Experimento de Michelson Morley Explicación Buscando el Eter






Experimento de Michelson Morley
Explicación de la Busqueda del Éter

Todos oímos hablar alguna vez de Einstein y su teoría de la relatividad, que E=mc², que la velocidad de la luz es constante, y un montón de otras cosas que suenan lindo pero no significan nada. Para poder entender por qué estos términos siguen vigentes luego de casi 100 años de inventados, primero hay que hacer un poco de historia.

El año 1905 quedará como el annus mirabilis (año prodigioso) de Einstein, el año en que este físico de 26 años irrumpió en el mundo de la física, literalmente desde la nada, publicando cuatro importantísimos artículos científicos, cada uno de los cuales podría considerarse como un gran descubrimiento científico.

Estos artículos, de los que el más significativo fue el que exponía la teoría especial de la relatividad, aparecieron todos en Annalen der Physik, la principal revista de física de Alemania. Todos los artículos que se enviaban debían ser evaluados antes de publicarse; puesto que las credenciales de Einstein como físico estaban en orden y como utilizaba el lenguaje de las matemáticas y la física para expresar sus ideas, los físicos que evaluaron su trabajo lo consideraron adecuado para su publicación, aunque algunos de ellos tuvieran dificultades para comprenderlo, y realmente creyeron que la teoría de la relatividad no era correcta.
Ver Biografía de Albert Einstein

Introducción Histórica:

La física clásica comenzó allá por el año 1688 con un libro publicado por el británico Isaac Newton (llamado Principia Mathematica o algo así), en el cual especificaba 3 leyes de movimiento (todo cuerpo se mueve en línea recta y a velocidad constante cuando no es afectado por ninguna fuerza, cuando se aplica una fuerza sobre un cuerpo este ejerce la misma fuerza pero en dirección contraria, y que la aceleración producida por una fuerza neta en un objeto es directamente proporcional a la magnitud de la fuerza e inversamente proporcional a la masa) y que también contenía la ley de gravitación de Newton (dos cuerpos son atraídos entre sí en proporción inversa al cuadrado de la distancia). Esto que puede sonar complicado en realidad se puede resumir en unas pocas ecuaciones.

Con estas cuatro simples leyes se pudo explicar por primera vez hechos aparentemente tan variados como el por qué las manzanas se caen de los árboles y por qué la Luna gira alrededor de la Tierra. Newton también realizó observaciones sobre la naturaleza de la luz, alegando que la misma estaba compuesta de partículas (“corpúsculos”) y rechazando la idea de que la luz estaba compuesta de ondas, ya que las ondas necesitan un medio por el cual desplazarse (por ejemplo, el sonido se desplaza por el aire, o cuando tiramos una piedra al agua se ve que se generan ondas en el agua justo en el lugar donde tiramos una piedra) y la luz se desplaza por el vacío del espacio.

Si deseas puedes continuar hacia abajo con las conclusiones de la teoría  

El experimento Michelson-Morley

Pero la ciencia fue avanzando, y los instrumentos de medición fueron mejorando. Los datos obtenidos por los científicos demostraban que la luz se comportaba como una onda, ero si esto ocurría, entonces debería haber una “cosa” no detectada hasta el momento, que cubre todo el universo, por la cual se desplaza la luz. A esta cosa indetectable hasta entonces se la denominó éter lumínico. La tierra y todos los objetos, incluyendo la luz, se deberían desplazar a través del éter.

Un día de 1881, un señor llamado Michelson realizó un experimento con el fin de calcular la velocidad de la tierra cuando se mueve a través del éter (experimento de Michelson-Morley).

Para calcular esto, disparó varios rayos de luz en varias direcciones y calculó el tiempo que tardaban en regresar con un aparato inventado por él llamado interferómetro. Teóricamente, los rayos de luz que menos tardaran en regresar indicarían la dirección en la que se mueve la tierra dentro del éter (o sea, indicarían el “adelante”), mientras que los que más tardaran en llegar indicarían el “arriba”. Grande fue la sorpresa de este tipo cuando no descubrió ninguna diferencia en los tiempos de recorrido de la luz: la velocidad de la luz era constante midiera como se la midiera.

Esto significaba una cosa: la luz se movía a una velocidad constante… ¿pero con respecto a qué? Según la teoría de newton, si yo voy corriendo a 20 km/h, la velocidad de la luz que yo emito sería 20km/h mayor de la luz que emitiría si estoy quieto. Pero no, la luz parecía tener siempre la velocidad de 299.792,458 km/s, independientemente de la velocidad de la tierra.

ESQUEMA DEL EXPERIMENTO: Demostrada ya la existencia de las ondas, quedaba pendiente el delicado problema del éter: el medio en el que, según Maxwell, se propagaban dichas ondas. Como, por definición, era un medio inmaterial, no había forma de observarlo directamente. Fue entonces cuando se le ocurrió al físico norteamericano Albert Abraham Michelson (1852-1931) una idea realmente «cósmica»: puesto que la Tierra se halla en movimiento con relación a las estrellas (su velocidad orbital es de 30 km/s), este desplazamiento debería traducirse en la existencia de un «viento de éter», esto es, en

esquema experimento de michelson morley

Esquema del Experimento de Michelson-Morley.
Un rayo luminoso incide sobre un espejo semitransparente. El rayo reflejado va a parar a un segundo espejo; el que lo atraviesa sigue su trayecto rectilíneo y va a reflejarse en un tercer espejo. Ambos rayos, superpuestos, alcanzan el ojo del observador. Éste ve, en general, unas franjas de interferencias, alternativamente claras y oscuras. Como los dos brazos del dispositivo tienen la misma longitud, se puede utilizar el eventual desplazamiento de las franjas para detectar diferencias entre las velocidades de la luz en las dos direcciones. Michelson y Morley confiaban en que podrían medir alguna diferencia entre la velocidad de la luz propagándose en dirección norte-sur y la de la luz propagándose en dirección este-oeste. Pero no hallaron ninguna diferencia.


Anuncio Publicitario


Teoría de la relatividad

Acá apareció un simple profesor alemán que trabajaba en una oficina de patentes en Suiza. En el año 1905 publicó un ensayo titulado “Sobre la electrodinámica de los cuerpos en movimiento” en el cual suponía que la velocidad de la luz es la misma desde donde se la mida: la velocidad de la luz es igual si la mido cuando estoy parado o cuando estoy yendo a una velocidad de 100.000 km/seg o a cualquier otra velocidad, un hecho que puede parecer antinatural. Decir esto contradecía las leyes de Newton, que estaban vigentes desde hacía más de doscientos años.

Esta es la base de la teoría de la relatividad: todos los fenómenos físicos se producen del mismo modo en un marco de referencia inerte (por “inerte” se quiere decir “a velocidad constante”). O sea, suponiendo que esté en una habitación sin ventanas ni otro contacto con el exterior, sería imposible determinar si estoy en movimiento o no, ya que cualquier experimento que realice dará el mismo resultado independientemente del movimiento. Obviamente asumir esto les costó a los científicos, la mayoría hasta se rehusaba a aceptar la teoría.

Pero Einsten no se inmutó, y en 1915 publicó una extensión a su teoría de la relatividad (conocida como la teoría general de la relatividad) en la que tomaba en cuenta los efectos de la gravedad y otras yerbas. Hasta ahí las teorías de Einstein eran sólo eso: teorías.

Las manzanas se seguían cayendo de los árboles, la luna seguía girando sobre la Tierra, lo demás poco importaba. Pero en 1919 un eclipse solar permitió comprobar que la luz era desviada por campos gravitatorios fuertes (en este caso el del Sol), justo como la teoría de Einstein y no la de Newton había predicho. El nombre Albert Einstein se volvió famoso de la noche a la mañana. Su teoría había logrado explicar la realidad mejor que la teoría de Newton.

Algunas consecuencias de la teoría de la relatividad

Para aceptar que la velocidad de la luz es constante desde donde se la mida, Einstein se vio obligado a aceptar algunas otras cosas raras, como por ejemplo:

     Nada puede viajar más rápido que la luz: La velocidad de la luz es el límite de velocidad del Universo.

A mayor velocidad, el tiempo pasa más lento: Si, esto suena muy extraño. Si tengo dos relojes perfectamente sincronizados, y pongo uno en un cohete supersónico, cuando el reloj vuelva a mis manos se notará que la hora que marca este reloj será inferior a la hora que marca el reloj que no se movió. Pero este paso más lento del tiempo es sólo aparente, si una persona viajara junto con el reloj no le sería posible percibir ninguna alteración en el paso del tiempo (el paso del tiempo en este caso es “relativo” al observador). El paso del tiempo se hace cada vez más lento a medida que uno se acerca a la velocidad de la luz, hasta hacerse 0 justo cuando se alcanza dicha velocidad. Por esto, se puede decir que la luz no envejeció ni un segundo desde el Big Bang.

A mayor velocidad, se produce un encogimiento en la dirección del movimiento: Por ej., si yo tengo una regla de 30 cm y de algún modo logro que viaje a 260.000 km/s (0,866 veces la velocidad de la luz) veré que la regla tiene ahora una longitud de… ¡15 cm!. De nuevo, este cambio es aparente: si yo pudiera propulsarme hasta alcanzar la misma velocidad de la regla, vería que vuelve a tener 30 cm.

e=mc2: Probablemente la ecuación más famosa de la física moderna. Esto quiere decir nada más y nada menos que la materia es una forma de energía y viceversa, donde e = energía, m = masa, c = velocidad de la luz. La masa y la energía se pueden transformar libremente. Este fue el principio de la reacción nuclear y la bomba atómica. Por ejemplo, si se convierte un gramo de masa en energía de acuerdo a la famosa ecuación, se estaría obteniendo suficiente energía como para darle a una familia entera electricidad suficiente por 10 años.   

Bueno, esta es una introducción a este interesante tema. Si algunas partes suenan confusas, entiéndanme, algunas cosas son realmente difíciles de explicar :

 Si quieren más información, acá les tiro un par de lugares donde pueden consultar:

– El libro “Nueva Guía para la Ciencia” de Isaac Asimov tiene una demostración de  e=mc2 que se entiende con conocimientos básicos de álgebra.

Esta es sola una de las miles que se encuentran explicando el tema, una gran mayoría son     muy buenas  y hacen que estos revolucionarios conceptos sean “digeridos” por los más profanos.

albert einstein

1905:Año Maravilloso El Efecto Fotoeléctrico El Movimiento Browiano Antecedentes de la Física – Implicancias de la Teoría  –  Explicación de la Teoría

 





OTROS TEMAS EN ESTE SITIO



Leave a Comment

Your email address will not be published. Required fields are marked *