Biografia de Henrietta Leavitt: Astronoma y Sus Logros Cientificos

Biografia de Henrietta Leavitt: Astronoma y Sus Logros Cientificos

UNIDAS POR  LA PASIÓN A LA CIENCIA Y UNA CURIOSIDAD  DESENFRENADA...

Henrietta Swan Leavitt (1868-1921) se licenció en 1892 en la Society for the Collegiate Instruction of Women (más adelante llamado el Radcliffe College), dedicó un año a estudios de posgraduado y en 1895 se ofreció voluntaria para hacer trabajos pesados en el Observatorio de Harvard.

Una crisis familiar la obligó a trasladarse a Wisconsin en 1900.

Dos años después escribió al director, E. C. Pickering, y le contó cuántas ganas tenía de regresar con lo que él financió el viaje de regreso y le concedió un puesto fijo con sueldo.

A excepción de la larga convalecencia en Wisconsin después de una enfermedad, pasó el resto de la vida en Cambridge.

Biografia de Henrietta Leavitt: Astronoma y Sus Logros Cientificos

Su trabajo en el observatorio consistía en buscar estrellas variables en placas fotográficas de los cielos australes.

Dicho en pocas palabras, descubrió 2.400 estrellas variables.

Las más importantes fueron las variables cefeidas, supergigantes amarillas que se encienden deprisa y se apagan poco a poco.

-------------  00000 ------------

Variable cefeida, es  tipo de estrella cuya luminosidad varía cíclicamente como resultado de variaciones regulares (pulsaciones) de su tamaño. Son estrellas gigantes o supergigantes y, por tanto, bastante luminosas; son visibles a largas distancias. Sus periodos de pulsación varían aproximadamente entre un día y unos cuatro meses. Su nombre proviene de su prototipo o estrella representativa, Delta Cefei, que varía entre las magnitudes 3,5 y 4 en 5 días y 9 horas.

-------------  00000 ------------

Antes que estudiar las estrellas desperdigadas por toda la Vía Láctea, Leavitt se concentró en las cefeidas de la Pequeña Nube de Magallanes, la irregular galaxia que acompaña a la Vía Láctea.

Está tan lejos —a unos 200.000 años luz— que todas las estrellas que hay allí pueden considerarse a la misma distancia de la Tierra, exactamente igual que, para quien está en Tacoma, todo el que hay en París puede considerarse a lamisma distancia.

En el caso de las estrellas básicamente a la misma distancia, las diferencias visibles de brillo se vuelven reales; las estrellas que parecen más brillantes son más brillantes.

Al ir colocando todas las cefeidas en una carta, Leavitt descubrió algo sorprendentemente útil: cuanto más brillante era la estrella, más lenta era la velocidad a la que variaba.

Las cefeidas relativamente tenues —estrellas un centenar de veces más brillantes que el Sol— pulsan deprisa, contrayéndose y expansionándose en el curso de un día o dos.

Las cefeidas medianas disminuyen de la máxima magnitud y la recuperan en alrededor de cinco días.

Las cefeidas brillantes, que resplandecen con la luminosidad de 10.000 soles, tienen un periodo que dura hasta cincuenta y cuatro días.

Así que, silos astrónomos conocían la longitud del ciclo de una cefeida, podían calcular su brillo intrínseco y, comparando lo brillantes que parecían con lo brillantes que se sabía que eran, era posible calcular su distancia.

No obstante, por una u otra razón, todas las primeras mediciones que se realizaron utilizando este método estaban equivocadas.

Ejnar Hertzsprung, famoso por el diagrama de Hertzsprung-Russell, que traza el derrotero de las estrellas, estimaba que la Pequeña Nube de Magallanes estaba a 30.000 años luz de distancia: una desmesurada subestimación.

Harlow Shapley utilizó estrellas variables para calcular la distancia a los cúmulos globulares y, consiguientemente, pudo estimar nuestra posición dentro de la Vía Láctea, así como el tamaño de la galaxia, aunque esta cifra le salió tres veces demasiado grande.

Y Edwin Hubble calculó la distancia —bueno, la mitad de la distancia— a Andrómeda.

La diferencia entre las distancias reales (tal como las entendemos ahora) y las de estas primeras estimaciones podría parecer risiblemente inmensa.

Sin embargo, las distancias astronómicas son tan enormes que si una estimación se desvía en un factor 2 —lo que significa que la distancia correcta seria de la mitad de la estimación oficial—, la cosa no está tan mal, sobre todo teniendo en cuenta lo que significarían un factor 10, 100 o 1.000.

Las primeras estimaciones hechas utilizando las cefeidas estaban equivocadas por varias razones, entre otras por un defecto al calcular el efecto del polvo y el gas interpuestos, y, lo que es más importante, por no sospecharse la existencia de dos clases de variables cefeidas:

las cefeidas de Tipo I que se encuentran en los brazos en espiral de las galaxias; y las cefeidas de Tipo II, más viejas y apagadas, que se encuentran en las galaxias elípticas, los cúmulos globulares y el halo galáctico.

Una vez hechas estas correcciones, las variables cefeidas permitieron a los astrónomos calcular toda clase de distancias.

Pero las cefeidas tenían sus límites.

Pese a ser brillantes, sólo era posible detectarlas en la treintena o así de galaxias más próximas.

Más allá ya no se encontraban.

De manera que los astrónomos tuvieron que buscar otras candelas estándar visibles a mayores distancias.

Utilizaron las débiles estrellas RR de Lyrae, otra forma de variables; cúmulos globulares, enjambres esféricos de hasta millones de estrellas; nebulosas planetarias; y supernovas, que pueden detectarse a distancias millares de veces más lejanas que las cefeidas.

Aunque las cefeidas eran indicadores más fidedignos que ninguno de estos otros objetos más brillantes, su campo era tan limitado que de alguna manera casi llegaron a parecer extravagantes.

Pero eso era antes del Telescopio Espacial Hubble.

Pese a los defectos, este instrumento ha detectado veintisiete variables cefeidas en una galaxia que se estimaba situada a 16 millones de años luz.

Su brillo intrínseco se conoce y por lo tanto no sólo es posible calcular la distancia correcta sino que los científicos también pueden compararlas con otras estrellas, incluidas las supernovas.

Estas mediciones ayudarán a los astrónomos a convertir las supernovas en candelas estándar.

Mientras tanto, las estrellas descodificadas por Henrietta Swan Leavitt siguen siendo los mojones del universo y retienen su posición de mejores indicadores de la distancia en todos los firmamentos estrellados.

Fuente Consultada: El Universo Para Curiosos de Nancy Hathaway

Temas Relacionados:

Biografia de Caroline Herschel:Astronoma, Resumen de su Vida
Biografia de Annie Jump Cannon:Astronoma, Clasificar Estrellas
Biografia de Emilie Chatelet:Primera Matematica Cientifica
Mujeres Pioneras Que Cambiaron el Mundo y La Sociedad
Biografia de Hipatia de Alejandria Ultima Cientifica

Enlace Externo:Henrietta Swan Leavitt, madre de la cosmología moderna


La Historia del Mundo en Imágenes


Entradas Relacionadas Al Tema

Subir

Usamos cookies para darte una mejor experiencia de navegación. Si continuas navegando, aceptas el uso de las cookies Más información...