Física Básica

La Gran Ciencia Grandes Proyectos Cientificos del Mundo Teorias

La Gran Ciencia – Grandes Proyectos Científicos del Mundo

GRAN CIENCIA. Tipo de práctica científica que se inició y desarrolló durante el siglo XX y que requiere de grandes recursos de infraestructura y personal, y, por consiguiente, económicos.

Por este motivo, es necesario tomar decisiones políticas de cierta envergadura para iniciar o mantener proyectos de Gran Ciencia. No estaría de más, por consiguiente, que todos —científicos, políticos o simples ciudadanos (no sé muy bien por qué escribo «simples», cuando ser un buen ciudadano es realmente bastante complicado)— deberíamos conocer no sólo la existencia e importancia de este tipo de ciencia, sino sus mecanismos más notorios. Para contribuir a esta labor de educación social, en una era en la que la ciencia es cuestión de Estado, incluyo aquí este concepto.

El nacimiento de la Gran Ciencia tiene que ver especialmente con la física de las partículas elementales (ahora denominada de altas energías). Buscando instrumentos que fuesen capaces de suministrar cada vez mayor energía a partículas atómicas, para que éstas pudiesen chocar con el núcleo atómico, lo que a su vez debería permitir ahondar en su estructura y en la de los elementos que lo forman —esto es lo que había hecho Ernest Rutherford (1871-1937) en 1911 cuando propuso su modelo atómico: lanzó núcleos de helio sobre láminas delgadas de oro—, físicos británicos primero, y estadounidenses después abrieron la puerta de la Gran Ciencia.

En 1932, John Cockcroft (1897-1967) y Ernest Walton (1903-1995), del Laboratorio Cavendish en Cambridge, utilizaban un multiplicador voltaico que alcanzaba los 125.000 voltios para observar la desintegración de átomos de litio. En realidad no era una gran energía: cuatro años antes Merle Tuve (1901-1982) había utilizado un transformador inventado por Nikola Tesla (1856-1943) para alcanzar, en el Departamento de Magnetismo Terrestre de la Carnegie Institution de Washington, los tres millones de voltios.

En 1937, Robert Van de Graaff (1901-1967) logró construir generadores de cerca de cinco metros de altura, que producían energías de cinco millones de voltios. Fue, sin embargo, Ernest O. Lawrence (1901-1958) el principal promotor de la Gran Ciencia en la física de partículas elementales. A partir de 1932, Lawrence comenzó a construir ciclotrones, máquinas circulares en las que las denominadas partículas elementales iban ganando energía durante cada revolución, lo que les permitía acumular suficiente energía. El primer ciclotrón medía apenas treinta centímetros de diámetro.

Pero aquello sólo era el comienzo: en 1939 Berkeley ya contaba con un ciclotrón de metro y medio de diámetro, en el que los electrones podían alcanzar una energía equivalente a dieciséis millones de voltios (16 Mev). Y en septiembre de ese año Lawrence anunciaba planes para construir uno nuevo que llegase a los 100 MeV.

En abril de 1940, la Fundación Rockefeller donaba 1,4 millones de dólares para la construcción de aquella máquina, el último de sus ciclotrones, que iba a tener más de cuatro metros y medio de diámetro. En la actualidad los grandes aceleradores tienen kilómetros de radio, y cuestan miles de millones de dólares. Aquí tenemos una de las características que con mayor frecuencia se encuentra en la Gran Ciencia: mayor tamaño, mayor potencia, mayor costo económico. No sólo es el tamaño de las máquinas implicadas lo que caracteriza a la Gran Ciencia.

Alrededor de los ciclotrones de Lawrence se agrupaban físicos, químicos, ingenieros, médicos y técnicos de todo tipo. En varios sentidos el laboratorio de Berkeley se parecía más a una factoría que a los gabinetes y laboratorios de otras épocas, el de Lavoisier (1743-1794) en París, el de Liebig (1803-1873) en Giessen o el de Maxwell (183 1-1879) en Cambridge.

La segunda guerra mundial dio un nuevo impulso a este modo, «gigantesco», de organización de la investigación científica. Para llevar adelante proyectos como el del radar o el Manhattan se necesitaban científicos, por supuesto, pero no bastaba sólo con ellos. Era imprescindible también disponer, además de otros profesionales (ingenieros, muy en particular), de una estructura organizativa compleja, en la que no faltase el modo de producción industrial. Los grandes recursos económicos que requiere la Gran Ciencia no siempre están a disposición de naciones aisladas.

En la Europa posterior a la segunda guerra mundial, la construcción de grandes aceleradores de partículas era demasiado costosa como para que cualquier nación pudiese permitirse el lujo de construir uno lo suficientemente potente como para poder aspirar a producir resultados científicos de interés. Así nació el Centre Européen de Recherches Nucléaires (CERN) de Ginebra, fundado en 1952 por doce naciones europeas. La Gran Ciencia fomentaba en este caso la internacionalización.

De hecho, el CERN sirvió de experiencia de asociación política europea; el ambiente político estaba listo para este tipo de experiencias, que culminarían años más tarde en la creación de la Comunidad Económica Europea, que con el tiempo se convertiría en la actual Unión Europea.

La Gran Ciencia puede llegar a ser tan grande que incluso naciones del potencial económico e industrial de Estados Unidos se vean obligadas a abrir algunos de sus proyectos científicos a otros países. Esto ha ocurrido, por ejemplo, con el telescopio espacial Hubble construido por la Natiorial Aeronautics and Space Administration (NASA).

El telescopio Hubble fue lanzado el 24 de abril de 1990, utilizando para ello una de las aeronaves Discovery, pero la idea de poner un gran telescopio en órbita alrededor de la Tierra para evitar la pantalla de radiaciones que es la atmósfera terrestre había surgido cuatro décadas antes. En esos cuarenta años hubo que vencer muchas dificultades; algunas de carácter técnico, por supuesto, pero otras de orden financiero y político.

En 1974, por ejemplo, la Cámara de Representantes estadounidense eliminó del presupuesto el proyecto del telescopio, a pesar de que ya había sido aprobado en 1972. El motivo es que era demasiado caro. Tras muchas gestiones se llegó al compromiso de que el proyecto saldría adelante únicamente si se internacionalizaba, involucrando a la Agencia Espacial Europea (European Space Agency; ESA).

Por supuesto, no se dio este paso por un repentino ataque de fervor ecuménico de los representantes estadounidenses, sino porque la ESA se debería hacer cargo del quince por ciento del presupuesto, con lo que éste se abarataría sustancialmente para Estados Unidos. Finalmente la agencia europea, formada por un consorcio de naciones entre las que se encuentra España, participó en el proyecto, encargándose en particular de la construcción de una cámara para fotografiar objetos que emiten una radiación débil.

En más de un sentido se puede decir que el mundo de las naciones individuales se está quedando demasiado pequeño para la Gran Ciencia. Una muestra más de esa tendencia, la globalización, que parece estar caracterizando al mundo de finales del siglo XX.

El Efecto Fotoelectrico Formulas Explicacion de la Teoría

El Efecto Fotoeléctrico  – Explicación de la Teoría – Fórmulas

Cuando Einstein recibió el Premio Nobel en 1921, fue su explicación sobre el efecto fotoeléctrico y no su artículo sobre la relatividad especial lo que se citaría. Quizá fuera debido en parte a la negativa de los científicos a aceptar la teoría especial después de tan poco tiempo. Aún así, su análisis del efecto fotoeléctrico en su artículo “Heurística de la generación y conversión de la luz” es de por sí un trabajo revolucionario. Al explicar un efecto que contradecía las creencias de su tiempo sobre la naturaleza de la luz, Einstein contribuyó a la visión global de hoy en día sobre el mundo subatómico, que no sólo el hombre de la calle, sino incluso los propios físicos tienen problemas en imaginar. (mas abajo ver: La historia del fenómeno)

EXPLICACIÓN Y FÓRMULAS DEL FENÓMENO FÍSICO DEL EFECTO FOTOELÉCTRICO

Este efecto, se trata de otro fenómeno que, al igual que la radiación de cuerpo negro, también involucra la interacción entre la radiación y la materia. Pero esta vez se trata de absorción de radiación de metales

EFECTO FOTOELECTRICO

Heinrich Hertz (1857-1894), científico alemán, fue el primero en observar el efecto fotoeléctrico, en 1887, mientras trabajaba en la generación de ondas de radio. Informó esta observación pero no se dedicó a explicarla

EFECTO FOTOELECTRICO Al incidir luz ultravioleta sobre el cátodo metálico (fotocátodo) se detecta el paso de una corriente eléctrica. Se trata de electro­nes que abandonan el cátodo (colector) y se dirigen al ánodo a través del vacío dentro del tubo. Los electrodos se hallan conec­tados a una diferencia de potencial de sólo unos pocos voltios.

 

EFECTO FOTOELECTRICO -1-

La teoría electromagnética clásica considera que la radiación de mayor intensidad (o brillo, si es visible), que corresponde a ondas de mayor amplitud, transporta mayor energía. Esta energía se halla distribuida uniformemente a lo largo del frente de onda. La intensidad es igual a la energía que incide, cada unidad de tiempo, en una unidad de superficie.

EFECTO FOTOELECTRICO -2

Con radiación ultravioleta de diferentes in­tensidades, los electrones salen del metal con la misma velocidad. La radiación más intensa arranca mayor número de electrones. Esta observación también resultaba inexplicable.

EFECTO FOTOELECTRICO -3

Con luz ultravioleta, aun de baja intensidad, los electrones son arrancados prácticamente en forma instantánea, aunque la Física clásica predecía un tiempo de retardo hasta que los átomos absorbieran la energía necesaria para expulsar el electrón. Con luz visible este fenómeno no se observa, aunque se aumente la intensidad de la luz y se ilumine durante mucho tiempo, como para que el átomo absorba bastante energía. Esta observación resultaba inexplicable.

EXPLICACION FISICA DEL FENOMENO

MAX PLANCK

Planck había llegado a la conclusión de que el traspaso de energía entre la materia y la radiación en el cuerpo negro ocurría a través de paquetes de energía. Sin embargo, no quiso admitir que la energía radiante una vez desprendida de la materia también viajaba en forma corpuscular. Es decir que siguió considerando a la radiación que se propaga como una onda clásica.

En 1905, Albert Einstein fue un paso más allá al explicar completamente las características del efecto fotoeléctrico. Para ello retomó la idea del cuanto de energía de Planck, postulando que:

 EINSTEIN

La radiación electromagnética está compuesta por paquetes de energía o fotones. Cada fotón transporta una energía E= v . h , donde v es la frecuencia de la radiación y h es la constante de Planck.

Cuando un fotón incide sobre el metal, transfiere toda su energía a alguno de los electrones. Si esta energía es suficiente para romper la ligadura del electrón con el metal, entonces el electrón se desprende. Si el fotón transporta más energía de la necesaria, este exceso se transforma en energía cinética del electrón:

Expresado en fórmula matematica es: Ecinética = h . v – Eextracción donde Eextracción es la energía necesaria para vencer la unión con el metal.

Esta teoría explica perfectamente los hechos observados:

1. Si la frecuencia de la radiación es baja (como en la luz visible), los fotones no acarrean la suficiente energía como para arrancar electrones, aunque se aumente la intensidad de la luz o el tiempo durante el cual incide.

EFECTO FOTOELECTRICO -4

Para cada tipo de material existe una frecuencia mínima por debajo de la cual no se produce el efecto fotoeléctrico.

2. Si la frecuencia de la radiación es suficiente para que se produzca el efecto fotoeléctrico, un crecimiento de la intensidad hace que sea mayor el número de electrones arrancados (por ende será mayor la corriente), pero no afecta la velocidad de los electrones.

Aumentar la intensidad de la luz equivale a incrementar el número de fotones, pero sin aumentar la energía que transporta cada uno.

3. Según la teoría clásica, habría un tiempo de retardo entre la llegada de la radiación y la emisión del primer electrón. Ya que la energía se distribuye uniformemente sobre el frente de la onda incidente, ésta tardaría al menos algunos cientos de segundos en transferir la energía necesaria. La teoría de Einstein, en cambio, predice que:

Una radiación de frecuencia adecuada, aunque de intensidad sumamente baja, produce emisión de electrones en forma instantánea.

Pasaron diez años de experimentación hasta que la nueva teoría fue corroborada y aceptada. Se determinó el valor de h a partir de experiencias de efecto fotoeléctrico y se encontró que concordaba perfectamente con el valor hallado por Planck a partir del espectro de radiación de cuerpo negro.

Desde ese momento los físicos aceptaron que, si bien la luz se propaga como si fuera una onda, al interactuar con la materia (en los procesos de absorción y emisión) se comporta como un haz de partículas. Esta sorprendente conducta es lo que se ha llamado la naturaleza dual de la luz. Esto muestra que las ideas surgidas del mundo macroscópico no son aplicables al inimaginable mundo de lo diminuto.

Ninguna rama de las ciencias físicas ha tenido tantas repercusiones filosóficas como la teoría de los cuantos, pues al descubrir un abismo, una discontinuidad radical en la estructura de la naturaleza, parece haber hallado también barreras infranqueables al entendimiento humano. Al trabajar en las oscuras interioridades del átomo, donde cada fenómeno tiene simultáneamente el doble aspecto de materia y de energía, los primeros teóricos de la física cuántica, Max Planck y Niels Bohr, descubrieron que la energía no se propaga de manera continua sino a saltos. Estos saltos o cuantos de energía configuran el sustrato de la realidad como una especie de granulado indivisible que pone en duda la continuidad de la materia.
Un lirio (arriba) y sus granos de polen (dcha.) enormemente amplificados sugieren de algún modo la realidad del mundo cuántico. Un microscopio electrónico nos revela la minuciosa estructura del polvo de polen; mas, a nivel subatómico —como se aprecia en el recuadro menor, que representa la estructura de un cristal de iridio fotografiado mediante un microscopio ultramoderno (hasta el momento, la realidad fotografiable más semejante al átomo)—, lo que parece una sólida arquitectura fija es, en realidad, un sistema de intercambios energéticos, que acaecen a velocidades inimaginables en repentinos y discontinuos saltos.

APLICACIÓN: LA CÉLULA FOTOELÉCTRICA
En 1887, Hertz había notado que la luz, al iluminar ciertas substancias, extraía de éstas partículas dotadas de carga negativa, es decir, electrones. Éste fue el efecto fotoeléctrico que hizo posible, al comienzo de nuestro siglo, el nacimiento de maravillas como la telefotografía, es decir, la transmisión a distancia de fotografías (Korn, 1907); el film sonoro (De Forest, 1923); la televisión (B.aird, 1925).

En 1888, el físico Hallwachs descubrió que un electroscopio se cargaba de electricidad cuando sus hojitas eran iluminadas por rayos ultravioletas. Este fenómeno, que fue llamado efecto Hallwachs, permitió construir un dispositivo mágico que, cuando es tocado por una luz o una radiación del mismo tipo, produce corriente eléctrica: la célula fotoeléctrica.

Esta célula fotoeléctrica está constituida por un electrodo metálico cubierto por una substancia que emite fácilmente electrones cuando  iluminada; los electrones recogidos por otro electrodo formado por una partícula metálica, y así origina una corriente eléctrica cu intensidad es proporcional a la intensidad de la iluminación, y que, natural mente, se interrumpe cuando la iluminación cesa.

La célula fotoeléctrica es de fácil construcción y muy económica, es ya uno de los aparatos funda mentales de la civilización mecánico Tiene una infinidad de aplicaciones y ejecuta trabajos realmente prodigiosos. Por ejemplo, supongamos que hay que introducir cien paquetes de cigarrillos en una caja. Una cinta de goma lleva en fila los paquetes y los vuelca en la caja; una célula fotoeléctrica es iluminada con un rayo de luz que es interrumpido por el paso de cada uno de los paquetes de cigarrillos. A la misma está conectado un dispositivo que cuenta y que, al registrar cien interrupciones de luz, da orden de cambiar la caja. Se dirá que también un hombre puede hacer el mismo trabajo. Naturalmente; pero la célula puede contar cien paquetes por segundo-sin cansarse y sin equivocarse.

Las células fotoeléctricas sirven, sobre todo, en los casos en que es necesario un centinela. Así, las células señalan el paso de personas a través de puertas, disparan dispositivos de alarma, bloquean las máquinas cuando el operador se acerca a partes peligrosas, y hasta intervienen en la seguridad de nuestras casas. En efecto, todas las instalaciones de calefacción a nafta poseen una célula que controla que el hogar se mantenga encendido. Si la llama se apagara, sería peligroso continuar inyectando el combustible, de modo que si la célula no ve el resplandor de la llama, detiene el flujo.

HISTORIA DEL EFECTO FOTOELÉCTRICO
El primer investigador que mencionó un efecto fotoeléctrico superficial fue Hertz, en 1887. Un año después, Hallwachs, basándose en los resultados de Hertz, encontró que una lámina de cinc pulida aislada retenía una carga positiva, puesta de manifiesto con un electroscopio, pero, sin embargo, perdía una carga eléctrica negativa, si bajo las mismas condiciones era iluminada por la luz de un arco de carbón.

Demostró también que sólo la luz ultravioleta era la responsable de este efecto. Más adelante, Elster y Geitel demostraron que había algunos metales (sodio, potasio) que eran sensibles a la luz visible, y fueron capaces de construir células fotoeléctricas muy sencillas. Ellos establecieron que la corriente fotoeléctrica a través de sus células era directamente proporcional a la intensidad de luz dentro de un cierto intervalo.

A fines del siglo XIX (en 1899), P. Lenard y J. J. Thomson, independientemente, demostraron que los portadores de electricidad negativa arrancados de las superficies metálicas eran electrones. Por su parte, Lenard demostró que la energía de los electrones arrancados no dependía de la intensidad de la luz, mientras que el número de electrones era proporcional a dicha intensidad. Estos resultados, que no podían ser explicados por la teoría ondulatoria de la luz, llevaron a Einstein a formular una nueva teoría sobre la naturaleza de la luz, en 1905.

Einstein sugirió que la luz podía considerarse como compuesta por pequeñísimos corpúsculos, cuantos de luz o fotones, cada uno de los cuales tenía una cantidad de energía igual a h v, donde h era la famosa constante de Planck,  y v  la  frecuencia  de  la luz.

Cuando la luz era absorbida por el metal, el corpúsculo luminoso desaparecía como tal, pero transfería su energía al electrón dentro del metal, con el cual había chocado, y éste entonces podía escapar si la energía del corpúsculo de luz era superior a la energía con que el electrón estaba unido al metal. Por esta teoría, Einstein recibió, años más tarde, el premio Nobel.

La intensidad de un rayo luminoso viene dada por el número de fotones; por lo tanto, cuanto mayor sea la intensidad, mayor será la energía total que llegue a la superficie del metal. Sin embargo, no importa el número de fotones que choquen con la superficie, porque, si su energía individual es baja, no pueden arrancar ni un solo electrón.

Cuando la energía de los fotones es individualmente superior al umbral, entonces cada uno puede arrancar un electrón y, en este caso, cuanto más intensa sea la iluminación, mayor será el número de electrones arrancados y más intensa la corriente fotoeléctrica. Los materiales como el selenio se utilizan para los fotómetros porque tienen un umbral bastante bajo, y todos los fotones de luz visible tienen suficiente energía para liberar electrones.

Es posible obtener materiales que sean sensibles incluso a la luz infrarroja recubriendo sus superficies de un modo especial. Si se oxida cesio metálico de manera especial, y se deposita sobre una película muy delgada de plata, toda la estructura de la superficie se altera y hace falta una pequeña cantidad de energía para arrancar un electrón.

Este tipo de material puede utilizarse en instrumentos para registrar la recepción de luz infrarroja invisible. Desde el punto de vista de aplicación del efecto fotoeléctrico, la combinación de la célula fotoeléctrica con el amplificador termoiónico ha proporcionado un mecanismo sensible a la luz, que hizo posible la realización de adelantos científicos tales como la televisión, el cine sonoro y la transmisión de fotografías por telégrafo.

Ondas y paquetes
La luz se compone de «paquetes» básicos de energía, llamados fotones. Bajo ciertas circunstancias, éstos actúan como si fuesen objetos sueltos. En condiciones distintas, la luz se comporta como una onda continua de energía. Otra de sus características es que si, por ejemplo, una persona parada a 10 m de distancia de una lámpara, se aleja a 20 m de ésta, la luz que recibirá no será la mitad, sino la cuarta parte de la que recibía en un principio. Ello se debe a que la luz se propaga en círculos, y al duplicarse la distancia tiene que cubrir cuatro veces la misma área. La fuerza de gravedad disminuye de igual manera y, según proponen los científicos, también se desplaza en forma de partículas, de ondas o de ambas; aunque ninguna de éstas ha sido descubierta todavía. Así que la paradoja subsiste: pese a saber exactamente lo que hace la gravedad y poder predecir sus efectos con precisión, se desconoce lo que es en realidad. La más familiar de las fuerzas que gobiernan el universo resulta ser la más misteriosa.

.(leer mas sobre la historia del fenómeno)

Formula de Heron Area del Triangulo Biografia Heron de Alejandria

Fórmula de Herón – Área del Triángulo – Biografía

HERON DE ALEJANDRÍA:

HERON DE ALEJANDRÍA:

Herón de Alejandría (s. I ó II d.C.) fue el inventor de la máquina de vapor. A partir del siglo XVIII muchas máquinas empezaron a funcionar gracias a la energía que se obtiene del vapor de agua.

Diecisiete siglos antes, Herón de Alejandría ya utilizó las posibilidades energéticas del vapor. Su «máquina de vapor» era una esfera hueca a la que se adaptaban dos tubos curvos.

Cuando hervía el agua en el interior de la esfera, ésta giraba a gran velocidad como resultado de la ley de acción y reacción, que no fue formulada como tal hasta muchos siglos más tarde. Pero a nadie se le ocurrió darle al invento más utilidad que la de construir unos cuantos juguetes.

Podemos decir que el mayor de los experimentadores de la antigüedad fue ciertamente Herón. quien escribió sus obras alrededor del año 130 antes de Jesucristo.

Buen matemático, Herón adopta la división del círculo en 360 grados propuesta por Hiparco de Bitinia; excelente pedagogo, funda una auténtica escuela politécnica en Alejandría con una sección consagrada únicamente a los estudiantes dedicados a la investigación.

Para Herón no existe el vacío absoluto y el aire es un cuerpo de gran elasticidad susceptible de presión y depresión. Así explica los aparatos de succión como la pipeta, los recipientes de desagüe constante y las fuentes intermitentes.

Da la explicación de la ventosa y. al igual que Filón, emplea una máquina de aire caliente para impulsar el agua. Herón se ha hecho célebre sobre todo por su eolípila que, por primera vez, utilizaba la fuerza expansiva del vapor de agua y el principio de la reacción.

Este aparato ha sido descrito multitud de veces. Recordemos que se trata de un huevo de cerámica colocado entre dos pivotes laterales y provisto de dos tuberías acodadas. Se calienta el agua que hay en el interior de este huevo y al escaparse el vapor por las tuberías hace que el huevo gire sobre sus pivotes.

En mecánica. Herón resuelve por medio de engranajes el problema de Arquímedes consistente en levantar 1.000 kg. con ayuda de 5 kg. Construye el paralelogramo de las velocidades, inventa el principio del funicular, estudia los misterios del plano inclinado y los de la fricción.

En nuestros días, algunos pioneros del automóvil han aplicado su dispositivo de rueda de fricción para asegurar a los vehículos una transmisión automática. Con todos estos ingenios, Herón demuestra que «lo que se gana en fuerza se pierde en forma de tiempo».

Por otra parte, enuncia la ley de la inercia y encuentra que la fuerza es proporcional a la masa de lo que se mueve y a la velocidad de que está animado. Es ya la prefiguración del gran principio de la mecánica clásica:F= m.a

Los constructores de obras de arte deben a Herón unas tablas de medidas utilizables en el montaje de las bóvedas y en la perforación de túneles y pozos. Los aficionados a la anécdota están intrigados por los autómatas que el gran físico construía para distraerse: curruca que bate las alas y canta cuando se empujan las puertas de un templo, funcionamiento de puertas accionadas por el aire caliente que se eleva del fuego de los sacrificios, etc.

Dejando aparte estas distracciones, hemos de ver en Herón un maestro en el arte de las medidas y un fundador de la mecánica general.

La ingeniosidad mecánica de los alejandrinos aparece en la reconstrucción de estos autómatas hecha por el padre Kircher en su obra «Oedipus Aegyptiacus» publicada en Roma en el siglo XVII y basada en los escritos de Herón. Los científicos están divididos en cuanto a la estimación de la potencia motriz que los movía. Puede suponerse que los pesos, los sifones y la presión del aire caliente están para algo.
El pájaro que mueve las alas  ha podido ser accionado por medio de pesas, las clepsidras  estaban animadas por una corriente de agua cuidadosamente regulada, mientras que el aire calentado por las velas hacía brotar la leche de los senos de la diosa .
https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

En su Métrica demostró la fórmula de su nombre:
FORMULA DE HERON PARA CALCULO DE ÁREA DE CUALQUIER TRIANGULO:

AREA=formula de HerónDonde: a,b,c son lo lados del triangulo,   s es el semi-perimetro s=(a+b+c)/2

Para el área de un triángulo, donde a, b y c representan sus tres lados y s su semi-perímetro. La fórmula, que constituye el principal mérito matemático de Herón, es fácil de demostrar con ayuda de trigonometría.

Herón de Alejandría (c. 20-62 d.C.), matemático y científico griego, pero puede considárselo como un ingeniero. Su nombre también podría ser Hero (aproximadamente 18 escritores griegos se llamaron Hero ó Herón, creándose cierta dificultad a la hora de su identificación). Herón de Alejandría nació probablemente en Egipto y realizó su trabajo en Alejandría (Egipto).

En nuestros días, el renombre de Herón se debe, sobre todo, a sus deliciosos tratados sobre autómatas griegos y juguetes hidráulicos, como la paradójica «fuente de Herón» donde un chorro de agua parece desafiar la ley de la gravedad, pues brota más alta que su venero.

Escribió al menos 13 obras sobre mecánica, matemáticas y física. Inventó varios instrumentos mecánicos, gran parte de ellos para uso práctico: la aelípila, una máquina a vapor giratoria; la fuente de Herón, un aparato neumático que produce un chorro vertical de agua por la presión del aire y la dioptra, un primitivo instrumento geodésico.

EJEMPLO ONLINE DE LA FORMULA DE HERON: