Procesos Para Obtener Metales desde Minerales:Etapas de Elaboracion

Procesos Para Obtener Metales desde Minerales

Es muy raro encontrar metales puros en la corteza terrestre. Casi siempre están combinados con otros elementos como compuestos metálicos.

El hierro, por ejemplo, puede combinarse con el oxígeno o con el azufre, para formar óxidos o sulfuros.

La cantidad de metales que existen en la corteza terrestre es relativamente pequeña.

Si estuvieran esparcidos al azar, no se encontraría nunca una concentración suficiente de ninguno de ellos para emprender una explotación rentable. Sería necesario tratar enormes cantidades de roca para obtener una cantidad muy pequeña de metal.

Procesos Para Obtener Metales desde Minerales:Etapas de Elaboracion

Por fortuna, una serie de procesos geológicos, a lo largo de la historia de la Tierra, ha concentrado los compuestos metálicos.

Cuando una roca contiene tal cantidad de metal que valga la pena extraerlo, se le da el nombre de mineral.

Existen tres tipos de roca: ígnea (que procede de materiales fundidos), sedimentaria (formada con fragmentos desmenuzados de una roca anterior) y metamórfica (roca alterada por la temperatura y la presión).

Los tres tipos pueden contener minerales, aunque el metal se haya concentrado en ellos por diversas causas.

La concentración de metal necesaria para que una roca se considere como mena o mineral explotable depende del metal de que se trate.

Por ejemplo, una roca que contenga cobre constituye una mena si un 0,7 % de su volumen está compuesto de cobre; en cambio, un porcentaje tan bajo en el caso del aluminio no permite una extracción rentable, pues la concentración de este metal debe ser, por lo menos, de un 30 %.

Tales cifras dependen, en gran parte, de la relativa rareza de los metales; pero también, en cierta medida, de la demanda comercial.

Las rocas ígneas se han formado por solidificación de magmas — rocas en estado fundido—.

Durante el proceso, ciertos materia' les se solidifican antes que otros. En el conjunto semifluido, estos minerales pueden irse al fondo y separarse, como una capa, en la fase temprana del proceso. El mineral puede ser rico en un metal determinado.

Por ejemplo, el mineral cromita contiene cromo, como indica su nombre.

Al formarse posteriormente los minerales que contienen metal, pueden cristalizar en los huecos que quedan entre los minerales más antiguos, formando así una separación de utilidad para el explorador y el minero.

El último magma solidificado (magma residual) puede haberse enriquecido con titanio, hierro u otros metales, que forman depósitos aprovechables.

Los más útiles, entre los depósitos magmáticos, están relacionados con grandes intrusiones de magma básico en el interior de la corteza.

El magma básico, en su estado original, tiene únicamente una pequeña cantidad de sílice y grandes proporciones de ciertos metales: hierro, titanio, cromo.

• METALURGIA:

El campo de acción que abarca la metalurgia es verdaderamente amplio.

Tanto es así que, dentro de esta actividad, existen numerosas especialidades, las cuales, aun dirigidas al mismo fin, presentan métodos y técnicas de distintas características.

En principio, la metalurgia puede dividirse en dos ramas: la metalurgia de materiales férreos (hierro y acero, fundamentalmente) y la de materiales no férreos (en la que se incluye el resto de los metales).

El hecho de que el hierro y el acero sean considerados aparte es índice de la magnitud e importancia que reviste la industria siderúrgica en el mundo entero.

El hierro es, sin duda, el metal más útil, y, después del aluminio, es también el más abundante, formando un 4 %, aproximadamente, de la corteza terrestre.

Con pocas excepciones, tales como el oro, los metales no se presentan en la naturaleza en estado metálico, sino que aparecen formando parte de un mineral, que puede ser un óxido, un sulfuro, u otra combinación química cualquiera del metal en cuestión.

-------------  00000 ------------

Procesos Para Obtener Metales desde Minerales
Minerales de Hierro

-------------  00000 ------------

El mineral ha de ser extraído de la mina y, después, será sometido a un tratamiento adecuado.

En el proceso de extracción, el técnico en metalurgia juega un importante papel, relacionado con la elección del método más apropiado para cada mineral.

Cualquiera que sea el procedimiento utilizado en la extracción de un mineral de la mina o yacimiento en donde aparezca, aquél se presenta siempre en bloques de gran tamaño; por lo general, está acompañado de ganga, material terroso de dónde el mineral ha de ser separado.

Generalmente, la primera operación que, se efectúa consiste en triturar el material de partida para reducirlo a un tamaño conveniente.

La etapa siguiente es la separación de la ganga, que algunas veces se realiza por el procedimiento de flotación, basado en el hecho de que los distintos minerales se mojan de modo diferente.

Por ello, en un baño líquido, bajo las condiciones adecuadas, puede hacerse que el mineral flote, mientras la ganga se va al fondo, o viceversa, siendo posible, de este modo, efectuar su separación.

Es tarea del químico metalúrgico, en este caso, determinar experimentalmente en el laboratorio, valiéndose de pequeñas muestras, las condiciones óptimas de separación, así como las operaciones de control que se cumplirán en el proceso a escala industrial.

La etapa siguiente consiste en la obtención del metal no refinado a partir del mineral, proceso conocido con el nombre de fundición.

Los hornos de fundición utilizados con este propósito difieren, en cuanto a su diseño, en relación con el mineral a ser tratado en particular.

Los más conocidos son los altos hornos, utilizados en la separación y obtención del hierro.

En este proceso, corresponde al técnico en metalurgia asegurar que todas las operaciones se lleven a cabo propiamente.

Para ello, ha de analizar el mineral de hierro de partida y calculará las cantidades correctas, de coque y piedra caliza, necesarias para que el proceso de reducción se efectúe normalmente.

Asimismo, ha de examinar la calidad del hierro bruto obtenido.

El metal no refinado, o bruto, conseguido en el proceso de fundición debe, entonces, ser purificado o refinado, lo cual puede realizarse de distintos modos.

En unos casos, el metal se funde de nuevo, haciendo que al mismo tiempo pase una corriente de aire, con objeto de oxidar las impurezas que lo acompañan.

Para refinar el cobre, al metal ción, así como encontrar el medio de recuperar, del barro depositado en el fondo, los productos metálicos rentables.

Al terminar el proceso de refinación, se cuenta ya con un metal de relativa pureza.

El metal así obtenido puede ser utilizado directamente o fundido de nuevo, junto con otro u otros metales, para formar una aleación.

Al producto final hay que darle, entonces, la forma que ha de tener al ser utilizado.

Para ello es necesario volver a fundir el metal, y, una vez líquido, verterlo en los moldes de la forma apropiada.

Estas tareas se llevan a cabo en una fundición, y, aquí, el técnico metalúrgico es el responsable del control de dichos procesos, así como del de aleación.

También debe ser un experto en el diseño de moldes y capaz de darse cuenta de las posibles fallas que puedan presentar las estructuras metálicas, como, asimismo, rectificarlas.

Cuando al producto final no se le da una forma especial, suele obtenerse bajo el aspecto de barras o lingotes, que han de sufrir tratamientos posteriores, tales como el laminado, forja, o cualquier otro tipo de tratamiento mecánico.

El metal o aleación puede laminarse, ahora, para darle una forma de plancha, o forjarse mediante un martillo mecánico; hilarse, para constituir un alambre, haciéndolo pasar a través de una serie de agujeros de tamaños decrecientes.

Todos estos procesos han de efectuarse del modo más rápido y económico, y las condiciones óptimas serán fijadas por un especialista en metalurgia.

Él debe, por ejemplo, calcular hasta qué punto un lingote puede ser laminado sin que sea necesario templar el metal en un horno apropiado, ya que muchos metales se vuelven duros, siendo frágiles a la vez, y se fracturarán si se los trabaja demasiado.

Por otra parte, el proceso de templado consume tiempo y dinero, por lo cual ha de decidirse si su aplicación resulta rentable.

Uno de los campos más importantes, dentro de la metalurgia, es el de la investigación, que puede ser de investigación aplicada —que se refiere a problemas directamente relacionados con la industria y con el perfeccionamiento de los productos—, o de investigación básica, que estudia los principios fundamentales del comportamiento de los metales.

Las industrias requieren, con frecuencia, la presencia de especialistas en metalurgia, para resolver cualquiera de los problemas reseñados, que pueden suscitarse en los procesos de producción.

También recurren a ellos para realizar trabajos más rutinarios, tales como los de verificación y control de la calidad del producto obtenido.

La mayor parte de los instrumentos y métodos utilizados son, sin embargo, los mismos, cualquiera que sea la naturaleza de la investigación propuesta, y sólo la interpretación de los resultados conseguidos puede, en algunos casos, ser distinta.

Un industrial, por ejemplo, puede estar únicamente interesado, en medir la resistencia del metal que produce, con objeto de comprobar si se halla dentro de los límites que le son exigidos.

Mediante la investigación básica, es posible detectar los cambios que se produzcan en dicha propiedad, los cuales pueden indicar que ha tenido lugar alguna modificación en la estructura íntima del metal, hecho imperceptible a simple vista, pero que puede resultar de extraordinaria importancia en el futuro comportamiento de aquél.

Uno de los instrumentos más importantes empleados por el técnico metalúrgico es el microscopio, especialmente el electrónico, que, debido a sus 100.000, o más, aumentos, es de gran utilidad para el estudio de las estructuras de los metales.

La investigación de la corrosión y el desarrollo de aleaciones que sean resistentes a ella es otro importante campo de estudio, que se halla dentro del dominio de la metalurgia.

La mayoría de los metales resultan atacados y corroídos bajo  ciertas  condiciones:   el  agua  del  mar ataca el metal de las calderas y tuberías, y la humedad de la tierra corroe los cables eléctricos subterráneos.

Los daños ocasionados por la corrosión cuestan muchos millones de dólares al año.

En el futuro, los trabajos de investigación en estos temas serán aún más interesantes, dado que, tanto en el campo espacial como en el nuclear, se necesitan materiales de especiales características, que resistan condiciones extraordinarias de presión, temperatura, radiación, etc.

Fuente Consultada
Revista TECNIRAMA (CODEX) Enciclopedia de la Ciencia y Tecnologia N°96

Temas Relacionados:

La Edad del Hierro y el Bronce Los Metales en el Neolitico
Metalúrgia Primitiva Fundicion de Metales Uso del Cobre Hierro
Historia del Descubrimiento de Metales:Fosforo y Cobalto
Propiedades Mecánicas de los Metales y los Ensayos
Bacterias Que Comen Metales:Microorganimos
La Alquimia y la Piedra Filosofal y el Elixir de la Vida
Transmutacion de Metales Conde Cagliostro
La Plata:Propiedades, Usos y Yacimientos del Metal

Enlace Externo:De dónde se extrae el hierro?


La Historia del Mundo en Imágenes


Entradas Relacionadas Al Tema

Subir

Usamos cookies para darte una mejor experiencia de navegación. Si continuas navegando, aceptas el uso de las cookies Más información...