Características del Módulo Lunar

El Mayor Telescopio del Mundo Monte Palomar Historia

El Mayor Telescopio del Mundo: Monte Palomar

HISTORIA DE SU CONSTRUCCIÓN Y SUS CARACTERÍSTICAS

Monte Palomar se encuentra situado a 1677 m sobre el nivel del mar, en el condado de San Diego, California, a unos 1000 Km al SE de Monte Wilson, donde se encuentra otro de los mayores observatorios del mundo. Ambos observatorios están regidos en la actualidad por el mismo director, según acuerdo del Instituto Tecnológico de California, en Pasadena, y la Institución Carnegie en Washington.

telescopio monte palomar (ee.uu.)

Situado a 80 Km. de Los Ángeles, en la cima del monte homónimo (vecino de Monte Wilson) nació de una idea de Hale que ambicionaba un telescopio de un tamaño enorme, dos o tres veces mayor que el telescopio Hooker, aunque no fuese seguro que pudiese realizarse un instrumento similar. Se encargó de buscar los fondos para un total que entonces era impresionante: cinco millones de dólares. Finalmente, obtuvo seis millones de dólares de la fundación Rockefeller, sólo un año antes de la gran recesión.

Es fácilmente accesible y está muy alejado de las luces de Pasadena y de Los Angeles; la cúpula brillante y resplandeciente del gigantesco y potente observatorio es visible desde muy lejos.

Durante el día, esta gran cúpula, de 41 m de altura, permanece cerrada. Mas por la noche empieza a girar silenciosamente, se abre una ancha rendija, permitiendo ver un sinnúmero de tubos, portantes y tirantes. Empieza a trabajar el telescopio gigante del Monte Palomar. Con su famoso reflector de 5 metros, permite echar una mirada al espacio que alcanza a ver sistemas de estrellas a una distancia de miles de millones de años luz.

Con este gran telescopio, el mayor del mundo, se podría distinguir una vela encendida a una distancia de 30 000 kilómetros y fotografiarla a 50 000 Km, lo que puede dar una idea exacta del extraordinario alcance de este fabuloso telescopio.

Una de las ciencias más antiguas en el mundo es la astronomía; los egipcios hace más de 4000 años conocían el curso de los planetas, sabían que la Tierra giraba alrededor del Sol, tenían un calendario solar; los mayas también estaban interesados en gran manera por esta ciencia, conocían al igual que los egipcios los planetas y contaban con un calendario casi tan exacto como el nuestro.

Una empresa estadounidense empleó cuatro años para la realización del espejo {de 1931 a 1935), el cual fue transportado con un tren especial hasta Pasadena, donde se procesó ópticamente. El telescopio fue inaugurado en 1948, diez años después de la muerte de Hale, quien no pudo ver terminado su proyecto. Pero el telescopio de 5 m recibió su nombre. Edwin Hubble se hizo cargo de la supervisión científica de las operaciones del telescopio y, con él, midió las distancias de muchas galaxias, haciendo una clasificación de ellas y consiguiendo elaborar un mapa de la distribución de las galaxias del universo cercano.

No es de extrañar que todos los pueblos y en todas las épocas se interesaran por las observaciones siderales ya que es algo que lo tenemos siempre sobre nuestras cabezas; basta alzar la vista al cielo para querer, instantáneamente, horadar con nuestras casi ciegas pupilas, los secretos inconmensurables de los infinitos espacios siderales. Por esta razón la astronomía es una de las ciencias que más constantemente, pero lentamente, ha ido avanzando.

Cada año, gracias a los aparatos más modernos, se hacen descubrimientos más interesantes que van a enriquecer el libro de oro de la Astronomía, en el cual aún quedan por llenar una cantidad infinita de páginas, tan infinita como el cosmos mismo.

El telescopio astronómico es un invento relativamente reciente. Con los primeros telescopios del siglo XVII fue posible descubrir tres satélites de Júpiter e investigar las estrellas del sistema de la Vía Láctea. En el transcurso de los siglos se intentó construir telescopios de lente (refractores) cada vez mayores. Pero no pudo superarse el diámetro de objetivo de 1 m. Las lentes de este tamaño son difíciles de pulir.

Existe además el peligro de que se curven, ya que una vez ante el tubo del telescopio, se han de sostener solamente con su borde. Por ello ya se pensó pronto en aprovechar las facultades amplificadoras del espejo cóncavo. Así surgieron los telescopios de espejo (reflectores). Ya que los espejos no se sostienen por el borde, sino sobre toda su superficie, pudo intentarse el uso de diámetros mayores, construyendo con ello instrumentos cada vez más sensibles a la luz. En los Estados Unidos se fundió en 1901 un reflector de 60 cm.

En 1917 le siguió el primer reflector de 250 cm, el telescopio Hooker del observatorio del Monte Wilson. El director del Observatorio Wilson era en aquel entonces el astrofísico George Ellery Hale (1868-1939), quien se había hecho famoso, entre otras razones, por la demostración de la aparición de campos magnéticos relacionados con las manchas solares. Hale sugirió la construcción de un telescopio reflector de 7,5 m. Mas no se hizo y tuvo que contentarse con un reflector de 5 m. cuya construcción ya fue bastante difícil.

EL TELESCOPIO SCHMIDT: En el observatorio de Monte Palomar también se encuentra otro telescopio muy famoso: el Schmidt, de 1,22 m. Se trata de un telescopio especial, exclusivamente diseñado para la fotografía que, gracias a una configuración óptica particular, permite obtener imágenes de grandes zonas del cielo prácticamente sin defectos ópticos. Con este instrumento, el mayor en su género (instalado también en 1948), se ha realizado un gran adas fotográfico de todo el cielo visible desde Monte Palomar.

La Fundación Rockefeller dispuso para este fin seis millones de dólares. Aún no se tenía ninguna experiencia en la fundición de un espejo tan grande. La General Electric efectuó varias pruebas con cristal de cuarzo, en que se gastaron 639 000 dólares, sin llegar a un resultado satisfactorio. Entonces se interesó la fábrica de vidrio Corning en producir un espejo de Pyrex.

Empezaron con espejos más pequeños, aproximándose poco a poco al tamaño deseado. La primera fundición fracasó, porque el terrible calor de 1350° C inutilizó el molde. Tuvieron éxito en el segundo intento, el 2 de diciembre de 1934. El espejo tuvo que enfriarse durante ocho meses.

Después se llevó el disco de 20 toneladas a Pasadena, donde empezaron los difíciles trabajos para pulirlo. Mientras tanto se construía el observatorio sobre el Monte Palomar. La construcción continuó durante seis años ininterrumpidamente; la segunda guerra mundial interrumpió de momento su construcción; mas al cesar las hostilidades los trabajos continuaron su ritmo.

Trece años después de la fundición, en noviembre de 1947, pudo llevarse el espejo pulido a través de una carretera construida especialmente para este fin y montarlo en el observatorio. Fue inaugurado el día 3 de junio de 1948 y bautizado con el nombre de «Telescopio Hale» en honor del que había sido precursor de este gran telescopio, George Ellery Hale, que por desgracia no pudo verlo acabado.

La cúpula, en su parte inferior, consta de oficinas, cuartos oscuros fotográficos, refrigeradores para materiales fotográficos, biblioteca, cuarto de recreo, comedor para los astrónomos y almacenes. Las paredes de todos estos departamentos están aisladas con aluminio laminado, los cuartos oscuros tienen unidades individuales para acondicionamiento de aire y todos los demás cuartos tienen calefacción regulada por termostatos.

La construcción con doble pared de la sección inferior así como la de la cúpula protege el interior de la misma del calor absorbido por las paredes exteriores durante el día. Las paredes interiores están además aisladas con gruesas secciones de aluminio laminado, que mantienen el telescopio protegido tan cerca como es posible de las temperaturas nocturnas.

Las cortinas que cierran la rendija en la cúpula por la que el telescopio ve, se mantienen cerradas durante el día y se abren al atardecer en preparación de la noche de trabajo. En el segundo piso se encuentran tres piezas de equipo. Una son las bombas de aceite a alta presión y los filtros que envían el fluido a las pilas de aceite que mantienen el peso del telescopio (500 toneladas). Otra es una serie de tableros con controles electrónicos remotos y kilómetros de cables, que van desde los motores hasta las partes movibles del telescopio y cúpula.

No menos importantes son los osciladores de cuarzo que controlan la frecuencia de la corriente eléctrica usada por el «reloj», motor que mueve al telescopio de este a oeste durante la noche para compensar la rotación de la Tierra. El tercer piso tiene una superficie reforzada plana y está directamente bajo el telescopio. El telescopio sigue con toda ligereza los movimientos de las estrellas. Para ponerlo en movimiento basta un motor eléctrico de 60 watios.

En Monte Palomar existen además dos telescopios Schmidt de 45 y 120 cm, la abertura útil de su limbo corrector mide 123,75 cm y su espejo 183 cm de diámetro. El personal residente en este observatorio lo forman un intendente, un electricista en jefe, varios asistentes «de noche» que manejan los telescopios para los astrónomos y ayudantes, mecánicos, trabajadores de construcción y mantenimiento y sirvientes que mantienen la residencia en condiciones y preparan alimentos para todo el personal; las familias de este personal de operación viven en la montaña.

El personal puramente científico está dividido en dos grupos. El primero lo forman los científicos del Departamento de Astrofísica del Instituto Tecnológico de California y el segundo está en las oficinas de los observatorios de Monte Wilson y Palomar, a pocos kilómetros del Instituto.

Los astrónomos viven en Pasadena y van a Palomar solamente por cortos períodos, de dos a diez días, entonces son relevados por otros y regresan a Pasadena.

La pieza de cristal más grande del mundo: La fabricación de lentes y espejos telescópicos, figura entre los trabajos más difíciles de la industria del cristal, por la perfección, homogeneidad y características especiales que debe tener, desde un principio, la masa vitrea que habrá de someterse a las delicadísimas operaciones que harán de ella un instrumento de precisión astronómica.

Hay espejos telescópicos de grandes dimensiones y de varias toneladas de peso; pero la pieza más grande de cristal que existe en el mundo, es el espejo que se fabricó para el telescopio del observatorio de Monte Palomar, en California, Estados Unidos de América. Los detalles de su fabricación constituyen una demostración de lo que pueden la ciencia y la industria cuando se unen para llevar a cabo un proyecto gigantesco.

En 1928 las Fundaciones de Rockefeller y Carnegie aportaron los fondos necesarios para la construcción de un telescopio que tuviera un espejo de cinco metros de diámetro. En los cálculos previos y en las operaciones preliminares, se invirtieron varios años, hasta que el 2 de diciembre de 1934, se terminó la fundición de un bloque de cristal que tenía 510.54 centímetros de diámetro, 66 centímetros de grueso y 20 toneladas de peso.

El cristal es de borosilicato especial, fundido primero en un horno continuo y pasado luego a otro horno que contenía el molde, habiéndose hecho el temple en un horno eléctrico. Las operaciones de fundición y enfriamiento se llevaron a cabo en los años de 1934 y 1935, en las grandes fábricas de vidrio de Corning, en el estado de Nueva York.

El bloque de cristal tiene forma de disco. Su cara superior es lisa y la inferior en forma de parrilla científicamente calculada para eliminar peso y permitir la utilización de soportes múltiples en el interior del bloque, en el plano de centro de gravedad, evitando En 1936 se envió el disco a los talleres ópticos que tiene en Pasadena el Instituto Tecnológico de California, donde se montó en un torno especial para trabajar y pulir su superficie, dándole una curvatura paraboloide que no tuviera un error que excediera de dos millonésimas de pulgada.

Durante once años se trabajó en esa operación que se terminó el 4 de octubre de 1947, y el disco se trasladó al edificio del observatorio astronómico en Monte Palomar, a unos cien kilómetros al norte de San Diego de California, donde la superficie paraboloide se recubrió con una película de aluminio vaporizado que la transformó en un espejo.

Finalmente, el 3 de junio de 1948, después de veinte años de estudios y trabajos, fué inaugurado el telescopio, en cuya parte inferior descansa el gigantesco espejo, apoyado en 36 dispositivos

complicados. La estructura metálica del telescopio tiene más de 20 metros de altura, con un peso de 500 toneladas, y el edificio que lo alberga, construido de acero y concreto, se eleva a una altura equivalente a doce pisos, y está rematado por un domo giratorio de 41 metros de diámetro. En 1949 y 1950 continuaron los trabajos de corrección y afinación de la superficie del espejo y el ajuste y comprobación de los delicados mecanismos que rigen y mueven todas las piezas y dispositivos del colosal telescopio.

La potencia del espejo para penetrar en los espacios estelares es tal, que alcanza hasta una distancia que se mide en mil millones de años luz, o sea el doble de la del telescopio de Monte Wilson que le sigue en importancia. Una idea de esa potencia nos la da el hecho de que, en completa oscuridad, el ojo humano puede distinguir la luz de una vela a unos veinticinco kilómetros de distancia, mientras que un astrónomo, valiéndose del telescopio de Monte Palomar podría distinguirla a 25.000 kilómetros, y si en vez del ojo del astrónomo se adapta al telescopio un aparato fotográfico, la placa fotográfica podría registrar esa misma y débil luz a 65.000 kilómetros de distancia.

Ver Tabla Con Los Más Grande Telescopios del Mundo

IMPORTANTE ACLARACIÓN:
Se aprobó la construcción de un nuevo y gran telescopio
, que será el mas grande del mundo.

Nuevo Telescopio Más Grande del Mundo

El Consejo del Observatorio Europeo Austral (ESO) ha aprobado la construcción del European Extremely Large Telescope (E-ELT), el mayor telescopio del mundo. Tendrá un coste aproximado de 1.000 millones de euros y no entrará en funcionamiento hasta dentro de diez años. Su emplazamiento final estará situado en Cerro Armazones, en el Desierto de Atacama (Chile), a sólo 20 kilómetros de distancia del Very Large Telescope. El E-ELT será un telescopio óptico infrarrojo que tendrá una apertura de 39 metros y permitirá caracterizar exoplanetas con masas similares a la Tierra, estudiar poblaciones estelares en galaxias cercanas y realizar observaciones ultra-sensibles del universo profundo.

MAYOR TELESCOPIO DEL MUNDO EN CHILE

Fuente Consultada:
Las Grandes Maravillas del Mundo Fasciculo N°8

Ecuación de Drake Posibilidades de Vida Extraterrestre

Ecuación de Drake – Posibilidades de Vida Extraterrestre

La detección de vida en otro punto del universo sería el mayor descubrimiento de todos los tiempos. El profesor de física Enrico Fermi se preguntó por qué, teniendo en cuenta la y la vastedad del universo, así como la presencia de miles  millones de estrellas y planetas que han existido durante de millones de años, ninguna civilización alienígena se ha puesto en contacto con nosotros. Esta era su paradoja.

Mientras charlaba con sus colegas a la hora del almuerzo en 1950. Fermi, al parecer, se preguntó: «¿Dónde están?». Nuestra galaxia contiene miles de millones de estrellas y hay miles de millones de galaxias en el universo, así que hay billones de estrellas. Si sólo una pequeña fracción de ellas tuviera planetas, eso suponía un gran número de ellos. Si una parte de esos planetas albergaba vida, debería haber millones de civilizaciones ahí afuera. Así que, ¿por qué no las hemos visto? ¿Por qué no se han puesto en contacto con nosotros?

Así pensaba Carl Sagan, respecto a la vida extraterrestre: ¿hay alguien ahí fuera con quien hablar? ¿Es posible, habiendo una tercera parte o una mitad de un billón de estrellas en nuestra galaxia Vía Láctea, que la nuestra sea la única acompañada por un planeta habitado?.

Es mucho más probable que las civilizaciones técnicas sean una trivialidad, que la galaxia esté pulsando y vibrando con sociedades avanzadas, y por lo tanto que no esté muy lejos la cultura de este tipo más próxima: quizás esté transmitiendo con antenas instaladas en un planeta de una estrella visible a simple vista, en la casa de al lado.

Quizás cuando miramos el cielo nocturno, cerca de uno de esos débiles puntos de luz hay un mundo en el cual alguien muy distinto de nosotros esté contemplando distraídamente una estrella que nosotros llamamos Sol y acariciando, sólo por un momento, una insultante especulación.

Es muy difícil estar seguros. Puede haber impedimentos graves en la evolución de una civilización técnica. Los planetas pueden ser más raros de lo que pensamos. Quizás el origen de la vida no es tan fácil como sugieren nuestros experimentos de laboratorio. Quizás la evolución de formas avanzadas de vida sea improbable. 0 quizás las formas de vida compleja evolucionan fácilmente pero la inteligencia y las sociedades técnicas requieren un conjunto improbable de coincidencias: del mismo modo que la evolución de la especie humana dependió del fallecimiento de los dinosaurios y de la recesión de los bosques en la era glacial; de aquellos árboles sobre los cuales nuestros antepasados se rascaban y se sorprendían vagamente de algo. 0 quizás las civilizaciones nacen de modo repetido e inexorable, en innumerables planetas de la Vía Láctea, pero son en general inestables; de modo que sólo una pequeña fracción consigue sobrevivir a su tecnología y la mayoría sucumben a la codicia y a la ignorancia, a la contaminación y a la guerra nuclear.

Ecuación de Drake: En 1961, Frank Drake trasladó a una ecuación la probabilidad de que una civilización alienígena con la que pudiéramos contactar viva en otro planeta de la Vía Láctea. Se conoce como la ecuación de Drake. Nos dice que existe la posibilidad de que coexistamos con otras civilizaciones, pero la probabilidad es bastante incierta. Carl Sagan sugirió una vez que hasta un millón de civilizaciones alienígenas podrían vivir en la Vía Láctea, pero más adelante rechazó su propia afirmación, y desde entonces otros científicos han considerado que esa cifra se reducía a una civilización, concretamente, la humana.

 número de estrellas en la galaxia Vía Láctea; fracción de estrellas que tienen sistemas planetariosnúmero de planetas en un sistema dado que son ecológicamente adecuados para la vida,fracción de planetas adecuados de por sí en los que la vida nace realmente,fracción de planetas habitados en los que una forma inteligente de vida evoluciona,fracción de planetas habitados por seres inteligentes en los que se desarrolla una civilización técnica comunicativa;fracción de una vida planetaria agraciada con una civilización técnica.=N

FORMULA DE DRAKE: Es posible continuar explorando este gran tema y hacer una estimación basta de N, el número de civilizaciones técnicas avanzadas en la Galaxia. Definimos una civilización avanzada como una civilización capaz de tener radioastronomía. Se trata desde luego de una definición de campanario, aunque esencial. Puede haber innumerables mundos en los que los habitantes sean perfectos lingüistas o magníficos poetas pero radioastrónomos indiferentes. No oiremos nada de ellos. N puede escribirse como el producto o multiplicación de unos cuantos factores, cada uno de los cuales es un filtro y, por otro lado, cada uno ha de tener un cierto tamaño para que haya un número grande de civilizaciones:


Nt, número de estrellas en la galaxia Vía Láctea;
fp, fracción de estrellas que tienen sistemas planetarios,
ne, número de planetas en un sistema dado que son ecológicamente adecuados para la vida,
fj, fracción de planetas adecuados de por sí en los que la vida nace realmente,
f¡, fracción de planetas habitados en los que una forma inteligente de vida evoluciona,
fc, fracción de planetas habitados por seres inteligentes en los que se desarrolla una civilización técnica comunicativa; y
fL, fracción de una vida planetaria agraciada con una civilización técnic
a.

Esta ecuación escrita se lee N = N*. fp . ne . f1 . fi . fc . fL Todas las efes son fracciones que tienen valores entre 0 y 1; e irán reduciendo el valor elevado de N0.

Para derivar N hemos de estimar cada una de estas cantidades. Conocemos bastantes cosas sobre los primeros factores de la ecuación, el número de estrellas y de sistemas planetarios. Sabemos muy poco sobre los factores posteriores relativos a la evolución de la inteligencia o a la duración de la vida de las sociedades técnicas. En estos casos nuestras estimaciones serán poco más que suposiciones. Os invito, si estáis en desacuerdo con las estimaciones que doy, a proponer vuestras propias cifras y ver cómo afectan al número de civilizaciones avanzadas de la Galaxia. Una de las grandes virtudes de esta ecuación, debida originalmente a Frank Drake, de Cornell, es que incluye temas que van desde la astronomía estelar y planetario hasta la química orgánica, la biología evolutiva, la historia, la política y la psicología anormal. La ecuación de Drake abarca por sí sola gran parte del Cosmos.

Conocemos N*, el número de estrellas en la galaxia Vía Láctea, bastante bien, por recuentos cuidadosos de estrellas en regiones del cielo, pequeñas pero representativas. Es de unos cuantos centenares de miles de millones; algunas estimaciones recientes lo sitúan en 4 x 1011. Muy pocas de estas estrellas son del tipo de gran masa y corta vida que despilfarran sus reservas de combustible nuclear. La gran mayoría tienen vidas de miles de millones de años o más durante los cuales brillan de modo estable proporcionando una fuente de energía adecuada para el origen y evolución de la vida de planetas cercanos.

Hay pruebas de que los planetas son un acompañamiento frecuente de la formación de estrellas. Tenemos los sistemas de satélites de Júpiter, Saturno y Urano, que son como sistemas solares en miniatura; las teorías del origen de los planetas; los estudios de estrellas dobles; las observaciones de los discos de acreción alrededor de estrellas, y algunas investigaciones preliminares de las perturbaciones gravitatorias de estrellas cercanas. Muchas estrellas, quizás la mayoría, pueden tener planetas.

Consideramos que la fracción de estrellas que tienen planetas, es aproximadamente de 1/3. Entonces el número total de sistemas planetarios en la galaxia sería N. fp = 1,3 x 1011 (el símbolo = significa aproximadamente igual a ). Si cada sistema tuviera diez planetas, como el nuestro, el número total de mundos en la Galaxia sería de más de un billón, un vasto escenario para el drama cósmico.

En nuestro propio sistema solar hay varios cuerpos que pueden ser adecuados para algún tipo de vida: la Tierra seguro, y quizás Marte, Titán y Júpiter. Una vez la vida nace, tiende a ser muy adaptable y tenaz. Tiene que haber muchos ambientes diferentes adecuados para la vida en un sistema planetario dado. Pero escojamos de modo conservador ne = 2. Entonces el número de planetas en la Galaxia adecuados para la vida resulta
N. fp
ne = 3 x 1011.

Los experimentos demuestran que la base molecular de la vida, los bloques constructivos de moléculas capaces de hacer copias de sí mismas, se constituye de modo fácil en las condiciones cósmicas más corrientes. Ahora pisamos un terreno menos seguro; puede haber por ejemplo impedimentos en la evolución del código genético, aunque yo creo que esto es improbable después de miles de millones de años de química primigenio.

Escogemos f1=1/3, implicando con esto que el número total de planetas en la Vía Láctea en los cuales la vida ha hecho su aparición por lo menos una vez es N* fp ne f1 = 1 x 1011, un centenar de miles de millones de mundos habitados. Esta conclusión es de por sí notable. Pero todavía no hemos acabado.

La elección de fi y de fc es más difícil. Por una parte tuvieron que darse muchos pasos individualmente improbables en la evolución biológica y en la historia humana para que se desarrollara nuestra inteligencia y tecnología actuales. Por otra parte tiene que haber muchos caminos muy diferentes que desemboquen en una civilización avanzada de capacidades específicas.

Tengamos en cuenta la dificultad aparente que para la evolución de grandes organismos supone la explosión del cámbrico, y escojamosfi x fc = 1/100; es decir que sólo un uno por ciento de los planetas en los cuales nace la vida llegan a producir una civilización técnica.

Esta estimación representa un punto medio entre opiniones científicas opuestas. Algunos piensan que el proceso equivalente al que va de la emergencia de los trilobites a la domesticación del fuego se da de modo fulminante en todos los sistemas planetarios; otros piensan que aunque se disponga de diez o de quince mil millones de años, la evolución de civilizaciones técnicas es improbable.

Se trata de un tema que no permite muchos experimentos mientras nuestras investigaciones estén limitadas a un único planeta. Multiplicando todos estos factores obtenemos: N* fp ne f1 fi fc = 1 X 109, mil millones de planetas donde han aparecido por lo menos una vez civilizaciones técnicas. Pero esto es muy distinto a afirmar que hay mil millones de planetas en los que ahora existe una civilización técnica. Para ello tenemos que estimar también fL.

¿Qué porcentaje de la vida de un planeta está marcado por una civilización técnica? La Tierra ha albergado una civilización técnica caracterizada por la radioastronomía desde hace sólo unas décadas, y su vida total es de unos cuantos miles de millones de años. Por lo tanto, si nos limitamos a nuestro planeta fL es por ahora inferior a 1/108, una millonésima de uno por ciento. No está excluido en absoluto que nos destruyamos mañana mismo. Supongamos que éste fuera un caso típico, y la destrucción tan completa que ninguna civilización técnica más o de la especie humana o de otra especie cualquiera fuera capaz de emerger en los cinco mil millones de años más o menos que quedan antes de que el Sol muera.

Entonces N = N* fp ne f1 fi fc fL = 10 y en cualquier momento dado sólo habría una reducida cantidad, un puñado, una miseria de civilizaciones técnicas en la Galaxia, y su número se mantendría continuamente a medida que las sociedades emergentes sustituirían a las que acababan de autoinmolarse. El número N podría incluso ser de sólo 1.

Si las civilizaciones tienden a destruirse poco después de alcanzar la fase tecnológica, quizás no haya nadie con quien podamos hablar aparte de nosotros mismos, y esto no lo hacemos de modo muy brillante. Las civilizaciones tardarían en nacer miles de millones de años de tortuosa evolución, y luego se volatilizarían en un instante de imperdonable negligencia.

Pero consideremos la alternativa, la perspectiva de que por lo menos algunas civilizaciones aprendan a vivir con una alta tecnología; que las contradicciones planteadas por los caprichos de la pasada evolución cerebral se resuelvan de modo consciente y no conduzcan a la autodestrucción; o que, aunque se produzcan perturbaciones importantes, queden invertidas en los miles de millones de años siguientes de evolución biológica. Estas sociedades podrían vivir hasta alcanzar una próspera vejez, con unas vidas que se medirían quizás en escalas temporales evolutivas de tipo geológico o estelar.

Si el uno por ciento de las civilizaciones pueden sobrevivir a su adolescencia tecnológica, escoger la ramificación adecuada en este punto histórico crítico y conseguir la madurez, entonces fL = 1 / 100, N= 107, y el número de civilizaciones existentes en la Galaxia es de millones. Por lo tanto, si bien nos preocupa la posible falta de confianza en la estimación de los primeros factores de la ecuación de Drake, que dependen de la astronomía, la química orgánica y la biología evolutiva, la principal incertidumbre afecta a la economía y la política y lo que en la Tierra denominamos naturaleza humana. Parece bastante claro que si la autodestrucción no es el destino predominante de las civilizaciones galácticas, el cielo está vibrando suavemente con mensajes de las estrellas.

Estas estimaciones son excitantes. Sugieren que la recepción de un mensaje del espacio es, incluso sin descifrarlo, un signo profundamente esperanzador. Significa que alguien ha aprendido a vivir con la alta tecnología; que es posible sobrevivir a la adolescencia tecnológica. Esta razón, con toda independencia del contenido del mensaje, proporciona por sí sólo una poderosa justificación para la búsqueda de otras civilizaciones.


Si hay millones de civilizaciones distribuidas de modo más o menos casual a través de la Galaxia, la distancia a la más próxima es de unos doscientos años luz. Incluso a la velocidad de la luz un mensaje de radio tardaría dos siglos en llegar desde allí. Si hubiésemos iniciado nosotros el diálogo, sería como si Johannes Kepler hubiese preguntado algo y nosotros recibiéramos ahora la respuesta.

Es más lógico que escuchemos en lugar de enviar mensajes, sobre todo porque, al ser novicios en radioastronomía, tenemos que estar relativamente atrasados y la civilización transmisora avanzada. Como es lógico, si una civilización estuviera más avanzada, las posiciones se invertirían.

Más de medio siglo después de que Fermi planteara su pregunta, todavía no hemos oído nada. A pesar de nuestros sistemas de comunicación, nadie ha llamado. Cuanto más exploramos nuestro vecindario local, más solitario parece. Ni en la Luna, ni en Marte, ni en asteroides ni en los planetas del sistema solar exterior se ha encontrado rastro alguno de signos concretos de vida, ni siquiera de la bacteria más simple. Tampoco hay signos de interferencia en la luz de las estrellas que pudieran indicar máquinas gigantes orbitando a su alrededor y cosechando energía de ellas. Y no es porque no haya mirado nadie. Dado lo que está en juego, se presta mucha atención a la búsqueda de inteligencia extraterrestre.

Búsqueda de vida ¿Cómo saldríamos a buscar signos de vida? La primera manera es buscar microbios en nuestro sistema solar. Los científicos han escudriñado las rocas de la Luna, pero son basalto inanimado. Se ha sugerido que los meteoritos de Marte podrían contener vestigios de bacterias, pero todavía no se ha probado que las burbujas ovoides de esas rocas hayan albergado vida alienígena o no se hubieran contaminado después de haber caído a la Tierra, o bien que se hayan producido por procesos naturales.

Las cámaras de naves y sondas han recorrido las superficies de Marte, de asteroides y ahora incluso de una luna del sistema solar exterior (Titán, que órbita Saturno). Pero la superficie de Marte está seca, y la de Titán está empapada de metano líquido y, por ahora, desprovista de vida. Europa, una luna de Júpiter, puede albergar mares de agua líquida debajo de su superficie congelada. Por tanto, el agua líquida tal vez no sea un artículo extraño en el sistema solar exterior, lo que aviva las esperanzas de que pueda encontrarse vida algún día.

Sin embargo, los microbios no van a venir a llamar a nuestra puerta. ¿Y qué hay de los animales o plantas más sofisticados? Ahora que se están detectando planetas alrededor de estrellas lejanas, los astrónomos planean diseccionar la luz que proviene de ellos en busca de algún vestigio de vida.

Fuente Consultada: COSMOS Carl Sagan

Medida de La Via Lactea Cantidad de Estrellas en la Galaxia

Medida de La Via Láctea y Descripción
Cantidad de Estrellas en la Galaxia

LA VÍA LÁCTEA: Los astrónomos saben ahora que el conjunto de estrellas que vemos durante la noche es parte de un gigantesco sistema. La forma de este sistema estelar se parece bastante a la de dos platos encarados con sus bordes en contacto y una especie de abultamiento en su parte central.

El sistema solar no está ni mucho menos cerca del centro de este sistema estelar, sino a unos dos tercios de él. Las estrellas aparecen concentradas con mayor densidad en la parte central y en la porción plana situada entre los dos bordes de los “platos”, esto es, en el plano central. Podemos darnos cuenta de esto al observar el cielo en una noche clara: una tenue banda luminosa atraviesa el cielo de un extremo al otro.

Los hombres primitivos ya se dieron cuenta de la presencia de esta banda luminosa muchas leyendas tuvieron su origen en ella, conociéndose con el nombre de Vía Láctea. Tras la invención del telescopio, los astrónomos observaron que está constituida por gran número de estrellas individuales, y ahora sabemos que tal conjunto de estrellas representa el plano central de nuestra Galaxia.

Aunque el sistema solar esté situado cerca del borde de este. sistema estelar, la Vía Láctea se ve atravesando todo el, cielo eh forma de una batida rectilínea, tanto al norte como al sin del ecuador, lo cual indica que el sistema solar se encuentra el el plano central de la Galaxia, de modo que de cualquier lado que nos volvamos podemos observar esta densa reunión. de estrellas.

Cuando miramos hacia el cielo en una dirección distinta a la de la Vía Láctea, vemos que las estrellas no están ya tan agrupadas; por el contrario, aparecen muy repartidas por el firmamento. Esto es debido a que entonces miramos hacia fuera del plano central y a través de la parte menos densa de la Galaxia. En efecto, la Vía Láctea nos señala en el espacio la dirección del plano central del sistema de estrellas del cual el Sol es un miembro más.

Nuestra Galaxia es inmensa en comparación con la magnitud de las distancias estelares antes mencionadas. Desde la «parte superior a la inferior” —esto es, a lo largo del diámetro menor de su abultamiento central— tiene un espesor de 20.000 años-luz. Y desde un borde al otro la distancia es de 100.000 años-luz.

DESCRIPCIÓN DE LA VÍA LÁCTEA: DIMENSIONES, CANTIDAD DE ESTRELLAS Y CARACTERÍSTICAS

La mitología griega dice que la diosa Hera, esposa de Zeus, se negaba a amamantar al pequeño Hércules pues había sido fruto de una aventura. En una ocasión lo acercaron a su pecho mientras dormía, pero Hera despertó, lo retiró suavemente de su pezón y la leche se derramó por los cielos, dando forma a las brillantes constelaciones que admiramos en la noche.

Estos valores no incluyen, sin embargo, la distancia a ciertas estrellas que se encuentran por encima y por debajo de ‘la propia Galaxia. Algunas de estas estrellas están solas, pero la mayoría de ellas constituyen grandes cúmulos estelares. Estos cúmulos (denominados cúmulos globulares) forman una especie de halo alrededor de la Galaxia. Cada cúmulo lo forman millares y, a veces, decenas de millares de estrellas agrupadas en forma de esfera o de globo. El más cercano de ellos se encuentra a unos 20.000 años-luz del sistema solar.

Nuestra Galaxia, por lo tanto, está constituida por un conjunto de estrellas, la mayor parte de las cuales se encuentra en el plano o en el abultamiento centrales, junto con mi halo de estrellas individuales y de cúmulos globulares. En nuestro siglo los astrónomos han demostrado que la Galaxia contiene además una considerable cantidad de gas y de polvo.

Observado a través del telescopio, parte de este gas y polvo presenta el aspecto de grandes nubes luminosas nebulosas, de la palabra latina que significa nube. La más famosa de das estas nebulosas es la gran nube gaseosa de la constelación de Orión. A simple vista aparece como un puntito luminoso en medio de las tres estrellas que representan la espada de Orión. Pero aun a través de un pequeño telescopio se convierte en un objeto interesante para la observación.

Las estrellas del cúmulo abierto, denominado las Pléyades, están rodeadas de polvo iluminado por las mismas. Si barremos el cielo con un telescopio, descubriremos muchas más nebulosas que las que se aprecian a simple vista.

La propia Vía Láctea contiene gran número de ellas. Por ejemplo, nebulosas del tipo de las que presenta la Vía Láctea al cruzar Sagitario cubren regiones que miden centenares de años-luz, y muchas contienen brillantes estrellas sumergidas en su seno.

«La Vía Láctea es parte de un barrio cósmico más grande –un grupo de más de 35 galaxias conocido como el Grupo Local. Estas galaxias se mueven por el espacio como una sola unidad, unidas por su mutua atracción gravitatoria. El número de galaxias que pertenecen al Grupo Local es incierto, debido a que los astrónomos siguen encontrando nuevos residentes de este barrio galáctico. Por ejemplo, una de las galaxias del Grupo Local fue descubierta en 1997, a unos tres millones de años luz de la Tierra. Esta nueva galaxia es diminuta: sólo contiene un millón de estrellas aproximadamente, comparado con los cientos de miles de millones de la Vía Láctea.»

En muchas nebulosas gaseosas aparecen surcos y regiones oscuras. La Vía Láctea también presenta surcos entre las estrellas, como si existieran huecos en el fondo estrellado. Las regiones oscuras en la Vía Láctea, así como en las nebulosas gaseosas brillantes, son debidas a gas no luminoso y a polvo. Como veremos más adelante, los astrónomos pueden distinguir el gas carente de luz del polvo cósmico, pero aquí consideramos sólo el hecho de que ambos oscurecen la luz procedente de las estrellas y nebulosas brillantes situadas más allá de los mismos. Este efecto de cobertura en la Vía Láctea nos impide observar lo que debe ser una visión grandiosa.

Debido al gran número de nebulosas situadas entre nosotros y el centro de la Galaxia, no podemos ver el brillante y compacto conjunto estelar que constituye el núcleo de la Galaxia. Nuestros telescopios registran únicamente aquellas estrellas que están situadas de este lado de la densa parte central.

A pesar del problema inherente a la presencia del polvo y del gas oscuro, se ha descubierto que la totalidad de nuestra Galaxia experimenta un movimiento de rotación. El Sol  que es una estrella bastante común, toma parte en esta rotación cósmica, arrastrando consigo a la Tierra a los demás planetas. Como otras estrellas cercanas, el Sol se mueve a través del espacio a razón de 240 Km./seg, velocidad que permitiría dar la vuelta a la Tierra en poco más de dos minutos y medio. Aun así, la Galaxia es tan enorme, que el Sol tarda tarda 225  millones de años en completar una revolución. Este inmenso período de tiempo, denominado ano cósmico, cae fuera de nuestro significado al considerar que hace dos años cósmicos la vida en la Tierra estaba en sus albores, y hace menos de media centésima de año cósmico que apareció el hombre.

Todas las estrellas de la Galaxia intervienen en la rotación cósmica, aunque sus velocidades varían. Las situadas más hacia el centro de la Galaxia generalmente se mueven con mayor rapidez que las que se encuentran cerca del borde, Este movimiento alrededor de la Galaxia constituye el principal desplazamiento de las estrellas, pero cada una precedía a su vez pequeños movimientos locales. Dicho de otro-modo, las estrellas no se mueven alrededor del centro de la Galaxia como si se tratara de una masa sólida. Es más bien como si un grupo de personas se dirigiera a tomar el Metro durante las horas punta; aunque todas van en la misma dirección general, la trayectoria de cada individuo está constituida por muchos movimientos distintos, hacia la izquierda y hacia la derecha, a medida que evita el tráfico o a los demás peatones. Lo mismo sucede con las estrellas de nuestra Galaxia: la dirección general es la de giro alrededor del denso núcleo central.

Fuente Consultada:  Secretos del Cosmos Tomo 2 (Salvat)

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

EL Tamaño del Universo Distancias del Sistema Solar

EL Tamaño del Universo
Distancias del Sistema Solar Planetas

Si se pudiera reducir el globo terráqueo al tamaño de una manzana, el hombre mediría en proporción una cienmilésima parte de milímetro. Ante él cualquier ínfimo bacilo o bacteria alcanzaría dimensiones verdaderamente monstruosas. Por otra parte, como el Sol es una esfera de materia incandescente, que supera en ciento nueve veces el diámetro de la Tierra, si mantuviéramos las proporciones anteriores este Sol estaría representado por un globo de nueve metros de diámetro, situado a casi 1 Km. del planeta que, con el tamaño de una manzana, significaría la Tierra. Pero en los límites de la familia solar, Plutón, el último y más distante de los planetas, figuraría como una bola de billar a 40 kilómetros del citado Sol de! ejemplo.

Ahora bien; sobre la bóveda infinita del espacio brillan las estrellas, enormes masas globulares de gases ardientes. La más próxima, denominada Alfa del Centauro, es otro sol similar al que nos ilumina, con casi su mismo peso y dimensiones. Al igual que todas las estrellas. Alfa del Centauro no permanece inmóvil. Surca el firmamento a una velocidad de 22 kilómetros por segundo, y debido a la enorme distancia que nos encontramos de ella, solamente a lo largo de siglos se apreciaría un movimiento casi imperceptible, puesto que dista de nosotros ¡42 billones de kilómetros!

Si se aplicara a esta distancia la misma proporcionalidad que se empleó al equiparar la Tierra con una manzana y se viera dónde habría que situar la estrella vecina, como se hizo con la distancia del Sol y Plutón, saltaría a la vista la imposibilidad de concretar el objetivo, ya que se necesitaría para esta escala un mapa de unos 260.000 kilómetros de amplitud, es decir, casi las dos terceras partes de nuestra distancia al satélite de la Tierra. Se puede comprobar, de este modo, que la proporción entre la estatura de un ser humano y su distancia a la estrella más cercana es igual a la que existe entre un organismo ultramicroscópico y 260.000 kilómetros.

Un poco más distante, otra brillante estrella de azul tonalidad atrae nuestra atención. Se trata de Sirio, notable por su magnitud en el espacio y por una estrellita que la acompaña y que constituyen con aquélla un sistema físico similar al que forman los planetas del sistema solar El diámetro de Sirio es 1,8 veces el del astro mayor, lo que no significa mucho; sin embargo, situado en el lugar de éste proporcionaría 40 veces más luz y calor del que actualmente suministra.

El misterio revelado
Con respecto a la diminuta estrella que gira en torno de Sirio corresponde aclarar someramente su singular historia. Poco luminosa y lejana, fue ignorada durante siglos por los estudiosos, quienes por razones de tipo especulativo intuían su existencia. Intentaremos explicarlo: la altura del Sol sobre ei horizonte varía con la hora del día; del mismo modo, respecto del movimiento de las estrellas se puede establecer exactamente la hora correspondiente a un momento determinado.

Debido a su gran luminosidad Sirio era utilizada por los astrónomos como estrella horaria. Pero en el firmamento ésta resultaba un astro poco puntual, que se retrasaba o adelantaba temporalmente. Observaciones posteriores permitieron constatar que la estrella describía en el firmamento una levísima órbita elíptica. Sin duda alguna, un astro perturbador, aún invisible, era el causante, con la atracción de su masa, del titubeante comportamiento de Sirio. Apelando a la ley de la gravitación universal se admitió la existencia de un nuevo astro, cuya órbita y posición fueron determinadas en 1850 por el astrónomo alemán Frederick Peters.

En 1862, mediante el uso de un anteojo, a la sazón recién fabricado, se lo descubrió inesperadamente y comenzó a plantearse un nuevo interrogante referido a la especial naturaleza de la materia que lo compone.

La incógnita fue revelada en 1924, cuando el astrónomo estadounidense Walter Adams, empleando el interferómetro de Michelson, logró la doble comprobación del efecto Einstein, y la confirmación de la extraordinaria densidad (23.000 veces más que la del platino) de la diminuta estrella. El «misterio» de la substancia radicaba en lo siguiente: en tamaño, el satélite de Sirio es sólo tres veces más grande que la Tierra, pero su masa es casi igual a la del Sol.

A fin de que toda esta materia pueda caber en tan escaso volumen hay que someterla a una intensa presión, comprimirla enormemente. Los átomos, elementos que componen toda materia, tienen un límite de resistencia mecánica, tras lo cual son deshechos en un confuso montón de núcleos y electrones que invaden y desbordan los espacios interatómicos. Roto el equilibrio interno del átomo, los espacios vacíos son cubiertos por los componentes de otros átomos triturados.

Así, el espacio ocupado disminuye y por lo tanto la densidad media (relación entre volumen y masa) se acrecienta. Era éste, pues, el íntimo secreto que guardaba en su seno la estrella más brillante del cielo.

La «fuga» del universo
Se se miden las velocidades de esos universos-islas se llega a la conclusión de que parecen alejarse entre sí, acrecentando su velocidad a medida que se van distanciando. Esta fuga desordenada no afecta las dimensiones propias de las galaxias, que, alejándose, siguen conservando su tamaño.

Habida cuenta de esto, y calculando el tiempo necesario para que todas esas islas estelares volvieran a juntarse marchando a idéntica velocidad, pero inversamente, se necesitarían unos 13.000 millones de años para volver a reunirse en un conjunto de estrellas distribuidas en un solo universo de manera uniforme.

Si a partir de este conjunto único de densidad estelar se han condensado en grupos de estrellas de modo similar a como suponemos que el gas primitivo se fue condensando en estrellas, sigue aún en pie uno de los tantos interrogantes que se plantea la astronomía, para cuya respuesta el hombre acude con su ciencia al más allá.

Con el misterio de la creación ha quedado atrás en el tiempo y sumida en las sombras del espacio, a 1.500millones de años de luz, una imperceptible manchita nebulosa: es nuestro universo. Confundido entre corpúsculos titilantes hay un sol que nos es familiar, y como un punto minúsculo, donde el hombre lucha por penetrar en el misterio de lo infinito, está la Tierra, nuestro planeta.

La mediciones indicadas mas abajo van variando según se logran técnicas
e instrumentos mas precisos para su medición

Magnitud
Visual
Distancia
Años-Luz
Diámetro
Años-Luz
Vía Láctea97.800
Nube de Magallanes (mayor)0,9156.48032.600
Nube de Magallanes (menor)2,5182.56026.080
Sistema de la Osa Menor228.2003.260
Sistema del Escultor8,0270.5807.170
Sistema del Dragón326.0004.560
Fornax8,3619.400 21.520
Sistema del León II12,04749.8005.220
Sistema del León I12,0912.8004.890
NGC 68228,91.500.0008.800
NGC 1479,731.858.0008.780
NGC 1859,431.858.0007.500
NGC 2058,172.217.00016.300
NGC 221 (M 32)8,162.217.0007.820
IC 16139,612.217.00015.300
Andrómeda (M 31)3,472.217.000130.400
NGC 538 (M 33)5,792.347.20055.420
Maffei I11,0

3.260.000

 

EstrellaConstelacionesMagnitud
Aparente
Distancia
Año-Luz
Sirio +
Canope +
Rigil Kent
Arturo
Vega
Rigel +
La Cabra +
Proción
Achernar
Hadar +
Altair.
Aldebarán +
Acrux +
Betelgeuse + + +
Antares +
La Espiga +
Pólux
Fomalhaut
Deneb
Mimosa
Régulo +
Adhara +
Bellátrix
Shaula
Alnath
Alfa del Can Mayor
Alfa de Argos (Carina) .
Alfa del Centauro
Alfa del Boyero
Alfa de la Lira
Beta de Orión
Alfa del Cochero (Auriga)
Alfa del Can Menor
Alfa de Erídano
Beta del Centauro
Alfa del Águila
Alfa del Toro
Alfa de la Cruz del Sur
Alfa de Orión
Alfa del Escorpión
Alfa de la Virgen
Beta de los Gemelos
Alfa del Pez Austral
Alfa del Cisne
Beta de la Cruz del Sur
Alfa del León
Epsilón del Can Mayor
Gamma de Orion
Lamda del Escorpión
Beta del Toro
-1,47
-0,71
-0,27
-0,06
0,03
0,08
0,09
0,34
0,49
0,61
0,75
0,78
0,80
0,85
0,92
0,98
1.15
1.16
1,26
1,28
1,33
1,42
1,61
1,61
1,64
8.7
300
4
36
26
850
45
11
75
300
16
65
270
650
400
220
35
23
.500
370
85
620
450
300
270
(+):Estrella Doble  (+++): Estrella Variable

Fuente Consultada: Mundorama Geografía General Tomo I

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

El Vuelo de Gordon Cooper Faith 7 Viajes de la Exploración Espacial

El Vuelo de Gordon Cooper

Historia de la Exploración Espacial El Vuelo de Gordon Cooper Faith 7

El vuelo espacial de la “Faith 7”, además de ser el primero de importancia (en relación con los efectuados por los soviéticos), resultó de suma trascendencia ya que dio respuesta a distintos interrogantes.

Asimismo, su tripulante, Gordon Cooper, fue él primer astronauta que debió prescindir para el reingreso a la atmósfera y descenso en la Tierra del sistema automático maniobrado desde el centro espacial, resolviendo un problema estimado en ese entonces de la mayor gravedad.

Cooper estaba llamado a realizar luego proezas relevantes en el programa Géminis (junto a Conrad completó 120 órbitas), .pero fue, sin duda, en aquellos días de mayo de 1963. cuando resultó de una utilidad mayor para los técnicos y científicos de la NASA. Por otra parte, develó un enigma que se mantenía desde el vuelo de Johh Glenn: la presencia de partículas luminosas que, a manera de luciérnagas, seguían o aparecían cerca de las cápsulas espaciales.

Cooper demostró que no se trataba de partículas congeladas que se desprendían del vehículo —como se supuso en un primer momento— Sino que provenían de los pequeños motores de reacción de la cabina

Por todas estas circunstancias, trataremos de revivir los momentos vividos a bordo de la “Faith 7”, cuyas 22 orbitas indicaron que las diferencias se estaban acortando en relación con la URSS, no obstante que en ese mismo año, 1963, la astronáutica soviética seguiría sorprendiendo al mundo  con nuevos éxitos.

UN INSTANTE DRAMÁTICO: El lanzamiento se cumplió sin inconvenientes el 15 de mayo, en las condiciones Casi cosmonauta dentro de la cápsulade rutina en el centro espacial norteamericano. Lo que distó de ser “rutina” fueron las cosas que le ocurrieron al cosmonauta dentro de la cápsula. (imagen )

El primer problema se produjo en las instalaciones de eliminación de vapor de agua que se condensaba en el interior de su pesado traje de vuelo.

Tuvo que accionar durante más tiempo que el previsto una bomba especial pero, aún así, el agua se acumuló en la escafandra, molestándolo bastante. A pesar de este inconveniente, realizó otro de los objetivos previstos lanzando un satélite: una pequeña esfera luminosa que tomó una órbita muy cercana a la de la astronave.

En la cuarta órbita, preocupado en la atención de otros aspectos de su misión, Cooper observó de pronto un resplandor atravesando la noche, Esto le causó un breve sobresalto hasta que comprobó que, simplemente, se trataba de dicho satélite.

Por un momento, supuso que se trataba de un cohete que pudiera haber sido disparado desde Tierra y no precisamente desde territorio norteamericano. Posteriormente estudió el misterio de las “luciérnagas” logrando establecer su procedencia.

Luego se dedicó a dormir. Sus periodos de sueño no superaron una hora, aunque posteriormente declaró que no recordaba nada de sus “siestas” en el espacio.

Al despertaste se sintió un poco confuso, y por un momento no supo si se hallaba en un vuelo simulado; en la punta del cohete Atlas aguardando el momento de la partida o en su propia casa. Esta confusión fue la causa de que en tierra se le registrase una aceleración del pulso y una mayor presión sanguínea.

Durante las 34 horas 20 minutos que estuvo volando a alturas oscilantes entre los 161 (perigeo) y 272 kilómetros (apogeo) tuvo perfecta visibilidad y reconoció sin mayor esfuerzo los distintos accidentes geográficos que abarcaba su campo visual.

LA FALSA SEÑAL:

En la órbita 18, a 28 horas 59 minutos desde el momento del lanzamiento, una falla eléctrica dejó a oscuras la cabina. Cooper debió apelar a todas sus reservas para mantener la serenidad y solucionar el desperfecto. Cuando volvió la luz, advirtió que se habla encendido espontáneamente la “05G”. Esta solo debía encenderse cuando la nave espacial registrara el primer indicio de gravitación, o sea una vigésima parte de la gravedad terrestre. En consecuencia, de ser cierto lo que estaba viendo el astronauta, su nave habla comenzado a descender (lo cual era falso).

El mismo Cooper relatara la tremenda experiencia: «Al principio pensé que simplemente no le haria caso, pero luego decidí que eso no me convenía, pues el problema no se resolverla solo.” Al confirmársele que no estaba reingresando a la atmósfera terrestre, demostración de que el sistema, automático no funcionaba bien, realizó algunas pruebas. Así llegó a la conclusión de que dicho sistema, más que dañado, en realidad había dejado de funcionar. Asimismo, al fallas  del dispositivo eléctrico que dejó a oscuras la cabina, todos los controles automáticos quedaron eliminados (“Entonces decidí que reingresaría prescindiendo de todo lo que no fuera el instrumental manual”).

Tomar este tipo de decisiones “allá abajo”, en nuestro mundo, puede revelar un mayor o menor  grado de rapidez mental. Pero hacerlo a más de 200 kilómetros de altura sin saber si el vehiculo en el que se viaja está  o no cayendo o puede precipitase, convertido en una tea, en cualquier momento resulta sin duda una experiencia estremecedora.»

Y quien la pasa, revela un temple mucho más allá de lo común, casi sobrehumano. Lo importante es que la decisión confirmó algo que estaba previsto, pero no demostrado:hasta que punto el entrenamiento puede convertir a un hombre en un ser capacitado para las anís fantásticas empresas.

Cooper se mantuvo sereno. En Tierra no se registró una sola pulsación que demostrara temor frente al riesgo. Tranquilamente cumplió la órbita 22 estipulada y, de inmediato, anunció que descendería. Manualmente disparó los retrocohetes. La cana del cono apuntó hacia la superficie del planeta. Y allá fue.. (“La multiplicación de la fuerza de la gravedad al reingresar no presentó ningún problema. La oscilación no fue objetable. La maniobra resultó lo más fácil del mundo. … en verdad, más fácil de lo que  esperaba. Al soltar el paracaídas de estabilización, este se abrió con un traqueteo, un rugido y un golpe sordo…»)-

UN BARCO TRASTORNADO

Descendió muy cerca del portaaviones “Kearsarge”. En las partes altas de la nave, la marinería le saludaba agitando sus gorras “(Yo suponía, mejor aún, estaba seguro de que el barco se trastornaría”). Se sintió muy bien al comienzo, pero mientras le tomaban la presión sanguínea experimentó un ligero vahido.  Le tomaron de los brazos para que no cayese, y enseguida volvió a sentirse bien, Luego bebió varios litros de liquido (“Estaba completamente deshidratado y con una sed increíble»).

Más tarde fueron los agasajos, los honores, la familia, El astronauta que había estado más cerca de la muerte; el que abrió los caminos para la gloria de otros de sus camaradas, volvió a vivir. Una trampa del destino quedó atrás.

En la dimensión fantástica de la “era espacial”, una coincidencia sellé los avances prodigiosos de poco más de una década. Cooper cumplió su vuelo casi exactamente a 36 años del día en que Charles Lindbergh, en su “Sprit of Saint Louis” saltaba sobre el océano en vuelo sin etapas para unir Nueva York con Paris. ‘El Águila Solitaria”, en 33 horas 29 minutos, volando a lo largo de 5800 kilómetros, abrió un camino en una fecha en la que Cooper tenía dos meses de edad. El intrépido de la “Faith 7”, en sus 22 órbitas, habla cubierto 960.000 kilómetros, los suficientes, para ir y volver a la Luna, Y todo ello en una hora más que el asombroso piloto de aviones correo que estremeció al mundo con su hazaña.

John Glenn Primer Americano en Orbitar Terrestre Carrera Espacial

John Glenn Primer Americano en Orbitar

John Glenn Primer Americano en Orbitar Terrestre Carrera EspacialEL VUELO DEL CORONEL GLENN:
El 20 de febrero de 1962 los norteamericanos, después de haberlo aplazado varias veces y anunciado sin reserva a todo el mundo, pusieron en órbita el cohete Friendship VII que llevaba una cápsula dentro de la cual se encontraba el astronauta piloto John H. Glenn de 40 años de edad.

A la hora prevista la cápsula se desprendió de los cuerpos del cohete Atlas y entró en órbita.

Después de dar tres vueltas a la Tierra, el astronauta pulsó los mandos que le llevaron a descender en aguas del Atlántico donde fue recogido por el destructor «Noah».

El vuelo había durado 4 horas, 55 minutos.

Durante el mismo, millones de espectadores habían podido seguir, gracias a la televisión, todos los detalles del lanzamiento.

Glenn había comunicado constantemente sus impresiones y repitiendo muchas veces que se sentía bien. Este vuelo, que causó gran impresión por su preparación, anuncio y exhibición, demostró que el astronauta puede dirigir las fases de marcha y controlar los mecanismos para su propia recuperación y la de la cápsula.

Hasta aquí la historia, con sus datos, sus hechos concretos y sus cifras irrebatibles.

Al iniciarse 1962, las dos grandes potencias espaciales, Estados Unidos y la URSS, se preparaban para emprender otras proezas.

El presupuesto para investigación espacial y tecnológica para dicho año en los Estados Unidos se elevó a 2.400 millones de dólares.
A partir de este año se suceden en forma ininterrumpida los vuelos espaciales tripulados.

Salida del cohete Atlas-Mercury MA6

Salida del cohete Atlas-Mercury MA6 llevando a bordo al primer astronauta americano John Glenn

1962John Glenn fue el primero en orbitar la Tierra1998
Aunque fue el tercer norteamericano en el espacio,John Glenn fue el primero en orbitar la Tierra. Aquí algunas cifras sobre su vueloEl año pasado, el senador Glenn regresó a la órbita como miembro de un viaje espacial. Como lo demuestra este informe algunas cosas —no todas— han cambiado.
El astronauta
Altura: 1,80 metro
Color de pelo: colorado

Edad: 40 años

Salario: 12.000 dólares.
Entrenamiento diario:
3,2 kilómetros trote
El astronauta
Altura: 1,80 metro
Color de pelo: blanco

Edad: 77 años

Salario: 136.672 dólares.
Entrenamiento diario:
3,2 kilómetros de caminata rápida
La nave
Nombre:  Friendship 7 (Amistad 7)
Tripulación:         1
Ventanas:   1
Computadoras: 0
Peso:    1,930 kilos
La nave
Nombre:  Discovery
Tripulación:         7
Ventanas:   10
Computadoras: 5
Peso:    69,770 kilos
La misión
Nombre:  Mercury 6

Despegue:  20 de Febrero de 1962.
a las 9h 47, 39″
La misión
Nombre:  STS-95

Despegue:  29 de octubre de 1998
a las 14 h.

Duración:
4
h. 55’ 23”.
Velocidad orbital:
28.234 kilómetros por hora
Tiempo por órbita:
1 h.28’29”.
Distancia recorrida:
121 .794 kilómetros
Lugar de aterrizaje:
Océano Atlántico, 800 kilómetros al sudeste de Bermudas
Rescate:
Un barco de la Armada recuperó la nave luego de caer al océano.

 Duración:
Aproximadamente 8 días y 20 h.Velocidad orbital:
8.164 kilómetros por horaTiempo por órbita:
90 minutosDistancia recorrida:
5.800.000 kilómetrosLugar de aterrizaje:
Centro espacial Kennedy, Florida

Rescate:
No fue necesario

Cronología de las
Misiones Espaciales
 Hitos de la
Carrera Espacial

Primer Hombre en llegar la Luna Vida de Neil Armstrong

Primer Hombre en llegar la Luna – Vida de Neil Armstrong

El nombre de en la cuando, el 20 de julio de 1969, se convirtió en el primer hombre que pisaba la Luna. Millones de persona de todo el mundo pegadas al televisor fueron testigos de la hazaña de Armstrong, junto a Aldrin y Michael Collins, sus dos compañeros de la misión espacial Apolo XI, cumplían así uno de los logros tecnológicos-cientificos mas importantes de la historia de la Humanidad. Armstrong, murió el 25 de agosto de 2012 en Cincinnati, por una afección cardíaca.

Neil Alden Armstrong, astronauta estadounidense, fue la primera persona en caminar sobre la luna; nació el 5 de agosto de 1930, cerca de Wapakoneta, Ohio.

Él era el mayor de tres hijos de Stephen y Viola Armstrong Engel. Su pasión por los aviones quedó señalada a los seis años, cuando hizo su primer viaje en uno de ellos.

Es probable que cuando Neil Armstrong nació, en la granja de sus abuelos, en su destino estuviera escrito «elegido para la gloria». Sin embargo, no lo sabría hasta pasados varios años, cuando se convirtió en el primer ser humano en pisar el suelo lunar. Nada hubo en su infancia que dejara adivinar un futuro tan colosal.

Neil no fue un niño prodigio. Todo en él era discreto, salvo un detalle: su pasión por volar.

Eso sí lo hacía distinto de otros chicos de su edad. Hoy, más de cuatro décadas después de que una pisada suya fuera recibida en el mundo como «la mayor aventura de la historia», se ha elaborado una leyenda romántica sobre este personaje, que escapa de la celebridad refugiándose en su Ohio natal.

Según esa leyenda, a los dos años Armstrong mostró su primer interés por los aviones. Fue un día en que su padre, Stephen Armstrong, lo llevó a la Competencia Nacional Aérea de Cleveland.

El pequeño Neil se mostró muy entusiasmado mientras presenciaba las cabriolas de enormes y brillantes aviones. A los seis años, Neil iba a disfrutar de su primer vuelo en avión. Es probable que nunca se sepa si en esa ocasión visitó o no una cabina de mandos, y si de ahí nació su auténtica afición por las aeronaves. Pero sí que poco tiempo después empezó a fantasear con la idea de comandar un aparato.

Comenzó a tomar lecciones de vuelo a la edad de catorce años, y en su décimo sexto cumpleaños le fue concedida una licencia de piloto. A esa edad, Armstrong se construyó un pequeño túnel de viento (un túnel a través del cual el aire es forzado a una velocidad controlada para estudiar los efectos de su caudal) en el sótano de su casa, también realizó experimentos utilizando el modelo de aviones que había diseñado.

A través de estas actividades se estaba preparando para lo que sería una distinguida carrera en la aeronáutica o la construcción, diseño y navegación de las aeronaves.

SU DESTREZA COMO PILOTO LO LLEVÓ A LA ASTRONÁUTICAFUE EL PRIMER HOMBRE EN PISAR EL SUELO LUNAREE.UU. SACÓ VENTAJAS EN LA CARRERA ESPACIAL CONTRA LA URSS
LA PROEZA CONTÓ CON UN GRAN ALIADO: LA TVHOY SE DEDICA A LA ENSEÑANZA Y ASESORA PROYECTOS ESPACIALES

Armstrong también estaba interesado en el espacio exterior a una edad temprana. Su fascinación fue impulsada por un vecino que era dueño de un potente telescopio; en el que fue encantado con las vistas de las estrellas, la Luna y los planetas que vio a través de este dispositivo.

Ingresó a en la Universidad de Purdue en Indiana en 1947 con una beca de Marina de los EE.UU. Después de dos años de estudio fue llamado al servicio activo con la armada y ganó sus alas de piloto de jet en la Estación Aérea Naval de Pensacola, en Florida.

A los veinte años fue el piloto más joven en su escuadrón. Voló setenta y ocho misiones de combate durante la Guerra de Corea, una guerra civil desde 1950 hasta 1953 entre el Norte y Corea del Sur en el que China luchó en el lado comunista de Corea del Norte y los Estados Unidos lucharon para ayudar a Corea del Sur.

Después de la guerra Armstrong volvió a Purdue y completó una licenciatura en ingeniería aeronáutica en 1955. De inmediato aceptó un trabajo con el Laboratorio de Propulsión a Lewis Vuelo del Comité Consultivo Nacional de Aeronáutica (NACA) en Cleveland, Ohio. Un año más tarde se casó con Janet Shearon.

Poco después, Armstrong transferido a la NACA , donde se convirtió en un experto piloto de pruebas y voló los primeros modelos de aviones como el F-100, M-101, M-102, M-104, F-5D, y B-47. También fue piloto del avión cohete X-1B, una versión posterior del primer avión que rompió la barrera del sonido (el efecto de arrastre de aire en un avión al aproximarse a la velocidad del sonido).

Fue seleccionado como uno de los tres primeros pilotos de la NACA para volar el avión cohete X-15-motor. Hizo siete vuelos en este avión, que era una especie de primer modelo de las futuras naves espaciales. Logrando una altura récord de 207 a 500 pies y una velocidad de 3.989 millas por hora.

En 1962, Armstrong decidió convertirse en astronauta tras una selección de la NASA e ingresó a ella para su formación. En septiembre de 1962 se convirtió en el primer astronauta no militar de Estados Unidos. Su asignación de vuelo por primera vez como un astronauta fue como una copia de seguridad, o suplente, del piloto de Gordon Cooper, en la misión Gemini 5.

A posteriori continuó su formación especializada en la nave espacial Gemini y fue seleccionado como el piloto de mando para la misión Gemini 8. Con copiloto David Scott que fue lanzado desde Cabo Kennedy (ahora Cabo Cañaveral), Florida, el 16 de marzo de 1966. El Gemini 8 orbitó y se acopló como estaba previsto con otro vehículo en órbita, pero poco después la nave Gemini 8 se salió de control. Armstrong trajo al Gemini 8 al Océano Pacífico a sólo 1,1 millas náuticas del punto de aterrizaje previsto.

La conducta fría y profesional de Armstrong dio una fuerte impresión en sus superiores, quienes lo destinaron a la formación para el programa Apolo. Durante un vuelo de entrenamiento de rutina del vehículo de aterrizaje de la investigación, las embarcaciones de Armstrong se salieron de control; este se expulsó a sí mismo y aterrizó en paracaídas a unos metros de distancia del vehículo de formación, que se estrelló en llamas. Con sus emociones controladas de costumbre, él se alejó y con calma hizo su informe.

Misión Apolo 11
En enero de 1969 Armstrong fue seleccionado como comandante del Apolo 11, la primera misión de aterrizaje lunar. El 16 de julio a las 9:32 A.M. Hora del este (EDT), Armstrong, con los astronautas Michael Collins y Edwin Aldrin, despegó desde el Centro Espacial Kennedy en Florida.

El Apolo 11 pasó a la influencia gravitatoria (fuerza de la gravedad) de la luna el 18 de julio y la vuelta a la luna dos veces. Armstrong y Aldrin entraron en un módulo lunar (una pequeña nave espacial) llamado el Águila.

A medida que descendieron hacia la superficie lunar, su equipo se convirtió en sobrecarga, pero bajo las instrucciones del centro de control de la misión en Houston, Texas, Armstrong logró aterrizar el módulo. A las 4:17:40 pm. , el 20 de julio, una parte importante de la población de la Tierra estaba escuchando la transmisión de radio de Armstrong informando que el Águila había aterrizado.

A las 10:56 pm. puso el pie en la luna, diciendo: «Eso es un pequeño paso para el hombre, pero un salto gigantesco para la humanidad.»

Carrera después de la NASA
Apolo 11 fue la misión al espacio final de Armstrong. Luego se unió a la Oficina de la NASA de Investigación Avanzada y Tecnología, donde una de sus principales actividades era promover la investigación sobre el control de las aeronaves de alto rendimiento mediante la computadora. En 1971 comenzó a trabajar en la Universidad de Cincinnati en Ohio, donde pasó siete años como profesor de ingeniería aeroespacial.

Armstrong se mantuvo trabajando para el gobierno. En 1984 fue nombrado en la Comisión Nacional sobre el espacio, donde completó un informe con un ambicioso futuro de los programas espaciales de EE.UU., También fue líder de una comisión gubernamental para investigar la explosión desastrosa de la lanzadera espacial Challenger , que se produjo en enero de 1986.

Armstrong trabajó para varias empresas desde sus días de astronauta, incluyendo el cargo de presidente de los Sistemas de AIL, Inc., un fabricante de electrónica aeroespacial. En 1999 fue honrado en una ceremonia celebrada en el National Air and Space Museum de la Smithsonian Institution en Washington, DC, donde recibió la Medalla de Langley, en honor al trigésimo aniversario de la misión Apolo 11. Armstrong también hace ocasionales apariciones públicas en el aire en su ciudad natal de Wapakoneta, Ohio.

MITOS Y SECRETOS:

UN SUSTO:

Armstrong tuvo un percance en los ensayos previos a la misión Apolo XI En mayo de 1968, en Texas, guiaba el simulador Lunar Landing Research Vehide. Algo salió mal y la nave estalló en el aire. Armstrong salvó su vida al eyectar su asiento v saltar en paracaídas; sólo sufrió heridas leves.

TAN SOLO UNA QUEJA:

Según Armstrong, la misión espacial del Apolo XI transcurrió sin sobresaltos. Tuvimos muy pocos problemas, muchos menos de los esperados en la superficie. Fue una operación muy agradable y las temperaturas no eran altas. La combinación de los trajes espaciales y los aparatos en la espalda que mantenían nuestras vidas operaron a la perfección», afirmó. No obstante, sí se lamentó de que «la principal dificultad fue el poco tiempo para hacer la gran cantidad de cosas que nos hubiera gustado. Teníamos el mismo problema que un niño en una tienda de dulces».

UNA FALLA, UN SUSTO:

Houston sí tuvo que resolver con rapidez un problema de Apolo XI, ya que uno de los aparatos encargados del alunizaje se bloqueó. Según el ex-jefe de programas espaciales de la NASA en España, Luis Ruiz de Gopegui, «Armstrong, gritó, al ver cómo una luz roja de la cabina de mandos se encendía y centelleaba sin parar: ¡Tengo una alarma en la computadora que no conozco, díganme qué hago!». Esta señal, la alarma 1202, se hizo famosa, aunque no hubo mayores consecuencias.

SOBRE SU VIDA PRIVADA:

Poco se sabe de la vida privada de Armstrong, un hombre aislado del mundo y muy defensor de su intimidad; tan sólo, que se casó con Janet Shearon y tuvo tres hijos, Eric, Marky Karen -ésta última falleció en la infancia-. Quizás para entender su carácter basten sus propias palabras: «Ahora permanezco en casa, sentado y pensando en los buenos tiempos. Supongo que he tenido una buena vida y me siento muy afortunado. Todavía disfruto viendo a la gente que va al espacio. Leo todo lo que se refiere a las nuevas tecnologías y ayudo en el desarrollo de proyectos espacíales en todo lo que puedo.»

EN LA ARGENTINA:

Fue una de las primeras transmisiones televisivas vía satélite, recibida en la estación terrena de Balcarce. En la noche del 20 de julio de 1969, millones de argentinos vieron cómo Armstrong descendía del módulo Eagle. El seguimiento de la misión continuó hasta la madrugada del 21 de julio. En tanto, un argentino, el doctor Enrique Febbraro, declaraba al 20 de julio comoDía Internacional del Amigo..

ALGO MAS…
Entre los 50 cosmonautas estadounidenses, Armstrong, que en 1969 tenía casi 39 años, se destacaba por su sentido del orden, su gran autocontrol y por su carácter poco propenso a las fantasías. Nada le interesaba, excepto volar. «Cualquiera que lo trate, lo describirá como un sujeto frío, calculador» —decía de él otro astronauta—. «Su modo de pensar y de vivir es rígido como una operación aritmética».

Estudió ingeniería aeronáutica. Como piloto de la Marina, intervino en 78 misiones de combate durante la guerra de Corea. La guerra fue para él una experiencia técnica, una ocasión preciosa para familiarizarse con los más modernos equipos aeronáuticos. Tal como siempre lo manifestó, no es un romántico, detesta la aventura y el peligro, especialmente si los considera inútiles.

Antes de convertirse en astronauta, en setiembre de 1962, Armstrong ya trabajaba para la NASA (Administración Nacional de Aeronáutica y del Espacio) como piloto de pruebas del programa X-15, avión-cohete que era lanzado a los límites, de la estratosfera, tarea para la cual se encontraba ampliamente capacitado.

Cuando se proyectó el vuelo de la Apolo 11, Armstrong, que habría de ser el comandante de la nave, no fue elegido para ser el primero en desembarcar. Sintiéndose insatisfecho por ello, reclamó hasta que la decisión fue revocada y, finalmente, se le encomendó ser el primer hombre en hollar la superficie de la Luna.

Al regresar a la Tierra, declaró a los periodistas: «El alunizaje fue para mí el momento más emocionante del vuelo. En segundo lugar yo ubicaría al instante en que abandonamos la Luna». Cuando se le pidieron más detalles, recordó a los presentes que en la Luna el cielo es oscuro y la superficie del suelo clara, y manifestó que el trabajo no le había resultado cansador.

La prensa mundial consagró a Armstrong «el hombre del siglo» y hubo quienes llegaron a llamarlo, incluso, «el hombre del milenio». (Fuente Consultada: Revista Conocer Nuestro Tiempo Enciclopedia del joven N°2)

Profesora Sonia Gaynor Para Planeta Sedna

Seres humanos en el espacio, vivir con ingravidez Efectos Ingravidez

HUMANOS EN EL ESPACIO-VIVIR CON INGRAVIDEZ

vida en condicones extremas

La confirmación de que el hombre puede vivir y trabajar lejos de la Tierra se obtuvo ya con los primeros vuelos espaciales de los años sesenta. ¿Pero cuánto tiempo se puede vivir en condiciones de ingravidez sin que el organismo sufra daños irreversibles? Esta pregunta permanece todavía sin respuesta.

Puede un ser humano vivir y trabajar en el espacio? La respuesta, clara y simple, la dieron ya los primeros vuelos espaciales y es indudablemente «sí».

Los primeros vuelos Soyuz y Mercury, en efecto, demostraron que el hombre puede moverse libremente por el espacio realizando maniobras muy complejas. Luego, con la misión estadounidense Skylab y las rusas Salyut y MIR, se comprobó que el hombre puede vivir en el espacio durante meses y años.

Las actuales misiones espaciales, y más aún las futuras, continúan necesitando al hombre para descubrir los grandes misterios del universo. Pero ¿cuánto tiempo puede permanecer el hombre en el espacio sin que su organismo sufra daños? Y después de largos períodos de ingravidez, ¿podrá el hombre regresar a la Tierra y vivir en ella normalmente?.

Estas preguntas no han recibido todavía una respuesta, ya que son necesarios largos y complejos experimentos para comprender cómo se comporta el organismo humano en el espacio. Tal será el objeto de las investigaciones de muchos vuelos espaciales.

Seres humanos en el espacio: El espacio es un lugar muy hostil para el ser humano. La falta de aire y de presión atmosférica puede matar a una persona en cuestión de segundos. Las temperaturas son impresionantes: cerca del cero absoluto a la sombra de un planeta, y de varios cientos de grados bajo la acción solar directa. Al no existir protección atmosférica, las radiaciones cósmicas pueden resultar mortales.

Los avances científicos y tecnológicos logrados en las últimas décadas han permitido desarrollar una gran cantidad de elementos que protegen al ser humano durante los vuelos más allá de la atmósfera. Biólogos, médicos, físicos, ingenieros y meteorólogos trabajaron y trabajan en forma permanente para mejorar la calidad de vida de los astronautas y evitar riesgos durante la permanencia en el espacio.

Aunque siempre se supuso que la gravedad es necesaria para el desarrollo normal de la vida humana, los efectos producidos por la ingravidez fueron mucho más nocivos que los esperados. Osteoporosis, atrofia muscular con fuertes incidencias en el sistema cardiovascular, disminución del número de glóbulos rojos en sangre, entre otras alteraciones, obligaron a los especialistas a diseñar actividades para las tripulaciones. Asimismo, las estaciones espaciales permanentes incluyen reemplazos periódicos de sus tripulantes, con el objeto de evitar someterlos a situaciones de ingravidez prolongadas en exceso.

La ausencia de la fuerza de gravedad, cuya magnitud está relacionada con la masa de los cuerpos, implica una situación atípica que produce infinidad de trastornos en el organismo de los astronautas.

Veamos algunos de ellos:

Irrigación sanguínea. Por la gravedad, los fluidos se ven atraídos hacia las piernas y se reparten correctamente por todo el organismo. En el espacio, en cambio, la sangre que debería irrigar las extremidades inferiores se redistribuye en la cabeza y en el tórax y provoca, al inicio del vuelo, la característica hinchazón del rostro de los astronautas. Se produce una respuesta del organismo a la redistribución de líquidos. Para adaptarse a la nueva situación, se elimina agua, con la consiguiente disminución del volumen corporal.

Una vez de regreso, tiene lugar la situación inversa; en consecuencia, al disminuir la irrigación en la parte superior del cuerpo, los astronautas pueden sufrir mareos y desmayos. 

Músculos. En el espacio carece de sentido la relación peso-masa. Una balanza resultaría completamente inútil a bordo de una nave espacial. Se puede apreciar si una persona es corpulenta o delgada, pero es imposible establecer su peso.

Como los astronautas flotan dentro de la nave, a la larga se produce la atrofia muscular. Con el fin de contrarrestar este efecto, los tripulantes deben realizar diariamente ejercicios y vestir trajes espaciales con fuertes elásticos en la zona de las articulaciones, para forzar los movimientos.

Equilibrio. Durante los primeros días de viaje, cerca de la mitad de la tripulación sufre del “mal del espacio”, que se manifiesta con vómitos, dolores de cabeza y sudoración. Éstos son los efectos de la confusión que provoca la ingravidez sobre el sistema vestibular, el órgano del equilibrio ubicado en el oído interno.

Alimentación. Al contrario de lo que se podría pensar, los astronautas necesitan muchas calorías diarias, ya que consumen muchísima energía al realizar las cosas más simples. Pero además de incluir gran cantidad de calorías, la dieta espacial está balanceada en forma diferente de la terrestre. Por ejemplo, es fundamental que contenga un alto porcentaje de calcio, ya que este elemento que forma los huesos se pierde progresivamente en el espacio. Lo mismo sucede con los glóbulos rojos de la sangre, lo cual se contrarresta parcialmente con una alimentación rica en hierro.

La mecánica de comer y beber también es diferente. Los alimentos tienen que ser introducidos en la boca con mucho cuidado; una vez allí, la ingravidez ya no importa. Beber puede resultar más complicado. No se puede servir las bebidas en vasos, porque la tensión superficial de los líquidos hace que permanezcan dentro de su envase y, si se los agitara, flotarían como globos. De cualquier modo, todo se soluciona utilizando una pajita.

 Otros problemas fisiológicos importantes, que deben tenerse en cuenta en la colonización espacial, tienen que ver con el reabastecimiento de oxígeno y de otros nutrientes que, de alguna forma, deben conservar durante meses o años en la nave espacial (una solución serían los cultivos hidropónicos a partir de excreciones humanas o métodos electroquímicos); con los peligros de la radiación, y, finalmente, con el calor o el frío, así como con la presión barométrica, que puede producir la descompresión espacial.

Peso e ingravidez. Digámoslo así: Una cosa es la fuerza peso (P), y otra es la sensación de peso.

La fuerza de atracción que ejerce la Tierra sobre la nave y sus tripulantes, el peso, proporciona la fuerza centrípeta necesaria para mantenerlos en movimiento orbital.

Al no existir una fuerza que los sostenga, los astronautas no tienen sensación de peso y se encuentran en un estado de ingravidez aparente, exactamente igual que la que se experimenta en una caída libre (como si se encontraran en el interior de un ascensor que se está cayendo).

Ejercicio y reposo
Los astronautas permanecen inmóviles gran parte del tiempo. En las astronaves más grandes, como la Skylab estadounidense y la Salyut soviética, el problema es menor pues los astronautas tienen espacio suficiente para moverse y para ejercitar sus músculos.

Ausente la gravedad, el cuerpo flota en la cabina, y cada movimiento exige muy poco esfuerzo, lo que ahorra energías, pero al mismo tiempo impide hacer los ejercicios físicos indispensables. Uno de los equipos creados para resolver este problema, para ejercitar los brazos, es similar a los extensores de resortes. Los astronautas utilizan también bicicletas eléctricas, que exigen un esfuerzo comparable al que hace un ciclista en la Tierra.

Además de la actividad, es necesario garantizar el reposo. Para descansar, el astronauta se cubre los ojos con una máscara, con lo que evita la molestia de la luz, natural o artificial.

Durante el vuelo, se transmiten a la Tierra informaciones sobre las condiciones físicas de los astronautas; el médico analiza los datos y les indica el tratamiento.

Si la excitación provocada por el vuelo le impide dormir, el astronauta puede utilizar somníferos. La astronave cuenta con una farmacia bien equipada para cualquier emergencia y para las indisposiciones más comunes.

Los astronautas son adiestrados para cumplir turnos de reposo breves y largos, según las necesidades del vuelo.

Un sueño que se hace realidad

Con la tenaz intención de habitar el espacio, los soviéticos y, más tarde los norteamericanos, construyeron naves diseñadas especialmente para permanecer largos períodos en órbita terrestre, mientras las tripulaciones se iban renovando en forma periódica. Las primeras estaciones espaciales fueron la soviética Salyut 1 (lanzada el 19 de abril de 1971) y la estadounidense Skylab (lanzada el 25 de mayo de 1973).

En junio de 1998, comenzó la concreción del proyecto más espectacular de la historia espacial: la Estación Internacional Alfa (más conocida como la ISS, International Space Station). “La ISS representa el mayor proyecto tecnológico internacional de toda la historia pacífica de este planeta”, señaló con entusiasmo Daniel Goldin, director de la NASA. Y no es para menos: 16 países aportan sus recursos y su experiencia científica para realizar un sueño que costará 18.000 millones de dólares.

La construcción en el espacio de la ISS demandará 44 lanzamientos de cohetes europeos, rusos y estadounidenses, que pondrán en órbita una plataforma que pesará unas 500 toneladas. Tendrá alrededor de 110 m de largo y 90 m de ancho. El espacio presurizado para vivir y trabajar adentro de la estación será equivalente a dos cabinas de un avión 747. La estación orbitará a una “altura” media de 350 kilómetros, inclinada respecto del ecuador unos 50 grados.

Los catorce astronautas que han sido seleccionados para montar la estación espacial, que estaría concluida en el año 2005, realizan en la actualidad un riguroso entrenamiento para efectuar la complicada tarea. Desde enero de 1999, una tripulación “internacional”, integrada por tres personas, vive a bordo de la ISS, simbolizando de esta forma la presencia permanente de seres humanos en el espacio.

  “Durante siete horas y 55 minutos Tamara Jernigán y Daniel Barry salieron a caminar Mas alla de lo prolongado1 no fue un paseo común porque ambos son astronautas del Discovery y la caminata fue realizada a 386 mil metros de altura.

El objetivo fue colocar dos pequeñas grúas en la Estación Espacial Internacional, a la que está acoplado el Discovery desde el sábado pasado. Jernigán y Barry se encontraron apoyados por otros cinco compañeros, tres norteamericanos, un canadiense y un ruso, desde el interior de la nave.

La misión STS-96 es el primer vuelo dirigido a la construcción de la estación espacial científica que se concluirá en el 2005.

Durante la caminata ocurrieron algunos problemitas, como demorar una hora más de lo calculado en desensamblar una de las grúas, atornillada demasiado firmemente al costado del Discovery. Aunque no hubo consecuencias negativas, una cadena suelta pasó “volando” por delante de la cabina del piloto. Tras el montaje de las grúas, la tripulación tenía previsto pisar por primera vez el interior de la Estación Espacial”

La ingravidez es una experiencia que puede causar molestias al organismo humano.
Pero superado el primer impacto, también se producen situaciones muy divertidas.

Una Agenda Muy Especial:

Concebida como un verdadero laboratorio, el programa de la ISS propone investigaciones muy interesantes y novedosas, que se han agrupado según las siguientes áreas: Micro gravedad, Ciencias de la vida, Ciencias de la Tierra, Ciencias del espacio, Desarrollo de productos y Biotecnología. 

Microgravedad

La ISS ofrecerá una oportunidad única para estudiar y controlar procesos de ingravidez, verificar las teorías existentes e, incluso, formular otras nuevas. Observar cómo se forman las estructuras atómicas o moleculares en distintos materiales, cómo se comportan los fluidos o cómo se altera la combustión en un medio ingrávido, son sólo algunos de los temas de esta nutrida agenda.

 Ciencias de la vida

Fundamentalmente, el programa pone especial énfasis en estudiar los problemas asociados con permanecer períodos prolongados en ingravidez y comprender los efectos que provoca la gravedad en la evolución, desarrollo, morfología y funcionamiento de los seres vivos. El programa de estudio involucra a animales (incluyendo seres humanos), plantas, tejidos, microorganismos y células.

 Ciencias de la Tierra

El itinerario de la estación espacial permitirá observar el 75% de la superficie terrestre, donde habita el 95% de la población mundial. Convirtiéndose en una verdadera “ventana al mundo”, la ISS podrá predecir cambios climáticos, orientar políticas que mejoren el uso de la vegetación y la tierra, ubicar fuentes minerales o de alimentos, y controlar la “salud” del aire y los océanos, entre otras cosas. Según los especialistas, “permitirá mejorar la calidad de vida de todos los humanos y de las futuras generaciones”.

 Ciencias del espacio

Los investigadores esperan incrementar sus conocimientos del Sistema Solar y valorar sus efectos actuales y futuros sobre nuestro planeta.

Luchando “codo a codo” con las novelas de ciencia-ficción, la SS será la primera estación diseñada para que los tripulantes participen en las tareas de mantenimiento y operación de los sistemas. “La naturaleza dinámica del espacio demanda que seamos capaces de responder rápidamente —señalaron los diseñadores—. Los tripulantes estarán en condiciones de observar, filmar, caracterizar y valorar el impacto de los eventos cósmicos, en el preciso momento en que ocurren.” 

Desarrollo de productos

Los especialistas señalan que las condiciones de ingravidez y ultra-vacío del espacio permitirán desarrollar productos “más perfectos” que los que se pueden desarrollar en las condiciones terrestres. Muchas empresas “de punta” confían (léase aportan grandes sumas de dinero) en que las investigaciones que se realizarán a bordo de la SS posibilitarán el acceso a nuevas tecnologías y mercados no explotados hasta el presente.

 Biotecnología

La Biotecnología es la aplicación de la Ingeniería y la Tecnología a las Ciencias de la vida. La SS se propone investigar en dos áreas fundamentales: la estructura y funcionamiento de las proteínas y el cultivo de células y tejidos. Los científicos aspiran a que sus estudios contribuyan al desarrollo de medicamentos más efectivos y, por lo tanto, a mejorar la calidad de vida. A más largo plazo, consideran que el espacio será un medio ideal para “fabricar” tejidos y órganos útiles para trasplantes en humanos.

Un sueño que se hace realidad

Con la tenaz intención de habitar el espacio, los soviéticos y, más tarde los norteamericanos, construyeron naves diseñadas especialmente para permanecer largos períodos en órbita terrestre, mientras las tripulaciones se iban renovando en forma periódica. Las primeras estaciones espaciales fueron la soviética Salyut 1 (lanzada el 19 de abril de 1971) y la estadounidense Skylab (lanzada el 25 de mayo de 1973).

En junio de 1998, comenzó la concreción del proyecto más espectacular de la historia espacial: la Estación Internacional Alfa (más conocida como la ISS, International Space Station). “La ISS representa el mayor proyecto tecnológico internacional de toda la historia pacífica de este planeta”, señaló con entusiasmo Daniel Goldin, director de la NASA. Y no es para menos: 16 países aportan sus recursos y su experiencia científica para realizar un sueño que costará 18.000 millones de dólares.

La construcción en el espacio de la ISS demandará 44 lanzamientos de cohetes europeos, rusos y estadounidenses, que pondrán en órbita una plataforma que pesará unas 500 toneladas. Tendrá alrededor de 110 m de largo y 90 m de ancho. El espacio presurizado para vivir y trabajar adentro de la estación será equivalente a dos cabinas de un avión 747. La estación orbitará a una “altura” media de 350 kilómetros, inclinada respecto del ecuador unos 50 grados.

Los catorce astronautas que han sido seleccionados para montar la estación espacial, que estaría concluida en el año 2005, realizan en la actualidad un riguroso entrenamiento para efectuar la complicada tarea. Desde enero de 1999, una tripulación “internacional”, integrada por tres personas, vive a bordo de la ISS, simbolizando de esta forma la presencia permanente de seres humanos en el espacio.

 “Durante siete horas y 55 minutos Tamara Jernigán y Daniel Barry salieron a caminar Mas al/a de lo prolongado1 no fue un paseo común porque ambos son astronautas del Discovery y la caminata fue realizada a 386 mil metros de altura.

El objetivo fue colocar dos pequeñas grúas en la Estación Espacial Internacional, a la que está acoplado el Discovery desde el sábado pasado. Jernigán y Barry se encontraron apoyados por otros cinco compañeros, tres norteamericanos, un canadiense y un ruso, desde el interior de la nave. La misión STS-96 es el primer vuelo dirigido a la construcción de la estación espacial científica que se concluirá en el 2005.

Durante la caminata ocurrieron algunos problemitas, como demorar una hora más de lo calculado en desensamblar una de las grúas, atornillada demasiado firmemente al costado del Discovery. Aunque no hubo consecuencias negativas, una cadena suelta pasó “volando” por delante de la cabina del piloto. Tras el montaje de las grúas, la tripulación tenía previsto pisar por primera vez el interior de la Estación Espacial”

Primer Hombre en Superar la Barrera del Sonido en Caida Libre

Primer Hombre en Superar la Barrera del Sonido

NUEVO RECORD DE VELOCIDAD EN CAÍDA LIBRE Lo hizo el deportista austríaco Félix Baumgartner al saltar desde más de 39 mil metros. Así se convirtió en el primer humano en superar por unos segundo la velocidad del sonido en un descenso. Fue el 14 de octubre de 2012, a través del proyecto Red Bull Statos

BaumgartnerRoswell (Estados Unidos). El deportista austríaco Félix Baumgartner estableció ayer el récord mundial de velocidad en caída libre al lanzarse desde un globo situado a 39.068 metros de altitud y aterrizar sano y salvo en para caídas en el desierto norteamericano de Nuevo México.

La proeza del deportista extremo, de 43 años, comprende, además, que se convirtió en el hombre que llegó más alto en globo y que quizás sea el primero en romper la barrera del sonido en caída libre, como asegura su equipo, aunque ese resultado depende de verificaciones aún en curso, según reportó la agencia alemana Dpa.

En cambio, no pudo alcanzar el cuarto objetivo de su histórico viaje hasta 39 kilómetros de altura: el récord de mayor recorrido en caída libre sigue perteneciendo al estadounidense Joe Kittinger, quien hoy, con 84 años, supervisó el equipo de control.

La prueba fue seguida en directo por millones de televidentes de todo el planeta, con cámaras instaladas en el globo y en helicópteros que registraron cada momento del vuelo y la caída.

Baumgartner voló dentro de una cápsula pendiente del gigantesco aeróstato de helio, protegido por un traje presurizado parecido al de un astronauta; luego hizo el dramático salto y finalmente condujo su paracaídas sobrevolando la árida superficie en la que minutos después se posó suavemente sobre sus pies.

El deportista austríaco había despegado desde la ciudad de Roswellalas 12.30 hora de la Argentina y, tras dos horas y media de vuelo sin contratiempo, superó algunos metros el nivel de 39.000, en la estratosfera, desde donde se puede apreciar con nitidez la curvatura de la superficie terrestre.

Con movimientos pausados, y tras un último control de  los instrumentos, el paracaidista abrió la escotilla de la nave, se apoyó en una plataforma y, a las 15.05 hora de la Argentina, se lanzó en caída libre hacia la tierra.

Según los organizadores de la prueba, después de casi 30 segundos de caída libre habría roto la barrera del sonido, convirtiéndose en el primer hombre en superar los mil kilómetros por hora por sus propios medios.

Luego, el aire más pesado lo fue frenando, y al llegar a cuatro minutos y 19 segundos de caída libre, Baumgartner abrió el paracaídas que le permitió realizar el suave descenso en el desierto de Nuevo México. Tras aterrizar de pie, el deportista extremo se echó de rodillas y levantó los brazos en deportivo festejo.

Fuente Consultada: Diario «El Colono del Oeste»

Astronomía Ley de Bode Distancia a los Planetas Regla Práctica

Astronomía – Ley de Bode Para Determinar La Distancia a los Planetas

Escala del Sistema Solar

Distancia a las Estrellas

La Vía Láctea

Más Allá de la Vía Láctea

Astronomia Ley de Bode

No se trata en absoluto de una ley se parece más a un truco y a uno que tampoco funciona siempre. Y no la inventó Bode. Pero la ley de Bode, que así se llama, ha jugado un papel importante en el descubrimiento de asteroides e incluso de planetas. (imagen izquierda Juhann Bode)

La inventó Johann Daniel Titius (1729-1796), un profesor de matemáticas deWittenberg que tradujo un libro del naturalista suizo Charles Bonnet en el que el autor se ocupaba de la inspiración divina del orden natural.

Para ilustrar las tesis de Bonnet, Titius —corrector no deseado— agregó un párrafo acerca de los planetas en el que mostraba que sus distancias al Sol se atienen a una fórmula constante cuando se miden en unidades astronómicas (una unidad astronómica [UA] es igual a la distancia que hay de la Tierra al Sol).

La fórmula opera de este modo: comenzando la serie de números por el 0, agregue 3 y en adelante vaya duplicando la cifra. Así se obtiene 0-3-6-12-24-48, etcétera. Agréguese 4 a cada uno de estos números, divídase el resultado por 10 y se obtendrá la siguiente progresión: 0,4 – 0,7 – 1,0 – 1,6 – 2,8 – 5,2 – 10,00 – 19,6 -38,8.

                    Serie original         Más 4       Dividido por 10

                               0                       4                     0,4

                               3                       7                     0,7

                               6                      10                     1,0

                             12                      16                     1,6

                             24                      28                     2,8

                             48                      52                     5,2

                             96                    100                   10,0

                           192                    196                   19,6

                           384                    388                   38,8

Es notable que los siete primeros números de la última columna, interpretándolos como unidades astronómicas, describen aproximadamente la

distancia entre el Sol y cada uno de los planetas conocidos, con una excepción: quedaba un hueco sin llenar a 2,8 UA.

Cuando Titius publicó su traducción del libro de Bonnet, Contemplation de la Nature, esta fórmula, junto con el resto de libro, cayó en el olvido, donde hubiera seguido de no ser por la atención que le prestó Johann Elert Bode (1747-1826), un astrónomo alemán con un toque populista.

En 1772 Bode publicó la segunda edición de una introducción a la astronomía escrita por él e incluyó esta fórmula, sin mencionar a Bonnet o Titius. También él estaba preocupado por el hueco a 2,8 UA y propuso que se iniciara la búsqueda de un planeta a esa distancia.

Nueve años después William Herschel descubría Urano a 19,18 UA, una distancia tan aproximada a la predicha por la fórmula que parecía confirmar su veracidad. Escribiendo sobre el descubrimiento tres años después de anunciarse, Bode acabó por reconocer sus fuentes y reiteró su convencimiento de que algo debía haber a 2,8 UA del Sol, en el espacio vacío entre Marte y Júpiter.

Tenía razón. El 1 de enero de 1801 Giuseppe Piazzi descubrió Ceres, el primero y mayor de los asteroides que giran alrededor del Sol, a unas 2,77 UA, cerquísima de lo que establece la ley de Bode.

Los astrónomos utilizaron afanosamente la ley de Bode para localizar Neptuno, pero éste demostró ser una anomalía dentro del sistema, estando significativamente más cerca de lo esperado. Sin embargo, Plutón estaba a la distancia predicha cuando se descubrió en 1930.

Sería difícil encontrar en la actualidad un científico que considere la fórmula de Bode una ley inmutable de la naturaleza. Y sin embargo tampoco ha sido tajantemente descalificada. Por razones que nadie sabe explicar, no ha sido mala predictora.

Sí la ley parece abominablemente matemática (como le pareció a Hegel, quien se opuso a sus implicaciones filosóficas), puede que sea tranquilizante saber que Bode, cuyas especulaciones sobre este asunto eran fundamentalmente kantianas, no sólo la consideraba predictora de las distancias de los planetas, sino también de la espiritualidad de sus habitantes; de ahí que los marcianos fueran más santos que los terrícolas, quienes a su vez estaban más cerca de Dios que los venusinos.

Planetas Conocidos
En 1766
Distancias desde el Sol según la Regla de Bode en U.A.Distancia Real
en U.A.
Mercurio0,40,39
Venus0,70,72
Tierra1,01,0
Marte1,61,52
Asteroides2,82,77
Júpiter5,25,20
Saturno10,09,54
Urano (1781)19,619,18
Neptuno (1846)30,0630,06
Plutón (1930)77,239,44

Fuente Consultada: El Universo Para Curiosos de Nancy Hathaway

Causa de La Basura Espacial Riesgos y Peligro Desechos Abandonados

Causa y Riegos de la Basura Espacial
Riesgos y Peligro Desechos Abandonados en el Espacio

La mayoría de restos espaciales son piezas de cohetes, naves espaciales y demás objetos procedentes de la fragmentación de residuos, provocados por ejemplo debido a explosiones. Éstas se deben en gran parte a la presencia de combustible residual y de fluidos en cohetes y satélites, que una vez dejan de ser operativos se deterioran hasta provocar fugas que favorecen las explosiones.

INTRODUCCIÓN: Con el aumento de consumo luego de varias décadas de prosperidad económica, en 1990 hubo 9 mil millones de toneladas métricas de residuos sólidos a «manejar» por parte de los países de la OCDE (Organización para la cooperación y desarrollo económico).

De estos, 420 millones de toneladas métricas fueron residuos municipales y 1.500 millones residuos industriales (incluidos más de 300 millones de toneladas métricas de residuos peligrosos); los 7.000 millones de toneladas métricas incluían residuos derivados de la producción de energía y de la agricultura, la minería, la demolición, dragados y alcantarillados. Y esto sin mencionar los residuos no sólidos liberados en el aire y el agua.

Mientras los residuos en la Tierra han recibido, al menos, una atención considerable, los residuos en el espacio exterior, en particular los restos espaciales artificiales, han sido descuidados. Esa forma de polución, aparte de las emisiones causadas al poner satélites en órbita, se está acelerando de manera considerable y rápida.

Muchos satélites con una vida operativa restringida permanecerán en el espacio por cientos de años. De alrededor de dieciocho mil objetos lanzados hasta 1986, más de seis mil son restos no controlados en libre flotación. En su estudio The Pollution of Outer Space, in Particular of the Geostationary Orbit, G.C.M. Reijnen y W. de Graff afirman lo que sigue:

Una forma muy grave de residuo espacial se ha formado mediante la práctica de las principales naciones con planes espaciales de lanzar satélites de corta vida (una vida de alrededor de tres meses) con propulsión nuclear, que al completar su misión son llevados a una «órbita de depósito» especial, altamente radiactivos como son. y permanecen ahí. en principio para siempre. …Por lo tanto, las operaciones espaciales presentes y futuras se ven amenazadas por los restos espaciales de muchas clases.

Suena absurdo hablar de congestión del espacio, pero esta es ahora la realidad al menos en un respecto. La órbita geosincrónica es la banda de espacio por encima de los países ecuatoriales. Está ahora densamente ocupada por los satélites de los países tecnológica y económicamente en condiciones de colocarlos.

Están surgiendo sustanciales cuestiones de equidad, pero para el momento en que se las resuelva, o cuando los países hoy en desarrollo adquieran la capacidad para usar la órbita por encima de su cabeza, todos los espacios disponibles habrán sido ocupados por los satélites o los restos de otros. Ya, como se ve desde el espacio exterior, la órbita sincrónica atestada está produciendo una versión terrestre de los anillos de Saturno, sólo que menos benigna.

Basura Espacial

LA BASURA ESPACIAL: Si alunizaran en la Luna visitantes de otra galaxia, sabrían que alguien estuvo allí antes.

Dentro de millones de años, las huellas de los astronautas seguirán incrustadas en el polvo del suelo lunar y las más de veinte toneladas de basura de alta tecnología y alto precio, abandonadas allí por los programas espaciales estadounidense y soviético, seguirán emporcando el paisaje lunar.

Los visitantes de mundos lejanos verán los desechos de los programas espaciales: satélites caídos, fragmentos de cohetes, robots exploradores,buggies lunares apenas utilizados, sismógrafos, reflectores de láseres y un surtido de herramientas y piezas de equipamiento abandonado simplemente para aligerar la carga.

Además, encontrarían varias medallas, una estatua conmemorativa de los astronautas que murieron en el cumplimiento del deber, una bandera de Estados Unidos, tres cámaras fotográficas, dos pelotas de golf, una fotografía en marcada en plástico de la familia de un astronauta, un alfiler y una pluma de halcón. Si visitaran Venus o Marte encontrarían en esos lugares parecidas señales hechas con piezas de deshecho de tecnología terrestre.

Y además está la basura en órbita. Durante el primer paseo espacial estadounidense el astronauta Ed White dejó caer un guante en la eternidad. En 1966 Mike Collins perdió una cámara Hasselblad durante un paseo espacial; y durante una misión Apolo de 1971 salió aspirado al espacio un cepillo de dientes. Hubo un peine y un destornillador dando vueltas alrededor de la Tierra, y las estaciones espaciales soviéticas lanzan a menudo bolsas de desperdicios. Como otros muchos objetos puestos en órbita desde que se inició la era espacial en 1957, la mayoría de estos objetos han regresado a la atmósfera y han resultado incinerados.

Pero literalmente miles de satélites y de naves espaciales, operativas y de otros tipos, enteras o fragmentariamente, siguen rotando alrededor de la Tierra, entre otros objetos motores auxiliares del tamaño de pequeños edificios de vecinos y la parte del módulo lunar del Apolo 10 que tiene el tamaño de un camión. El 30 de septiembre de 1988 un mínimo de 7.122 objetos, lanzados por Estados Unidos, Unión Soviética, la Agencia Espacial Europea, China, Japón e Israel, seguían allí arriba, constituyendo un peligro para otros vuelos.

Y aún están los fragmentos, diminutos cascotes de los programas espaciales, ninguno mayor de un centímetro pero lo bastante grandes para causar daños: como el trocito de pintura que chocó con el Challenger en un vuelo de 1983 e hizo un cráter de 6,35 milímetros en una ventana. Los dos telescopios de 31 pulgadas que rastrean el cielo desde el MIT en pos de restos en órbita han descubierto casi 48.000 satélites adolescentes [de entre 13 y 19 años] mayores de un centímetro.

A la velocidad correcta, los objetos de este tipo que chocaran con una fase apagada de cohete, o bien, pongamos por caso, contra un traje espacial, podrían pulverizarlo. «La resultante nube de detritos, que se desperdigara por nuevas órbitas, podría fácilmente constar de 40.000 objetos del tamaño de un centímetro y 10 millones del tamaño de un milímetro —escribe el proyectista de la NASA Donald J. Kessler—. Estos trozos podrían colisionar luego con otras naves espaciales, produciendo aún más fragmentos según un crecimiento exponencial.»

En cuanto a los fragmentos menores de un milímetro, los hay en el espacio en unas cifras demasiado grandes para imaginarlas. Los pequeños impactos descubiertos en los satélites recuperados hacen pensar que «hemos creado un número comprendido entre 10.000 millones y cientos de billones de objetos orbitantes cuyo tamaño oscila entre 1 y 100 micras», cree el doctor Kessler. Las partículas, testimonio de nuestras tentativas de explorar el universo, envuelven nuestro planeta azul en un halo de basura.

Un primer paso hacia la solución del problema ha sido el monitoreo permanente de desechos, usando principalmente radiotelescopios. Algunas medidas prácticas se han tomado también para evitar la generación de mas basura espacial. Una de las primeras fue hecha en 1982 por la NASA, al implementar un mayor control en sus combustibles con el fin de evitar en lo posible explosiones en el espacio.

Otra medida es el enviar a órbitas mas altas satélites que han dejado de funcionar, para evitar su colisión con otros satélites. Por otro lado, muchos cohetes lanzadores pueden ser diseñados hoy en día de manera que sus etapas se desprendan antes de alcanzar una órbita, cayendo en la Tierra sin generar basura espacial. Otras variaciones de este esquema involucran el principio de mantener la basura en la Tierra.

El remover objetos grandes del ambiente espacial ha sido planteado, y de hecho el trasbordador espacial ha demostrado que puede hacerse, pero en la práctica el costo parece ser demasiado alto. El problema de como deshacerse de los objetos pequeños, muchísimo mas numerosos, parece aun mas difícil de resolver. Como sea, todo indica que por lo pronto tendremos que aprender a guardar nuestra basura en nuestro planeta.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway
Nuestro Hogar, el Planeta Shridath Ramphal

Todos los astronautas que llegaron a la Luna Pisaron suelo lunar

Todos los Astronautas que LLegaron a la Luna y Pisaron suelo Lunar

Hasta el 27 de junio de 1967, la forma de transporte más segura conocida por el hombre había sido la cápsula espacial. Docenas de astronautas estadounidenses y cosmonautas soviéticos habían ido al espacio en cohetes gigantescos, abastecidos por una mezcla explosiva de oxígeno líquido e hidrógeno. Habían dado vueltas alrededor de la tierra cubriendo millones de kilómetros. Habían caminado en el espacio con sólo las delgadas capas de tela de sus trajes separándolos de la muerte instantánea. Habían regresado a la tierra en las bolas de fuego de sus cápsulas que con precisión chapoteaban en los océanos. Sus máquinas espaciales eran aparentemente infalibles, una maravilla tecnológica….

Neil A. Armstrong Edwin B. Aldrin Armstrong
APOLO XI

Neil A. Armstrong Edwin B. Aldrin Armstrong es el pionero del espacio por antonomasia, por haber sido el primero en pisar nuestro satélite en julio de 1969, Con humor, registró una anécdota singular. Edwin Buzz Aldrin lo siguió, mientras Michael Collins, frustrado. volaba en órbita en la cápsula, aguardando para retornar a la Tierra.

astronautas que pisaron la luna - Charles Conrad Jr. - Alan L. Bean

APOLO XII

Charles Conrad Jr. – Alan L. Bean
Cuatro meses después de Armstrong, en noviembre de 1969, Conrad y Bean repitieron la proeza. Como en el viaje anterior, hubo quien, resignado, se  quedó mirando la Luna en órbita, porque esa era su tarea en la misión: Richard Gordon, quien se desquitó regresando al espacio en 1973, en la misión Skylab-2.

astronautas que pisaron la luna - Alan B. Shepard Jr. - Edgar O. Mitchell

APOLO XIV

Alan B. Shepard Jr. – Edgar O. Mitchell La misión número 13 no prosperó: los tripulantes no alunizaron por un desperfecto en la cápsula. En enero de 1971, en la 14, y sin contratiempos, el comandante Alan Shepard y Edgard Mitchell pudieron descender y realizar estudios. De paso, borraron para siempre el fantasma del fracaso precedente.

astronautas que pisaron la luna - David R. Scott y James B. Irwin

APOLO XV

David R.  Scott y James B. Irwin, en Julio de 1971, les correspondió inaugurar una novedad ¿aportante: la utilización de una suerte jeep autónomo, que les permitió , llorar grandes extensiones de la geografía lunar, Scott llamó al módulo Endeavour, en homenaje al navío del capitan Cook, un arriesgado navegante del siglo XVIII.

astronautas que pisaron la luna - Charles M. Duke Jr. - John W.Young

APOLO XVI

Charles M. Duke Jr. – John W.Young: En abril de 1972, cuando los astronautas fueron John Young y Charles Duke, pisar la Luna era ya casi una rutina; muy exclusiva, pero rutina de estudios al fin. Como en todas las misiones, hubo quien debió orbitar en la nave y aguardarlos para regresar a la Tierra, Esta vez le tocó a Thomas Mattingli.

astronautas que pisaron la luna - Harrison H Schmitt - Eugene A, Cernan

APOLO XVII

Harrison H Schmitt  – Eugene A, Cernan: Fue la última de las misiones Apolo, encomendada al comandante Eugene Cernan y a Harrison Schmitt, La cumplieron en diciembre de 1972. Schmitt era geólogo, y director del Centro de Investigaciones Astrogeológicas en Flagstaff, Arizona. Sus conocimientos permitieron avanzar en los estudios sobre las rocas lunares.

 

Accidente en el Apolo I Incendio Historia de la Conquista Espacial

Accidente en el Apolo I: Incendio, Historia de la Conquísta Espacial

Hasta el 27 de junio de 1967, la forma de transporte más segura conocida por el hombre había sido la cápsula espacial. Docenas de astronautas estadounidenses y cosmonautas soviéticos habían ido al espacio en cohetes gigantescos, abastecidos por una mezcla explosiva de oxígeno líquido e hidrógeno.

Habían dado vueltas alrededor de la tierra cubriendo millones de kilómetros. Habían caminado en el espacio con sólo las delgadas capas de tela de sus trajes separándolos de la muerte instantánea. Habían regresado a la tierra en las bolas de fuego de sus cápsulas que con precisión chapoteaban en los océanos.

Sus máquinas espaciales eran aparentemente infalibles, una maravilla tecnológica….

La tripulación de la nave espacial Apolo I


La tripulación de la nave espacial Apolo I, estaba compuesta por tres experimentados hombres llamados: Virgil “Gus” Grissom, Ed White y Roger Chaffee, eran grandes pilotos  y miembros confiables de los cuerpos de la Administración Nacional de Aeronáutica y del Espacio. Eran miembros del proyecto Apolo para poner el primer hombre en la luna.

A los tres hombres se les pidió que se presentaran a servicio en la plataforma de lanzamiento 34 del Centro Espacial Kennedy cerca de Cocoa Beach, Florida, para una serie más de tediosos ensayos dentro del estrecho módulo de mando.

Pasarían un día entero con sus trajes espaciales, incómodamente atados con cinturones de seguridad y acostados de espalda en la cápsula, repitiendo una y otra vez la rutina de adiestramiento de cabina del piloto. La vibración de la estruendosa aceleración del despegue no vendría hasta un mes después.

Durante cinco horas repetitivas llevaron a cabo el adiestramiento Cus Grissom, un piloto de la Fuerza Aérea de 40 años de edad, un as de la guerra de Corea y veterano de dos misiones espaciales anteriores, gritó las respuestas claras que mostraba la consola de su computadora de control y el tablero de instrumentos, a las peticiones de información del control de tierra.

Un técnico del control de Tierra fue el primero en notar el mal funcionamiento su monitor de televisión, conectado a una cámara dentro de la cápsula del Apolo lanzó de pronto una luz totalmente blanca y luego se oscureció. Intrigado, se inclinó para ajustar los controles de brillo y contraste.

Mientras hacía esto, una voz angustiada gritó por los altoparlantes y audífonos de control de tierra:
Fuego. ..huelo fuego…” Hubo tres segundos de silencio y luego la voz de Ed White: “Fuego en la cabina del piloto…”

Las grabadoras en el control de tierra captaron siete segundos de chasquidos y golpes para abrir el escotillón; luego, la voz de Roger Chaffee suplicando: “Estamos incendiándonos sáquennos de aquí…” Luego hubo un silencio.

En sólo cuatro minutos un equipo de emergencia había corrido a toda velocidad desde la sala de control de concreto a prueba de explosión en el nivel del piso y llegado a la parte superior de la torre de lanzamiento por un elevador de alta velocidad.

Con las manos ampolladas por la superficie chamuscada de la cápsula, dos de los hombres abrieron a la fuerza la escotilla principal. Ya era demasiado tarde.

Los miembros de la tripulación del Apolo 1 estaban muertos. Habían muerto en cuestión de segundos, yacían tendidos sin vida en posición de despegue, en la parte superior de un cohete de tres pisos vacío, inmóviles a «sólo» 75 metros de la tierra.

Luego de semanas de investigaciones la causa mas probable del incendio que mató a Gus Grissoni, Ed White y Roger Chaffee fue un alambre suelto que habría echado chispas poco peligrosas detrás del tablero de control, pero que en el oxígeno de la cabina, se convirtió en la mecha de una bomba incendiaria.

El desastre del Apolo I retrasó 18 meses el programa espacial estadounidense de vehículos tripulados, hasta que la cápsula interior fue rediseñada con aislante eléctrico a prueba de chispas y con un nuevo escape rápido que podía ser abierto fácilmente por los astronautas desde el interior.