Biografía de Michael Faraday

Biografia de Hertz Heinrich Resumen de sus Experimentos Cientificos

Biografía de Hertz Heinrich Rudolf
Experimentos y Logros Científicos

El siglo XIX constituyó una época durante la cual el hombre siguió creyendo en los postulados mágicos de la Ilustración. No hubo un  corte ideológico entre el siglo XVIII y la primera mitad del siglo XIX porque el racionalismo fue un dogma intocable y respetado por todos los actores intelectuales de la sociedad.

Las teorías de Newton no fueron discutidas y un considerable progreso industrial demostró que era necesario tener fe en la Ciencia , capaz de realizar grandes maravillas, pendemos un minuto sobre los avances en termodinámica a través de grandes cientificos como Joule, Carnot, Helmholtz y otros, la industrialización con la máquina a vapor, las teorías de Dalton  y Mendeleiev aplicadas a la Química, los logros Roentgen con el descubrimiento de los rayos X, Bequerel y la posterior investigación sobre la radioactividad de los esposos Curie; la teoría de Darwin sobre la evolución humana, la ciencia psiquiatra de Sigmund Freud, etc. (Ver: Ciencia en el siglo XIX)

Pero entre todos los avances y fenómenos fisicos estudiados lo que más atrajo la atención de los investigadores fue el campo maravilloso de la electricidad que habían iniciado Galvani, Volta, Franklin y otros en el siglo pasado. Maxwell demostró que la electricidad se transmite por medio de ondas que viajan a la velocidad de la luz. El alemán Hertz (1857-1894) midió la longitud de estas ondas, que denominó electromagnéticas, y sostuvo que existe una íntima relación entre electricidad, calor y luz, es decir, que son manifestaciones de una energía única.

Así como el magnetismo y la electricidad van de la mano, lo mismo debemos decir sobre esta rama de la física, en donde los estudios de Heinrich Hertz van unidos directamente a las investigaciones del físico escocés James Clerk Maxwell, quien en 1864,  predijo la existencia de ondas electromagnéticas más allá del espectro visible.

El angloestadounidense David Edward Hughes informó quince años después de que las chispas de un circuito «transmisor» aislado parecían afectar a un sistema telefónico no conectado a él y situado a cientos de metros.

Sin embargo, incluso después de que demostrara este efecto en la Royal Society y en Correos, los expertos despacharon el fenómeno como un caso «normal» de inducción electromagnética.George Francis Fitzgerald, físico irlandés, describió en 1883 cómo la oscilación de una corriente a través de un conductor podía teóricamente ser utilizada para generar ondas electromagnéticas largas y de baja frecuencia.

En 1888, el alemán Heinrich Hertz fue el primero en generar esas ondas: las ondas de radio.

Veamos su biografía y sus logros cientificos….

Hertz Heinrich (Hamburgo, 1857 – Bonn, 1894), fue un físico alemán nacido en el puerto de Hamburgo en 1857. A pesar de lo corto de su vida es el responsable del descubrimiento que permite la mayor revolución de las comunicaciones.

Inicia estudios de ingeniería en su ciudad natal, pero antes de culminarlos entra en contacto con Ferdinand von Helmholtz, importante físico de la época, quien lo induce hacia esa disciplina, abandonando su aspiración de ser ingeniero.

Trabajando como investigador de la Universidad de Kiel se ocupa de los fenómenos electromagnéticos, campo abierto por James Clerk Maxwell (1831-1879).

Antes de continuar veamos lo que dice la Teoría de Maxwell: Este físico escocés estudió el fenómeno del electromagnetismo, y unió los conceptos separados de electricidad y magnetismo en términos de una nueva fuerza electromagnética.

Maxwell amplió las ideas de Ampére y finalmente, en 1864, propuso que un campo magnético también se podía crear por un campo eléctrico variable. O sea, cuando un campo es variable, sea magnético o eléctrico, se induce un campo del otro tipo. Maxwell supuso que las oscilaciones eléctricas generaban ondas electromagnéticas y encontró una fórmula para la velocidad, que se expresa en términos de cantidades eléctricas y magnéticas.

Una vez medidas estas cantidades calculó la velocidad y descubrió que era igual que la velocidad de la luz en el vacío. Esto le indujo a pensar que la luz era de naturaleza electromagnética, teoría que posteriormente se demostró de diferentes maneras. Por lo tanto, cuando una corriente eléctrica en un alambre varía, se generan ondas electromagnéticas que se propagan a la velocidad de la luz.

Heinrich Hertz estaba interesado en producir ondas de radio. Por supuesto, no las llamaba así, porque en 1887 no se tenía idea de la radio.  Participa en un concurso convocado por la Academia de Ciencias de Berlín para trabajos relacionados con corrientes eléctricas oscilantes.

biografia de hertz heinrich

Físico alemán (Hamburgo, 1857 – Bonn, 1894). Descubrió las ondas electromagnéticas de baja frecuencia, llamadas en su honor ondas hertzianas. Demostró que están sometidas a las mismas leyes de reflexión y refracción que las luminosas y midió su velocidad, la misma que las de la luz y la radiación infrarroja. De este modo confirmó la naturaleza electromagnética de la luz y la teoría electromagnética de Maxwell, abriendo paso al desarrollo de la radio y la telegrafía sin hilos.

Tal como Maxwell había predicho que se crearían ondas electromagnéticas en el espacio por el movimiento de cargas eléctricas. Estas ondas nunca se habían observado hasta que Hertz estableció dos circuitos, como se muestra en la figura de abajo.

En el primer circuito, se obligaba a saltar una chispa entre dos esferas metálicas. La chispa nunca es simple, sino que oscila de un lado a otro a través del intervalo entre las esferas. Luego estableció otro circuito, a alguna distancia, que consistía en un espacio de chispa y alambres para completar el circuito.

croquis experimiento de hertz

Hertz elabora un circuito con dos esferas metálicas conectadas que se cargan alternativamente al hacer pasar una corriente en las dos direcciones; en el momento en que se aplica una carga máxima, se produce una chispa entre ellas. De esta forma, sin proponérselo, construye un circuito de carga oscilante constante. Con este sencillo dispositivo encuentra el rastro de la radiación y calcula su longitud de onda, un millón de veces mayor que la de la luz. Su hallazgo se conoce hoy con el nombre de ondas hertzianas y constituye la base de la telegrafía sin hilos, inventada por el italiano Marconi Guillermo.

Para su satisfacción, encontró que siempre que una chispa oscilante cruzaba la primera abertura, otra chispa oscilante se producía en la abertura de la segunda bobina. En verdad, era mucho más débil que la primera, pero saltaba si las condiciones eran apropiadas. Se radiodifundía una onda de radio de un circuito al otro.

Un día Hertz puso su segundo circuito dentro de una caja negra, para ver si las ondas atravesaban el material de la misma. Encontró que tenía que reducir la abertura, para producir una chispa en el circuito secundario. Esto podría ser debido, simplemente, a que las ondas perdían algo de su energía al atravesar las paredes de la caja, pero otra posibilidad sería la de que el circuito no funcionara igual de bien en la obscuridad.

Esta, probablemente, podría parecer una hipótesis absurda en aquel tiempo, pero Hertz de todos modos la probó al iluminar con luz ultravioleta las terminales del segundo espacio de chispa. Comprobó, que de nuevo saltaba una chispa con un amayor abertura. De esto concluyó, que la luz ultravioleta ayuda a las cargas eléctricas a escapar de las terminales metálicas.

Hertz estaba ante todo interesado en las ondas de radio, así que prestó poca atención a cómo la luz ayuda a la corriente. Pero otros investigadores pronto descubrieron que una placa metálica cargada, perdía su carga cuando se iluminaba con luz ultravioleta, si la carga era negativa, pero no si era positiva. En aquel tiempo, el electrón no había sido descubierto así es que no se podía explicar este fenómeno.

Lo antedicho se refiere al descubrimiento del fenómeno conocido como efecto fotoeléctrico, por el que la luz y otras formas de energía electromagnética de alta frecuencia provocan la emisión de electrones en algunos metales. En su honor se dio el nombre de herzio a la unidad de frecuencia. Entre sus obras destacan Principios de la mecánica y Sobre las relaciones entre la luz y la electricidad.

https://historiaybiografias.com/linea_divisoria3.jpg

AMPLIACIÓN: En ciencia e invención, la revelación de un secreto descubre otro. En el instante en que se produce un gran descubrimiento, se abre una nueva puerta. No importa tanto quién la abra como el nuevo horizonte que se vislumbra.

Faraday no fue el primero que esparció limaduras de hierro en un papel, puesto encima de un imán, para que se formara con ellas un trazado de líneas. Pero fue el primero en preguntar: «¿Por qué en líneas?». Sus sentidos humanos no lograron descubrir la fuerza invisible, pero propuso una teoría valiente.

La electricidad y el magnetismo atraían líneas de fuerza a través del espacio. No eran meramente líneas imaginarias, sino un movimiento físico real. Faraday vio las vibraciones de la materia (lo que con el tiempo se descubrió que eran ondas electromagnéticas y fotones de energía) donde otros no vieron nada más que vacío.

Había abierto una nueva puerta. Una generación más tarde, Clerk Maxwell se aventuró en la oscuridad allende la puerta, tanteando con ayuda de las leyes matemáticas. Llegó a una dramática conclusión: podía hacerse que la corriente eléctrica produjera ondas magnéticas que viajasen a la velocidad de la luz. Lo más sorprendente de todo fue su afirmación de que se podían usar estas ondas para transmitir la voz humana, a través del mundo, sin hilos ni cable.

Quince años más tarde, un joven físico alemán, Heinrich Hertz, realizó experimentos de laboratorio para comprobar la teoría de Maxwell. Empezó haciendo que la chispa mayor que era posible lograr saltara por el espacio que separaba dos bolas metálicas. A diez metros colocó otras dos bolas metálicas. Cada vez que una chispa saltaba entre las bolas metálicas del transmisor, otra chispa saltaba entre las bolas metálicas del receptor.

Esto demostraba la telegrafía a través del espacio. Hertz procuró entonces encontrar aplicación a estas ondas en la comunicación inalámbrica, pero no pudo aumentar suficientemente la potencia como para enviar estas ondas a través de una distancia.

Guillermo Marconi: Lo que Hertz no pudo averiguar significó una gran oportunidad para un joven. A los veinte años, en 1896, Guillermo Marconi descubrió un método para conseguir más potencia con el equipo que usó Hertz.

Agregó una antena de 12 metros y una placa metálica enterrada. Estos dos nuevos elementos actuaron como un condensador enorme que almacenaba suficiente electricidad y permitía mandar la onda hertziana a 3.200 metros por el espacio. Utilizó un cohesor (partículas metálicas dentro de un tubo) que guiaba la corriente en una sola dirección, a fin de que pudieran «detectarla» los auriculares del teléfono. Disponiendo de mayor energía transmisora, las ondas podrían trasladarse a cientos de millas.

marconi telegrafia sin hilosEl joven inventor decidió entonces poner manos a la obra. El tráfico inalámbrico entre barcos y la costa fue pronto una realidad. Siguió luego el experimento audaz de enviar ondas electromagnéticas a través del Atlántico.

Un físico había dicho en aquel momento que era absolutamente imposible que las ondas pudieran abandonar la superficie del globo a través del aire y regresar. Marconi no estaba tan imbuido de las teorías físicas del momento como para creer tal cosa. En Terranova experimentó la emoción de toda una vida. Captó señales de Cornwall, Inglaterra.

Esto dio a entender que había una especie de espejo que reflejaba las ondas hacia la tierra, pista que llevaría más tarde al descubrimiento de la ionosfera reflectora del espacio y a la invención del radar.

Él sistema inalámbrico de Marconi se perfeccionó hasta el punto de hacer vibrar a las ondas en una sola frecuencia. Añadió bobinas de sintonía que eliminaron la posibilidad de interferencia de otras estaciones.

Muchas mentes, por esa época, buscaban a tientas la puerta siguiente: la transmisión de la palabra y de la música. Parecía casi imposible. ¿Cómo conseguir en la antena la potencia requerida para enviar señales a larga distancia, y al mismo tiempo disminuir esta energía hasta el punto necesario para que excitase delicadamente un micrófono a carbón en el lugar de recepción?.

En un receptor de teléfono, la corriente de una onda inalámbrica sería demasiado fuerte para registrar las diferentes presiones ejercidas por el sonido de la voz de un locutor.

Se necesitaba algo verdaderamente nuevo y, como sucede a veces en el transcurso de una invención, la solución llegó en forma casual.

Falta de Vitamina B12 Carencia Deficiencia Consecuencia Exceso B12

Falta de vitamina B12

LOS RIEGOS DE LA CARENCIA DE VITAMINA B12 EN EL ORGANISMO:

Al envejecer, nuestro estómago produce menos ácido. La vitamina B 12 de los alimentos está asociada a las proteínas, que nuestro cuerpo descompone para poder absorber la vitamina en cuestión. Hace falta el ácido del estómago para realizar esta tarea.

Los signos de una deficiencia de vitamina B12 tardan mucho tiempo en manifestarse y son muy sutiles. Hace falta la B12 para mantener la mielina, el cubrimiento que protege las células nerviosas.

Si se desgasta la mielina, tenemos una sensación de debilidad y aturdimiento, además de sensación de quemazón en las extremidades, problemas de memoria y cambios de humor. Un efecto mucho más dramático de la deficiencia de esta vitamina es la incapacidad de las células sanguíneas para transportar el oxígeno. Si hay una ausencia de B12, las células aumentan su tamaño de manera anormal al tratar de capturar mayor cantidad de oxígeno.

A esto se le llama macrocitosis o anemia perniciosa. La dosis general recomendada para persona mayores de cincuenta años es un suplemento de vitamina B12 que contenga al menos un valor diario de 2,4 microgramos, pero algunos científicos recomienda una dosis mayor, hasta 25 microgramos. No se corre ningún riesgo de sobredosis. Un estudio de la Universidad de Tufts obtuvo unos resultados sorprendentes.

Desde hace tiempo se sabe que la B-12 es importante en el sistema nervioso y su funcionamiento.  Estudios recientes han comprobado que la suplementación con B-12, aún antes de que aparezcan síntomas claros de deficiencia, mejoran síntomas neuro-psicológicos como memoria, desorientación, reflejos bajos, debilidad, fatiga, desórdenes psiquiátricos, percepción del dolor y sensibilidad del tacto.

La deficiencia de B12 causa disfunciones neurológicas como depresión, estado anímico variable, confusión, agitación, psicosis y a veces coma.

Los investigadores analizaron a 3.000 adultos sanos con buenos hábitos alimentarios y descubrieron que el 40 % de ellos tenía unos niveles de B12 en sangre muy bajos. Parece ser que no absorbemos esta vitamina tan bien como creíamos al comer carne, pollo y pescado. Quizá al cocinarlos, la vitamina se une con más fuerza a las proteínas.

La absorbemos mejor en los productos lácticos; un vaso de leche nos aporta un microgramo de B12. ¿Quién tiene la última palabra? Todo el mundo debería tomar un suplemento de vitamina B 120 consumir regularmente suficientes productos lácteos en nuestra dieta cotidiana. Y debemos incluirla cuando aún nos acordamos de hacerlo, la deficiencia de vitamina B12 afecta a la memoria.

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

Ácido fórmico en las Hormigas Defensa contra los Insectos

Ácido fórmico en las Hormigas Defensa contra los Insectos

Ver: Muerte de las Abejas Al Picar y Uso de Venenos Como Defensa

EL PODER QUÍMICO DE LAS HORMIGAS

Aunque individualmente las hormigas no representan generalmente una amenaza para el ser humano,no se debe nunca subestimar el poder destructivo de este increíble animal capaz de formar colonias de más de 20 millones de individuos.

Y es que la principal fuerza de este voraz depredador no consiste en sus poderosas mandíbulas ni en su aguijón capaz de inocular ácido fórmico, el arma más peligrosa de este insecto es su gran número. Estas alucinantes criaturas no están exactamente llenas de ácido fórmico, pero lo crean como arma química.

Si alguna vez has experimentado la dolorosa quemazón de una picadura de la hormiga roja, entonces has probado el ácido fórmico en tu propia piel. También habrás aprendido, sin duda alguna, que no se puede jugar con las hormigas rojas.

Los chicos de la tribu Maué, en Brasil, nos podrían contar algunas cosas interesantes acerca del ácido fórmico.

A modo de prueba de madurez, les hacen meter los brazos en unas mangas llenas de feroces hormigas rojas una y otra vez hasta que demuestran que son capaces de aguantar el dolor sin transmitir ninguna emoción. Cuando un muchacho ha llegado a tal punto de resistencia, se considera que ya es un hombre y los mayores le permitirán casarse.

Pero no hace falta meter el brazo en esas mismas mangas para sentir el efecto del ácido fórmico. Las hormigas son una fuente natural de lluvia ácida; en realidad, ellas son las mayores responsables de la lluvia ácida de la selva amazónica. Se ha calculado que las hormigas rojas sueltan unas 1.000 toneladas de ácido fórmico cada año.

El ácido fórmico no siempre es un problema. La gente lleva poniéndolo en uso comercial desde el siglo XVII, cuando se consiguió aislarlo por primera vez moliendo las hormigas en un mortero. Las industrias de curtido de pieles y de tintes lo usan y, además, el ácido es el ingrediente activo en las soluciones que se emplean para eliminar la cal incrustada en el interior de las teteras.

Pero los defensores de los derechos de los animales no tienen por qué preocuparse: el producto que se comercializa ya no se elabora con un destilado de hormiga roja. Se sintetiza a partir del monóxido de carbono.

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

Transformación de vino a vinagre Bacterias en el vino Fermentación

Transformación de Vino en Vinagre

CUANDO EL VINO SE TRASFORMA EN VINAGRE, ¿DÓNDE VA EL ALCOHOL?

Muy sencillo. Desaparece porque lo que se convierte en vinagre es el alcohol. Pero hasta las respuestas simples, como ésta, esconden una historia interesante. Tradicionalmente el vinagre procedía de los toneles de la producción del vino que se agriaba, o se ponía malo. El fenómeno concreto de la producción del vinagre no fue explicado hasta el año 1864. Hay dos procesos en juego cuando el alcohol del vino se transforma en vinagre. El primero es relativamente insignificante.

El etanol, el alcohol de las bebidas, reacciona con el oxígeno y forma el ácido acético, una solución diluida a la que llamamos «vinagre». Hasta cierto punto, esto sucede porque el vino no está en contacto durante demasiado tiempo con el oxígeno. Lo que realmente convierte el vino en vinagre es la contaminación provocada por una bacteria llamada Acetobacter aceti. Esta bacteria tan común produce una enzima que convierte el etanol en ácido acético.

Se encuentra en las uvas que se usan para elaborar vino, pero el origen más habitual para propagarla polución es la mosca de la fruta. Ésta es la razón por la que muchos vinicultores se toman tantas molestias a la hora de mantener alejados estos pequeños bichos de sus mezclas de vino en fermentación. Una vez las bacterias Acetobacter han tomado posesión, empiezan a multiplicarse y muy pronto ya habrá surgido una sustancia gelatinosa a base de celulosa que se llama «madre de vinagre». En Filipinas, esta gelatina se considera una exquisitez.

Hay un típico postre filipino, la «nata de coco» o «nata de piña», que se prepara mezclando la celulosa de la bacteria con azúcar. En general, la transformación del alcohol del vino, en ácido acético no es deseable. Pero a veces, sí lo es. El vinagre de vino es un famoso producto para gourmets. Se prepara introduciendo madre de vinagre dentro del vino para favorecer la producción del ácido. Hay mucha gente que prefiere el vinagre de vino al vinagre normal porque, además del ácido acético, tiene múltiples componentes de sabor que se produjeron en la fermentación original.

A pesar de esto, es posible hacer vinagre sin usar vino. El etanol se puede confeccionar a partir del etileno, que a su vez está hecho de petróleo. El etanol se convierte en ácido acético por reacción con el oxígeno; se fabrica una gran cantidad de ácido acético a escala industrial siguiendo este método. Si diluimos el ácido acético en agua a una concentración del 5 %, obtenemos vinagre.

El vinagre proviene de la actividad de las bacterias Acetobacter aceti que realizan la reacción química de fermentación del alcohol etílico (vino) a ácido acético (vinagre), para que ocurra esta transformación deben existir las condiciones apropiadas de acidez pH, concentración del alcohol, nutrientes (proteínas en el vino). Cuando se produce la actividad de las Acetobacter aceti se forma una piel en la superficie exterior del vino con la intención de ir tomando el oxígeno del aire y convertir el alcohol en vinagre, el fin del proceso resulta cuando ya no hay una concentración alta de alcohol en el vino.

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

 

Defensa Química del Escarabajo Bombardero ◘

Defensa química del escarabajo e insectos

 LA DEFENSA QUÍMICA DEL ESCARABAJO BOMBARDERO

Que te rociaran con un líquido caliente que contiene irritantes químicos conocidos como benzoquinonas. Lo más probable es que, además de memorable, sería una experiencia muy desagradable.

Dada su habilidad para descargar estas bombas químicas cuando se sienten amenazados, estos escarabajos tiene un nombre muy acertado.

Los escarabajos se diferencian de los demás insectos porque no pueden ponerse a volar de inmediato. Tienen unas alas cubiertas que deben desplegar antes de elevarse. Algo así como Superman, que debía quitarse el traje de la oficina antes de alzar el vuelo.

Puesto que los coleópteros no pueden echarse a volar en el mismísimo instante que son atacados, han desarrollado una defensa de emergencia para protegerse mientras se preparan.

Los científicos han estudiado la familia del escarabajo bombardero africano con detenimiento para poder entender este sistema de defensa tan excepcional.

Cuando los depredadores les atacan —en su mayoría, hormigas— el escarabajo suelta una especie de disparos, unos chorros de mezcla química con detonaciones audibles.

El spray emerge de debajo del abdomen, de una parte parecida a la torreta de un tanque, que el escarabajo puede maniobrar para conseguir acertar el blanco con una puntería extraordinaria. Pero lo verdaderamente sorprendente es la química que compone el líquido.

El bombardero prepara la mezcla irritan

Una de ellas contiene agua oxigenada e hidroquinona, y la otra alberga una mezcla de enzimas, conocidas como catalasas y peroxidasas, que reaccionan con el agua oxigenada y transforman el oxígeno en gas y agua.

Cuando el contenido de las dos glándulas se mezcla, se genera oxígeno, que reacciona con la hidroquinona y se convierte en benzoquinona. Esta es una reacción exotérmica tan alta que puede alcanzar una temperatura de 100 °C. Debido al gran aumento de oxígeno, la presión hace que la combinación de agua caliente y benzoquinona.

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

Destilar alcohol con remolacha Fermentación láctica Bacterias

FERMENTAR ALCOHOL DE LA REMOLACHA

A mediados del siglo XIX, un industrial francés que destilaba alcohol a partir de la remolacha azucarera tuvo un problema cuando los barriles de fermentación dejaron de producir alcohol. Le pidió ayuda a un científico y el resultado fue uno de los descubrimientos científicos más importantes.

¿Quién era ese científico y cuál fue su descubrimiento?

La implicación de Louis Pasteur en este problema les condujo finalmente a descubrir el papel que representan las bacterias para la propagación de las enfermedades. Pasteur, un joven profesor de química en la Universidad de Lille, estaba atado de manos por el mismo problema que persigue aún hoy la gran cantidad de investigadores: la falta de financiación. Los fabricantes privados a los que se acercaba en busca de ayuda a menudo se mostraban escépticos ante la necesidad de que se hicieran investigaciones, pero Pasteur consiguió ganárselos gracias a sus estimulantes conferencias.

En una de esas conferencias Pasteur preguntó a la audiencia dónde estaba el hombre cuya curiosidad no fuera atizada por el conocimiento al saber que «¿si ponía una patata en sus manos, podría obtener azúcar, y con ese azúcar, se produciría alcohol?». Las palabras consiguieron cautivar a al un tal Monsieur Bigo, un industrial cuyas remolachas habían dejado de producir alcohol, así que Bigo le rogó a Pasteur que examinara su problema.

En esos tiempos, nadie —incluido Pasteur— comprendía cómo funcionaban los fermentos del azúcar en el alcohol, por eso el químico hizo lo único que se podía hacer: tomo unas muestras de un barril sano y las puso bajo el microscopio. Una multitud de glóbulos amarillos danzaban ante sus ojos. Y no sólo bailaban, sino que se multiplicaban. Esas levaduras estaban vivas y, como dedujo Pasteur rápidamente, eran las que convertían el azúcar en alcohol.

El siguiente paso de Pasteur fue examinar los barriles de fermentación. En vez de glóbulos de levaduras, vio unas cosas diminutas, como filamentos, brincando en el caldo de cultivo, que en vez de estar lleno de alcohol tenía ácido láctico. Pasteur consiguió transferir algunas de las criaturas filamentosas a un contenedor limpio y prosiguió a demostrar que, si se les daba los nutrientes adecuados, se multiplicaban. Los filamentos estaban vivos y se afanaban por convertir el alcohol en ácido láctico. Esos microbios contaminaban las barricas llenas de azúcar de remolacha, mataban las levaduras y terminaban con la producción de alcohol.

¿De dónde habían llegado? Pasteur dedujo con acierto que estaban presentes en el aire. Si podían estropear el cultivo de azúcar de remolacha por completo, ¿qué más serían capaces de hacer? Pasteur pronto respondió a esta cuestión al establecer una unión entre los microbios y las enfermedades humanas. Y todo porque a un fabricante francés se le truncó su producción de alcohol.

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

Origen de las gaseosas Agua con gas Bebidas Gaseosas Refrescantes

CURIOSIDAD: ORIGEN DE LAS GASESOSAS

 A finales del siglo XVII, el aparato del doctor Nooth se encontraba en cualquier casa decente de Inglaterra. Se había diseñado para mantener un estado de buena salud y restaurarla para aquellos que la habían perdido. ¿Qué hacía este aparato?

Convertía el agua en gaseosa. Ya hacía tiempo que la gente creía que las aguas carbónicas eran muy saludables. Los que sufrían de piedras en el riñón, artritis y «falta de vigor» iban desesperados a los balnearios para recibir una cura de estas aguas. Pero, los que podían ir a la fuente de las aguas milagrosas, no estaban de suerte.

Hasta que un día, apareció Joseph Priestley Priestley, que es más conocido por ser el descubridor del oxígeno, vivía cerca de una destiladora y estaba intrigado por las burbujas de dióxido de carbono que se elevaban dentro de su cerveza. Estas le dieron la idea de carbonatar el agua artificialmente. Joseph Black ya había conseguido producir dióxido de carbono —o «aire fijo», como le llamaban entonces— mediante la reacción del yeso (carbonato cálcico) con ácido sulfúrico.

Priestley diseñó un ingenioso aparato que unía la vejiga de un cerdo a un contenedor de vidrio con estos reactivos dentro. La vejiga estaba conectada a un tubo que iba a parar a una botella llena de agua y que estaba en posición invertida dentro de un cuenco de agua.

Se generaba gas, llenaba la vejiga, y entonces se apretaba para mandar el gas presurizado al agua. Mediante este sistema, Priestley pudo disolver la suficiente cantidad de gas para poder ofrecer una bebida con burbujas. Las sales como el carbonato de sodio o el tartrato de sodio se añadían y así se convertía en agua mineral.

John Nooth, un médico escocés, se preguntaba por qué no se habían explorado con profundidad las propiedades curativas del agua de Priestley. Él sospechaba que era debido al sabor desagradable del agua, parecido a la orina, así que diseñó un aparato totalmente fabricado en vidrio y eliminó así la vejiga de cerdo. Priestley no se tomó nada bien esta crítica hacia su agua. Sostenía que ni él ni nadie a quien le hubiese proporcionado agua había notado el sabor o el olor a orina.

Si a Nooth le había parecido imbebible era —le sugirió Priestley— porque alguno de sus sirvientes de había gastado una broma muy cruel y se había orinado en el agua que usó para llenar el aparato carbónico de Nooth. Priestley no tenía ninguna prueba para presentar una acusación de este tipo y al final dejó de atacar a Nooth y admitió que el aparato de Nooth era mejor que el suyo.

Años más tarde, el inventor suizo Johann Jacob Schweppe optimizó el aparato y el agua carbónica empezó a estar al alcance de todas las casas. En la actualidad, el debate sobre los beneficios el agua carbónica continúa, pero los beneficios financieros que ha aportado son indiscutibles; la lucrativa industria de las bebidas con gas depende totalmente de las aguas carbonatadas artificialmente.

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

ANHÍDRIDO CARBÓNICO Dióxido de Carbono Intoxicación Aire CO2

CURIOSIDADES QUÍMICAS: ANHÍDRICO CARBÓNICO

 TRAGEDIA POR ANHÍDRIDO CARBÓNICO EN LA NATURALEZA

También conocido como dióxido de carbono, se encuentra en la atmósfera normal en concentraciones que varían desde 0,03 hasta 0,06 %. También se encuentra disuelto en el agua de manantial, que en ocasiones está cargada de este gas a presión de forma efervescente. Se desprende en grandes cantidades por los respiraderos y fisuras de la corteza terrestre en las zonas volcánicas. El gas se encuentra también presente en el aire espirado y su concentración aumenta en la atmósfera de una habitación llena de gente.

Para los antiguos griegos la entrada al infierno se encontraba en un gran hoyo caliente  al lado del mismo  templo de Apolo, en Pamukkale, en la actual Turquía. La puerta parecía el acceso a una cueva, pero no era una cueva normal y corriente. Ningún hombre o animal que hubiese entrado en ese sombrío interior había regresado jamás. Hoy nos parece saber el porqué. Hay unos torrentes, subterráneos y calientes, que penetran en el suelo alrededor de la gruta.

Cuando la corriente fluye por encima de los depósitos de caliza —también llamado carbonato cálcico—, el agua arrastra los gases de dióxido de carbono. Es como un proceso natural de carbonización. Luego, a medida que el agua carbonatada llega a la caverna, se libera la presión y el gas escapa. Es como abrir una botella de gaseosa. Como el dióxido de carbono es más pesado que el aire, expulsa el aire de dentro de la cueva y así, cualquier persona que entre en ella se ve afectado rápidamente por la falta de oxígeno.

La caverna de Pamukkale no es el único lugar donde el dióxido de carbono ha causado estragos entre la población humana. El 21 de agosto de 1986, tuvo lugar un terrible accidente provocado por la química natural en el Camerún, en África. En pocas horas habían muerto miles de animales y personas alrededor de la zona del lago Nyos. Era como si una plaga celestial hubiese caído y aniquilado a los vivos en un instante, pero los muertos no mostraban signos de enfermedad. El culpable resultó ser el gas del dióxido de carbono —el gas que crea las burbujas en un refresco y que exhalamos en cada aliento—. ¿De dónde procedía? Del fondo del lago.

Este accidente devastador seguramente fue provocado por la actividad volcánica que tenía lugar bajo tierra, que generó un aumento de dióxido de carbono. El gas se elevó en forma de burbujas hasta la superficie del lago y se expandió enseguida a las áreas circundantes.

Como ya sabemos, el dióxido de carbono es mas denso que el aire, así que se asentó a ras de suelo y se deslizó por el valle. La nube de gas viajó a una distancia superior a los 25 kilómetros del lago, y en ciertos puntos era tan rápida que consiguió aplanar la vegetación, incluidos algunos árboles. Unas 1.700 personas murieron sofocadas por el gas y unas mil más tuvieron que ser hospitalizadas. Este tipo de desastres podría repetirse. Con toda seguridad, el dióxido de carbono se sigue acumulando bajo el lago. Esto sí que podemos decir que es el infierno en la tierra.

Genera disminución de la respiración y dolor de cabeza, hasta provocar la pérdida del conocimiento o la muerte por defecto de oxígeno, en función de las concentraciones. Su tenue olor no sirve como advertencia, pudiendo intoxicar a una persona sin percibirlo para ponerse a salvo.

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

Uso sulfato de cobre en viñedos Plaga Mildiu Enfermedades Viña

USO DEL SULFATO DE COBRE EN LOS VIÑEDOS

¿Qué producto químico es útil tanto para los propietarios de una piscina como para los cultivadores de viñedos en Francia?

El sulfato de cobre. Las algas a menudo invaden las piscinas y hacen que el agua se vuelva de un color verdoso y se enturbie. Si añadimos una pequeña cantidad de sulfato de cobre al agua de la piscina, se aclara y apetece más bañarse en la piscina. Éste es otro de los beneficios: al usar sulfato de cobre, reducimos la cantidad de cloro o de bromo que hace falta para desinfectar una piscina.

El sulfato de cobre, con unas diluciones tan pequeñas, es una sustancia muy segura y la Agencia de la Salud Reguladora de los Pesticidas que existe en Canadá le ha concedido una patente de sanidad. Esta agencia, además, regula otro uso del sulfato de cobre completamente distinto: el control de las plagas de mildiu, un hongo que puede llegar a devastar viñedos completos. El mildiu se propaga con el clima húmedo y aparece inicialmente como un moho o una mancha blanquecina en el reverso de la hoja.

Si la lluvia persiste, el hongo acaba estableciéndose y termina con todo el viñedo. Puede incluso permanecer y afectar a la siguiente cosecha. Durante la década del 1860, Pierre-Marie-Ajexís Millardet, un profesor de botánica de la Universidad de Burdeos, descubrió una mezcla de sulfato de cobre y de cal que eliminaba el hongo de manera efectiva. ¿Cómo lo averiguó? Hacía ya tiempo que los agricultores rociaban las viñas con esa sustancia para disuadir a los ladrones.

Millardet observó que las vides que habían sido tratadas no exhibían ningún tipo de propagación del hongo. El cóctel de sulfato de cobre y cal se empezó a llamar la mezcla de Burdeos y desde entonces se usó como un fungicida común. Puesto que está elaborado con minerales que se dan en la naturaleza, los agricultores biológicos usan la mixtura —a pesar de que los fabricantes de juguetes han decidido que es demasiado peligroso y han optado por retirarlo de los juegos de química.

Producir los hermosos y azules cristales del sulfato de cobre había sido una de las actividades más interesantes de las clases prácticas de química, pero, paradójicamente, los alumnos actuales que tengan ganas de probarlo deberán comprar el sulfato de cobre en una tienda de productos naturales, ya que ahí lo venden como un fungicida biológico.

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

Tintura para telas fabricada con insectos Cochinilla

CURIOSIDADES:Tintura para telas fabricada con insectos 

 TINTURAS PARA TELAS FABRICADAS CON INSECTOS:

Cuando Hernán Cortés llegó a México en el año 1518, vio los tejidos de llamativos colores que llevaban los aztecas y le dejaron muy intrigado. El origen del tinte parecía ser, a primera vista, unas semillas que aparecían en la superficie de un cactus, pero un examen más a fondo le reveló que no eran, para nada, semillas de cactus.

Eran unos bichitos diminutos. Hoy en día, estos insectos se conocen con el nombre de «cochinilla del nopal» y el tinte que se extrae de ellos es el carmín. Al rey azteca Moctezuma le gustaba tanto llevar ropa teñida de este color que acabó imponiendo un tributo a su población que se pagaba con cochinillas.

Pequeño insecto llamado Daclylopius coccus.

Las hembras embarazadas de la cochinilla del nopal producen este rojo tan brillante que se convierte en tinte y que fue el primer producto que se exportó del Nuevo Mundo al Viejo Continente. Muy pronto, los europeos vistieron lana y sedas de color carmín que habían coloreado con el extracto de la cochinilla. El uso más memorable de este insecto fue, quizá, la introducción del tono escarlata en el arte, cuya intensidad hizo famosos los tapices de Gobelin en París.

Extraer este tinte no es una tarea nada fácil. La hembra del hemíptero, que se alimenta de las bayas rojas del cactus, concentra la tintura en su cuerpo y en sus larvas. Luego, los recolectores de cochinillas las arrancan de la corteza del cactus y las arrojan en un recipiente con agua muy caliente, donde mueren al instante. Entonces las secan bajo el sol y las trituran hasta obtener un polvo, que se añade al agua o a una mezcla de agua con alcohol.

Para las telas se usa un mordiente, como, por ejemplo, el alumbre, que fija el color en el tejido. El ácido carmíneo, este activo agente colorante, es uno de los tintes más seguros que existen y, en general, se usa muchísimo en la industria cosmética y alimentaria. Los caramelos, los helados, las bebidas, el yogur, los pintalabios y las sombras de ojos, todos ellos pueden contener la cochinilla del nopal como uno de sus ingredientes.

Las reacciones alérgicas ante el tinte son muy poco frecuentes. Se han dado casos de gente que ha desarrollado una reacción adversa al aperitivo Campan, a los polos de color rojo, a las cerezas confitadas y a la barra de labios de color carmín, pero hay una cantidad mayor de gente que ha manifestado alergias a muchos otros ingredientes de la comida o los cosméticos.

En una ocasión hubo un niño al que se le hinchó la cara después de recibir un beso de su afectuosa abuela en la mejilla. Resultó que el niño se había sensibilizado contra el carmín, seguramente debido al consumo de golosinas y otros alimentos, de modo que reaccionó adversamente al colorante del pintalabios de su abuela. Cuando se da este tipo de rechazos, éstos se manifiestan en forma de inflamaciones o urticarias, aunque también se han dado casos de reacción anafiláctica con el Campan-Orange.

Como la cochinilla del nopal es un insecto diminuto, harán falta unas 70.000 hembras aproximadamente para elaborar algo menos de medio kilo de extracto. Para este fin, los machos son bastante inútiles. Al igual que los machos de otras muchas especies, son considerablemente más simples que las hembras.

Tampoco hay muchos, y su vida dura tan sólo una semana escasa. A lo largo de este fugaz periodo, intentarán aparearse con el mayor número de hembras posible. (Puede que, al fin y al cabo, no sean tan y tan simples como creíamos.) Pero ¿cómo consiguen los recolectores diferenciar entre un sexo y el otro? Bueno, pues porque los machos vuelan, y las hembras, al no tener alas, no vuelan. Al sacudir el cactus, los sujetos masculinos echan a volar, pero las féminas no pueden escapar. Las arrancan del nopal y las destinan a colorear algún helado de fresa. Ya me imagino que a muchos de vosotros no os parecerá demasiado apetitoso el hecho de comer un helado mezclado con jugo de bichos, pero os aseguro que es un colorante muy efectivo y fiable. ¡Y, además, es cien por cien natural!

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

Licopeno Compuesto que reduce riesgo de cáncer de próstata Tomate

CURIOSIDADES QUÍMICAS: LICOPENO REDUCE RIESGO DE CÁNCER

 Cada día se escuchar mas hablar del licopeno, un compuesto que se cree reduce el riego entre los hombres de sufrir un cáncer de próstata. ¿En qué alimento crudo se halla la mayor fuente de esta sustancia?

En la sandía y luego le sigue el tomate.

Es un pigmento vegetal, soluble en grasas, que aporta el color rojo característico a los tomates, y en menor cantidad, a otras frutas y verduras. Posee propiedades antioxidantes y actúa protegiendo a las células del organismo del estrés oxidativo producido por los radicales libres.

Los licopenos son carotenoides contenidos en el tomate que pueden reducir sensiblemente el riesgo de contraer cáncer de próstata o enfermedades cardiovasculares, así lo evidencian cientos de trabajos científicos, como los que compartiremos a continuación.

En efecto, el pigmento rojo se da en los tomates. Cuando está dentro mismo del tomate, protegiendo a esta fruta contra las enfermedades y los efectos nocivos del sol, esta molécula se encuentra en una forma llamada trans-licopeno.

Pero, para que nuestro cuerpo la absorba correctamente, debe encontrarse en otra forma, llamada cis-licopeno. Para que tenga lugar esta conversión, el tomate debe ser cocinado.

La única diferencia entre el trans y el cis es la forma de la molécula. Cuando el licopeno se transforma en cis, cabe dentro del receptor de una célula. Hay muchos tipos distintos de receptores en una célula y cada uno recibe solamente unas moléculas de formas muy concretas.

El cis-licopeno tiene un receptor en las células que lo reconoce; pero el trans no. Así que el trans-licopeno pasa por todo el sistema digestivo, mientras que el cis se aferra y consigue entrar dentro del flujo sanguíneo, en donde va a trabajar.

La sandía contiene mayor cantidad de cis-licopeno, por eso no es necesario cocinarla. En un estudio del Departamento de Agricultura de Estados Unidos, veintitrés voluntarios sanos tomaron zumo de sandía o de tomate con veinte miligramos de licopeno.

En cada uno de los casos, la concentración de licopeno en sangre se había duplicado; es decir, había el doble de la concentración que en personas con una dieta baja en licopeno. Esta visto que la sandía no tiene un valor nutricional tan ligero como se creía. ¿A alguien le apetece un vodka con zumo de sandía?

Fuente Consultada: Información Basada en el Libro «Porque los Gallos Cantan al Amanecer» de Joe Schwarcz y Sitio web www.alimentacion-sana.com.ar.

Linneo Carl Vida y Obra Cientifica Clasificación del Reino Vegetal

Vida de Linneo Carl Vida y Obra Científica

Necesario es decir que Linneo fue un muchacho muy poco común: a los quince años pasaba jornadas enteras encerrado en su habitación, dedicado a contemplar las flores y los insectos que recogía en el jardín de su casa.

«¡Un día de éstos te tiraré todas estas suciedades que recoges por todas partes!», solía decirle su padre, Nils Linné, que era clérigo, tratando de mostrarse serio e indignado. Pero sabía muy bien que jamás tendría el valor necesario para hacer una cosa semejante.

En el fondo, no le desagradaba lo más mínimo el interés que su hijo manifestaba por la naturaleza. Solamente le molestaba, y mucho, que por culpa de las flores y los insectos su hijo Carlos descuidase sus estudios.

Consideraba que contaba ya una edad en la que hubiera sido oportuno que eligiese la profesión a la cual habría de dedicarse durante su vida, de manera de asegurar su porvenir; y pensaba que muy bien podía consagrar el tiempo libre a la tarea de coleccionar flores e insectos. Pero el joven no participaba en modo alguno de estas ideas: por el contrario, todo parecía señalarlo como decidido con toda firmeza a dedicarse tan sólo a las ciencias naturales.

linneo, botanico

Sin embargo, y para proporcionar una satisfacción a su padre, en 1728 se inscribió en la Facultad de Medicina de la Universidad de Upsala. Pero de ninguna manera abandonó sus estudios predilectos: comenzó a concurrir con asiduidad a las lecciones del profesor Rudbeck, quien enseñaba botánica en aquella universidad, y continuó sus observaciones sobre las flores y los insectos.

Y he aquí los primeros resultados de sus estudios: en 1729 logró individualizar los órganos reproductivos de las flores (los estambres y los pistilos). Tal descubrimiento le valió la admiración del profesor Rudbeck, quien lo nombró su asistente. Al año siguiente, el joven Linneo fue invitado a dictar lecciones de botánica en la misma universidad en la que se hallaba inscripto como estudiante de medicina.

En 1732, en un viaje costeado por la Academia de Ciencias de Upsala, Linneo fue enviado a Laponia para estudiar la vegetación de aquellas frías regiones. Como fruto de tales estudios, Linneo publicó una interesantísima obra: «La flora lapona».

Durante el tiempo transcurrido en estos trabajos no había, sin embargo, abandonado sus estudios de medicina, y así, en 1735, obtuvo su graduación como médico. Pero en lugar de ejercer la profesión de médico decidió dedicarse con un empeño aún mayor a las ciencias naturales.

Linneo consideró que hasta entonces las plantas habían sido objeto de una descripción defectuosa. Las decenas de millares de especies que los estudiosos precedentes habían creído descubrir representaban un número exagerado. Muchas de ellas presentaban aspectos completamente semejantes entre sí, hasta el punto de que podían ser reunidas en una especie única. En suma: Linneo se propuso, finalmente, poner un poco de orden en la clasificación del inmenso reino de los vegetales.

El mismo año en que se recibió de médico, Linneo publicó su famoso «Systema naturae». Con esta obra propuso una original clasificación de las plantas. No se limitó, solamente, a dividirlas en especies, sino que, de acuerdo con las características que tenían en común, las reagrupó en géneros (reunión de especies), familias (reunión de géneros), órdenes (reunión de familias) y clases (reunión de órdenes).

A esta obra le siguieron en poco tiempo otros tres estudios importantes: los «Fundamentos de la botánica» (1736), los «Géneros de las plantas» (1737) y las «Especies de las plantas» (1738).

Contando apenas treinta años, Linneo había conquistado ya fama de sabio eminente. Comenzaron entonces a llegarle de toda Europa reconocimientos de su valor científico y honrosas distinciones.

En 1739 fue nombrado presidente de la Academia de Ciencias de Estocolmo, y dos años más tarde obtuvo la cátedra de botánica en la Universidad de Upsala.

Mientras tanto, Linneo había extendido el campo de sus estudios e investigaciones también al reino animal y, basándose en el sistema ideado para el estudio de las plantas, había propuesto una nueva clasificación para los animales. Describió 4.400 especies de animales y las distribuyó en seis clases: Mamíferos, Aves, Anfibios, Peces, Insectos y Vermes.

En 1753, Linneo tuvo otra idea genial: propuso hacer preceder el nombre del correspondiente género animal o vegetal al de la especie respectiva (por ejemplo: género: prímula; especie: vulgaris). Este método, que es conocido con el nombre de nomenclatura binominal (del latín «bis«, dos, y «nomen«, nombre), proporcionó la posibilidad de ordenar sistemáticamente el ingente número de especies vegetales y animales entonces conocidas.

Linneo no tenía deseos dé abandonar su tierra natal, donde su talento científico había tenido tan amplia oportunidad de manifestarse, y, a pesar de las invitaciones recibidas, continuó su enseñanza en la Universidad de Upsala.

Hacia el último período de su existencia, Linneo pasaba gran parte del año en su posesión campestre de Hammarby, donde había ordenado una maravillosa colección de plantas y animales.

El brillante sabio sueco falleció en Upsala el 10 de enero de 1778, a los 71 años de edad (había nacido en Rashult, provincia de Smalanó, el 13 de mayo de 1707). Le fueron tributados honores solemnes. El rey de Suecia dispuso que fuese sepultado en la catedral de Upsala, donde se le erigió un mausoleo. Justo reconocimiento a quien puede ser considerado como el fundador de la moderna botánica.

ALGO MAS SOBRE SU VIDA Y OBRA…

FUNDADOR DE LA MODERNA BOTÁNICA
Necesario es decir que Linneo fue un muchacho muy poco común: a los quince años pasaba jornadas enteras encerrado en su habitación, dedicado a contemplar las flores y los insectos que recogía en el jardín de su casa.

«¡Un día de éstos te tiraré todas estas suciedades que recoges por todas partes!», solía decirle su padre, Nils Linné, que era clérigo, tratando de mostrarse serio e indignado. Pero sabía muy bien que jamás tendría el valor necesario para hacer una cosa semejante.

En el fondo, no le desagradaba lo más mínimo el interés que su hijo manifestaba por la naturaleza. Solamente le molestaba, y mucho, que por culpa de las flores y los insectos su hijo Carlos descuidase sus estudios.

Consideraba que contaba ya una edad en la que hubiera sido oportuno que eligiese la profesión a la cual habría de dedicarse durante su vida, de manera de asegurar su porvenir; y pensaba que muy bien podía consagrar el tiempo libre a la tarea de coleccionar flores e insectos. Pero el joven no participaba en modo alguno de estas ideas: por el contrario, todo parecía señalarlo como decidido con toda firmeza a dedicarse tan sólo a las ciencias naturales.

Sin embargo, y para proporcionar una satisfacción a su padre, en 1728 se inscribió en la Facultad de Medicina de la Universidad de Upsala.

Pero de ninguna manera abandonó sus estudios predilectos: comenzó a concurrir con asiduidad a las lecciones del profesor Rudbeck, quien enseñaba botánica en aquella universidad, y continuó sus observaciones sobre las flores y los insectos. Y he aquí los primeros resultados de sus estudios: en 1729 logró individualizar los órganos reproductivos de las flores (los estambres y los pistilos).

Tal descubrimiento le valió la admiración del profesor Rudbeck, quien lo nombró su asistente. Al año siguiente, el joven Linneo fue invitado a dictar lecciones de botánica en la misma universidad en la que se hallaba inscripto como estudiante de medicina.

En 1732, en un viaje costeado por la Academia de Ciencias de Upsala, Linneo fue enviado a Lapoñia para estudiar la vegetación de aquellas frías regiones. Como fruto de tales estudios, Linneo publicó una interesantísima obra: -«La flora lapona». Durante el tiempo transcurrido en estos trabajos no había, sin embargo, abandonado sus estudios de medicina, y así, en 1735, obtuvo su graduación como médico. Pero en lugar de ejercer la’ profesión de médico decidió dedicarse con un empeño aún mayor a las ciencias naturales.

Linneo consideró que hasta entonces las plantas habían sido objeto de una descripción defectuosa. Las decenas de millares de especies que los estudiosos precedentes habían creído descubrir representaban un número exagerado.

Muchas de ellas presentaban aspectos completamente semejantes entre sí, hasta el punto de que podían ser reunidas en una especie única. En suma: Linneo se propuso, finalmente, poner un poco de orden en la clasificación del inmenso reino de los vegetales.

El mismo año en que se recibió de médico, Linneo publicó su famoso «Systema naturae». Con esta obra propuso una original clasificación de las plantas. No se limitó, solamente, a dividirlas en especies, sino que, de acuerdo con las características que tenían en común, las reagrupó en géneros (reunión de especies), familias (reunión de géneros), órdenes (reunión de familias) y clases   (reunión de órdenes).

A esta obra le siguieron en poco tiempo otros tres estudios importantes: los «Fundamentos de la botánica» (1736), los «Géneros de las plantas»  (1737) y las «Especies de las plantas»  (1738).

Contando apenas treinta años, Linneo había conquistado ya fama de sabio eminente. Comenzaron entonces a llegarle de toda Europa reconocimientos de su valor científico y honrosas distinciones.
En 1739 fue nombrado presidente de la Academia de Ciencias de Estocolmo, y dos años más tarde obtuvo la cátedra de botánica en la Universidad de Upsala.

Mientras tanto, Linneo había extendido el campo de sus estudios e investigaciones también al reino animal y, basándose en el sistema ideado para el estudio de las plantas, había propuesto una nueva clasificación para los animales. Describió 4.400 especies de animales y las distribuyó en seis clases: Mamíferos, Aves, Anfibios,  Peces,  Insectos y Vermes.

En 1753, Linneo tuvo otra idea genial: propuso hacer preceder el nombre del correspondiente género animal o vegetal al de la especie respectiva (por ejemplo: género: prímula; especie: vulgaris). Este método, que es conocido con el nombre de nomenclatura binominal (del latín «bis», dos, y «nomen», nombre), proporcionó la posibilidad de ordenar sistemáticamente el ingente número de especies vegetales y animales entonces conocidas.

Linneo no tenía deseos de abandonar su tierra natal, donde su talento científico había tenido tan amplia oportunidad de manifestarse, y, a pesar de las invitaciones recibidas, continuó su enseñanza en la Universidad de Upsala.

Hacia el último período de su existencia, Linneo pasaba gran parte del año en su posesión campestre de Hammarby, donde había ordenado una maravillosa colección de plantas y animales.

El brillante sabio sueco falleció en Upsala el 10 de enero de 1778, a los 71 años de edad (había nacido en Rashult, provincia de Smalanó, el 13 de mayo de 1707).

Le fueron tributados honores solemnes. El rey de Suecia dispuso que fuese sepultado en la catedral de Upsala, donde se le erigió un mausoleo. Justo reconocimiento a quien puede ser considerado como el fundador de la moderna botánica.

Fuente Consultada:
Enciclopedia TECNIRAMA De La Ciencia y la Tecnología N°10