Intersección de Circunferencia y Recta

Software Para Calcular Momentos de Inercia Centro de Gravedad

Software Para Calcular Momentos de Inercia centro de Gravedad

USO DEL SOFTWARE ULISES II PARA PÓRTICOS

  1. Debes descomponer tu figura en varias figuras elementales (triang, rectan., cuadr.,etc)
  2. Ingresas las medidas aproximadas a los efectos de establecer una escala de trabajo
  3. Eliges en la barra inferior el tipo de figura geométrica
  4. Ingresas las coordenadas de esa figura.
  5. Repites los pasos 3 y 4 hasta completar la figura a determinar el c.d.g.
  6. Ingresas las coordenadas de los perfiles y su altura en cm.
  7. Pulsas sobre el botón calculadora y tendrás el c.d.g. y los mtos. de inercia principales
  8. Puedes visualizar e imprimir los datos obtenidos

 centro de gravedad de perfiles

centro de gravedad de un perfil

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar SoftwareDescargar Complementos

Ver También: Método de Cross Para Vigas

CREAR UNA PC VIRTUAL PARA CORRER SOFTWARE DE 32 BITS

//historiaybiografias.com/archivos_varios5/virtual_box.jpg

Haz «clic» para descargar  VirtualBox en forma gratuita, luego se instala y configura como una máquina virtual

Volver a Ingeniería Civil

Resolucion Ecuacion de Segundo Grado Aplicar la Resolvente

RESOLUCIÓN ECUACIONES DE 2º GRADO

CALCULO DE LAS RAÍCES EN ECUACIONES CUADRÁTICAS
Por Silvia Ele Profesora de Matemáticas

RESOLVER UNA ECUACIÓN DE SEGUNDO GRADO CON UNA INCÓGNITA 1ra. Parte

Una ecuación de segundo grado es aquella en la cual la incógnita

(generalmente simbolizada por x ) aparece elevada a la segunda potencia.

En general, puede simbolizarse como

MATH

donde $a$ representa al coeficiente del término cuadrático, y nunca puede

ser$=0$ , pero sí puede ser igual a cualquier otro número real.

MATH es el coeficiente del término lineal, es decir aquel en que $x$ aparece elevada

a la primera potencia. Puede o no ser igual a $0$. Y

MATH es el término independiente, pues es el coeficiente del término donde

$x$ aparece elevada a la potencia $0$, o sea, $x$ no aparece porque $x^{0}=1$.

Según los valores de $\ \ a$, $b$ y $c$, las ecuaciones de segundo grado se clasifican en

1.Completas, cuando $a,b$ y $c$ son distintas de $0$.

2.Incompletas, cuando

2.1 $b=0$, o sea, no contiene término lineal,

o bien $\ $cuando 2.2 $c=0,$ es decir, no existe término independiente.

Veamos 2.1. La forma general sería

MATH

En este caso, la resolución es fácil:

MATH $\ \ \ \ \ \ $de donde MATH

Por lo tanto

MATH MATH y MATH

Por ejemplo:

$4x\U{b2}-25=0,$

se resuelve así: $\ $

de $\ 4x\U{b2}=25$, es MATH, y MATH

Por lo tanto, MATH $\ \ \ \ \ \ \ \ $ y MATH

2.2Si $\ \ \ c=0$, es $\ \ \ ax^{2}+bx=0$

En este caso, para resolver, extraemos el factor común, y nos queda

MATH $si$ $a=1$

Que es lo mismo que $(x-0)(x+b)=0,$

y este producto dará $=0$ sólo si $x\U{2081} =0$ , (porque el primer factor será $0$,

y multiplicado por lo que sea que valga el otro, dará producto $0$), o bien si

$x\U{2082} =-b$ (ya que $-b+b=0$ ).

Por ejemplo, $\ x^{2}-4x=0$ se puede pensar como

MATH o sea $x(x-4)$ $=0$ , que tendrá

como raíces $x\U{2081} =0$ y $x\U{2082} =4.$

Volviendo al caso general, si $\ \ a=1$, se dice que las ecuaciones son Reducidas.

Veamos cómo se resuelve una de estas joyitas cuando $a=1$, y $b$ y $c$ son

distintas de $0$.

Su forma sería MATH

Pensémoslo en un ejemplo: $\ x^{2}-6x-16=0$ .

Si hacemos un conveniente pasaje de miembro ( el viejo truco ),

nos queda $x2-6x=16$ [1]

Si observamos el primer miembro, vemos que podría corresponder a los dos

primeros términos de un trinomio cuadrado perfecto ( o sea, el cuadrado de un

binomio), donde

MATH es el cuadrado del primer término del binomio,

MATH sería el doble producto del primero por el segundo,

pero nos faltaría el cuadrado del segundo.

Ahora bien, si $\ x$ es el primer término del binomio, $\ $

$-6$ sería el producto de $2$ (doble producto, dijimos) por el segundo.

Si llamamos $q$ al segundo, donde

$2q=-6$ implica que $q=-3$.

Y el binomio sería $(x-3)$

Entonces, apelando al otro viejo truco: «sumo y resto lo mismo y no altero

la suma», puedo escribir

MATH (porque $9-9=0$)

Y, asociando convenientemente, queda

MATH

o sea, MATH

Entonces, reemplazando en [1], queda MATH

y, resolviendo, será

MATH

y

MATH

o sea MATH de donde $\ x\U{2081} =8$

y $x\U{2082} =-5+3,$ $x\U{2082} $ $=-2$

Generalizando lo anterior, se ve que este mismo proceder es aplicable a

cualquier ecuación general de 2º grado con una incógnita. O sea, si:

MATH

será $\ x^{2}+bx=-c.$

Y si utilizamos el recurso del trinomio cuadrado perfecto, veremos que

$\ bx=2.x.q$ .

Entonces, es $q=\frac{b}{2}.$

y, si sumamos y restamos $\ q^{2}$ en ambos miembros (nuestro querido y

viejo truco), será MATH

Luego, antes de caer en el colpaso cerebral, hacemos el conveniente

pasaje de miembro y el factoreo del trinomio, y nos quedará

MATH 

De donde, MATH

y

MATH ; MATH ; MATH ;

MATH; MATH

que es lo mismo que

MATH .

esto es lo mismo que

MATH 

Y si aún queda alguien que desconfíe de este razonamiento, veamos si,

aplicando esta fórmula en la ecuación anterior, llegamos a las mismas

raíces. (Atención: un ejemplo no es una demostración válida, pero si el ejemplo

no coincide con la conclusión, vale para demostrar la no validez de la misma.)

Recordemos que era:

$a=1$; $\ \ b=-6$; $\ \ c=-16$

entonces MATH

de donde

MATH,

pero $36+64=100$, entonces

MATH o sea MATH entonces

$\ x\U{2081} =8$ ( que coincide con una de las que hallamos antes)

y

MATH entonces $\ x\U{2082} =-2$ (y que también coincide con la otra que hallamos)

APLICACIÓN ONLINE

Una vez aceptado esto, es una buena idea proponernos, para cuando

egresemos de la sala de terapia intensiva para cerebros exhaustos,

preguntarnos si esta fórmula sirve para todos los casos. O sea,

¿sirve tanto para completas como para las incompletas y para las

que no son reducidas?.

También nos queda para después el análisis de la relación entre el

valor y la «realidad» de las raíces, y el signo de la expresión sub-radical

en la fórmula.

Estos desarrollos los dejamos para otro día, cuando la convalescencia

esté avanzada, y nuestras neuronas hayan recuperado su actividad.

Por hoy, les deseo feliz terapia.

Y les digo «¡Hasta el próximo suplicio!»

«Silvia Ele, la autora de esta colaboración, es una profesora de matemática de muchos años, con quien podés comunicarte enviándole un mensaje a  [email protected] «

Interseccion Circunferencia y Recta Geometria Analitica Conicas

CALCULADORA DE INTERSECCION DE CIRCUNFERENCIA Y RECTA

CIRCUNFERENCIA: Un circunferencia está formada por una sucesión de puntos que están a la misma distancia de un punto que se llama centro. Existen muchas partes en un círculo.  El radio es un segmento con un extremo en el centro y el otro en el círculo. La cuerda es cualquier segmento con ambos extremos en el círculo. Eldiámetro es una cuerda que pasa por el centro del círculo.

La secante es una línea que interseca dos veces el círculo, y la tangente interseca el círculo en exactamente un solo punto. La tangente es perpendicular al radio en su punto de tangencia. El perímetro de un círculo se llama circunferencia y es igual a la distancia alrededor del círculo.

La figura de abajo muestra unas cuantas partes más del círculo que se emplearán posteriormente.

interseccion circulo y recta

El ángulo central es un ángulo con el vértice en el centro del círculo. El arco es una sección de un círculo y a menudo se le describe en términos del tamaño de su ángulo central. Entonces, podríamos referirnos a un arco de 20° o un arco de Pi/9 rad. (Pi=3.14)  Aclaramos que 1 rad=57° 18´ aprox. y es el ángulo correspondiente para que la longitud del arco sea igual al radio.

Un arco de longitud igual al radio es 1 rad. Un ángulo central divide el círculo en un arco menor y un arco mayor. También nos podemos referir a un arco por sus puntos extremos. En la figura, el arco menor se identifica como AB. El arco mayor se identifica como ABC, donde A y B son los puntos extremos y C es cualquier otro punto sobre el arco mayor. La longitud de un arco se denota colocando una m enfrente del nombre del arco. Entonces, mAB es la longitud de AB. Un sector es la región en el interior del círculo y está limitado por un ángulo central y un arco.

interseccion de circunferencia y recta

Ejemplo de una intersección entre una recta y una circunferencia, usando la aplicación de mas arriba:

Encontrar los puntos en los que la recta y = 2x – 10 corta al círculo con centro en punto de coordenadas (4, -2) y radio 4.472136. (este valor equivale a la raíz cuadrada de 20).

La ecuación del circulo es:

Y entonces se debe resolver el sistema de ecuaciones siguiente:

Resolviendo se obtiene que hay dos puntos de intersección de coordenadas: A (6,2) y B(2,-6)

Para hacerlo desde esta pagina usando el software de arriba, debe ingresar en Circunferencia C1 los valores en el siguiente orden:
radio= 4.47
x = 4
y = -2

Puede hacer clic en el Botón Graficar y observarás la circunferencia , y si deseas puedes cambiar el valor de la escala y volver a hacer clic en graficar para observar como se adapta al plano de trabajo.

Ahora para la recta se ingresan los dos puntos de pasos por ejemplo, cuando x=0, y=-10 y cuando x=2, y=0

Se vuelve a hacer clic en el Botón Graficar y en las casillas de abajo tendrás los valores de los puntos de intersección y la graficación correspondiente.

Interseccion de Dos Circunferencias Calculadora Online

Calculadora Online de Intersección de Cónicas Entre Dos Circunferencias

Ampliar Toda La Pantalla

CIRCUNFERENCIA: Un circunferencia está formada por una sucesión de puntos que están a la misma distancia de un punto que se llama centro. Existen muchas partes en un círculo.  El radio es un segmento con un extremo en el centro y el otro en el círculo. La cuerda es cualquier segmento con ambos extremos en el círculo. El diámetro es una cuerda que pasa por el centro del círculo.

La secante es una línea que interseca dos veces el círculo, y la tangente interseca el círculo en exactamente un solo punto. La tangente es perpendicular al radio en su punto de tangencia. El perímetro de un círculo se llama circunferencia y es igual a la distancia alrededor del círculo.

La figura de abajo muestra unas cuantas partes más del círculo que se emplearán posteriormente.

El ángulo central es un ángulo con el vértice en el centro del círculo. El arco es una sección de un círculo y a menudo se le describe en términos del tamaño de su ángulo central. Entonces, podríamos referirnos a un arco de 20° o un arco de Pi/9 rad. (Pi=3.14)  Aclaramos que 1 rad=57° 18´ aprox. y es el ángulo correspondiente para que la longitud del arco sea igual al radio.

Un arco de longitud igual al radio es 1 rad. Un ángulo central divide el círculo en un arco menor y un arco mayor. También nos podemos referir a un arco por sus puntos extremos. En la figura, el arco menor se identifica como AB.

El arco mayor se identifica como ABC, donde A y B son los puntos extremos y C es cualquier otro punto sobre el arco mayor. La longitud de un arco se denota colocando una m enfrente del nombre del arco. Entonces, mAB es la longitud de AB. Un sector es la región en el interior del círculo y está limitado por un ángulo central y un arco.