Carbón e Hierro

Los Minerales Concepto, Características y Propiedades Origen

MINERALES : CONCEPTO, CARACTERÍSTICAS Y PROPIEDADES

HISTORIA DE LA MINERALOGÍA:
Primeros Pasos: Entre el conjunto de ciencias geológicas destinadas a estudiar los fenómenos de la corteza terrestre (litosfera), se distingue la mineralogía o ciencia de los minerales.

La historia de esta asignatura, como conocimiento organizado del saber humano, nació en el siglo XVI con los aportes del médico alemán Jorge Agrícola (1494-1555), quien escribió varios libros sobre Mineralogía y Metalurgia. Debe reconocerse que, desde tiempos inmemoriales, se registró en el mundo un permanente interés del ser humano por los minerales.

En la Edad del Bronce y en la del Hierro ese interés estuvo condicionado a motivos prácticos, fundamentalísimos, que muchos pueblos de la Antigüedad, como los chinos, babilonios, egipcios o griegos, mantuvieron y desarrollaron. Se reconocían y utilizaban algunos metales nativos –especialmente el oro, la plata y el cobre-, apreciándose el valor de ciertas combinaciones, entre las cuales predominaban, además del cobre, el hierro y el estaño.

El paso siguiente estuvo dado por las transformaciones a que fueron sometidos dichos materiales por obra del fuego,fusionándoselos, hábilmente, para construir armas, herramientas, adornos y utensilios. También fue estimada la belleza de algunas piedras, relacionadas, a veces, con determinadas supersticiones.

Varios filósofos de la Antigüedad, como Aristóteles y su discípulo Teofrasto, describieron algunos cuerpos naturales inorgánicos, especialmente minerales como los que constituyen Tas piedras preciosas.

Otro destacado investigador, el naturalista Plinio el Viejo, que vivió en el primer siglo de nuestra era, dedicó cuatro, entre los treinta y siete tomos de su «Historia Natural», a los minerales.

Siglos más tarde, apareció la Alquimia, lucubración que practicaron quienes se ocuparon de la transmutación de los metales y quisieron descubrir la «piedra filosofal», necesaria, según ellos, para trocar una substancia cualquiera en oro.

El camino de la ciencia, señalado por Jorge Agrícola a comienzos de la Edad Moderna, fue retomado, por varios sabios, a mediados del siglo XVIII.

Corresponde destacar al naturalista sueco Carlos de Linneo (1707-1778), famoso umversalmente por su clasificación de las plantas y de los animales, quien propusona sistematización análoga para los minerales. Contemporáneo de él fue el sabio ruso Miguel Lomonosov (1711-1765), hombre de gran erudición (se destacó como físico, químico, historiador,  filólogo  y   poeta) quien en, entre diversos problemas científicos, abordó el estudio de los minerales y preparó al respecto, en 1742,un documentado catálogo para la Academia de Ciencias de su país.

Posteriormente, en la ciudad de Freiberg, ubicada en la zona oriental de Alemania, hizo escuela el mineralogista A. Werner (1750-1817), cuyas teorías fueron aceptadas en varios países de Europa. Por esta época se descubrieron muchos criaderos de oro, platino y piedras preciosas, como también yacimientos de minerales de plata, hierro, cobre y plomo, en diversos lugares del planeta.

Medio siglo después, Dimitri Ivanovich Mendeleiev (1834-1907) revolucionó el mundo de la ciencia con su hoy famosísima tabla periódica de los elementos químicos. Ésta sirvió de base para muchas clasificaciones racionales, beneficiándose también la Mineralogía, que amplió sus comprobaciones.

El físico Enrique Becquerel (1852-1908) determinó, en 1896, la radiactividad de las sales de uranio. Y el químico Pedro Curie (1859-1906) descubrió tres años más tarde, en 1899, juntamente con su esposa María S. de Curie (1867-1934), la existencia de un nuevo elemento, el radio, considerado como importantísima fuente de energía. Así se fue gestando, posteriormente, la formulación de la teoría sobre núcleos atómicos.

Por otra parte, el investigador inglés William Henry Bragg (1862-1942) y su hijo William Lawrence Bragg (1890-1971) comprobaron la relación que existe entre la estructura cristalina, interna, de un minera y sus propiedades físico-químicas.

También deben citarse los aportes del científico norteamericano Willard Gibbs (1839-1903), quien realizó trabajos que fueron tomados muy en cuenta por la mineralogía moderna. Y entre los geólogos y mineralogistas soviéticos de los últimos tiempos se destacaron A. Boldirev (1883-1946), autor de un importantísimo «Curso de mineralogía descriptiva», en tres tomos, y S. Smirnov (1895-1947), conocido por su investigación sobre la «Zona de oxidación de los criaderos de sulfuras».

EL HOMBRE Y LOS MINERALES:: El interés del hombre por los minerales precedió al período histórico,*o sea a la existencia de todo documento escrito. En la remota antigüedad, comprobado el valor de ciertas substancias inorgánicas, se buscó la forma de extraerlas de la corteza terrestre para aprovecharlas debidamente. Así lo hicieron los trogloditas y cuando, unos diez mil años antes de la era cristiana, el hombre abandonó las cavernas y fue a establecerse junto a los ríos y a los grandes lagos, a veces en palafitos o bien en otros tipos de viviendas rústicas, mantuvo vigente aquella primitiva afición mineralógica.

El cambio en el uso de la piedra tosca o pulida , propia del Paleolítico o del Neolítico– por el hierro y por el bronce, determinó hitos fundamentales en la marcha de la civilización.

Los pueblos más antiguos apreciaron la utilidad de ciertos metales –como el hierro, el oro, la plata o el cobre– y la atractiva belleza de ciertas piedras empleadas con fines decorativos y que, más adelante, llamaron «preciosas».

También descubrieron menas, es decir, minerales metalíferos tal como se extraen de los criaderos y antes de ser limpiados, ricas en aquellos elementos donde los mismos aparecían combinados y, a veces, aleados.

Finalmente, llegaron a fundir metales para hacer herramientas, utensilios, armas y ornamentos. Quedaron establecidas, así, las primeras leyes empíricas sobre explotación de yacimientos, lugares que, en algunos casos, existen todavía. Y pudieron determinarse, por vía práctica, las propiedades de ciertos minerales útiles que, con el tiempo, fueron clasificados científicamente.

DESCRIPCIÓN DE LOS MINERALES: En la actualidad, se denomina mineral a toda substancia sólida, químicamente homogénea constituida por uno o varios elementos combinados, que forma parte de la corteza terrestre.

Los minerales pueden presentarse como elementos nativos, como combinaciones y como aleaciones. Entre los elementos nativos se distinguen dos variedades: la de los metales (como el oro, la plata, el mercurio, el cobre, el hierro o el platino) y la de los que no lo son, es decir el diamante, el azufre, el antimonio, el bismuto, etc.

En cambio, al combinarse varios de estos elementos primigenios se originan minerales de otro tipo, como, por ejemplo, el cuarzo, la pirita de hierro, el yeso o la mica de uranio, que es radiactiva. Cuando los minerales se asocian pueden formar rocas.

Éstas se clasifican en tres grandes categorías: ígneas o eruptivas (como el basalto), sedimentarias (como la arcilla) y metamórficas (como el gneis). Su estudio corresponde, específicamente, a la Petrografía, ciencia anexa a la Geología. Conviene aclarar que en las rocas ígneas (que son las que llegaron a la superficie desde el interior de la Tierra atravesando la corteza rígida del globo y que se encuentran en estado vitreo) aparecen minerales muy semejantes entre sí, en su mayoría silicatos.

No ocurre lo mismo en las rocas sedimentarias donde, a una determinada temperatura, se separan del medio acuoso grupos de minerales muy diferentes. Y, como observa Pablo Groeber, en su «Mineralogía y Geología«, sucede que «si tales rocas sedimentarias cambian de ambiente y descienden desde la superficie a profundidades de diez a veinte kilómetros, sus minerales, sometidos a gran presión y temperatura, dan lugar a la formación de otros, típicos de metamorfismo». Cada mineral surge en condiciones físicas y químicas determinadas.

Algunos se mantienen inalterables frente a los cambios de temperatura, presión o incidencia de agentes foráneos; otros se transforman, se oxidan, se reducen y hasta llegan a desaparecer. Día a día, es mayor el uso de los minerales como materia prima en las industrias, razón por la cual se trata de aprovecharlos debidamente. Su aglomeración en determinados lugares a los que se denomina «criaderos», considerados como reserva útil, debe ser apreciada cuantitativamente, para no incurrir en una improvisación que conduciría a la posible escasez o falta posteriores.

También deben tomarse en cuenta aquella composición química fundamental y las propiedades físicas inherentes, es decir el color, la transparencia, el brillo e índice de refracción, el clivaje, la dureza, el peso específico, la fragilidad, la elasticidad y las condiciones magnéticas y radiactivas, que cada mineral pueda poseer. A mayor demanda, mayores exigencias en materia de cantidad y también de calidad. Los minerales no escapan a este axioma del mundo contemporáneo.

IMÁGENES DE ALGUNOS MINERALES

los minerales de la Tierraa

LOS MINERALES DE LA TIERRA: La litosfera, como dijimo antes, está formada por un gran número de  rocas, simples o compuestas. A su vez, las rocas están constituidas por un número variable de sustancias químicas más simples, de composición constante y bien definida, a las que se da el nombre de minerales. Por tanto, los minerales son los elementos constitutivos fundamentales de la corteza terrestre, y cada uno de ellos es un compuesto químico natural, caracterizado por propiedades químicas y físicas claramente individuales y constantes.

El origen de estas sustancias naturales puede ser extraterrestre (meteoritos, transformaciones químicas debidas a radiaciones procedentes del espacio cósmico externo) o terrestre.

Los minerales de origen terrestre pueden derivar de procesos magmáticos, o sea, de solidificación de magmas procedentes de zonas profundas de la litosfera; de procesos de sedimentación, es decir, del depósito de materiales residuales de rocas preexistentes e incluso por depósito de materiales producidos por la actividad de organismos vivientes; y en fin, de procesos metamórficos, esto es, por transformación de minerales y rocas preexistentes debida a varias causas.

A excepción de los gases raros, que en la naturaleza prácticamente no dan lugar a compuestos químicos, y de los metales nobles, que sólo excepcionalmente dan lugar a minerales, todos los demás elementos se hallan contenidos en los minerales que constituyen la parte superficial de nuestro globo (litosfera, hidrosfera, atmósfera). Sin embargo, son pocos los elementos predominantes en la corteza terrestre.

Según cálculos de los geoquímicos, el estrato o capa más superficial de la litosfera (hasta una profundidad media algo superior a los 15 kilómetros) está compuesto, en peso, por minerales en los que predominan claramente el oxígeno y el silicio.

Casi la mitad de la corteza terrestre está constituida por oxígeno (49,5 por ciento), silicio (25 por ciento), aluminio (7,5 por ciento), hierro (5 por ciento), calcio (3,4 por ciento), sodio (2,6 por ciento), potasio (2,4 por ciento), magnesio (1,9 por ciento). Con porcentajes decrecientes de 0,9 a 0,1 por ciento siguen luego el hidrógeno, titanio, cloro, fósforo, manganeso, carbono y azufre.

Los elementos acabados de nombrar, quince en total, constituyen por sí solos el 99,7 por ciento de la corteza terrestre;todos los demás integran la parte restante (0,3 por ciento), hallándose cada uno presente en porcentajes mínimos.

Salvo unos pocos que se encuentran también en estado de elementos nativos, todos los demás se hallan combinados entre sí en compuestos químicos naturales, llamados precisamente minerales, caracterizado cada uno de ellos por su típico aspecto y por determinadas propiedades. Entre éstas, es muy importante la dureza, la cual puede servir, aunque sea aproximadamente, para reconocer los diversos minerales y precisamente por esto se toma como término de comparación para clasificar los minerales en orden de dureza creciente.

La escala de dureza más comúnmente empleada es la escala de Mohs; consta de diez términos: talco, yeso, calcita, fluorita, apatita, ortosa, cuarzo, topacio, corindón y diamante, cada uno de los cuales puede rayar al precedente y ser rayado por el siguiente. El talco tiene dureza 1 y es el más blando; el diamante tiene dureza 10 y es el mineral más. duro que se conoce.

Cristalización de los minerales: Los minerales, en su enorme mayoría, son sólidos. Como todos los sólidos, se caracterizan por una densidad, por un volumen, por una determinada cohesión, elasticidad, coeficiente de dilatación, transparencia y otras propiedades semejantes. No todas (que en definitiva son propiedades de la materia) tienen las mismas características; mientras algunas pueden definirse por medio de un simple número (como por ejemplo, la densidad, el volumen y otras), en cambio hay algunas que, para ser definidas, exigen no sólo un número sino además una dirección.

En el cuarzo, por ejemplo, la luz no se propaga igualmente en todas direcciones. Por eso, al querer expresar la propagación luminosa en el cuarzo y la dilatación térmica en la calcita no bastan dos números sencillos, sino que hay que precisar la dirección de estos números.

Las propiedades que se definen por medio de un número se llaman escalares; las que se definen por un número, una dirección y un sentido vectoriales. Estas últimas pueden representarse por un vector, o sea, por un segmento orientado (con una flecha) en el sentido querido, tanto más largo cuanto mayor es el número que le corresponde. Explicado esto, consideremos ahora las propiedades vectoriales de los cuerpos y examinemos, por ejemplo, cómo se comportan el vidrio y la barita, sometidos a calentamiento.

Pronto se nota que el vidrio se dilata por igual en todas direcciones, mientras que la barita se dilata más en algunas direcciones; en el primer caso, el vector representativo de la dilatación se mantiene constante en todas las direcciones; en el segundo caso, no resulta constante. Si repetimos la prueba con las mismas sustancias, pero con respecto a propiedades vectoriales distintas (propagación luminosa, cohesión, elasticidad y semejantes), observaremos que para el vidrio cada uno de los vectores representativos se mantendrá siempre constante, pero con la barita ocurre todo lo contrario.

Las sustancias (coloides, líquidos, gases) que, como el vidrio, presentan propiedades vectoriales constantes en todas las direcciones se llaman isótropas; las demás, anisó-tropas. Ahora bien, casi todos los minerales resultan anisótropos; sobre todo, respecto a la forma que adoptan cuando se solidifican al cristalizar. En condiciones favorables, la mayor parte de los minerales adopta espontáneamente una forma propia poliédrica; esta forma se llama cristal, y se habla de cristalización cuando se alude al proceso en que muchos minerales (llamados precisamente cristalinos) se solidifican en cristales.

Yacimientos, canteras y minas: Las riquezas del subsuelo son múltiples y deben ser aprovechadas como corresponde. Para ello, dentro de la órbita estatal y privada, se recurre a la colaboración de técnicos y científicos (geólogos, químicos, industriales, ingenieros y expertos en mineralogía) capaces de asesorar sobre la búsqueda, explotación y uso de tales materiales.

Funcionan, además, numerosas instituciones especializadas -con el auspicio del gobierno o de compañías particulares– cuyos equipos de trabajo realizan una acción, orgánica y planificada, para llevar adelante tales propósitos.

Comprobado el hallazgo de una especie mineral adecuada, habrá que determinar si la cantera, mina o yacimiento, dispone de reservas suficientes para justificar su explotación. Se da el nombre de «mena» a la roca que contiene uno o varios minerales técnicamente útiles, es decir en calidad y cantidad apropiadas. Casi siempre, junto a las substancias aprovechables por su valor comercial, hay otras que forman el descarte residual, llamado «ganga».

En las canteras se trabaja a cielo abierto; en las minas -contrariamente-, bajo tierra: en los pozos y galerías. Estas últimas también reciben el nombre de yacimientos, denominación que era reservada, al principio, para los lugares donde se encontraban combustibles, como el petróleo.

De las canteras se extraen rocas calizas –transformables en cal y cemento-, bloques de piedra y de granito, lajas, balasto, pedregullo y mármoles. Los yacimientos minerales explotados por el hombre pueden ser superficiales o profundos. Entre estos últimos, la mayoría se encuentra a menos de 200 metros; pero hay otros que sobrepasan, holgadamente, ese límite.

Existen varias clases de yacimientos o minas. Además de distinguirse por el tipo de minerales que encierran (de origen ígneo o sedimentario), puede clasificárselos, también, en otras categorías. Así, por ejemplo, reciben el nombre de «hidrotermales» aquellos cuyos filones se han formado por la precipitación de minerales arrastrados por las aguas termales. Los yacimientos de origen sedimentario se clasifican en orgánicos (carbones y petróleo) e inorgánicos (elementos, óxidos, hidróxidos, cloruros, sulfatos, carbonatas, etc.).

Ciertos minerales aparecen, junto a los yacimientos primarios, en los cauces de ríos y arroyos, hasta donde fueron arrastrados por la erosión; suelen acumularse en pequeños hoyos irregulares llamados aluviones o placeres.

DEFINICIONES:

•  YACIMIENTO es el «sitio donde se halla naturalmente una roca, un mineral o un fósil», dice el Diccionario de la Real Academia. En Geología, se entiende como tal la disposición de las capas m inerales en el seno de la Tierra. También recibe este nombre una masa mineral bastante extensa.

•  CANTERA -según la versión académica- es el «sitio de donde se saca piedra, greda u otra substancia análoga, para obras varias». Las canteras suelen establecerse a cielo abierto. Este vocablo fue empleado como sinónimo de «cantería», nombre que recibe el arte de labrar las piedras para as construcciones.

•  MINA. Esta palabra deriva de un an-tiquísimo vocablo celta, «mein», que significa «metal en bruto». Puede que, de allí, pasase al latín vulgar o plebeyo (no al latín culto), yaque registraba un término similar al que se emplea, en nuestro idioma, para designar la excavación que se hace, con pozos y galerías, para extraer un mineral. El Diccionario de la Lengua lo presenta como s ¡non ¡mo de ‘ ‘criadero», voz que no solamente significa lugar destinado para la cría de animales o plantas, sino «agregado de substancias inorgánicas de útil explotación que, naturalmente, se hallan éntrela masa de un terreno».

Ver: Las Rocas   –   Minerales Para La Industria    –   Minería en Argentina

Fuentes Consultadas:
Enciclopedia Ciencia Joven Fasc. N°11 Los Minerales – La Ciencias de los Minerales – Edit. Cuántica
Biblioteca Temática ETEHA El Mundo que nos Rodea – Los Minerales de la Tierra – Edit. Unión Tipográfica –

Propiedades del Mercurio Aplicaciones , Usos y Características

Propiedades y Características del Mercurio
Aplicaciones del Metal Líquido

1-OBTENCIÓN DEL MERCURIO

2-PROPIEDADES DEL MERCURIO

3-INTOXICACIÓN   POR  MERCURIO

4-APLICACIONES DEL MERCURIO

5-APLICACIONES PRÁCTICAS DE LAS SALES DE MERCURIO

6-USO DEL MERCURIO EN  MEDICINA

El mercurio es uno de los primeros elementos metálicos conocidos por el hombre. En una tumba mesopotámica del siglo xvi antes de Cristo, se encontró un pequeño frasco con mercurio. En cuanto a los antiguos romanos, lo extraían de una mina situada en el Monte Amiata. Plinio lo denominó azogue (metal «vivo»), nombre por el que se le conoce también en la actualidad.En otra época llamado plata líquida o azogue, fue objeto de estudio de la alquimia.

El químico francés Antoine Laurent de Lavoisier lo identificó por primera vez como elemento durante sus investigaciones sobre la composición del aire. 

Ocupa el lugar 67 en abundancia entre los elementos de la corteza terrestre. Se encuentra en estado puro o combinado con plata en pequeñas cantidades, pero es más frecuente encontrarlo en forma de sulfuro, como el cinabrio, la principal mena del mercurio. Para obtener el mercurio a partir del cinabrio se tuesta la mena al aire y los gases generados se hacen pasar a través de un sistema de condensación.

Algunas de sus propiedades medicinales fueron ya descritas por Dioscórides, médico griego del siglo I d. de C, aunque no fue utilizado seriamente en este campo hasta el siglo XVI, cuando se convirtió en un importante fármaco, debido a Paracelso.

La mina de mercurio más importante del mundo se encuentra en Almadén, provincia de Ciudad Real (España) , y aunque es difícil de precisar la fecha de su descubrimientq, se cree que está comprendida entre los años 400, y 150 antes de Cristo.

Después, de unos 2.100 años de utilización, Almadén es todavía la mayor fuente de mercurio del mundo. No mucho después de la conquista de Perú, se descubrió una mina de cinabrio (sulfuro mercúrico, SHg) en Huancavelica (Perú).

La producción de mercurio en esta mina, denominada Santa Bárbara, comenzó en 1566 y hubo un período en que llegó a producir más que la de Almadén. Parece ser que tanto en este caso, como en el de la mina de Nueva Almadén (California), el aumento de producción fue debido a que se necesitaba mercurio para emplearlo en la extracción de oro y plata de minas cercanas, ya que estos metales se unen a él, formando amalgamas de las que posteriomente pueden ser recuperados con facilidad.

mercurio, metal liquido

OBTENCIÓN DEL MERCURIO

Los métodos de extraer el metal de sus minerales han cambiado muy poco, debido a su sencillez. El cinabrio, de color rojo, es el mineral de mercurio más importante. Cuando este mineral se calienta suficientemente, se descompone en sus elementos.

Los hornos de extracción emplean, generalmente, gas o petróleo como combustible. El mercurio destila en fase de vapor, y, al enfriarse éste en un refrigerante apropiado, se obtiene el mercurio líquido. Esta operación puede ser llevada a cabo fácilmente en el laboratorio.

La sencillez de este procedimiento se demuestra prácticamente por el hecho de que en México muchos «buscadores» de mercurio lo destilan ellos mismos, para lo cual utilizan pequeñas vasijas de destilación que se exponen al fuego, permitiendo que el vapor de mercurio que se desprende pase a través de un serpentín, refrigerado con agua, en donde el mercurio se condensa.

Existen firmas dedicadas a la compra del mercurio obtenido así, muy similares a los «bancos» dedicados a transacciones análogas en la época de la fiebre del oro. Las impurezas sólidas que acompañan al mercurio pueden ser separadas filtrándolo a través de una gamuza.

De este modo, se limpia también en el laboratorio el mercurio sucio. Cuando se requiere mercurio muy puro, se redestila después de filtrado, y luego se lava con ácido nítrico, para lo cual se deja caer el metal en forma de finas gotitas, a través de una columna que contiene una disolución del ácido. Finalmente, el mercurio puede ser purificado por electrólisis.

Como hemos indicado, el mercurio tiene la propiedad de «disolver» la mayor parte de los metales, formando amalgamas con ellos (una amalgama es una solución de un metal en mercurio). Afortunadamente, el hierro no forma amalgama, por lo que el mercurio puede ser almacenado en bidones de acero, que generalmente contiene cada   uno  76 libras de dicho metal (unos 34,5 kilos). Es curioso el hecho de que el mercurio véndese en bidones de 76 libras desde el tiempo de los romanos. La producción mundial es de unos 230.000 de estos bidones al «año, siendo España e Italia los principales productores.

PROPIEDADES DEL MERCURIO

El mercurio es el único metal líquido a temperatura ambiente. Pero es un líquido, sin embargo, que presenta propiedades peculiares, ya que, por ejemplo, no moja las paredes del recipiente que lo contiene. Si introducimos un dedo en mercurio lo sacaremos completamente seco.

Es muy denso, ya que pesa 13,6 veces más que el agua. Cuando se vierte mercurio en un tubo de ensayo ordinario, la fuerza que ejerce al caer sobre el fondo es tal, que generalmente provoca su rotura. Por ello, para su manejo han de utilizarse tubos de ensayo especiales.

No es sorprendente que el mercurio sea tan denso, ya» que su peso atómico es de 200,6. Sus átomos tienen dos electrones en su capa externa, por lo que había de esperar que presentara valencia 2, y efectivamente, entra con ella en sus compuestos más estables, como, por ejemplo, en el óxido mercúrico (HgO) y en el cloruro mercúrico (CL2Hg2).

En los compuestos mercuriosos, este elemento entra con valencia 1, y así sucede en el cloruro mercurioso (Cl2Hg2) y en el sulfato mercurioso (SO4Hg2). El mercurio se combina a temperatura ambiente con el cloro y con el bromo, y se disuelve con facilidad en ácido nítrico concentrado. En cambio, los álcalis, o los ácidos clorhídrico y sulfúrico diluidos, no influyen en él.

Cuando se calienta mercurio en presencia de aire, se forman copos de óxido mercúrico sobre la superficie del metal. Si se prosigue el calentamiento, el óxido mercúrico formado se descompone en oxigeno y mercurio. De este modo determinó Davoisier la proporción en que el oxígeno entra a formar parte del aire.

INTOXICACIÓN   POR  MERCURIO

El vapor de mercurio y la mayor parte de sus compuestos son muy venenosos, y han de ser manejados con mucho cuidado. Por eso, en las fábricas que emplean estas sustancias se dictan normas rigurosas, las cuales han de ser rígidamente observadas por razones de seguridad. Aunque el mercurio puede ser absorbido por la piel, los envenenamientos ocurren, generalmente, por respiración del vapor.

La absorción cotidiana, durante muchos meses, de ínfimas cantidades de mercurio (del orden, por ejemplo, de una décima de miligramo), por vía digestiva o respiratoria, determina, con el tiempo, una intoxicación crónica que puede producir la muerte.

Esta intoxicación es debida a un proceso acumulativo de mercurio en los tejidos, ya que este elemento se elimina muy lentamente. Su presencia en los tejidos provoca una disminución de la velocidad en el proceso de nutrición, y en el número de glóbulos rojos.

Los principales síntomas de intoxicación por mercurio, los cuales van apareciendo progresivamente, son éstos: exceso de salivación, inflamación y ulceración de las encías y de la mucosa bucal, trastornos digestivos, irritabilidad especial, temblores que se extienden progresivamente desde los miembros superiores a todo el cuerpo, trastornos mentales, pérdida de la memoria y, en algunos casos, parálisis.

Por ello, no es raro que tanto en las minas como en las plantas de producción de mercurio y en las fábricas de termómetros, barómetros, rectificadores y otros aparatos eléctricos, en donde se trabaja con este metal, se tomen medidas especiales para combatir la intoxicación.

termometro de mercurio

El mercurio, aunque su punto de ebullición es relativamente alto, tiene una presión de vapor apreciable a temperatura ambiente, y en los laboratorios donde su utilización resulta habitual, es frecuente que haya esparcidas por el suelo pequeñas gotitas de él, cuya limpieza total es muy difícil.

Existen aparatos automáticos que miden de modo directo la presión de vapor de mercurio existente en un laboratorio, con lo que rápidamente puede determinarse si se está por encima o por debajo del nivel crítico, y tomar las oportunas medidas.

APLICACIONES DEL MERCURIO

El mercurio se utiliza principalmente en la fabricación del cloro y de la sosa cáustica. En este proceso electrolítico, el mercurio hace de cátodo y en él se disuelve el sodio, formando una amalgama que es descompuesta para obtener la sosa cáustica y recuperar el mercurio. El mercurio también se emplea en aparatos eléctricos. Las lámparas de vapor de mercurio y los tubos fluorescentes contienen mercurio en fase de vapor.

Al ionizarse éste, conduce la electricidad, y los iones y moléculas excitadas emiten luz. El color de la luz emitida depende de la presión de vapor. El mercurio forma el cátodo en los rectificadores de corriente que llevan su nombre, los cuales, como se sabe, transforman la corriente alterna en corriente continua. El rectificador está formado por un recipiente de vidrio al que se le ha hecho el vacío, un ánodo de hierro y un cátodo de mercurio.

Cuando se enciende un arco entre el cátodo y un ánodo auxiliar, introducido, precisamente, para iniciar el proceso, se vaporiza una parte del mercurio, el cual, al ionizarse, puede conducir grandes intensidades de corriente en una sola dirección, con lo que se consigue rectificar la corriente alterna de entrada. El mercurio es utilizado como elemento de contacto para cerrar y abrir circuitos, debido a que su estado líquido establece una excelente continuidad entre terminales y totaliza las superficies de contacto.

Otra de las aplicaciones, que no por ser más familiar deja de ser menos importante, es su utilización como líquido ter-mométrico y como líquido barométrico. Uno de los mayores defectos de las pilas secas es que sobre la superficie catódica se depositan burbujas de hidrógeno, impidiendo que la pila funcione convenientemente. La adición de sales mercúricas evita que ésto suceda, lo que ha permitido la fabricación de pequeñas pilas muy estables, que son utilizadas en satélites y en relojes de pulsera eléctricos.

APLICACIONES PRÁCTICAS DE LAS SALES DE MERCURIO

Las sales de mercurio son venenos útiles, por lo eficaces que resultan en el control de las infecciones por hongos y por bacterias, que aparecen en muchos procesos industriales de importancia. En agricultura, los calomelanos (protoclo-ruro de mercurio sublimado) se utilizan para controlar el crecimiento del musgo en los prados. Para proteger de los hongos las semillas de muchas cosechas (especialmente cereales), durante la germinación, se emplean compuestos de fenilmercurio.

Otros compuestos orgánicos mercuriales se utilizan en pulverizaciones, en el tratamiento de las plantaciones de algodón, de caña de azúcar, y en otros muchos procesos.

También se añaden estos compuestos a ciertos tipos de pintura para prevenir su descomposición por las bacterias, y para impedir el crecimiento de hongos sobre la capa de pintura, una vez aplicada, pues en muchos casos, cuando ésta toma un aspecto sucio, se debe a dicho crecimiento.

La pintura fabricada a base de óxido mercúrico se utiliza para pintar los cascos de los buques e imposibilitar el crecimiento de mejillones y otros organismos de su especie, que, al incrustarse allí, pueden llegar a reducir considerablemente la velocidad del buque.

El agua utilizada en las fábricas de papel se trata frecuentemente con compuestos de mercurio, para eliminar las bacterias, ya que, de no hacerlo así, la pulpa se tornaría mucho más sucia y menos resistente, y para preservar ésta de las decoloraciones producidas por hongos que, de otro modo, sufriría durante el período de almacenamiento anterior a su manufactura. Las sales de mercurio sirven muy aficazmente para defender también una amplia gama de productos, como cueros y pieles, colas, cosméticos, plasma sanguíneo, etc.

USO DEL MERCURIO EN  MEDICINA

Algunos compuestos de mercurio se emplean en medicina. Sus aplicaciones en este campo pueden encuadrarse en tres grupos: antisépticas, antisifilíticas y diuréticas. Probablemente, las primeras preparaciones medicinales a base de mercurio, eran ungüentos a los que se incorporaba sales insolubles de mercurio y mercurio metálico, y se utilizaban como un antiséptico general y en el tratamiento de distintas afecciones de la piel, principalmente las causadas por parásitos.

Estas preparaciones permitían que los tejidos absorbiesen lentamente los iones de mercurio, los cuales podían ejercer su acción durante mucho tiempo.

Desde el descubrimiento de los específicos de lucha contra la sífilis a base de bismuto o arsénico, más eficaces y menos tóxicos, y, sobre todo, desde el descubrimiento de los antibióticos, los compuestos de mercurio apenas se utilizan ya en el tratamiento de la sífilis. Las principales aplicaciones médicas de los compuestos de mercurio son como antiséptico y diurético.

Fuente Consultada:
Enciclopedia de la Ciencia y La Tecnología TECNIRAMA Fasc. N°56

Revolucion Industrial en Francia Avances Tecnologicos

Revolución Industrial en Francia

Industrialización en Francia:Un “despegue” del crecimiento no fue lo que caracterizó en el siglo XIX al desarrollo económico de Francia. Sino al contrario, este evidenció una lenta transformación de sus técnicas de producción. Por tal motivo podría afirmarse que el desenvolvimiento industrial francés para nosotros, no será adjetivado como revolución con su total connotación como concepto. Tal es así, que a lo largo del siglo XIX, la economía francesa se transformo de una manera gradual. La clave de este proceso está sujeto al desplazamiento progresivo de su centro de gravedad: la agricultura, hacia el desarrollo de la industria, localizada en pocas ciudades y principalmente en el norte de este país.

fabrica de la epoca industrial en Francia

Evolución demográfica

Francia evidenció desde finales del siglo XVIII hasta principios del XX, una baja de la tasa de natalidad mucho más marcada que en otros países, comprobada a través de su evolución demográfica. En cambio, la tasa de mortalidad disminuyó mucho menos rápidamente. Esta doble tendencia tenía como objetivo frenar el crecimiento de la población francesa. Tal es así que podemos observar diferentes etapas pertenecientes a esta directriz:
1800-1810 La diferencia entre las tasas de natalidad y mortandad era de 5.4 por ciento.

1850 Descenso hasta 4 por ciento (entre ambas tasas).
1913 Oscilación alrededor de 1 por ciento.

Una caída absoluta fue la finalización de este proceso en el período de entreguerras. A tal punto que de una manera alarmante en el siglo XIX, Francia logra reducir su tasa de natalidad. Por lo que se tradujo además, en un aumento cada vez más débil de la población. No obstante, el resultado que arrojó este crecimiento neto fue un alargamiento de la longevidad. En consecuencia, Francia evidenció un proceso que se conoce como “envejecimiento demográfico o de la población”.
Para comprender el proceso de industrialización en Francia, no existió el factor determinante de la presión demográfica. Esto es contrariamente a lo que sucedió en Inglaterra, por lo que se puede afirmar entonces, que la ausencia de esta presión redujo en gran medida la demanda global y por lo tanto también frenó los ritmos del desarrollo industrial.

Desarrollo agrícola

El progreso real de Francia se caracterizó por un largo retraso en las reformas técnicas y estructurales. Tal es así que cuestiones fundamentales al respecto dieron su inicio, estas son cinco en total:

1-Quienes fueron los únicos que invirtieron durante mucho tiempo en el campo, fue el campesinado a pesar de sus escasos recursos. Sin embargo, sobre ellos recaían los impuestos del régimen señorial y del fisco real. La nobleza es quien canalizaba estos volúmenes económicos en inversiones costosas.

2-La estructura de la propiedad de la tierra no fue modificada sustancialmente tras la revolución burguesa de 1789; sino que se reforzó las pequeñas y medianas propiedades a través de la venta de los bienes nacionales. A tal punto que sin una articulación posible, se dio una coexistencia de latifundio, mediana y pequeña propiedad.

3-El restablecimiento del derecho de primogenitura fue boicoteado por la oposición en el Parlamento, en 1826, bajo la Restauración. Por lo tanto, quien sufrió una parcelación desfavorable al progreso técnico fue la propiedad agrícola, tras la continuación del reparto de tierras por herencia. Por el contrario que los terratenientes británicos, sus pares franceses no mostraron el mismo interés hacia los nuevos métodos de producción.

4-En cuanto al sistema de arrendamientos, no se produjo modificaciones sustánciales. Solamente hubo una venta de propiedades en forma de pequeños lotes de tierras, incluso dentro de las grandes propiedades, por parte de los terratenientes, es decir de la aristocracia o de la gran burguesía. El objetivo de este hecho fue impedir que obtengan elevados rendimientos, por parte de las posibles grandes extensiones.

5-El siglo XVIII se había caracterizado por un importante alza de la productividad agrícola, no supo se aprovechado por Francia. Quien tampoco emprendió los enclousures, “revolución de los cercados”, como lo promovió Inglaterra.

Etapas del crecimiento agrícola

• 1770-1789. La crisis de superproducción evidenciada durante el último tercio del siglo XVIII, hizo decaer la tendencia alcista registrada regularmente guante ese mismo siglo. Tal es así que esta crisis, produjo la ruina de pequeños y medianos propietarios vitivinícolas y cerealistas, tras el descenso de sus precios, es decir el del vino y por lo tanto el de los cereales. Quien disparó repentinamente los precios, fue la helada prematura del verano prerrevolucionario. Dependiente del crecimiento agrícola, la industria francesa sufriría finalmente estos colapsos. Así “convaleciente”, sería el diagnóstico de la situación agrícola, resultante a finales de este siglo.

• El perfeccionamiento de las herramientas y maquinarias, el empleo de abonos y la preparación de suelos, junto al aumento de las superficies de tierra de cultivo y el desarrollo de los medios de transporte; provocó desde principios del siglo XIX hasta 1864, un rápido crecimiento de la producción.

• 1870-1900. Se manifestó una fase de crecimiento lento. La competencia de los países de ultramar y las guerras del Segundo Imperio pueden considerarse las causas fundamentales de este fenómeno.

• De principios del siglo XX a 1914. Volvió a aumentar la productividad agrícola, aunque el estallido de la Primera Guerra Mundial cortó esa tendencia.

Comienzos de la industrialización en Francia

El conjunto de factores que favorecieron el desarrollo industrial francés durante el siglo XIX tuvo su origen en las reformas revolucionarias, en los órdenes institucional y político que se sucedieron a la caída del Antiguo Régimen; lo cual podríamos denominar “precondiciones” del desarrollo.  La revolución burguesa de 1789 liquidé el feudalismo y abolió la servidumbre. La ley de marzo de 1791 sepulté definitivamente el régimen gremial de las corporaciones de oficio, que paralizaba la iniciativa privada y llegaría a ser el blanco donde concentraría la ira de todo adepto a las teorías del librecambismo.

Por otra parte, se realizó toda una reorganización territorial de la geografía francesa. Las antiguas provincias fueron sustituidas por nuevas demarcaciones, que Napoleón acabó de ordenar en el marco de una estrecha centralización administrativa. Se suprimieron las aduanas interiores entre las provincias. Hombres, mercancías y capitales lograron desplazarse libremente. El espacio geográfico francés se convirtió en un mercado único, protegido por un elevado arancel exterior.

En 1790 la Asamblea adopté el sistema métrico, mucho más simple que el antiguo sistema de pesas y medidas, lo cual favoreció notablemente los intercambios.

Tanto la Convención como el Directorio darían un fuerte impulso a la creación de instituciones dedicadas al estudio y a las investigaciones científicas.

A mediados del siglo XIX, estas iniciativas ofrecían ya claros resultados con Saint Simon y sus seguidores, cuyas teorías sobre la industrialización y el desarrollo de las técnicas financieras, así como la reorganización de los transportes (las vías fluviales del norte comunicarían los focos de concentración industrial, junto con el ferrocarril), darían como resultado una organización económica más funcional.

• Hubo factores desfavorables que convergieron contrariamente en el desarrollo industrial de Francia.

Francia carecía de importantes recursos de carbón y de mineral de hierro, lo cual provocó que, finales del siglo XIX, el 53.5 por ciento de las importaciones francesas de mercancías fueran materias primas necesarias para la industria. Era el único país industrial que necesitaba importar carbón.

El ahorro y la inversión

En el siglo XIX no era escaso el capital, pero su ahorro no fue suficientemente productivo. Si bici existió atesoramiento, el ahorro francés se canalizó, en mas de la mitad, hacia la inversión en el extranjero, y el préstamo al Estado estuvo económicamente mal dirigido. El Estado bien pudo haber empleado este ahorro para fines productivos, aunque normalmente lo dirigió hacia el financiamiento de su déficit presupuestario.

El proteccionismo

El panorama económico general del siglo XIX francés sufrió el peso del ideario “colbertista”, defensor a ultranza de un Estado obsesionado por el control y la defensa de la economía nacional, frente a la competencia extranjera. A largo plazo, la política proteccionista arrojaría piedras contra su propio tejado, cuando surtieron efecto sus aspectos más negativos: el freno a la difusión de nueva técnicas, al recelar de cualquier “hipoteca nacional”, que pudiera suponer un alto grado de dependencia tecnológica y, por otra parte, en un contexto económico internacional, tendente al librecambismo, cualquier actitud de prolongado proteccionismo inhibiría el crecimiento interior. Algunos casos concretos resultaron altamente demostrativos: los derechos de aduanas impuestos sobre el carbón y las materias primas aumentaron los costos de producción o evitaron el desarrollo de la obtención de hierro mediante coque.

Inestabilidad política

Francia padeció, a lo largo del siglo XIX, más sacudidas políticas que la mayor parte de los países industrializados: las revoluciones de 1830 y 1848, el conflicto de Crimea de 1854-1856 y la guerra de 1870. Al fin y al cabo, estos hechos supusieron una sangría periódica de hombres y recursos, que hay que sumar al conjunto de factores que retrasaron el progreso económico francés.
La industria textil y la industria del hierro en Francia, como es el caso inglés, fueron las primeras en dar el salto hacia adelante en el proceso que va de una economía artesanal a una economía

Industria textil

Hacia mediados del siglo XVIII existía en Francia una industria textil rural. Los talleres dispersos de carácter familiar trabajaban el lino y el algodón a domicilio. En algunos casos, los trabajadores se asociaban bajo la tutela de un comerciante que proporcionaba las materias primas. Esta estampa de hiladuras y manufacturas “de aldea” se mantuvo por generaciones, hasta el momento en que el comerciante-abastecedor, enriquecido por el auge del mercantilismo, comenzó a importar máquinas y a construir fábricas.

Desafiando las fuertes tendencias proteccionistas del Estado del Antiguo Régimen, estos comerciantes viajaron a Inglaterra, visitaron talleres británicos, se empaparon en nuevas técnicas gracias a las abundantes revistas especializadas y, bien por simples licencias obtenidas de las autoridades inglesas, o por la política del contrabando, iniciaron una corriente de suministro de material técnico, combinándola con una amplia red de espionaje económico. Los empresarios ingleses y sus expertos técnicos viajaron a Francia atraídos por la perspectiva de aumentar sus beneficios.

John Kay, en 1747, instaló en París la primera lanzadera volante. El gobierno francés se vio obligado a reconocer el talento y la iniciativa de Kay. Sus complicados artefactos comenzaron a funcionar en los centros textiles de Normandía.

La industria textil del norte y las fábricas de pana de Ruán comenzaron a desarrollarse a mediados del siglo XVIII con maquinaria y mano de obra inglesas, bajo la tutela y, a la vez, el recelo terno de París, presionado por las ilusiones de la iniciativa privada.

La energía hidráulica y la de vapor instaladas por primera vez en Alsacia, en 1830, ya se concentraban en cerca de dieciocho mil telares hidráulicos o de vapor.

En Calais y Boloña, a principios del siglo XIX, comenzó una fase decisiva en la fabricación de encajes bajo el asesoramiento, en sus inicios, de mano de obra inglesa calificada.
En conjunto, concluimos que Francia supo aprovecharse de las técnicas de producción textil de Inglaterra. Sin embargo, el desarrollo de la industria textil fue mucho más lento. Lo mismo ocurrió en los restantes sectores industriales.

La industria siderúrgica

Con respecto a Alemania y a Inglaterra, Francia llevaba un gran retraso en la producción de hierro, el cual tendía a mitigarse a través de una política aduanera fuertemente proteccionista. El escaso desarrollo de las vías de comunicación mitigaba la competencia interior: cada productor tenía su “monopolio”, reducido a la zona geográfica donde estaba radicada la empresa.

A partir de la segunda mitad del siglo XVIII se repitió en el campo de la siderurgia la colaboración franco-inglesa: llegada de tecnología y mano de obra calificada británicas.
Entre 1760 y 1786 se fundaron varias empresas metalúrgicas y mecánicas. En Saint Etienne se realizaron las primeras experiencias de producción de hierro con coque. Los altos hornos de La Creusot fueron construidos con fondos privados y ayuda financiera estatal, convirtiéndose así en la primera concentración carbón-mina de hierro.

Sin embargo, los progresos no fueron realmente sensibles en el campo de la siderurgia hasta mediados el siglo XIX. Bajo la Restauración se inició en Francia la fabricación de acero. Con lentitud fue penetrando también la técnica del crisol.

Hacia finales del siglo XVIII se introdujo la máquina de vapor, que en un principio no interesó demasiado a los empresarios franceses. En 1810 la industria francesa contaba solamente con 200 máquinas de vapor, frente a unas cinco mil que funcionaban en Gran Bretaña.

Aparte de los factores desfavorables a la industrialización en Francia, enunciados anteriormente, habría que añadir que el elevado precio del carbón y de los transportes, la insuficiente calificación de la mano de obra, las unidades productivas de pequeño tamaño, el espíritu rutinario y, a menudo, la insuficiencia de los capitales, constituyeron aspectos del desarrollo económico específico de Francia.

cuadro revolcuion industrial

Fuente Consultada: Historia Universal Gómez Navarro y Otros.