Formula de Euler

Software Calculo de Esfuerzos en Vigas Corte y Momento Flector

USO DEL SOFTWARE ARQUIMEDES

  • Debes ingresar la longitud de la viga
  • Elegir el tipo de carga e ingresar los datos de la misma
  • Puedes ir sumando cargas o distintos estados
  • Si es un tramo de una viga continua, puedes ingresar los momentos en los extremos
  • Pulsando sobre los botones de mto. flector y corte puede ver los diagramas
  • Puedes visualizar e imprimir los diagramas

Picar aquí para comenzar la descarga

Bajar Complementos

Es una versión de prueba, pero ideal para estudiantes de ingeniería
(en las vigas simplemente apoyadas puede aparecer un mínimo momento flector en uno de los extremos, pero debes considerarlo como cero)

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar SoftwareDescargar Complementos

Ver También: Método de Cross Para Vigas

Esfuerzos en una Viga Isotática Online

Volver a Ingeniería Civil

 

Ver Tambien: Cross Para Vigas

Curiosa Situacion Física-Vuelo en Globo-Yakov Perelman

CURIOSA SITUACIÓN FÍSICA PARA VOLAR ECONÓMICO

vida en condicones extremas

El procedimiento mas barato de viajar:
El ingenioso escritor francés del siglo XVII, Cyrano de Bergerac cuenta en su «Historia Cómica de los Estados e Imperios de la Luna» (1652), entre otras cosas, un caso sorprendente que, según dice, le ocurrió a él mismo.

Un día, cuando estaba haciendo experimentos de Física, fue elevado por el aire de una forma incomprensible con sus frascos y todo. Cuando al cabo de varias horas consiguió volver a tierra quedó sorprendido al ver que no estaba ni en Francia, ni en Europa, sino en América del Norte, ¡en el Canadá!

¿Se puede ver desde un aeróstato cómo gira la Tierra? (El dibujo no se atiene a escala)

No obstante, el escritor francés consideró que este vuelo transatlántico era completamente natural. Para explicarlo dice que mientras el «viajero a la fuerza» estuvo separado de la superficie terrestre, nuestro planeta siguió girando, como siempre, hacia oriente, y que por eso al descender sentó sus pies no en Francia, sino en América.

¡Que medio de viajar más fácil y económico! No hay más que elevarse sobre la superficie de la Tierra y mantenerse en el aire unos cuantos minutos para que al descender nos encontremos en otro lugar, lejos hacia occidente.

¿Para qué emprender pesados viajes por tierra o por mar, cuando podemos esperar colgando en el aire hasta que la misma Tierra nos ponga debajo el sitio a donde queremos ir?.

Desgraciadamente este magnífico procedimiento es pura fantasía.

En primer lugar, porque al elevarnos en el aire seguimos sin separarnos de la esfera terrestre; continuamos ligados a su capa gaseosa, es decir, estaremos como colgados en la atmósfera, la cual también toma parte en el movimiento de rotación de la Tierra alrededor de su eje.

El aire (o mejor dicho, su capa inferior y más densa) gira junto con la Tierra y arrastra consigo todo lo que en él se encuentra: las nubes, los aeroplanos, los pájaros en vuelo, los insectos, etc., etc.

Si el aire no tomara parte en el movimiento de rotación de la Tierra sentiríamos siempre un viento tan fuerte, que los huracanes más terribles parecerían ligeras brisas comparadas con él (La velocidad del huracán es de 40 m por segundo o 144 km por hora.

Pero la Tierra, en una latitud como la de Leningrado, por ejemplo, nos arrastraría a través del aire con una velocidad de 240 m por segundo, es decir, de 828 km por hora, y en la región ecuatorial, por ejemplo, en Ecuador, esta velocidad sería de 465 m por segundo, o de 1.674 km por hora).

Porque lo mismo da que estemos nosotros fijos en un sitio y que el aire pase junto a nosotros o que, por el contrario, sea el aire el que está quieto y nosotros los que nos movemos dentro de él; en ambos casos el viento será igual de fuerte. Por ejemplo, un motociclista que avance a una velocidad de 100 km por hora sentirá un viento fuerte de frente aunque el aire esté en calma.

En segundo lugar, aunque pudiéramos remontarnos hasta las capas superiores de la atmósfera o la Tierra no estuviera rodeada de aire, el procedimiento de viajar económicamente ideado por el satírico francés sería también irrealizable.

Efectivamente, al separarnos de la superficie de la Tierra en rotación continua seguiríamos, por inercia, moviéndonos con la misma velocidad que antes, es decir, con la misma velocidad a que se movería la Tierra debajo de nosotros.

En estas condiciones, al volver a la Tierra nos encontraríamos en el mismo sitio de donde partimos, de igual manera que cuando damos saltos dentro de un vagón de ferrocarril en marcha caemos en el mismo sitio. Es verdad que por inercia nos moveremos en línea recta (tangencialmente a la superficie terrestre), mientras que la Tierra seguiría un arco debajo de nosotros, pero tratándose de lapsos de tiempo pequeños esta diferencia no se nota.

Fuente Yakov Perelman Física Recreativa

Ir al Menú de Cuestiones Físicas

Ver: Descarga de los Libros de Física y Matemática Curiosa de Perelman

 

Metodo de Cross Calculo de esfuerzos en Porticos Calculo de Esfuerzos

Metodo de Cross Cálculo de Esfuerzos en Pórticos

USO DEL SOFTWARE COLUMBIA PARA ESFUERZO EN PÓRTICOS

1Ingresas las cantidad de pisos y tramos de tu pórtico (ver ejemplo mas abajo)
2Ingresas las rigideces de cada barra según corresponda sus vínculos
3Ingresas los vínculos de las barras externas (empotradas o apoyadas)
4Ingresas las cargas verticales y horizontales
5Calculas los momentos finales de empotramiento (picas sobre un botón)
6Ingresas la altura de cada piso
7Calculas los esfuerzos de sujeción por piso (picas sobre un botón)
8 Puede visualizar e imprimir los datos obtenidos

(*) El programa tiene un mini manual online de uso para consulta

Metodo de Cross Calculo de esfuerzos en Porticos Calculo de Esfuerzos

Metodo de Cross Calculo de esfuerzos en Porticos Calculo de Esfuerzos

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar SoftwareDescargar Complementos

Ver También: Método de Cross Para Vigas

CREAR UNA PC VIRTUAL PARA CORRER ESTOS SOFTWARE DE 32 BITS EN 64 BITS

//historiaybiografias.com/archivos_varios5/virtual_box.jpg

Haz «clic» para descargar  VirtualBox en forma gratuita, luego se instala y configura como una máquina virtual

Volver a Ingeniería Civil

Interseccion Circunferencia y Recta Geometria Analitica Conicas

CALCULADORA DE INTERSECCION DE CIRCUNFERENCIA Y RECTA

CIRCUNFERENCIA: Un circunferencia está formada por una sucesión de puntos que están a la misma distancia de un punto que se llama centro. Existen muchas partes en un círculo.  El radio es un segmento con un extremo en el centro y el otro en el círculo. La cuerda es cualquier segmento con ambos extremos en el círculo. Eldiámetro es una cuerda que pasa por el centro del círculo.

La secante es una línea que interseca dos veces el círculo, y la tangente interseca el círculo en exactamente un solo punto. La tangente es perpendicular al radio en su punto de tangencia. El perímetro de un círculo se llama circunferencia y es igual a la distancia alrededor del círculo.

La figura de abajo muestra unas cuantas partes más del círculo que se emplearán posteriormente.

interseccion circulo y recta

El ángulo central es un ángulo con el vértice en el centro del círculo. El arco es una sección de un círculo y a menudo se le describe en términos del tamaño de su ángulo central. Entonces, podríamos referirnos a un arco de 20° o un arco de Pi/9 rad. (Pi=3.14)  Aclaramos que 1 rad=57° 18´ aprox. y es el ángulo correspondiente para que la longitud del arco sea igual al radio.

Un arco de longitud igual al radio es 1 rad. Un ángulo central divide el círculo en un arco menor y un arco mayor. También nos podemos referir a un arco por sus puntos extremos. En la figura, el arco menor se identifica como AB. El arco mayor se identifica como ABC, donde A y B son los puntos extremos y C es cualquier otro punto sobre el arco mayor. La longitud de un arco se denota colocando una m enfrente del nombre del arco. Entonces, mAB es la longitud de AB. Un sector es la región en el interior del círculo y está limitado por un ángulo central y un arco.

interseccion de circunferencia y recta

Ejemplo de una intersección entre una recta y una circunferencia, usando la aplicación de mas arriba:

Encontrar los puntos en los que la recta y = 2x – 10 corta al círculo con centro en punto de coordenadas (4, -2) y radio 4.472136. (este valor equivale a la raíz cuadrada de 20).

La ecuación del circulo es:

Y entonces se debe resolver el sistema de ecuaciones siguiente:

Resolviendo se obtiene que hay dos puntos de intersección de coordenadas: A (6,2) y B(2,-6)

Para hacerlo desde esta pagina usando el software de arriba, debe ingresar en Circunferencia C1 los valores en el siguiente orden:
radio= 4.47
x = 4
y = -2

Puede hacer clic en el Botón Graficar y observarás la circunferencia , y si deseas puedes cambiar el valor de la escala y volver a hacer clic en graficar para observar como se adapta al plano de trabajo.

Ahora para la recta se ingresan los dos puntos de pasos por ejemplo, cuando x=0, y=-10 y cuando x=2, y=0

Se vuelve a hacer clic en el Botón Graficar y en las casillas de abajo tendrás los valores de los puntos de intersección y la graficación correspondiente.

Vidas de Cientificos Grandes Hombres de Ciencia Biografias Historias

Vidas de Grandes Científicos de la Historia

Los primeros intentos de estudiar el mundo desde un punto de vista científico datan del antiguo Egipto y Babilonia. Sin embargo es a los griegos a quienes debemos las bases de muchos de nuestros pensamientos científicos; la geometría, la astronomía y la química fueron estudiadas frecuentemente de una manera amplia aunque, a veces, las conclusiones a que llegaron fueron desacertadas. Aristóteles creía (erróneamente) que la Tierra era el centro del Universo y que toda la materia estaba formada de cuatro elementos:  tierra, aire, fuego y agua.

Durante la edad media la química se hizo importante aunque no se la conocía por tal nombre. Los alquimistas, dedicados a cosas tales como producir oro de otros metales, realizaron individualmente muchos descubrimientos importantes, aunque poco contribuyeron a nuestro conocimiento de la naturaleza de la materia. La visión del Universo fue alterada radicalmente por las ideas de Copérnico (quien demostró que el centro del sistema solar era el Sol).

El siglo XVII vió un gran florecimiento de la investigación científica. Newton formuló sus leyes del movimiento y de la gravitación universal; en 1662 se fundó en Londres la Royal Society y se crearon en Europa muchos otros cuerpos de científicos organizados, los cuales allanaron el camino para el acercamiento a la ciencia moderna. Ésta ha evolucionado rápidamente a través de los siglos XVIII y XIX, hasta llegar al profesionalismo especializado de hoy. A continuación figuran muchos de los más grandes científicos.

Ver Una Lista de los Más Grandes Científicos de la Historia

LISTA DE LOS TEMAS TRATADOS

grandes ideas de la ciencia
Grandes Ideas de la Ciencia
personalidades del siglo xx
Personalidades del Siglo XX
mujeres cientificas
Diez Mujeres Científicas
cientificos olvidados
Grandes Científicos Olvidados
grandes iconoclatas
Grandes Iconoclastas
mujeres astronomas
Mujeres Astrónomas
mujeres matematicas
Mujeres Matemáticas
grandes observadores del universo
Observadores del Universo
victimas de sus investigaciones
Víctimas de sus Propias Investigaciones
matematicos y fisicos
Grandes Matemáticos-Físicos
hombres mas influyentes
Las Personas Mas Influyentes del Siglo
las teorias mas importantes
Las Más Destacadas Teorías Científicas de la Historia

 

Los Científicos Investigan
1-1 La observación conduce a la investigación.
En la Universidad de Wurzburgo en Baviera, había un profesor de Física llamado Wilhelm Roentgen (figura abajo), que en la tarde del 8 de noviembre de 1895, se encontraba en su laboratorio haciendo experimentos con un tubo de vacío.

Los tubos de vacío de esa época eran más sencillos que los que se utilizan actualmente en los aparatos de radio. Dentro de una ampolla de vidrio había dos pequeñas placas metálicas separadas varios centímetros; un alambre partía de cada placa atravesando el vidrio del tubo. Cuando las terminales de estos alambres se conectaban a una fuente de electricidad, una carga eléctrica cruzaba el vacío del tubo desde una placa a la otra. Ninguna luz era visible dentro de la ampolla, pero el vidrio adquiría brillantez cerca de una de las placas.

Mientras trabajaba ese día, Roentgen miró casualmente un estante colocado en el otro extremo del laboratorio, notando que una sustancia química contenida en uno de los frascos brillaba débilmente. Años después, cuando Roentgen era famoso, alguien le preguntó qué había pensado al observar aquel brillo en el frasco; después de meditar, contestó: «No pensé, investigué».

La investigación indicó que el frasco contenía un producto químico con el difícil nombre de platinocianuro de bario. Este es uno de los compuestos que brillan siempre cuando un rayo luminoso incide directamente sobre ellos; dichos compuestos se llaman fluorescentes.
El frasco en el laboratorio de Roentgen no se encontraba expuesto a la luz directa, así que el brillo estaba aparentemente relacionado con la corriente eléctrica dentro del tubo, ya que cesaba poco después de cortar la corriente. Como Roentgen pronto aprendió con experimentos, la corriente en el tubo hacía relucir el compuesto químico, aun cuando el tubo estuviese cubierto completamente con un cartón negro. Parecía que había algo, similar a la luz, pero sin efecto sobre el ojo, que era producido cuando la corriente atravesaba el tubo y que podía cruzar el cartón negro.

1-2 De la investigación surgen preguntas.
El «algo» descubierto por Roentgen (el agente como lo llamó al principio) podía penetrar a través del vidrio, el cartón negro y el aire. ¿Atravesará también otras substancias? ¿Cuáles de éstas serán transparentes y cuáles opacas? ¿Podrá medirse el grado de transparencia? ¿Qué relación habrá entre la transparencia y las propiedades químicas de la substancia?

El agente actuaba como la luz en un aspecto: hacía brillar un compuesto fluorescente. ¿Actuará también como la luz en otros aspectos? Por ejemplo, ¿se propagará en línea recta?, ¿podrá utilizarse para tomar fotografías?

1-3 Una búsqueda para encontrar las respuestas exige ingenio y experimentación.
Durante las pocas semanas siguientes, Roentgen contestó tantas de estas preguntas como le permitió el tiempo. No intentó encontrar respuestas completas. Sus experimentos eran por completo preliminares. Exploraba buscando respuestas provisionales que sirvieran de guía para un estudio posterior más completo y sistemático. Necesitaba hacer comparaciones y quería idear el modo de hacer medidas.

Su primer paso fue construir una pantalla de papel pintada con una solución de platino-cianuro de bario y colocarla en varias posiciones cerca del tubo de vacío. Siempre que la corriente atravesaba la ampolla la pantalla brillaba, con mayor intensidad cuando la superficie pintada estaba vuelta hacia la región fluorescente del vidrio. Parecía como si los rayos salieran de esa región y alcanzaran la pantalla. Como Roentgen suponía que el agente eran rayos de una naturaleza desconocida les puso el nombre de rayos X-

El segundo paso fue colocar varios objetos entre el tubo y la pantalla y observar el brillo de ésta al pasar la corriente por aquél. Más tarde, Roentgen tuvo gran esmero en medir el espesor y otras propiedades de los objetos usados, pero en su trabajo preliminar estaba demasiado impaciente para llevarlo a cabo.

En lugar de ello, escogió varios objetos que le rodeaban en el laboratorio para colocarlos delante de la pantalla: un libro de mil páginas, un doble paquete de cartas de baraja, un grueso trozo de madera, un pedazo de ebonita . . . , todo resultó transparente a los rayos X. Pero cuando Roentgen puso su mano entre el tubo y la pantalla vio «. . . la sombra más obscura de los huesos destacándose dentro de la sombra, sólo ligeramente menos obscura, de la mano». La carne, por tanto, no era completamente transparente a los rayos X y los huesos lo eran aún menos. Por entonces, Roentgen había dejado de observar simplemente si los rayos X atravesaban un material; comenzaba a medir el grado en que penetraban.

Roentgen también usó técnicas fotográficas en su investigación. Sin embargo, no empleóuna cámara, sino sólo placas sensibilizadas (placas de vidrio cubiertas con una emulsión fotográfica eran las usadas en los albores de la fotografía, en lugar de películas como ahora). De nuevo, Roentgen utilizó los objetos que tenía a su alcance. Colocó primero una placa sensible dentro de una caja de madera, después puso sobre la caja la llave de una puerta e hizo pasar una corriente por el tubo de vacío. Cuando reveló la placa, encontró en ella la imagen de la llave. Después, puso su monedero en lugar de la llave y obtuvo la impresión de las monedas que estaban dentro. A continuación, fotografió los huesos de su mano.

1-4 El informe de los resultados estimula el interés ulterior.
Durante todas estas investigaciones, el Profesor Roentgen tomó notas de sus observaciones.

No comprendía entonces todo lo que había visto y no quería que sólo por ese motivo se perdiera alguna observación. Además, había demasiados detalles para recordar. Como hacen muchos otros científicos, una gran parte de lo anotado por Roentgen trataba de descripciones y opiniones sobre lo que observaba. Ciertamente, eran abundantes sus comentarios en aquel tiempo.

Lo que realizó el Profesor Roentgen durante aquellas semanas de noviembre de 1895, se conoce ahora, en parte, debido a que escribió cuidadosas notas de sus experimentos y observaciones. Pero esto no era suficiente. Roentgen también deseaba compartir su entusiasmo y sus hallazgos iniciales con otras personas interesadas, que podrían unirse a sus investigaciones para explicar estos nuevos fenómenos. En consecuencia, redactó sus notas de laboratorio con el fin de preparar un informe.

Este informe lo leyó en la sesión de diciembre de la sociedad científica local, la Asociación Físico-Médica de Wurzburgo. Como indica su nombre, la Asociación incluía físicos y médicos.

La disertación del Profesor Roentgen tuvo gran significado para ambos grupos. Los físicos vieron el descubrimiento de los rayos X como un paso hacia un mejor conocimiento del comportamiento de la energía y de la estructura de la materia. Los médicos, como un acontecimiento de gran valor práctico para su profesión, especialmente en cirugía.

Las noticias de la animada reunión de Wurzburgo se esparcieron rápidamente, pero no todos se impresionaron. Hubo gente, como siempre la hay, que menospreció la importancia del trabajo de Roentgen (¡como poco científico por haber usado barajas!). Otras personas, aunque interesadas en el nuevo campo de estudio, estaban tan absorbidas en sus propios problemas científicos, que no podían apreciar toda su importancia, ni dedicarle algún tiempo. Aún así, cuando el trabajo del Profesor Roentgen apareció impreso, había científicos en todo el mundo ansiosos de repetir los experimentos y llevarlos más lejos.

En Francia, en el lapso de un año, el trabajo precursor de Roentgen condujo al descubrimiento de la radiactividad. Con esta base, los estudios hechos por científicos de muchas naciones, llevaron, después de cincuenta años, a la liberación de la energía nuclear.

Fuente Consultada: Física, Fundamentos y Fronteras – Stollberg/Hill

Ver También: 10-10-10 Todo de a 10…    Vidas Para Reflexionar!

La Presion Atmosférica Experiencia de Torricelli Concepto Definicion

LA MEDICIÓN DE LA PRESIÓN ATMOSFÉRICA, EXPERIENCIA DE TORRICELLI

Todos sabemos que existen varios tipos de presión; cualquiera comprende por ejemplo, la presión que realiza un dedo apoyado apretadamente sobre alguna cosa. Esta presión es igualmente aplicable a los sólidos, a los líquidos y a los gases. De la misma forma que se han hallado medios especiales para medir la gravedad y el peso específico de un cuerpo, también se inventaron medios especiales para medir las presiones.

Cuando se habla de los tres estados de la materia —sólido, líquido y gaseoso— no se hace hincapié en que dos de ellos se parecen entre sí bastante más que el tercero. El agua es muy diferente del aire, pero ambos gozan de la propiedad de fluir. En el sólido existen fuerzas que mantienen unidas las moléculas, de manera que su forma se conserva pero la forma del aire y del agua varían constantemente, porque tanto uno como otra fluyen. En el lenguaje científico, tanto los líquidos como los gases se denominan fluidos. Ahora bien, en todo fluido existe una cierta presión; conocemos perfectamente un ejemplo, ya que siempre hemos soportado la presión del aire, que se denomina presión atmosférica, es entre todas las presiones fluidas, la más importante para nuestra existencia.

Ante todo, cabe decir que en el inmenso océano de aire que nos rodea, existe presión fluida; la consecuencia más importante de esta presión es nuestra respiración. Al respirar, ejecutamos un movimiento que tiende a vaciar nuestros pulmones, pero por estar éstos en comunicación con el aire exterior, la presión atmosférica hace que éste penetre en el espacio que ha quedado libre. Es, pues, evidente que sin la presión atmosférica no nos sería posible respirar.

En un gas, las moléculas están muy separadas, moviéndose a gran velocidad, chocando y rebotando caóticamente. Esta agitación frenética hace que los gases se expandan hasta ocupar todo el lugar disponible en un recipiente. Nuestro planeta está envuelto por una capa de gases a la que llamamos atmósfera, compuesta en su mayor parte por nitrógeno (78%) y oxígeno (21%). Las moléculas de aire activadas enérgicamente por el Sol no escapan al espacio porque el campo gravitatorio de la Tierra restringe su expansión.

Estamos sumergidos en un “océano de aire”, una capa gaseosa que, como una cáscara de manzana (tan fina es), recubre el planeta. En forma similar a como lo hace un liquido, el peso del aire sobre la superficie terrestre ejerce una presión, la presión atmosférica. A diferencia de los líquidos, los gases son compresibles: como su densidad puede variar, las capas superiores de la columna de aire comprimen a las más bajas.

En los lugares más profundos de la atmósfera, es decir a nivel del mar, el aire es más denso, y a medida que subimos se va enrareciendo, hasta que se desvanece a unos 40 Km. de altura. La capa baja, la tropósfera, presenta las condiciones necesarias para la vida y es donde se producen los fenómenos meteorológicos. Mide 11 Km. y contiene el 80 % del aire total de la atmósfera.

La presión atmosférica ha sido determinada en más de un kilo por centímetro cuadrado de superficie (1 Kg/cm²) pero, sin embargo, no lo notarnos (motivo por el cual, por miles de años, los hombres consideraron al aire sin peso). ¿Cómo es que los animales y las personas que están en la Tierra pueden soportar tamaña presión?

El aire ejerce su presión en todas direcciones (como todos los fluidos y los gases), pero los líquidos internos de todos esos seres ejercen una presión que equilibra la presión exterior. En este hecho se basa el mecanismo de esterilización por vacío: para eliminar los microorganismos de una muestra (alimento, instrumental, etc.), se la coloca en un recipiente del cual se extrae el aire. La presión exterior es reducida y los fluidos internos de las bacterias, que estaban sometidas a la presión atmosférica, se expanden, haciendo que éstas “revienten».

Si se extrae el aire de un recipiente, la presión atmosférica lo aplastará, a menos que el recipiente sea suficientemente rígido.

Al apretar una sopapa (para destapar cañerías) contra una superficie pulida se aplasta y queda sin aire. Cuando, por acción de las fuerzas elásticas, la sopapa recupera su forma inicial, queda un vacío parcial en el interior y la presión atmosférica exterior la mantiene adherida a la pared. Del mismo modo, las patas de las moscas tienen pequeñas ventosas que les permiten caminar por paredes y techos sin caer al piso.

El funcionamiento del gotero obedece al mismo fenómeno. Al apretar la perilla de goma creamos un vacío parcial. Cuando sumergimos el tubito en el liquido y soltamos la perilla, la presión atmosférica que se ejerce sobre la superficie libre del liquido lo obliga a subir por el tubo hasta la región de menor presión dentro de la perilla.

Experiencia de Torricelli:
En 1643, el físico italiano Evangelista Torricelli ideó un procedimiento para medir la presión atmosférica.

¿Por qué el mercurio no descendió más? El tubo no se yació porque el aire exterior presionaba sobre el mercurio de la cubeta (en cambio, en la parte superior del tubo se produjo vacío). La presión ejercida por la atmósfera en el punto Q es igual a la presión en R, ya que ambos puntos están al mismo nivel en el mismo fluido. Es decir que la presión que la columna de aire de casi 40 km de altura (la atmósfera) ejerce sobre la superficie libre del mercurio (pQ) es igual a la que ejerce la columna de 76 cm de mercurio (pa) , entonces:

Patm= PHg hHg = 13,6 g/cm3 . 76cm = 1.033,6 g/cm2 = 101.293 N/m2 = 101.293 Pa

Este valor, que corresponde a la presión atmosférica normal, se llama atmósfera (atm). También se acostumbra a dar la presión atmosférica en milímetros de mercurio (Torr) o en milibares (1mb = 0,75 Torr).

1 atm = 760 mm Hg = 760 Torr

Esta experiencia logró explicar por qué había un límite de profundidad para extraer el agua de las minas: la atmósfera no ejerce una presión ilimitada, sólo alcanza a sostener una determinada altura de agua.

La presión atmosférica varía según la altitud y también debido a los vientos y tormentas. Suele tomar valores entre 720 y 770 mm Hg. Una presión alta generalmente pronostica buen tiempo; y una baja presión atmosférica promete lo contrario. El aparato que permite medirla se llama barómetro.

Poco después de la experiencia de Torricelli, Blaise Pascal predijo que la presión atmosférica debe disminuir cuando se asciende por una montaña, ya que la columna de aire soportada es cada vez menor. Su cuñado se encargó de hacer la experiencia y comprobar la hipótesis en 1658. A medida que ascendía al monte Puy de Dome observó el descenso de la columna mercurial del barómetro (que desde entonces pudo ser usado también como altímetro).

Pero, ¿cuál es la relación entre la presión atmosférica y la altura? Si la densidad del aire fuera uniforme, la presión disminuiría proporcionalmente con la altura. Podríamos afirmar, por ejemplo, que “la presión disminuye 1 Torr por cada 11 metros que nos elevamos”. Pero tengamos presente que las capas más bajas de la atmósfera están más comprimidas por lo que, conforme subimos, el aire se va enrareciendo (se hace menos denso). Por lo tanto, cuanto más alto estemos, más se necesitará subir para que la presión disminuya 1 Torr.

El peso total del aire en la atmósfera se ha estimado en unos 5.000 billones de toneladas, que determinan una presión aproximada de 1,033 Kg. por centímetro cuadrado a nivel del mar. La presión no se siente porque se ejerce igualmente desde todos los ángulos sobre el cuerpo. Sin embargo, la presión del aire puede demostrarse extrayendo todo el aire de un envase, de modo que se produzca el vacío en su interior. Como la presión del aire exterior es más grande que la interior el envase se contraerá y cederá. En la atmósfera la presión del aire varía y se mide con barómetros. Las variaciones son importantes para realizar pronósticos del tiempo, porque las diferencias de presión se asocian con los

Torricelli Evangelista Físico Italiano

Fue físico Evangelista Torricelli, que supuso que el agua subía por los tubos, cuando funcionaban las bombas, por efecto del peso del aire, es decir, de la presión que la atmósfera ejercía sobre la superficie libre del agua. Pero pensó, además, que esa presión debía tener un límite tal que no permitía elevar aquel líquido a más de 10 metros y, reflexionando, supuso que un líquido como el mercurio, que tiene un peso específico unas 13,6 veces mayor que el agua, se elevaría a tan sólo unos 76 centímetros. Torricelli comunicó sus ideas a otro discípulo de Galileo Galilei, de apellido Viviani. Este realizó el experimento hoy conocido con el nombre de experiencia de Torricelli, que confirmó aquellas ideas.

CICLONES Y LOS ANTICICLONES: El cuerpo humano se adapta a la vida en un océano de aire del mismo modo que los peces se adaptan a las tremendas presiones del fondo del mar. Sin embargo, la presión atmosférica decrece sobre el nivel del mar.

A 7.500 metros de altura la presión del aire es de 0,42 gramos por centímetro cuadrado, alrededor de dos quintas partes de la presión a la que está adaptado el cuerpo, y a los 18.000 metros la presión es sólo la de un décimo de la que se ejerce al nivel del mar. Cuando la presión del aire ha descendido mucho, el cuerpo no recibe oxígeno suficiente. De ahí que los aviones posean cabinas presurizadas, que hacen más cómodo el vuelo. La presión del aire es la fuerza utilizada en las BOMBAS. Comprimido, el aire llegó a ser una útil fuente de energía. Por ejemplo, el aire comprimido se usa en las herramientas naúticas.

PARA SABER MAS…
Qué es el barómetro

El tubo de Torricelli aplicado a la medición de la presión atmosférica, forma ni más ni menos lo que se llama un barómetro, que significa precisamente «medidor del peso»; con el barómetro medimos, pues, el peso atmosférico. Cuando lo consultamos, nos contentamos con ver si la aguja marca buen tiempo o variable, e lo que sea en cada caso, como si el barómetro poseyera el don de la profecía; pero lo que hacemos en realidad, aunque apenas nos demos cuenta de ello, es medir la presión atmosférica, que se indica bajo aquellos signos. La aguja del barómetro indica la altura en milímetros de la columna de mercurio.

La relación entre el barómetro y el tiempo reside en el hecho de que la presión atmosférica es lo que decide, en gran parte, el tiempo que hará. Si la presión atmosférica es muy alta, hará buen tiempo; si es muy baja, entonces el aire correrá desde otro punto donde la presión sea más fuerte; este desplazamiento del aire es el viento, y el viento puede producir la lluvia.

He aquí por qué el barómetro predice con bastante exactitud el tiempo; si no lo hace con mayor precisión, es porque la presión atmosférica no es la única causa de su variación.

Por lo demás, si bien como profeta del tiempo no siempre es digno de crédito, sus servicios para medir las alturas son excelentes. Dado que obedece a la menor presión atmosférica, si se aplica el barómetro a un instrumento de precisión especial, indicará con exactitud matemática a qué altura se encuentran el alpinista o el aviador que se sirvan de él.

baromtroEl barómetro más difundido es igual al tubo del instrumento de Torricelli, pero su extremo suele estar doblado en forma de U, en lugar de penetrar en una cubeta de mercurio.

Si hacemos flotar una bolita de hierro en la superficie del mercurio por la parte abierta del tubo, podrá adherirse a ella con facilidad un pequeño dispositivo con una aguja que nos indique la altura de la columna barométrica, señalada con las palabras: bien tiempo, estable, variable, lluvia, etc.

Existe otro tipo de barómetro que no tiene mercurio ni ningún otro líquido, llamado barómetro aneroide, que significa precisamente «sin líquido». Consiste en una sencilla caja de metal, redonda y aplanada, dentro de la cual se ha hecho el vacío; la parte superior e inferior de la caja se aproximan entre sí, más o menos, según sea la presión atmosférica; un indicador de la medida de la presión, y aunque sus indicaciones no sean muy precisas, son, en todo caso, suficientes.

Si calentamos un barómetro corriente de los de mercurio, éste se dilatará, ocupando un mayor espacio en el tubo; por lo tanto, si deseamos obtener indicaciones exactas, debemos tener en cuenta también la temperatura. Por esto, a un buen barómetro va siempre unido un termómetro. Para fabricar un buen barómetro, es necesario hacer hervir antes el mercurio para librarlo al máximo del aire y del vapor acuoso; si se descuidase esta precaución, el aire y el vapor de agua ocuparían el vacío de Torricelli impidiendo el oportuno ascenso del mercurio.

La presión atmosférica se calcula en 1 kilo y 33 gramos por centímetro cuadrado; por lo tanto, cada centímetro cuadrado de nuestro cuerpo soporta este peso, tan considerable, que si sólo presionara hacia abajo nos aplastaría literalmente.

Ideas de Hawking Sobre El Universo Fisica Clasica y Cuantica Teoria

Ideas de Hawking Sobre El Universo: Física Clásica y Cuántica
Las Teorías Moderna de la Física

¿Juega Dios a los dados?
(Conferencia de Hawking)

Conferencia de Hawking Sobre Fisica Clasica y Cuantica Esta conferencia versa sobre si podemos predecir el futuro o bien éste es arbitrario y aleatorio. En la antigüedad, el mundo debía de haber parecido bastante arbitrario. Desastres como las inundaciones o las enfermedades debían de haber parecido producirse sin aviso o razón aparente.

La gente primitiva atribuía esos fenómenos naturales a un panteón de dioses y diosas que se comportaban de una forma caprichosa e impulsiva. No había forma de predecir lo que harían, y la única esperanza era ganarse su favor mediante regalos o conductas.

Mucha gente todavía suscribe parcialmente esta creencia, y tratan de firmar un pacto con la fortuna. Se ofrecen para hacer ciertas cosas a cambio de un sobresaliente en una asignatura, o de aprobar el examen de conducir.

Sin embargo, la gente se debió de dar cuenta gradualmente de ciertas regularidades en el comportamiento de la naturaleza. Estas regularidades eran más obvias en el movimiento de los cuerpos celestes a través del firmamento. Por eso la Astronomía fue la primera ciencia en desarrollarse.

Fue puesta sobre una firme base matemática por Newton hace más de 300 años, y todavía usamos su teoría de la gravedad para predecir el movimiento de casi todos los cuerpos celestes. Siguiendo el ejemplo de la Astronomía, se encontró que otros fenómenos naturales también obedecían leyes científicas definidas.

Esto llevó a la idea del determinismo científico, que parece haber sido expresada públicamente por primera vez por el científico francés Laplace. Me pareció que me gustaría citar literalmente las palabras de Laplace. y le pedí a un amigo que me las buscara. Por supuesto que están en francés, aunque no esperaba que la audiencia tuviera ningún problema con esto.

El problema es que Laplace, como Prewst [N. del T.: Hawking probablemente se refiere a Proust], escribía frases de una longitud y complejidad exageradas. Por eso he decidido parafrasear la cita. En efecto, lo que él dijo era que, si en un instante determinado conociéramos las posiciones y velocidades de todas las partículas en el Universo, podríamos calcular su comportamiento en cualquier otro momento del pasado o del futuro.

Hay una historia probablemente apócrifa según la cual Napoleón le preguntó a Laplace sobre el lugar de Dios en este sistema, a lo que él replicó «Caballero, yo no he necesitado esa hipótesis». No creo que Laplace estuviera reclamando que Dios no existe. Es simplemente que El no interviene para romper las leyes de la Ciencia. Esa debe ser la postura de todo científico. Una ley científica no lo es si solo se cumple cuando algún ser sobrenatural lo permite y no interviene.

La idea de que el estado del universo en un instante dado determina el estado en cualquier otro momento ha sido uno de los dogmas centrales de la ciencia desde los tiempos de Laplace. Eso implica que podemos predecir el futuro, al menos en principio. Sin embargo, en la práctica nuestra capacidad para predecir el futuro está severamente limitada por la complejidad de las ecuaciones, y por el hecho de que a menudo exhiben una propiedad denominada caos.

Como sabrán bien todos los que han visto Parque Jurásico, esto significa que una pequeña perturbación en un lugar puede producir un gran cambio en otro. Una mariposa que bate sus alas puede hacer que llueva en Central Park, Nueva York. El problema es que eso no se puede repetir. La siguiente vez que una mariposa bata sus alas, una multitud de otras cosas serán diferentes, lo que también tendrá influencia sobre la meteorología. Por eso las predicciones meteorológicas son tan poco fiables.

A pesar de estas dificultades prácticas, el determinismo científico permaneció como dogma durante el siglo 19. Sin embargo, en el siglo 20 ha habido dos desarrollos que muestran que la visión de Laplace sobre una predicción completa del futuro no puede ser llevada a cabo.

Simón LaplaceEl primero de esos desarrollos es lo que se denomina mecánica cuántica. Fue propuesta por primera vez en 1900, por el físico alemán Max Planck, como hipótesis ad hoc para resolver una paradoja destacada.

De acuerdo con las ideas clásicas del siglo 19, que se remontan a los tiempos de Laplace, un cuerpo caliente, como una pieza de metal al rojo, debería emitir radiación. (imagen: Simón Laplace)

Perdería energía en forma de ondas de radio, infrarrojos, luz visible, ultravioleta, rayos x, y rayos gamma, todos a la misma tasa. Esto no sólo significaría que todos moriríamos de cáncer de piel, sino que además todo en el universo estaría a la misma temperatura, lo que claramente no es así.

Sin embargo, Planck mostró que se puede evitar este desastre si se abandonara la idea de que la cantidad de radiación puede tener cualquier valor, y se dijera en su lugar que la radiación llega únicamente en paquetes o cuantos de un cierto tamaño.

Es un poco como decir que en el supermercado no se puede comprar azúcar a granel, sino sólo en bolsas de un kilo. La energía en los paquetes o cuantos es mayor para los rayos x y ultravioleta, que para la luz infrarroja o visible. Esto significa que a menos que un cuerpo esté muy caliente, como el Sol, no tendrá suficiente energía para producir ni siquiera un único cuanto de rayos x o ultravioleta. Por eso no nos quemamos por insolación con una taza de café.

Para Planck los cuantos no eran más que un truco matemático que no tenía una realidad física, lo que quiera que eso signifique. Sin embargo, los físicos empezaron a encontrar otro comportamiento, que sólo podía ser explicado en términos de cantidades con valores discretos o cuantizados, más que variables continuas.

Por ejemplo, se encontró que las partículas elementales se comportaban más bien como pequeñas peonzas girando sobre un eje. Pero la cantidad de giro no podía tener cualquier valor. Tenía que ser algún múltiplo de una unidad básica. Debido a que esa unidad es muy pequeña, uno no se da cuenta de que una peonza normal decelera mediante una rápida secuencia de pequeños pasos, más que mediante un proceso continuo. Pero para peonzas tan pequeñas como los átomos, la naturaleza discreta del giro es muy importante.

Pasó algún tiempo antes de que la gente se diera cuenta de las implicaciones que tenía este comportamiento cuántico para el determinismo. No sería hasta 1926, cuando Werner Heisenberg, otro físico alemán, indicó que no podrías medir exactamente la posición y la velocidad de una partícula a la vez. Para ver dónde está una partícula hay que iluminarla.

Pero de acuerdo con el trabajo de Planck, uno no puede usar una cantidad de luz arbitrariamente pequeña. Uno tiene que usar al menos un cuanto. Esto perturbará la partícula, y cambiará su velocidad de una forma que no puede ser predicha. Para medir la posición de la partícula con exactitud, deberás usar luz de una longitud de onda muy corta, como la ultravioleta, rayos x o rayos gamma. Pero nuevamente, por el trabajo de Planck, los cuantos de esas formas de luz tienen energías más altas que las de la luz visible.

Por eso perturbarán aún más la velocidad de la partícula. Es un callejón sin salida: cuanto más exactamente quieres medir la posición de la partícula, con menos exactitud puedes conocer la velocidad, y viceversa. Esto queda resumido en el Principio de Incertidumbre formulado por Heisenberg; la incertidumbre en la posición de una partícula, multiplicada por la incertidumbre en su velocidad, es siempre mayor que una cantidad llamada la constante de Planck, dividida por la masa de la partícula.

La visión de Laplace del determinismo científico implicaba conocer las posiciones y velocidades de las partículas en el universo en un instante dado del tiempo. Por lo tanto, fue seriamente socavado por el Principio de Incertidumbre de Heisenberg. ¿Cómo puede uno predecir el futuro, cuando uno no puede medir exactamente las posiciones ni las velocidades de las partículas en el instante actual? No importa lo potente que sea el ordenador de que dispongas, si lo alimentas con datos deplorables, obtendrás predicciones deplorables.

Albert Einstein

Einstein estaba muy descontento por esta aparente aleatoriedad en la naturaleza. Su opinión se resumía en su famosa frase ‘Dios no juega a los dados’.

Parecía que había presentido que la incertidumbre era sólo provisional, y que existía una realidad subyacente en la que las partículas tendrían posiciones y velocidades bien definidas y se comportarían de acuerdo con leyes deterministas, en consonancia con Laplace. Esta realidad podría ser conocida por Dios, pero la naturaleza cuántica de la luz nos impediría verla, excepto tenuemente a través de un cristal.

La visión de Einstein era lo que ahora se llamaría una teoría de variable oculta. Las teorías de variable oculta podrían parecer ser la forma más obvia de incorporar el Principio de Incertidumbre en la física.

Forman la base de la imagen mental del universo, sostenida por muchos científicos, y prácticamente por todos los filósofos de la ciencia. Pero esas teorías de variable oculta están equivocadas. El físico británico John Bell, que murió recientemente, ideó una comprobación experimental que distinguiría teorías de variable oculta.

Cuando el experimento se llevaba a cabo cuidadosamente, los resultados eran inconsistentes con las variables ocultas. Por lo tanto parece que incluso Dios está limitado por el Principio de Incertidumbre y no puede conocer la posición y la velocidad de una partícula al mismo tiempo. O sea que Dios juega a los dados con el universo. Toda la evidencia lo señala como un jugador empedernido, que tira los dados siempre que tiene ocasión.

Otros científicos estaban mucho más dispuestos que Einstein a modificar la visión clásica del determinismo del siglo 19. Una nueva teoría, denominada la mecánica cuántica, fue propuesta por Heisenberg, el austríaco Erwin Schroedinger, y el físico británico Paul Dirac. Dirac fue mi penúltimo predecesor en la cátedra Lucasiana de Cambridge. Aunque la mecánica cuántica ha estado entre nosotros durante cerca de 70 años, todavía no es generalmente entendida o apreciada, incluso por aquellos que la usan para hacer cálculos. Sin embargo, debería preocuparnos a todos, puesto que es una imagen completamente diferente del universo físico y de la misma realidad.

En la mecánica cuántica, las partículas no tienen posiciones ni velocidades bien definidas. En su lugar, son representadas por lo que se llama una función de onda. Esta es un número en cada punto del espacio. El tamaño de la función de onda indica la probabilidad de que la partícula sea encontrada en esa posición.

La tasa con la que la función de onda cambia de punto a punto, proporciona la velocidad de la partícula. Uno puede tener una función de onda con un gran pico en una región muy pequeña. Esto significará que la incertidumbre en la posición es muy pequeña. Pero la función de onda variará muy rápidamente cerca del pico, hacia arriba en un lado, hacia abajo en el otro. Por lo tanto la incertidumbre en la velocidad será grande. De la misma manera, uno puede tener funciones de onda en las que la incertidumbre en la velocidad es pequeña, pero la incertidumbre en la posición es grande.

La función de onda contiene todo lo que uno puede saber de la partícula, tanto su posición como su velocidad. Si sabes la función de onda en un momento dado, entonces sus valores en otros momentos son determinados por lo que se llama la ecuación de Schroedinger. Por lo tanto uno tiene aún un cierto determinismo, pero no del tipo que Laplace imaginaba. En lugar de ser capaces de predecir las posiciones y las velocidades de las partículas, todo lo que podemos predecir es la función de onda. Esto significa que podemos predecir sólo la mitad de lo que podríamos de acuerdo con la visión clásica del siglo 19.

Aunque la mecánica cuántica lleva a la incertidumbre cuando tratamos de predecir la posición y la velocidad a un mismo tiempo, todavía nos permite predecir con certidumbre una combinación de posición y velocidad. Sin embargo, incluso este grado de certidumbre parece estar amenazado por desarrollos más recientes. El problema surge porque la gravedad puede torcer el espacio-tiempo tanto que puede haber regiones que no observamos.

Curiosamente, el mismo Laplace escribió un artículo en 1799 sobre cómo algunas estrellas pueden tener un campo gravitatorio tan fuerte que la luz no podría escapar, siendo por tanto arrastrada de vuelta a la estrella. Incluso calculó que una estrella de la misma densidad que el Sol, pero doscientas cincuenta veces más pequeña, tendría esta propiedad. Pero aunque Laplace podría no haberse dado cuenta, la misma idea había sido propuesta 16 años antes por un hombre de Cambridge, John Mitchell, en un artículo en Phylosophical Transactions of the Royal Society.

Tanto Mitchel como Laplace concebían a la luz como formada por partículas, más bien como bolas de cañón, que podían ser deceleradas por la gravedad, y hechas caer de vuelta a la estrella. Pero un famoso experimento llevado a cabo por dos americanos, Michelson y Morley, en 1887, mostraron que la luz siempre viajaba a una velocidad de ciento ochenta y seis mil millas por segundo, no importa de dónde viniera. Cómo podía entonces la gravedad decelerarla, y hacerla caer de nuevo.

De acuerdo con las ideas sobre el espacio y el tiempo vigentes en aquel momento esto era imposible. Sin embargo, en 1915 Einstein presentó al mundo su revolucionaria Teoría General de la Relatividad en la cual espacio y tiempo dejaban de ser entidades separadas e independientes. Por el contrario, eran meramente diferentes direcciones de una única noción llamada espacio-tiempo.

Esta noción espacio-tiempo no era uniforme sino deformada y curvada debido a su energía inherente. Para que se entienda mejor, imagínese que colocamos un peso (que hará las veces de estrella) sobre una lámina de goma. El peso (estrella) formará una depresión en la goma curvándose la zona alrededor del mismo en contraposición a la planicie anterior.

Si hacemos rodar canicas sobre la lámina de goma, sus rastros serán espirales más que líneas rectas. En 1919, una expedición británica en el Oeste de África observaba la luz de estrellas lejanas que cruzaba cerca del sol durante un eclipse. Descubrieron que las imágenes de las estrellas variaban ligeramente de sus posiciones habituales; esto revelaba que las trayectorias de la luz de las estrellas habían sido curvadas por el influjo del espacio-tiempo que rodea al sol. La Relatividad General había sido confirmada.

Imagínese ahora que colocamos pesos sobre la lámina de goma cada vez más cuantiosos y de manera más intensiva. Hundirán la plancha cada vez más. Con el tiempo, alcanzado el peso y la masa crítica se hará un agujero en la lámina por el que podrán caer las partículas pero del que no podrá salir nada.

Según la Teoría General de la Relatividad lo que sucede con el espacio-tiempo es bastante similar. Cuanto más ingente y más densa sea una estrella, tanto más se curvará y distorsionará el espacio-tiempo alrededor de la misma. Si una estrella inmensa que ha consumido ya su energía nuclear se enfría encogiéndose por debajo de su masa crítica, formará literalmente un agujero sin fondo en el espacio-tiempo por el que no puede pasar la luz. El físico americano John Wheeler llamó a estos objetos “agujeros negros” siendo el primero en destacar su importancia y los enigmas que encierran. El término se hizo popular rápidamente.

Para los americanos sugería algo oscuro y misterioso mientras que para los británicos existía además la amplia difusión del Agujero Negro de Calcuta. Sin embargo los franceses, muy franceses ellos, percibieron algo indecente en el vocablo. Durante años se resistieron a utilizar el término, demasiado negro, arguyendo que era obsceno; pero era parecido a intentar luchar contra préstamos lingüísticos como “le weekend” y otras mezcolanzas del “franglés”. Al final tuvieron que claudicar. ¿Quién puede resistirse a una expresión así de conquistadora?

Ahora tenemos evidencias de la existencia de agujeros negros en diferentes tipos de entidades, desde sistemas de estrellas binarios al centro de las galaxias.

Por lo tanto, la existencia de agujeros negros está ampliamente aceptada hoy en día. Con todo y al margen de su potencial para la ciencia ficción, ¿cuál sería su relevancia para el determinismo? La respuesta reside en una pegatina de parachoques que tenía en la puerta de mi despacho: “los agujeros negros son invisibles”.

No sólo ocurre que las partículas y los astronautas desafortunados que caen en un agujero negro no vuelven nunca, sino que la información que estos portan se pierde para siempre, al menos en nuestra demarcación del universo. Puede lanzar al agujero negro aparatos de televisión, sortijas de diamantes e incluso a sus peores enemigos y todo lo que recordará el agujero negro será su masa total y su estado de rotación. John Wheeler llamó a esto “un agujero negro no tiene pelo”. Esto confirma las sospechas de los franceses.

(Paul DiracMientras hubo el convencimiento de que los agujeros negros existirían siempre, esta pérdida de información pareció no importar demasiado. Se podía pensar que la información seguía existiendo dentro de los agujeros negros.

Simplemente es que no podemos saber lo que hay desde fuera de ellos pero la situación cambió cuando descubrí que los agujeros negros no son del todo negros. La Mecánica Cuántica hace que estos emitan partículas y radiaciones a un ritmo constante. (imagen Paul Dirac)

Estos hallazgos me asombraron no sólo a mí si no al resto del mundo pero con la perspectiva del tiempo esto habría resultado obvio. Lo que se entiende comúnmente como “el vacío” no está realmente vacío ya que está formado por pares de partículas y antipartículas. Estas permanecen juntas en cierto momento del espacio-tiempo, en otro se separan para después volver a unirse y finalmente aniquilarse la una a las otra.

Estas partículas y antipartículas existen porque un campo, tal como los campos que transportan la luz y la gravedad no puede valer exactamente cero. Esto denotaría que el valor del campo tendría tanto una posición exacta (en cero) como una velocidad o ritmo de cambio exacto (también cero).

Esto violaría el Principio de Incertidumbre porque una partícula no puede tener al tiempo una posición y una velocidad constantes. Por lo tanto, todos los campos deben tener lo que se denomina fluctuaciones del vacío. Debido al comportamiento cuántico de la naturaleza se puede interpretar estas fluctuaciones del vacío como partículas y antipartículas como he descrito anteriormente.

Estos pares de partículas se dan en conjunción con todas las variedades de partículas elementarias. Se denominan partículas virtuales porque se producen incluso en el vacío y no pueden ser mostradas directamente por los detectores de partículas. Sin embargo, los efectos indirectos de las partículas virtuales o fluctuaciones del vacío han sido estudiados en diferentes experimentos, siendo confirmada su existencia.

Si hay un agujero negro cerca, uno de los componentes de un par de partículas y antipartículas podría deslizarse en dicho agujero dejando al otro componente sin compañero. La partícula abandonada puede caerse también en el agujero o bien desplazarse a larga distancia del mismo donde se convertirá en una verdadera partícula que podrá ser apreciada por un detector de partículas. A alguien muy alejado del agujero negro le parecerá que la partícula ha sido emitida por el mismo agujero.

Esta explicación de cómo los agujeros negros no son tan negros clarifica que la emisión dependerá de la magnitud del agujero negro y del ritmo al que esté rotando. Sin embargo, como un agujero negro no tiene pelo, citando a Wheeler, la radiación será por otra parte independiente de lo que se deslizó por el agujero. No importa lo que arroje a un agujero negro: aparatos de televisión, sortijas de diamantes o a sus peores enemigos. Lo que de allí sale es siempre lo mismo.

Pero ¿qué tiene esto que ver con el determinismo que es sobre lo que se supone que versa esta conferencia? Lo que esto demuestra es que hay muchos estados iniciales (incluyendo aparatos de televisión, sortijas de diamantes e incluso gente) que evolucionan hacia el mismo estado final, al menos fuera del agujero negro.

Sin embargo, en la visión de Laplace sobre el determinismo había una correspondencia exacta entre los estados iniciales y los finales. Si usted supiera el estado del universo en algún momento del pasado podría predecirlo en el futuro. De manera similar, si lo supiera en el futuro, podría deducir lo que habría sido en el pasado.

Con el advenimiento de la Teoría del Cuanto en los años 20 del siglo pasado se redujo a la mitad lo que uno podía predecir pero aún dejó una correspondencia directa entre los estados del universo en diferentes momentos. Si uno supiera la función de onda en un momento dado, podría calcularla en cualquier otro.

Sin embargo, la situación es bastante diferente con los agujeros negros. Uno se encontrará con el mismo estado fuera del agujero, independientemente de lo que haya lanzado dentro, a condición de que tenga la misma masa. Por lo tanto, no hay una correspondencia exacta entre el estado inicial y el estado final ya fuera del agujero negro. Habrá una correspondencia exacta entre el estado inicial y el final ambos fuera o ambos dentro del agujero negro.

Sin embargo, lo importante es que la emisión de partículas y la radiación alrededor del agujero provocan una reducción en la masa del mismo y se empequeñece. Finalmente, parece que el agujero negro llega a la masa cero y desaparece del todo. Pero, ¿qué ocurre con todos los objetos que fueron lanzados al agujero y con toda la gente que o bien saltó o fue empujada? No pueden volver a salir porque no existe la suficiente masa o energía sobrante en el agujero negro para enviarlos fuera de nuevo.

Puede que pasen a otro universo pero eso nos da lo mismo a los que somos lo suficientemente prudentes como para no saltar dentro de un agujero negro. Incluso la información de lo que cayó dentro del agujero no podría salir de nuevo cuando el agujero desaparezca por último. La información no se distribuye gratuitamente como bien sabrán aquellos de ustedes que paguen facturas telefónicas. La información necesita energía para transportarse, y no habrá suficiente energía de sobra cuando el agujero negro desaparezca.

Ideas de Hawking sobre el Universo

Lo que todo esto (ver pagina anterior) significa es que la información se perderá de nuestra demarcación del universo cuando se formen los agujeros negros para después desvanecerse.

Esta pérdida de información implica que podemos predecir incluso menos de lo pensamos, partiendo de la base de la teoría cuántica. En esta teoría puede no ser factible predecir con certidumbre la posición y la velocidad de una partícula al mismo tiempo.

Hay sin embargo una combinación de posición y velocidad que sí puede ser predicha. En el caso de un agujero negro, esta predicción específica concierne a los dos miembros de un par de partículas-antipartículas pero únicamente podemos detectar la partícula expulsada. No hay modo alguno, incluso en un principio, de poner de manifiesto la partícula que se precipita al agujero. Por lo tanto, por lo que sabemos, podría estar en cualquier estado. Esto significa que no podemos hacer ninguna predicción concreta acerca de la partícula que expulsa el agujero.

Podemos calcular la probabilidad de que la partícula tenga esta o aquella posición o velocidad pero no podemos predecir con precisión una combinación de la posición y velocidad de sólo una partícula porque su velocidad y posición van a depender de la otra partícula, la cual no está bajo nuestra observación. Así que Einstein estaba sin lugar a dudas equivocado cuando dijo, “Dios no juega a los dados”. No sólo Dios juega definitivamente a los dados sino que además a veces los lanza a donde no podemos verlos.

Muchos científicos son como Einstein en el sentido de que tienen un lazo emocional muy fuerte con el determinismo pero al contrario que Einstein han aceptado la reducción en nuestra capacidad para predecir que nos había traído consigo la teoría cuántica. Pero ya era mucho.

A estos no les gustó la consiguiente reducción que los agujeros negros parecían implicar. Pensar que el universo es determinista, como creía Laplace, es simplemente inocente. Presiento que estos científicos no se han aprendido la lección de la historia. El universo no se comporta de acuerdo a nuestras preconcebidas ideas. Continúa sorprendiéndonos.

Podría pensarse que no importa demasiado si el determinismo hizo aguas cerca de los agujeros negros. Estamos casi seguros de estar al menos a unos pocos años luz de agujero negro de cualquier tamaño pero según el Principio de Incertidumbre, cada región del espacio debería estar llena de diminutos agujeros negros virtuales que aparecerían y desaparecerían una y otra vez.

Uno pensaría que las partículas y la información podrían precipitarse en estos agujeros negros y perderse. Sin embargo, como estos agujeros negros virtuales son tan pequeños (cien billones de billones más pequeños que el núcleo de un átomo) el ritmo al cual se perdería la información sería muy bajo. Esto es por lo que las leyes de la ciencia parecen deterministas, observándolas con detenimiento.

Sin embargo, en condiciones extremas, tales como las del universo temprano o las de la colisión de partículas de alta energía, podría haber una significativa pérdida de información. Esto conduce a la imprevisibilidad en la evolución del universo.

En resumen, de lo que he estado hablando es de si el universo evoluciona de manera arbitraria o de si es determinista. La visión clásica propuesta por Laplace estaba fundada en la idea de que el movimiento futuro de las partículas estaba determinado por completo, si se sabían sus posiciones y velocidades en un momento dado.

Esta hipótesis tuvo que ser modificada cuando Heisenberg presentó su Principio de Incertidumbre el cual postulaba que no se podía saber al mismo tiempo y con precisión la posición y la velocidad. Sin embargo, sí que era posible predecir una combinación de posición y velocidad pero incluso esta limitada certidumbre desapareció cuando se tuvieron en cuenta los efectos de los agujeros negros: la pérdida de partículas e información dentro de los agujeros negros dio a entender que las partículas que salían eran fortuitas.

Se pueden calcular las probabilidades pero no hacer ninguna predicción en firme. Así, el futuro del universo no está del todo determinado por las leyes de la ciencia, ni su presente, en contra de lo que creía Laplace. Dios todavía se guarda algunos ases en su manga.

Es todo lo que tengo que decir por el momento. Gracias por escucharme.

El cero absoluto Los superconductores La superfluidez Historia

El cero absoluto, Los superconductores, La superfluidez

La física demuestra que el calor no es otra cosa que el estado de agitación de las moléculas de un cuerpo. Cuando éstas se mueven con gran energía, la temperatura aumenta; cuando su velocidad disminuye, la temperatura desciende. Es lógico suponer que cuando las moléculas queden inmóviles no se podrá lograr ya un trío mayor. En otras palabras, el frío no es otra cosa que la ausencia de calor.

El cero absoluto, es decir, la temperatura más baja posible, se encuentra a 273,16° bajo cero. Hace ya casi dos siglos que los científicos saben que el cero absoluto se halla cerca de los 273° bajo cero; en efecto, observaron que los gases más livianos —como el helio y el hidrógeno, es decir, aquellos que más se acercan a un ‘gas ideal” formado solamente por puntos, sin volumen, en movimiento— disminuían 1/273 de su volumen a O °C. cada vez que la temperatura bajaba en lo. Inversamente cuando la temperatura se elevaba su volumen crecía, por cada grado, en 1/273 de su volumen a 0°C.

FÍSICA: TEMPERATURA KELVIN CERO ABSOLUTO

Esta disminución, fija y constante, implicaba que el volumen de un gas ideal llegaría a ser nulo cuando se llegara al cero absoluto. En otras palabras, sus moléculas ya no chocarían entre sí, y se reunirían inmóviles en un grupo, cuyo volumen seria cero si las moléculas carecieran de extensión. Algo semejante ocurre cuando se calienta o enfría un gas en un recipiente cerrado; como le es imposible aumentar o disminuir de volumen, es su presión la que aumenta o disminuye 1/273 de la presión a 0°C., por cada grado de variación de temperatura.

FÍSICA: TEMPERATURA KELVINEsto es lo que ilustra el diagrama de arriba sobre fondo amarillo. Kelvin estableció una escala de temperaturas que arranca del cero absoluto, de modo que una temperatura de 10 °C. de nuestra escala habitual corresponde a 283 °K ó grados Kelvin.

Las temperaturas más bajas se han obtenido en uno sal (alumbre) mediante helio liquido, dentro del campo magnético de un electroimán. Cuando se anula el campo magnético la sal, que se encuentra ya a muy baja temperatura, se enfrío aún más.

La razón es que el campo magnético eleva lo temperatura de la sal, y al suprimirlo se obtiene un enfriamiento suplementario. La camisa de hidrógeno liquido mantiene el conjunto o unos pocos grados sobre el cero absoluto. (ver imagen izquierda)

El concepto de un cero absoluto de temperatura surgió por vez primera en relación con experimentos con gases; cuando se enfría un gas sin variar su volumen, su presión decrece con la temperatura. Aunque este experimento no puede realizarse más allá del punto de condensación del gas, la gráfica de los valores experimentales de presión frente a temperatura se puede extrapolar hasta presión nula. La temperatura a la cual la presión sería cero es el cero absoluto de temperatura.

CÓMO SE OBTIENEN TEMPERATURAS BAJÍSIMAS :Jamás se alcanzó el cero absoluto, pero se llega a unas pocas milésimas de grado de él. La razón es simple: las disminuciones de temperatura suelen obtenerse igualando la temperatura del cuerpo que se enfría con la de otro que está aún más frío, y es bien sabido que, dividiendo una cantidad, aunque se repita la operación miles de veces nunca se puede llegar al cero.

Así, si se divide la cifra 1 en dos partes iguales y el resultado en otras dos y así sucesivamente, se logran cifras extremadamente pequeñas pero nunca nulas. Antes de explicar cómo se obtienen los fríos extremos, recordemos que las moléculas de un gas son como pelotas que chocan contra las moléculas vibrantes del recipiente hasta igualar su energía con las de éste.

Como primera fase se comprime el gas de manera que el mismo volumen esté ocupado por muchas moléculas y tenga mucha más energía: el gas, entonces, se calienta, pues la temperatura expresa la densidad de energía por volumen. Dicho gas caliente, se deja  enfriar, y sus moléculas pierden velocidad, una vez enfriado se dilata bruscamente y entonces se pone muy  frío, porque tiene pocas moléculas con poca energía por unidad de volumen.

La temperatura mas baja posible es 273.15 grados bajo cero, que es lo que se conoce como cero absoluto.
Esta temperatura es imposible de alcanzar, pero los científicos están investigando cuanto es posible acercarse.

Este gas muy frío sé utiliza para enfriar otro gas a temperatura normal, el que luego es, a su vez, dilatado y enfriado aún más, y sirve para enfriar a un terco gas que también es dilatado, y así sucesivamente. Con este procedimiento se ha logrado licuar todos los gases y solidificar todas las sustancias, menos el helio (éste necesita una presión adicional para convertirse en sólido).

LOS SUPERCONDUCTORES: Kammerling Onnes sumergió un anillo de mercurio solidificado en un baño de helio líquido y comprobó que el metal perdía toda resistencia eléctrica. Si se inducía una corriente en el anillo, ésta lo recorría indefinidamente: dos años después de rotación ininterrumpida la intensidad de la corriente no había variado. El metal se había convertido en superconductor. Lo mismo ocurre con la temperatura: el helio líquido transmite el calor doscientas veces más rápidamente que el cobre.

En 1933, W. Meissner y R. Oschenfeld encontraron experimentalmente que un superconductor se comporta de manera tal que nunca permite que exista un campo de inducción magnética en su interior. En otras palabras, no permite que un campo magnético penetre en su interior. El campo magnético en el interior de un superconductor no sólo está congelado, sino que vale siempre cero.

DEL LABORATORIO A LA INDUSTRIA: Las dimensiones de las calculadoras electrónicas, que funcionan a temperaturas muy bajas, son asombrosamente reducidas, debido a la gran conductibilidad que adquieren los metales, lo que permite utilizar cantidades mucho menores; además, si la señal eléctrica sólo necesita recorrer 5 cm. en lugar de 30 cm., como ocurre en una calculadora común, el tiempo de transmisión de la señal se reducirá de un millonésimo de segundo a la sexta parte, y la calculadora será seis veces más veloz.

La potencia de un electroimán depende de la intensidad de la corriente que lo recorre; pero a la temperatura normal ésta tiene un límite porque las espiras de la bobina se fundirían. Con las aleaciones de niobio y estaño, y ahora de niobio y circonio, se puede lograr, a muy bajas temperaturas(18°K ósea 255 °C bajo cero) intensidades de 200.000 amperios por cm². 

Lo curioso es que la aleación de este filamento (que costó mucho poner a punto por su fragilidad) es asegurada por un metal común, porque la resistencia de la aleación es tan baja que la corriente pasa por ella sin hacer uso del metal, habitualmente conductor.

VISIONES DEL FUTURO: Además de obtenerse memorias electrónicas cada vez más pequeñas, existen otras aplicaciones industriales en vías de realización. Sabemos que cuando se acerca un imán a un conductor se genera una corriente eléctrica: si el conductor está súper enfriado, la corriente es permanente y engendra, a su vez, un campo que rechaza al imán, de manera que éste flota en el vacío. Aprovechando esta propiedad se estudia la realización de un giróscopo que rotaría en el vacío, funcionando, así, sin ninguna fricción y gozando de una excelente sensibilidad. Un proyecto más atrevido es el de las corrientes en conserva.

En un superconductor se puede generar una corriente que circule indefinidamente y aprovecharla cuando se la necesita. Se calcula que una corriente de 100.000 amperios podría brindar una energía de unos 1.300 kilovatios/hora, suficiente para la propulsión de un vehículo mediano, sobre un recorrido de unos cuantos miles de kilómetros. La recarga del dispositivo se efectuaría en pocos segundos.

Además, se en-cara la utilización de los metales superconductores para constituir reservas de energía eléctrica, a fin de distribuirlas en las redes urbanas en los momentos de mayor consumo, sin tener que recurrir a máquinas adicionales, a combustibles especiales o a reservas de agua a alto nivel.

LA SUPERFLUIDEZ O LA HEREJÍA DEL HELIO: En el cero absoluto las moléculas están inmóviles. Se explica fácilmente que una corriente eléctrica, que consiste en electrones que traspasan y sortean las moléculas, atraviese más fácilmente los cuerpos. Pero los átomos no están inmóviles.

De allí que, para lograr los máximos enfriamientos, se trate de orientar o frenar los átomos mediante poderosos imanes, como muestra la ilustración. Cerca del cero absoluto y a la presión normal el hidrógeno es sólido, porque los lazos entre sus átomos son bastante fuertes.

En cambio, el helio, gas noble sin afinidades químicas y sin problemas electrónicos (su órbita periférica está completa), sigue en estado liquido. Pero su viscosidad es 10.000 veces menor que la del hidrógeno gaseoso. Este estado, denominado de superfluidez, da origen a una serie de fenómenos realmente asombrosos.

Si se toma un frasco con helio liquido y se lo sumerge parcialmente en otro baño de helio líquido, se ve al helio que escala las paredes del vaso para ir hacia el baño, o viceversa, hasta igualar los niveles, sin realizar, aparentemente, ningún esfuerzo y como si desafiara las leyes de la gravedad.

En cambio, si se hace girar el vaso dentro del baño de helio, hay un frotamiento, y la viscosidad que se mide corresponde a una cifra normal. Más aún, si un recipiente hermético lleno de helio liquido y con una válvula inferior se calienta después de sumergirlo en helio, la válvula se abre para dar Lev Landausalida al helio, pero el nivel no baja porque —como lo predijo Euler hace ya doscientos años— la viscosidad nula del liquido que entra no vuelve a cerrar la válvula, pues no roza contra ella.

Esta experiencia, y muchas otras, han sido explicadas por los grandes físicos modernos, especialmente Lev Landau (imagen) , el primer sabio que recibió el premio Nobel fuera de Suecia, mientras convalecía en un hospital de Moscú de un gravísimo accidente, que obligó a mantenerlo con vida, durante meses, mediante aparatos de circulación y respiración artificiales Después de llegar cuatro veces a la muerte clínica, Landau está hoy salvado por la misma ciencia, que lo recompensa como uno de sus más brillantes servidores.

PARA SABER MAS…
Hacia el cero absoluto

Los tres estados en que existe la materia (sólido, líquido y gaseoso) constituyen un fenómeno fácilmente observable. El ejemplo clásico es el agua, que a diario vemos como hielo, agua líquida y vapor de agua. También puede pasar del estado sólido al gaseoso sin licuarse en el proceso, como sucede cuando la nieve depositada desaparece lentamente al calor del sol, incluso cuando de la temperatura del aire se mantiene por debajo del punto de congelación.

Durante la segunda mitad del siglo XIX, los científicos comenzaron a estudiar sistemáticamente las condiciones que rigen las transiciones de un estado a otro, sobre todo en la escuela holandesa de H.

Kamerlingh Onnes, que investigó las propiedades de los líquidos y los gases en las más variadas temperaturas, especialmente en las extremadamente bajas. En 1894, Onnes fundó el famoso laboratorio criogénico (del griego, «productor de frío») de la Universidad de Leiden, y en 1911 descubrió un fenómeno notable y bastante inesperado: a temperaturas muy bajas, los metales dejan de oponer resistencia al paso de una corriente eléctrica, de manera que una vez establecida, la corriente sigue pasando indefinidamente.

Este fenómeno, al que Onnes dio el nombre de superconductividad, le valió el premio Nobel en 1913. Se convirtió así en el precursor de una nueva rama de la física, la criogenia, que ha arrojado nueva luz sobre la estructura de la materia y ha producido numerosas e importantes aplicaciones tecnológicas.

Sin embargo, para comprender la importancia de las investigaciones llevadas a cabo por H. Kamerlingh Onnes, es preciso decir algo acerca de las temperaturas en cuestión, ya que son totalmente ajenas a la experiencia humana corriente, incluso en las profundidades del invierno siberiano o antártico.

El calor es esencialmente una forma de movimiento (la agitación de las partículas en el nivel molecular) y la temperatura es la medida del grado de agitación. Cuando la temperatura desciende, el movimiento se vuelve más lento, de donde se deduce que habrá un punto en que se detenga por completo, en una temperatura correspondiente a cero.

En 1851, William Thomson (lord Kelvin) señaló que las constantes termodinámicas indican que ese «cero absoluto» corresponde a una temperatura de aproximadamente —273 °C. Esta observación determinó la introducción de una nueva escala de temperaturas (la escala Kelvin), que desde entonces se ha utilizado ampliamente en la investigación científica. La escala parte del cero absoluto, expresado como O °K.

En la época era impensable lograr semejante temperatura, que aun así constituía un punto de referencia para los interesados en la física de bajas temperaturas, en especial para los que estudiaban la licuefacción de los gases.
Se sabía que era posible licuar ciertos gases por el procedimiento de someterlos a altas presiones, siempre que se mantuviera por debajo de la llamada «temperatura crítica».

Algunos gases, como el amoniaco, se licuaban por compresión a temperaturas normales; pero otros no lo hacían, por mucho que se hubieran enfriado previamente. Este tipo de gases recibían el nombre de «gases permanentes», pero existía la sospecha de que no se licuaban sencillamente porque sus temperaturas críticas eran extremadamente bajas. Para licuarlos, era preciso encontrar nuevas técnicas de refrigeración intensa.

Uno de los procedimientos empleados era el que aprovechaba el efecto Joule-Thomson, consistente en enfriar y comprimir el gas, para luego dejarlo escapar por un pequeño orificio, lo cual consigue enfriarlo un poco más. En la vida cotidiana, este efecto se observa cuando se deja salir el gas de un espray y el cilindro se enfría perceptiblemente.

Sin embargo, incluso a principios de siglo, quedaban todavía algunos gases con temperaturas críticas muy bajas que había sido imposible licuar. El que presentaba más dificultades era el helio con una temperatura crítica de 5 °K (—268 °C). Onnes superó finalmente este obstáculo en el año 1908 y uno de sus discípulos, W.H. Keesom, consiguió solidificarlo.

En aquella época, los gases líquidos eran un objeto de laboratorio, pero el inventor e industrial alemán Cari von Linde, director de una empresa de refrigeración en París, creyó en su gran potencial industrial y en 1895 diseñó unas instalaciones para la producción de aire líquido a gran escala.

De esta forma, durante la primera década de este siglo, surgió una nueva y importante industria de gases líquidos, sin precedentes en el siglo XIX. El oxígeno líquido, destilado del aire líquido, encontró amplia aplicación en los quemadores de oxiacetileno utilizados para soldar metales y, en menor escala, también comenzó a utilizarse en medicina. Sin embargo, su principal aplicación llegó después de la Segunda Guerra Mundial, cuando sustituyó al aire en el proceso de fabricación del acero.

Fuente Consultada: Tecnirama

Origen del numero de cero Historia de los Numeros Como nació el cero?

Origen del número de Cero – Historia ¿Cómo nació el cero?

Los seres humanos empezaron a manipular números en cuanto empezaron a escribir, unos veintitrés siglos antes, pero el número  cero es una de las representaciones numéricas que mas tardaron en aparecer en la historia de la humanidad. Esto podría ser porque en un principio la escritura de los números tenia relación uno a uno con los objetos que se representaban, y si no había objetos no necesitaban una representación.

En general, se advertiría una tendencia a hacer muescas que representaran las unidades, de manera que 4 unidades se expresarían así: 1/1/.

Se introducirían marcas diversas para el cinco, el diez, el quince, con objeto de evitar el exceso de muescas. Los judíos y los griegos se valían de letras de sus respectivos alfabetos (lo que introdujo relaciones carentes de significado entre palabras y números, y dio lugar a las supersticiones disparatadas de la numerología).

A alguien se le pudo ocurrir usar los mismos números para expresar unidades, decenas, centenas y así sucesivamente, limitándose a colocar los números en distintas posiciones para cada nivel, igual que en un ábaco. Pero no se le ocurrió a nadie esta notación posicional porque nadie pensó en emplear un símbolo para una hilera del ábaco en el que las cuentas no debían moverse.

 ábaco

El cero tal y como lo conocemos nosotros fue descubierto en la India y llegó a Europa a través de los árabes. La palabra “cero” proviene del árabe “sifr” (صفر), que significa vacía, a través del italiano. La voz española “cifra” también tiene su origen en “sifr”.

Por ejemplo, si se quiere indicar 507 en un ábaco, se mueven 5 cuentas en la hilera de las centenas y 7 en la de las unidades. Se pueden registrar el 5 y el 7, pero ¿cómo se indica que la hilera de las decenas no se ha tocado?

Hacia el año 500, cierto matemático indio sugirió que a esa hilera intocada del ábaco se le podía dar un símbolo especial. (Nuestro símbolo es 0 y le llamamos cero.) Esto significaba que ya no se podía confundir 507 con 57 o con 570. Los árabes pudieron tomar esta noción de los hindúes el año 700.

El primer matemático importante que hizo uso de esta notación posicional fue un árabe, Muhammad ibn al-Khwarizmi (780-850), de cuyo nombre deriva el término español guarismo, y que escribió un libro hacia 810. (En dicho libro acuñó un término que en español se convirtió en álgebra.)

El nuevo sistema penetró despacio en Europa, donde se tardó siglos en abandonar la tosca numeración romana y en adoptarse la numeración arábiga (aunque, en su origen, era india). Se tardan siglos, en efecto, en vencer la costumbre de adherirse a algo inadecuado pero arraigado, para adoptar algo bueno pero nuevo. Pero al fin se logró, y el cambio democratizó el cálculo aritmético, haciéndolo accesible a todos.