Historia de la Aeronáutica

El Titanio Características Propiedades y Usos Aplicaciones

El Titanio: Características, Propiedades y Usos Aplicaciones

EL TITANIO: Aunque el metal titanio ocupa el cuarto lugar entre los elementos más abundantes en la corteza terrestre, no suscitó mucho interés hasta que la industria aeronáutica comenzó a utilizarlo.

Cuando fue descubierto, hace unos 150 años, era un elemento problemático, que defraudó y confundió a los metalúrgicos, quienes se esforzaron para extraerlo económicamente y hacer algo útil con él.

De hecho, era tan difícil separar el metal de sus minerales que hasta 1949 no se encontró un método económico para hacerlo.

Existen dos principales minerales de titanio: el rutilo, una forma impura de bióxido de titanio, y la ilmenita (ferrotitanato), mezcla de óxidos de titanio y hierro.

Mientras que del rutilo se obtiene todo el titanio metálico, los compuestos se fabrican de la ilmenita.

El método para la obtención del titanio metálico expuesto por el estadounidense W. J. Kroll, en el año 1949, consiste en convertir el titanio del mineral en tetracloruro de titanio, Cl4 Ti.

A continuación, se reduce éste a metal, haciéndolo reaccionar con magnesio. El metal así producido tiene el aspecto de coque esponjoso.

titanio

El procedimiento Kroll todavía se usa mucho en América y Japón, pero un método químico distinto, que exige el empleo de grandes cantidades de sodio, se practica actualmente en Inglaterra.

Mediante él se obtiene el titanio en forma de gránulos grises y pesados.

Tanto en su forma esponjosa como granular, el metal es poco útil; para utilizarlo en sus distintas aplicaciones es necesario consolidarlo y extraerle las burbujas de aire.

Desgraciadamente, ello no se consigue fundiéndolo e introduciéndolo en un molde. El titanio funde alrededor de los 1.700°C, 200° por encima del punto de fusión del acero.

A tales temperaturas, el titanio reacciona con el recubrimiento del horno y absorbe gases del aire, que inutilizan su estructura.

A veces, los gránulos de titanio metálico crudo se mezclan con otros metales en polvo para hacer aleaciones y, después de homogeneizados completamente, se introducen en una prensa de 2.500 toneladas, para convertirlos en bloques, que se sueldan, y formar un electrodo de unos 4 metros de longitud y casi una tonelada de peso.

Este electrodo se suspende de la parte superior de un horno y en la base se sitúa un crisol refrigerado por agua.

Se extrae el aire y se hace saltar un arco eléctrico entre el electrodo y una pequeña cantidad de polvo de titanio, que se dispone en el crisol.

El electrodo se funde lentamente, para formar un lingote. Se repite la fusión, controlando todo el proceso a control remoto.

Las grietas se descubren con ondas sonoras de alta frecuencia (ultrasonidos). Se trata de una técnica de ecos.

Las grietas internas del metal actúan como espejos, reflejando las ondas y evitando que lo atraviesen. Cuando la señal no llega al otro lado de la pieza significa que hay una grieta.

INGENIERÍA AERONÁUTICA

La industria aeronáutica necesita aleaciones ligeras, que puedan soportar las tensiones producidas en los vuelos a grandes velocidades.

El titanio proporciona la solución. Su densidad es sólo el 60 % de la del acero, y, por otra parte, conserva su resistencia a temperaturas superiores a, las que se consideran de seguridad para las aleaciones de aluminio y otras ligeras.

Esta industria utiliza el titanio para los alabes de las turbinas, y para recubrir los escapes, las conducciones de aire caliente y los bordes de las alas, expuestos a la erosión del aire.

Debido a su alta resistencia a la corrosión por ácidos, etc., este metal se usa también en la fabricación de recipientes y tubos anticorrosivos para la industria química.

En mucha menor escala, aunque por la misma razón, el titanio está sustituyendo gradualmente al acero inoxidable en la fabricación de instrumentos quirúrgicos, tales como los implementos, pinzas, clavos y tornillos usados para fijar las partes rotas de un hueso.

PROTECCIÓN DE LAS RADIACIONES

Las centrales nucleares usan titanio en muchos de sus componentes internos, porque este metal y sus aleaciones tienen la capacidad de impedir el paso de la radiación. El metal irradiado pierde rápidamente toda la radiactividad, permitiendo que las piezas sean fácilmente manejables, lo que simplifica el mantenimiento del reactor.

uso del titanio en la aeronautica

Por su dureza, resistencia a la corrosión y ligera de peso, el Titanio se usa en la industria aeronáutica. En las paredes internas de los motores  a reacción se utiliza titanio puro. También se usa en impulsores, turbocarburadores y blisk de titanio y aluminio

PIGMENTO BLANCO

Muchas pinturas y tintas blancas deben su color al pigmento bióxido de titanio, O2Ti, único compuesto de titanio de alguna importancia real.

Los pisos plásticos y los productos industrializados con cauchos blancos llevan incorporado este compuesto.

Se rocía sobre las telas, para evitar el brillo innecesario, y se utiliza también para tratar los esmaltes y las tejas vidriadas, regulando color, opacidad y brillo.

La industria del papel utiliza el óxido de titanio de dos modos distintos.

Puede incorporarse durante la fabricación —de modo que sus partículas queden completamente integradas en el cuerpo de la lámina, para reflejar la luz y que el papel aparezca blanco— o se puede extender sobre su superficie.

Es frecuente cubrir los papeles gruesos con óxido1, pero en los que se usan para expedir cartas por avión, que deben ser ligeros y no trasparentes, el óxido se mezcla con la pulpa durante la fabricación. El «papel encerado» para envolver es blanco porque se le añade óxido de titanio.

La extracción del titanio metálico y la fabricación de su pigmento son dos procesos completamente independientes.

El pigmento no se hace con el metal, pues su punto de partida es también el mineral ilmenita, del que se obtiene triturándolo y disolviendo el titanio con ácido sulfúrico concentrado.

Cuando la solución se enfría después de hervir, el hierro, que también fue disuelto, cristaliza y puede separarse. Concentrando aún más el líquido, nos queda el titanio en forma de cristales de sulfato de titanio hidratado.

Estos cristales se filtran y lavan antes de introducirlos en un horno rotatorio, en el que se extraen los gases sulfurosos, quedando partículas de bióxido de titanio impuro.

Después de purificadas y reducidas al tamaño apropiado, están listas para ser mezcladas con la pulpa de papel o con la pintura.

EL TITANIO COMO METAL DE TRANSICIÓN

A medida que recorremos la tabla periódica de izquierda a derecha, cada elemento aumenta en un electrón el número de los que tiene en la órbita externa, para llegar a una capa estable con ocho electrones. Pero, a veces, se añade algún electrón a una de las órbitas internas, que pueden tener hasta 18 y 32 electrones. El titanio es un metal que pertenece al llamado «grupo de transición». Todos estos metales tienen dos electrones en la órbita externa, aunque en la interna inmediata pueden tener entre 9 y 18 electrones.

Fuente Consultada: Revista TECNIRAMA N°12 Enciclopedia de la Ciencia y la Tecnología

El Movimiento de los Satelites y Planetas-Calculos físicos Principios

El Movimiento de los Satélites y Planetas
Cálculos físicos Principios

LOS VIAJES ESPACIALES: Los viajes espaciales difieren de los habituales desplazamientos sobre la superficie terrestre por un detalle fundamental: estos últimos se efectúan bajo la acción de la fuerza de gravedad  terrestre cuyo valor es siempre el mismo.

Este concepto se aclara recordando que los movimientos de un tren, un auto, una bicicleta o un avión se realizan siempre a idéntica distancia del centro de la Tierra, salvo muy pequeñas variaciones que carecen de importancia. Son desplazamientos cuya dirección forma ángulo recto con el radio del planeta y, por consiguiente, la fuerza de atracción gravitacional que sufren es permanentemente idéntica.

En un viaje espacial, la dirección del movimiento forma con el radio de la Tierra un ángulo distinto del recto. Si se asciende verticalmente para alcanzar grandes alturas (varios cientos de kilómetros) el valor del ángulo será cero, puesto que el vehículo se aleja en la dirección de uno de los radios.

Claro está que para que esto sea posible se debe vencer la fuerza de atracción terrestre. Véase, por ejemplo, lo que ocurre con los cuerpos que llegan a la Tierra desde el espacio:cuando chocan con la superficie, la velocidad que traen es similar a la que tendrían si provinieran de una distancia infinita. Esa misma velocidad adquirida por el objeto que se precipita, pero aplicada en sentido contrario, es la que necesita un cuerpo para vencer la fuerza de gravedad, escapar de la atracción del planeta y desplazarse hasta una distancia teóricamente infinita. Esta velocidad se denomina velocidad de escape o velocidad parabólica.

 Viajes a la Luna y a los planetas

Un vehículo espacial que desde la Tierra se dirige a la Luna, o mejor dicho, hacia el punto del cielo donde la hallará, no necesita mantener su velocidad de escape de 11,2 km/s durante todo el trayecto. Mientras más se aleja del lugar del lanzamiento, la atracción gravitacional terrestre se debilita, de manera tal que la velocidad necesaria para vencerla va disminuyendo a medida que prosigue el viaje y, consecuentemente, la atracción de la Luna aumenta cuando el vehículo se le aproxima. Por este doble proceso —debilitamiento de la atracción terrestre por una parte, y aumento del campo de atracción gravitacional de la Luna, por la otra— se alcanza un punto en que ambas fuerzas se igualan, punto que se encuentra a unos 38 000 kilómetros de la Luna. Si el vehículo lo sobrepasa, cae dentro de la atracción lunar.

Para lograr que el impacto con la superficie de la Luna sea más suave, a nave debe cruzar la línea de separación entre las dos fuerzas gravitacionales a la mínima velocidad posible, porque de no ser así el choque resultará más violento. El impacto en la Luna, en una caída libre, se produciría a la velocidad de escape —que en la misma es de 2,4 km/s— más la velocidad de la Luna en su órbita.

El proyecto de un viaje a la Luna con un vehículo espacial y su regreso posterior a la Tierra, contempla, como mínimo, cuatro maniobras principales:

  1. salida de la Tierra;
  2. disminución de la velocidad al cruzar la línea de equilibrio;
  3. salida de la Luna;
  4. disminución de la velocidad cuando, de regreso a la Tierra, cruza la línea de equilibrio.Una vez lanzado desde la Tierra, el vehículo espacial se mueve a lo largo de una órbita determinada, que es el resultado de todas las fuerzas exteriores que actúan sobre él. Intervienen la fuerza de atracción de la Tierra, de la Luna y del Sol, pero influyen también otros efectos, como la resistencia de la atmósfera terrestre al moverse la nave cerca de la Tierra, la presión de la radiación originada en el Sol, etcétera.De esta manera, y para comprender el desarrollo de las investigacio­nes espaciales, es necesario estudiar cómo se realiza el movimiento orbital de una nave espacial. Para ello, y con el objeto de simplificar el problema, se analiza a continuación el movimiento de una de ellas bajo la influencia de un cuerpo celeste.

Movimiento en una órbita (Ver También: Movimiento de los Planetas)
Consideraciones Físicas

Sea un cuerpo de masa m que se traslada alrededor de otro de masa M, y tales que m es considerablemente menor que M. Si el cuerpo M ocupa uno de los focos de la elipse descripta por m, y a es el semieje mayor de la órbita de éste, su velocidad de traslación V está dada por:

V2= G. (M + m).(2/r – 1/a) [1]

donde G es la constante de gravitación 6,67 x 10-8 cm3/g s2. La fórmula [1] se conoce como ecuación de la energía.

La distancia r entre ambas masas se denomina radio vector y toma un valor distinto en cada punto de la elipse. En estas circunstancias, el cuerpo de masa m es un satélite del cuerpo de masa M, como es el caso de la Luna respecto de la Tierra, o de un planeta como la Tierra en relación con el Sol.

Orbita elipitica descripta por un satelite de masa m y velocidad v

Para una órbita cerrada (un círculo o una elipse), el semieje mayor a debe ser positivo y finito. Para una órbita parabólica resulta a =oo (infinito) para una órbita hiperbólica a es negativo.Si la órbita es parabólica, los cuerpos se alejan uno del otro, y reemplazando en [1] 1/a , resulta:

V2p=G . (M+m).2/r                             [2]                                                  

que se denomina, también, velocidad de escape.

Para la velocidad en una órbita circular donde:  a=r

V2c=G . (M+m).1/r                                             [3]

Dividiendo miembro a miembro las ecuaciones (2) y (3) se tiene:

V2p=G . (M+m).2/r
——-=——————
V2c=G . (M+m).1/r 

 Se tiene  

V2p
————- =
2
V2c 

Osea:

V2p=2. V2c

Si se conoce el valor de la velocidad circular y0 para una determinada órbita, se puede obtener fácilmente la velocidad parabólica o de escape, Vp, para la misma órbita.

Velocidad en una órbita elíptica.

Si un cuerpo, como es por ejemplo cualquiera de los satélites artificiales que giran alrededor de la Tie­rra, se mueve sobre una órbita elíptica de acuerdo con la fórmula [11, alcanza su máxima velocidad en el perigeo, y la mínima, en el apogeo.

Si la masa m del satélite es muy pequeña con respecto a la masa M del planeta, que es el caso más común, se puede despreciar m, de donde (véase fórmula [1]):

V2= G. M (2/r – 1/a)                        [4] 

donde G.  M es el producto de dos constantes, o sea otra constante k que para el caso de la Tierra vale:

K=G.MT=4,OX 1020 cm3/s2

pues G = 6,67 x 10-8 cm3/ g s2 y MT= 6 x 1027 g. 

Cuando el satélite se desplaza desde el perigeo hacia el apogeo, el radio vector r aumenta de valor y, de acuerdo con a fórmula [4], la velocidad orbital V disminuye. En cambio, Cuando se traslada desde el apogeo hacia el perigeo, la distancia r disminuye y, entonces, la velocidad V aumenta. Luego, conocido el valor del radio vector r en un punto cualquiera de una órbita de semieje mayor a, se puede deter­minar fácilmente su velocidad en esa posición de la órbita.

Un caso particular de la elipse es la circunferencia, pues en ésta el radio vector r es siempre igual al semieje mayor a, y resulta r = a = R siendo R el radio de la circunferencia. En este caso:

V2c =K/R

 En la parábola, en cambio, el semieje mayor es infinito, o sea 1/a=0 ;  y como además r = R, distancia al centro de la Tierra, se tiene:

V2P = 2. K / R

Velocidad parabólica o de escape.
Como ya señalamos, para alejarse de la Tierra cumpliendo una travesía espacial, un vehículo debe vencer la fuerza de atracción de la Tierra, y ello se puede lograr acelerándolo hasta una determinada velocidad. Según la ley de atracción universal, la fuerza gravitacional de la Tierra varía con la distancia, y por lo tanto también varía la velocidad de alejamiento necesaria. Esa velocidad depende de la masa del cuerpo de donde parte el vehículo y de la distancia al centro del mismo (planeta o satélite). El cálculo de la velocidad de escape o velocidad parabólica desde un cuerpo de masa M se efectúa por medio de: 

V2P= G. M. 2/R 

donde R es la distancia desde la superficie al centro del planeta o saté­lite. Para el caso de la Tierra, donde Rradio de la Tierra 6,3 x  108 cm, resulta:

V2P = 2.K /R=   2 x 4 X 1020cm31s2 = 1.27 x 1012cm2/s2 R 6,3×108cm

           VP = (raíz cuadrada de 1.27 x 1012 cm2/s2)

VP = 1.12 x 106 cm/s

VP = 11.2 km/s=40.320 km/hora

A 5000 km. de altura sobre la superficie de la Tierra la velocidad de escape disminuye a:

V2P =  8x 1020cm3/s2 /11,3 x 106cm =  7,1 x 1011 cm2/s2

de donde:            Vp= 8,4 km/s = 30.240 km/hora

En este caso se considera R = 6300 km + 5000 km.

En la tabla siguiente se presentan las velocidades de escape para la Luna, los planetas y el Sol.

     VELOCIDAD DE ESCAPE PARA ASTROS DEL SISTEMA SOLAR

                          Velocidad                                    Velocidad
CUERPO      de escape              CUERPO      de escape
(km/s)                                   (km/s)

   Luna                     2,4                 Saturno              35,4

   Mercurio               4,3                 Urano                  21,6

   Venus                 10,3                 Neptuno             22,8

   Tierra                 11,2                 Plutón                ¿?

   Marte                5,0                  Sol                     620,0

   Júpiter                59,5    

En resumen: la velocidad de escape es la necesaria para que la órbita del vehículo resulte una parábola y por lo tanto, el tiempo necesario para regresar al punto de partida resulte infinito. 

Órbitas de los satélites terrestres artificiales

La colocación de un satélite en órbita consiste en elevarlo a una cierta altura sobre la superficie de la Tierra (mayor de 100 km) y luego darle una dirección y velocidad determinadas. En esas condiciones si se establece el perigeo de la órbita a esa altura, las dimensiones de la órbita y su excentricidad dependerán de la velocidad que adquiera el satélite, todo lo cual resulta de:

                                                   V2Per = K(2/rp – 1/a) 

Como el foco de la elipse estará en el centro de la Tierra, la introducción de un satélite en órbita significa querp es un valor constante (distancia del perigeo al centro de la Tierra). De esa manera, un aumento de Vper determina el correlativo aumento del semieje mayor a de la órbita (ver fórmula [5]).

Órbitas de los vehículos espaciales enviados a Marte y a Venus

Para que un vehículo espacial lanzado desde la Tierra pueda llegar a Marte, debe describir una trayectoria elíptica cuyo perihelio se hallará en un punto próximo a la posición que ocupa la Tierra en el momento del lanzamiento. La velocidad del vehículo deberá ser algo mayor que la velocidad de traslación de la Tierra.

Trayectoria descripta por un vehiculo espacial lanzado desde la Tierra hacia Marte

El semieje mayor de la órbita elíptica descripta por ese vehículo se calcula así:

(ar + am)/2 

fórmula donde ar es el semieje mayor de la órbita de la Tierra, e igual a 1 UA; y am es el semieje de la órbita de Marte, e igual a 1,52 UA. En consecuencia, el semieje de la órbita del vehículo espacial tendrá este valor:

a= (1 + 1.52)/2=1.26 UA

Consecuentemente, el afelio de la órbita se encontrará en las cercanías de Marte. La velocidad que se debe imprimir al vehículo puede ser calculada con la fórmula [1], pues se conoce el semieje mayor de su órbita y la longitud del radio vector r, igual a 1 UA. Como la masa del Sol M = 2 x 1033 g, y la constante de gravitación G = 6,67 x 10B cm3/g s2, resulta:

 V2 = 1,34 x 1020 m3/s2  (2/r – 1/a)= 1/ 1.5 x 10 11 m/UA

donde se ha despreciado la masa m del vehículo espacial por su pequeñez con respecto al Sol. En esta fórmula se divide por el número de metros que hay en una unidad astronómica.

Efectuando el cálculo resulta:

V2 = 1.34 x 1020 / 1.5 x 1011  (2-1/1.26)=10.7 x 108

 V=3.27 x 104 m/s= 32.7 km/s

Por comparación, la velocidad de la Tierra en su órbita es de:

V2= 8.9x 108 (2— 1) = 8.9×108  m2/s2

V=2.96X 104m/s=29,6 km/S

 menor que la velocidad necesaria para llegar a Marte.

El tiempo que emplea el vehículo espacial en su viaje a Marte, es decir para llegar desde el perihelio al afelio, se calcula de acuerdo cor la tercera ley de Kepler, pues:

P a3/2 =(1.26)3/2=1.41 años

Éste es el tiempo que emplea para recorrer toda la órbita. Para ir del perihelio al afelio invierte la mitad de ese tiempo, o sea 0,70 años=8½ meses. Por supuesto, el viaje debe ser planeado de tal manera que cuando el vehículo alcance su afelio, Marte debe encontrarse también en ese punto.

Trayectoria descripta por un vehiculo espacial lanzado desde la Tierra hacia Venus

El viaje de regreso desde Marte hacia la Tierra es similar a la trayectoria que cumplirá un vehículo espacial enviado desde la Tierra hacia un planeta interior, como por ejemplo hacia Venus. En este caso será el afelio el que estará muy próximo a la Tierra y el perihelio coincidirá con Venus. Luego el semieje mayor de la órbita del navío espacial será:

a= (aT + aY)2=(1+0.72)/2=0.86 UA

Fuente consultada: Astronomía Elemental de A.Feinstein