeavour. Es el más joven de la flotilla y fue operativo en 1992. Está bautizado en honor al primer .buque del explorador
británico lames Cook en las islas del Radico Sur. En 2001 timo lamiswndeñstalarel brazo robot de la Estación Espacial Internacional. Votó oí 19 ocasiones.

Enterprise. Fue el primer modelo y se usó en pruebas tripuladas durante los noventa para estudiar cómo planeaba en el ale al ser soltado desde un anón. Sin embargo, nunca voló al espacio. Fue bautizado con el nombre de la nave espacial de la serie Star Trek.

Los últimos cinco cambios claves para volver al espacio

Calentadores: Colocar calentadores eléctricos cerca de los puntos de fijación del depósito externo para prevenir la formación de cristales de hielo. Además, diseñar espuma aislante que no se separe de las paredes del depósito en el despegue.
Paneles de Carbono Realizar análisis -rayos X, ultrasonido, corriente electromagnética y termografía- de los 44 paneles de carbono-carbono reforzado que recubren los bordes de ataque de las alas, el morro y las compuertas del tren de aterrizaje delantero antes de cada vuelo. Además, detectar brechas en estos paneles durante el vuelo e inventar formas de repararlas en órbita.
Videos y fotos Evaluar la condición del transbordador durante el despegue, usando cámaras de vídeo y fotografía de la más alta resolución.
Aislante térmico. El material aislante térmico que recubre los propulsores de aceleración es una mezcla de corcho con una pintura protectora colocada con tecnología puntera, que evita que el aislante se despegue en grandes fragmentos.
Capsula de Seguridad: Diseñar una cápsula de seguridad expulsable para los astronautas.

Paracaídas y vehículo de escape en emergencias: La NASA trabaja también en un sistema de escape por si algo va mal durante el despegue. En el Centro Espacial Marshall se están llevando a cabo ensayos con motores de cohetes en una serie de Demostraciones de Aborto en Plataforma que incluyen paracaídas y una cápsula similar al vehículo de escape.”El accidente del Columbia fue ocasionado por una serie de errores colectivos. Nuestro regreso al espacio debe ser un esfuerzo colectivo”, dice el director de la agencia, Sean O’Keefe. A medida que el personal de la NASA se repone de la tragedia y se prepara a volar nuevamente, es importante recordar que explorar el cosmos es una actividad sin duda peligrosa y lo seguirá siendo durante mucho tiempo. Por eso, cualquier medida de seguridad es poca.

Hitos de la Carrera Espacial Primera Mujer en el Espacio Perra Laika

carrera espacial

sputnik

SPUTNIK: PRIMER SATÉLITE (URSS) EN ORBITA

¿Cuándo se lanzó el Sputnik?
El 4 de octubre de 1957, fue lanzado el Sputnik 1 en la entonces Unión Soviética, en Kazakhstan, cerca de la ciudad de Leningrado.

Esto representó el primer lanzamiento exitoso al espacio. El Sputnik 1 no era mucho más que un transmisor de radio, pero su órbita de 90 minutos alrededor de la Tierra condujo a la era espacial.

EXPLORER: PRIMER SATÉLITE (EE.UU.) EN ORBITA

¿Cuándo lanzaron los Estados Unidos su primer satélite?
El lanzamiento soviético del Sputnik incitó a los Estados Unidos a poner en órbita su primer satélite: el Explorer 1.  El Comité Nacional Asesor en Aeronáutica (NASA), predecesor de la Administración Nacional de la Aeronáutica y el Espacio (NASA), adoptó un plan de la Marina estadounidense llamado Vanguardia para lanzar el primer satélite del país. No obstante, la recorrida de prueba del satélite, en diciembre de 1957, terminó en un incendio.  El Explorer fue lanzado con éxito hacia su órbita espacial alrededor de la Tierra el 31 de enero de 1958.

PRIMER SER VIVO ENVIADO AL ESPACIO (URSS)

El Sputnik 2, transportó en su viaje orbital a una perra, llamada Laika. Fue el primer ser vivo en viajar al espacio. Laika no mostró signos de sufrimiento por el lanzamiento o la falta de gravedad durante el viaje. Sin embargo, la Unión Soviética no había creado un método para traerla sana y; salva de regreso a la Tierra.

Una semana después del lanzamiento, Laika murió debido a la falta de aire. Unos 5 meses más tarde, el Sputnik 2 regresó a la Tierra y Laika quedó inmortalizada en la historia de vuelos espaciales.

PRIMER SER VIVO ENVIADO AL ESPACIO (EEUU)

¿Cómo se probó la cápsula Mercury?
En enero de 1961, la primera Mercury fue probada con un chimpancé llamado Ham que cumplió exitosamente el primer vuelo suborbital. Ham sobrevivió.

Unos cuatro meses más tarde, el astronauta Alan B. Shepard también sobrevivió a un exitoso vuelo suborbital.

PRIMER HOMBRE EN EL ESPACIO (URSS)

¿Quién fue el primer hombre en ir al espacio?
Este honor lo tuvo el cosmonauta soviético Yuri Gagarin, el 21 de abril de 1961. casi un año antes que Glenn. La Unión Soviética informó sobre un vuelo orbital totalmente exitoso de 1 hora y 48 minutos de la cápsula Vostok 1 tripulada por un astronauta. 

Más tarde se supo que hubo problemas en el reingreso debido a que la carcaza antitérmica protectora de la cápsula se había calentado hasta ponerse incandescente por las elevadas temperaturas. 

Gagarin tuvo que eyectarse y abrir su paracaídas hasta que finalmente aterrizó a salvo.
Esta información, incluyendo el grado de heridas de Gagarin, no fue revelada hasta unos treinta años más tarde.

PRIMER HOMBRE EN EL ESPACIO (EEUU)

¿Quién fue el primer astronauta estadounidense en dar una órbita alrededor de la Tierra?
El astronauta John Glenn Jr. Fue el primer estadounidense en dar una órbita a la Tierra. Su cápsula Mercury, llamada Friendsbip 7, fue lanzada el 20 de febrero de 1962 y lo mantuvo en órbita durante 5 horas.  En el reingreso a la atmósfera, la NASA

PRIMERA MUJER EN EL ESPACIO (URSS)

El 16 de  junio de 1963, se lanzaron la Vostok 5 y la Vostok 6. Su plan también era encontrarse y establecer contacto radial en el espacio.

Lo que la mayoría de la gente no sabía en esa época era que la Vostok 6 iba comandada por una cosmonauta mujer, Valentina Tereshkova, de 26 años de edad. (La primera estadounidense astronauta fue Sally Ride, a bordo del transbordador espacial Challenger unos 20 años después.) Los vuelos de las Vostok 5 y 6 transcurrieron tranquilamente; la Vostok estableció el récord de permanencia de una persona en el espacio: 5 días.

PRIMERA MUJER EN EL ESPACIO (EEUU)

Sally Ride nació en Los Ángeles en 1951, y fue una de las cinco mujeres seleccionadas en 1978 (entre 9000 pedidos), para volar en el nuevo sistema de la lanzadera espacial  que se puso en marcha 18 de junio 1983.  Ella tiene un doctorado en Física por la Uni

PRIMER PASEO ESPACIAL (URSS)

El 18 de marzo de 1965, Alexei Leonov salió al espacio abandonando su nave Vokshod 2, mientras su compañero Pavel Belyayev quedaba a los comandos. Leonov llevaba un traje espacial y estaba conectado a la Vokshod 2 por una cuerda y comunicación radial. Su caminata transcurrió con éxito, pero el traje espacial de Leonov se había expandido y el astronauta debió reducir la presión del aire adentro de éste para poder volver a entrar en la nave. El regreso fue un poco traumático, y tuvieron que descender a mas de 1000 Km. de distancia del objetivo, pasando la noche en un bosque frente a un fuego improvisado.

PRIMER PASEO EN EL ESPACIO (EEUU)

Edward Higgins White II (1930 – 1967) fue un famoso astronauta norteamericano. Nació en San Antonio, Texas, Estados Unidos y fue formado en ingeniería aeronáutica en 1959 por la

CRONOLOGÍA DE LOS HITOS ESPACIALES

———4 OCT. 1957———
Empieza la Era Espacial con el lanzamiento del primer satélite soviético, el Sputnik 1. Fue puesto en órbita
alrededor de la Tierra.

———3 NOV. 1957———
Los soviéticos envían el Sputnik 2, tripulado por la perra Laika.

———1958———
Estados Unidos envía su primer vehículo espacial, d Explorer 1.

———1959 ———
Los soviéticos envían la sonda lunar Luna 2, que se estrella en la superficie lunar. La Luna 3 tiene éxito y envía las primeras fotografías de la Tierra vista desde el espacio.

———12 ABR. 1961 ———
El cosmonauta Yuri Gagarin realiza el primer vuelo tripulado.

——— MAYO 1961 ———
El presidente de Estados Unidos,John Kennedy, propone al estado la tarea de poner un hombre en la Luna antes del final de la década.

——— 20 FEB. 1962 ———
John Glenn, a bordo del Friendsbip 7, se convierte en el primer estadounidense que órbita la Tierra.

———10 JUL. 1962 ———
Se lanza el Telstar, primer satélite de telecomunicaciones comerciales. Transmite la primera película a través del Atlántico.

———1963 ———
La cosmonauta soviética Valentina Tereshkova se convierte en la primera mujer que sale al espacio.

———1965———
La sonda espacial estadounidense Maríner 4 proporciona las primeras fotografías de Marte. El soviético Alexei Leonov realiza el primer paseo espacial; tres meses después le sigue el estadounidense Edward H. White.

———1966———
La sonda espacial soviética Luna 9 alcaliza la superficie lunar y envía fotografías de ella.

———1967———
Los soviéticos instalan la estación espacial (nave espacial que puede mantenerse años en órbita) Soyuz, primera en la
historia. La misión acaba en desastre: la nave se estrella al regresar a la Tierra. Tres astronautas estadounidenses mueren calcinados durante una prueba de lanzamiento.

———1968———
Lanzamiento de la nave tripulada Apollo 8.

———2O JUL. 1969———
Los estadounidenses Neil Armstrong y Edwin Aldrin, de la misión Apollo 11, son los primeros hombres que caminan
sobre la superficie lunar.

———1970 ———
La nave soviética no tripulada Luna 16 recoge muestras de la superficie lunar.

———1971 ———
Una sonda soviética envía fotografías de Marte.

———1972 ———
Estados Unidos realiza su último vuelo tripulado del proyecto Apollo. Los astronautas son Eugene Ceñían
y Harrison Schmitt.

———1973———
Se instala el Skylab, la primera estación espacial estadounidense.

———1975———
Primeras operaciones conjuntas de Estados Unidos y la Unión Soviética con la misiones Apollo y Soyuz.

———1976———
Se lanza el Viking estadounidense para explorar la vida en Marte. Toma muestras de la superficie del planeta.

———1977———
Los Estados Unidos lanzan las sondas Voyager 1 y 2 para tomar fotografías de los planetas más remotos.

———1981———
Se pone en órbita el primer transbordador espacial.

———1983———
El presidente estadounidense Ronald Reagan da su conformidad a la Iniciativa de defensa estratégica,
que consiste en la instalación de defensas anti-misiles en el espacio.

——— 28 ENE. 1986———
Explosión del Challenger. Mueren sus siete tripulantes.

———1986———
La Unión Soviética instala la Estación espacial 3-

Biografía de Valentina Teréshkova Primera Mujer en Viajar Al Espacio

Resumen Biografia Valentina Teréshkova
Primera Mujer en Viajar Al Espacio

Hija de campesinos y más tarde humilde trabajadora de un complejo textil de la ciudad rusa de Yaroslavl, Valentina Teréshkova estaba sin embargo señalada para otros destinos. Su afición por el paracaidismo fue el paso inicial en su camino hacia el cosmos, porque el 16 de junio de 1962 se convirtió en la primera mujer que viajara en el espacio exterior, concretando una hazaña que le valió el reconocimiento mundial como una pionera de la era espacial.

Vladimir y Elena Teréshkov festejaban el nacimiento de Valentina, su segunda hija, en una pequeña granja colectiva no muy lejos de la antigua ciudad rusa de Yaroslavl, a orillas del Volga, a unos 300 kilómetros al nordeste de Moscú.

Corría el año 1937 y los felices padres no podían suponer que la pequeña Válechka llegaría a ser la primera mujer que paseara por el cosmos. En realidad, jamás les había pasado por la cabeza la posibilidad de que alguien llegara a hacerlo. Los problemas de los Teréshkov estaban bien ligados a la Tierra, y su principal preocupación por entonces era realizar lo mejor posible la pequeña parte que les correspondía en el cumplimiento del ambicioso tercer plan quinquenal del gobierno soviético.

Vladimir era un hombre alegre, trabajador y expansivo, y para él pocos ingenios podían superar a esa moderna y productiva máquina de la que estaba tan orgulloso: el sufrido tractor que manejaba en el koljós. Cuatro años más tarde, Hitler había de invadir la Unión Soviética y Vladimir Teréshkov moriría en el frente de batalla. Valentina casi no lo recuerda, pero ella y sus hermanos tuvieron en la madre a una mujer abnegada que hizo cuanto pudo por sus tres hijos.

En el año 1945 los Teréshkov se mudaron a Yaroslavl y se instalaron en casa de unos parientes. Elena comenzó a trabajar en una fábrica de tejidos mientras las dos hijas, Ludmila (la mayor) y Valentina, asistían a la escuela, y el menor, Vladimir, a un jardín de infantes. Cuando Valentina terminó el séptimo grado, decidió que comenzaría a trabajar y seguiría estudiando por la noche. Entró como obrera en una fábrica de neumáticos y más tarde se incorporó al gran complejo textil de Yaroslavl.

En esos años tenía dos pasiones: el esquí y la lectura. Cuando no se deslizaba sobre la nieve, eran las discusiones en el bosque alrededor de una fogata, en el otoño, o excursiones veraniegas a las playas del Volga, siempre acompañada fielmente por los libros. Al terminar el décimo grado, comenzó a estudiar por correspondencia en una escuela técnica.

Por esa época se fue aficionando a otro deporte que sería el primer paso en su rápido camino al espacio cósmico. En un principio, todo se limitó a escapadas furtivas, a primera hora de la mañana, hasta la puerta de calle. Un avión sobrevolaba regularmente su casa y de él se arrojaban paracaidistas. “¡Esos sí que son valientes!”, comentaba luego a su madre y a su hermana, al dirigirse a la fábrica. Pronto comenzó a saltar en paracaídas.

Cuando el 12 de abril de 1961 Yuri Gagarin fue el primer hombre en recorrer el espacio extra-terrestre, Valentina integraba la Liga Juvenil Comunista y seguía trabajando en la fábrica. Todavía no se habían apagado en Yaroslavl los ecos del júbilo despertado por la hazaña del primer astronauta, cuando una persona llegada de Moscú conversó largo rato con Valentina y otras integrantes del club de paracaidismo que habían solicitado ingresar en la Escuela de Cosmonáutica. Poco después Valentina partía para la capital.

Allí inició una etapa de intensos estudios y entrenamientos hasta que en mayo de 1962 fue incorporada al equipo de cosmonautas. El propio coronel Gagarin, comandante del Destacamento de Astronautas, fue uno de sus maestros. Valentina debió aprobar cursos teóricos sobre técnica coheteril y pilotaje de cápsulas espaciales, además de someterse a arduas pruebas en la pista rodante, el rotor, la centrífuga, la cámara sorda y otras. Finalmente, le tocó a Valentina destruir el mito de que los cosmonautas debían ser seleccionados entre los pilotos de pruebas militares.

Sin embargo, no todos fueron estudios, entrenamiento y trabajo. Valentina dedicó todo el año 1962 a prepararse para el vuelo, pero los domingos iba a Moscú, donde frecuentaba el teatro Bolshói y las salas de concierto. Pronto se hizo admiradora de Chaikovsky y Beethoven, al tiempo que el prestigioso pianista soviético Emil Guílels y el talentoso joven norteamericano Van Cliburn pasaron a ser sus intérpretes preferidos.

VALENTINA SE CONVIERTE EN “GAVIOTA”

El 15 de junio de 1963 Valentina Teréshkova, vestida con un traje sastre azul y zapatos blancos, está sentada junto a sus compañeros, a los técnicos de la base y a los periodistas soviéticos, en un amplio salón de reuniones del cosmodromo de Baikonur.

En un estrado se encuentran los integrantes de la comisión oficial encargada de decidir los lanzamientos. El presidente de la comisión llama a Valentina y le dice ¡”Ciudadana Teréshkova, ha sido usted designada para comandar la nave espacial Vostok VI. La fecha de partida está fijada para mañana, domingo 16 de junio de 1963″. Valentina, visiblemente emocionada pero con la calma propia de todo astronauta, agradece la designación, que considera un honor, y declara sentirse feliz y orgullosa. La sala estalla en aplausos. Valeri Bikovski, el astronauta que más órbitas (81) realizó sin acompañante, ya se encontraba en el espacio desde el 14 de junio tripulando la nave espacial Vostok V, y esperaba el lanzamiento de su colega, que conmocionaría al mundo.

Aquel domingo Valentina se levantó con el sol. Su gorro blanco lucía a la izquierda una paloma bordada sobre un fondo dorado de rayos solares. “Estoy lista para el vuelo”, anuncia a los jefes de la operación. Le regalan flores: nunca antes un hombre había obsequiado flores a una mujer que partía a las estrellas. La joven astronauta ya está en la cabina, donde escucha la voz familiar de Gagarin: “Cinco minutos para preparativos”. Y Valentina informa: “Ajusté mi casco, me puse los guantes”.

A las 11.30, hora de Moscú, se inicia la fase final, la cuenta regresiva. La intrépida cosmonauta tiene ante sí una carpeta con tapas blancas y unas iniciales en grandes caracteres cirílicos: CCCP (es decir, SSSR, iniciales del nombre en ruso de la Unión de Repúblicas Socialistas Soviéticas); es su libro de navegación. Solo falta esperar que termine la cuenta regresiva. Valentina observa cómo la aguja del segundero recorre una, otra y otra vez la esfera del cronómetro. “Comenzar el despegue -ordena el puesto de mando-. ¡Despegue!”

Por obra y gracia del código de vuelo, Valentina se convierte desde ese instante en “Gaviota”. Bikovski ya es “Halcón”, y Gagarin, a cargo de los contactos radiales Tierra-Vostok, “Amanecer”.

-Aquí Amanecer. ¿Me oye, Gaviota? Su vuelo se desarrolla normalmente, los cohetes funcionan a la perfección.
-Aquí Gaviota, aquí Gaviota. Estoy bien, me siento muy bien. Soporto la aceleración normalmente.

E sel primer diálogo entre una mujer lanzada al espacio y un hombre. Cuando Valentina fue a reunirse con él, Bikovski estaba en su 32a vuelta alrededor de la Tierra. Se comunicaron por radio en seguida pero la emoción les hacía olvidar sus nombres de código: “Valerik -dijo Teréshkúva-, voy a cantar, para que no te aburras, nuestra canción preferida: la de los cosmonautas.”

TRES DÍAS Y DOS MILLONES DE KILÓMETROS

El vuelo de la Vostok VI estaba planeado inicialmente para durar 24 horas. Poco antes de ese plazo se consultó con.Teréshkova sobre su estado físico. Al responder la astronauta que se encontraba perfectamente bien, la experiencia se prolongó dos días más. El miércoles 19 de junio a las 11 de la mañana “Amanecer” habló con “Gaviota”: “Válechka, pronto iniciarás tu descenso. Ya te adjudicaste una serie de triunfos y tu padre estaría orgulloso de ti si viviera”. No hubo respuesta: Valentina quizás lloraba.

Aterrizó a las 11.20. La ciudad de Kamen del Obi, en Siberia occidental, se insinuaba al norte. Valentina Teréshkova había recorrido dos millones de kilómetros (más de cinco veces la distancia que separa la Tierra de la Luna), en 70 horas y 50 minutos, a una velocidad media de 28 mil kilómetros por hora, durante sus 48 vueltas alrededor de la Tierra.

Después vinieron los agasajos en la Plaza Roja de Moscú y en muchas Otras capitales del mundo, y su casamiento, en el otoño de 1963, con un compañero de trabajo, el astronauta Andrián Nikoláiev, que había tripulado durante 94 horas y 35 minutos la Vostok III en agosto de 1962. Al año siguiente nació su hija Elena, en las cercanías de Moscú.

Además de haber sido la primera astronauta del mundo, Valentina Teréshkova es diputada al Soviet Supremo de la URSS y presidenta del Comité de Mujeres Soviéticas. La primera mujer que vio la Tierra desde el espacio cósmico expresó así su emoción: “Me siento muy feliz. Veo el horizonte. Un celeste pálido con estrías azules. Es la Tierra. ¡Cuan bella es!”

Fuente Consultada: Vida y Pasión de Grandes Mujeres – Las Reinas – Elsa Felder

Historia de la Estacion Espacial Internacional Objetivos Megaproyecto

El Trasbordador Espacial
El Trasbordador Espacial, u orbitador, es el único vehículo espacial en el mundo que se puede volver a usar. Se eleva en el espacio montado sobre un gigantesco cohete y luego es capaz de volver a aterrizar como un avión. Puede estar listo para
volver a usarse en sólo seis días y medio.

Carga pesada: Del mismo modo que los astronautas, el Trasbordador Espacial lleva equipaje. Satélites, sondas espaciales o laboratorios espaciales son llevados dentro del compartimiento de cargas.

Super aterrizaje: Frenos de carbón, un timón dividido en dos y alerones especiales reducen su velocidad. Al tocar la pista de aterrizaje se abre un paracaídas.

Protectores térmicos: Un escudo hecho de siliconas cubre al Trasbordador Espacial, protegiéndolo de una temperatura superior a 1.260 °C durante su entrada en la atmósfera.

Arranque: El despegue del Trasbordador Espacial está controlado automáticamente por computadoras a bordo de la nave por un centro de control desde la base en Tierra. La fuerza que desplegan los cohetes durante el despegue es tres veces mayor que la fuerza de gravedad de nuestro planeta.

Los gases calientes que emanan del cohete impulsan la nave espacial hacia arriba.
Toma sólo 50 minutos alcanzar la órbita terrestre.

Ver el Trasbordador Discovery Por Dentro

Dimensiones del Sistema Solar Tamaños Medidas Escala de los Planetas

Dimensiones del Sistema Solar
Distancias y Medidas Escala de los Planetas

EL SISTEMA SOLAR: EL SOL Y SU FAMILIA El Sol es la estrella más próxima a nosotros y está a una distancia de 150 millones de kilómetros. La Tierra da una vuelta alrededor del Sol en un año, en compañía de muchos otros cuerpos celestes.

Dimensiones del Sistema Solar Tamaños Medidas Escala de los Planetas

Algunos de estos astros pueden observarse a simple vista en el cielo nocturno errando entre las estrellas. Dichos astros, denominados planetas (de la palabra griega que significa “errante“), giran alrededor del Sol a diferentes velocidades y distancias. Algunos son bastante parecidos a la Tierra, y están constituidos fundamentalmente por rocas y metales, mientras que otros, por el contrario, contienen posiblemente una elevada proporción de hidrógeno y helio. Ninguno de ellos puede producir calor y luz por medio de reacciones atómicas, como las estrellas, y sólo son visibles porque reflejan la luz solar.

Los planetas, por lo tanto, no brillan de la misma manera que las estrellas. En comparación con las estrellas, todos los planetas son cuerpos fríos y están situados en el espacio relativamente cerca de nosotros.

El más próximo al Sol es el planeta Mercurio, que gira alrededor del primero a una distancia media de 5 8 millones de kilómetros. Con un diámetro de sólo dos quintas partes del de la Tierra, es un mundo muy seco que muestra constantemente la misma cara vuelta hacia el Sol, debido a que el período de rotación sobre su eje es igual al que tarda en describir su órbita. Por estar más cerca del Sol que la Tierra, sólo podemos observarlo al atardecer, poco después de ponerse el Sol, o al amanecer.

Después está el planeta Venus, el cual participa con Mercurio del honor de ser denominado estrella matutina o vespertina, pues sólo puede ser observado a la salida o a la puesta del Sol.

Girando alrededor del Sol a 108 millones de kilómetros de distancia, Venus recorre su órbita en siete meses, en comparación con los otros tres meses que tarda Mercurio.

Esto es debido a que por la gravedad solar un planeta requiere más tiempo para recorrer su órbita a medida que aumenta la distancia que lo separa del Sol. Venus muestra muchas cosas en común con la Tierra. Tiene casi el mismo tamaño y, como ella, presenta estaciones regulares a medida que se traslada alrededor del Sol.

Como los demás planetas, gira también alrededor de su eje, pero no podemos medir la duración del día venusiano (o su velocidad de rotación) por estar siempre completamente envuelto por una espesa capa de nubes que impide ver su superficie, que puede ser tierra firme o, posiblemente, un enorme océano. Más lejos del Sol que la Tierra están los restantes planetas del sistema solar.

A una distancia de 228 millones de kilómetros se encuentra Marte, que presenta un tamaño algo superior al de la mitad de la Tierra y necesita casi dos años para recorrer su órbita. Al contrario que Venus, Marte tiene sólo una tenue atmósfera, que nos permite observar la superficie del planeta, particularmente interesante porque muestra gran cantidad de detalles que algunos astrónomos atribuyen a la existencia de plantas vivientes.

Aún más lejos del Sol, a una distancia comprendida entre 320 y 480 millones de kilómetros, se encuentra un enjambre de minúsculos “pequeños planetas”. Estos astros, de diámetros que oscilan entre 750 y sólo unos pocos kilómetros, son demasiados pequeños para poder observarlos a simple vista. Debido a que algunos tienen órbitas muy alargadas y pueden llegar a estar muy cerca de nosotros, los astrónomos los utilizan para obtener con mucha exactitud las distancias dentro del sistema solar.

Estos pequeños planetas se denominan también asteroides, es decir, “parecidos a estrellas”. Vistos a través del telescopio parecen cabezas de alfiler, como las propias estrellas, y no discos luminosos como ocurre con los planetas.

El mayor de todos los planetas es Júpiter y su órbita se encuentra más alejada que las de los asteroides. Este planeta gigante tiene un diámetro once veces superior al de la Tierra. Si nos fuera posible poner a Júpiter en el platillo de una balanza su peso resultaría 300 veces mayor que el de la Tierra.

A simple vista Júpiter se presenta como una estrella brillante, pero a través del telescopio aparece como un disco cruzado por varias bandas oscuras. Debido a que estas bandas cambian de posición cada mes, los astrónomos creen que lo que ellos realmente observan es una atmósfera densa y nubosa. Y esto se confirma por la rotación de algunos detalles apreciados en las bandas.

Tales detalles se mueven más rápidamente cerca del ecuador del planeta (con un período de 9 horas y 50 minutos) que cerca de los polos (con un período de 9 horas y 56 minutos). Estas distintas velocidades de rotación serían imposibles si la superficie del planeta fuese sólida. La distancia de Júpiter al Sol es de 778 millones de kilómetros, o sea más de cinco veces la distancia de la Tierra al Sol.

Saturno, el siguiente planeta que encontramos, está a 1.430 millones de kilómetros del Sol, casi dos veces más alejado que Júpiter. Aunque Saturno no es tan grande como Júpiter, tiene no obstante un diámetro 9 1/2 veces mayor que el de la Tierra. Al igual que Júpiter, posee una atmósfera que presenta bandas y nubes, y tarda 10 1/4 horas en girar sobre su eje. Saturno se distingue de los restantes planetas del sistema solar en que tiene un sistema de anillos que lo rodean ecuatorialmente.

Estos anillos están constituidos por miríadas de corpúsculos rocosos o de hielo, o quizá por una combinación de ambos, que giran a su alrededor. Debido a las diferentes dimensiones de las órbitas de estos corpúsculos, los anillos se extienden desde 15.000 hasta 60.000 kilómetros por encima de la atmósfera de nubes. Sin embargo, a causa de la acción gravitatoria de Saturno, dichas órbitas son tan coplanarias, que los anillos tienen un espesor de sólo unos 15 kilómetros.

Los anillos dan a Saturno un aspecto extraño y único. Los tres restantes planetas del sistema solar (excepto algunas veces Urano) sólo pueden ser observados mediante un telescopio. Urano, el más cercano de los tres, se encuentra a 2.870 millones de kilómetros del Sol; Neptuno, el siguiente, 1.500 millones de kilómetros más lejos, y Plutón, el más alejado, otros 1.500 millones más allá.

A través del telescopio, Urano y Neptuno parecen presentar superficies nubosas; ambos tienen un diámetro superior al de la Tierra (Neptuno 3 1/2 veces mayor y Urano casi 3 3/4)- Plutón es mucho más pequeño que los otros dos, casi del mismo tamaño que Marte. Hasta aquí sólo hemos mencionado los nueve grandes planetas, incluyendo la Tierra, y los asteroides.

No todas las órbitas de los planetas están situadas en un mismo plano, sino que forman ciertos ángulos entre sí. Plutón tiene una órbita muy inclinada y algunas veces se acerca al Sol aún más que el propio Neptuno.

Pero la familia del Sol —la totalidad del sistema solar— es todavía mucho mayor. A través del espacio se desplazan muchos enjambres de corpúsculos metálicos y rocosos; y la acción gravitatoria del Sol ha capturado cierto número de ellos, que giran a su alrededor describiendo órbitas muy alargadas. A lo largo de la mayor parte de su trayectoria son invisibles y sólo pueden ser observados cuando la Tierra cruza su camino o cuando se acercan mucho al Sol.

Cuando un enjambre pasa muy cerca del Sol se calienta el gas helado transportado junto con los corpúsculos rocosos o metálicos. Dicho gas se escapa y se torna luminoso por efecto de la radiación solar, la cual al propio tiempo desprende partículas eléctricas que lo lanzan al espacio. A su vez, algunas de las partículas rocosas reflejan también la luz solar. El resultado de esta actividad es que el conjunto de corpúsculos puede observarse entonces como una mancha brillante en el cielo, con los gases que se liberan en el espacio formando una larga cola luminosa, que a veces se extiende hasta millones de kilómetros. A tales objetos se les da el nombre de cometas.

Pueden acercarse hasta pocos millones de kilómetros del Sol, mostrando entonces el otro extremo de su órbita mucho más allá de la del propio Plutón. Cuando un cometa describe su órbita alrededor del Sol, muchos de los corpúsculos que lo constituyen se reparten a lo largo de dicha órbita. Algunos de tales corpúsculos se agrupan gradualmente en enjambres mucho más dispersos.

Entonces ya no son visibles como un cometa, pero pueden observarse cuando la Tierra los encuentra a su paso y los corpúsculos penetran en la atmósfera terrestre. Debido a la gran velocidad de desplazamiento (muchos kilómetros por segundo) se calientan al entrar en contacto con el aire. En consecuencia, estos fragmentos brillan al propio tiempo que se van quemando, ionizándose el aire que los rodea y que también se ilumina a su vez. En cada punto de la trayectoria de uno de estos fragmentos la luz producida dura solamente una fracción de segundo. Pero a menudo toda la trayectoria puede ser observada durante un corto intervalo de tiempo, y se denomina ráfaga meteórica. El fragmento rocoso en sí se conoce con el nombre de meteorito.

Cuando la Tierra atraviesa un enjambre, advertimos en ciertos casos centenares de meteoritos, y tales “lluvias de estrellas” producen una visión espectacular. Sin embargo, son demasiado pequeñas para que puedan observarse, y deben ser registradas por otros métodos que describiremos más adelante.

Al girar alrededor del Sol, casi todos los grandes planetas son centro de pequeños sistemas de satélites naturales. Aunque parece ser que Mercurio, Venus y Plutón carecen de “lunas” -y la Tierra tiene sólo una-, los restantes planetas poseen un buen número de ellas. Marte tiene dos pequeños satélites de unos 7,5 y 15 Km. de diámetro, que recorren sus órbitas en unas 30 y y1/2 horas, respectivamente. Júpiter posee 12, cuatro de los cuales son de tamaño parecido al de nuestra propia I ,una y los ocho restantes mucho menores. Tres de estos últimos muestran un diámetro de sólo 20 km. Saturno tiene 9 satélites, siendo todos ellos, excepto uno, de tamaño muy inferior al de la Luna.

Comparación de la alargada órbita de un cometa con la casi circular de la Tierra. El calor solar dilata el luminoso gas de un cometa proyectándolo hacia delante de forma que la cola siempre apunta en sentido contrario al Sol.

Urano tiene 5 y Neptuno sólo 2, el mayor de ellos de i amaño parecido al de nuestro satélite. Aunque la Tierra es el único planeta que posee un solo satélite, éste parece tener un tamaño desproporcionado en revolución con el de la misma Tierra.

¡Algunos astrónomos llegan a considerar el sistema Tierra-Luna como un planeta doble! Pero no estamos seguros de ello. Muchos astrónomos piensan que la mayoría de los satélites del sistema solar eran asteroides que fueron capturados por los grandes planetas miles de millones de años atrás, cuando se estaba formando todo el sistema.

Fuente Consultada: Secretos del Cosmos Colin A. Roman Biblioteca Basica Salvat Nro. 2

La Mayor Hazaña Espacial de la Historia La Gran proeza de la NASA

La Mayor Hazaña Espacial de la Historia

LA EXPLORACIÓN ESPACIAL:
EL HOMBRE LLEGA A LA LUNA:
Eran las 9.32 de la mañana, hora del meridiano de 75°, el 16 de julio de 1969, cuando 3 astronautas, Neil Armstrong, Midiael Collins y Edwin Aldrin se elevaron del Complejo de Lanzamiento 39 en la Apolo II. Impulsada por un cohete, el Saturno V, que tenía una altura de 100 m., iba camino a la Luna, donde el hombre pondría su pie por primera vez.

Después que se detuvieron temporalmente a 115 millas sobre la Tierra para controlar los instrumentos, la nave se puso nuevamente ni movimiento, viajando a una velocidad de 39.000 Km./h. Al cumplir H horas de vuelo, los astronautas comenzaron a transmitir al mundo un programa especial para televisión en color sobre lo que estaban haciendo. Más de 500 millones de personas lo presenciaron. Los tres dijeron que estaban impresionados por la visión de la Tierra que retrocedía y Aldrin agregó: «La visión es de fuera de este mundo».

Cuando se acercaron a la superficie de la Luna, el sistema de propulsión se incendió y el aparato disminuyó la velocidad de la nave de 10.000 a 6.000 Km./h  y la puso en una órbita elíptica alrededor de la Luna. Eran las 1:22 P.M., hora del meridiano, el 19 de julio. Habían viajado 390.000 Km. en poco más de 3 días.

Dieron 2 vueltas alrededor del satélite, luego reencendieron el sistema de propulsión para poner a la nave en una órbita aproximadamente circular entre 100 y 120  Km.sobre la superficie. Armstrong dijo: «Se la ve como en los dibujos animados, pero existe la misma diferencia que cuando se ve un partido directamente o por televisión. No existe nada comparable al estar aquí».

Mientras la Apolo estaba sobre la otra cara de la Luna, desprendieron el Eagle, el módulo lunar, desde el Columbea, el módulo de comando. Armstrong y Aldrin, que caminarían en la Luna mientras Collins pilotaría el Columbia, gatearon a través del túnel estrecho entre los dos módulos y abrieron las compuertas conectivas para entrar en el Eagle

Cuando volvieron a la cara conocida de la Luna, los expertos de la NASA en Houston les preguntaron por radio: «¿Cómo anda?».

«Eagle tiene alas», contestó Armstrong. El módulo lunar se había liberado del Columbia.

El Eagle comenzó una órbita extremadamente elíptica, volando alrededor de la Luna a casi 15.000 m. sobre la superficie. Desde allí comenzó a bajar aceleradamente hasta que estuvo a casi 2300 m. de la superficie y 8000 alejado del punto de aterrizaje planeado, en el Mar de la Tranquilidad al noroeste del cráter Moltke.

Casi a los 500 pies, Armstrong y Aldrin observaron hacia abajo para elegir el mejor lugar donde detenerse. Poco después los dos tomaron la dirección de los controles, poniendo al Eagle en semiautomático. Luego, una alarma programada mostró que el tablero de computación estaba sobrecargado; entonces los astronautas, con la ayuda de Houston, bajaron el aparato por medio de instrumentos y guías visuales. Fue un momento cargado de tensión. El Eagle fue dirigido hacia un cráter rocoso, un lugar poco favorable para aterrizar.

Armstrong mantuvo funcionando los motores durante otros 70 segundos, con el fin de alcanzar otro sitio de aterrizaje casi a 4 millas más lejos. Aldrin, en los últimos momentos, dijo: «Adelante, adelante, bien. Cuarenta pies. Estamos levantando algo de polvo…, desviando hacia la derecha… Luz de contacto. OK. ¡Pare motor!».

Habían aterrizado. Armstrong miró hacia abajo para ver, dijo después, un trozo de luna polvorienta que era soplada por el escape del cohete. Detuvo el motor y transmitió: «Tranquilidad al asentarnos. El Eagle ha alunizado».

Parecía calmo. Sin embargo su corazón estaba latiendo a 156 latidos por minuto, el doble del promedio habitual. Eran las 4:17, hora del meridiano, el 20 de julio de 1969.

Se suponía que los dos pasarían 8 horas inspeccionando el módulo, comiendo y descansando pero estaban ansiosos por abandonar la nave y explorar la Luna; ciertamente muy excitados para descansar.
Por lo tanto, Houston acordó que podían saltar el período de descanso.

Les llevó 3 horas ponerse el traje, incluyendo el embarazoso equipo de supervivencia. Pasaron 6 horas y media antes de sacar la presión de la cabina y estar preparados para abrir la compuerta.

Armstrong bajó lentamente los 9 escalones de la escalerilla. Cuando alcanzó el segundo, dejó caer una cámara de televisión. En las pantallas de toda la Tierra apareció la imagen de su pie calzado con una pesada bota. Luego tocó la superficie. Eran las 10:56:20 de la noche. Se detuvo para decir sus ahora famosas palabras: «Éste es un pequeño paso para un hombre, pero un salto gigante para la humanidad».

Comenzó a describir la materia sobre la que estaba caminando:
«Esta superficie parece estar compuesta por unas muy, muy finas partículas, como un polvo… Puedo patearlas fácilmente con la punta del pie. Es como polvo de carbón. Puedo ver las huellas de mis botas impresas en las pequeñas, finas partículas… No hay ningún problema en caminar por todos lados».

Aldrin, que había quedado en la cápsula, preguntó si tenía permiso para salir. «Quiero moverme hacia atrás e ir cerrando las compuertas en mi camino hacia afuera», dijo.

«Buena idea», contestó Armstrong.

«Éste será nuestro hogar por el próximo par de horas —agregó Aldrin—. Queremos cuidar de él.»

Los dos saltaron como canguros, encontrándolo más fácil de ejecutar de lo que habían predicho los expertos.
Armstrong mostró a los espectadores la placa que puso en el lugar del aterrizaje: «Aquí los hombres del planeta Tierra pusieron por primera vez su pie sobre la Luna en julio de 1969. A. D. Venimos con fines de paz para toda la humanidad». Estaba firmada por los astronautas y por el presidente Richard Nixon. Pusieron también una bandera norteamericana de metal, que nunca ondeará en la Luna, donde no hay viento.

Durante las dos horas y media siguientes, Armstrong y Aldrin inspeccionaron si el Eagle tenía alguna avería debido al aterrizaje; estudiaron las depresiones dejadas por sus patas; corrieron, caminaron y recogieron datos.

Armstrong arrancó casi 50 libras de muestras rocosas y tierra que pusieron en un primer momento en valijas herméticas y luego en cajas de aluminio. Más tarde un funcionario de la NASA dijo que «éstas tenían más valor que todo el oro de Fort Knox». Las rocas eran asombrosamente viejas, algunas más antiguas que cualquiera encontrada en la Tierra.

Los hombres establecieron tres sistemas instrumentales: un detector de la composición del viento solar, un detector sísmico y un reflector Láser.

Armstrong trató de obtener algunas muestras más profundas de materiales del subsuelo, pero tuvo dificultades: «Pude obtener la primera muestra profunda en las primeras 5 cm. sin mucho problema y luego martilleé tan fuerte como pude. Para la segunda necesité poner las dos manos sobre el martillo y costó unas buenas y hermosas abolladuras en el extremo superior del formón. Y no pude seguir más. Pienso que la profundidad total debe haber sido de 8 o 9 pulgadas».«Pero, aun allí, la herramienta… no parecía querer mantenerse derecha, y cavó una especie de agujero pero no penetró en el sentido justo para que lo soportara… si aquello tenía algún sentido, para mí realmente no lo tenía.»

Hablaron de los cráteres, de las huellas que sólo alcanzaban 3 mm. de profundidad y las esférulas de vidrios pequeñitos en el suelo que lo hacían resbaladizo.

Después de dos horas y media retornaron al módulo. La visita a la Luna había concluido. Detrás de ellos dejaron «chatarras» —cámaras, equipos, herramientas y algunas huellas que probablemente permanecerán por siempre en ese suelo sin viento.

Había sido una extraña aventura, descrita casi prosaicamente por dos hombres atemorizados: el triunfo de la tecnología y el cumplimiento de un sueño que era tan viejo como la humanidad.

Eclipses de Sol y de Luna Cual es causa? Sistema Solar y Planetas

Eclipses de Sol y de Luna ¿Cual es causa?

Introducción: Los eclipses
Significan la ocultación de un astro por interposición de otro. Los movimientos de la Tierra y de la Luna en torno del Sol originan los eclipses de Sol o de Luna, según sea el astro obscurecido. Para que haya eclipse es menester que la Tierra, el Sol y la Luna estén en línea recta y casi en el mismo plano, y que la Tierra o la Luna penetre en el cono de sombra producido por el otro astro.

La naturaleza de los eclipses de Sol y de Luna difiere muchísimo. En un eclipse solar la Luna podrá ocultar todo o parte del astro para ciertos lugares de la Tierra, pero jamás para toda ella. Así habrá zonas en que el Sol quedará completamente obscurecido, o parcialmente, o no se observará fase alguna del eclipse. A pesar de que los tres astros se encuentran en línea recta suele ocurrir que, dada su distancia relativa, la Luna esté de tal manera que en el máximo del eclipse el disco solar no quede del todo oculto, sino que alrededor del disco lunar pueda verse una parte de aquél. Entonces se produce un eclipse anular.

La luna puede pasar dentro del cono de sombra que proyecta la Tierra en el espacio en el momento del plenilunio. Así queda interceptada para la Luna la luz del Sol y ocurre un eclipse total o parcial, según que se haya sumido tota! o parcialmente en la sombra.

Cuando la Luna pasa delante del Sol, la sombra que señala en la Tierra es circular y que, por causa del movimiento de rotación de nuestro planeta, va recorriendo diversos lugares. En todos ellos el Sol está completamente oculto y produce un eclipse total de Sol. Este fenómeno se inicia siempre en el lado O del disco del astro, y la sombra atraviesa la superficie terrestre de O a E. En los eclipses lunares, por el contrario, la sombra comienza en el lado E del disco y lo va barriendo hacia el O.

LOS ECLIPSES DE SOL Y DE LUNA: Cuando la Tierra, la Luna y el Sol están exactamente alineados en el espacio, el cielo se oscurece debido al eclipse. Los eclipses solares ocurren en luna nueva, cuando la Luna pasa entre los dos astros mayores, tapando el Sol y proyectando su sombra sobre la Tierra. (foto eclipse de Sol)

Hay tres tipos de eclipses solares. En el eclipse parcial, la Luna se come al Sol pero no acaba de devorarlo. El día se oscurece ligeramente y el Sol, visto con cualquier clase de protector de los ojos o por un agujero muy pequeño, parece una galleta a la que se le ha quitado un bocado.

En el eclipse total, la cara del Sol desaparece detrás de la Luna, florece la corona por lo general invisible y los afortunados espectadores situados dentro de la sombra lunar pueden conocer las tinieblas al  mediodía.* El tercer tipo de eclipse, el llamado anular, ocurre cuando la Luna se halla a la máxima distancia de la Tierra y en consecuencia se ve más pequeña que de ordinario. Incluso en el momento cumbre de tal eclipse, el reborde del Sol envuelve la Luna, así:

La luna llena es la época de los eclipses lunares, cuando la Tierra queda entre las luminarias y su sombra cae en la superficie de la Luna. Lo mismo que los eclipses solares, los eclipses lunares no ocurren todos los meses; sólo se producen cuando la alineación tripartita es exacta. Esto sólo sucede de vez en cuando, porque la órbita de la Luna, que es rotatoria, forma un ángulo de 50 con el plano de la órbita que traza la Tierra alrededor del Sol.

Los auténticos amantes de los eclipses no se detienen ante nada para verlos. Por ejemplo, el 3 de octubre de 1986 Glenn Schneider, de Baltimore, y otras ocho almas intrépidas contemplaron un eclipse de Sol desde un pequeño aeroplano a 12.200 metros por encima de Islandia.

Escribiendo en la revista Sky & Telescope, Schneider describe lo que vio cuando la Luna se fue colocando delante del Sol y la luz solar comenzó a filtrarse por los valles y las cimas montañosas situadas en el borde lunar, produciendo el fenómeno conocido como los granos de Baily. «Durante seis segundos enteros —recordaba Schneider—, la danza parpadeante de granos fue relampagueando por el limbo… Un minuto después de la “totalidad”, miramos por las ventanillas de la izquierda para valorar el aumento de la luminosidad del cielo. La sombra de la Luna se proyectaba sobre la cara superior de las nubes como un borrón de tinta (!). Durante todo un minuto contemplamos esta mancha oscura, que tenía la misma forma que un cigarrillo aplastado y se iba alejando de nosotros hacia el horizonte.»

Hay eclipses todos los años: siete como máximo, dos como mínimo. Entonces, ¿por qué no vemos más? Los eclipses lunares sólo son visibles por la noche. La mitad de las veces ocurren durante el día y sólo se ven desde la otra cara de la Tierra. Los eclipses solares son aún más elusivos, porque sólo se ven durante unos minutos y sólo dentro de la zona donde cae la sombra de la Luna. Esta zona es tan estrecha que en toda Inglaterra sólo han sido visibles cuatro eclipses solares totales durante los últimos mil años.

Por eso no son fáciles de ver los eclipses. Tomemos un año de cuatro eclipses, por ejemplo 1997. En marzo será visible un eclipse de Luna desde todo el territorio de Estados Unidos, pero únicamente se tratará de un eclipse parcial. Ese mismo mes se podrá ver un eclipse total de Sol; pero sólo desde una estrecha franja de terreno de China o bien yendo en barco por el océano Ártico. En septiembre, será visible un eclipse solar siempre que se contemple desde Australia o Nueva Zelanda, pero incluso allí abajo sólo será un eclipse parcial. Dos semanas después habrá ocaSión de ver un eclipse total de Luna, pero desde América del Norte. Tal es la persecución de los eclipses. La idea de alquilar un aeroplano para presenciarlos empieza a no resultar del todo irrazonable.

Eclipse de Luna

Seis Eclipses Notables o Históricos:

En la mitología de Dahomey la Luna, que se llama Mawu, y su hermano gemelo el Sol, llamado Lisa, hacen el amor durante los eclipses. Los sietes pares de gemelos así concebidos se convirtieron en las estrellas y los planetas.

Pero en la mayor parte de las mitologías los eclipses tienen asociaciones terroríficas. Los antiguos chinos y los bolivianos imaginaban que durante los eclipses unos perros furiosos desgarraban el Sol y la Luna con sus dientes. En Yugoslavia se decía que los vampiros destrozaban las luminarias. Los egipcios creían que de vez en cuando la serpiente Apep, que gobernaba el submundo y era señora de los muertos, se erguía y se tragaba el barco en que surcaba los cielos el dios solar Ra. En esos momentos el Sol desaparecía.

Las explicaciones históricas tienden a ser semi mitológicas. A menudo hablan de un ser superior —un conquistador o un científico— capaz de predecir los eclipses, con lo que advierte del desastre al tiempo que ilustra lo de saber es poder. Dos ejemplos:

* 28 de mayo de 585 a. C. A pesar de creer que la Tierra era plana, Tales de Mileto es considerado el primer científico griego. Puso en relación las matemáticas con la lógica y fue el primero en formular varias verdades matemáticas que la mayor parte de nosotros aprendemos en el bachillerato. Los antiguos lo reverenciaban por su capacidad para detener una batalla, hazaña que llevó a cabo con ayuda de unas tablas babilónicas. Según Herodoto, los medas y los

lidios estaban en medio de la batalla cuando «el día se convirtió en noche. Y este cambio había sido predicho a los jonios por Tales de Mileto, que les había dicho el año en que ocurriría». Aunque Tales no había especificado el día, su predicción inspiró el suficiente temor para dar lugar inmediatamente a la paz.

* 29 de febrero de 1504. Cristóbal Colón había estado aislado durante meses, con la tripulación descontenta, en la costa de Jamaica. La leyenda cuenta que organizó una reunión con los indígenas para una fecha en que sabía que iba a haber un eclipse total de Luna. Basaba sus predicciones en las tablas de navegación del astrónomo Johann Müller, más conocido por su nombre latino, Regiomontano. El eclipse se produjo según lo previsto, los indios quedaron impresionados y los descubridores recobraron algo de su decreciente influencia.

Hay unos cuantos eclipses memorables por razones científicas:

* 21 de junio de 1629. Los chinos sabían predecir los eclipses, pero no muy bien. Los astrónomos imperiales, que no habían acertado a pronosticar el eclipse de 1610, predijeron un eclipse solar para una fecha de 1629. Sin embargo, los misioneros jesuitas insistieron en que la predicción llevaba una hora de adelanto y en que el eclipse, en lugar de durar dos horas, sólo se vería dos minutos. Los jesuitas tenían razón. Como consecuencia, el emperador ordenó que se revisara el calendario chino y se instó a los jesuitas a que construyeran telescopios y empezaran a traducir al chino libros sobre óptica, música y matemáticas.

* 8 de julio de 1842. Durante este eclipse solar los científicos europeos dedujeron que las protuberancias de color rosa y los rayos opalescentes de luz que envolvían por completo la Luna no eran emisiones de la atmósfera lunar ni ilusión óptica, sino parte del Sol.

* 18 de agosto de 1868. Pierre Jules César Janssen, un banquero francés convertido en astrónomo, hizo una lectura espectroscópica de la corona solar durante este eclipse, lo cual permitió a los científicos analizar la composición de la atmósfera solar. La corona era tan espectacular que Janssen estaba convencido de que debía percibirse en condiciones normales. Al día siguiente localizó las protuberancias y registró un espectro. Otro científico, J. Norman Lockyer, había estado haciendo trabajos similares. Entre los dos demostraron que la corona estaba presente en todo momento, bien que sólo fuera visible durante los eclipses, y formaba parte del Sol, aunque con una composición ligeramente distinta de la de la masa solar. También identificaron, en la franja amarilla del espectro, un elemento que sería llamado por el nombre griego del Sol y que no se encontraría en la Tierra hasta un cuarto de siglo después: el helio.

Janssen estaba tan emocionado con estos resultados que en 1870, cuando iba a haber un eclipse visible en Argelia, no dejó que nada le impidiera ir. Salir de París constituyó un problema, no obstante, pues la ciudad estaba rodeada por tropas prusianas hostiles. Las muchedumbres pululaban por las calles, los ciudadanos hambrientos se comían los gatos y las ratas, los restaurantes exóticos hacían incursiones al zoológico y sirvieron platos hechos con los dos elefantes Cástor y Pólux, y la única manera de salir de la ciudad era hacerlo en globo de hidrógeno. Janssen partió de Paris en una balsa y llegó a Argelia a tiempo. Por desgracia, conforme se acercaba el eclipse total la temperatura disminuyó, las nubes taparon la Luna y Janssen no pudo ver nada.

* 29 de marzo de 1919. Albert Einstein había predicho que la luz, al pasar junto a un objeto pesado como el Sol, se curvaría en proporción al campo gravitatorio del objeto. Esto estaba aún por demostrar, pero el eclipse solar de marzo de 1919, cuando se vio la silueta del Sol contra las apretadas estrellas del cúmulo de las Híades, ofreció la perfecta oportunidad para comparar la posición habitual de estas bien conocidas estrellas con su posición durante el eclipse. Pensando en esto, sir Arthur Eddington se trasladó a una isla situada en la costa occidental africana y un grupo de científicos británicos fue a Brasil.

Durante el eclipse los observadores midieron las posiciones de varias estrellas de las Híades y descubrieron que la luz procedente de estas estrellas resultaba curvada por la gravedad del Sol, por lo que se trasladaban con respecto a su posición habitual exactamente tal como había predicho Einstein, lo cual confirmó la teoría… y cambió la vida de su autor.

En cuanto Einstein se enteró de la noticia, envió una postal a su madre, anunciándole: «Gozosas noticias hoy». Un titular del New York Times proclamaba: «Todas las luces bizquean en el cielo / Triunfa la teoría de Einstein». Y Einstein pasó a ser definitivamente una celebridad mundial.

PARA SABER MAS…
EL SAROS

Los eclipses son fenómenos tan particulares que ya las poblaciones antiguas investigaron sus eventuales ciclos.
Para los eclipses de Luna no es difícil hallar una ley que permita predecir cuándo van a producirse, al menos aproximadamente. Esta ley fue hallada después de atentas observaciones, y resultó que entre dos eclipses de Luna median cinco o seis meses.

Al período de 223 meses lunares (la duración del mes lunar equivale a 29 días y medio) se le dio el nombre de saros, uno de los períodos sobre los que puede calcularse con mayor precisión la repetición de los eclipses.

En cambio, para los eclipses de Sol, el cálculo es más complicado, ya que un eclipse solar es un fenómeno local, no visible desde toda la Tierra, y depende estrechamente de la posición exacta de la Luna en la bóveda celeste. Sin embargo, ya en la Antigüedad se previeron eclipses de Sol: un ejemplo lo dio Tales, que predijo el eclipse total que tuvo lugar el año 585 a.C.

OTROS ECLIPSES
El fenómeno de los eclipses, tal como se presenta, no es exclusivo del sistema formado por la Tierra, la Luna y el Sol, sino que se produce en una gran cantidad de cuerpos celestes. Un ejemplo conocido es el de los satélites galileanos, cuyo estudio permitió llegar a una primera estimación de la velocidad de la luz.

Naturalmente, lo mismo que sucede en la Tierra cuando la Luna se interpone entre ella y el Sol, también podrían observarse eclipses de Sol desde Júpiter cuando uno de los satélites pasa por delante del planeta gigante. Pero el fenómeno más singular ocurre cuando, en determinadas condiciones, son los satélites los que se eclipsan recíprocamente. Por ejemplo, hay eclipses de Io provocados por Ganímedes, mientras que en aquel mismo momento hay un eclipse de Sol en Io.

Otro caso interesante es el de dos estrellas que orbitan una alrededor de otra y el plano orbital está en la línea visual de la Tierra. En tal caso, las estrellas pasarán periódicamente una delante de otra, enmascarando la luz de la compañera que permanece detrás y provocando eclipses de estrellas.

Por consiguiente, los eclipses son una notable fuente de información sobre los sistemas en los que se producen. Esto es así incluso en nuestro medio: durante un eclipse solar es posible estudiar más cómodamente partes del Sol que de otro modo son de difícil observación. También se ha querido comprender el estado de la atmósfera terrestre por el color que adquiere la Luna durante algunos eclipses.

Un aspecto singular de este fenómeno, ligado a su predictibilidad relativamente sencilla, es la investigación histórica: si un hecho tiene una datación incierta y ocurrió en el momento exacto o aproximado de un eclipse, es posible deducir con más rigor su fecha precisa.

William Herschel Gran Astronomo Aleman Telescopio Observo Saturno

INTRODUCCIÓN: William Herschel nació en Hannover en 1738. Alentado por su padre, emprendió en su juventud la carrera de músico. Se trasladó a Inglaterra después de la guerra de los Siete Años y prosiguió allí su carrera musical, convirtiéndose en compositor y organista y viajando por todo el país.

En 1766 obtuvo el puesto de de organista en fa nueva capilla octogonal de Bath. de !a que al caí» de unos años paso a ser director de conciertos públicos. Pese a su vocación por la música. Herschel recibió de su padre una educación completa, que incluía también nociones fundamentales de astronomía y matemáticas.

William Herschel Herschel vivió en una época en que el interés por la astronomía era muy grande. Todavía quedaba mucho por aprender  de nuestro inmenso universo posición y el comportamiento de sus les estrellas, planetas, etc.), y muchos astrónomos estaban atareados recogiendo información. aquella época existían varios diseños magníficos de telescopios, todos buenos en pero el problema consistía en llevarlos la práctica.

No era fácil construir buen telescopio con las herramientas y técnicas rudimentarias disponibles. El nombre de William Herschel ha ocupado un lugar en la historia, como el del hombre que construir los mejores telescopios de época, y mediante su empleo trazar representaciones de grandes zonas del cielo catálogos estelares).

Para Herschel la astronomía era un pasatiempo. El interés que le inspiraba fue creciendo en él, transformándose en una obsesión, y al final dominé su vida por completo. o se había educado para la ciencia, sino la música; contrataba artistas para dar ciertos, y componía música lírica y sinfónica.

En  1773, a la edad de 35 años, cuando, durante las vacaciones de verano sus discípulos se habían marchado a sus casas, Herschel hizo preparativos para observar el cielo. Compró un conjunto de lentes para construir un telescopio de refracción. Pero es necesario que el telescopio de refracción sea muy largo para que amplíe adecuadamente las imágenes, por lo que Herschel pensó que con un telescopio de reflexión, más corto, lograría hacer eficazmente las exploraciones astronómicas.

Los espejos de vidrio se inventaron después, y los que existían entonces se fabricaban puliendo laboriosamente, a mano, la superficie de un metal duro. Por esta causa, los pocos espejos que se encontraban en el mercado eran demasiado caros para él, razón por la que compró algunos aparatos para fabricar espejos y empezó a hacer el que necesitaba. Los resultados fueron tan alentadores que siguió haciendo telescopios cada vez más grandes y mejores, empleando espejos como objetivos. Para desesperación de su hermana, la casa comenzó a transformarse en un taller. Instalé un torno en el dormitorio y convirtió la sala en taller de carpintería.

Cumplidos los treinta años, su pasión juvenil por la astronomía pasó a ser algo más que una afición. Herschel empezó a dedicar cada vez más tiempo a esta ciencia. Después de un período inicial en el que montaba telescopios con partes usadas, pues no podía permitirse comprar un telescopio grande, decidió construir uno. Muy pronto, su casa de Bath, que compartía con su hermano Alexander y su hermana Carolina, se transformó en un laboratorio habilitado para la construcción de las partes mecánicas, y sobre todo las ópticas, de telescopios reflectores.

Varias veces cambiaron los Herschel de domicilio, buscando más espacio para sus telescopios y superficies de terreno que les proporcionaran más comodidad para sus instrumentos. Durante nueve años, Herschel mantuvo el esfuerzo necesario para ser músico de día y astrónomo de noche, y durante ese tiempo se dedicó a observar las estrellas, aprovechando todas las horas de buena visibilidad. Cuando las condiciones atmosféricas no eran adecuadas, se ocupaba en fabricar espejos, sentado, hora tras hora, mientras frotaba un abrasivo sobre la superficie de los espejas metálicos.

Con el mejor de los telescopios que había construido, emprendió una tarea titánica, un mapa completo de la distribución de las estrellas en el cielo. Durante una de sus innumerables observaciones nocturnas, Herschel descubrió el séptimo planeta del sistema solar, Urano.

En 1782 el rey Jorge III lo nombró astrónomo real, después de comprobar que su telescopio era muy superior a los del Real Observatorio. Aquel nombramiento significó para Herschel el abandono definitivo de la música. Dedicó muchas horas a estudiar atentamente la inmensidad del firmamento, sometiendo las zonas seleccionadas a un examen intenso.

A menudo observó 400 estrellas en una sola noche. Un obrero movía su telescopio arriba y abajo, y Herschel dictaba los resultados de sus observaciones a su hermana Carolina. Como resultado de contar innumerables veces las estrellas, llegó a la conclusión de que el sistema sideral era plano como una piedra de afilar. En su tiempo libre continuó construyendo telescopios e hizo un instrumento gigante, de 11 metros de longitud, con el que observó por vez primera el séptimo satélite de Saturno. Descubrió dos satélites de Urano y dos de Saturno. (imagen arriba)

Herschel se interesó también por las manchas solares, pero encontró dificultades en su examen debido a los efectos nocivos de la imagen sobre el ojo. Para tales observaciones empleó diversos filtros, comprobando que un filtro verde oscuro, ahumado, era el más idóneo, y que los filtros rojos eran inservibles. Muchos de sus oculares coloreados se rajaron y estallaron por la acci4n del calor, pero, afortunadamente, sin causarle ningún daño.

Tratando de averiguar por qué el color verde era el más adecuado. descompuso la luz solar y colocó un termómetro en cada banda coloreada. El extremo rojo era más caliente, pero comprobó que las temperaturas más altas se registraban en una zona invisible, situada a continuación de la banda roja. Más adelante demostró  que la radiación invisible caliente se podía reflejar y refractar de la misma forma que la luz visible; pero lo que nunca pudo sospechar es que ambas son, en esencia, una misma cosa.

Herschel murió en 1822, después de una existencia que de ningún modo puede ser calificada de tranquila.

El Dr. Guillermo Watson, miembro de la Sociedad Real, vio en 1870 a Herschel estudiando el firmamento y le interesaron tanto su telescopio y sus observaciones que logró que se leyera un trabajo suyo en una reunión de la aludida sociedad. Herschel descubrió en 1781 el planeta llamado ahora Urano, lo que le valió la reputación de ser el astrónomo más sobresaliente de su época. La Sociedad Real le otorgó una medalla de oro, fue elegido miembro de ella y todos sus trabajos fueron leídos en las reuniones. Además, fue nombrado astrónomo privado del rey Jorge III, y se le concedió una pensión que le permitió dedicarse totalmente a sus estudios.

Su contribución a la ampliación de los conocimientos astronómicos fue fecunda: recopiló varias listas de nuevas nebulosas y grupos, en total cerca de 2.500; observó que algunas estrellas giran en torno una de otra y delineó mapas de unas 150 nuevas estrellas dobles; catalogó, por primera- vez, las estrellas del hemisferio boreal con base en su brillo; estudió el sol en relación con su luz y calor; evolucionó la idea de que el sol y todo el sistema solar se mueven en el inmensurable espacio, y descubrió dos nuevos satélites de Saturno.

Su único hijo, Juan Herschel, nació en 1792 y fue también un astrónomo famoso. Durante una expedición al Sur de África dibujó un mapa de las estrellas del hemisferio austral. En sus escritos explicó muchos descubrimientos astronómicos interesantes en lenguaje llano accesible a la comprensión de los profanos. Recogió las numerosas memorias de su padre y, junto con las suyas y las de otros astrónomos, formó un volumen. Sobresalió igualmente como químico y aportó valiosa contribución al desarrollo de la fotografía.

Los observatorios modernos
La renovación del interés por los estudios científicos experimentada en el Renacimiento supuso un notable avance en el terreno de la astronomía. Dado que la luz se propaga en sentido rectilíneo, es posible, gracias a una abstracción geométrica, representar los rayos mediante líneas rectas. Basándose en el principio anterior, los astrónomos han construido a lo largo de la historia sus aparatos de observación. Con el tiempo, los instrumentos se perfeccionaron y se reunieron en observatorios. El primero de ellos se creó en el siglo XVI en Uranienborg, en la corte de Federico II de Dinamarca, y en él realizaron sus investigaciones dos de los más grandes astrónomos de todos los tiempos, Tycho Brahe y su discípulo, Kepler.

En la actualidad, la instalación de un observatorio precisa de una serie de requisitos previos que aseguren el óptimo funcionamiento de los telescopios, el elemento principal del observatorio, así como del resto del instrumental. La elección del emplazamiento viene marcada por la presencia de condiciones meteorológicas, de carácter geográfico o sísmico, como la pureza del cielo, la ausencia de luces artificiales, la lejanía de las zonas habitadas o su posición elevada. Hay también determinadas exigencias en cuanto a la temperatura: es preciso que exista escasa diferencia térmica entre la noche y el día y entre la temperatura exterior e interior.

En su mayor parte, los observatorios se encuentran en el hemisferio septentrional. Entre los más relevantes puede mencionarse el estadounidense de Monte Palomar, que cuenta con uno de los telescopios más grandes del mundo, el Hale, cuyo objetivo tiene un diámetro de 5 m. También en Estados Unidos se localizan los de Monte Wilsoñ y Kitt Peak. Por su parte, Rusia cuenta con el observatorio de Zelenciukskaia, provisto de un telescopio reflector —un espejo—, de 610 cm de apertura. En el hemisferio austral se sitúan los de Cerro Tololo, en Chile, y Side Sphng, en Australia.

Telescopios reflectores y refractores
Existen dos tipos principales de telescopios: el telescopio refractor y el reflector. El primero está provisto de un sistema de lentes refractoras que concentran los haces luminosos de las estrellas. El ocular, que hace las veces de lente de aumento, está formado por una red de hilos fijos y móviles que permite establecer magnitudes exactas para el desplazamiento de las estrellas. Cuanto mayores sean las dimensiones de la lente principal (apertura), mayor será el aumento obtenido. Para evitar una excesiva refracción de los rayos, producida por la desviación de la luz cuando atraviesa el cristal, se utiliza el telescopio reflector, que sustituye la lente por un espejo de forma parabólica. El espejo actúa reflejando y concentrando los haces de luz, cuya imagen se puede observar con un ocular. De manera general, resulta más apropiado para describir con precisión espacios amplios del cielo y astros de intensidad mínima.

SATELITE observador

Recreación de la sonda Lunar Prospector, que exploró y mandó a la Tierra imágenes de la superficie del satélite terrestre. Colisionó con la superficie lunar en julio de 1999 y con ello permitió al potente telescopio espacial Hubble estudiar la posibilidad de la existencia de agua en la Luna

Fábrica Subterranea de Armas Secretas NAZI Bombas del Tercer Reich

Fábrica Subterranea de Armas Secretas

En la segunda guerra mundial la Luftwaffe había desarrollado otra arma no tripulada. Cerca de Peenemünde estaba preparando una prueba de su bomba volante FZG-76, la V-1. La V-1 tenía una serie de ventajas significativas frente al cohete rival. Se podía producir de forma barata y sencilla, y quemaba petróleo de bajo octanaje en lugar del escaso oxígeno líquido y el alcohol de alta graduación que se necesitaba para impulsar la V-2.

Sin que lo supieran los alemanes, los británicos tenían noticias del programa de armas V y en la noche del 17/18 de agosto de 1943 cerca de 600 bombarderos pesados atacaron la planta en Peenemünde, retrasando al menos dos meses el programa de la V-2.

La Luftwaffe tenía planeado lanzar su campaña con armas V atacando Londres con 500 V-1 al día, haciendo que la ciudad fuera inhabitable, algo que no había conseguido con el Blitz de 1940-1941. Una vez más intervinieron los bombarderos aliados. Desde diciembre de 1943 lanzaron miles de toneladas de bombas sobre las llamativas rampas de hormigón y acero que se habían construido para lanzar las V-1 desde el norte de Francia. La ofensiva de las V-1 no se inició hasta una semana después de la invasión aliada del noroeste de Europa durante el Día D, el 6 de junio de 1944.

Las «doodlebugs», como fueron llamadas las V-1, devolvieron a los londinenses a la primera línea del frente por primera vez desde el Blitz. No eran muy precisas, pero Londres era un blanco muy grande y los alemanes pretendían que los efectos de las V-1 fueran indiscriminados. A finales de agosto de 1944, habían matado o herido de gravedad a unas 24.000 personas en la región de Londres.

Un cuarto de millón de madres jóvenes y niños fueron evacuados y otro millón abandonó la ciudad por iniciativa propia. Durante las noches miles se refugiaban en las estaciones del Metro de Londres El efecto psicológico de las V-1 era desconcertante.

En tierra, los londinenses oían como se acercaban. No tenían control por radio —para que no se pudiera interceptar—, sino que iban guiadas por un piloto automático giroscópico monitorizado por un compás magnético, y su caída sobre el blanco a una distancia determinada venía determinada por las revoluciones de una hélice pequeña. Cuando le decía al motor de la V-1 que se parase, se producía un silencio terrible de 15 segundos, antes de caer a tierra para explotar con una fuerza que podía destruir un edificio entero.

EJECUCIÓN DEL PLAN ALEMÁN: Para  desarrollar el plan se comenzó a construir un centro secreto de investigación en la isla de Peenemünde, en la costa del mar Báltico cercana a la desembocadura del Oder. Eran necesarias unas instalaciones adecuadas, con espacio suficiente y situadas en un lugar discreto. La isla era ideal para ello y se habilitó espacio para más de 2.000 científicos.

En 1937 comenzaron las pruebas del A-3, el predecesor directo de la V-2. Dornberger quería un misil capaz de transportar una cabeza de guerra de 100 Kg. hasta una distancia de más de 260 Km. El A-3, de unos 750 kg de peso, desarrollaba un empuje de 1.500 Kg. en el lanzamiento, utilizando oxigeno líquido y alcohol; pero el A-4 dispondría de un motor con un empuje de 25.000 kg. Ello suponía todo un reto científico.

Por eso se recurrió a la utilización de turbo-bombas de alta velocidad, impulsadas por peróxido de hidrógeno. Se perfeccionaron los giróscopos y continuó mejorándose el misil. En 1938 se lanzó un prototipo hasta una altura de más de 10 Km.

Con el comienzo de la guerra, Hitler, urgió a Dornberger porque quería obtener un arma definitiva, de más de 250 Km. de alcance, que pudiese poner una tonelada de explosivo en París o Londres. Tal misil tenía que ser fácil y relativamente barato de producir, debía poder ser lanzado desde rampas móviles y ocultarse en los túneles ferroviarios.

El 3 de octubre de 1942 se lanzó con éxito el primer A-4, tras dos lanzamientos fallidos. El misil alcanzó la velocidad del sonido (el segundo ya lo había hecho), subió hasta los 80 Km. y cayó a una distancia de 191 Km. De inmediato se dotó a Peenemünde de más personal y recursos para continuar el desarrollo de la futura V-2.

El nombre de V-2 se adoptó al utilizarse el de V-1 para el arma diseñada por la Luftwaffe. Pronto el alcance de la V-2 superó los 400 Km. a una velocidad de más 5.300 Km./h (mach 4, es decir, cuatro veces la velocidad del sonido).

bomba volante v2

Los aliados cuando identificaron el tipo de actividad que se llevada a cabo en la isla, en la noche del 18 de agosto de 1943,  lanzaron una incursión de bombardeos contra las instalaciones. Los daños fueron importantes , pero el edificio principal de las investigaciones resultó ileso. A pesar de todo, perecieron más de 800 personas y se hizo patente la necesidad de dispersar las instalaciones por toda Alemania.

LA NUEVA FÁBRICA SUBTERRÁNEA: Tras los ataques aliados contra Hamburgo, las fábricas de cojinetes de Schweinfurt y el centro de investigaciones de Peenemünde, donde se inventó el V-2, se necesitaba una fábrica a prueba de bombas, y Nordhausen era el candidato perfecto.

La mitad norte del complejo quedó bajo el control de Mittelwerk GmbH, para fabricar y montar las bombas voladoras V-1 (menos las alas) y los cohetes V-2 (menos las cabezas); la parte norte se asignó a la empresa Junkers, para el montaje de los motores de propulsión Jumo 004 para los aviones Messerschmitt 262, y motores de pistón Jumo 213 para los modelos más antiguos, Focke Wulf 190.

Hubo que realizar muy pocas reformas. Se instaló un suministro eléctrico desde una central cercana y se excavó una caverna de 23 metros de altura, donde pudieran ponerse verticales los V-2 ya montados, para probar sus componentes eléctricos. Entre agosto y septiembre de 1943 se trasladaron a Nordhausen numerosos prisioneros de los campos de concentración, para utilizarlos como mano de obra.

Hacia finales de octubre, se trasladó todo el campamento al interior de la montaña, y los prisioneros —en su mayoría franceses, rusos y polacos, aunque también había entre ellos algunos presos políticos alemanes— fueron encerrados en tres cámaras oscuras, húmedas y llenas de polvo.

Dormían en bancos apilados de cuatro en cuatro, y trabajaban en turnos de 12 horas. Cuando un turno iniciaba el trabajo, el otro intentaba dormir en los mismos bancos sucios, cubriéndose con las mismas mantas. No existían letrinas —había que apañarse con barriles de carburo vacíos y cortados por la mitad— y había que caminar más de 800 metros para llegar a un grifo de agua.

Speer Militar AlemanAlbert Speer, ministro alemán de armamentos, visitó la fábrica en diciembre y dejó constancia de sus impresiones en su autobiografía, publicada después de la guerra: «Las condiciones en que vivían estos prisioneros eran verdaderamente bárbaras, y cuando pienso en ellos me invade una profunda sensación de responsabilidad y culpa personal.

Después de la inspección, los supervisores me informaron de que las instalaciones sanitarias eran inadecuadas y las enfermedades hacían estragos; los prisioneros estaban recluidos en cavernas húmedas y, como consecuencia, la mortalidad… era extraordinariamente elevada.»

Por órdenes de Speer, se construyó un campo de concentración fuera de la montaña para alojar a los prisioneros, y las condiciones mejoraron. Cada vez se enviaban a la fábrica más prisioneros, hasta que el número de trabajadores esclavos ascendió a unos 20.000.

La SS dictó órdenes estrictas. prohibiendo todo contacto privado entre los prisioneros y el personal alemán. Bajo ningún concepto debían filtrarse al mundo exterior noticias de lo que estaba sucediendo en Nordhausen.

Los tres primeros misiles V-2 salieron de Nordhausen el día de Año Nuevo de 1944; a finales de enero, se habían terminado otros 17. A partir de entonces, la producción progresó con rapidez, y en junio se entregaron 250 misiles. La producción de V-1 comenzó más tarde, en julio de 1944, pero aquel mismo mes se entregaron 300.

El V-2 era un arma muy compleja y sofisticada, mientras que el V-l era simple y barato, pero los dos resultaron muy eficaces, y en Londres se hicieron muchos chistes macabros acerca de cuál de los dos era más terrorífico: el V-l, que podía oírse venir hasta que el motor se paraba, iniciándose entonces una angustiosa espera hasta que se producía la explosión, o el V-2, que caía sin avisar.

fábrica de bombas volantes

La impresionante instalación de Nordhausen donde se fabricaron mas de 30.000 proyectiles V1, de las
cuales una quinta parte cayó sobre Londres

Todas las entradas y los conductos de ventilación de la fábrica estaban perfectamente camuflados. Los misiles se cargaban en vagones de tren o en camiones dentro de los túneles, y se cubrían bien con lonas. Los trenes salían de los túneles y seguían la red ferroviaria alemana hasta llegar a las bases de lanzamiento, cerca del canal de la Mancha.

Gracias a estas precauciones, la fábrica consiguió permanecer oculta a los reconocimientos aéreos, y los aliados no tuvieron idea de su importancia hasta finales del verano de 1944, cuando el interrogatorio de un prisionero alemán reveló su existencia. Por suerte para los esclavos de Nordhausen, el mando aliado rechazó un plan de von braumataque norteamericano, consistente en arrojar enormes cantidades de napalm sobre los túneles y los conductos de ventilación, para provocar un incendio que acabase con todos los ocupantes del interior.

Durante el mes de diciembre de 1944, la fábrica subterránea produjo un total de 1.500 V-1 y 850 V-2, y el éxito obtenido hizo que se pensara en ampliarla, multiplicando por seis su superficie.

Se empezaron a excavar nuevos túneles, para instalar en ellos una fábrica de oxígeno líquido (uno de los combustibles empleados por el V-2), una segunda fábrica de motores de avión, y una refinería para producir petróleo sintético. Pero todo terminó el 11 de abril de 1945 cuando las tropas norteamericanas llegaron a la zona. Permanecieron en ella seis semanas, llevando a cabo una minuciosa inspección de la fábrica y sus productos, antes de dejarla en manos del Ejército Rojo.

De haberse inventado antes, el V-2 habría influido de manera decisiva en el desenlace de la guerra. En total, se lanzaron sobre Londres unos 1.403 misiles, que mataron a 2.754 personas e hirieron a otras 6.532.

Durante los últimos meses de la guerra, se lanzaron otros muchos contra objetivos belgas: sólo en Amberes cayeron 1.214. Después de la guerra, sus inventores —entre ellos, Werner von Braun— se trasladaron a Estados Unidos para diseñar nuevos cohetes. El misil balístico, dotado posteriormente de una cabeza nuclear, se convirtió en el arma definitiva del precario equilibrio de terror en el que el mundo ha vivido desde entonces.

Fuente Consultada:
50 Cosas que Hay Que Saber Sobre la Guerra Robin Cross
Segunda Guerra Mundial Tomo 19 La Caída de Berlín
Construcciones Fabulosas Volumen II Atlas de lo Extraordinario Ediciones Prado

Las armas alemanas Bombas V1 V2 Segunda Guerra Mundial Secretas Armas

Las Armas Alemanas: Bombas V1 y V2 

Las armas secretas alemanas

Bomba alemana V2Alemania, tras la derrota sufrida en la Primera Guerra Mundial, se vio sometida a las férreas condiciones del Tratado de Versalles, en el que, entre otras cosas, se le limitaban las fuerzas armadas a un ejército de 100.000 hombres y se le prohibía la fabricación de todo tipo de armamento pesado.

Es lógico que, como consecuencia de estas condiciones, el Alto Estado Mayor germano pensara en la posibilidad de desarrollar los cohetes, que no entraban en el capítulo de prohibiciones impuestas, y convertirlos en un arma bélica que podría inclinar a su favor el peso del potencial militar frente al resto de las demás naciones de Europa.

Para ello no vacilará en servirse de los recursos humanos y técnicos que se han ido forjando, a través de las experiencias de la Verein fur Raumschiffahrt (Asociación para el desarrollo de la Astronáutica), en el terreno de pruebas para cohetes que ha estado utilizando en las afueras de Berlín desde 1927.

Al disolverse la sociedad, el gobierno alemán conseguirá atraerse a algunos de los miembros más destacados de la misma, poniendo a su disposición el centro de Kummersdorf, dirigido por el general Walter Dornberger. El colaborador más eficiente del general es el joven Wernher Von Braun, antiguo miembro de la asociación astronáutica, que ha optado por la única forma de poder realizar el sueño de su vida, trabajar en los cohetes, aunque tenga que relegar a un futuro incierto sus sueños de utilizarlos como vehículos para viajar por los espacios interplanetarios y deba limitarse, por el momento, a ponerlos a punto para las aplicaciones bélicas que interesan al país.

Las órdenes del general Dornberger eran tajantes. Se trataba de inventar, diseñar y construir nuevos tipos de armas, cuya existencia debería mantenerse secreta, capaces de dotar a las fuerzas armadas alemanas de una neta superioridad sobre los ejércitos enemigos cuando se iniciase la guerra. Y para ello deberían potenciarse al máximo todas las posibilidades que ofrecían los últimos descubrimientos en el campo de los cohetes propulsados por combustibles líquidos.

Pronto se preparan los planos para la construcción de un cohete de largo alcance, que puede llevar su carga explosiva a más de 200 Kms. de distancia, volando a velocidades superiores a la del sonido. En 1935, Hitler aprueba el proyecto y decide facilitarles todos los medios para poder llevar a cabo su realización en un lugar secreto que será escogido por el propio Von Braun, convertido en el director técnico del proyecto.

El lugar elegido estará situado en una isla del Báltico, Usedom, en la desembocadura del río Oder, lo suficientemente apartada para poder realizar las pruebas a salvo de miradas curiosas y donde se levantarán las instalaciones de la HA? (Heeres Anstalt Peenemünde o Instalaciones del Ejército de Peenemünde), de donde saldrían las principales armas secretas empleadas por las fuerzas alemanas.

La V-1 El Centro de Peenemünde, por su organización interna se encontraba sometido a la jurisdicción del Ministerio del Ejército, principal interesado en el desarrollo de las nuevas armas-cohetes y cuyos jerarcas habían gestionado ante el Führer los presupuestos necesarios para su construcción. Sin embargo, los jefes de la Luftwaffe pensaban que este tipo de armas, al ser utilizadas como elemento de combate aéreo, debían ser adjudicadas a sus centros de investigación y exigían una participación en los procesos de fabricación y puesta a punto de las mismas.

Para satisfacer sus demandas, el Alto Estado Mayor no dudó en concederles una parte de las instalaciones del HAP, donde se desarrollarían las diversas armas secretas alemanas, y que así quedaría dividido en dos zonas: Peenemunde Este, donde Wernher Von Braun se ocuparía de la dirección de todos los proyectos sobre cohetes para el Ejército, y Peenemunde Oeste, bajo las órdenes directas de Goering, donde se desarrollaría un prototipo de bomba volante, impulsada por un pequeño pulsoreactor que constituiría la primera novedad en el campo de las armas secretas alemanas.

Este aparato, ideado por el técnico aeronáutico Gerhard Fieseler, recibiría primeramente esta denominación de Fi-103, para pasar más adelante a hacerse famoso bajo las siglas V-1, correspondientes a Vergeltungswaffe-1, o «arma de represalia».

Este artefacto puede considerarse en esencia, como un avión a reacción no tripulado, cuyo combustible estaba constituido por gasolina mezclada con aire que se hacía detonar en una cámara de combustión a intervalos regulares, mientras los gases al escapar por la parte trasera del reactor le proporcionaban el impulso necesario para el vuelo.

El motor estaba situado encima del proyectil y comprendía una boca para la admisión del aire en una rejilla del tipo persiana para regular la entrada de éste, el sistema de inyección del combustible, la cámara de combustión y la tobera para la reacción de los gases. El conjunto tenía una longitud de 8,22 metros de largo y 1,50 m. de diámetro en su parte más ancha, con un peso total de 2.170 kg.. de los que 900 eran de explosivos, a base de nitrotolueno y nitrato amónico, que se alojaban la parte delantera del proyectil. A continuación la carga explosiva venían los depósitos de combustible, 700 litros de carburante, y un sistema de reacción por piloto automático en el que intervean tres giróscopos y un altímetro. También tenía las pequeñas alas con una envergadura de 5 metros.

Para su lanzamiento se utilizaban rampas de lanzamiento de 45 m. de largo, desde las que se catapultaban mediante una carga de pólvora dirigiéndose hacia sus objetivos a una velocidad media de 650 Kms por hora y a una altura de 2.000 metros.

Disponía de una autonomía de 250 kms. por lo que era un arma eficaz para bombardear las unidades inglesas más próximas a la costa. Sin embargo como eran fácilmente detectables por el radar, de reciente aparición por esos años, y teniendo en cuenta que su velocidad era similar a la de los últimos modelos de aparatos de caza de su tiempo, estos proyectiles eran presa fácil para los pilotos de la R.A.F., quienes, aparte del fuego directo, para derribar el artefacto utilizaban también una arriesgada pero eficiente maniobra a fin de alterar el rumbo del mismo.

Se situaban a si mismo nivel y rozaban con la punta del ala el extremo correspondiente en la de la bomba volante, con lo cual el artefacto venía a caer sobre las aguas del Canal de la Mancha, sin causar mayores daños.

El primer proyectil de este tipo cayó el 14 de junio de 1944 en Swanscombe, cerca de Gravesend, causando más pánico entre la población civil que daños materiales reales, y desde entonces hasta el final de la guerra no dejarían de caer sobre Londres. De las 8.000 bombas volantes aproximadamente que lanzaron los alemanes en este intervalo solamente 2.419 alcanzaron su objetivo causando la muerte de 6184 personas y heridas a 17.981. Otras 2.448 se lanzaron sobre Antwerp.

La bomba volante V-1 fue el primer proyectil operativo lanzado desde la base de Peenemunde, el centro de experiencias secretas alemán. Durante las pruebas el prototipo se adaptó para ser pilotado por la famosa aviadora germana Hanna Reichst, que realizó el vuelo en abril de 1944, antes de que las V- 1 fueran construidas en serie para la Luftwaffe.

La serie de bombardeos sobre las ciudades inglesas mediante las V- 1 fueron más espectaculares que efectivos en daños materiales y si bien al principio levantaron grandes esperanzas entre los dirigentes nazis convencidos de que tenían en sus manos el arma que les daría la victoria, pronto vieron que se necesitaba algo más demoledor y eficaz para conseguir aplastar el poderío militar de los aliados.

Entonces se volvieron de nuevo a Peenemunde, pidiendo a los técnicos que allí trabajaban la que debía ser el «arma definitiva»: un cohete capaz de transportar una tonelada de explosivos sobre Londres y que pudiera escapar a los sistemas de detección y a los ataques de los cazas enemigos.

Para lograrlo a tiempo, había que acelerar al máximo los proyectos de Wernher Von Braun y su equipo de científicos, quienes ya en sus experiencias del centro de pruebas de Kummersdorf, los años inmediatamente anteriores a la guerra, habían trabajado con los que serían los predecesores del futuro V-2, cohetes de la serie Aggregate-1 (A-1), propulsados por alcohol y oxígeno líquidos.

Las primeras experiencias realizadas en Peenemunde, en otoño de 1937, consistirían en el lanzamiento de varias versiones mejoradas de este prototipo. El A-3, ya era un artefacto de 6 metros de alto y 745 kgs. de peso cuyo motor a base de combustibles líquidos, le proporcionaba un empuje de 1.360 kgs. Sin embargo, los resultados no serían satisfactorios hasta que nuevos mejoramientos, principalmente en los sistemas de dirección, condujeron al A-4, que a finales de 1938 alcanzó una altura de más de 10 kilómetros, convirtiéndose en el prototipo sobre el que se realizarían todas las investigaciones posteriores, hasta llegar a la definitiva V-2.

Los lanzamientos de prueba del nuevo modelo tuvieron lugar entre junio y octubre de 1942 y finalmente se consiguió que un cohete de 14,5 metros y 12 toneladas de peso, lanzado desde la costa de Pomerania, alcanzase una altitud de 80 kilómetros y cayera a 191 Kms. de distancia. El proyectil-cohete era una realidad y el gobierno alemán, que hasta entonces había estado de espaldas a tan excitantes experiencias, mostró súbitamente un enorme interés por las mismas, apremiado por los avatares de la guerra que habían cambiado mucho desde los meteóricos éxitos iniciales.

Las demostraciones de la nueva arma convencieron plenamente al Alto Mando que no vaciló en poner a disposición del equipo técnico responsable de su realización todos los medios necesarios para lograr su desarrollo definitivo hasta pasar al proceso de fabricación en serie y su puesta en servicio final.

El resultado de estos esfuerzos sería el artefacto conocido como V-2 (también de Vergeltungswaffe o «arma de represalia»), que presentaría un aspecto verdaderamente impresionante. El proyectil tenía unas proporciones completamente inusitadas: 14,5 metros de longitud por 1,65 de diámetro máximo. Pesaba 12 toneladas y media en el momento del despegue, de las que un 70 % lo constituía el combustible compuesto por 3.750 kgs. de alcohol etílico y 4.970 de oxígeno en estado líquido. Estos gases se consumían a razón de 125 Kgs. por segundo en la cámara de combustión, proporcionándole un empuje de 25.000 kgs. y una velocidad de eyección de los propergoles de 2.000 m. por segundo.

La estructura del artefacto es la siguiente:

En la cabeza iban los 910 kgs, de amatol que constituían su carga explosiva; a continuación, entre la carga y los depósitos de combustible, venía un pequeño compartimiento en el que se situaban los mecanismos de control automático y de radio-dirección; seguían después los depósitos cilíndricos de combustible, las bombas que asPi/an los líquidos en la cámara de combustión finalmente ésta con su tobera del tipo «Laval» a la salida de la cual se encontraban, en medio del paso de los gases eyectados, unas pequeñas aletas de dirección construidas en grafito, que actuaban como estabilizadores del cohete.

Al contrario de lo que sucedía con las V-1, las V-2 eran prácticamente invulnerables, pues alcanzaban velocidades supersónicas y era imposible interceptarlas con los cazas de motor de émbolo o derribarlas con la artillería antiaérea. Además podían ser disparadas desde rampas móviles, por lo que la localización de sus bases de lanzamiento resultaba bastante problemática. Su lanzamiento se efectuaba en sentido vertical, para irse inclinando hasta alcanzar un ángulo de unos 45 grados y una vez agotado el combustible seguía una trayectoria parabólica hasta alcanzar los 100 Kms. de altitud y dirigiéndose a su blanco, situado a más de 300 Kms. de distancia a una velocidad de 5.600 Kms. por hora. Resulta evidente la nula capacidad defensiva ante semejante ingenio ya que por la altura y velocidad a que se desplazaba era prácticamente imposible de localizar por el radar de la época.

La primera V-2 cayó sobre Chiswick, cerca de Londres, el 8 de septiembre de 1944, sin que sus habitantes se pudieran apercibir de lo que se les venía encima hasta sentir el estruendo de la explosión, que sería seguida del terrible estrépito producido al atravesar el artefacto la barrera del sonido y que sería escuchado en la ciudad unos segundos después del impacto. De estas armas cayeron más de 2.000 sobre Inglaterra, entre la fecha citada anteriormente y el 27 de marzo de 1945 en que cayó

la última sobre Orpington, en Kent. El total de victimas producidas fue de 2.754 muertos y 6.523 heridos. También se emplearon las’ V-2 contra la ciudad de Amberes y contra las fuerzas aliadas de la región de Aquísgran. Se supone que un gran número de artefactos explotaron en sus bases de lanzamiento o nunca alcanzaron sus blancos y se calcula que el número de aparatos fabricados por la industria alemana en el tiempo que les permitió la duración de la contienda, no sobrepasaría los 5.000.

Si bien los daños causados por esta nueva arma fueron bastante más cuantiosos que los de su predecesora la V- 1, no fueron suficientes para cambiar el curso de la guerra que ya había tomado un giro decisivo hacia la victoria aliada. Las V-2 actuarían principalmente como armas psicológicas, manteniendo la moral de las fuerzas alemanas durante algún tiempo todavía, pero su función decisiva en los campos de batalla todavía no había llegado. Era un arma prematura que necesitaba todavía de unos cuantos años más de perfeccionamiento para convertirse en el misil teledirigido intercontinental que amenaza como una pesadilla la paz en nuestro tiempo.

Otras armas secretas alemanas

Además de las V-1 y las V-2 que tuvieron su período operativo, la industria alemana de guerra desarrolló otros variados ingenios propulsados por cohetes, que apenas pudieron intervenir en la contienda o su utilización quedó restringida a escenarios muy reducidos.

Una de éstas fue la denominada Wasserfall («cascada») consistente en una versión a escala reducida de la V-2, pero con la ventajosa posibilidad de poderse orientar automáticamente hacia su blanco mediante un dispositivo de rayos infrarrojos. Era un cohete de 8 metros de longitud que podía portar una carga explosiva de 306 kgs. a una distancia de 35 Kms.

Otra derivación de la V-2, que no salió de los tableros de diseño, fue la correspondiente a las siglas A-9/A-10, prevista para dar origen a un gigantesco cohete de dos etapas que doblaría en tamaño a la V-2. Según sus datos técnicos podría haber alcanzado una distancia de 4.800 kms. lo que lo colocaba ya en la línea de los modernos proyectiles balísticos intercontinentales que tardarían más de una década en ser desarrollados por los ejércitos de Rusia y Estados Unidos.

Con un arma de esas características es evidente que la guerra hubiera podido seguir un rumbo diferente, pues incluso los Estados Unidos hubieran estado bajo su radio de acción. Los cohetes aplicados a la artillería darían origen al Rheintochter (Hija del Rhin), precursor de los actuales proyectiles tierra-aire, que sería lanzado por primera vez en agosto de 1943, para ser sustituido a partir de Diciembre de 1944 por otros proyectiles semejantes pero más eficientes: el Enzian y el Schmetterling, que serían fundamentalmente pequeños aviones-cohete con posibilidad de ser dirigidos por radio.

Principios fÍsicos de los cohetes: porqué vuelan los cohetes Von Braun

Principios Físicos de los Cohetes: ¿Por qué vuelan?

Características de la propulsión por cohetes

Como ya hemos visto en los capítulos anteriores, el hombre ha ido imaginando muchos métodos, algunos totalmente sorprendentes, para trasladarse desde la Tierra a otros astros. Unas veces estos métodos se basaban en principios físicos que creía conocer bien, pero que en la práctica jamás podrían haber dado resultado y otras se trataba simplemente de ingeniosos productos de su imaginación que no respondían a las leyes de la Naturaleza.

Tal es el caso de la misteriosa fuerza antigravitacional, que tan fácilmente resolvía todos los problemas de los vuelos por el espacio, o los recursos a fuerzas mágicas o sobrenaturales, que también tuvieron cabida en tantos relatos de viajes astronáuticos.

Algunos de los procedimientos utilizados, como el dejarse arrastrar por el vuelo de las aves, el empleo de alas artificiales, los globos aerostáticos (este último descrito por Edgar Allan Poe en su relato La Aventura sin Par de un tal Hans Plaau). etc. independientemente de la imposibilidad física de realizar un recorrido tan largo en un tiempo razonable, carecían de fundamento científico a partir del descubrimiento de la existencia del vacío entre la Tierra y la Luna, debida a los experimentos de Torricelli, que había inventado el barómetro en 1643, y de Blas Pascal, quien, en 1648, medía la presión atmosférica existente en diferentes alturas de una montaña, llegando a la conclusión de que la capa de aire no se extendía indefinidamente por el espacio, sino que tenía una altura determinada. encontrándose el vacío a continuación de ella.

El método del obús disparado por el gigantesco cañón Columbia de Julio Verne, aunque aparentemente podría ser realizable siempre que se encontrara un medio de reducir a límites tolerables la aceleración inicial sufrida por los tripulantes, tan poco ofrece ningún tipo de solución para vencer la resistencia del aire a la enorme velocidad de 40.000 kms. por hora. Esta resistencia produciría un violento frenado del artefacto con el consiguiente calentamiento aerodinámico del mismo, el llamado «muro del calor» que aumenta con la velocidad, hasta alcanzar temperaturas imposibles de resistir por cualquier material conocido.

De todos los medios imaginados en estos relatos, el único que haría viables los vuelos por el espacio es el de la impulsión por cohetes, aparato que ya era conocido desde bien antiguo, aunque no hubiera merecido la suficiente atención y se encontrase relegado a unos aspectos muy secundarios en sus aplicaciones prácticas. Una de las ventajosas características del cohete es que su velocidad puede regularse de forma que el calentamiento provocado por la resistencia del aire al atravesar las capas bajas de la atmósfera sea tolerable.

En el momento del despegue la velocidad del aparato es reducida, para irla incrementando progresivamente a medida que va alcanzando las capas superiores, donde la resistencia es mínima, y finalmente alcanza su máxima velocidad en el vacío donde la resistencia del aire es nula.

La fuerza de reacción

Para comprender mejor las inmensas posibilidades de los cohetes en el terreno de la Astronáutica, recordemos sus principios básicos. Ante todo debemos partir de la idea de que un cohete es un aparato volador que se desplaza siguiendo los principios expuestos por Isaac Newton en su famosa Tercera ley del Movimiento: A una fuerza llamada acción se opone otra llamada reacción, de igual magnitud, pero de sentido contrario.

Esta fuerza de reacción la podemos comprobar experimentalmente, observando el retroceso que sufre un cañón o cualquier otro tipo de arma, cuando dispara sus proyectiles. Si colocásemos un cañón de tiro rápido sobre una vagoneta de ferrocarril y empezásemos a dispararlo en una dirección, la vagoneta empezaría a moverse en el sentido opuesto, y silos disparos se sucediesen a un ritmo más rápido que la duración del impulso de retroceso, éste se incrementaría sucesivamente y la vagoneta adquiriría una velocidad y una aceleración crecientes.

El fenómeno se intensificaría si se arrojasen proyectiles más pequeños y en mayor cantidad, o a mayores velocidades. Lo ideal sería que se disparasen moléculas de un fluido a su máxima velocidad. Esto es lo que se produce en el cohete cuando expulsa los gases producidos durante su combustión, obtenidos mediante la reacción química de sus dos substancias componentes: el combustible y el comburente.

saturno 5 y el apolo 11El mismo principio se aplica a los motores de reacción de los aviones. Estos aspiran por su parte delantera el aire exterior, mezclándolo con gasolina pulverizada u otro combustible, en una cámara de combustión donde se produce su encendido. Los gases obtenidos, en lugar de mover un pistón como en los motores de explosión convencionales, salen expulsados por la tobera o salida posterior del motor formando un chorro de moléculas de alta velocidad (de aquí proviene el nombre de «propulsión a chorro» con que son designados también estos motores), provocando la consiguiente reacción que impulsa el motor hacia adelante.

Sin embargo aunque utilicen el mismo principio de reacción para producir el movimiento, existen ciertas notables diferencias entre los motores cohete y los motores a reacción. En estos últimos, el oxígeno necesario para la combustión es obtenido del aire que aspiran del exterior, por lo cual sólo pueden funcionar en las capas atmosféricas lo suficientemente densas para poder proporcionar este gas en las cantidades necesarias, lo cual automáticamente invalida este tipo de motores para las grandes alturas y sobre todo para los vuelos por el espacio.

En cambio los motores cohete poseen la gran ventaja de contener en su interior todo el oxígeno necesario, el comburente, ya sea mezclado con el combustible, o en depósitos independientes en el caso de cohetes de combustibles líquidos, convirtiéndose así en un sistema verdaderamente autónomo, totalmente independiente del medio externo y por lo tanto capaz de funcionar en zonas donde exista el vacío más absoluto.

Este tipo de motores, denominados anaerobios, obtienen su máximo rendimiento precisamente en esas zonas carentes de aire atmosférico al no tener que vencer ninguna resistencia para su desplazamiento, lo que los convierte en los impulsores ideales de los vehículos espaciales.

Componentes del cohete

Todo cohete, desde los tipos más sencillos utilizados en pirotecnia, hasta los enormemente complejos de las aplicaciones astronáuticas, constan esencialmente de los mismos elementos. Un cilindro, ya sea de cartón o de metal, en el que se alojan las substancias químicas que van a entrar en combustión, un sistema de encendido para producir ésta (la simple mecha de los pequeños cohetes de pólvora) en la correspondiente cámara de combustión, y un orificio de salida o tobera por el que se expulsarán los gases obtenidos provocando así la fuerza de reacción. Para mantenerlo en la dirección deseada existen varios sistemas desde una simple varilla de madera al conjunto de aletas estabilizadoras y giróscopos de los grandes cohetes actuales.

Por otra parte, el cohete deberá transportar algún tipo de carga útil. En los cohetes utilizados en los fuegos artificiales será la caperuza donde se aloja la mezcla que estallará cuando el cohete alcance la altura adecuada, produciendo sus brillantes efectos luminosos, mientras que en los cohetes de usos militares serán cargas explosivas y en los utilizados en Astronáutica serán las cápsulas espaciales, los satélites u otros instrumentos de medida que se vayan a lanzar al espacio.

La utilización de combustibles y comburentes, llamados en conjunto propergoles, de naturaleza sólida o líquida, dará lugar a tres tipos diferenciados de cohetes. Los denominados cohetes a propergoles líquidos, por hallarse ambos componentes en ese estado, los cohetes a propergoles sólidos, por el mismo motivo, y los cohetes híbridos, donde uno de los componentes es sólido y el otro líquido.

Los cohetes a propergoles líquidos, de construcción bastante más compleja que los otros por la necesidad de llevar depósitos aislados y sistemas de bombeo de cada uno de los líquidos a la cámara de combustión, son generalmente de bastante mayor potencia que los de propergoles sólidos, por lo que se utilizan fundamentalmente en los aparatos que necesitan enviar al espacio grandes masas, como los vehículos americanos A polos, impulsados por los cohetes a propergoles líquidos del Saturno V.

En este caso el combustible es queroseno y el comburente oxígeno líquido, mantenido en ese estado mediante altas presiones y bajas temperaturas en los depósitos. En la actualidad esos son los propergoles líquidos más empleados aunque también se utilicen el ácido nítrico, el peróxido de nitrógeno y el ozono líquido como comburentes y el alcohol, la hidracina o el hidrógeno líquido como combustibles. La combinación ideal sería la de hidrógeno-oxígeno líquido por proporcionar la máxima velocidad a los gases de escape.

Los principales propergoles sólidos empleados son los siguientes: balistita (formado por nitroglicerina y nitrocelulosa), cordita (nitrocelulosa, nitroglicerina, vaselina), pólvoras, nitroparafina, y percloratos de amonio o de potasio. Los propergoles híbridos más utilizados son: caucho artificial y oxígeno líquido, resinas sintéticas y peróxido de hidrógeno (agua oxigenada).

Los propergoles sólidos ofrecen por su parte la ventaja de ser fácilmente almacenables y tienen menos problemas a la hora de su manipulación por lo que son más adecuados para cohetes de aplicaciones militares o de pequeñas potencias de empuje. También permiten que la construcción y el funcionamiento del cohete sean más simples.

El primer tipo de combustible utilizado en los cohetes no fue otro sino la pólvora negra, obtenida con la mezcla de salitre, carbón vegetal y azufre. Estos ingredientes al quemarse producen un gas que tiende a ocupar un volumen 400 veces mayor que la mezcla original, produciendo una fuerte presión en las paredes del recipiente que los contiene. Si este se encuentra cerrado explotará bruscamente con el consiguiente «petardazo».

En el cohete de pólvora, ésta se coloca en una masa compacta, pero dejando un hueco en forma de embudo a lo largo de su eje central que terminará junto a la abertura de la parte posterior del cilindro que constituye el cohete. Este hueco cónico y la abertura de salida constituyen la cámara de combustión y la tobera del motor-cohete.

Cuando se enciende la carga, la pólvora empieza a arder por la superficie interna de la cámara de combustión, creando rápidamente una considerable masa de gas a temperaturas muy elevadas y con una presión muy alta que escapará por la abertura posterior a gran velocidad, provocando por reacción el movimiento del cohete hacia adelante que se elevará emitiendo su característico silbido hasta que se queme toda la pólvora contenida en su interior.

Empuje de un cohete

La fuerza de propulsión que desarrolla el cohete es igual al producto de la masa de gases que arroja en un segundo por la velocidad de los mismos, es decir:

E = m.v

Por lo tanto si un motor-cohete consume 10 kgs. de propergol por segundo y expulsa los gases a una velocidad de 3.000 metros por segundo, el empuje obtenido sería de:

E=10 . 3000/9.8 =3.061 Km ó 3061 Tm.

(teniendo en cuenta que la masa es igual al peso dividido por la constante gravitatoria 9,8.)

De esta fórmula se desprende que para que el cohete pueda elevarse del suelo, su peso total a plena carga, deberá ser menor que el del empuje producido.

Velocidad final

Aplicando la fórmula de la Dinámica que dice «el momento lineal o la cantidad de movimiento de un sistema es constante», tendremos:

m.v = M.V

siendo m, la masa de los gases expulsados, u, la velocidad de los mismos, M, la masa total del cohete y V, la velocidad en ese momento.  Para saber la velocidad que adquiere el cohete despejamos V en la fórmula anterior y obtenemos:

V=m.v/M

Esta fórmula nos dice que la velocidad del cohete depende de tres factores: su masa, la masa de los gases que expulsa por segundo y la velocidad de éstos. Por lo tanto para poder aumentar la velocidad del cohete deberemos disminuir su masa (M), aumentar la velocidad del chorro de gases (u) o aumentar la cantidad de gas expulsado por segundo (m), y de ser posible, las tres cosas a la vez.

La cantidad de gas expulsado y su velocidad de salida son constantes pero a medida que va consumiendo su combustible, la masa del cohete disminuye, por lo que la velocidad, del mismo irá aumentando sucesivamente hasta que alcance su límite máximo cuando el combustible se haya acabado por completo.

De esta forma vemos que el cohete despega del suelo con cierta lentitud en principio, para irse acelerando progresivamente a medida que transcurre su vuelo. Esta característica le permite vencer la resistencia del aire con más facilidad que si saliese despedido a su velocidad máxima como les sucede a los proyectiles disparados por un canon.

Es lógico pensar que si el cohete contiene mayores cantidades de combustible, éste tardará más tiempo en consumirse y por lo tanto la velocidad final aumentará. Este incremento debe tener

un límite y para calcular con exactitud las posibilidades de aumento de la velocidad final, tenemos que utilizar el término «razón de masas», que corresponde al cociente de dividir la Masa total del cohete al despegar (M1) por la Masa final al consumir todo su combustible (M2).

Velocidad de KM/seg. que alcanza un cohete

Velocidad de KM/seg. que alcanza un cohete al final de la combustión en función de la razón de las masas, es decir, la relación entre la masa total en el momento del despegue y la masa al final de la combustión

Así la fórmula que nos dará la velocidad final del cohete, descubierta por Ziolkovsky, es la siguiente:

y = c.loge (M1/M2)

Es decir que la velocidad final (u) será igual al producto de la velocidad de eyección de los gases (c) por el logaritmo neperiano de la razón de masas. (El logaritmo neperiano es igual al logaritmo decimal x 2,3).  Esta velocidad final será exactamente igual a la velocidad de salida de los gases cuando el logaritmo valga 1, es decir cuando la razón de masas valga 2,718 que es la base de los logaritmos neperianos. 

Un ejemplo nos ayudará a hacer los cálculos. Supongamos que un cohete tiene una razón de masas de 3, lo que quiere decir que el combustible representa los dos tercios de su peso total, y que expele los gases a 2.000 m. por seg. La velocidad que alcance al final de la combustión será:

v = 2.000 x loge 3= 2.200 m. por seg.

Si en vez de logaritmos neperianos utilizamos logaritmos decimales, la fórmula se transformará en:

v = 2.000 x log 3 x 2,3 = 2.200 m. por seg.

Si la razón de masas hubiese sido de 10 y los gases se expelen a la misma velocidad de 2.000 m. por seg. la velocidad final sería de:

v= 2.000 x log 10 x 2,3 = 4.600 m. por seg.

Lo que demuestra la importancia que tiene para la velocidad final del cohete el incremento en la razón de masas.

 La carga útil :Sin embargo la razón de masas no puede aumentar indefinidamente, pues el cohete está previsto para que transporte algún tipo de elemento que constituiría su carga útil. Las cápsulas espaciales y sus tripulantes, los satélites artificiales, o los instrumentos de diversos tipos que se envíen al espacio en el cohete serán los componentes de esta carga y limitarán la razón de masas del mismo, si bien, la mayor parte del peso del cohete estará constituida por los propergoles.

La carga útil llega a ocupar solamente de un 0,4 a un 2 % del peso total del aparato, lo que supone un rendimiento bastante bajo en comparación con cualquier otro vehículo de transporte.

Como en muchos casos no es suficiente un solo cohete para elevar una carga útil determinada, se pueden agrupar varios de ellos en forma de racimo, es decir en paralelo, y encenderlos todos a la vez, de forma que el empuje resultante sea la suma de todos los componentes del grupo.

Hoy día todos los grandes cohetes utilizados en Astronáutica recurren a este procedimiento y así tenemos a los gigantescos Saturno IV y Saturno V americanos, compuestos el primero de ellos por ocho motores en racimo que le proporcionan un empuje total de 745 Tm y el segundo por cinco motores principales, en su primera fase, que a base de quemar oxígeno líquido y queroseno, le proporcionan un empuje de 3.500 Tm.

Vida de Von Braun y el Saturno 5 para la Mision Apolo Cientifico Aleman

Vida de Von Braun y el Saturno 5

Wernher Von Braun: Un hombre que hace historia El hombre sobre cuyas espaldas recaería toda la responsabilidad del magno proyecto Apolo y prácticamente de casi todas las realizaciones técnicas que en materia de vuelos espaciales desarrollara la N.A.S.A., había llegado a Norteamérica, procedente de su tierra natal de Alemania, el mismo año en que terminó la II Guerra Mundial.

Llevaba consigo un enorme bagaje de conocimientos sobre la tecnología de los cohetes, adquirido durante sus experiencias en los centros de producción de armas secretas del ejército germano. La afición a los cohetes era algo innato en él, y ya desde muy niño había realizado toda clase de experimentos con estos peligrosos artefactos, soñando siempre con la posibilidad de construir uno lo suficientemente poderoso como para poder transportar al hombre a otros planetas.

Wernher Von Braun había nacido el 23 de marzo de 1912 en la localidad de Wirsitz, situada en Prusia Oriental, en el seno de una aristocrática familia. Su padre, el barón Magnus Von Braun, poderoso terrateniente y banquero, sería ministro de Agricultura en el gabinete Von Papen, antes de la subida de Hitler al poder, y su maCientifico Von Braundre, la marquesa Emmy Von Quistorp, era una mujer de gran firmeza de carácter.

Desde niño, el joven Wernher ya se sentiría inclinado hacia las ciencias del espacio pues su madre, gran entusiasta de la Astronomía, le regaló un telescopio a los ocho años, cuando el muchacho recibe la confirmación según el rito luterano.

La atracción del joven hacia los mundos lejanos se acrecienta cuando cae en sus manos el libro de Herman Oberth, El Cohete en el Espacio Interplanetario, uno de los mejores tratados de Astronáutica escritos en su época. Al tropezar con las numerosas fórmulas matemáticas que se le hacen dificultosas de asimilar, acude al propio Oberth, pidiéndole se las aclare.

El maestro rumano le aconseja que estudie a fondo esta materia si quiere profundizar en la teoría de los vuelos espaciales, pues sin unos buenos conocimientos matemáticos no le será posible adentrarse en los secretos de la Astronáutica. 

El joven Von Braun, que ha sido expulsado de un preestigioso colegio berlinés por sus deficientes calificaciones en Matemáticas, se lanzará de lleno al estudio hasta conseguir graduarse en Ciencias Físicas por el Instituto de Tecnología de Charlottenburg, mientras sueña románticamente en lanzarse al espacio y explorar el Universo.

Más tarde se matricula en la Facultad de Astrofísica, donde comparte los estudios de las teorías einsteinianas con las prácticas de lanzamiento de pequeños cohetes en la Raketenflugplatz —Centro de Vuelo de Cohetes— de Berlín-Reinickendorf, lugar frecuentado por los aficionados a las experiencias en ese campo y donde se encontrará nuevamente con Hermann Qberth y los demás componentes de la Asociación para el Desarrollo de la Astronáutica, recientemente constituida.

El entusiasmo que despliega el joven Von Braun en todas las actividades relacionadas con los cohetes, atraerá la atención del general Walter Dornberger, especialista de armamento para el Ejército, que lo toma a su servicio como ingeniero civil y poco después, el 1 de octubre de 1923, le encomienda la dirección técnica del Centro de Cohetes de Kummersdorf.

A partir de entonces Von Braun, que sólo cuenta veinte años de edad, se consagrará totalmente al estudio y desarrollo de una nueva tecnología que, sin hacerle olvidar en ningun momento sus sueños de servirse del cohete para viajar por los espacios interplanetarios, dará a Alemania algunas de las armas más poderosas inventadas por el hombre.

La necesidad de mantener las experiencias en secreto obligan a trasladar el terreno de pruebas a un lugar apartado y es Von Braun el encargado de buscarlo. Tras varios intentos infructuosos, finalmente, por sugerencia de su madre, se dirige a la desembocadura del río Qder en el Báltico, donde encuentra la isla de Usedom y en ella un lugar semidesértico adecuado para sus planes.

Allí instalará el Centro de Peenemünde, nombre tristemente célebre en la Historia de donde surgirán las primeras bombas voladoras de gran potencia destructora, las V-2, que durante unos cuantos meses aterrorizarán a los habitantes de Londres y otras ciudades inglesas.

Von Fritsch, Jefe Supremo del Ejército, promete su apoyomoral y material para la construcción de la nueva base en Peenemünde donde continuarán las experiencias, y a este apoyo se suman los jefes de la Luftwaffe, interesados también en el desarrollo de nuevas armas aéreas.

Las obras comienzan en 1936 y al año siguiente se efectúan los primeros ensayos con los cohetes A-2 y A-3, que pronto serán relegados para concentrarse exclusivamente en el desarrollo de una variante más poderosa: el A-4, que finalmente se convertirá en la V-2.

A los tres años de funcionamiento, cuando estaha la guerra, el Centro de Peenemünde ya ha incrementado su personal técnico pasando de los 60 especialistas con que contaba en un principio hasta un total de 300 entre los que se encuentran ingenieros, químicos y científicos de todas las ramas que tuvieran aplicación en el campo de los cohetes.

Tras varios años de trabajos intensos y una serie de experiencias con motores más potentes en los que había que probar las mezclas de combustibles más adecuados, se logró un artefacto que lanzado el 3 de octubre de 1942 consiguió elevarse hasta 80 Kms. de altitud cayendo a 191 kms. de distancia. El A-4 finalmente demostraba sus posibilidades operativas y justificaba las cuantiosas sumas invertidas en su realización.

Dornberger y Von Braun, eufóricos ante el éxito obtenido, se esforzaron por conseguir una entrevista con Hitler para exponerle los resultados de sus experiencias y son recibidos por el Führer, en su Cuartel General de Rastenburg. Hitler se siente sumamente complacido por los resultados de sus experiencias y les promete la máxima prioridad en todo lo referente a la producción del A-4. Pero no todo van a ser facilidades y el 17 de agosto de 1943, un bombardeo devastador se abate sobre Peenemünde, reduciendo a escombros las instalaciones, destruyendo importantes documentos y acabando con cerca de un millar de personas entre trabajadores y técnicos de la base.

Tras dos horas de bombardeo, Dornberger y Von Braun se esfuerzan por rescatar del fuego lo que puede ser salvado y una vez hecho el recuento ven que los daños materiales no son tan graves como se pensó en un principio. Las instalaciones más importantes no han sido destruidas y el trabajo podrá volver a reanudarse en unas pocas semanas.

Una vez que la situación recobra la normalidad, los trabajos en el proyectil-cohete continúan, aunque ahora todo el personal técnico de los laboratorios esté sometido a una estrecha vigilancia por parte de la policía secreta alemana que no quiere arriesgarse a perder los importantes secretos que se encierran en Peenemünde.

Finalmente, el 6 de septiembre de 1944 se dispara el primer artefacto que cae en el suburbio londinense de Chiswick y a partir de entonces, los lanzamientos se sucederán ininterrumpidamente hasta el fin de la guerra. Un discurso de Goebbels, ensalzando las características de la nueva arma, darán a conocer a Von Braun y sus colegas la nueva denominación oficial del cohete, que pasará a la Historia bajo el nombre de V-2.

Cuando empieza a oírse, al otro lado del Oder, el tronar de la artillería soviética, se ordena el desmantelamiento de Peenemünde y la dispersión de sus instalaciones por diversas zonas del país. Von Braun y el equipo técnico se establecen en Nordhausem a comienzos de 1945. Cuando los rusos ocupan Peenemúnde el 5 de marzo solamente encuentran una ciudad en ruinas, dinamitada por los propios alemanes en su retirada.

La guerra está prácticamente terminada. En abril los americanos se aproximan a Nordhausem, donde siguiendo el plan de operaciones llamado Ouercast tratan de apoderarse de todo el material secreto posible y enviarlo a los Estados Unidos junto con un grupo de técnicos especializados.

Von Braun y Dornberger plantean a sus hombres la disyuntiva de entregarse a los rusos o a los americanos y la mayoría acepta esta última alternativa. «Es necesario dejar el bebé en buenas manos», dirá Von Braun y reúne toda la documentación técnica posible, encerrándola en una vieja mina abando

nada. En el mes de mayo finaliza la guerra y el 15 del mismo, Von Braun entrega a las fuerzas americanas las cajas con el preciado material. Es su salvoconducto para América. Al poco tiempo. el director del centro de Nordhausem, con la mayor parte de sus científicos y todo el material que se ha podido recuperar intacto, embarcan para Norteamérica donde se encontrarán ya instalados para septiembre del mismo año; sin embargo les costará algún tiempo adaptarse al estilo de vida americano y hacer que se olviden los resentimientos de los largos años de guerra.

En febrero de 1946 hay ya más de un centenar de especialistas alemanes en Fort Bliss, cerca de El Paso, donde se inician las pruebas con los cohetes traídos del otro lado del mar, en un terreno de lanzamientos situado a 120 Kms. de la frontera con Méjico.

El antiguo sueño de Von Braun, de utilizar los cohetes para la conquista del espacio, empieza a convertirse en realidad. Al año siguiente, ya se confía plenamente en él y se le encarga la dirección del centro experimental de cohetes de White Sands, situado en el Estado de Nuevo Méjico, donde se llevarán a cabo las investigaciones sobre toda clase de proyectiles teledirigidos.

Von Braun confía en poder realizar sus fantásticos proyectos espaciales y presenta al Pentágono, en 1948, algunas de sus ideas en esta materia. Entre éstas destaca la de instalar una estación espacial, en forma de rueda y con 80 metros de diámetro, situándola a 1.700 Kms. de la Tierra, así como la construcción de un gigantesco cohete de tres fases capaz de llevar al hombre a la Luna y a Marte.

Sin embargo, el entusiasmo del joven científico no es compartido por las autoridades militares y se ve obligado a continuar investigando en cohetes que serán utilizados para fines militares. Para satisfacer las demandas del ejército, monta un cohete militar Wac-Corporal sobre una V-2 y consigue alcanzar una altura de 415 Kms. nunca lograda hasta entonces. A este éxito seguiría el del Redstone, el Viking, el Aerobee y principalmente el del Jupiter-C, con el que los Estados Unidos podrán sacarse la espina clavada por los Sputniks soviéticos, lanzando su primer satélite artificial, el Explorer 1, el 31 de enero de 1958. El proyecto espacial norteamericano al fin se ha puesto en marcha.

Consciente de que su vida profesional va a estar vinculada a los intereses norteamericanos, Von Braun decide estabilizar también su vida afectiva y en 1947, durante un corto viaje a su país natal, contrae matrimonio con su prima Marie Luise von Quistorp, en Landshut, una localidad de la Baja Baviera.

A su vuelta a América se instalará en Tejas, llevándose consigo también a sus padres y sus dos hermanos aunque unos años más tarde, en 1953, los padres regresarán a Alemania sin haberse podido aclimatar a las costumbres americanas. Von Braun conseguirá la ciudadanía de este país en 1955, y mientras continúa sus investigaciones con los cohetes militares escribe un libro, Proyecto Marte, en el que describe profusamente. El libro es considerado «excesivamente fantástico» por los editores a los que lo presenta y deben transcurrir algunos años más hasta que sea publicado.

En 1959, el presidente Eisenhower le otorga la máxima distinción que se concede a un civil, por su aportación al programa espacial americano. La euforia que reina en esos momentos por todo lo referente a la Astronáutica, hará que la Administración se plantee nuevos proyectos creándose la N.A.S.A. como organismo gubernamental encargado del desarrollo y realización de los mismos. El proyecto más importante de todos será el de situar

un hombre en la Luna y hacerlo regresar a la Tierra, según palabras del Presidente Kennedy, en la década de los 60. Nacía así el Proyecto Apolo que absorbería toda la actividad Astronáutica durante los años siguientes y para su realización se precisa la colaboración de todos los técnicos en la materia con Wernher Von Braun al frente.

Su misión será la de diseñar y poner a punto un verdadero gigante del espacio: el monstruoso Saturno V con potencia suficiente para poder enviar hasta la Luna una carga útil de 45 toneladas. Para ello se le encomienda la dirección del Marshall Space Flight Center, situado en Huntsville, Alabama, donde se llevarán a cabo todas las fases de su construcción.

A pesar de los problemas económicos a los que debe enfrentarse para poder llevar a cabo el gigantesco proyecto, luchando constantemente con la reducción de presupuestos a que se ve sometido, Von Braun consigue ver realizada su labor y será su Saturno V el vehículo que traslade al hombre a la Luna en la histórica fecha del 20 de julio de 1969, ante el asombro del mundo entero.

Es el sueño de toda la vida del científico germano que finalmente se realiza: los viajes por el espacio son una realidad y el hombre no estará más limitado a la esfera terrestre… Ahora su Proyecto Marte no parece tan «excesivamente fantástico» como unos años atrás…

Por desgracia, tras los espectaculares éxitos obtenidos con el Proyecto Apolo, que culminarían en nueve viajes de ida y vuelta a la Luna, en seis de los cuales se realizaron alunizajes y exploraciones de la superficie, el interés por estas experiencias fue decayendo y los presupuestos del Gobierno para las investigaciones en Astronáutica irían reduciéndose progresivamente, llegando a producir-se el cierre y desmantelamiento de muchas de las instalaciones.

Las esperanzas de Von Braun de ver realizados sus ambiciosos proyectos sufrieron un rudo golpe al ver la fría acogida que tenían entre los dirigentes americanos y en 1972 abandonaba la N.A.S.A. para ocupar el puesto de vicepresidente

en las Fairchild Industries, de Germantown, en el estado de Maryland. Para su nueva actividad se instaló en Alexandría, localidad próxima a la capital federal, donde residiría hasta el fin de sus días, conformándose con mirar las estrellas a través de un pequeño pero magnífico observatorio astronómico que se había hecho construir.

La popularidad conseguida por este genio de la Astronáutica se manifestó con el rodaje de una película sobre su vida: 1 Aim at the Stars (Destino las estrellas, 1960), dirigida por J. Lee Thompson. Se trataba de una coproducción entre Norteamérica y Alemania Occidental, rodándose la mayor parte de la misma en Munich. Para encarnar la figura del protagonista se buscó un actor, de nacionalidad germana naturalmente, y la elección recayó en Curd Jurgens quien cumplió su cometido a la perfección.

Finalmente, una cruel enfermedad que no perdona: el cáncer de colon, pondría fin a los días de Wernher Von Braun, en un hospital de Alexandría, el 15 de junio de 1977. Víctima de esta cruel enfermedad fallecía el hombre que había conseguido abrir el camino de la Humanidad hacia las estrellas, dando firmemente los primeros pasos por el Cosmos. Ahora dejaba tras de sí, como un desafío a sus seguidores, un ambicioso proyecto: situar un hombre en el planeta Marte para el año 1982.

¿QUE HIZO VON BRAUN?

■ Con apenas veinte años, Von Braun participaba en las primeras pruebas de lanzamiento de cohetes impulsados por carburantes líquidos de gran potencia calorítica, que se realizaban en la Sociedad Alemana de Vuelos Espaciales.

■ Fue llamado a participar en el programa de 1932 del ejército alemán en el polígono de pruebas de Kummersdord, de donde salieron los primeros tipos de A-2.

■ Los especialistas en cohetes Oberth, Riedel y Nebel incorporaron a Von Braun como ayudante en sus experiencias sobre el motor-cohete. Allí, el “genio de los cohetes” lograría perfeccionamientos decisivos que determinaron la mayor parte de los progresos posteriores.

■ Este genio estaba destinado a atravesar las situaciones más diversas: en 1944, fue detenido junto a dos de sus colaboradores y culpado de haber propuesto el programa de cohetes en beneficio de la Astronáutica.

■ Von Braun creó el A-4, misil balístico de largo alcance posteriormente conocido como V-2 (Vengeanca Weapon-2, arma de venganza 2), el arma que tuvo su bautismo de fuego durante el bombardeo de Alemania sobre Londres en la Segunda Guerra Mundial. (Ver: Bombas V2)

■ Hacia la década del 60 se establece un taller en Whlte Sands (EE.UU.) y se encomendó a Von Braun -que ya residía en Estados Unidos- y a sus hombres preparar cohetes para su lanzamiento, cosa que se realizó desde un terreno que, más tarde, se llamaría Cabo Cañaveral y desde 1963 Cabo Kennedy.

■ La técnica de cohetes adquiere rápido desarrollo en Huntsville (Alabama). Allí se le encomienda al equipo de Von Braun la construcción de los llamados Redstone y Júpiter, que fue construido en varios cuerpos y especialmente diseñado para la operación de reentrada en la atmósfera terrestre, como regresando de un vuelo espacial.

■ En 1958 y como contribución americana al Año Geofísico Internacional, Von Braun emplazó en órbita del satélite “Explorer I”.

■ Trabajó en los proyectos del cohete “Saturno” en sus versiones I, IB y V, el cohete más grande jamás construido: con 110 metros de alto y un peso de 2.770 toneladas, está propulsado por cinco motores de 3.400 toneladas de empuje; tiene tres etapas y puede poner en órbita una masa de 130 toneladas, llevar 51 toneladas a la Luna o 45 a Marte o Venus.

■ Mucho antes de que se lograra, Von Braun persiguió con el proyecto “Apolo” colocar un artefecto tripulado en la Luna.

■ Sus variadas investigaciones le permitieron publicar diversos libros como Dan Marsprojekt, tratado técnico de un programa de expedición a Marte de 70 hombres y 10 aparatos y Space Frontier, donde Von Braun divulga principios fundamentales de astronáutica.

El coloso norteamericano:  Saturno-V

cohete saturno 5En los Estados Unidos, el objetivo prioritario de su programa astronáutico quedaría establecido por el Presidente Kennedy, al comprometer el esfuerzo técnico de la nación en el ambicioso proyecto de enviar un astronauta a la Luna y hacerlo regresar sano y salvo a la Tierra.

El resultado de su propuesta sería la puesta en marcha del Proyecto Apolo que durante la década de los sesenta sería el centro de todas las actividades en materia espacial desarrolladas por la N.A.S.A.

En primer lugar había que contar con un supercohete dotado de un potencial impulsor muy superior a lo que se disponía hasta el momento, pues no era lo mismo colocar en órbita terrestre masas de varias toneladas, como se habían conseguido con los vuelos Geminis, que enviar una verdadera nave cósmica con sus tres tripulantes y el módulo lunar hasta las proximidades de nuestro satélite.

Intervenía la segunda velocidad cósmica o de la liberación, la cual exigía unos niveles energéticos en los sistemas de impulsión como no se habían conocido hasta entonces.

El equipo encargado del diseño y puesta a punto de un artefacto que reuniera las condiciones requeridas se había puesto a trabajar en el proyecto bajo la dirección de Von Braun, en el Marshafl Spaceflight Center, de Huntsville (Alabama>, buscando un tipo de cohete destinado a usos civiles exclusivamente, y sus primeros resultados ya en 1962, se enfocarían hacia el que había de ser el máximo exponente de los grandes pesos del espacio: el Saturno-V.

Tras diversas versiones preliminares que fueron modificándose sucesivamente, se llegaría al modelo definitivo: un gigantesco vehículo de 111 metros de longitud y 2.940 toneladas de peso, cuya complejidad de fabricación se pone de manifiesto al pensar que estaba constituido por cinco millones y medio de piezas. El resultado era un vehículo lanzador de tres fases capaz de colocar en órbita te rrestre 130 Tm. de carga útil o de enviar hasta la Luna una nave de 45 Tm., lo que se ajustaba a las necesidades del Proyecto Apolo.

El trágico accidente ocurrido durante las pruebas en tierra del aparato antes de su primer lanza miento, en el que perdieron la vida los tres astronautas Virgil Grissom, Edward White y Roge Chaffee al incendiarse la cabina cl 27 de enero dE 1967 motivó el consiguiente retraso en la puesta ¿punto final.

El primer vuelo se realizó el 11 de octubre dE 1968, si bien con una versión reducida de dos fases, denominada Saturno-IB, que serviría principalmente para comprobar el perfecto funcionamiento de los elementos propulsores. Sin embargo el mismo año, la versión completa del Saturno-V  tenía ocasión de demostrar sus posibilidades poniendo en órbita lunar a la nave Apolo 8, tras despegar de la Tierra el 21 de diciembre.

Desde entonces todos los vuelos de las naves Apolo serían propulsados por un Saturno-V, e único cohete con suficiente potencia para alcanzar la Luna.

El Saturno-V estaba compuesto por tres etapas que debían proporcionar la velocidad de liberación al conjunto formado por la astronave Apolo, compuesto por un módulo de servicio de 25 Tm., un módulo de mando de 5 Tm. y un módulo lunar de 15 Tm. En total 45 Tm. de peso a las que previamente se colocaba en una órbita terrestre de aparcamiento, hasta que la tercera etapa del Saturno-V entrada en acción y enviaba a la nave cósmica hacia la órbita lunar.

La primera etapa S-IC estaba constituida por 5 motores Rocketdyne F-1, alimentados a base de oxígeno líquido y queroseno, cuya combustión duraba 150 segundos produciendo un empuje total de 3.400 Tm. El conjunto ocupaba una estructura cilíndrica de 46 metros de longitud por 10 de diámetro en la que se alojaban los depósitos para almacenar las 2.106 Tm. de propergol. El sistema motor estaba constituido por un elemento central y cuatro motores exteriores en racimo montados en forma orientable a fin de estabilizar la dirección del cohete durante su trayectoria ascendente.

La segunda etapa. S-H se compone de cinco motores J-2, también Rocketdyne, que utilizan hidrógeno y oxígeno líquidos como propergol. Su encendido se produce cuando el vehículo ha alcanzado los 60 Km. de altura y durante los 359 segundos que están en acción le proporcionan un empuje total de 520 Tm. que debe bastar para colocar a todo el conjunto en una órbita terrestre a 185 Km. de altitud.

Esta segunda etapa se encuentra alojada en un cilindro de 25 m. de largo por 10 de diámetro y almacena 447 Tm. de propergol en sus depósitos, que como en las restantes etapas, se desprenderán del conjunto, aligerando su peso. una vez finalizada la combustión.

La tercera etapa, el SIV-B, consta de un solo motor J-2, que se enciende durante dos minutos, consumiendo hidrógeno y oxígeno líquido y proporcionando un empuje de 91 Tm. a la astronave Apolo que abandona la órbita terrestre para dingirse hacia la Luna a una velocidad de 40.000 Km./h.

Esta velocidad se irá reduciendo constantemente hasta que la nave alcance el punto neutro de atracción entre la Tierra y la Luna, a partir del cual se verá acelerada nuevamente por la gravedad lunar hasta situarse en su órbita. La tercera etapa tiene unas dimensiones de 17,80 metros de longitud por 6,60 de diámetro, consumiendo 120 Tm. de propergol durante su período de combustión.

Aparte de los once motores principales que accionan sus diferentes etapas, el Saturno-V dispone de otros 30 motores auxiliares que actúan como estabilizadores de dirección y permiten controlar en todo momento la trayectoria del poderoso vehículo. Además de las misiones a la Luna con las naves Apolo se ha utilizado posteriormente en los lanzamientos del laboratorio espacial Skylab ofreciendo siempre unos resultados plenamente satisfactorios.

Todas las operaciones de fabricación y montaje de estos colosales artefactos se realizan en un edificio especialmente construido para este fin en Cabo Kennedy (Florida), el VAB o Vertical Assembly Building que tiene el honor de ser, por sus dimensiones, el más grande del mundo ya que ocupa un volumen superior al de la Gran Pirámide de Cheops.
Su estructura básica es un enorme cubo de cemento y acero, eminentemente funcional, con unas medidas de 160 m. de altura, y 183 x 213 de superficie, en el que pueden albergarse cuatro Sc turnos-V en posición vertical durante todo el proceso de su ensamblaje.

Una vez concluida esta fase, el enorme cohete junto con la respectiva torre de lanzamiento se encuentra montado encima de una plataforma móvil, el crawler transporter, que será la encargada de trasladar toda esa enorme masa hasta el lugar asignado en un punto de la Isla Merrit.

El crawler, accionado por potentes motores diesel, puede transportar cargas de hasta 5.500 Tm. a una velocidad de 1,5 Km./h. invirtiendo como mínimo seis horas en llegar al punto de destino: el pad 39k o área de lanzamiento de los Apolos, situado a 5,5 Km. del VAB. Curiosa paradoja la de que el vehículo más veloz del mundo, el Saturno-V, se vea forzado a esta lentísima marcha en los primeros kilómetros de su camino, pero el mundo de la técnica ofrece estos singulares contrastes con gran frecuencia.

Fuente Consultada: Historia de la Astronáutica – Ediciones Riego S.A.