Historia Sulfamida

Historia del Transistor Sus Inventores y Aplicaciones

Historia del Transistor ,Inventores y Aplicaciones

DEFINICION: El TRANSISTOR  es un dispositivo electrónico constituido por un pequeño bloque de materia semiconductora que cuenta con tres electrodos emisor, colector y base. En su fabricación se usa germanio o silicio como elemento fundamental. Se utiliza para rectificar y amplificar los impulsos eléctricos y sustituye ventajosamente a la antigua válvula eléctronica.

esquema de un transistor

Todos los fenómenos en que intervienen electrones quedan englobados dentro de la denominación Electrónica, si bien, a menudo, ésta queda reducida al estudio de los tubos de vacío. Con las válvulas electrónicas, tal como apuntábamos al hablar de las primeras computadoras , la vida actual ha cambiado. Disponemos de radio, televisión, calculadoras, celualres, robots, etc., y cada día se nos ofrece nuevas sorpresas.

Para tener una conducción apreciable de electricidad en un vacío elevado es necesario disponer de iones. El procedimiento más generalizado para la producción de estos iones es la emisión termoiónica.

En todo conductor metálico, además de las propias moléculas, existen electrones libres. Si se aumenta la temperatura del conductor, estos electrones adquieren velocidades suficientes para escapar del metal, fenómeno que depende de la naturaleza de éste y del estado de su superficie.

Alrededor del conductor se forma una «nube» de electrones que rechaza los nuevos electrones emitidos por el metal, que a su vez son atraídos por éste, provocando el cese de la emisión.

Los extraordinarios progresos experimentados en el campo científico repercutieron en el terreno de la tecnología con inventos que, en algunos aspectos, han ido transformando la vida del ser humano. Una diminuta lámina de cristal de germanio, con dos electrodos puntiformes, que integran un transistor, se constituyó en un verdadero corazón de múltiples aparatos, desde pequeñísimas prótesis para sordos, hasta los que rigen la vida de los satélites.

Imágenes de los primeros transistores

imagenes de los primeros transistores

publicidad antigua valvula electronica

Publicidad antigua valvula electronica

TRANSISTORES. La corriente de electrones que fluye en el interior de un tubo o válvula se ha visto que también se produce a través de ciertos sólidos como el metal llamado germanio. Con la particularidad de que no requieren placa, rejilla, calefacción del cátodo ni vacío alguno.

Amplían muchísimo la corriente y pueden funcionar con baterías de una cienmilésima de vatio. Su vida es larga y su tamaño es muy pequeño. Se conocen con el nombre de transistores. Su defecto más acusado consiste en que no trabajan bien con altas frecuencias.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

HISTORIA E INVENTORES: Tres eminentes investigadores: John Bordeen -premio Nobel-, Walter Brattain y William Shackley, dieron nacimiento al transistor, que por su reducido tamaño, su bajo precio y su economía, ha resultado insustituible en los sistemas de telecomunicaciones, tele-mediciones, etc.

Durante los años de la posguerra, la tecnología cambió progresivamente los diferentes aspectos de la vida cotidiana pero, sin duda alguna, hubo un tema que trascendió a todos los demás: la encarnizada y costosa rivalidad militar entre Estados Unidos y la URSS, en la que acabaron inevitablemente envueltos los países del este europeo y las democracias de Europa Occidental.

Fue una rivalidad cuyas batallas se libraron sobre todo en el terreno tecnológico.

Por un lado, se produjo una proliferación de armas nucleares de creciente potencia y, por otro, fueron apareciendo los medios para transportarlas hasta puntos cada vez más remotos.

 

inventores del transistor

Bardeen, Shockley y Brattain, inventores del transistor

Excepto en los aspectos no cuantificables de seguridad nacional e impulso de la actividad industrial, el enorme gasto resultó improductivo y, a través de sus repercusiones económicas, llegó a afectar las condiciones sociales.

Inevitablemente, los primeros años de la posguerra se dedicaron más a la reconstrucción que a la innovación. Muchas de las actividades anteriores a la guerra prácticamente se habían detenido y sus responsables se limitaron a retomarlas en el punto en que las habían dejado.

En Estados Unidos, por ejemplo, la fabricación de transmisores y receptores de televisión había estado prohibida durante la guerra y la medida no fue revocada hasta 1946.

Entre todos los avances e inventos de la postguerra podría mencionarse en el campo de la electrónica,  uno de los descubrimientos que revolucionó al mundo, constituido, en un principio, por una diminuta lámina de cristal de germanio, con dos electrodos metálicos puntiformes, uno de ellos polarizado en sentido directo, emisor, y otro en sentido inverso, colector.

Este diminuto artefacto, si así se lo puede llamar, no es nada menos que un transistor primitivo, que ha sido reemplazado por otro perfeccionado llamado transistor, adoptado universalmente.

Hace algo más que un cuarto de siglo, el 23 de diciembre de 1947, tres eminentes investigadores crearon el transistor. John Bardeen, dos veces premio Nobel por sus contribuciones sobre física teórica; Walter Brattain, especialista en superficies sólidas, y William Shockley, que ya se había destacado por sus trabajos en electrónica, dieron nacimiento al transistor.

Y uno de los primeros empleos, que asombró a todos sin excepción, fue el de las radios, que desde ese momento pudieron funcionar en diminutos aparatos sin necesidad de la corriente eléctrica. Como amplificador de señales de amplitud variable, el transistor sustituyó bien pronto, con extraordinarias ventajas, a la válvulas electrónicas.

En muy poco tiempo, el transistor fue invadiendo todas las actividades en que, por su uso, podía sustituir a los tubos electrónicos, por su tamaño reducido, su bajo costo, su fácil manejo. Además, su fabricación en serie ha puesto a disposición del mercado mundial transistores en una’ abundancia asombrosa.

Basta decir que, en un solo año; Estados Unidos logró vender a Europa y al Japón más de nueve mil millones de transistores. Desde la guitarra eléctrica hasta las pequeñísimas prótesis que los sordos introducen en sus oídos para escuchar los sonidos, hasta los marcapasos y las extraordinarias telecámaras de las cápsulas espaciales, computadores y satélites funcionan ya a transistores.

Representa el verdadero corazón de todos estos artefactos, desde el más pequeño hasta el más grande.

Para poder dimensionar el valor en toda su magnitud de este descubrimiento, es necesario aclarar que es fundamental la diferencia entre la electricidad y la electrónica; Mientras la primera se vale de electrones —esas partículas infinitesimales que gravitan alrededor del núcleo del átomo de una manera masiva— la electrónica entra en el detalle.

Es decir, de electrones por grupos pequeños, a veces de a uno. Antes de la guerra, para gobernar estos flujos electrónicos tan ínfimos existía un solo dispositivo, la lámpara de radio inventada por Lee De Forest, en 1906.

Los cristales de silicio y germanio, cuyas estructuras son similares a la del diamante, permitieron la creación del transistor. En estos materiales, cada electrón está como prisionero en una determinada posición, y no puede moverse. Sin embargo, una vez liberado, se halla en condiciones de atravesar el sólido y convertirse en transportador.

Además, los cristales de silicio y germanio ofrecen la posibilidad de que el electrón liberado deja un «agujero» en la posición que antes ocupaba. Este vacío se comporta exactamente igual que una carga positiva, y está en condiciones de trasladarse de un átomo al otro.

De esta manera, los electrones funcionan como cargas negativas y los «agujeros» como positivas.

transistorEl secreto del transistor consiste en que, una vez obtenido el materia] muy puro, se lo convierte en conductor, introduciendo la necesaria cantidad de impurezas en los lugares precisos.

Los transistores fueron reemplazando progresivamente a las válvulas, y en todos aquellos aparatos, dispositivos e instrumentos en que se empleaban éstas, se sustituyen por aquéllos.

Así, con las notables ventajas que reportaron se introdujeron en todos los sistemas de telecomunicaciones, telemediciones, telecomandos y teleseñalizacíones.

Transistor Western Electric 2N110 de la década de 1960

Las radios, la televisión, las calculadoras electrónicas, los oscilógrafos, los voltímetros, los distintos instrumentos que se utilizan en el amplio campo de medicina para controlar las intervenciones quirúrgicas, etc.

No se considera que un aparato es moderno, si no ha sido transistorizado, porque representa extraordinarias ventajas en su uso, sus resultados, su manipuleo y en su economía.

El ingenio humano, que no se detiene ni siquiera ante obstáculos que a veces parecen insalvables, ha tratado siempre de ahorrar tiempo, lo que representa dinero, y simplificar las tareas, hacerlas más rápidas y accesibles.

Eso y mucho más representan las computadoras, una de las maravillas más detonantes del siglo XX.

Estas máquinas que realizan las operaciones matemáticas que la mente humana tardaría horas en concretar, y no siempre con exactitud, están prestando un imponderable beneficio a la humanidad, porque han permitido resolver no sólo operaciones de este tipo, lo que ya es mucho, sino también encontraron solución a numerosos problemas de trabajo; se han introducido en el campo de la medicina, en la vida diaria del hogar, y el hombre no habría podido enviar satélites, y menos haber descendido en la Luna, si no hubiera contado con esta prodigiosa conquista.

Los primeros recuerdos sobre la evolución de las máquinas computadoras indican cómo la lógica fue introducida en el cálculo.

Las primigenias máquinas, como la de Pascal, no efectuaban nada más que operaciones aritméticas aisladas; el encadenamiento de las distintas operaciones que daban como resultado el cálculo completo, quedaban enteramente en manos del usuario de la máquina.

El proceso se efectuaba tal como se hace en la actualidad con las máquinas de teclado.

Durante la Segunda Guerra Mundial aparecieron las calculadoras electromecánicas y, posteriormente, las electrónicas, capaces de encadenar las operaciones.

De esta manera, se logró que la máquina ejecutara una serie de operaciones cuya secuencia es conocida de antemano y, además, cierta selección de operaciones, en función de los resultados parciales obtenidos en el curso.

Los transistores son pequeños aparatos de material semiconductor que amplifican o controlan la corriente eléctrica. Son simples de fabricar, aunque requieren un cuidadoso trabajo manual durante el montaje; suplantaron a los tubos de vacío casi por completo en la década de los años setenta. La necesidad de colocarlos en su sitio por medio de alambres se superó gracias al desarrollo del circuito integrado.

LOS ENLACES QUÍMICOS EN LA ELECTRÓNICA: Gracias a las propiedades que les confieren, entre otros, los enlaces que son capaces de establecer, algunos elementos químicos tienen múltiples usos en la vida cotidiana.

El silicio, por ejemplo, es un metaloide brillante, gris azulado. Forma el 26% de la corteza terrestre como sílice (SiO2 ) y silicatos. No existe en estado libre en la naturaleza y se prepara por reducción del sílice de la arena a elevadas temperaturas. El silicio forma parte de las arcillas, vidrios, cementos, siliconas.

En los últimos años, la demanda de este metaloide, así como de germanio y de selenio, se incrementó debido a que se utilizan para fabricar transistores y circuitos integrados. En el caso de los transistores se aprovecha la capacidad de semiconductor del silicio.

El cristal de silicio prácticamente no conduce la corriente eléctrica, porque muy pocos electrones tienen la energía suficiente como para escapar de sus átomos. Sin embargo, el agregado cuidadoso de impurezas lo convierte en conductor. Para comprenderlo, es preciso analizar la teoría de las bandas.

Según esta teoría, en una cristal, tal como ocurre en los átomos aislados, los electrones se ubican en niveles o «bandas» respecto de los átomos, pero, a diferencia de los átomos en los cuales estos niveles están bien diferenciados unos de otros, en los sólidos las bandas son continuas unas de otras.

Cuando los electrones se encuentran en la banda más cercana al átomo, llamada banda de valencia, el cristal no conduce la electricidad; en cambio, si se encuentran alejados del á-tomo, en la banda de conducción, el cristal conduce la eletricidad.

En los metales, ambas bandas están pegadas una con otra, y el pasaje de electrones es sencillo. En los no metales y en los semiconductores existe una gran diferencia de energía entre ambas.

Cuando el silicio se contamina con un elemento que tiene un electrón más en su nivel más externo, el electrón sobrante no se une a los electrones del silicio y queda libre para moverse dentro del cristal, alcanzando la banda de conducción.

Se forma así un material llamado semiconductor tipo n. Por el contrario, si el contaminante que se agrega es boro (que tiene un electrón menos), la banda de conducción baja su nivel energético y «se acerca» a la banda de valencia, permitiendo la conducción a través de los «huecos» vacantes. El material formado es un semiconductor tipo p.

Con los materiales semiconductores se fabrican transistores, que son componentes electrónicos que permiten o no el paso de la corriente eléctrica. En 1960 se creó un sistema capaz de tallar, mediante técnicas fotográficas, cientos de transistores en un pequeño bloquecito plano de silicio: se inventó así el primer circuito integrado o chip.

En la actualidad, se construyen chips mucho más complejos llamados microprocesadores, capaces de leer y actuar de distinto modo según las necesidades del usuario. Estos componentes electrónicos pueden manejar la información de dos maneras diferentes:

Los componentes analógicos traducen magnitudes que varían constantemente en señales amplificadas que se modifican de la misma manera. Se usan, por ejemplo, en amplificadores de audio y sintetizadores.

Los componentes digitales reciben, comparan y procesan información en forma de pulsos eléctricos. Las señales de entrada y de salida sólo pueden tomar determinados valores, que se combinan para formar códigos.

Estos componentes forman el sistema binario y se emplean en todos los sistemas computerizados. (Fuente: Química I Alegría-Bosack-Dal Fávero-Franco-Jaul-Ross)

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

ALGO MAS DE HISTORIA DEL TRANSISTOR:

Cuando la radio estaba en su infancia, se utilizaban cristales como rectificadores, permitiendo a la corriente alterna fluir en una sola dirección. Estos receptores de galena eran muy rudimentarios, por lo que fueron reemplazados por aparatos provistos de lámparas. Éstas habían venido usándose también en varios instrumentos electrónicos, incluidos los nuevos ordenadores, durante más de cuarenta años.

antigua radio a galena

Pero las lámparas de radio tienen que ser lo bastante grandes como para encerrar un vacío. Son frágiles, tienen fugas y deben ser reemplazadas a menudo. También gastan mucha energía, y hay que esperar a que el filamento se caliente antes de que el aparato empiece a funcionar.

En 1948, los físicos William Bradford Shockley (1910-1989), Walter Houser Brattain (1902-1987) y John Bardeen (1908-1991) —todos ellos norteamericanos, aunque Shockley era de origen británico— descubrieron un nuevo tipo de cristal.

Consistía mayormente en germanio, peor conductor de la electricidad que los metales, pero mejor que los aislantes, como el vidrio y el caucho. El germanio y el silicio, que pocos años después reemplazó al anterior, por ser más barato y mejor, se consideraron ejemplos de semiconductores.

Si se añadían cantidades mínimas de impurezas al semiconductor, el cristal podía actuar como rectificador o como amplificador. En definitiva, podía realizar cualquier función propia de las lámparas.

Esos semiconductores eran sólidos (de ahí que se hable de dispositivos de estado sólido) y no requerían vacío, de manera que podían ser muy pequeños. No necesitaban ser sustituidos nunca.

Gastaban muy poca energía y no precisaban de calentamiento previo, con lo que su funcionamiento era inmediato. Un compañero de trabajo, el ingeniero norteamericano John Robinson Pierce (1910-2002), sugirió el nombre de transistor, porque transmitía la corriente a través de un «resistidor».

Con el tiempo, los transistores reemplazaron por completo las lámparas. Los transistores y los perfeccionamientos que siguieron podrían muy bien considerarse como el avance tecnológico más significativo del siglo XX.

Que son las Vitaminas A,B,C,D,E Tipos, Funciones y Características

Que son las Vitaminas A,B,C,D,E
Tipos, Funciones y Características

1-Vitaminas Liposubles e Hidrosolubles

2-Procedencia de las Vitaminas

3-Vitaminas A,B,C,D,E y sus Funciones

4-Historia de las Vitaminas

5-Tabla de Vitaminas y Características

6-Historia del Descubrimiento de las Vitaminas

7-Vitaminas Mas Importantes Para El Hombre

Que son las Vitaminas A,B,C,D,E Las vitaminas son compuestos sin valor energético, con componentes  que el organismo necesita  para funcionar correctamente, tener una buena salud física y mental, y conseguir un crecimiento adecuado. Son compuestos orgánicos distintos de las proteínas, grasas e hidratos de carbono. Se los considera nutrientes esenciales para la vida.

Son sustancias orgánicas que nuestro cuerpo necesita en cantidades muy pequeñas, pero que no puede producir por sí mismo. Por lo tanto, le han de ser suministradas con la alimentación.  El conocimiento de las vitaminas es relativamente reciente. En realidad, todas ellas han sido descubiertas en el siglo XX.

Sin embargo, anteriormente ya se conocía el hecho de que, cuando se alimentaba a animales de experimentación con una dieta que contiene hidratos de carbono, grasas y proteínas en estado puro, los animales dejaban de crecer, enfermaban y acababan por morir.

El sueño de algunos científicos, de poder alimentarse con una dieta químicamente pura, creando alimentos sintéticos, se desvanecía.

Los animales y el hombre, necesitan algo más que hidratos de carbono, grasas y proteínas, por muy abundantes que estas sean.

Debían de haber pues, algunas sustancias en los alimentos en su estado natural, que resultaban imprescindible para la vida. En 1912, el bioquímico polaco Casimir Funk llamó a esas sustancias las ‘aminas de la vida, o vitaminas.

Las vitaminas son compuestos imprescindibles para el crecimiento y el desarrollo para el correcto funcionamiento de los tejidos y para un gran número de procesos metabólicos y fisiológicos.

La relación entre la dieta y determinadas patologías se conoce desde la conquista del Nuevo Mundo; a través de estas expedición se comprobó que la ingestión de algunas sustancias, como el pimentón, disminuía aparición de ciertas enfermedades. Del mismo modo, en la marina inglesa se erradicó el escorbuto gracias al consumo del jugo del limón.

Una característica común a todas las vitaminas es que son necesarias, en cantidad reducidas, para el correcto funcionamiento del metabolismo. Por otro lado, no todos los animales presentan los mismos requerimientos vitamínicos. Las aves y las ratas sintetizan la vitamina C, mientras que el ser humano y los simios no presentan esta capacidad, modo que deben tomarla a través de los alimentos.

La necesidad de vitaminas varía según la especie, la edad del individuo, el nivel de crecimiento, la actividad diaria, la existe de un estado de gestación, la situación de convalecencia de las enfermedades, etc.

En casos de mayor desgaste metabólico, o bien cuando la dieta nos es variada y en ella se incluyen alimentos frescos, se pueden presentar estados carenciales. Cuando esta falta de vitaminas es reducida, se habla de hipovitaminosis, una afección que provoca ciertas alteraciones; la carencia total de vitaminas se denomina avitaminosis y puede acarrear enfermedades muy graves.

Por otra parte, el exceso de vitaminas conduce a lahipervitanosis, responsable igualmente de diferentes patologías y alteraciones metabólicas.

Para designar a las vitaminas se pueden usar tres tipos de códigos: una letra mayúscula, un término relacionado con la enfermedad que se produce ante su ausencia o el nombre químico. La composición química de las vitaminas es muy variable; obstante, todas ellas son muy hábiles; es decir, muy sensibles al calor, al oxígeno, a cambios de pH y a la luz. Existen dos grandes grupos:

Vitaminas liposolubles: se caracterizan por no ser solubles en agua, pero sí los compuestos lipídicos. Son abundantes en alimentos con alto contenido lípidos, como el hígado de ciertos animales. Precisamente la estructura lipídica favorece su acumulación.

Vitaminas hidrosolubles: se solubilizan muy bien en agua, por lo que su eh nación a través de los riñones es muy eficaz. Por este mismo motivo no se acumulan como material de reserva.

Procedencia de las vitaminas: Las vitaminas son producidas primeramente por los seres del reino vegetal, ya sean las plantas superiores, los hongos o las bacterias. En algunos casos, los animales pueden transformarlas y almacenarlas, como ocurre por ejemplo con las vitaminas A y D, que los vegetales producen como pro-vitaminas, y se almacenan en el hígado de los peces y mamíferos como vitaminas. Sin embargo, la fuente básica de vitaminas, son los alimentos vegetales. La carne, por ejemplo, es muy deficiente en vitamina C.

Vitaminas liposolubles

Vitamina A

La vitamina A o retinol es un alcohol liposoluble de cadena larga. Es una molécula sensible a la luz ultravioleta, a los ácidos y al oxígeno. A principios del siglo XX se idearon ciertas sustancias liposolubles que eran esenciales para el crecimiento y el desarrollo animal, cuya síntesis química se debe a Isler (1947).

Se sabe que la vitamina A participa en el proceso de la visión; forma parte de la rodopsina presente en la retina del ojo.

Cuando incide la luz sobre la retina, esta molécula se rompe y se produce la cascada de reacciones que conduce a la formación de un impulso nervioso que se transmite a través del nervio óptico hacia el cerebro. La hipovitamiflosis (carencia de vitaminas) determina alteraciones de las glándulas sebáceas y sudoríparas, de la mucosa respiratoria, y provoca también sequedad en el ojo o xeroftalmia, que incluso puede afectar a la conjuntiva o a la córnea.

En niños pequeños, el exceso de esta vitamina conduce a estados de irritabilidad, vómitos y dolor de cabeza. Los alimentos ricos en vitamina A son el hígado de pescado y de vaca, los huevos, la leche, las zanahorias y la mantequilla.

En los vegetales coloreados (zanahoria, tomate, etc.) se encuentra en forma de provitamina, conocida como beta-caroteno, que nuestro organismo transforma en auténtica vitamina A (retinol) según sus necesidades.

Debido a que la absorción intestinal de los carotenos no es tan fácil como la de la vitamina A procedente de los alimentos animales, se calcula que se necesitan seis veces más de caroteno vegetal que de retinol animal. Aun así, la dieta vegetal normal aporta cantidades sobradas de vitamina A.

No ocurre lo mismo con los alimentos animales, en los que, exceptuando el hígado de los animales, ciertos pescados, o los lácteos, es bastante escasa. La carne magra es muy pobre en vitamina A.
Según la OMS, la vitamina A es de la que más se carece en determinadas regiones del mundo. Al igual que ocurre con otra vitamina liposoluble, la D, el exceso de vitamina A en su estado definitivo (retinol), tal como se encuentra en los animales, resulta tóxico para el hombre.

Funciones
• Formación de los pigmentos visuales en la retina. La falta de vitamina A impide ver con poca luz (ceguera nocturna).

• Formación y mantenimiento de las células que recubren la piel, los ojos, la boca y los órganos internos. Cuando falta vitamina A, la piel, y especialmente la conjuntiva que recubre al ojo, se resecan y debilitan, Cuando este déficit es grave llega a producirse la ceguera. Entre los niños del tercer mundo todavía se dan numerosos casos de ceguera por falta de vitamina A.

• Evita la formación de tumores cancerosos en los órganos de nuestro cuerpo, debido a su poderosa acción antioxidante. Este efecto lo produce en su forma de provitamina vegetal (caroteno). Se ha comprobado que los fumadores que toman muchas hortalizas, especialmente zanahorias), padecen menos cáncer de pulmón que los fumadores que consumen pocas.

Vitamina D

La vitamina D tiene diferentes formas metabólicas, según sea de origen animal o vegetal. La forma habitual en el ser humano es la vitamina D3 o ergocalciferol, que deriva del 7-dehidro-colesterol por irradiación ultravioleta. La asociación del raquitismo y la luz solar conllevó la realización de diferentes estudios que culminaron en la síntesis de los primeros esteroles, en los años treinta del siglo XX. La función de esta vitamina es la de favorecer la absorción intestinal de calcio y fósforo, y la correcta formación de los huesos.

Su carencia, por una mala dieta o por una falta de exposición a la luz solar, puede conducir a los niños en crecimiento al raquitismo. Esta patología consiste en una calcificación de los huesos, que puede dar lugar a su arqueamiento. Los síntomas son debilidad muscular, dolores, alteraciones al caminar, etc. La vitamina D está presente en pescados grasos, como la sardina y el arenque, en los huevos y en el queso.

Vitamina E

La Vitamina E o tocoferoles está formada por un conjunto de líquidos oleosos solubles en os disolventes de las grasas. Existen ocho tipos en total. Tiene una función antioxidante pues evita la oxidación de los ácidos grasos insaturados presentes en las membranas celulares, reduciendo los fenómenos de deterioro.

No obstante, todavía no se ha establecido completamente su relación con el retraso en la aparición de tumores y el proceso de envejecimiento de los humanos.

En ciertos animales, no en el hombre, Su carencia está asociada con alteraciones en el hígado y en el sistema inmunitario; además, puede conducir a la esterilidad. Está presente en los aceites vegetales, en el germen de trigo, en los huevos y en la mantequilla.

Vitamina K

Vitamina K está constituida por varias sustancias denominadas naftoquinonas, que participan en el proceso de la coagulación de la sangre, en concreto, en la síntesis de la protombina. Su déficit, por una absorción reducida o ingestión de ciertos antibióticos ocasiona hemorragias, osteoporosis y fracturas de huesos. Es muy abundante en verduras como la col y las espinacas.

Vitamina B1

También llamada tiamina, da lugar en su metabolismo al pirofosfato de tiamina o PP que participa como coenzima en multitud de procesos metabólicos. Su déficit, ocasionando por un consumo habitual de productos refinados, de alcohol o de carbohidratos, provoca una degeneración del sistema nervioso.

En el ser humano ocasión un conjunto de síntomas que se conocen como la enfermedad del beriberi. Esta vitamina se encuentra en el germen de trigo y en la levadura de la cerveza.

La vitamina B1 está presente en alimentos como el hígado, la leche, el pan, el germen de trigo cereales. La enfermedad del beriberi, que se manifiesta a través de síntomas neurológicos, anomalías cardiovasculares y edema, está provocada por su déficit.

Esta vitamina se descubrió en el arroz integral, a principios del siglo XX, al notar que este alimento era capaz de curar la enfermedad del beriberi.

Funciones: Interviene en el metabolismo de los hidratos de carbono, facilitando las reacciones químicas mediante las cuales su producto final, la glucosa, se transforma en energía.
e Es un factor esencial en las funciones del sistema nervioso. Su falta ocasiona irritabilidad y desequilibrio nervioso.

Su carencia ocasiona el beriberi, enfermedad que afortunadamente ya se ha vuelto rara en el mundo. La vitamina B1 se halla muy extendida en la naturaleza, y todas las frutas, cereales (especialmente los integrales) y hortalizas, la contienen. Son pobres en vitamina B1 el azúcar blanco (no el azúcar moreno o la miel), y la harina blanca refinada (no la harina integral). La dieta a base de fruta, cereales y hortalizas suple sobradamente las necesidades de esta vitamina.

Vitamina B2

En la leche se encuentra libre en un 90%, pero también puede aparecer asociada con proteínas formando el FMN y el FAD. Participa en los procesos de crecimiento y en el metabolismo de la piel y las mucosas. Con su carencia se producen alteraciones en la piel y en los ojos y retraso en el crecimiento.

Vitamina PP

Vitamina engloba a dos metabolitos principales, estables y solubles en agua: el ácido nicotico y la nicotinamida.Como parte de estas dos coenzimas participa en las rea4 de la respiración aerobia. Su deficiencia produce fatiga y lesiones en la piel. Su contenido se equilibra con una dieta rica en carnes y pescados.

Vitamina B5

En 1953, F. A. Lipmann y H. A. Krebs recibieron el premio Nobel de Fisiología y Medicina por descubrir la presencia, como componente de la coenzima A, del ácido pantotémico o vitamina B5. Su carencia provoca alteraciones en la coordinación motora y de circulación sanguínea en las extremidades inferiores. Está presente en el hígado de animales y en prácticamente todos los alimentos.

Vitamina B6

También conocida como piridoxina, da lugar en su metabolismo al piridoxal, que es una parte importante del metabolismo de las proteínas. El desequilibrio del sistema nervioso ante su carencia se restablece con la ingestión de frutas, carnes, pescados y legumbres.

Vitamina B8

La vitamina B8 o biotina participa en las reacciones de descarboxilación. Se encuentra en una amplia gama de alimentos y su carencia ocasiona anorexia, vómitos, alopecia y dermatitis.

Vitamina B9

Esta vitamina, conocida como ácido fólico, participa en la síntesis de las bases nitrogenadas que forman los ácidos nucleicos. La ausencia de espinacas, coles, hígado, eche y carne en la dieta puede ocasionar trastornos digestivos agudos.

Vitamina B12

También llamada cianocobalamina, Interviene en la formación de los glóbulos rojos de la sangre y en el metabolismo de los ácidos nucleicos y las proteínas. Su carencia produce estados de anemia, alteraciones neurológicas y cutáneo-motoras Se encuentra presente en el hígado de varios animales.

Vitamina C

La falta de esta vitamina provocó la primera enfermedad carencial conocida el escorbuto, cuya curación se debió al consumo de jugo de limón Se encuentra en los cítricos, las verduras, las fresas y el kiwi.

La carencia de vitamina C, presente en los cítricos, puede provocar la aparición del escorbuto, patología caracterizada por astenia, hemorragias subcutáneas, alteración de algunos tejidos, especialmente el de las encías, y debilidad general

Ver También: Las Mas Importantes Vitaminas Para el Organismo

Ver También: Historia Descubrimiento ADN

PARA SABER MAS…
UN POCO DE HISTORIA SOBRE LAS VITAMINAS

Casimir FunkEl escorbuto dominaba en alta mar. El beriberi era una epidemia en todo el sudeste asiático. La pelagra, una amenaza en todo el mundo.

Excepto el antídoto contra el escorbuto de la armada inglesa, grandes cantidades de limas (de ahí el mote de «limey» de los marinos británicos), no se conocía protección alguna contra estas temidas enfermedades hasta que en 1912 Casimir Funk publicó su artículo La etiología de las enfermedades deficitarias.

En el texto, Funk, un joven y brillante bioquímico polaco (obtuvo el doctorado a los 20 años y solo tenía 28 en la época de su avance decisivo), mostró que las enfermedades estaban causadas por deficiencias alimentarias.

«Las sustancias deficitarias que se llamarán vitaminas», escribió. En el transcurso de su investigación, Funk postuló que cuatro sustancias de éstas (más tarde identificadas como vitaminas Bi, 62, C y D) eran imprescindibles para una buena salud.

Como otros habían hecho anteriormente, Funk observó que las enfermedades deficitarias se producían en zonas con dietas de subsistencia monoalimentarias. Trabajando en el instituto Lister de Londres, Funk realizó sus experimentos.

Alimentó pájaros con una dieta consistente exclusivamente en arroz refinado y enfermaron de algo muy parecido al beriberi, enfermedad habitual entre la población que hacía una dieta restringida similar. Funk restituyó la parte del meollo del arroz que había refinado y los pájaros se recuperaron.

Sin embargo, mientras otros habían atribuido la enfermedad a las toxinas introducidas en el arroz al refinarlo (para la que el arroz restituido era un antídoto), Funk estableció correctamente que el problema no era lo que había en el arroz sino lo que había perdido.

Tras un nuevo estudio, Funk fue capaz de relacionar ciertas sustancias orgánicas, sus «vitaminas», con la prevención de enfermedades específicas. Habló de una vitamina beriberi y de otra escorbútica. «Todas las enfermedades deficitarias se pueden prevenir con una dieta completa», concluyó. Sus palabras cambiaron las formas de alimentación en el mundo.

tabla de vitaminas

Ver: Metabolismo y Obesidad

Diferencias entre virus y bacterias Tipos de Virus Clasificacion

Diferencias Entre Virus y Bacterias

Los virus son seres acelulares, extraordinariamente simples, cuyo nivel de organización los sitúa entre lo vivo y lo inerte; aunque son capaces de autoduplicarse en las células vivas, pierden por completo su funcionalidad cuando se los separa de las células que parasitan

A pesar de dedicar parte de su esfuerzo a investigar cuál era la causante de la rabia, Pasteur no logró determinarlo.  El pensaba que se trataba de un microorganismo demasiado pequeño, imposible de ser detectado usando las técnicas de que disponía.  Es entonces, en la última década del siglo XX, cuando comenzaron las investigaciones que permitieron descubrir la existencia de los virus.

En el año 1892, el botánico ruso Dimitri Ivanowski (1864-1920) demostró que el jugo extraído de plantas de tabaco que padecían una enfermedad conocida como “mosaico de tabaco” podía infectar a otras después de atravesar filtros con poros que normalmente retenían a las bacterias.

Sin embargo, es  en el año 1895, cuando el botánico holandés Martinus Beijerinck nombró “virus filtrante” al agente causante de esta enfermedad.  La palabra virus significaba “veneno”. Este descubrimiento marcó el comienzo de la virología. (Fuente Consultada: Bocalandro, N; Frid, D; Socolovsky, L. Biología I)

Estructura de los virus

Estos microorganismos de dimensiones muy pequeñas, presentan una estructura de gran simplicidad, en donde encontramos una envoltura externa similar a la membrana plasmática que contienen las células, una cubierta proteica propia y un ácido nucleico. Sin embargo, hay características relevantes que diferencian a los virus de los restantes grupos de seres vivos: el material genético es ADN o bien ARN, pero nunca ambos tipos a la vez.

En primer lugar, el virus VMT, el de la polio, los parvovirus son moléculas de ADN lineales y monocatenarias, es decir que contienen una sola hebra y por ejemplo el Reovirus, o el virus del herpes, sus moléculas también pueden ser lineales pero bicatenarias, con doble hebra.

Como se mencionaba más arriba, la estructura de los virus es de gran simplicidad, consistente en una cubierta de proteínas llamaba “cápside” (la cual rodea al material genético)  y una molécula de ácido nucleico en su interior.  Esta cápside consta de varias subunidades, la que llamaremos Capsómeros.

El perfil externo de los virus, pueden estar dados según la disposición que adoptan cada uno de estos capsómeros, resultando de ser: poliédricos, heliocoidales o complejos. Por ejemplo, normalmente los que tienen veinte caras como ser el virus de la polio, son los que conocemos como poliédricos; en el caso del virus de la rabia que se dispone en torno al ácido nucleico es el heliocoidal y por último aquellos que están formados por una cabeza, una cola y un posterior sistema de anclaje, son los denominados complejos, como por ejemplo los bacteriófagos (es decir aquellos virus que infectan otros organismos, pero en este caso son las bacterias).  Estos virus presentan una cápside poliédrica, una cola y una estructura de anclaje que consta de espinas y filamentos caudales.

Los virus que infectan animales están provistos de una membrana que les rodea por completo (formada por lípidos y proteínas, estas últimas específicas de cada uno) mientras que los que parasitan plantas, los que invaden bacterias y algunos animales carecen de ella y se denominan virus desnudos.

Dentro del mundo de los microbios, las bacterias y los virus son dos formas de vida dispares. Las primeras son organismos compuestos por una célula muy primitiva, ya que no posee núcleo, aunque se reproducen por sí solas. Bajo las condiciones adecuadas, pueden convertirse en millones en pocas horas por simples divisiones. Por el contrario, un virus es una criatura en el límite de lo que se considera vida. No es otra cosa que un fragmento de ADN -o ARN- dentro de una cápsula. Cuando el virus entra en contacto con la célula, se pega a ésta y le inyecta su material genético. Este ADN secuestra la maquinaria celular para hacer copias de sí mismo y formar nuevos virus. La célula es una fábrica de virus. Pero para que funcione, el agente viral debe hallar una puerta de entrada específica, esto es, un receptor que le abra paso. Así, las células sin ese receptor adecuado no pueden ser infectadas. Por eso, el virus de la polio sólo infecta a los seres humanos y a los primates más cercanos.

El ataque de los Virus:

Cuando un virus ingresa al organismo y comienza a invadirlo, obliga a toda la maquinaria celular a que lo replique o reproduzca y genera así la enfermedad.  Es por esto, que nosotros los humanos hemos desarrollado respuestas que destruyan a estos microorganismos extraños que nos invaden, es decir a todas aquellas células que no son propias de nuestro organismo.  La respuesta a ello son los glóbulos blancos, aquí si típicas células de nuestro organismo, aquellas que descienden de la célula madre localizada en la médula ósea. Por lo general, este ataque a un invasor de características microscópicas es de carácter inflamatorio.  ¿Por qué? Simplemente porque implica la utilización de nuestras células sanguíneas, para aislar y destruir el foco infeccioso detectado.

La sangre, puede definirse como un “órgano líquido que se desplaza de forma constante a través de un sistema de conductos que lo distribuyen por todo el cuerpo. Este órgano tan especial funciona como vehículo de trasporte de gases, como por ejemplo el oxígeno y de los nutrientes, entre otros que son de vital importancia para nuestro funcionamiento.

Pero, los vasos sanguíneos para poder llegar a todas las células del cuerpo, deben ramificarse y disminuir su tamaño.  Los capilares, son justamente estos vasos más pequeños que poseen una capa de células que los recubren funcionando como una minipared.  Estas células se hallan próximas al tejido infectado, la mayoría de los casos es la piel, lo cual producirán la libración de histamina, interferón y otras sustancias químicas, en respuesta inflamatoria ante el virus presentado. ¿Por qué?

Esto se debe que las sustancias químicas tienen la propiedad de lograr que en las paredes capilares se abran orificios, produciendo que los glóbulos blancos salgan del torrente sanguíneo acompañados de otros componentes y líquidos de la sangre. La cara visible de muchas veces de este proceso es lo que conocemos como “pus” (fluido producido), es decir la actividad expulsada de las células, ya que el paso de líquido a la zona afectada provoca la característica hinchazón del foco infeccioso.

La Defensa al Ataque: (ver Inmunidad Humana)

Si el predador microscópico pudo atravesar la primera barrera (la piel, por ejemplo) o si ocurre el contagio directo al interior del cuerpo a través de heridas, la única defensa que nos queda es lo que denominamos respuesta inmune. Esta respuesta inmune es altamente específica e implica fundamentalmente dos tipos de glóbulos blancos de la sangre: los linfocitos B y los linfocitos T. Cuando algún elemento extraño logra ingresar en nuestro cuerpo, los linfocitos B (que maduran en el bazo) comienzan a sintetizar una serie de moléculas que son capaces de inmovilizar al invasor. Estas moléculas se denominan anticuerpos, y tienen una forma característica que es complementaria a alguna estructura de la superficie externa de los invasores. De esta manera los anticuerpos encajan perfectamente en cada porción de la cobertura exterior de los microbios. Un microorganismo queda así en poco tiempo cubierto de anticuerpos.

El proceso lo inmoviliza y, así, es fácil presa de otras células de la sangre, que literalmente se lo comen y lo destruyen. Los linfocitos T son células que maduran en el timo, y son responsables de la destrucción de los agentes infecciosos y de las células que los contienen. Algunos linfocitos T actúan directamente contra el invasor (citotóxicos) y otros lo hacen indirectamente (cooperadores). Los linfocitos T citotóxicos reconocen células que están infectadas con algún parásito intracelular y las destruyen (junto con el agente infeccioso que llevan dentro, claro), mientras que los linfocitos cooperadores aumentan la respuesta inmune.Sin la acción de las células  cooperadoras la respuesta inmune hacia cualquier infección es muy suave e insuficiente.

Así nuestra respuesta a la presencia de algún elemento extraño en la sangre es muy violenta. Tanto, que a nuestros depredadores no les queda otra salida que ser más veloces que nuestras defensas o cambiar.

Muchos virus eligen la estrategia del camuflaje para evitar la acción de la respuesta inmune del huésped. Por ejemplo, el virus de la gripe cambia su estructura externa y se disfraza para que el huésped no lo reconozca.33 Otros, como el virus responsable del sida (síndrome de inmunodeficiencia adquirida), denominado virus de la inmunodeflciencia humana o VIH, han desarrollado una estructura totalmente diferente que les asegura su mantenimiento y proliferación en nuestro cuerpo a pesar de todos los mecanismos de inmunidad que mencionamos.

El VIH invade (y destruye) principalmente las células T cooperadoras, y deja el sistema inmune de la víctima con una capacidad muy disminuida para responder contra las infecciones. En las etapas finales de la enfermedad, el virus invade otras células y tejidos del cuerpo, incluidos los del sistema nervioso. La deficiencia inmunológica termina afectando a los pacientes, ya que no pueden responder con eficacia contra otras infecciones y de esta manera quedan cada vez más expuestos a enfermarse.

El virus del sida está presente en altos niveles en la sangre y en el semen de los individuos infectados y, por lo mismo, se transmite por contacto sexual (heterosexual u homosexual, oral, vaginal o anal), y a través del intercambio de sangre o de productos de la sangre.

Clasificación de los virus En función de los distintos parámetros que presentan, los virus se pueden clasificar  de la siguiente manera:

Virus ARN e ARN monocatenario:
Sin envoltura

Familia Leviviridae, cuya célula huésped es una bacteria, como el 1P501.

— Familia Astroviridae: infectan a vertebrados, como el astrovirus humano 1.

— Familia Barnaviridae: infectan a hongos, como el virus baciliforme de los hongos.

— Familia Picornaviridae: infectan a los animales invertebrados, como el virus de la parálisis del grillo, o a los vertebrados, como el virus de la polio en humanos y el virus de la hepatitis A.

Con envoltura

— Familia Rhabdoviridae: parasitan a las plantas, como el virus de la necrosis de la lechuga, o a los vertebrados, como el virus de la rabia.

— Familia Coronaviridae: parasitan a vertebrados, como el virus de la bronquitis infecciosa aviar.

— Familia Paramyxoviridae: parasitan a vertebrados, como el virus del sarampión.

— Familia Orthomyxoviridae: parasitan a vertebrados, como el virus de la gripe.

— Familia Retroviridae: parasitan a vertebrados, como el virus del cáncer y del sida.

— Familia Paramyxoviridae: parasitan a vertebrados, como el virus de la parotiditis.

— Familia Togaviridae: parasitan a vertebrados, como el virus de la rubéola y el de la fiebre amarilla.

ARN bicatenario
Sin envoltura

— Familia Reoviridae: infectan a las plantas, como el virus tumoral de las heridas; a los invertebrados, como el orvovirus de la lengua azul, o a los vertebrados, como el virus de la diarrea en niños.

— Familia Birnaviridae: infectan a vertebrados, como el virus infeccioso de la necrosis del páncreas.

Con envoltura

— Familia Cystoviridae: afectan a bacterias como el Phi 6.

Virus ADN ADN monocatenario
Sin envoltura

— Familia Inoviridae: infectan a las bacterias, como el MVL1 o el M13.

— Familia Microviridae: infectan a las bacterias, como el X174.

— Familia Geminiviridae: parasitan a las plantas, como el virus del estriado del maíz.

— Familia Parvoviridae: parasitan a los invertebradas, como el densovirus de Galleria que afecta a los artrópodos, o a los vertebrados, coma los virus de los perros y los cerdos.

ADN bicatenario
Sin envoltura

— Familia Myoviridae o bacteriófagos, como el virus P2 y el T2.

— Familia Corticoviridae o bacteriófagos, como el PM2.

— Familia Caulimoviridae: parasitan a las plantas, como el mosaico de la coliflor.

— Familia lridoviridae: infectan a los invertebrados, como el virus de iridiscente de típula, o a los vertebrados, como el virus 3 de la rana.

— Familia Adenoviridae: parasitan a los vertebrados, como el adenovirus humano.

— Familia Papovaviridae: parasitan a los vertebrados, como el que produce las verrugas.

Con envoltura

— Familia Plasmaviridae o bacteriofagos, como el MV-L2.

— Familia Poxviridae: parasitan a los invertebrados, como el virus de la Melolontha, o a los vertebrados, como el virus de la viruela.

Ciclo Vital de los virus
Una de las características más importantes de las virus es que no desarrollan un metabolismo propio. El virus usa material genético con la información suficiente para poder autoduplicarse gracias al metabolismo de la célula huésped que parasita. Los  más estudiados son los de los bacteriófagos: el ciclo lítico y el ciclo lisogénico.

En el ciclo lítico a de infección de una bacteria se pueden diferenciar varias fases:

1. Fijación a la superficie de la célula hospedadora. Gracias a receptores específicos en la pared bacteriana los virus se fijan a la superficie de ésta. En la cola del virus se localizan enzimas que actúan de manera selectiva debilitando los enlaces de las moléculas de la pared.

2. Penetración, El virus que se ha fijado a la pared bacteriana, contrae a vaina helicoidal e inyecta el material genético en el interior de La célula huésped. En esta penetración, los bacteriófagos o fagos dejan fuera de la célula la cápsida, la cola y la placa de fijación. En el caso de los virus que afectan a las células animales, entran intactos en la célula.

3. Replicación. El ADN bacteriano es degradado y se detiene el metabolismo celular. El virus codifica en su material genético una serie de enzimas que van a dirigir todos los procesos celulares hacia la síntesis de nuevas proteínas virales ya la replicación, del material genético viral.

4. La siguiente fase es el ensamblaje del material genético y de las proteínas para dar lugar a nuevas partícula .

5. Finalmente se produce la liberación de los nuevos virus gracias a la degradación de la pared bacteriana, mediante la acción de la lisozima. De medía, se generan cien nuevos virus.

En cuanto al ciclo lisogénico, existen formas de virus llamados atenuados, que gran su material genético en el de la célula huésped. De este modo, los genes mantienen reprimida su expresión, hasta que se produce la replicación del material genético de la célula huésped. El tipo de bacteria en el que se da este fenómeno se denomina lisogénica, y el virus no lítico recibe el nombre de profago.

Cuando las condiciones ambientales sean las adecuadas, el virus puede entrar en un ciclo lítico y liberarse y destruir la célula huésped. La bacteria que contiene un profago quedará inmune de la infección por virus de esa misma especie.

ALGO MAS SOBRE LOS VIRUS:

Se llama así al tipo más pequeño de microorganismo. Los virus son generalmente más chicos que las bacterias y pueden verse sólo con el microscopio electrónico. Su tamaño varía entre 10 y 300 millonésimas de milímetro. Son los agentes de muchas enfermedades. Se hallan en el límite entre los seres vivos y la materia inerte. No están formados por células y en muchos casos actúan como sustancias químicas inorgánicas. Por ejemplo, pueden formar cristales y permanecer estables, pero inertes, durante períodos largos. Pero, como organismos vivos, los virus pueden reproducirse y transmitir a su descendencia sus características. Sin embargo, dicha reproducción sólo puede realizarse dentro de las células vivas de otros organismos.

A diferencia de las bacterias, los virus no aumentan sus colonias en un medio de cultivo inorgánico, sino que deben cultivarse en laboratorio sobre tejidos vivos. Tanto plantas como animales son atacados por virus; pero en la mayoría de los casos, las enfermedades sólo pueden desarrollarse en grupos de individuos específicos. Por ejemplo, la peste de las aves de corral, de los cerdos, o el moquillo, son enfermedades virósicas de animales que los humanos no padecen. Pero la viruela, la rabia y la psitacosis (una enfermedad de las aves) pueden ser transmitidas al hombre.

Entre otras enfermedades virósicas humanas se cuentan el resfrío, la gripe, la poliomielitis, la varicela, la viruela, las paperas, el sarampión, el herpes zoster y la hepatitis. Algunos tipos de cáncer también son causados por virus. Las enfermedades virósicas de las plantas pueden destruirlos cultivos. Aún las bacterias son atacadas por ciertos virus, llamados bacteriófagos. Poco pueden hacer los médicos para combatir las enfermedades virósicas pues se han descubierto pocas drogas que sean efectivas contra los virus, tal como son los antibióticos y las sulfas contraías bacterias.

El organismo, sin embargo, reacciona contra la invasión virósica de dos maneras. 1) Produce anticuerpos que obligan a los virus a agruparse, lo que facilita su destrucción. 2) Produce una sustancia que se llama interferón, que interfiere el desplazamiento del virus de una célula a la otra.

A principios de 1970, los científicos sólo habían tenido un éxito moderado en el desarrollo artificial de la producción de interferón como método para combatir las enfermedades virósicas. La reacción anticuerpo, por otra parte, se ha usado durante mucho tiempo, como base de la vacunación. Cuando una persona ha tenido una enfermedad producida por virus, su cuerpo tiene la posibilidad de formar anticuerpos. Por este motivo, tales enfermedades atacan al organismo sólo una vez. Si se inyectan virus muertos o atenuados, el médico puede conferir al paciente una inmunidad artificial.

Serendipia en la Ciencia

Fuente Consultada:
Texto Basado en El Elixir de la Muerte Raúl A. Alzogaray (Ciencia que Ladra…) – Diccionario Enciclopédico Espasa Calpe

Adelantos Tecnologicos Post Guerra Mundial Avances Cientificos

Adelantos Tecnológicos Post Guerra Mundial

Historia Evolución Tecnológica Post Guerra Mundial
Durante los años de la posguerra, la tecnología cambió progresivamente los diferentes aspectos de la vida cotidiana pero, sin duda alguna, hubo un tema que trascendió a todos los demás: la encarnizada y costosa rivalidad militar entre Estados Unidos y la URSS, en la que acabaron inevitablemente envueltos los países del este europeo y las democracias de Europa Occidental.

Fue una rivalidad cuyas batallas se libraron sobre todo en el terreno tecnológico.

Por un lado, se produjo una proliferación de armas nucleares de creciente potencia y, por otro, fueron apareciendo los medios para transportarlas hasta puntos cada vez más remotos.

Excepto en los aspectos no cuantificables de seguridad nacional e impulso de la actividad industrial, el enorme gasto resultó improductivo y, a través de sus repercusiones económicas, llegó a afectar las condiciones sociales.

Desarrollos tecnológicos de la posguerra
Inevitablemente, los primeros años de la posguerra se dedicaron más a la reconstrucción que a la innovación.

Muchas de las actividades anteriores a la guerra prácticamente se habían detenido y sus responsables se limitaron a retomarlas en el punto en que las habían dejado.

En Estados Unidos, por ejemplo, la fabricación de transmisores y receptores de televisión había estado prohibida durante la guerra y la medida no fue revocada hasta 1946.

Las transmisiones regulares en color comenzaron en 1950

Los automóviles de la inmediata posguerra eran básicamente iguales a los de antes de la guerra. Chrysler se adentró por nuevos terrenos en 1949, al introducir los frenos de disco que, sin embargo, habían sido concebidos por Lanchester a principios de siglo.

Los neumáticos radiales, con mayor capacidad de agarre a la carretera, fueron introducidos en 1953.

En los propios automóviles hubo sin embargo una marcada tendencia hacia modelos más pequeños, conforme al menor poder adquisitivo de la población.

El Volkswagen («coche del pueblo») alemán se había fabricado en muy pequeño número antes de la guerra, pero después del conflicto volvió a aparecer como el popular «Escarabajo», del que se vendieron millones en un período de 40 años. (imagen abajo)

auto escarabajo wolkwagen

En 1949, la firma automovilística francesa Citroen lanzó su famoso «dos caballos», del que se vendieron cinco millones en los 30 años siguientes y que seguía siendo popular en 1987, cuando se interrumpió su fabricación.

La mecanización en agricultura, explotación de bosques y actividades afines quedó reflejada en el Land Rover británico, presentado en 1948, con un sistema de tracción en las cuatro ruedas adoptado del jeep militar norteamericano.

antigui citroen 2cv

También las motocicletas entraron en una nueva fase, con la aparición de una variedad de modelos de baja potencia. La famosa Vespa apareció en Italia en 1946 y diez años más tarde se habían vendido un millón de unidades.

vespa antigua

En Japón, en 1947, Soichiro Honda sentó las bases de una gigantesca industria internacional al añadir pequeños motores a bicicletas corrientes.

Como era de esperar, algunos de los cambios más importantes se produjeron en los sectores en que los adelantos realizados con fines exclusivamente militares pasaron a estar disponibles para usos civiles.

La expansión fue rápida por dos motivos: en primer lugar, la fase de investigación y desarrollo ya se había superado y, en segundo lugar, los fabricantes habían perdido los contratos con el gobierno y necesitaban urgentemente un mercado civil para no precipitarse en la bancarrota.

La industria de la aviación fue uno de los casos más destacados. Tenía una gran capacidad productiva, pero carecía de contratos.

Esta situación favoreció una enorme y rápida expansión de la aviación civil, que se benefició asimismo de los sistemas de radar para la navegación y el control del tráfico aéreo. Se produjo así una revolución en los medios utilizados para viajar, por ejemplo, en las travesías del Atlántico.

Resultado de imagen para primeros aviones comerciales historiaybiografias.com

En los viajes transatlánticos, los grandes paquebotes habían competido entre sí, en los años anteriores a la guerra, ofreciendo buenas condiciones de comodidad y rapidez.

En 1952, la flota existente se vio ampliada con el nuevo buque United States, construido a un coste entonces enorme de 75 millones de dólares y con un diseño sumamente innovador, basado en la utilización de aleaciones ligeras de aluminio para la superestructura.

Pero el buque era ya obsoleto en el momento de la botadura pues la aviación civil ofrecía la travesía transatlántica en una décima parte de tiempo.

En 1957, más pasajeros cruzaron el Atlántico por aire que por mar y, hacia fines de los años 60, más del 97 % de los viajeros transatlánticos utilizaron el avión. El mismo cambio se registró en todo el mundo y el factor de la velocidad abrió un mercado completamente nuevo.

Durante los años de la preguerra, la industria química había inventado muchos productos nuevos en el campo de los polímeros, pero también en este caso la demanda militar había desviado las innovaciones de las aplicaciones civiles. Sin embargo, durante la posguerra, los nuevos polímeros inundaron el mercado.

Las fibras artificiales, como el nilón y el dacrón oterylene, dieron un nuevo impulso a la industria textil.

El polietileno, considerado en un principio un plástico de uso limitado y especializado para la industria eléctrica, demostró ser un material adecuado para una gran variedad de fines.

Su producción llegó a medirse en cientos de miles de toneladas y su uso aumentó todavía más cuando en 1953 K. Ziegler inventó un proceso a baja presión, destinado a reemplazar el original de altas presiones.

En Italia, Giulio Natta aplicó el proceso de Ziegler a la polimerización del propileno, abriendo así un gigantesco mercado para el polipropileno.

Desarrollo del transistor
Para que las radios funcionen con corriente alterna, que es la suministrada por la red, es preciso rectificar esa corriente, es decir, convertirla en unidireccional.

Al principio, se utilizaron con este fin dispositivos que aprovechaban la propiedad de ciertos cristales (como la galena o el sulfuro de plomo) para permitir que la corriente pasase en una sola dirección.

transistor semiconductor

Sin embargo, durante toda la primera mitad del siglo XX, estos dispositivos fueron casi enteramente sustituidos por los tubos termoiónicos (válvulas), capaces de rectificar y amplificar una corriente.

Pero las válvulas tenían varios inconvenientes: eran voluminosas, consumían mucha electricidad y necesitaban cierto tiempo para calentarse y funcionar.

Al principio de los años 30, en los laboratorios de la empresa Bell Telephone, en Estados Unidos. W.H. Brattain había iniciado estudios detallados para desarrollar las propiedades de los semiconductores, es decir, de los materiales cuya resistencia eléctrica se sitúa entre la de los conductores (baja resistencia) y tos aislantes (alta resistencia).

Sus trabajos revelaron que los efectos superficiales en un material semiconductor pueden producir la rectificación de una corriente. Estos rectificadores tenían, evidentemente, ciertas ventajas en comparación con los tubos termoiónicos; de hecho, durante la Segunda Guerra Mundial se utilizaron rectificadores de silicio para los sistemas de radar.

Después de la guerra, Brattain prosiguió la investigación en colaboración con J. Bardeen y descubrió que con dos contactos sobre un trozo de germanio era posible controlar la corriente que pasaba a través del semiconductor.

El 23 de diciembre de 1947, Brattain y Bardeen demostraron que su dispositivo podía funcionar como amplificador de la corriente. Su comportamiento dependía de la formación de regiones libres de electrones en la capa superficial del semiconductor, bajo los contactos. Como el dispositivo funcionaba transfiriendo corriente a través de un resistor, lo llamaron transistor. La versión original tenía limitaciones: era eléctricamente «ruidosa» y sólo podía controlar corrientes de baja potencia. Pero poco después se desarrolló un transistor mejorado.

La versatilidad y el grado de miniaturización posibilitados por el transistor fueron sensacionales y generaron una industria de miles de millones de dólares para la fabricación de chips de silicio.

El transistor puede considerarse uno de los inventos más importantes de todos los tiempos. Sin embargo, el programa de investigación que lo originó exigió un equipo sencillo: al parecer, el aparato más costoso era un osciloscopio.

A En 1948, John Bardeen y Walter H. Brattsin, que trabajaban en los laboratorios de la compañía de teléfonos Bell, inventaron el transistor de contacto de punto que consistía en un chip semiconductor. Tres años más tarde, un colega de ellos, William Shockley, inventó el transistor de empalme comercialmente viable. Los tres fueron galardonados conjuntamente compartiendo el premio Nobel de Física en 1956.

PARA SABER MAS…
EL DESARROLLO DEL TRANSISTOR

La industria electrónica ha sido posible gracias al descubrimiento del electrón a principios del siglo XX.

El primer impacto de este progreso científico sobre la tecnología de la vida cotidiana tuvo lugar a través de la radio. También la televisión era un producto de la nueva electrónica en la década de los 20, al igual que lo fue el radar en la década de los 30.

El invento decisivo que permitió que los aparatos electrónicos se fabricaran en unidades pequeñas, baratas y fiables fue el transistor. Éste fue inventado en 1948 y consistía en un pequeño trozo de silicio o de material semiconductor, que podía sustituir al grande y frágil tubo de vacío.

Los países más implicados en el desarrollo de la electrónica en las décadas de los años treinta y cuarenta fueron Estados Unidos, Gran Bretaña y Alemania.

En estos tres países la Segunda Guerra Mundial proporcionó un estímulo para la investigación técnica, con científicos que trabajaban con radares y ordenadores. La investigación alemana sobre los ordenadores se retrasó cuando varios científicos de ordenadores fueron llamados para la incorporación a filas. La gran corporación estadounidense de ordenadores IBM dependía mucho de los contratos de trabajo gubernamentales en los años después de la guerra, y a finales de la década de los 50, la delantera estadounidense en la industria era evidente.

Los audífonos, comercializados en 1952, fueron el primer producto de consumo que se benefició del poder del transistor. Hacia 1954 se fabricaba un millón de transistores por año.

En esta fase, todos los transistores eran unidos con alambres individualmente, pero en 1957 se desarrolló el circuito integrado, que permitió fabricar los transistores con otros componentes sobre chips semiconductores hechos con silicio.

La revolución del transistor cambió la calidad de vida a muchos niveles; también conllevó una nueva industria capaz de un espectacular crecimiento.

Ello benefició a países como Alemania y Estados Unidos con tradiciones establecidas de ciencia, y a aquellos países que buscaban un rápido progreso económico a través de la inversión en la nueva tecnología y los nuevos productos de marketing, como Japón.

Los transistores son pequeños aparatos de material semiconductor que amplifican o controlan la corriente eléctrica. Son simples de fabricar, aunque requieren un cuidadoso trabajo manual durante el montaje; suplantaron a los tubos de vacío casi por completo en la década de los años setenta. La necesidad de colocarlos en su sitio por medio de alambres se superó gracias al desarrollo del circuito integrado.

Historia de las Sulfamidas

Historia de las Sulfamidas

Cuando todavía no se habían descubierto los antibióticos, y mientras el mundo se aprestaba a la guerra, en la paz de los laboratorios hombres de ciencia trabajaban en procura de los elementos que aminoraran los males de la humanidad.

De pronto, en 1935, cuando ya se preveían las primeras chispas de otra conflagración, el universo recibió un anuncio sensacional: un sabio alemán había descubierto que un compuesto químico, utilizado hasta entonces como colorante, tenía extraordinarias propiedades terapéuticas y era de singular eficacia en la lucha contra la infección.

Poco después las sulfamidas llegaban a todos los rincones de la Tierra, y con su aplicación terminaban muchas enfermedades.

LAS SULFAMIDAS: EL descubrimiento sensacional que revolucionó la quimioterapia en el año 1935 tenía antecedentes. Si bien es cierto que ya en 1908, es decir, casi 30 años antes, se consiguió preparar algunas drogas maravillosas, los primeros compuestos sintetizados en esa época servían sólo como colorante, y nadie pensó en su extraordinario poder bactericida.

Después de 1930, se empezó a pensar en las propiedades terapéuticas de estos compuestos, hasta que en 1935, luego de algunos estudios preliminares, apareció el primer trabajo sobre las sulfamidas, que habrían de provocar una verdadera revolución en el campo terapéutico.

Bajo el título de «Contribución a la quimioterapia de las infecciones bacterianas», el sabio alemán Domagk explicaba cómo un producto, especie de derivado del azufre, contenía extraordinarias propiedades bactericidas. Aparecieron ese mismo año trabajos de otros autores, alemanes, franceses e ingleses, pero pasó más de un año sin que los médicos ni el público se hubieran dado cuenta de la enorme trascendencia del descubrimiento de Domagk.

En realidad fue la propaganda comercial la encargada de informar al mundo. Y a fines de 1936 y principios de 1937, las grandes fábricas de productos medicinales enviaban a los médicos de todo el orbe folletos explicativos de la nueva droga y sus derivados, que aparecían uno después de otro, en impresionante sucesión.

El mundo comenzó a enterarse de inesperadas curaciones y la gente, con el consabido entusiasmo, comentaba las más diversas historias sobre agonizantes salvados.

Lo importante es que, contra la neumonía, antes de 1935 no se conocían remedios muy eficaces. Los enfermos morían o se curaban según sus propias reservas. La meningitis sólo en muy raros casos no era mortal y lo mismo ocurría con las septicemias por cocos. Todo cambió radicalmente después de 1935, gracias a la sulfamida Los médicos la recomendaron para muchas enfermedades de carácter infeccioso.

La droga cobró tanta popularidad y el público le había tomado tan amplia confianza, que compraba los comprimidos y los ingería con cualquier pretexto. Se emplearon hasta contra la gripe y el resfrío sin prescripción médica y, como es natural, aparecieron los fracasos. Porque la droga descubierta por Domagk no tenía eficacia en todos los casos.

Las primeras sulfamidas eran parecidas al prontosil. Después, los químicos se encargaron de mejorarlas, tomando como guía lo que ocurre en nuestro organismo. Probado que el prontosil sufre modificaciones después de haber entrado en el organismo y es el nuevo compuesto el que tiene verdadera acción activa, se procura modificar la fórmula en los laboratorios. Es decir, que se trata de producir la sustancia ya preparada para ser inyectada con todo su poder bactericida.

Así se llega a la sulfanilamida, sustituto de todos los compuestos sulfamídicos existentes hasta entonces. Apareció más tarde, en 1938, en Inglaterra, la sulfapiridina y un año después se creó, en los Estados Unidos de Norteamérica, el sulfatiazol, droga que dominó todo el campo de las sulfamidas.

Paulatinamente, se fueron eliminando los efectos tóxicos del nuevo producto, que causaba trastornos en algunos organismos. En esa paciente tarea de laboratorio se logró, primero la sulfadiazina, más tarde la sulfaguanidina y después la sucinil-sulfa-ziatol o sulfasuxidina, desinfectante intestinal, la sulfametazina y la sulfamerizina.

¿Cómo actúan las sulfamidas? La droga no mata directamente a los gérmenes sino que les impide desarrollarse, paralizándolos.

El perfeccionamiento del medicamento después de conocerse su fórmula analítica, permitió elaborarlo como polvo blanco, cristalino, poco soluble en agua. Las investigaciones realizadas posteriormente permitieron comprobar que la sulfamida lograda de esta manera se absorbe a través de la mucosa digestiva y se difunde rápidamente por todo el organismo con una acción terapéutica muy enérgica contra algunas enfermedades infecciosas.

Los descubrimientos más recientes han revelado la manera cómo actúa la sulfamida y es que ella no permite la multiplicación de los gérmenes patógenos sustrayéndoles una sustancia que necesita el microorganismo para cumplir ese proceso. Asimila el ácido paraaminobenzoico en el ciclo metabólico de los microorganismos y con ello, pierde la capacidad de reproducirse. De esta manera queda detenida su acción patogénica. Nuevas investigaciones permitieron concretar otras drogas derivadas del núcleo químico principal de la sulfamida, pero algunas como la sulfanilamida pueden provocar manifestaciones tóxicas.

Los soldados aliados que participaron en la Segunda Guerra trataban sus heridas con sulfanilamida, un antibiótico artificial descubierto en 1932 por el médico alemán Gehrard Domagk, un discípulo de Paul Ehrlich que, como su maestro, buscaba una “bala mágica” para matar a las bacterias sin intoxicar a las personas.

Estas intoxicaciones se manifiestan, en el sistema digestivo, en la sangre con la producción de cianosis yagranolocitosis en la piel, en el hígado y en los riñones. Los últimos adelantos han permitido concretar un medicamento que puede ser administrado, sencillamente, por la vía oral en las afecciones causadas por los estreptococos por medio de comprimidos, pero también como polvo para el tratamiento de las heridas, úlceras, etc.

Últimamente se ha logrado sintetizar otro compuesto que tiene su origen en la sulfamida, pero con la ventaja que son menos tóxicas que la sulfanilamida y además, tienen una acción terapéutica más pronunciada: elsulfatiazol, la sulfadiacina, la sulfametacina.

Lamentablemente, las sulfamidas a igual que los antibióticos descubiertos posteriormente no tienen acción contra las dolencias producidas por virus. No manifiestan su poder curativo sobre estas entidades ultramicroscópicas y ello se debe, a que son moléculas proteínicas de tamaño sumamente pequeño, únicamente individualizadas a través del microscopio electrónico.

La industrialización masiva de los antibióticos y la introducción de la penicilina como droga activa vino a reforzar la actividad terapéutica de las sulfamidas que se pueden administrar en dosis adecuadas con los antibióticos en casos así prescriptos y mucho más cuando los gérmenes se transforman en antibióticos resistentes.

La alternancia entre ambas drogas resulta de eficacia para bloquear varias enfermedades infecciosas. En buena hora.

Fuente Consultada: 75° Aniversario de LA RAZÓN Historia Viva

Propiedades de las Proteínas Concepto y Clasificación

Propiedades de las Proteínas:Concepto y Clasificación

LAS PROTEÍNAS: Existe una gran preocupación por las proteínas en la alimentación. Y no es en vano, pues estos nutrientes presentan dos características peculiares: Forman la base de la estructura del organismo, siendo el componente más importante de los músculos, de la sangre, de la piel y de todos los órganos internos. Los huesos también están formados por proteínas de colágeno, sobre los que asientan el calcio y otros minerales. Un 17% del peso de nuestro cuerpo está formado por proteínas, es decir, de 10 a 12 kilos para un adulto normal. No se almacenan en el organismo constituyendo una reserva alimentaria, a diferencia de lo que ocurre con las grasas o los hidratos de carbono. Por ello, es necesario ingerirlas de forma constante a lo largo de la vida.

PROTEÍNAS: Las moléculas de hidratos de carbono y grasas, contienen solamente carbono, hidrógeno y oxígeno, pero las proteínas tienen, además, átomos de nitrógeno y algunas veces átomos de azufre y fósforo, y ocasionalmente hierro, yodo u otros elementos. Sus moléculas son las más complicadas de todas las sustancias, porque en cada una de ellas se encuentran grandes cantidades de átomos combinados y distribuidos de distinta manera.

Esto explica también, que el número de proteínas diferentes sea realmente asombroso, hasta el extremo que cada especie viviente tiene algunas que son características de ella y no se encuentran en ninguna otra.

La importancia de las proteínas reside en que, junto con el agua, forman las bases de toda la materia viviente o protoplasma. También forman parte del material hereditario llevado en los cromosomas de los núcleos celulares. Las enzimas, catalizadores que son muy necesarios para la vida, son proteínas. Las proteínas también se usan como depósitos alimenticios, particularmente en las semillas de muchos vegetales.

Puede compararse a las proteínas con los polisacáridos. ya que sus moléculas están formadas por uniones. Muchas moléculas de azúcar se unen para formar un polisacárido. Las unidades que componen las proteínas se llaman aminoácidos. El más simple de los aminoácidos es la glicina o ácido aminoacético. Su fórmula es: NH2CH2COOH.

El grupo NH2 , (grupo amino) es básico, y el hidrógeno del grupo carboxilo (—COOH) lo hace ácido. Las sustancias que pueden actuar como bases o como ácidos se llaman anfoteros.

El grupo básico amino de una molécula de aminoácido, puede reaccionar con el grupo ácido carboxilo de otra molécula para formar un dipéptido. De esta manera pueden unirse por sus extremos muchos aminoácidos, formando largas cadenas llamadas polipép-tidos y eventualmente moléculas proteicas. Cada molécula de proteína está formada por grandes cantidades de aminoácidos.

Se conocen alrededor de veinticinco aminoácidos. Dentro de ciertos límites, los animales pueden sintetizar (esto es, construir) algunos aminoácidos a partir de moléculas más simples. También pueden convertir algunos aminoácidos en otros. Sin embargo, una cantidad de aminoácidos no puede sintetizarse ni obtenerse, a partir de otros; tienen que estar presentes en la dieta y se llaman aminoácidos esenciales, para distinguirlos de los otros no esenciales.

Los aminoácidos son capaces de combinarse en variadas proporciones y puede repetirse muchas veces la misma serie de varios aminoácidos, o series levemente distintas, de manera tal que puedan formarse grandes cantidades de proteínas diferentes.

Las proteínas que se encuentran en los núcleos de las células se llaman nucleoproteínas. Se cree que los cromosomas están formados en su mayor parte por nucleoproteínas, y se ha demostrado que al gunos virus consisten en masas de nucleoproteínas. De este modo, ciertas nucleoproteínas deben considerarse como causantes de varias enfermedades infecciosas.

Se piensa también, que las nucleoproteínas de las células animales y vegetales, son las productoras de otras proteínas, quizá produciendo las enzimas capaces de unir ios aminoácidos necesarios. En el núcleo, moléculas de importancia (ácidos nucleicos) que están dispuestas en hilera sobre los cromosomas, contienen moléculas de azúcar. Los ácidos nucleicos (principalmente él ácido dexosirribonucleico o DNA), junto con ciertas proteínas, nucleoproteínas, forman las bases del material hereditario, cuyas «instrucciones» regulan todas las actividades de un organismo.

En otros post hemos visto, los hidratos de carbono (o carbohidratos), las grasas (o lípidos) y las proteínas, constituyen compuestos orgánicos que, en variables proporciones, se encuentran en el protoplasma de la. célula, tanto animal como vegetal.

Si bien estos compuestos del carbono son, además de las fuentes permanentes de energía, los proveedores de los elementos que se transforman en sustancia viva, no por esto, todo es material de restauración, ni combustible que se emplee de inmediato: gran parte es almacenado cómo reserva, y es así como las plantas guardan en sus diversos órganos sustancias amiláceas (almidón secundario), lípidos (en semillas, frutos y cortezas) y reservas proteicas (yemas y bulbos, y aleurona en semillas), y los animales, grasas (compuestas por glicerol y ácidos grasos) que acumulan como material energético que oportunamente empleará el organismo.

En el cuerpo humano, por ejemplo, las grasas dedepósito o lípidos de reserva, yacen, sobre todo, en el panículo adiposo subcutáneo (la mitad de la grasa total del organismo), envolviendo los ríñones, en el mesenterio y entre los espacios intermusculares. En los distintos animales, la composición, consistencia y proporción del tejido adiposo varía con el régimen alimenticio y con el clima La fauna circumpolar y muchos mamíferos marinos se protegen con una gruesa capa aislante de tocino (de más de cuarenta centímetros de espesor en las ballenas) que impide la pérdida de calor del cuerpo en el agua.

Los animales hibernantes (o de reposo invernal) reducen la frecuencia cardíaca y respiratoria, así como su metabolismo, y viven durante el período de letargo a expensas de su grasa de depósito. Las plantas almacenan materiales energéticos para los períodos de inactividad fotosintética: la reserva más común es el almidón (sustancia insoluble en agua) que se deposita en tallos y raíces, para ser transformado nuevamente en azúcares para su asimilación.

La semilla acumula alimento (proteínas, grasas, almidones) para el germen, en los tejidos nutricios (albumen) que acompañan al embrión, o en los cotiledones.

La plántula vivirá y se desarrollará merced a ese alimento hasta el momento en que funcionalmente pueda obtenerlo del medio en que vive. Entre los carbohidratos del grupo de los polisacáridos, hemos nombrado ya a la celulosa. La celulosa responde a la fórmula (C6H10O5) y constituye el tejido de sostén en la arquitectura de las plantas. (En las largas cadenas de una compleja molécula de celulosa, n puede representar millares.)

Forma la pared resistente de la célula vegetal y su estructura fibrosa le confiere enorme importancia industrial como material textil. (Su gran valor para la industria, reside en el hecho de que es insoluble en la mayoría de los solventes, aunque al ser atacada por ácidos, como el nítrico, acético o sulfúrico, origina esteres de fácil disolución en solventes orgánicos.).

La celulosa tiene una gran variedad de aplicaciones (sedas artificiales, papel, celuloide, explosivos, etc.), que abarcan desde los tejidos que el hombre viene utilizando desde los albores de su industria (por ejemplo, el algodón, muchos siglos antes de Cristo) hasta los plásticos, a los cuales los nuevos y constantes adelantos de la ciencia y de la técnica otorgan ilimitadas posibilidades.

Los compuestos orgánicos llamados proteínas, que constituyen los elementos fundamentales del pro-toplasma celular de los seres vivientes, se caracterizan por contener invariablemente nitrógeno, además del carbono, el hidrógeno y el oxígeno (y eventualmente, azufre, fósforo, hierro y yodo).

La molécula proteica (la mayor y más compleja de todos los elementos protoplasmáticos) cuya estructura no es cabalmente conocida, se sabe no obstante que está formada por unidades más simples, los aminoácidos (se han señalado alrededor de treinta y cinco aminoácidos distintos, veinticinco de los cuales fueron identificados por investigaciones posteriores). Los aminoácidos difieren en la estructura de sus fórmulas, aunque en todos ellos figure un grupo básico amino (NH2) y un grupo ácido (COOH).

Las proteínas representan elementos imprescindibles para la nutrición del organismo, pues además de suministrar energía, es a sus expensas que se reponen los materiales de desgaste, y se reparan tejidos, plasma sanguíneo, hemoglobina y la proteína orgánica que incesantemente es catabolizada. La deficiencia de proteínas en el organismo, se traduce, entre otros trastornos, en alteraciones funcionales y disminución de la resistencia a las infecciones y traumatismos.

Sólo ciertos aminoácidos pueden ser sintetizados por el organismo animal (los vegetales los sintetizan a todos). Se denominan entonces esenciales los aminoácidos que, siendo imprescindibles en la dieta del individuo, el organismo no puede sintetizarlos y debe procurárselos mediante la ingestión directa o indirecta de vegetales (el término esencial no implica preponderancia de un aminoácido sobre otro).

Las proteínas formadas solamente por aminoácidos, como son las que se encuentran en la leche (caseína), en la clara del huevo (albúmina), la queratina de las estructuras córneas de los animales (astas, pezuñas, pelo, uñas) se denominan simples.

Las que se componen de aminoácidos y otros complejos orgánicos, como la’ hemoglobina, las lipo-proteínas, las glucoproteínas y las nucleoproteínas, constituyen proteínas conjugadas. La importancia que el déficit proteico tiene para la salud, es hoy bien conocida por la medicina, de manera que es posible corregir los trastornos que esta carencia produce, mediante una adecuada dieta.

Repetidas experiencias indican que, en el hombre, es suficiente un gramo de proteína por kilogramo de peso y por día, tratando de que, la mayor proporción corresponda a proteínas de origen animal (leche, carne, visceras glandulares, huevo).

CONCEPTO Y CLASIFICACIÓN:
Se designa con el nombre de proteínas un conjunto de sustancias nitrogenadas muy complejas, que se encuentran formando parte de la materia viviente. Su importancia fundamental se debe al papel que desempeñan en la formación y funciones de la célula viva; hasta ahora, ésta constituye, precisamente, el único sistema capaz de sintetizarlas.

Las proteínas se encuentran profusamente en el proto-plasma celular, en los virus, en los genes, en los anticuerpos, etc. Están compuestas de carbono, hidrógeno, oxígeno y nitrógeno, en una proporción sensiblemente constcrnte; casi todas poseen, además, azufre, aunque este elemento no es indispensable.

Entre sus propiedades generales, merecen destacarse:
1°) tienen elevado peso molecular, que oscila entre 10.000 y 1.000.000 de unidades (la sal común o cloruro sódico, por ejemplo, no llega a 60 unidades);
2°) como consecuencia de su elevado peso molecular, forman soluciones coloidales con el agua;
3°) son muy inestables frente a los cambios de temperatura y acidez (pH);
4°) en solución, constituyen iones anfóteros, es decir, ,se comportan unas veces como ácidos y otras como bases; por eso actúan como dipolos frente a campos eléctricos.

Las proteínas están formadas, generalmente, por una serie de unidades más sencillas, que se denominan aminoácidos porque llevan un grupo amínico (-NH2), de carácter básico, y un grupo carboxilo (-COOH), de carácter ácido; de aquí las propiedades anfóteros de todas las proteínas. Los aminoácidos constituyen los eslabones de la gran molécula proteica. Las proteínas se pueden clasificar en sencillas (simples) y conjugadas. Las primeras son aquellas que por hidrólisis (escisión por el agua) rinden exclusivamente aminoácidos; las segundas son las que están formadas por un grupo proteico (una proteína sencilla) y un grupo prostético (un agrupan-tiento orgánico distinto de las proteínas).

En las proteínas sencillas se agrupa, a su vez, otra serie de ellas, clasificadas de acuerdo con sus solubilidades:
1°) albúminas, solubles en agua y soluciones salinas;
2°) globulinas, insoluoles en agua y solubles en soluciones salinas;
3°) prolaminas, insolubles en agua y en alcohol absoluto, pero solubles e» alcohol al 70 %;
4°) glutelinas, insolubles en disolventes neutros (agua, soluciones salinas, etc.) y solubles en ácidos y álcalis;
5°) escleroproteínas, insolubles en agua y no hidrolizables por las enzimos proteolíticas. Se dividen en colágenos, que, tratadas con agua hirviendo, dan gelatinas; elastinas, que no dan gelatinas y se encuentran en los tejidos elásticos; queratinas —existentes en los pelos, uñas y cuernos—, caracterizadas por su gran proporción de azufre,
6°) distónos, poseen carácter básico y se encuentran en los tejidos glandulares;
7°) protaminas, muy semejantes a las histonas, pero de peso molecular más bajo. No contienen azufre y, por tanto, poseen un elevado porcentaje de nitrógeno.

Las proteínas conjugadas se clasifican en varios grupos, según el grupo prostético que proporcionen: por hidrólisis:
1°) nucleoproteínas, en las que el grupo prostético es de ácido nucleico;
2°) mucoproteínas, que contienen aminoazúcares como grupo prostético;
3°) lipoproteínas, grupo prostético de fosfolípidos y esferoides;
4°) cramoproteínas, pigmentos coloreados, como la hemoglobina, la clorofila y las flavoproteínas;
5°) fosfoproteínas, que contienen, como grupo prostético, ácido fosfórico (caseína, vitelina, etc.); son solubles en álcalis;
6°) metolproteínas, que portan elementos metálicos (hierro, magnesio y cobre).
Esta clasificación no es rígida, puesto que algunas proteínas podrían incluirse en varios grupos; así, la hemoglobina, que está clasificada como cromoproteína por su color, podría estar incluida en las metolproteínas, porque contiene hierro.

Proteína vegetal versus proteína animal
Hasta hace poco se creía que los vegetarianos debían combinar diferentes fuentes de proteínas en cada comida para obtener los ocho aminoácidos que proporcionan proteínas completas. La razón es que la mayoría de las proteínas de origen vegetal (que no contienen los ocho aminoácidos esenciales) son incompletas. Los consejos más recientes, sin embargo, afirman que una dieta variada, que contenga una amplia gama de alimentos proteínicos vegetarianos, es suficiente, y es innecesario tener que preocuparse demasiado por consumir proteínas completas en cada comida.

No obstante, la Sociedad Vegetariana hace una excepción con los niños pequeños, a cuyos padres se les aconseja que utilicen el método de la combinación en cada comida para garantizar la ingesta adecuada de proteínas. Este método consiste en mezclar legumbres con cereales (por ejemplo, judías sobre una tostada, pita y puré de garbanzos, arroz y ensalada de judías), cereales con un producto lácteo (queso sobre una tostada, cereales y leche) o legumbres con féculas (patatas y lentejas guisadas).

Los estudios con vegetarianos adultos demuestran que éstos tienden a consumir menos proteínas que los no vegetarianos. Sin embargo, corno ya hemos visto en el primer capítulo, muchos de nosotros comemos más proteínas (en ocasiones, muchas más) de las que necesitamos.

¿Qué cantidad de proteínas deberíamos tomar?
Las autoridades sanitarias recomiendan que hasta un 15 % de las calorías de nuestra dieta provenga de las proteínas. La OMS sugiere entre un 10 y un 15 %, un intervalo con el que coincide la mayoría de profesionales de la nutrición. Una guía más precisa, según los especialistas, consiste en calcular 0,75 g de proteínas por día y kilogramo de peso, lo que se acerca al nivel del 10 % en la mayoría de los casos. Esta cifra es menor que la cantidad media que se toma en la actualidad (13,5 % aproximadamente); es decir, muchas personas toman más proteínas de las necesarias. Reducir ligeramente el consumo de proteínas permite el aporte de más calorías a partir de hidratos de carbono complejos, muy importantes para la salud. El cuadro superior muestra la ingesta recomendada de proteínas según el cálculo de 0,75 g por día y kilogramo.

¿Qué pasa si tomamos demasiadas proteínas?
Cada gramo de proteínas contiene 4 calorías. Todas las proteínas que consumimos y no son necesarias para las funciones anteriormente mencionadas pueden ser convertidas en glucosa y utilizadas como fuente de energía. Teniendo en cuenta que las fuentes animales tradicionales de proteínas son más caras que las fuentes de energía que proceden de los hidratos de carbono, es posible que su bolsillo también prefiera no gastar el dinero en proteínas que no necesita.

Por supuesto, si la ingesta media actual de proteínas se cifra en un 13,5 %, se deduce que algunas personas consumen una cantidad muy superior. Una dieta rica en proteínas (sobre todo, en proteínas de origen animal) ha sido relacionada con la desmineralización de los huesos: en la orina se excreta más calcio, por lo que las mujeres deben tener especial cuidado en reducir el consumo de proteínas a menos del 15 %. Se tienen claros indicios de que las dietas ricas en proteínas (en especial, las de origen animal) ejercen un efecto perjudicial a largo plazo en la función renal. Asimismo, se cree que el consumo elevado de proteínas puede estar relacionado con la hipertensión.

Por estas razones, las autoridades sanitarias recomiendan que el consumo diario de proteínas no sobrepase 1,5 g por kilogramo de peso corporal. Por ejemplo, para una mujer de 63,5 Kg. resulta una cifra de 95 g de proteínas por día, o menos de 20 % de las calorías totales diarias (lo que demuestra que, a pesar de lo esencial de las proteínas, sobrepasar muy ligeramente y de forma habitual las cantidades que se aconsejan puede ocasionar problemas).

Fuente Consultada:
Las Claves de la Ciencias de la Salud
Nuevo Estilo de Vida-Disfrútalo Tomo I
Los Alimentos Que Consumimos Judtih Wills

Resumen Historia de la Psicología Origen Evolución y Sus Psicologos

Resumen Historia de la Psicología
Origen, Evolución y Psicologos

Hoy, siglo XXI, y partir del siglo pasado la Psicología ha alcanzado una independencia tal que permite hablar de ella como ciencia, es decir como un estudio que tiene perfectamente delimitado su objeto y los métodos que le son propios.

Es por esta razón que nos parece más conveniente empezar por un encuadre histórico de la Psicología, desde el momento en que ella pasa a ser una ciencia independiente.

Los historiadores han dado en establecer como hito o mojón para el nacimiento de la Psicología científica la instalación del Laboratorio de Psicología de Wilhelm Wundt (1832-1920) en Leipzig (Alemania) en 1879.

Si bien éste no fue el primer laboratorio de psicología, sí fue el primero que inició un gran movimiento de agitación.

Lo que este laboratorio puso en práctica con riguroso celo fue la aplicación del método científico a la problemática psicológica. Los métodos de observación y registro de datos que permitieron el constante y exitoso progreso de las ciencias físicas y naturales fueron aplicados a los hechos mentales.

Así surgió la nueva psicología denominada EXPERIMENTALISMO, cuyos seguidores creían que los fenómenos mentales eran susceptibles de medición y tratamiento experimental.

Ellos incorporaron la introspección, que, junto con los recursos de laboratorios fisiológicos, permitía un análisis muy. detallado de la percepción, sensación, atención, emociones, etc. Al mismo tiempo, buscaron una psicología científica,» en contraposición con una psicología especulativa: o sea una psicología que descansara en la observación rigurosa, la experimentación y la medición exacta.

Los investigadores continuadores de Wundt, si bien se apartaron de él, no pudieron abandonar un esquema de trabajo netamente experimental.

No fue privativo de Alemania el enfocar la problemática, psicológica desde otro ángulo. En Inglaterra, Darwin publica en 1859 Origen de las especies, y en consecuencia, el criterio naturalista y evolucionista del sabio ingles» dio lugar a numerosos replanteos de orden psicológico.

El hecho de ser la especie humana no algo de singular importancia, sino un punto más en el proceso de la evolución natural, determinó que la Psicología volviese sus ojos no sólo al hombre en sí mismo, sino también a las circunstancias ambientales, genéticas y a la relación con la vida animal; surgen así la PSICOLOGÍA GENÉTICA, la PSICOLOGÍA COMPARADA y la PSICOLOGÍA DE LOS PUEBLOS.

Pero el punto más importante radica en que el centro de investigación en psicología pasó a ser el concepto de actividades mentales como funciones de adaptación.

Quien mejor interpretó esta psicología fue Sir Francia Galton (1822-1911), quien dirigió la investigación hacia las diferencias individuales. En sus estudios sobre la herencia de los rasgos mentales ideó numerosos-métodos: el biográfico, la historia familiar, el estudio comparativo entre gemelos univitelinos, etc.

La influencia de los conceptos darwinistas en psicología se manifiestan en William Mac Dougall (1871-1938), para quien los instintos, provistos por selección natural, son los fundamentos de la vida social, estableciendo una relación estrecha entre instinto y emoción.

En Francia, la Psicología centró su estudio sobre otro ángulo: la psiquiatría y los fenómenos anormales. Jean M. Charcal (1825-1893) consideró la hipnosis como un fenómeno fisiológico característico de los que sufrían de Histeria.

Discípulo de éste fue Fierre Janet, quien se interesó en la disociación de la. personalidad en los casos de histeria. Quien también estudió con Charcot en París fue Sigmund Freud (1856-1939).

Freud se dedicó al estudio de los trastornos neuróticos, concibiendo la teoría PSICOANALÍTICA, para la cual todos los casos de neurosis pueden ser explicados por una sexualidad reprimida en el inconsciente. En 1900 Freud publica La interpretación de los sueños, en el cual considera a éstos como una consecuencia de deseos reprimidos. El motivo básico del hombre es el deseo sexual. De éste surge la libido, fuerza psíquica dinámica que se manifiesta en todas las etapas del desarrollo humano.

Wilhelm Wundt (1832-1920). Iniciador de la investigación experimental, fundó el primer laboratorio de Psicofísica. Aunque sobre distintos supuestos, la Psicología actual utiliza la experimentación como uno de sus métodos principales.

Sigmund Freud (1856-1939). Célebre psiquiatra austríaco creador del Psicoanálisis. Esta escuela es la más revolucionaria y controvertida de las corrientes contemporáneas. No sólo cambió la Psicología actual, sino que también influyó en otras áreas del pensamiento.

Eduard Spranger (1882-1963). Psicólogo alemán , discípulo de Dilthey. Representante de la Psicología Comprensiva. Sostenedor de la corriente científico-espiritual y estructuralista, hizo aportes a la Psicología de los valores y a la tipología.

John Dewey (1859-1952). Psicólogo norteamericano, representante de la escuela funcionalista, la cual estudia los procesos psíquicos como funciones del organismo. Al analizar el comportamiento de estos procesos en el dominio de la ciencia aplicada, este pensador tuvo notable influencia en el ámbito educativo.

Carl Jung (1875-1961) se interesó en la teoría de Freud, pero disiente con él al sostener que la libido es una fuerza más vasta que el sexo: representa la energía para vivir y crecer.

Otro médico que se unió a Freud fue Alfred Adler (1870-1937), quien desarrolló una «psicología individual», en donde el impulso básico de cada individuo es la búsqueda de seguridad. En pos de ella, el individuo organiza su vida esforzándose para conseguir dominio y poder para compensar sus inferioridades.

El psicoanálisis se ha modificado mucho en los últimos años. Pensadores como Erich Fromm, Harry Sullivan, A, Kardiner y Karen Horney han destacado la influencia de los factores ambientales en la formación de la personalidad.

Mientras tanto, en Estados Unidos de América, la influencia de Wundt y su experimentalismo se hacía sentir con rigor. Edward Titchner, que había estudiado en Leipzig, luchó por establecer la nueva psicología en el Nuevo Mundo y por mantenerla inalterable.

Su línea de pensamiento, se denominó ESTRUCTURALISMO. Ella sostiene que la mente humana se compone de estados mentales básicos (sensaciones, imágenes, sentimientos), que son todos estructurados susceptibles de ser descompuestos en elementos mentales más simples.

Todo el intento de Titchner consistió en estudiar los fenómenos de la conciencia por medio de la experimentación y observación cuidadosas. Sin embargo, esta psicología, con la pureza que la concibió Titchner, no prosperó en EE. UU. Es significativo qué los nuevos intentos de psicología en dicho país surgieron como reacción a la rigurosidad del experimentalismo. Así en Chicago surge el FUNCIONALISMO, que en vez de hablar de elementos mentales, se refiere a los procesos psíquicos como funciones del organismo. A su vez, lo estudia en su marco ; natural y desde el punto de vista de la utilidad.

Su representante fue John Dewey (1859-1952), a quien le  interesaba saber qué es lo que realizan en el mundo los procesos psíquicos; por eso el funcionalismo entra en el dominio de la ciencia aplicada, incorporándose al campo educativo.

La influencia experimental de Wundt también se hizo sentir en otro pensador norteamericano: William James (1842-1910). No podemos decir de él que haya asimilado por, completo la teoría experimentalista, sino que bien pronto adquirió un punto de vista personal aceptando o rechazando unos puntos u otros.

James se caracterizó siempre por no aislarse ni enceguecerse por una teoría determinada, sino, más bien, por buscar siempre lo positivo y provechoso de todas. Así llega a sostener que, siendo la psicología una ciencia natural, puede observar y aceptar todas las relaciones que encuentre sin tener la obligación de dar razón de su existencia.

Sin duda el aporte más importante de James está en su teoría de las emociones, las cuales no tienen ninguna existencia fuera de los fenómenos fisiológicos que las acompañan. Toda emoción es producto de los cambios fisiológicos del cuerpo.

Otra teoría que surge como reacción al estructuralismo es el CONDUCTISMO, cuyo representante máximo fue John Watson (1878-1958). Su interés principal radicó en el estudio de la conducta infantil. Esta teoría se opone a toda psicología que se refiere a la conciencia, pues sostiene que es un concepto inútil e imperfecto. La psicología debe abandonar este concepto y empezar de nuevo y construir una nueva ciencia. Fundamentalmente propugna extender los métodos de la psicología animal a la psicología humana. Esto significa estudiar al hombre como un organismo de reacción teniendo en cuenta su relación con el medio natural.

El objeto cíe la psicología conductista es la conducta, no los contenidos de conciencia, ni las funciones psíquicas ni los procesos fisiológicos. La conducta es la actividad del organismo en su conjunto.
Los únicos métodos válidos son los objetivos, rechazándose de plano la introspección. El método por excelencia de los conductistas es la técnica del reflejo condicionado.

Pero hablar de reflejo condicionado implica referirnos a la teoría REFLEXOLÓGICA que tiene su origen en Rusia con Ivan Pavlov (1849-1936).Para esta teoría un reflejo es una reacción involuntaria, automática, que se hace posible en función de conexiones establecidas en el sistema nervioso y que se desencadenan ante la estimulación de un nervio sensitivo y se traduce rápidamente en una contracción muscular o una secreción. Así, la respuesta refleja natural de un animal hambriento ante un plato de comida es la secreción de saliva.

El reflejo natural es innato. En cambio, el reflejo condicionado es producto de un aprendizaje. Así, si al mismo perro hambriento, unos segundos antes de presentarle la comida (estímulo absoluto) se lo estimula artificialmente con una campanilla, y se repite la experiencia varias veces, veremos que la sola estimulación de la campanilla produce la respuesta salival. Se dice entonces que se ha instalado un reflejo condicionado.

Watson, volviendo al conductismo, propuso nacer un estudio de la conducta a través de la mecánica de estímulos, señales comportamientos innatos.

Para él, las conductas innatas son mínimas, y las aprendidas través de un proceso de condicionamiento constituyen la gran mayoría. Es célebre el estudio de Watson sobre los condición; mientes emocionales. Puesto que consideraba que la compleja vida emocional era el resultado de un encadenamiento de reflejos, buscó y encontró tres respuestas de tipo emocional innatas o sea no aprendidas: miedo, ira y amor. Sobre ellas se puede condicionar toda la vida emocional del sujeto.

Es innegable el valor del conductismo por todos los aporte que realizó a la fisiología y, por otra parte, la influencia que tuvo para toda teoría del aprendizaje y su importancia en la educación.
Si bien la teoría experimentalista que nace con Wundt en Alemania dio lugar al surgimiento de nuevas corrientes que también llevaban el sello de la experimentación, creó también otras corrientes o teorías que surgieron como una respuesta en contra.

La teoría de la GESTALT surge en Alemania precisamente como una reacción a la psicología tradicional o «atomista» llamada así porque pretendía construir la vida psíquica con elementos cuyas estructuras se formaban según los modelos de la física, la química.

El fundador de la teoría de la Gestalt fue Max Wertheimer (1880-1943) y sus discípulos y colaboradores Wolfgang Kóhlet (1887-1967) y Kurt Koffka (1886-1941). A ellos se debe que los nuevos conceptos aplicados en primera instancia a la percepción exigieran una revisión integral de los principios fundamentales de la ciencia. Ni siquiera se detuvieron en la psicología misma, sino que también extendieron sus principios a la física y la biología. La Gestalt o Forma constituye un todo que no es la mera suma de las partes. Es anterior a las partes y fundamental para ellas. No es una composición de elementos. Las formas son totalidades cuya conducta no se determina por la de sus elementos, sino por la naturaleza interior total.

Al hacer el análisis de la percepción sensorial, llegaron a la conclusión de que nosotros percibimos los objetos como una totalidad, no como una suma de elementos aislados, porque lo percibido posee significación y es ésta lo que otorga carácter de forma a lo percibido. Así elaboraron una serie de leyes de la percepción: de proximidad, de semejanza, de continuidad y, la mas importante, la de la buena forma, es decir, que la organización se realiza en el sentido de la mejor forma posible.

Dentro de la dinámica de la percepción hay un aspecto fundamental, y es que ella se estructura dentro de un marco diferenciado que constituye el fondo, sobre el cual se distingue ton más precisión la figura. Estas relaciones son cambiantes.

La psicología de la forma aplicó sus principios también a:

— el pensamiento: percibimos como unidad una frase muy larga que leemos u oímos. Un diálogo puede parecerme un todo dotado de sentido, etc.

— la conducta: una conducta instintiva alcanza su sentido por la estructuración armónica de las fases de su acción.

— el aprendizaje: la enseñanza de la lecto-escritura a partir de la palabra como un todo estructurado y significativo.

Lo importante de la teoría de la forma es que reacciona tanto contra el estructuralismo como contra el conductismo, porque ambos siempre toman su material de estudio en forma fragmentaria y suponen que las unidades más grandes están constituidas por unidades más pequeñas asociadas a través de combinaciones específicas.

La teoría de la forma, a través de su concepto de Gestalt ha llamado la atención sobre características de la experiencia hasta ahora ignoradas y que no era lícito que continuaran así.  A llevado a muchos psicólogos a rever los supuestos fundamentales sobre los que trabajaban. Ha puesto de manifiesto hipótesis V métodos de experimentación bien definidos, que han dado origen a una enorme cantidad de investigaciones, logrando sustraer a la psicología de un esquema rígido de trabajo y llevándola de esta manera a un examen directo y cuidadoso de la experiencia como tal.

Si bien toda la psicología experimentalista había superado una «psicología del alma» de raíz filosófica, explicando lo psíquico a través de su relación con lo orgánico, con métodos experimentales y de observación rigurosa, había dejado de lado oí estudio psicológico del hombre concreto, o sea el hombre inserto en una realidad histórica y social dada y partícipe de un inundo cultural.

Solamente en el siglo XX, con el avance de las ciencias sociales, la antropología, el psicoanálisis, los estudios históricos, etc., se da lugar a que la psicología buscara analizar al hombre desde otro punto de vista. Esta nueva psicología estudia al hombre en MI ser concreto, su aquí y ahora, el hombre y su circunstancia.

Conocer al hombre por sus acciones, gestos, actitudes; por los valores y normas con que ajusta su conducta al medio en que vive, tal como lo quería una nueva psicología, determinó también el surgimiento de nuevos métodos e instrumentos de interpretación de lo humano.

Así nace la Psicología COMPRENSIVA, cuyos máximos representantes fueron Wilhelm, Dilthey (1833-1911 ), Eduard Spranger (1882-1963) y Karl Jaspers (1883-1969) y cuyo punto de partida está en la comprensión de lo psíquico: «explicamos la Naturaleza, comprendemos la vida psíquica».

La vida es primordialmente biográfica, humana, en su condición temporal, histórica. El mundo del hombre es la sociedad y no la naturaleza, por eso para Dilthey es ilegítimo seguir construyendo una psicología a imagen y semejanza de la física y de los procedimientos de las ciencias naturales. Es por lo tanto necesario hablar de una psicología comprensiva, porque antes de explicar el nexo entre los fenómenos psíquicos es necesario describirlos y comprenderlos.

La psicología comprensiva quiere captar al hombre en todos sus rasgos diferenciales y típicos que lo definen frente a la naturaleza. Antes que englobarlo como una parte del universo, procura mostrar su autonomía, a través de la búsqueda de las intenciones y fines que el hombre se propone.

Cualquier hecho psíquico es una realidad que se la conoce desde dentro, a diferencia de los fenómenos físicos, que los conocemos desde fuera. Toda manifestación exterior es el punto de apoyo de una posible captación de lo interior que la produce. El camino que se recorre se inicia en lo dado sensiblemente y concluye en lo que no cae nunca bajo los sentidos y que sin embargo se expresa exteriormente.

Comprender quiere decir captar el sentido que cualquier hecho psíquico posee. Comprender no es lo mismo que concebir o explicar. En la comprensión penetramos en el interior de aquello que queremos captar. Al penetrar lo llenamos con nuestra comprensión y nuestra vida.

La psicología comprensiva se mantiene en el terreno de lo realmente existente en la conciencia, de lo que se puede entender en su existencia real, de lo que se puede distinguir y describir. Pero eso le fija sus límites: por un lado el dominio de lo inconsciente, en cuanto no puede aparecer nunca en forma directa en la conciencia, y por otro lo extraconsciente: el cuerpo y sus mecanismos fisiológicos.

Por último, sería imposible comprender los últimos adelantos psicológicos sin tener en cuenta los aportes hechos por la FENOMENOLOGÍA, que pretende la descripción ajustada de los fenómenos psíquicos en su realidad concreta.

Debemos partir así desde F. Brentano (1838-1917), pensador austríaco que puso de manifiesto la importancia de la Intencionalidad de los fenómenos psíquicos. Ellos se caracterizan por su relación hacia un contenido, a diferencia de los físicos que con vacíos, no llenan nada en sí mismos. Para Brentano la conciencia es siempre conciencia de.

A su vez Jean Paul Sartre (1905) ahonda este concepto, puesto que para él la conciencia es siempre conciencia de algo y esto significa que la trascendencia es constitutiva de su propia existencia.
Según E. Husserl (1859-1938),filósofo alemán, la conciencia, que es pura intencionalidad, puede ser interpretada como conciencia pura o psicológica. La conciencia psicológica es la conciencia pura que ha trascendido hacia el mundo; está instalada en un cuerpo.

Sólo a través del método de reducción fenomenológica, que consiste en poner al mundo entre paréntesis, no para afirmar o negar su realidad, sino simplemente suspender el juicio acerca de él, para así poder ocuparnos exclusivamente de todo lo que ingresa en la corriente de nuestras vivencias como real, se nos manifiesta con total verdad. Esto nos permite volcarnos en el interior de nuestras propias viviendas para describirlas en su total pureza.

El objeto de una psicología fenomenológica es la búsqueda del origen del hombre, del mundo y de lo psíquico, o sea la búsqueda de una conciencia trascendental, a la cual sólo se llega por el método de reducción fenomenológica.

La principal crítica que los fenomenólogos han hecho a los psicólogos es que han considerado a los hechos psíquicos despojándolos de significación y es precisamente esa significación lo que es esencial al fenomenólogo, dado que siempre el hombre es un ser concreto, inserto en un medio, es un ser en situación.

Situación significa adoptar una posición frente a los demás hombres y las cosas; establecer relaciones y puntos de vista sobre todo aquello que no es él mismo? Esta situación se refiere tanto a la posición que el ser humano padece desde su ubicación geográfica como a las vinculaciones con el medio social e histórico con el que se relaciona.

El hombre, como ser-en-situación, está siempre en un continuo actuar. Lo psíquico está constituido siempre por actos. El acto expresa la conducta, el hacer, frente al mundo, un modo de situarse en el mundo; y de esta relación el hombre no puede desprenderse, ya que su ser es, esencialmente, ser-en-el-mundo.

Tal como sostenía Martín Heidegger (1889-1976) el ser-en-el mundo es exclusivo del hombre y expresa la constitución fundamental de su existencia. El mundo, miembro solidario de la estructura ser-en-el-mundo, resume un conjunto de proyectos que deben estar en la base de lo existente. El hombre no puede ser sino en cuanto trasciende y proyecta un mundo de posibilidades que a su vez lo definen a él.

A su vez, existir es existir con otros. Los otros son conmigo y la comprensión del prójimo se hace posible en el hecho de se con él dentro de la existencia misma.

Para Jaspers, somos un Yo, por y con otros, y para se nosotros mismos es necesario que intervenga el prójimo, e; necesaria la comunicación. Es en esta relación de comunicación de la vida cotidiana en donde el otro y yo realmente somos, porque la comunicación no es la mera trasmisión de una idea o un mensaje, sino la apertura y la revelación al otro.

La fenomenología, por último, ha de dar cierre al problema del dualismo cuerpo-alma o conciencia-cuerpo desde el momento que cada uno de los términos tomado por sí mismo no tiene validez. Una conciencia desprendida de no tiene sentido y tampoco el cuerpo puede ser resumido a una red de relaciones mecánicas.

A partir de este momento, el dualismo en psicología pasa a tener un carácter histórico. El hombre es una entidad y sólo a través de un análisis fenomenológico se revelan ambos aspectos como dos caras de una misma moneda.
Así, la psicología ha llegado hoy a centrar su estudio en el hombre total, constituyéndose en una ciencia que estudia la conducta del hombre como forma de vínculo entre los seres, y, a partir de ella, la personalidad como resultado de esa relación.

Para estudiar al hombre la psicología tiene en cuenta que éste es:

a) un ser social: el hombre aislado es una abstracción. Desde que nace hasta que muere está en relación con los demás seres.
b) un ser concreto y de hecho perteneciente a un determinado grupo o cultura. Las formas de vida del grupo y las características de la cultura en que se desarrolla modifican sus conductas y a su vez él es modificador de esa misma cultura.
c) un ser histórico que evoluciona a través del tiempo. En el transcurso de los siglos se da la historia de los pueblos o grupos humanos con distintas formas de comportarse según las necesidades de la época. Por otro lado, el hombre en sí mismo evoluciona durante el tiempo de su vida, por lo cual podemos decir que cada persona es el producto de su historia personal.
d) un ser vivo, y, como todo organismo vivo, participa de los procesos de la naturaleza. Se dan en él transformaciones biológicas que inciden en su conducta y, a la inversa, los cambios en su comportamiento producen modificaciones orgánicas.

Desde este punto de vista la psicología estudia la conducta del hombre con el aporte de la antropología, la sociología, la historia y la biología. Como toda ciencia la psicología describe y observa la conducta; controla rigurosamente los datos, experimenta sobre ella, explica los procesos, investiga y formula hipótesis y teorías.

Muchos investigadores, de diferentes escuelas psicológicas, tal como lo hemos visto en esta breve historia de la psicología científica, han logrado importantes adelantos. Intentamos presentar en este libro algunas de sus conclusiones, de manera simple, introductoria y ajustada al objetivo del mismo.

Los métodos en psicología:

La psicología utiliza varios métodos para llevar a cabo sus conocimientos acerca de la conducta. Estos son:

1. El método experimental: consiste en obtener descripciones objetivas de los hechos y de las relaciones entre ellos, controlando muy bien las condiciones bajo las cuales los hechos se dan. Un buen experimento es aquel en el que se mantienen constantes todos los factores que se investigan. Los factores cuyos cambios pueden tolerarse se llaman variables. El aspecto de la conducta que se estudia se denomina variable dependiente. Los factores cambiantes que influyen sobre la conducta se denominan variables independientes. Estas son controladas, medidas y modificadas sistemáticamente. El control y medida de las variables dependientes es tan esencial como el control y medida de las variables independientes, o sea, de las condiciones sujetas a experimentación.

La experimentación psicológica es menos precisa que la experimentación en las ciencias físicas, debido a que la conducta implica una serie de hechos muy complicados que no son tan fáciles de describir. La conducta sufre la influencia de gran cantidad de variables, muchas de ellas sumamente difíciles de manejar y medir.

Lo importante del método experimental es que las comprobaciones se realizan siempre en condiciones controladas y son susceptibles de ser repetidas para su cotejo y verificación.

2. La observación: consiste en atender cuidadosamente a una situación inmediata. Es un método útil para estudiar aquellos aspectos de la conducta que no son accesibles por otros métodos. Para ello se llevan apuntes sistemáticos de lo que se quiere estudiar. Pero estos apuntes no sólo requieren una gran fidelidad al anotar los detalles, sino una gran habilidad para observar.

Es necesario que el observador determine de antemano qué aspectos de la conducta van a ser observados y bajo qué condiciones o en qué situación. La observación debe ser una función . activa en la cual se formulan hipótesis y se piensa mientras se procede a la observación. Sin observación rigurosa no hay conocimiento científico, pero tampoco lo hay con la sola observación sin el pensamiento. Pensar es el eje de la indagación científica y la base para la observación.

A veces la observación se complementa con otros medios o técnicas, como por ejemplo el uso de películas que permiten el estudio posterior de la conducta; o la utilización de cámaras de observación que permiten ver sólo desde afuera hacia dentro, sin que el sujeto se percate de que es observado.

3. La introspección: consiste en la inspección y descripción de los estados mentales experimentados por el individuo. Mediante ella el sujeto logra datos sobre procesos psicológicos que es imposible conseguir por otros procedimientos. Ella es un método útil para obtener información directa de los sentimientos, necesidades, motivos y emociones; así como también acerca de  creencias y opiniones.

Los inconvenientes de la introspección radican en que se limitan a las actividades conscientes del individuo. Por otra parte, es siempre retrospectiva, ya que el sujeto no puede observar un fenómeno psíquico en el momento que acontece, y además los resultados de sus observaciones no pueden ser verificados por otras personas.
Por último, diremos que, cuando se emplea como única técnica, es demasiado subjetiva para ser fidedigna.

4. El método biográfica: es a través de este método que se pretende comprender las causas de ciertas conductas y de la personalidad delineando su evolución respecto de las influencias de diferentes factores ambientales y sociales.

El método biográfico que más se utiliza es el clínico, que procede a un estudio detallado y profundo basado en la observación directa. Se caracteriza por un contacto directo y personal ..entre el sujeto y el investigador y se puede extender a los miembros principales que influyen en el sujeto.

Lo importante en el método clínico es la observación y el estudio directo de la situación y de las reacciones y valoraciones de todos los factores intervinientes en cada momento de la entrevista.

Importancia de los Hidratos de Carbono en la Alimentacion

Importancia de los Hidratos de Carbono en la Alimentación

Los hidratos de carbono, son también conocidos como glúcidos por su sabor dulce más o menos intenso (glúcido proviene de la raíz griega gluco, dulce).

Son la principal fuente de energía para todas las funciones del cuerpo, y proporcionan calorías de una forma rápida.

Químicamente, sus moléculas están formadas únicamente por átomos de carbono, hidrógeno y oxígeno. Según el tamaño de su molécula, los hidratos de carbono se clasifican en tres grupos: monosacáridos, disacárídos y polisacáridos. A los dos primeros se los llama también azúcares.

Composición química:
Monosacáridos

Están formados por una sola molécula, y pueden ser asimilados y absorbidos de forma directa y rápida por el organismo.

Los monosacáridos más comunes en la naturaleza son la glucosa o dextrosa, y la fructosa o levuloso. Ambas están formadas por los mismos átomos, y difieren tan solo por su distribución en la molécula. La glucosa y la fructosa se encuentran en todas las frutas, así como en la miel.

Disacáridos
Son hidratos de carbono formados por dos moléculas de monosacáridos. Para ser aprovechados por el organismo, los disacáridos se han de descomponer en sus dos moléculas elementales, tarea que llevan o cabo las enzimas durante el proceso de la digestión. Los disacáridos más comunes son:

• La sacarosa o azúcar de caña, que también se encuentra en la remolacha, el plátano, la piña tropical o ananás y en otras muchas frutas. Está formada por la conjunción de una molécula de glucosa y otra de fructosa, que al unirse pierden una molécula de agua:

glucosa + fructosa = sacarosa ± agua

• La maltosa, que se encuentra principalmente en la malta procedente de la cebada, y también en otros cereales. Está formada por dos moléculas de glucosa.

• La lactosa, que se encuentra en la leche de los mamíferos, en proporción de unos 40 gramos por litro en la leche de vaca, y unos 50 a 60 en la leche humana. Su molécula resulta de la combinación de dos monosacáridos: glucosa y galactosa.

Polisacáridos

Son hidratos de carbono complejos, cuya molécula está formada por la unión de muchos monosacáridos generalmente glucosa. Se encuentran sobre todo en los granos de los cereales (trigo, arroz, cebada, maíz etc.), así como en las raíces y tubérculos (patata, nabo, etc). Existen tres tipos de polisacáridos o hidratos de carbono complejos:

Almidón: Su molécula está formada por largas cadenas de moléculas de glucosa, unidas de una forma especial. Se encuentra en semillas, raíces, tubérculos, hojas y frutos, y es el principal componente de la harina.

El almidón lo producen únicamente los vegetales. Los animales lo aprovechan a base de separar, durante el proceso de la digestión, las diversas moléculas de glucosa que lo forman. Este proceso lo llevan a cabo unas enzimas llamadas amilasas, que son segregadas junto con la saliva y sobre todo en el páncreas. El almidón es la reserva de energía alimentaria más importante del mundo vegetal.

• Dextrinas: Son fragmentos de la molécula de almidón, que resultan de la acción de las amilasas. Estas enzimas rompen primeramente el almidón en pequeños fragmentos, antes de separar por completo todas las moléculas de glucosa que lo forman. Por ello se puede decir que las dextrinas son almidones predigeridos.

En el pan o en los cereales dextrinados, por ejemplo, se somete al almidón de la harina a la acción química de las amilasas, enzimas que rompen parcialmente las largas cadenas de moléculas de glucosa De esta forma, la digestión resulta más fácil, pues el aparato digestivo ya se encuentra con una parte del trabajo hecho.

Celulosa: Es la sustancia orgánica más abundante de la naturaleza. Este polisacárido se encuentra presente en todas las plantas, formando la estructura o fibra de sus tejidos: semillas, raíces, tallo, hojas, frutos, etcétera.

En las semillas o granos de los cereales, se encuentra en la capa que los recubre, conocida como salvado. En las raíces, hojas y en la fruta, se encuentra entremezclada con la estructura vegetal.

A la celulosa se le llama también fibra vegetal. Forma las paredes de las células vegetales, de donde viene su nombre de celulosa.

Combinada con la lignina, forma la madera de los árboles. Su molécula está formada por una larga cadena de moléculas de glucosa, pero unidas de tal forma, que nuestro aparato digestivo es incapaz de romperla, y por lo tanto, no la puede aprovechar.

Glucógeno: Es similar químicamente al almidón, pero lo producen los animales a partir de la glucosa que se libera durante la digestión, y que es absorbida y pasa a la sangre.

El glucógeno se almacena en el hígado, y constituye una reserva de energía que el organismo puede utilizar rápidamente, volviéndolo a convertir en glucosa, ante cualquier demanda de energía (esfuerzo físico o intelectual, por ejemplo).
El glucógeno se encuentra en los productos de origen animal (hígado y músculos) en pequeñas cantidades, siendo prácticamente nulo su valor alimenticio.

Objetivos de una dieta sana en cuanto a hidratos de carbono

Según las recomendaciones de la OMS (Organización Mundial de la Salud)’, una alimentación sana debe tender a:

1. Aumentar el consumo de hidratos de carbono complejos (hasta el 70% de la energía ingerida).

2. Reducir el consumo de hidratos de carbono simples refinados (azúcar blanco) tanto como resulte posible, hasta llegar a prescindir completamente de ellos (limite inferior — 0%).

Esto significa que deben consumirse abundantemente los siguientes alimentos:

• Cereales (trigo, cebada, avena, centeno, maíz, arroz, mijo, etc.): Son la principal fuente de hidratos de carbono complejos (almidón). Según la OMS, el consumo abundante de cereales (especialmente la avena), tiene efectos beneficiosos sobre la diabetes y sobre otros trastornos metabólicos, y disminuye el riesgo de padecer cáncer.(ver: Los Cereales)

Los cereales debieran volver a ser, como lo han sido durante toda la historia, la base de la alimentación humana. La mayor parte de la energía que necesitamos deberla provenir de ellos.

No ocurre así en la típica dieta occidental a base de carne, productos lácteos, conservas y alimentos refinados industrialmente, en la que la proporción de energía procedente de los hidratos de carbono complejos no llega al 50%. Los expertos en nutrición aconsejan un uso abundante de cereales, tanto en el desayuno (en forma de pan, de copos o hervidos en papilla, etc.) como en la comida principal del mediodía.

Los cereales auténticamente integrales tienen además la ventaja de incluir de germen del grano (rico en vitaminas B y E, y en aminoácidos esenciales), y su cubierta o salvado (rica en fibra vegetal).

Tubérculos (patatas o papas, por ejemplo) y leguminosas, también ricas en hidratos de carbono complejos (almidón), además de ser una buena fuente de proteínas de gran valor biológico.
La dieta occidental típica, a base de carne, leche y sus derivados, es muy pobre en fibra vegetal (entre 3 y 10 gramos diarios). En cambio, la dieta a base de cereales, hortalizas y fruta, suple generosamente las necesidades diarias de fibra vegetal, según las recomendaciones de la OMS.

Debe reducirse al mínimo el consumo de dulces, pasteles, bombones y refrescos ricos en azúcar. Según la OMS, el consumo de azúcar refinado (blanco), proporciona energía sin nutrientes; es decir, aporta calorías, pero no los minerales y vitaminas necesarios para la metabolización de ese azúcar.

En consecuencia, provoca un empobrecimiento en dichas sustancias. En cambio, el azúcar sin refinar (moreno), la miel, y sobre todo, los azúcares naturales contenidos en la fruta, van acompañados de abundantes vitaminas y minerales, que permiten su buen aprovechamiento metabólico.

Digestión y utilización de los hidratos de carbono

Los hidratos de carbono complejos se transforman en glucosa en el intestino; pero a diferencia de lo que ocurre con los azúcares simples, la transformación en glucosa se produce lentamente (mientras que dura la digestión), y su paso a la sangre se produce escalonadamente.

Por el contrario, los azúcares simples (mono o disacáridos) pasan rápidamente a la sangre, con lo que aumenta bruscamente el nivel de glucosa. Esto provoca una respuesta intensa del páncreas, que debe segregar rápidamente insulina para poder metabolizar toda esa glucosa. Y como resultado de ello, se produce un nuevo descenso de glucosa en sangre (crisis de hipoglucemia).

Esas oscilaciones bruscas en el nivel de glucosa provocado por el consumo de dulces, pasteles, bombones, etcétera, obliga al páncreas, y al conjunto del organismo, a realizar un gran esfuerzo metabólico, predisponiendo para enfermedades como la diabetes o la arteriosclerosis.

No así los hidratos de carbono complejos (almidón de los cereales, tubérculos y legumbres), que al digerirse y pasar lentamente a la sangre, mantienen un nivel constante de glucosa durante varias horas, y permiten un mejor funcionamiento del páncreas.

Ello explica, además, el hecho de que después de desayunar un dulce, o la típica tostada con mermelada, se vuelva a tener hambre al poco tiempo; mientras que después de un desayuno a base cereales integrales, no se tiene hambre en toda la mañana.

Una dieta a base de cereales, frutas y verduras y hortalizas, cumple a plena satisfacción todas las necesidades de hidratos de carbono. Además, aporta especialmente los hidratos de carbono más saludables: el almidón y la fibra vegetal.

La celulosa o fibra vegetal es un tipo especial de hidrato de carbono que no se absorbe (no pasa del intestino a la sangre), y por lo tanto el organismo no la puede utilizar como fuente de energía. Toda la que se ingiere, es expulsada con las heces. Esto determinó que hasta hace unas décadas, no se le concediera ninguna importancia fisiológica. Pero ahora comprendemos la importancia de esa fibra vegetal aparentemente inútil: Actúa como una auténtica escoba en el intestino, absorbiendo toxinas y arrastrando sustancias nocivas como los ácidos biliares precursores del colesterol, entre otras, hasta formar las heces.

La celulosa o fibra vegetal se hincha con el agua, aumentando varias veces su volumen. De esta forma da consistencia a las heces, y facilita su tránsito por el colon hasta su expulsión por el recto. Cuando la dieta contiene poca celulosa por ser pobre en fruta, cereales integrales y hortalizas. las heces son duras, resecas y concentradas, con lo que obligan al intestino a realizar grandes esfuerzos para eliminadas. Esto causa o agrava numerosos trastornos, como los divertículos intestinales, las hemorroides y hasta el cáncer de colon.

La celulosa (fibra vegetal), es exclusiva del reino vegetal. Ningún alimento animal (carne, pescado, leche o huevos) contiene celulosa. Así pues, aunque no proporciona energía, ni pasa a la sangre, es un componente imprescindible en una dieta sana y equilibrada, ya que evita el estreñimiento y baja el colesterol.

La Glucosa: El combustible universal

La glucosa, de fórmula química C6H1206, es el principal combustible de nuestro organismo. Puede decirse que desde el punto de vista energético, los seres humanos somos, biológicamente, un motor que funciona a base de glucosa.

Todos los hidratos de carbono de los alimentos se transforman en el tubo digestivo en glucosa, que pasa a la sangre y es llevada a todas las células de nuestro organismo. Pero su depósito principal está en el hígado, que actúa como almacén regulador. La glucosa se almacena en esta glándula en forma de glucógeno, polisacárido de reserva, que se convierte de nuevo en glucosa cuando las necesidades del cuerpo lo requieren. De esta forma, el hígado se encarga de mantener un nivel de glucosa en la sangre bastante constante: aproximadamente un gramo por cada litro de sangre (100 mg/loo mi).

En las células de los músculos también se almacena una pequeña cantidad de glucosa en forma de glucógeno, que se transforma de nuevo en glucosa cuando se realiza cualquier actividad física.

Cuando el nivel de glucosa en la sangre baja, y las reservas del hígado o de los músculos (que duran solo para unas horas), no consiguen subirlo, por estar ya agotadas, se produce una situación de hipoglucemia. Si esto ocurre de forma brusca, sin dar tiempo a que el organismo busque otras reservas de energía, se producen llamativos síntomas, como sensación de mareo, hambre intensa, pérdida de fuerza e incluso pérdida de conocimiento con caída al suelo, fenómeno que se conoce como lipotimia o desmayo.

La glucosa es transportada con la sangre a todas las células del cuerpo. Gracias a la energía que proporciona cuando se quema, combinándose con el oxigeno en el interior de las células, la glucosa hace que todo el organismo funcione: que los músculos se contraigan, que se produzca calor en el cuerpo, y que el cerebro desarrolle sus funciones, especialmente el pensamiento. De hecho, este maravilloso órgano necesita, para funcionar correctamente, que se le suministren dos sustancias de forma interrumpida: la glucosa y el oxígeno. Cada día nuestro cerebro consume unos 140 gramos de glucosa.

Para que la glucosa pueda penetrar en el interior de las células y ser allí quemada, produciendo energía, necesita de la acción de la hormona insulina. Cuando no hay suficiente insulina en la sangre, porque el páncreas no la produce, la glucosa se acumula en la sangre, aumentando su nivel en ella, en lugar de entrar en las células para ser utilizada.

Una vez en las células, la glucosa necesita vitaminas del grupo B para poderse metabolizar, es decir, para poderse quemar y producir energía. Por ello, al consumir azúcar refinado (sacarosa prácticamente pura), el organismo tiene que utilizar sus propias reservas de vitaminas 3 para poder metabolizarlo, con el riesgo de agotarlas. El azúcar refinado es un alimento muy pobre: solo aporta calorías, pero no las sustancias necesarias para poderlas aprovechar.

PARA SABER MAS…
Hidratos de carbono: fuente de energía

La necesidad más constante y básica del cuerpo (aparte del agua) es la energía. Se requiere energía para respirar, para moverse, para funcionar, para ponerse en marcha, para reparar y para crecer. Como las máquinas, precisamos una fuente externa de energía, pero nuestro combustible debe provenir de lo que comemos y bebemos.

Esa energía se mide en kilocalorías (popularmente denominadas calorías). Cuando gastamos energía, quemamos calorías, y cuando comemos, las ingerimos. La cantidad de energía o calorías que nuestro cuerpo necesita en un día depende de la estatura, la edad, la proporción de musculatura con respecto a las grasas, el nivel de actividad y muchos otros factores.

Las necesidades medias aproximadas (NMA) para los niños, los adolescentes y los ancianos aparecen en el capítulo tres. La energía también se mide, en ocasiones, en kilojulios (1 kilocaloría = 4,18 kilojulios).

NECESIDADES DIARIAS MEDIAS DE ENERGÍA E HIDRATOS DE UN ADULTO

   Calorías/DíaH.de C./Día Máximo Azúcar/Día (g.)
Mujeres19-50194025852
 51-59190025350
Hombres19-59255034068

Para mantener un peso adecuado y estable, el aporte de energía (alimento) y el gasto energético deben estar equilibrados. La falta de aporte y el exceso de gasto pueden provocar pérdida de peso; el exceso de comida y la ausencia de gasto dan lugar a un aumento de peso (debido al exceso de calorías, que se convierten en grasa corporal) y a una posible obesidad.

Todos los alimentos y las bebidas que contienen calorías aportan energía en forma de hidratos de carbono, grasas, proteínas o alcohol. Apenas existen alimentos que contengan sólo uno de esos elementos (las principales excepciones son los aceites, que únicamente contienen grasa, y el azúcar, que se compone exclusivamente de hidratos de carbono). La mayoría de los alimentos constituyen una mezcla de mas de un elemento (además de las combinaciones de vitaminas y minerales).

Por ejemplo, el pan es rico en hidratos de carbono, pero también lleva proteínas y grasas; la leche entera contiene hidratos de carbono, grasas y proteínas en cantidades razonables; la carne es una mezcla de proteínas y grasas, etc.

Aunque todos los tipos de calorías (ya provengan de hidratos de carbono, grasas, proteínas o alcohol) aportan energía, la mayor parte de la energía aportada debe proceder de los hidratos de carbono. El cuadro siguiente muestra la proporción en que cada uno de los nutrientes que aportan energía debería estar presente en una dieta sana e incluye un 5 % de alcohol (fuente de energía en la mayoría de dietas).

 

Grasas 33-35%
Proteínas Hasta un 15%
Hidratos de Carbono 47-50%
Alcohol 0-5%

Algunos países recomiendan niveles de hidratos de carbono más elevados que otros (por ejemplo, Estados Unidos, 55 %; Suecia, 60 %), y la Organización Mundial de la Salud (OMS) afirma que entre el 55 y el 75 % de nuestra ingesta total de calorías debería provenir de los hidratos de carbono. Sin duda, niveles de hasta el 60 % de las calorías diarias totales resultan buenos para la salud y son asequibles, siempre y cuando las grasas y las proteínas se reduzcan.

Existen dos tipos principales de hidratos de carbono: las féculas y los azúcares. En la actualidad, alrededor del 60 % de los hidratos de carbono que consumimos son féculas, y aproximadamente el 40 % provienen de azúcares. Los alimentos con fécula proceden de las plantas: cereales para el desayuno, pan, patatas, legumbres, pasta y arroz. Las verduras también contienen féculas, aunque en cantidades variables. Las frutas, en cambio, carecen de ese elemento (a excepción de los plátanos). Los hidratos de carbono de estos alimentos se denominan polisacáridos y se conocen como hidratos de carbono complejos.

Los azúcares intrínsecos, como los que se encuentran en las frutas (los hidratos de carbono de casi todas las frutas son azúcares) y las verduras (por lo general, una mezcla de azúcares y féculas), forman parte de la estructura celular del alimento. Los azúcares extrínsecos (en ocasiones, llamados libres), como los del azúcar de mesa, la miel, los zumos de frutas, los pasteles, las galletas, la bollería, etc., no forman parte de la estructura celular del alimento, sino que son refinados, privados de la fibra, o bien se añaden durante el proceso de fabricación. La leche contiene un azúcar extrínseco, la lactosa, que no suele agruparse con los otros azúcares extrínsecos en términos de nutrición.

Los hidratos de carbono complejos y los azúcares intrínsecos deben formar el grueso de una dieta sana. La OMS aconseja que al menos el 50 % de las calorías de la dieta provengan de hidratos de carbono complejos. Se trata de los alimentos vegetales que no sólo aportan al cuerpo una forma de energía fácilmente convertible, sino también toda una gama de otros nutrientes vitales. Además, apenas presentan inconvenientes para a salud y, por tanto, pueden llenar el hueco energético que se produce cuando reducimos el consumo de grasas

Los hidratos de carbono también evitan que las proteínas se conviertan en energía, lo que puede ser importante si las necesidades proteicas son elevadas o si el consumo es bajo.

Cuanto más puros sean los hidratos de carbono que se consuman, mejor para la salud. Las dietas pobres en hidratos de carbono y ricas en grasas están relacionadas con el aumento del riesgo de diversas enfermedades, incluidas las cardíacas, algunos tipos de cáncer (en especial, el de colon), e! estreñimiento y la obesidad.

Los alimentos sin refinar o apenas refinados, como el arroz y el pan integrales, ‘as frutas y las verduras frescas, las legumbres, los frutos secos y las semillas, contienen todos o casi todos los nutrientes originales (fibra, vitaminas, minerales y otros de reciente descubrimiento, unos interesantes compuestos denominados fitoquímicos. Los hidratos de carbono refinados, como el arroz, la pasta y la harina, contienen esos elementos en menor proporción, aunque su consumo resulta recomendable.

Muchos productos elaborados con féculas, como la pastelería industrial y las galletas, han perdido gran parte de las fibras, las vitaminas, los minerales y los compuestos fitoquímicos naturales. Además, pueden contener elevados niveles de los tipos menos sanos de grasas y azúcares extrínsecos y, por tanto, es recomendable reducir su consumo de forma drástica.

Un informe reciente de la OMS apunta que los azúcares extrínsecos pueden consumirse con moderación como parte de una dieta sana, pero siempre de forma moderada, ya que el consumo elevado de azúcares extrínsecos no lácteos constituye una de las principales causas de caries y pérdida de piezas dentales.

Otro dato importante es que una dieta rica en alimentos grasos y azucarados, como los aperitivos, los dulces y los pasteles, puede carecer de nutrientes esenciales y aporta elevadas cantidades de calorías. Muchos expertos coinciden en que el creciente consumo de esos tipos de alimentos está relacionado con los niveles (también en aumento) de sobrepeso y obesidad.

Resulta muy fácil consumir mucho más azúcar extrínseco del que se imagina. Para alcanzar el límite del 10 % total de energía (52 g de azúcar), basta con que una mujer tome sólo una pequeña rebanada de bizcocho (24 g de azúcar) y una lata de refresco de cola (36 g de azúcar), o por poner otro ejemplo, dos cafés endulzados con dos cucharadas de azúcar cada uno (20 g de azúcar), más dos galletas digestivas cubiertas de chocolate (20 g de azúcar) y un vaso de sidra dulce (12 g de azúcar).