Circunferencias Online

Calculo Superior,Limite,Derivada,Integrales Online Ecuaciones

 CALCULO SUPERIOR ONLINE

RESOLVER EXPRESIONES ALGEBRAICAS
Evaluar Una ExpresiónExpandir Una ExpresiónResolver Una Ecuación
CALCULO SUPERIOR
Hallar Un LimiteDerivarIntegrarSuma de Riemann
GRAFICAR FUNCIONES MATEMÁTICAS
Gráfica Paramétrica 2DGrafica Normal 2DGráfica 3D

 Sistema de Ecuaciones

Geometría Analítica Online

Descargar Software Gratuitos Para Ingeniería Civil

Ponte esta herramienta de cálculo, con capacidad de conversión entre diferentes unidades de medida, bases numéricas, funciones científicas, fórmulas, estadísticas, matrices, números primos, operaciones con fechas, fracciones, números complejos, polinomios, etc.

Formula del Vértice de una Parabola Cuadrática Ejemplo Online

Fórmula del Vértice de una Parábola Cuadrática
Ejemplo Online

La función general de segundo grado y = ax² + bx+c  representa gráficamente en el plano cartesiano una parábola.

Asignando valores reales a la variable independiente x para obtener los valores de la variable dependiente y, podemos graficar sobre un par de ejes coordenados la curca parabólica.

Por Ejemplo:
—    Elaborar el gráfico de la función:      y  =   x² — 2 x — 2.

En donde según la fórmula general, los coefecientes son: a=1, b=-2 , c=-2

Se elabora la siguiente tabla:

x-3-2-10123
y1361-2-3-21

LLevando estos puntos a plano cartesiano, se tiene la siguiente curva:

grafica parábola

Se puede graficar desde aquí

Para calcular el vértice de cualquier parabola, usamos la siguiente fórmula:

formula vertice parabola cuadrática

Fórmula General Vértice Parabola Cuadrática

Para el caso que venimos estudiando es:

Coordenada X=(-(-2)/2.1)=1

Coordenada Y=(-(-2)²/4.1)-2)=-3

Coordenadas del vértice es: V(1,-3)


Software Gratuito Para Ingeniería Civil Esfuerzos en Estructuras

Software Gratuito Para Ingeniería Civil

ACLARACIÓN: SON TODOS EXCELENTES SOFTWARES Y PROBADOS,
LAMENTABLEMENTE
FUNCIONAN CON 32 BITS, POR LO QUE SE DEBER UTILIZAR VIRTUAL-BOX, QUE CREA UNA PC VIRTUAL CON EL SISTEMA OPERATIVO QUE TE INTERESA (Más Abajo se puede descargar)

LISTADO DE SOFTWARE IDEAL PARA LOS ESTUDIANTES DE INGENIERIA

ingenieria civilingenieria civilingenieria civil
Método de Cross para
estructuras aporticadas de n pisos
por n tramos.(Para n>1)
Software Cálculo de esfuerzos en armaduras metálicasisostáticas e hiperestáticas (además podrás determinarcorrimientos de los nudos)Software Para Calculo de Esfuerzos en arcos biarticulados con un cálculo de una estructura parabólica.
ingenieria civilingenieria civilingenieria civil
Sumatoria de fuerzas concurrentes.
(para estudiantes principiantes)
Software Para Resolver Sistema de ecuaciones
lineales para n ecuaciones con n incógnitas.
Software Para Calcular de centro de gravedad y momentosde inercia de secciones formadas con lacombinación de figuras planas.
ingenieria civilingenieria civilingenieria civil
Software Para Calcular de centro de gravedad ymomentos de inercia de secciones formadas con la combinación de figuras planas.Software Para La Determinación de centro de gravedad y momentos de inercia de secciones formadas con perfiles doble T ,Z, U y otros. Software para graficar funciones matemáticas:
debes escribir la función que te interesa estudiar y listo. Muy bueno y completo.
ingenieria civil ingenieria civilingenieria civil
Software para calcular tubos de hormigón armado.
(ATENCIÓN: Fuera de servicio)
Conversor de Medidas De Longitud,
Superficie, Presión, Energía, Temperatura, Tiempo, Potencia, Ángulos, Iluminación, Monedas, etc.
Espectacular Software
Software Para Que Al Dosificar Hormigones y
Morteros Determines Los Materiales
Y El Costo Por m3-Basado en el libro
El Calculista de S. Goldenhorn
SOFTWARE: Método de Cross Para Vigas Continuas
Hallar Online Los
Esfuerzos en un Pórtico
30 Tablas Online Para Determinar Áreas, Momentos de Inercia, Módulos Resistente y Radio de Giro Para Piezas de Sección Plana Hallar Online Los
Esfuerzos en una Viga Simplemente Apoyada (M.F. y E.C.)
ACCASOFTWARE: DESCARGA DE TRES SOFTWARE PARA INGENIERÍA CIVIL
software 1software 2 software 3
Descargar Descargar Descargar
https://www.accasoftware.com/es/descargas
Para Mas Información ver este video

Tabla de Perfiles
Laminados

También en: PDF

Importante: Todos estos programas de deben colocar adentro de una misma carpeta acompañados por otros tres archivos (del Visual Basic) que son: threed.vbx, grid.vbx y vbrun300.dlll. A estos archivos los debes bajar picando en el texto en blanco acá arriba.
Luego te diriges al software que te interesa bajar y pica sobre su portada.

Tablas de Esfuerzos En Vigas Isostáticas. Reacciones
en Apoyos, Mto. Flector
y Esfuerzo de Corte

ATENCIÓN: Recuerda Bajar Los 3 Archivos Indispensables Para La Corrida de Estos Últimos Programas

Ideal Para Estudiantes:
Decenas de Problemas Resueltos de Resistencia de Materiales-Estructuras Metálicas y Hormigón Armado

CalcMAT

Potente herramienta de cálculo, con capacidad de conversión entre diferentes unidades de medida, bases numéricas, funciones científicas, fórmulas, estadísticas, matrices, números primos, operaciones con fechas, fracciones, números complejos, polinomios, etc.

  • Armado rápido de pilares y vigas a partir de la sección y el área de acero.
  • Reparto de cargas entre pilotes.
  • Cálculo de zapatas rígidas.
  • Diseño de cables de pretensado con salida a Excel y Autocad del trazado. Incluye manual y ejemplo.

CalcMat
Ver Las Características Del Software

PARA ESTUDIANTES
Descargar Un Excelente Software Para Determinar Los Esfuerzos en Diversas Piezas Cargadas

ingenieria civil

Una Maravillosa Herramienta Online Para Hacer Todo Tipo de Cálculos Matemáticos Desde Algebra Básica hasta Cálculo Superior Ideal Para Todos Los Niveles De Estudio

ingenieria civil

Sistema de Ecuaciones Lineales Online Para Resolver Tus Problemas De Cálculo

ingenieria civil

Tabla de Constantes Físicas Tabla de Constantes Físicas

Conversión de Unidades Online

Curso de Hormigón Armado

Medidas de Perfiles Online

CREAR UNA PC VIRTUAL PARA CORRER SOFTWARE DE 32 BITS

//historiaybiografias.com/archivos_varios5/virtual_box.jpg

Haz «clic» para descargar VirtualBox en forma gratuita, luego se instala y configura como una máquina virtual

Origen de la Geometría Historia y Sus Matematicos Curso Basico

Origen de la Geometría-Historia y Sus Matematicos Curso Basico

GEOMETRÍA. Parte de las matemáticas que trata de las propiedades y medida de la extensión.

En su origen, la geometría tuvo una finalidad eminentemente práctica, como lo revela la etimología griega (de geo, tierra; metrein, medir).

La necesidad de medir la tierra para repartir los campos con exactitud dio nacimiento a esta ciencia.

El término latino agrimensura tiene la misma significación, pero el desarrollo posterior de la geometría, como ciencia teórica, obligó a reservar el concepto de agrimensura a la técnica que se ocupa de la medición de los terrenos.

Los más antiguos estudios de geometría fueron hechos por los antiguos caldeos y egipcios.

Los primeros, aunque no sistematizaron sus estudios, obtuvieron algunos resultados correctos, y los segundos hicieron grandes, progresos, como lo demuestra la construcción de las pirámides consideradas hoy como una de las maravillas del mundo.

Los egipcios fueron los primeros que usaron la geometría para medir los terrenos.

El Nilo, río que atraviesa su territorio, se desborda todos los años provocando grandes inundacio nes, que son aprovechadas en la fertilización de los campos.

Los egipcios se veían obligados después de cada inundación a efectuar mediciones para delimitar los campos y terrenos.

Era muy importante para ellos marcar las esquinas de los terrenos en ángulo recto y conocieron prácticamente algunas de las relaciones entre los lados de los triángulos rectángulos.

La verdadera fundación de la geometría como ciencia independiente, sobre bases rigurosas, corresponde a los griegos Pitágoras, Euclides, Arquímedes y Apolonio.

Una imagen de una obra de Durero explicando la proyección geométrica, aplicada en los dibujos y obras de arte

Pitágoras, nacido en el siglo VI antes de Jesucristo, de extraordinario talento matemático, descubrió la relación existente entre los lados de un triángulo rectángulo cualquiera, aunque el teorema que lleva su nombre ya era conocido de los chinos y egipcios.

Dicho teorema se enuncia así: «En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los otros dos lados».

Euclides escribió un libro llamado Elementos, en el que da las bases de un sistema geométrico que se mantuvo en vigencia durante veinte siglos y que todavía constituye el fundamento de la geometría en la enseñanza media.

Partiendo de ciertas proposiciones indemostrables, llamadas postulados, Euclides funda todas las demostraciones posteriores.

De todos los postulados, el más famoso es el V, llamado de las paralelas, pues todo su sistema descansa sobre la evidencia del mismo.

Dicho postulado ha sido la preocupación de todos los matemáticos, quienes en un tiempo, negando que pudiese ser aceptado sin demostración, lo discutieron,ya en el sentido de negarlo, ya en el de probarlo, hasta que la labor crítica del siglo XIX estableció que era indemostrable.

Otro pilar de la matemática griega, Arquímedes, de la ciudad de Siracusa, muerto por los soldados romanos cuando ocuparon esta ciudad en el 212 antes de Jesucristo, planteó nuevos problemas, determinó, con mayor exactitud que la obtenida hasta entonces, la relación existente entre la circunferencia y el diámetro, estableció el volumen de los cuerpos limitados por superficies curvas, inventó la espiral que lleva su nombre y sentó las bases del cálculo integral.

Arquímedes fue un verdadero genio de la matemática; famoso además por la cantidad de aparatos que inventó para la defensa de Siracusa.

Fue muerto por un soldado al no recibir respuesta a preguntas que éste le dirigía, por estar absorto en sus meditaciones.

El general romano Marcelo, que había dado orden de respetar las vidas de los siracusanos, sintió profundamente la pérdida del gran geómetra y ordenó le diesen digna sepultura e hizo grabar sobre su tumba una esfera inscrita en un cilindro, en memoria de uno de sus más famosos descubrimientos.

El cuarto gran geómetra griego es Apolonio de Pérgamo, que floreció a fines del siglo n antes de Jesucristo.

No sistematizó los conocimientos anteriores a él, como Euclides, ni abarcó tanta diversidad de temas como Arquímedes, sino que orientó sus esfuerzos en una dirección única, dedicándose exclusivamente al estudio de las secciones cónicas, con tal profundidad, que sólo en tiempos muy recientes se ha podido añadir algo a lo descubierto por él.

Debían pasar más de 1900 años para que la geometría tomara otro gran impulso. Descartes, filósofo y matemático francés del siglo XVII, estudia las figuras geométricas refiriéndolas a un par de coordenadas.

Herramientas basicas para estudiar geometría en el plano: regla, escuadra y compás.

La geometría analítica desarrollada por Descartes es, en síntesis, la reducción de la geometría al álgebra; por ejemplo, la posición de un lugar cualquiera de la superficie terrestre queda determinada por su longitud y su latitud, o sea, por su distancia al Ecuador y a un meridiano.

Análogamente se fija la posición de un punto en un plano por sus distancias a un par de ejes perpendiculares entre sí, llamados eje de las abscisas el horizontal, y de las ordenada el vertical.

En la geometría analítica los puntos quedan determinados en el plano por una pareja de números —sus coordenadas,— y las figuras geométricas se pueden estudiar por medio de ecuaciones.

El siglo XVIII señala el nacimiento de la geometría descriptiva con Monge, matemático francés que perfecciona ensayos anteriores de otros geómetras y da los fundamentos básicos de esta disciplina.

La geometría descriptiva es la representación, sobre superficies planas, de cuerpos que ocupan un lugar en e) espacio; esta representación se efectúa mediante operaciones gráficas regidas por leyes que Monge dedujo.

Dos grandes matemáticos del siglo XIX, el ruso Lobachewski y el húngaro Bolyai, trabajando independientemente, publicaron al mismo tiempo el resultado de sus trabajos de investigación, en los que llegan a las mismas conclusiones.

Estos resultados fueron un acontecimiento de importancia extraordinaria en la historia de la geometría, pues dieron origen a las geometrías no euclidianas, que prescinden del postulado V y llegan a construir un encadenamiento lógico tan riguroso como el del genio griego.

Gracias a ellos fue posible resolver problemas desconocidos para Euclides.

La aparición de las geometrías no euclidianas. dio como resultado un enorme progreso no sólo en la matemática, sino también en la física. E

n ellas se basan algunas de las conclusiones de la teoría de la relatividad de Einstein.

Algunos términos usados en geometría. La geometría trabaja con hipótesis, definiciones y teoremas.

No podemos iniciar un razonamiento en tanto no tengamos ciertas verdades sobre las cuales basarlo; Euclides llamó axiomas a ideas o razones tan evidentes que no necesitan demostración, tales como «una cosa es igual a sí misma»; y postulados, a verdades no tan evidentes como los axiomas, pero que también se aceptan sin demostrar («por un punto pasan infinitas rectas», y «entre dos puntos puede trazarse una sola recta«).

Las hipótesis son proposiciones que se pueden considerar como verdades que es necesario demostrar: la hipótesis puede ser falsa y entonces nos lleva a falsas conclusiones.

La hipótesis y las consecuencias que se derivan de ella perduran hasta que se demuestre su inexactitud.

Así, la hipótesis de que la Tierra era plana, generalizada desde hacía siglos hasta los tiempos de Colón, no fue definitivamente abandonada hasta que los viajes y descubrimientos efectuados por portugueses y españoles, en los siglos XV y XVI, la desvirtuaron, y el arribo de Elcano a España, después de haber sido el primero que dio la vuelta al mundo, estableció irrefutablemente la redondez del planeta.

Las definiciones sirven para caracterizar las figuras que se van a estudiar; deben ser precisas, para poder basar nuestro razonamiento sobre ellas y no deben contener más que lo que se quiere definir.

No podemos estudiar, por ejemplo, los triángulos, si previamente no hemos definido con exactitud qué entendemos por un triángulo.

Si examinamos una definición como: «un paralelogramo es un cuadrilátero cuyos lados opuestos son paralelos», vemos que comienza por separar todo lo que no se refiera a una figura de cuatro lados, luego a todas aquellas cuyos lados no son paralelos, lográndose así que la definición se refiera a un paralelogramo y nada más que a él.

El teorema es una exposición formal, que hay que demostrar mediante su mecanismo lógico y consta de dos partes; la hipótesis, que establece lo que va a ser probado como verdad, y la tesis, que es la consecuencia del razonamiento lógico que se ha seguido para demostrar la hipótesis.

Elementos.

En la geometría hay ciertos elementos fundamentales: el punto, la recta y el plano.

El punto no tiene dimensiones y puede ser representado por la señal que deja la punta de un lápiz sobre el papel o por una cruz, en la que la intersección de las líneas marca el lugar del punto.

La recta tiene una sola dimensión, longitud; el hilo tenso de la plomada da una idea de ella.

El plano tiene dos dimensiones, largo y ancho. La superficie de una mesa, las aguas en reposo, nos dan una representación del plino.

Con estos elementos se construyen las figuras —triángulos, cuadriláteros, círculos—, que son rectilíneas si sus lados son rectas, o curvilíneas si son curvas.

La geometría plana se refiere a estas figuras de dos dimensiones: la geometría del espacio se refiere a los sólidos que tienen tres dimensiones —ancho, alto y profundidad—, como cubos, esferas, conos, naralelepínedos, etcétera.

La geometría, considerada desde un punto de vista estrictamente matemático, es la ciencia que se ocupa de las relaciones entre cuatro magnitudes simples: longitud, latitud, profundidad y abertura angular, y dos compuestas: superficie y volumen. Véanse Abscisa; Ordena-

UN COMPLETO CURSO DE GEOMETRIA ELEMENTAL PARA LOS PRINCIPIANTES

bton-geometria1-Elementos de Geometría Plana

bton-geometria

bton-geometria2-Triángulosbton-geometria
bton-geometria3-Cuadriláterosbton-geometria
bton-geometria4-Polígonosbton-geometria
bton-geometria5-Circunferencia y Círculobton-geometria
bton-geometria6-Perímetros y Áreasbton-geometria
bton-geometria7-Semejanzasbton-geometria
bton-geometria8-Geometría del Espaciobton-geometria
bton-geometria9-Poliedrosbton-geometria
bton-geometria10-Cuerpos de Revoluciónbton-geometria
bton-geometria11-Áreas y Volúmenesbton-geometria
bton-geometria12-Movimientos en el Planobton-geometria
bton-geometria13-Trigonometríabton-geometria
bton-geometria14-Geometría Analíticabton-geometria

Temas Enlazados al Sitio Oficial: CNICE (Ministerio de Educación y Ciencias)

Parábola, Recta y Circunferencia Online

Los Trece Sólidos de Arquímedes – Los Sólidos Platónicos

Los Trece Sólidos de Arquímedes

Los cinco sólidos platónicos eran «puros» y contenían un único tipo de polígono. Arquímedes (287-212 aC.) describió otros trece sólidos adicionales que contienen dos o más tipos diferentes de polígonos

Ver Una Tabla de los Sólidos

LOS 13 SÓLIDOS DE ARQUÍMEDES

solidos-regulares
Tretraedro
Truncado
solidos-regularessolidos-regularessolidos-regularessolidos-regularessolidos-regulares
Cubo
Truncado
CuboctaedroRombicuboctaedro
Menor
Rombicuboctaedro
Mayor
Cubo
Romo
solidos-regulares
Octaedro
Truncado
solidos-regularessolidos-regularessolidos-regularessolidos-regularessolidos-regulares
Dodecaedro
Truncado
IcosidodecaedroRombicosidodecaedro
Menor
Rombicosidodecaedro
Menor
Dodecaedro
Romo
solidos-regulares
Icosaedro
Truncado

Densidad de un Sólido

Hypatia de Alejandría

Grandes Matemáticos

Pasos Método Científico

 

Software para calcular esfuerzos en armaduras aporticadas

Software para calcular esfuerzos en armaduras aporticadas

USO DEL SOFTWARE GALILEO
(solo para versiones de windows de 32 bits)

  1. Ingresa las cantidad de barras teniendo en cuenta las 3 barras que reemplazan a los vínculos externos (dos del apoyo fijo + una del móvil) – Ver Ejemplo Mas Abajo
  2. SIEMPRE las tres barras de los apoyos debes ingresarse ultima con numero de  nudo cero
  3. Ingresas los datos de cada barra indicando las coordenadas del nudo  inicial y final (la armadura se irà dibujando en la pizarra)
  4. Ingresas las cargas verticales y horizontales
  5. Calculas los esfuerzos en cada barra con solo picar en un botón
  6. Puede luego determinar corrimiento en cada nudo
  7. Puedes agregar las barras hiperestaticas en el caso que las hubiera
  8. Puede visualizar e imprimir los datos obtenidos

El programa tiene un mini manual de uso para consulta Para empezar haz el pórtico del ejemplo de abajo

tipos de armaduras

 esfuerzos de porticos alma calada

ejemplo de calculo de esfuerzos en porticos

software para calculo de esfuerzos

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar SoftwareDescargar Complementos

Ver También: Resolver Un Pórtico Online

Volver a Ingeniería Civil

Problemas Matemáticos Online Combinacion de Fichas Circulares

Problemas Matemáticos Online
Combinacion de Fichas Circulares

Este ejercicio consiste en distribuir 32 fichas de colores (8 amarillas,8 verdes,8 azules y 8 naranjas), en los pares de círculos blancos, de tal manera que cada par tenga una combinación distinta a los demás.
Tenga en cuenta que una combinación verde-azul es distinta de azul-verde.
No tiene la solución porque es fácil ir probando.