La Fisica

Biografia de John Nash-Matematico Premio Nobel Por Teoría de Juegos

Biografia de John Nash Matemático Premio Nobel

John Forbes Nash: Matemático, Premio NobelLa verdadera vida de John Forbes Nash, Jr.: John Forbes Nash (Virginia Occidental, 13 de junio de 1928 – Monroe, Nueva Jersey, 23 de mayo de 2015)​ fue un matemático estadounidense, especialista en teoría de juegos,​ geometría diferencial​ y ecuaciones en derivadas parciales,​ que recibió el Premio Nobel de Economía en 19945​ por sus aportes a la teoría de juegos y los procesos de negociación, junto a Reinhard Selten y John Harsanyi,6​ y el Premio Abel en 2015.

 «Una mente maravillosa», «A beautiful Mind» es un magnífico producto de Hollywood inspirado en la vida de John Nash pero que no pretende ser su biografía. En realidad son muy pocos los hechos o situaciones de la vida real de Nash que son contados en la película.

El padre se llamaba también John Forbes Nash por lo que distinguiremos al padre del hijo al estilo americano, añadiéndoles el calificativo «Senior» o «Junior» (Jr.).

Nash Senior nació en Texas en 1892 y estudió ingeniería eléctrica. Después de luchar en Francia en la primera guerra mundial, fue durante un año profesor de ingeniería eléctrica en la Universidad de Texas tras lo que se incorporó a la empresa Appalachian Power Company en Bluefield, West Virginia.

La madre de Nash Jr., Margaret Virginia Martin, estudió idiomas en las universidades Martha Washington College y West Virginia University.

Fue profesora durante diez años antes de casarse con Nash Senior, el 6 de septiembre de 1924.

Johnny Nash, así le llamaba su familia, nació en Bluefield Sanatorium el 13 de junio de 1928 y fue bautizado en la iglesia Episcopaliana. Sus biógrafos dicen que fue un niño solitario e introvertido aunque estaba rodeado de una familia cariñosa y atenta.

Parece que le gustaban mucho los libros y muy poco jugar con otros niños. Su madre le estimuló en los estudios enseñándole directamente y  llevándole a buenos colegios.

Sin embargo, no destacó por su brillantez en el colegio. Por el contrario, debido a su torpeza en las relaciones sociales, era considerado como un poco atrasado. Sin embargo, a los doce años dedicaba mucho tiempo en su casa a hacer experimentos científicos en su habitación.

Su hermana Martha, dos años más joven que él, era una chica muy normal. Dice de su hermano:

«Johnny era siempre diferente. Mis padres sabían que era diferente y también sabían que era brillante. Él siempre quería hacer las cosas a su manera. Mamá insistía en que yo le ayudase, que lo introdujera entre mis amistades… pero a mí no me entusiasmaba lucir a un hermano tan raro».

A los catorce años Nash empezó a mostrar interés por las matemáticas. Parece ser que influyó la lectura del libro de Eric Temple Bell,  «Men of Mathematics» (1937). Entró en el Bluefield College en 1941. Comenzó a mostrarse hábil en matemáticas, pero su interés principal era la química. Se suponía que iba a seguir la misma carrera de su padre,  ingeniería eléctrica, pero continuaba con sus experimentos químicos. Parece ser que tuvo alguna relación con la fabricación de unos explosivos que produjeron la muerte a uno de sus compañeros de colegio.

Nash ganó una beca en el concurso George Westinghouse y entró en junio de 1945 en el Carnegie Institute of Technology (hoy llamado Carnegie-Mellon University) para estudiar ingeniería química. Sin embargo empezó a destacar en matemáticas cuyo departamento estaba dirigido entonces por John Synge, que reconoció el especial talento de Nash y le convenció para que se especializara en matemáticas.

Se licenció en matemáticas en 1948. Lo aceptaron para estudios de postgrado en las universidades de Harvard, Princeton, Chicago y Michigan. Nash consideraba que la mejor era Harvard, pero Princeton le ofreció una beca mejor por lo que decidió estudiar allí, donde entró en septiembre de 1948.

En 1949, mientras se preparaba para el doctorado, escribió el artículo por el que sería premiado cinco décadas después con el Premio Nobel. En 1950 obtiene el grado de doctor con una tesis llamada «Juegos No-Cooperativos«. Obsérvese que el libro inicial de la teoría de juegos, «Theory of Games and Economic Behavior» de von Neumann y Oskar Morgenstern,  había sido publicado muy poco antes, en 1944.

En 1950 empieza a trabajar para la RAND Corporation, una institución que canalizaba fondos del gobierno de los Estados Unidos para estudios científicos relacionados con la guerra fría y en la que se estaba intentando aplicar los recientes avances en la teoría de juegos para el análisis de estrategias diplomáticas y militares. Simultáneamente seguía trabajando en Princeton.

En 1952 entró como profesor en el Massachusetts Institute of Technology. Parece que sus clases eran muy poco ortodoxas y no fue un profesor popular entre los alumnos, que también se quejaban de sus métodos de examen.

En este tiempo empezó a tener problemas personales graves que añadidos a las dificultades que seguía experimentando en sus relaciones sociales. Conoció a Eleanor Stier con la que tuvo un hijo, John David Stier, nacido el 19 de junio de 1953. A pesar de que ella trató de convencerlo, Nash no quiso casarse con ella. Sus padres solo se enteraron de este asunto en 1956. Nash Senior murió poco después de enterarse del escándalo y parece que John Nash, Jr. se sintió culpable de ello.

En el verano de 1954, John Nash fue arrestado en una redada de  la policía para cazar homosexuales. Como consecuencia de ello fue expulsado de la RAND Corporation.

Una de las alumnas de Nash en el MIT, Alicia Larde, entabló una fuerte amistad con él. Había nacido en El Salvador, pero su familia había emigrado a USA cuando ella era pequeña y habían obtenido la nacionalidad hacía tiempo. El padre de Alicia era médico en un hopital federal en Maryland. En el verano de 1955 John Nash y Alicia salían juntos. En febrero de 1957 se casaron.

En el otoño de 1958 Alicia quedó embarazada, pero antes de que naciera su hijo, la grave enfermedad de Nash ya era muy manifiesta y había sido detectada. Alicia se divorció de él más adelante, pero siempre le ayudó mucho. En el discurso de aceptación del Nobel, en 1994, John Nash tuvo palabras de agradecimiento para ella.

En 1959, tras estar internado durante 50 días en el McLean Hospital, viaja a Europa donde intentó conseguir el estatus de refugiado político. Creía que era perseguido por criptocomunistas. En los años siguientes estaría hospitalizado en varias ocasiones por períodos de cinco a ocho meses en centros psiquiátricos de New Jersey. Unos años después, Nash escribió un artículo para una revista de psiquiatría en el que describió sus pensamientos de aquella época:

«.. el personal de mi universidad, el Massachusetts Institute of Technology, y más tarde todo Boston, se comportaba conmigo de una forma muy extraña.  (…) Empecé a ver criptocomunistas por todas partes (…) Empecé a pensar que yo era una persona de gran importancia religiosa y a oir voces continuamente. Empecé a oir algo así como llamadas telefónicas que sonaban en mi cerebro, de gente opuesta a mis ideas.  (…) El delirio era como un sueño del que parecía que no me despertaba.»

A finales de los sesenta tuvo una nueva recaída, de la que finalmente comenzó a recuperarse. En su discurso de aceptación del Premio Nobel describe su recuperación así:

«Pasó más tiempo. Después, gradualmente, comencé a rechazar intelectualmente algunas de las delirantes líneas de pensamiento que habían sido características de mi orientación. Esto comenzó, de forma más clara, con el rechazo del pensamiento orientado políticamente como una pérdida inútil de esfuerzo intelectual».

En la actualidad sigue trabajando en el Departamento de Matemáticas de la Universidad de Princeton.

Su página web oficial es: http://www.math.princeton.edu/jfnj/

Su dirección electrónica: [email protected]  (hasta el 05-10-2002)

Biografía Fibonacci Leonardo de Pisa La Serie de Fibonacci

Biografía Fibonacci Leonardo de Pisa
Aporte a la Matemática – La Serie de Fibonacci

Se presenta a continuación, por orden cronológico, a los matemáticos más destacados en el Edad Media.

Leonardo de Pisa (Fibonaccí) (1170-1250)

Jordano Nemorarius (1225 – 1260)

Nicole Oresmes (1323 – 1382)

En este post se tratará sobre la vida y obra de Fibonacci

Fibonacci – Leonardo de PISA
(FIBBONACI )(1170-1250)

Leonardo de PISA Matemático autodidacta italiano, nacido en Pisa en 1170, cuyo verdadero nombre era Leonardo de Pisa. Pero más conocido fue por el nombre de Fibonacci (nombre que proviene de la abreviatura de filiuis Bonacci, que significa hijo de Bonacci).

Falleció también en Pisa en 1250.

Fue el matemático más importante de la Edad Media.

El padre de Fibonacci, Guilielmo, miembro de la familia Bonacci, era un importante mercader. Era el representante de los mercaderes de la República de Pisa en los negocios con Argelia.

Esto le permitió viajar mucho, especialmente por el norte de Africa, donde pasó largos periodos de tiempo. Se trasladó allí a los 20 años y es donde aprendió Matemática.

Regresó de sus viajes a Pisa en 1200, donde tuvo buenas oportunidades para recopilar las matemáticas grecorromanas, árabes e hindúes, conocimientos que luego divulgó.

Su principal obra la publicó en 1202 y es Liber Abací (el Libro del ábaco), en el que se encuentran expuestos: el cálculo de números según el sistema de numeración posicional; operaciones con fracciones comunes, aplicaciones y cálculos comerciales como la regla de tres simple y compuesta.

La división proporcional, problemas sobre la determinación de calidad de las monedas; problemas de progresiones y ecuaciones; raíces cuadradas y cúbicas. En él se recomienda de manera contundente el uso de los números hindú-arábigos, los cuales introduce en Europa.

De esta manera empieza a utilizarse el sistema para el cálculo, antes se usaba el ábaco.

(Pisa, ciudad de Italia central, capital de la provincia del mismo nombre, en la región de La Toscana, a orillas del río Amo, próximo al mar de Liguria.)

Sus trabajos sobre matemática recreativa se presentaba como historias, que se transformaron en desafíos mentales en el siglo XIII. Dichos problemas involucraban la suma de sucesiones recurrentes, como el problema de las parejas de conejos, que aparece publicado en la tercera sección de este Libro.

Dicho problema da origen a la famosa sucesión de Fibonacci (1, 2, 3, 5, 8, 13,…), que él descubrió.

El problema es el siguiente:

Un hombre puso una pareja de conejos en un lugar cerrado. ¿Cuántos pares de conejos se pueden generar a partir de ese par en un año si se supone que una vez por mes, a partir del segundo mes de su vida, cada pareja da origen a otra nueva?.

 1+1=25+8=13 
         1+2=3         8+13=21 
                2+3=5                 13+21=34 
                      3+5=8                           21+34=55 

Cada término de la sucesión se denomina número de Fibonacci (se obtiene sumando los dos números precedentes en la sucesión).

Veamos la resolución del problema:

La primera pareja tiene descendencia el primer mes, así que en este mes ya hay 2 parejas. La primera pareja vuelve a tener descendencia el segundo mes, con Lo que ya

tendríamos 3 parejas. Al mes siguiente procrean la primera pareja y la que nació en primer mes (pues ya tienen dos

meses de vida), habiendo entonces 5 parejas. El cuarto mes procrea, además de esas dos, la que nació el segundo mes, es decir, nacen

tres parejas más, ya tenemos 8 parejas. Podemos seguir haciendo cuentas y obtenemos la siguiente tabla con las parejas que hay cada mes del año:

Meses123456789101112
Parejas23581321345589144233377

La respuesta al problema es, por lo tanto, 377 parejas.

Hay muchos lugares en la naturaleza donde sorprendentemente aparece esta sucesión en forma curiosa. Si uno toma ciertas plantas y comienza a partir de la base del tallo a contar las hojas, verá que al llegar a una hoja que está directamente sobre la hoja donde se comenzó el conteo, habrá Llegado a un número de Fíbonacci. Lo mismo ocurre con una planta de lechuga o cebollas.

Las escamas de una piña aparecen en espiral alrededor del vértice. Si contamos el número de espirales de una piña, encontraremos que siempre es igual a uno de los números de la sucesión  de Fibonacci.

Los números de Fibonacci verifican, entre otras, las siguientes propiedades matemáticas:

a) todo número positivo se puede expresar como suma de números de Fíbonacci no consecutivos.

b) dos números consecutivos de Fibonacci son primos entre si.

c) hay solo dos cuadrados perfectos, el 1 y el 144 y dos cubos perfectos, el 1 y el 8.

Muchos otros problemas se dan en esta tercera sección, por ejemplo:

Una araña sube, por una pared, durante el día, un determinado número de cms. y baja, durante (a noche, otro determinado número de cms. ¿Cuántos días le lleva subir la pared?.

Un perro de caza, cuya velocidad se incremento aritméticamente, persigue a una liebre, cuya velocidad también se incremento aritméticamente. ¿Cuánto recorren hasta que el perro alcanza a (a liebre?.

También hay problemas referidos a los números perfectos, y problemas que involucran a series aritméticas y geométricas.

Vivió antes de la aparición de la imprenta, por lo que sus libros fueron escritos a mano, y la única forma de tener una copia era haciendo otra copia a mano.

Otra de sus publicaciones fue Practica Geometriae (Prácticas de Geometría) en 1220, que consta de 8 capítulos, dedicada a resolver problemas geométricos y trigonométricos, especialmente medida de áreas de polígonos y volúmenes de cuerpos.

En 1225 publica Flos, donde da una exacta aproximación de la solución de 10x + 2x2 + = 20. Este problema lo toma del libro de Álgebra de Omar Khayyam, quién lo resuelve como intersección entre un círculo y una hipérbola. Fibonacci prueba que la solución no es ni un número entero, ni una fracción ni la raíz cuadrada de una fracción. Por eso dice que lo resuelve con una aproximación, pero no indica el método que usó. La solución la da en base 60, que convertida al sistema decimal es 1,3688081075. Esta solución tiene 9 decimales exactos.

En el mismo año escribe Líber Quadratorum, que es un libro sobre Teoría de números. Plantea que los cuadrados se pueden expresar como suma de números impares usando la fórmula:n2 + (2n+1 )= =(n+1)2 .

 También se ocupa de los tripletas pitagóricas que obtiene de la siguiente forma:

Cuando quiero obtener dos cuadrados cuya suma de otro cuadrado tomo cualquier número cuadrado impar como uno de los dos números cuadrados y busco el otro cuadrado sumando todos los números impares entre el 1 y el número cuadrado impar elegido, excluido éste.

Por ejemplo, elijo el 9 como uno de tos cuadrados mencionados, el otro cuadrado lo obtengo sumando los números impares desde 1 hasta 9 excluido, es decir, 1+3+5+7=16. Así 9+16=25.

Su libro sobre aritmética comercial Di minor guisa se perdió, lo mismo que su comentario sobre el libro X de Los Elementos de Euclides, que contenía un tratamiento de los números irracionales, que Euclides había abordado desde el punto de vista geométrico.

Después de explicar los procesos algorítmicos o aritméticos usuales, incluida la extracción de raíces, pone todo el énfasis en problemas de transacciones comerciales, utilizando un complicado sistema fraccionario.

La República de Pisa le asigna un salario anual en 1240 debido a sus contribuciones a la enseñanza de sus ciudadanos y los aportes a la contabilidad.

https://historiaybiografias.com/linea_divisoria5.jpg

AMPLIACIÓN SOBRE LA SERIE DE FIBONACCI

LA SERIE DE FIBONACCI: En matemáticas, la secuencia de Fibonacci es una serie de números enteros que fue descrita por primera vez en Europa por Leonardo de Pisa, también conocido como Fibonacci.

Fibonacci, Matematico Medievla, creador de la serieEn el suelo del lugar donde se encuentra el cuerpo de Jacques Sauniére al comienzo del libro hay escritos algunos números. Sophie, su nieta, reconoce la secuencia numérica y la interpreta como una señal de su abuelo, aunque lleva su tiempo que emerja su completa significación.

Una vez que ella tiene la llave de la caja de depósitos del banco y comprende que necesita un número de cuenta para tener acceso a ella, las cifras se ordenan ascendentemente para darle la solución.

La secuencia de Fibonacci es una secuencia infinita de número que comienza por: 1, 1, 2, 3, 5,8,13…, en la que cada uno de ellos es la suma de los dos anteriores.

Así: 2=1+1, 3=2+1, 5=3+2, 13=8+5 . Para cualquier valor mayor que 3 contenido en la secuencia, la proporción entre cualesquiera dos números consecutivos es 1,618, o Sección Áurea.

La secuencia de Fibonacci se puede encontrar en la naturaleza, en la que la flor del girasol, por ejemplo, tiene veintiuna espirales que van en una dirección y treinta y cuatro que van en la otra; ambos son números consecutivos de Fibonacci.

La parte externa de una piña piñonera tiene espirales que van en sentido de las manecillas del reloj y otras que lo hacen en sentido contrario, y la proporción entre el número de unas y otras espirales tiene valores secuenciales de Fibonacci.

En las elegantes curvas de una concha de nautilus, cada nueva circunvolución completa cumplirá una proporción de 1: 1,618, si se compara con la distancia desde el centro de la espiral precedente.

Leonardo Fihonacci nació en Pisa. Italia, en 1170. Creció y fue educado en Bugia, norte de África (hoy llamada Bejaia, en Argelia), desde donde regresó a Pisa alrededor del año 1200. Fihonacci fue sin duda influido y posiblemente enseñado por matemáticos árabes durante este su periodo más formativo.

Escribió muchos textos matemáticos e hizo algunos descubrimientos matemáticos significativos, lo que ayudó a que sus trabajos fueran muy populares en Italia y a que le prestara atención el Sacro Emperador Romano del momento  Federico II. quien lo invito a su corte de Pisa. Fibonacci murió en 1250.