La Dilatación Térmica

Concepto de Temperatura Relacion Entre Escalas Centigrado y Fharenheit

Concepto de Temperatura – Relación Entre las Escalas

Qué es la temperatura?
Hemos dicho antes que calor y temperatura son dos cosas diferentes. Sin embargo, están estrechamente relacionadas entre sí; en realidad, la temperatura no es más que uno de los efectos del calor. Para hacernos una idea clara del concepto de temperatura, imaginemos una vasija llena de agua y un pequeño recipiente situado encima, comunicados ambos por un tubo.

Si vertemos agua en el recipiente superior, a través del tubo se unirá con el agua de la vasija, ya que aquélla se halla a un nivel más elevado. Sin embargo, si no recurrimos a una bomba no podremos hacer pasar el agua de la vasija al recipiente superior. Pues lo mismo sucede con el calor, si bien éste es movimiento y no materia: para que la energía calorífica pueda pasar de un cuerpo a otro, es necesario que en uno de ellos el calor se encuentre a un nivel superior al del otro.

Al cuerpo con nivel calorífico superior lo llamamos cuerpo caliente o fuente calorífica; y al de nivel calorífico inferior cuerpo frío o refrigerante.

La temperatura nos indica, pues, el nivel térmico de un cuerpo. Se dirá que un cuerpo está caliente respecto a otro cuando le cede calor; y, viceversa, que está frío respecto a otro, cuando lo recibe. El cuerpo caliente tiene una temperatura mayor; el frío, menor. ¿Cómo se determina la temperatura? Comparando el nivel térmico de un cuerpo con el de otros en condiciones dadas, los cuales se toman como términos de referencia para establecer una escala termométrica.

La temperatura de un cuerpo, entre estrechos límites, es perceptible por nuestros sentidos, por lo que se denominó también grado de calor sensible, expresión imperfecta e incompleta. Ahora podemos advertir mejor la diferencia entre las expresiones «calor» y «temperatura». Un cuerpo puede contener mayor cantidad de calor que otro, y sin embargo tener menos temperatura. La cantidad de calor necesaria para elevar en una unidad (grado), la temperatura de la unidad de masa de un cuerpo, se llama calor específico, y se establece mediante el empleo de una unidad denominada caloría.

VISIÓN MICROSCÓPICA DE LA TEMPERATURA  Una característica de la materia es la movilidad incesante de sus átomos y moléculas en todas direcciones y sentidos, con las velocidades más variadas.

Esas velocidades se intercambian por interacciones entre las moléculas, sea por choques, sea por atracciones; pero si un cuerpo está a una determinada temperatura, entonces la velocidad promedio de sus moléculas también está determinada: podrán las moléculas intercambiar velocidades entre sí, una veloz transformarse en lenta por un choque, o a la inversa; pero el promedio no cambia si la temperatura no cambia.

Hay, entonces, una relación entre temperatura y velocidad promedio de las moléculas: si la temperatura sube, la velocidad media de las moléculas aumenta, y recíprocamente.

Pero hay otra cuestión: si tenemos a una misma temperatura moléculas de diferentes sustancias, como ocurre con el aire (mezcla de oxígeno y de nitrógeno, y de otros gases en pequeñas cantidades) las moléculas de oxígeno tienen su propia velocidad media a esa temperatura; y las de nitrógeno tienen, a la misma temperatura, su velocidad media propia, diferente de la del oxígeno.

Y aquí viene lo importante: las velocidades medias son diferentes, así como son diferentes las masas de las moléculas; pero… a una misma temperatura todas las moléculas de todas las sustancias tienen una misma energía cinética media. Es decir que la temperatura de un cuerpo es una medida del promedio de las energías cinéticas de sus moléculas, y recíprocamente.

particulas solido particulas liquido particulas gas
En los sólidos, las partículas están muy juntas y ordenadas; solo pueden realizar pequeños movimientos de vibración en torno a una posición de equilibro. En los líquidos, las fuerzas entre partículas son menos intensas y las partículas tienen cierta libertad para moverse. En los gases, las partículas pueden moverse libremente en todas las direcciones.

De acuerdo con la teoría cinético-molecular de la materia, los cuerpos esa formados por partículas (moléculas, átomos e iones) que están en continuo  movimiento. Es decir, a nivel microscópico, las partículas que forman la materia que nos rodea (átomos, moléculas, iones) se mueven constantemente y tiene» portante, cierta energía cinética.

• En un sólido, los átomos guardan sus posiciones realizando solamente movimientos de vibración y rotación.

• En los fluidos (gases y sólidos), las partículas están libres y, portante, pueden desplazarse también por el recipiente.

La cantidad de energía cinética media que tienen las partículas de un cuerpo se refleja en su temperatura.

Un aumento en la temperatura de cualquier cuerpo (sólido, líquido o gas nos informa de un aumento en la agitación de las partículas del mismo.

• Cuando las partículas se mueven deprisa, el cuerpo se encuentra a temperatura elevada.

• Cuando las partículas se mueven más despacio, el cuerpo se encuentra a baja temperatura.

La temperatura es una magnitud relacionada con la energía cinética media que tienen las partículas de un cuerpo. La unidad de temperatura en el SI (sistema internacional)  es el kelvin (K).

Cuando decimos que un sólido o un líquido está más caliente que otro realmente estamos indicando que las partículas que forman uno de ellos se están moviendo más deprisa que las del otro.

Equilibrio térmico
La medida de la temperatura como magnitud física adquiere sentido a pan de la idea de equilibrio térmico. Un sistema físico se encuentra en equilibrio térmico con el ambiente que lo rodea si no Intercambia energía con él, lo cual Implica que ambos se encuentran a la misma temperatura. Si no lo están, es porque llevan en contacto menos tiempo del necesario para que se alcance el equilibrio, pero si los dejamos juntos el tiempo suficiente, acabarán por alcanzar la misma temperatura, llamada
temperatura de equilibrio.

MEDIR LA TEMPERATURA: La forma más frecuente de determinar estados térmicos es mediante un termómetro de mercurio. Los más comunes entre estos instrumentos consisten en un pequeño volumen de mercurio encerrado en un tubo capilar de vidrio con un ensanchamiento en un extremo (bulbo del termómetro).

La parte interior del tubo no ocupada por mercurio está vacía. Como se ve en la figura hay dos formas diferentes de termómetros de esta clase. Al calentarse el mercurio se dilata, y el nivel de la columna en el capilar aumenta de altura.

A cada altura corresponde un determinado estado térmico del termómetro. Se lo pone en contacto con hielo en fusión ya nivel de la parte superior de la columna de mercurio se señala una marca y se le asigna el cero. Se coloca entonces el termómetro en los vapores que produce agua destilada en ebullición  cuando la presión atmosférica es la normal: 760 mm. (más adelante veremos la razón de esta exigencia).

En verdad es menester tomar otras precauciones; pero no las consignamos por razones de simplicidad en la exposición. Se señala el nivel de la columna en estas condiciones y se le asigna el número 100. El intervalo entre ambas señales (0 y 100) se divide en 100 partes iguales (de igual volumen) y se asigna un número entero entre 1 y 99 a cada una de las nuevas señales. Cada uno de los intervalos entre dos señales corresponde a un calentamiento del termómetro de 1°C: un grado centígrado de la escala de mercurio que, de este modo, queda definida.

La graduación se puede prolongar, si se desea, por arriba de 100°C y por debajo de 0°C, lo que se hace con mucha frecuencia. Hay termómetros para ámbitos más o menos grandes. Con los termómetros descritos sólo se puede tener una escala entre —39°C y + 357°C. Para temperaturas más bajas se usan otros líquidos, y para temperaturas más altas es menester recurrir a dispositivos diferentes o utilizar termómetros de mercurio con gas en la parte no ocupada con mercurio (termómetros «a presión»). El grado centígrado se puede también dividir y se pueden tener 1/10 y hasta 1/100 de grado centígrado en termómetros muy especiales.

La escala que acabamos de describir es la escala centígrada o Celsius. Existen las de Reamur y la de Fahrenheit, cuyas correspondencias con la centígrada aparecen en la Fig. 10. 6. En la práctica se usan las tres escalas, aun cuando la más utilizada es la centígrada. Para ciertos fines se utilizan la Reamur en Alemania y la Fahrenheit en los EE.UU.. de Norte América.

Para distintos fines existen termómetros con diversas características: termómetros de máxima (por ejemplo los clínicos: para «tomar la temperatura de pacientes») y de mínima; termómetros de alcohol, termómetros diferenciales, etc. También existen, aun cuando basados en la dilatación de sólidos o en otros fenómenos, termómetros registradores (termógrafos).

Como hemos dicho, si un termómetro se pone en contacto durante un tiempo suficiente con un cuerpo, ambos adquieren el mismo estado térmico. El del termómetro está determinado por la temperatura que en él se lee. Por lo tanto, también queda definido, por esa misma temperatura, el estado térmico del cuerpo del cual se determina, de esta manera, la temperatura.

termometros clasicosTermómetros comunes de vidrio, a mercurio.
a) Es un termómetro macizo. Está fabricado con un tubo de vidrio de diámetro interior capilar y exterior bastante grande (tubo de paredes gruesas). La escala está grabada sobre el mismo tubo. Es un tipo de termómetro robusto, esto es, resistente a golpes moderadamente fuertes.

b) Termómetro con un tubo capilar de paredes delgadas, fijo sobre una escala plana construida sobre una lámina de vidrio opaco o material cerámico del tipo de la porcelana. Todo ello se halla dentro de un tubo de paredes delgadas y de diámetro exterior grande. Son termómetros más frágiles que los anteriores; pero son, en general, mucho más exactos.

Termómetros diversos.
a) De máxima y b) de máxima y mínima. En este último, cuando asciende la temperatura el índice i asciende arrastrado por el mercurio; pero cuando la temperatura desciende queda retenido en la posición de temperatura máxima por el alcohol que está sobre el mercurio.

Análogamente, el índice queda retenido en la posición de temperatura mínima. Una vez hechas las lecturas, un imán permite poner los índices en contacto con el mercurio, c) Termómetro clínico (de máxima).

El estrangulamiento impide que el mercurio que ha llegado en I a su altura máxima, descienda, quedando, cuando la temperatura desciende, como se ve en II. Para hacer que las dos porciones de mercurio se reúnan nuevamente se da al termómetro unas sacudidas bruscas.

termometros de maxima y minima

Aunque la escala de temperaturas centígrada (o de Celsius) se utiliza ahora casi universalmente en los laboratorios científicos, la escala de Fahrenheit todavía tiene una gran aplicación en ingeniería, en países de procedencia sajona.

Durante muchos años los informes meteorológicos del Reino Unido expresaban la temperatura en grados Fahrenheit, pero a partir de 1962 la Oficina Meteorológica tomó la determinación de usar la escala centígrada.

Momentáneamente, hasta que se acepte universalmente el uso de la escala centígrada, se presentarán muchos casos en los que será necesario convertir las temperaturas de una escala a otra. Este caso se presenta cuando es necesario aplicar los ensayos de laboratorio para resolver problemas de ingeniería.

ESCALA TERMOMÉTRICAS: Se toman por acuerdo como puntos fijos el punto de fusión del hielo y el punto de ebullición del agua. Una escala termométrica vendrá definida por los valores de temperatura asignados a los dos puntos, aceptando una variación lineal de la magnitud termométrica con la temperatura.

Escala Celsius o centígrada
La escala Celsius o centígrada asigna el valor cero al punto de congelación o solidificación del agua y el valor 100 al punto de ebullición de la misma a la presión de una atmósfera. Cada unidad, debido a la variación lineal con la temperatura, será 1/100 del intervalo y se llama grado Celsius o centígrado (°C).

Escala Kelvin o absoluta
La escala absoluta o termodinámica utiliza como unidad de medida de temperatura el kelvin (K), cuyo valor coincide exactamente con el de 1°C, ya que el intervalo entre los puntos fijos también se divide en 100 unidades. Sin embargo, se asigna el valor 273 al punto de fusión del hielo y, portante el valor 373 al punto de ebullición del agua. En consecuencia, la relación entre la temperatura medida en Kelvin y la medida en grade; centígrados es la siguiente:

T (K) = t (°C) + 273

es decir, se trata de la misma escala que la centígrada pero desplazada hacia abajo en 273 unidades.
La importancia de la escala absoluta radica en que es posible demostrar que el cero absoluto de temperatura se corresponde con la ausencia total de energía cinética interna del cuerpo considerado, es decir, con la Inmovilidad total de sus partículas.

Escala Fahrenheit
Otra escala de temperaturas, muy utilizada en Norteamérica fuera de los ambientes científicos es la escala Fahrenheit. En esta escala se efectúan 180 divisiones en el intervalo definido por los puntos fijos, asignando a estos puntos los valores 32 y 212, respectivamente. La relación entre la temperatura expresada en grados centígrados y la correspondiente en grados Fahrenheit.

t (°F) = 1,8 t (°C) + 32

La escala absoluta correspondiente a la Fahrenheit, es decir, con unidades ¡guales, es la escala Rankine, cuyos puntos fijos son 491,69 y 671,67. Evidentemente, el intervalo en ambos cas:: es de 180 unidades. La relación entre la temperatura expresada en °F y °R es la siguiente:

t(°R) = t(°F) +491

EXPLICACIÓN: La conversión se realiza fácilmente recurriendo a la aritmética elemental, pero cuando no se exige una precisión grande y es necesario realizar gran numero de conversiones, se pueden usar varias tablas de mano que dan el valor directamente.

Las escalas de temperaturas se basan en un método de comparación entre una temperatura determinada y unos puntos de referencia. Los dos datos más importantes son la temperatura de fusión del hielo (que constituye el punto fijo inferior) y la temperatura de ebullición del agua a la presión atmosférica (punto fijo superior) En la escala centígrada, al punto fijo inferior se le da el valor 0°C, mientras que el punto fijo superior es 100°C.

La escala, entre estos dos puntos, se divide en 100 intervalos o grados. Por su parte la escala Fahrenheit se extiende desde 32°F, que es el punto inferior, a 212°F., o punto superior, de tal forma que el número de grados entre ellos es de 180.

El número de divisiones entre los puntos fijos de las dos escalas proporciona la clave para realizar las conversiones. Cien divisiones de la escala centígrada equivalen a 180 divisiones de la escala Fahrenheit. Utilizando una relación más simple, 5 divisiones de la escala centígrada equivalen a 9 divisiones de la escala Fahrenheit.

Puesto que todas las conversiones se deben realizar utilizando como dato el punto fijo inferior, es decir, todas las temperaturas se miden con relación a este nivel, se presenta una complicación, derivada de los distintos valores que se han asignado a los dos puntos inferiores en las dos escalas.

Por tanto, si se convierte una temperatura de la escala centígrada a la escala Fahrenheit, el número equivalente de divisiones en esta escala sobre el punto fijo inferior se calcula multiplicando primero el valor de la escala centígrada por 9/5 (1,8). Pero, puesto que el punto fijo inferior tiene en la escala Fahrenheit el valor 32, se debe añadir esta cifra al resultado del primer cálculo. Por el contrario, si una temperatura en grados Fahrenheit se quiere pasar a grados centígrados, en primer lugar hay que restar 32 de la cifra original.

Así se averigua el número de divisiones en que excede el valor Fahrenheit del nivel del punto fijo inferior; a continuación, esta cifra se multiplica por 5/9. El resultado de este cálculo proporciona la temperatura en grados centígrados.

ALGUNAS TEMPERATURAS

Reacción termonuclear del carbono5 X 108
Reacción termonuclear del helio108
Interior del Sol107
Corona solar106
Onda de choque en el aire para Mach 202.5 X 104
Nebulosas luminosas104
Superficie solar6 X 103
Fusión del wolframio3.6 X 108
Fusión del plomo6.0 X 102
Solidificación del agua2.7 X 10s
Ebullición del oxígeno (1 atm)9.0 X 101
Ebullición del hidrógeno (1 atm)2.0 X 101
Ebullición del helio (He4)  (1 atm)4.2
Ebullición del He3   a la presión baja que se puede alcanzar3.0 X 10-1
Desmagnetización adiabática de sales paramagnéticas10-3
Desmagnetización adiabática de núcleos10-6

Fuentes Consultadas:
Elementos de Física y Química – Prelat
Enciclopedia del Estudiante Tomo 7 Física y Química
Revista TECNIRAMA N°70

Cantidad de Calor Concepto de Caloria Equivalente Mecanico Joule

CONCEPTO DE CANTIDAD DE CALOR, CALORÍA, EQUILIBRIO TÉRMICO Y EL EQUIVALENTE MECÁNICO

Temas Tratados:

1-Introducción Elemental
2-Temperatura y Cantidad de Calor – Ejemplos-
3-La Caloría-Definición
4-Calor Específico
5-Tabla de Calores Específicos
6-Ejemplos Simples
7-Equivalente Mecánico del Calor
8-Medición del Calor Específico

INTRODUCCIÓN ELEMENTAL:

Cuando dos sistemas a diferentes temperaturas se ponen en contacto, la temperatura final que alcanzan ambos sistemas tiene un cierto valor comprendido entre las dos temperaturas iniciales. Esta es una observación común.

El hombre ha tratado desde hace mucho de encontrar una interpretación a fondo de tales fenómenos. Hasta principios del siglo XIX, se explicaban estos fenómenos admitiendo que en todos los cuerpos existía una sustancia material, llamada calórico.

Se creía que un cuerpo a elevada temperatura contenía más calórico que otro a baja temperatura. Cuando los dos cuerpos se ponían en contacto, el cuerpo rico en calórico comunicaba algo de esa sustancia al otro, hasta que ambos cuerpos alcanzaban la misma temperatura.

La teoría del calórico podía describir muchos procesos, tales como la conducción del calor o la mezcla de sustancias en un calorímetro, de una manera satisfactoria.

Sin embargo, el concepto de calor como sustancia, cuya cantidad total permanecía constante, a la larga no pudo resistir la prueba de los experimentos.

No obstante, todavía describimos muchos cambios de temperatura comunes como el paso de «algo» de un cuerpo que está a mayor temperatura al que se encuentra a menor temperatura, y a este «algo» le llamamos calor.

Una definición útil pero no operacional, es la siguiente: Calor es aquello que se comunica entre un sistema y su medio ambiente como resultado únicamente de la diferencia de temperaturas

A la larga se llegó a entender que el calor es una forma de la energía y no una sustancia. La primera prueba conclúyeme de que el calor no podía ser una sustancia fue dada por Benjamín Thompson (1753-1814), un norteamericano que más tarde llegó a ser Conde Rumford de Baviera. En una memoria presentada ante la Royal Society  en 1798 escribió:

Yo…estoy persuadido, de que el hábito de conservar los ojos abiertos a todo lo que ocurre en el curso ordinario de las cosas de la vida ha conducido, como si fuera por accidente, o en las excursiones juguetonas de la imaginación. ..a dudas útiles y a esquemas valiosos de investigación y mejora, más a menudo que las más intensas meditaciones de los filósofos, en las horas que expresamente se dedican al estudio. Fue por accidente que me vi conducido a hacer los Experimentos de los cuales voy a dar cuenta.

Rumford hizo su descubrimiento mientras estaba supervisando la perforación de cañones para el gobierno bávaro. Para impedir que se sobrecalentara, el alma del cañón se conservaba llena de agua.

El agua se reponía conforme se iba evaporando durante el proceso de taladrado. Se aceptaba que era calórico lo que tenía que proporcionarse al agua para ponerla a hervir.

La producción continua de calórico se explicaba admitiendo que cuando una sustancia se subdividía en partículas más y más finas, que es lo que ocurre al taladrar, su capacidad para retener calórico se hacía cada vez más escasa, y que era el calórico desprendido de esta manera lo que motivaba que el agua hirviera.

Sin embargo, Rumford observó en experimentos específicos, que el agua hervía aun cuando los útiles para taladrar quedaban tan embotados que ya no cortaban ni subdividían la materia.

Escribió después de eliminar por los experimentos todas las interpretaciones posibles del calórico:

…al razonar sobre este asunto, no debemos olvidar el tener en consideración esta circunstancia tan notable, que la fuente de Calor generado por rozamiento, en estos Experimentos, parecía evidentemente ser inagotable… me parece extremadamente difícil, si no totalmente imposible, formarse una idea clara de alguna cosa capaz de ser excitada v comunicada en la forma como el calor era excitado y comunicado en estos Experimentos, como no sea el MOVIMIENTO.

Aquí tenemos el germen de la idea de que el trabajo mecánico gastado en el proceso de taladrado era el responsable de la creación  del calor.

La idea no fue claramente expresada, sino hasta mucho tiempo después, por otros investigadores.

En lugar de la continua desaparición de energía mecánica y la continua creación de calor, no obedeciendo ninguna a ningún principio de conservación, se vio entonces todo el proceso como una transformación de energía de una forma en otra, conservándose la energía total.

Aun cuando el concepto de energía y de su conservación parece autoevidente hoy en día, era una idea novedosa todavía en los años de 1850 y había escapado a mentes tales como las de Galileo y Newton.

En la historia subsecuente de la física, esta idea de conservación condujo a los hombres a nuevos descubrimientos. os primeros pasos de su historia fueron notables por muchos conceptos. Diversos pensadores llegaron a este gran concepto aproximadamente al mismo tiempo; al principio, todos ellos o fueron recibidos fríamente o no se les hizo caso.

El principio de la conservación de la energía fue establecido independientemente por Julius von Mayer (1814-1878) en Alemania, James Joule (1818-1889) en Inglaterra, Hermann von Helmholtz (1821-1894) en Alemania, y L. A. Colding (1815-1888) en Dinamarca.

Fue Joule quien demostró experimentalmente que al convertir una cantidad dada de energía mecánica en calor, siempre se produce la misma cantidad de calor. Así fue definitivamente establecida la equivalencia del calor y la energía mecánica como dos formas de energía.

Helmholtz fue quien primero expresó claramente la idea de que no sólo el calor y la energía mecánica son equivalentes sino que todas las formas de energía lo son, y que no puede desaparecer una cantidad dada de una forma de energía sin que aparezca una cantidad igual en alguna de las otras formas.

Conde Rumford

Rumford, un norteamericano, fue el fundador de la Royal Institucion de Londres.
Por otra parte, la Smithsonian Institution en Washington debe su origen a un inglés.

Temperatura y cantidad de calor. Su diferenciación mediante ejemplos:

Para calentar 10 Kg. de agua desde 20°C hasta 100°C, por ejemplo, hace falta quemar una cantidad mayor de gas que para calentar 2kg de agua entre las mismas temperaturas.

Si se dispone del mismo «fuego» en ambos casos, el calentamiento de los 10 Kg. requerirá más tiempo durante el cual, claro está, se consumirá mayor cantidad de gas. También se puede utilizar un mechero que consuma mayor cantidad de gas en la unidad de tiempo.

Si tenemos un fósforo encendido, podemos con él producir la ignición de un papel. Con 5 Kg. de agua a 50°C podemos calentar en unos cuantos grados una pieza de cobre de 10 Kg. Pero no podemos con ella encender un trozo de papel ni con el fósforo calentar apreciablemente la masa de cobre.

Observaciones de este tipo han llevado a la conclusión de que en los fenómenos térmicos la temperatura desempeña un papel importante; pero hay algo más que no puede ser caracterizado por ella. Esta conclusión unida a otras ha llevado a admitir que, cuando un cuerpo dado se enfría, pierde (entrega o cede) una cantidad de calor y que cuando se calienta, recibe (absorbe o toma) una cantidad de calor.

Por razones que no es del caso exponer aquí, ha sido necesario admitir que la cantidad de calor que intercambia un cuerpo cuando su temperatura varía, es proporcional a la masa del cuerpo y a la diferencia entre las temperaturas final e inicial del calentamiento o enfriamiento.

La constante de proporcionalidad depende del material que forma el cuerpo, como veremos enseguida.

Si un cuerpo (o varios) se enfría (o enfrían) en contacto con otro (u otros) que se calienta (o calientan) y no se produce cambio alguno en el estado de los cuerpos ni otras transformaciones, fuera de los calentamientos y enfriamientos, la cantidad de calor que pierden los cuerpos que se enfrían es igual a la cantidad de calor que reciben los cuerpos que se calientan.

Todo sucede como si la cantidad de calor intercambiada saliese de los cuerpos que se enfrían y pasase íntegramente a los cuerpos que se calientan.

¿Qué es el calor?

A nivel microscópico, como ya lo hemos explicamos cuando hablamos de temperatura, todas las moléculas de un sistema físico se encuentran en continuo movimiento; en el caso de los sólidos se trata de una vibración en torno a una posición de equilibrio y en el de los gases es un movimiento aleatorio.

Este movimiento de las partículas tiene asociada una energía cinética, que debe clasificarse en dos tipos diferentes: la correspondiente al movimiento del sistema en su conjunto y la que corresponde al movimiento de unas partículas con respecto a otras.

La suma de las energías cinéticas de todas las partículas de un cuerpo es llamada energía interna o térmica, y su aumento o disminución lo apreciaremos a través de la temperatura.

El calor es una forma de energía, y la energía calórica de un cuerpo es la suma de las energías cinéticas de sus moléculas. Esta interpretación permite formarnos una imagen clara de lo que ocurre cuando ponemos en contacto dos cuerpos con diferentes temperaturas: pasa energía de las moléculas de uno a las del otro, mediante la interacción de choques o de atracciones, hasta que las energías cinéticas medias se igualan (o sea, se igualan las temperaturas).

Así se comprende que los gases de la llama de un fósforo tengan temperatura mayor que una olla de agua caliente, pero menor cantidad de calor, o sea, menor cantidad de energía.

Cantidad de calor : La Caloría

La unidad de cantidad de calor Q se define cuantitativamente en  función de un cierto cambio producido en un cuerpo durante un proceso especificado. Así, si se eleva la temperatura de un kilogramo de agua de 14.5 a 15.5°C calentándolo, decimos que se ha agregado al sistema una kilocaloría (Kcal.).

La caloría (= 10-3 Kcal.) se usa también como unidad de calor. (Entre paréntesis, la «caloría» que se usa para medir el contenido de energía de los alimentos es en realidad una kilocaloría.)

En el sistema inglés de unidades de ingeniería la unidad de cantidad de calor es la British thermal unit (Btu), que se define como la cantidad de calor necesaria para elevar la temperatura de una libra de agua de 63 a 64°F.

Las temperaturas de referencia se estipulan porque, en la vecindad de la temperatura ambiente, hay pequeñas variaciones en la cantidad de calor necesaria para producir una elevación de un grado según sea el intervalo de temperatura escogido.

No tomaremos en cuenta esta variación para la mayoría de los fines prácticos. Las unidades de cantidad de calor están relacionadas como sigue: 1.000 Kcal. = 1.000 cal = 3.968 Btu = 4186 joules.

En base a la definición anterior si tenemos una masa de agua de 450 g de la cual sabemos que se calienta de 15°C a 30°C. Por cada gramo y por cada grado centígrado, esa masa de agua toma una caloría.

Como las cantidades de calor son proporcionales a la masa de los cuerpos que se calienta y a la diferencia de temperatura (final menos inicial), en el ejemplo dado el agua habrá tomado 1 cal g-1 C-1 X 450 g X (30 —15) °C = 675 cal. (Hacemos notar que el cal es el símbolo de caloría.)

Si la misma masa de agua se hubiese enfriado de 30°C a 15°C hubiese cedido esa misma cantidad de calor.

El resultado del cálculo sería -675 cal, pues la diferencia entre paréntesis hubiese sido (15—30). Si el calentamiento del agua se hubiese producido en contacto con un cuerpo de masa m cuya temperatura hubiese variado entre ti y 30° (la temperatura final es la misma, ya que suponemos que el agua y el cuerpo llegan a un equilibrio térmico), el cuerpo en cuestión hubiese cedido al agua (él hubiese perdido, entregado) una cantidad de calor dada por la expresión de proporcionalidad:

Q – c . m . (ti-30)

Q es el símbolo general para cantidades de calor. Ahora bien, la masa de agua es el único cuerpo que se calentó y la cantidad de calor calculada para el calentamiento del agua es la misma que entregó el cuerpo al enfriarse. Por esta causa dijimos que estábamos en presencia de una manera de medir cantidades de calor.

La constante de proporcionalidad, c, que aparece en la última fórmula no es otra cosa que el calor específico del cuerpo o material de que se trate. Su definición es la cantidad de calor necesaria para aumentar en 1°C la temperatura de 1 g del material que forma el cuerpo. Si comparamos esta definición con la de caloría, veremos que el calor específico del agua es 1 cal/g (grado C).

El calor específico de una sustancia, ce, es la cantidad de calor necesaria para elevar un grado la temperatura de un kilogramo de dicha sustancia. Se mide en J/(kg . K) en el SI. También se puede expresar en cal/(Kg . °C).

La cantidad de calor necesaria para que una masa m de una sustancia aumente su temperatura desde T1, hasta T2 se expresa entonces así: Q = m . ce . (T2 — T1) = m. ce. ▲T

(▲T): se lee delta T , es la variación de la temperatura, y equivale a la temperatura final menos la temperatura inicial.

TABLA DE CALORES ESPECÍFICOS

Sustancia  c.e. (Cal./Kg./°C) c.e. (J./Kg./°K)
Aluminio210878
Cobre 90375
Hierro110460
Plomo30125
Mercurio30125
Plata 60250
Latón90375
Vidrio160667
Arena200835
Hielo500120
Agua Pura10004180
Agua de Mar9403900
Alcohol Etílico5502400
Glicerina5802420
Trementina4201750
Aceite4001670
Vapor de Agua4601920
Carbono121500
Wolframio32135

Para pasar de (cal./Kg./°C) a Kcal. se multiplica por 1000. Lo mismo si se quiere pasar de Kg. a gr. se divide por 1000. También de Cal. a Joule (J.) divide por 0,24. Si divide para el aluminio los 210 por 0,24
se obtiene en Joule, 878.

EJEMPLOS:

• ¿Que cantidad de calor se necesita para elevar la temperatura de 50 gr. de cobre desde 18°C. hasta 98°C?

▲T=98-18 = 80°C

El calor específico del cobre es de 0,09 cal./gr./° C. La masa m = 50 gr., el calor específico s = 0,09 = 9:100 cal./gr./° C, la variación de temperatura es  = 80° C. La cantidad de calor es Q = m x s x t = 50 X 9:100 x 80 = 360 calorías.

De la definición de caloría (cantidad de calor que se necesita para elevar la temperatura de 1 g. de agua en 1° C), se deduce que el calor específico del agua es de 1,00 cal./gr.° C. Éste es el mayor calor específico de todas las sustancias ordinarias. Es, por ejemplo, unas 5 veces mayor que el calor específico de la arena. Para producir el mismo aumento de temperatura, el agua absorbe una cantidad de calor 5 veces mayor que una masa igual de arena. Esto explica por qué el mar tarda más en calentarse, durante el día, que una playa de arena; y por qué la arena de la playa se enfría más rápidamente al llegar la noche.

• ¿Cuánto calor es necesario para aumentar en 25 °C (a temperatura de 3 Kg. de agua?
Suponemos que no hay cambios de estado:

formula cantidad de calor

La cantidad de calor pedida depende únicamente de la masa y del aumento de temperatura, para el caso del agua.


• Introducimos una barra de aluminio, de 0,2 Kg., a 80 °C en un vaso con 0,25 Kg. de agua a 20 °C. Calcular la temperatura final, suponiendo que no hay pérdidas de calor con el ambiente.

Cuando se alcance el equilibrio térmico ambos estarán a la misma temperatura. El aluminio cede calor (Qc) y disminuye su temperatura:

formula cantidad de calor

El agua absorbe calor (Qa) y aumenta su temperatura:

formula cantidad de calor

Si no hay pérdidas de calor se cumple que: el calor cedido (negativo) por la barra de aluminio es igual al absorbido (positivo) por el agua.

Un bloque de cobre de 75 g, se saca de un horno, y se echa en un depósito de vidrio de 300 g que contiene 200 g de agua. La temperatura del agua se eleva de 12 a 27°C. ¿Cuál era la temperatura del horno?

Este es un ejemplo de dos sistemas que se encontraban originalmente a diferentes temperaturas y que alcanzaron el equilibrio térmico después de ponerse en contacto. No interviene energía mecánica, sólo hay un intercambio de energía calorífica. Por consiguiente:

formula cantidad de calor

El subíndice C representa al cobre, G al vidrio y W al agua. La temperatura inicial del cobre es Tc, la temperatura inicial del agua del depósito es Tw, y la temperatura final de equilibrio es Te. Sustituyendo los valores dados, con Cc=0.093 cal/g C, Cg = 0.12 cal/g C°, y Cw = 1.0 cal/g C°, obtenemos:

Equivalente mecánico del calor

Si el calor no es sino otra forma de la energía, cualquier unidad de energía puede ser una unidad de calor. La caloría y el Btu se originaron antes de que fuera aceptado generalmente que el calor es energía. Fue Joule quien primero midió cuidadosamente el equivalente en energía mecánica de la energía calorífica, esto es, el número de joules equivalente a 1 caloría, o el número de pies-libras equivalente a 1 Btu.

El tamaño relativo de las «unidades caloríficas» y de las «unidades mecánicas» se puede encontrar efectuando experimentos en los cuales una cierta cantidad medida de energía mecánica se convierte completamente en una cantidad medida de calor. Joule usó originalmente un aparato en el cual unas pesas que caían hacían girar un conjunto de aspas en un recipiente con agua  La pérdida de energía mecánica se calculaba conociendo los pesos y las alturas

aparato de Joule

 Aparato de Joule para medir el equivalente mecánico del calor.
Las pesas que caen hacen girar las aspas que agitan el agua en el recipiente, elevándole su temperatura

de las cuales caían y la ganancia de energía calorífica, determinando el equivalente en agua del conjunto y su elevación de temperatura. Joule deseaba demostrar que se obtendría la misma cantidad de energía calorífica al consumir una cierta cantidad dada de trabajo independientemente del método seguido para producir el trabajo.

cientifico jouleProducía calor agitando mercurio; frotando entre sí anillos de hierro en un baño de mercurio; convirtiendo energía eléctrica en calor en un alambre sumergido en agua; y de otras formas. Siempre coincidía la constante de proporcionalidad entre la cantidad de calor producido y la cantidad de trabajo ejecutado dentro de su error experimental de 5%.

Joule no disponía de los termómetros exactamente comparados que tenemos en la actualidad, ni podía hacer correcciones tan seguras de las pérdidas de calor del sistema como es posible hacerlo ahora.

Sus experimentos originales son notables no sólo por la habilidad e ingenio que mostró sino también por la influencia que tuvieron para convencer a los hombres de ciencia de todas partes, de lo correcto del concepto de que el calor es una forma de la energía.

Los resultados aceptados son:

1 kcal = 1 000 cal = 4 186 joules,
1 Btu = 252.0 cal = 777.9 pies Ib;

esto es, cuando se convierten en calor 4 186 joules de energía mecánica, elevan la temperatura de 1 Kg. de agua de 14.5 a 15.5°C.

En calorimetría moderna las cantidades de calor se miden casi siempre la función de la energía eléctrica proporcionada a un baño de agua al hacer pasar una corriente por una resistencia que se encuentra dentro del baño; raras veces se miden observando la elevación de temperatura de un baño de agua. Así pues, la unidad práctica lógica de calor es el joule (1 joule = 1watt-seg) y de hecho es la que se adoptó como unidad internacional aceptada jara el calor por la Novena Conferencia General de Pesas y Medidas (1948). De hecho, en la práctica moderna de los laboratorios, la caloría (o la kilocaloría) si se usa mucho ni se necesita. Sin embargo, está profundamente metida en !a literatura científica. Para permitir el seguir usando esta unidad familiar —-pero para reconocer la importancia práctica del joule— a menudo se define una nueva kilocaloría, la kilocaloría termoquímica: 1 Kilocaloría=4184.0vjoules (exactamente)

Medida del color específico del aluminio, por el método de las mezclas. El aluminio se calienta en agua hirviendo, y luego se sumerge en el agua fría del calorímetro. El calor ganado por el agua fría y el calorímetro puede calcularse, y es igual a Q, el calor cedido por la masa m de aluminio. El calor específico s del aluminio puede deducirse de la ecuación Q= m . s . ▲T(observación: en este ejemplo s=ce el calor específico del material)

MEDIDA DEL CALOR ESPECÍFICO DE UN SÓLIDO

Este experimento ofrece un ejemplo del llamado «método de las mezclas». Está basado en el hecho de que el calor que pierde un cuerpo caliente lo gana un cuerpo más frío. El experimento será correcto si se toman las precauciones necesarias para que no haya pérdidas de calor fuera del aparato.

calorimetro metodo de las mezclas

La parte principal del aparato es el «calorímetro», un recipiente de cobre con paredes de poco grosor (el cobre tiene un bajo calor específico y, por lo tanto, una pequeña capacidad para absorber calor) que debe estar muy bien pulido, para evitar las pérdidas de calor por radiación.

El calorímetro se coloca sobre un soporte de corcho (un mal conductor de! calor), en el interior de un recipiente mayor, que sirve de protección contra los cambios en la temperatura exterior. Normalmente, e! calorímetro se cierra con una tapadera que lleva un termómetro, esencial para todos los experimentos de medidas de calor. A través de la tapadera pasa también una varilla de cobre, con la que puede removerse el contenido de’, calorímetro.

Supongamos que queremos calcular el calor específico del aluminio por el método de las mezclas. Se pesa la muestra de aluminio, así como e! calorímetro vacío con su agitador. Luego se llena el calorímetro con agua hasta la mitad, y se pesa de nuevo, para calcular la masa de agua que contiene, por la diferencia entre las dos pesadas. El aluminio se calienta, sumergiéndolo en un vaso con agua en ebullición.

La temperatura de! agua hirviendo será la temperatura inicial del aluminio. Mientras se calienta el aluminio, se mide la temperatura del agua fría en el calorímetro. Luego, el aluminio caliente se transfiere muy rápidamente al calorímetro (procurando no llevar agua caliente con él).

El agua del calorímetro se agita, para igualar la temperatura del agua, y se anota la temperatura más alfa que alcance el termómetro. Antes de averiguar el calor específico (s) del aluminio, hay que realizar las siguientes medidas. Con ellas, y el calor específico del cobre y del agua, que son factores conocidos, no necesitamos más datos.

Masa del aluminio = 10 gr.
Masa del calorímetro vacío = 50 gr.
Masa del agua en el calorímetro = 80 gr.
Temperatura Inicial del aluminio = 99,5° C.
Temperatura inicial del calorímetro = 17,5° C.
Temperatura final del aluminio y del calorímetro = 19,5° C.
Calor específico del cobre = 0,09 cal./gr./° C.
Calor específico del agua = 1 cal./gr./° C.

Utilizando estos datos, se hacen los siguientes cálculos:
Disminución de temperatura de los 10 gr. de aluminio = 99,5—19,5 = 80°C.

Por tanto, e! calor perdido por el aluminio es Q= m .c. ▲T = 10 . s . 80 — = 800 x s calorías.

Elevación de temperatura de! calorímetro de cobre = 19,5 – 17,5 = 2°C.

Por lo tanto, la cantidad de calor Q ganada por e! calorímetro es: Q=m. s. ▲T=50 . 0,09 X 2 = 9 calorías.

Como la elevación de temperatura de! agua del calorímetro es también 19,5— 17,5 = 2°C, la cantidad de calor ganada por 80 gr. de agua es Q=m. s. ▲T = 80 . 1 . 2 = 160 calorías.

Así, la cantidad total de calor ganada por el agua y el calorímetro es de 160 + 9 = 169 calorías.

Ahora bien, las 800 X s calorías perdidas por el aluminio son iguales a las 169 cal. que ganan el agua y el calorímetro. Luego 800 X s = 169.

Dividiendo ambos miembros de la ecuación por 800, tenemos:

Calor específico del aluminio s = 169/800 = 0,21 cal./gr./° C

Fuente Consultada:
Revista TECNIRAMA N° 54
FÍSICA I
RESNIK-HOLLIDAY
Elementos de Física y Química Maiztegui-Sabato
Enciclopedia del Estudiante Tomo 7 Físico-Química

La Dilatacion Termica Resumen Los Efectos Termicos del Calor

Resumen Sobre La Dilatación Térmica 
Los Efectos Térmicos del Calor

Los efectos comunes de cambios de temperatura son cambios de tamaño y cambios de estado de los materiales. Consideremos los cambios de tamaño que ocurren sin cambios de estado. Tomaremos como ejemplo un modelo simple de un sólido cristalino. Los átomos están sostenidos entre sí, en un ordenamiento regular, mediante fuerzas de origen eléctrico. Las fuerzas entre los átomos son similares a las que ejercería un conjunto de resortes que unieran los átomos, de manera que podemos imaginar al cuerpo sólido como un colchón de muelles.

Estos «resortes” son muy rígidos , y hay aproximadamente 1022 resortes por cada centímetro cúbico. A una temperatura cualquiera, los átomos de los sólidos están vibrando. La amplitud de vibración es del orden de 10-9cm y la frecuencia aproximadamente de 1013/seg.

Cuando aumenta la temperatura se incrementa la distancia media entre los átomos. Esto conduce a una dilatación de todo el cuerpo sólido conforme se eleva la temperatura. El cambio de cualquiera de las dimensiones lineales del sólido, tales como su longitud, ancho espesor, se llama dilatación lineal.

Si la longitud de esta dime lineal es L, el cambio de longitud, producido por un cambio de temperatura DT, es Al. Experimentalmente encontramos que, si DT suficientemente pequeña, este cambio de longitud Al es proporcional al cambio de temperatura DT y a la longitud original L. Por con siguiente, podemos escribir:(D=delta, letra griega)

La Dilatacion Termica Por Temperatura Efectos Termicos del Calor

Un sólido se comporta de muchos aspectos como si fuera un «colchón de muelles» microscópico, en el las moléculas están sostenidas entre si mediante fuerzas elásticas

AD [email protected]  (se lee alfa L por delta T)

en la ecuación anterior, «, que se llama coeficiente de dilatación U tiene diferentes valores para diversos materiales. Escribiendo otra manera esta fórmula obtenemos:

@= 1.DT/L.DT

o sea, que podemos interpretar a como la fracción de cambio de  longitud por cada grado que varia la temperatura.

Estrictamente hablando, el valor de @ depende de la temperatura a que esté el cuerpo y de la temperatura de referencia que se para determinar a L. Sin embargo, su van ordinariamente es insignificante comparada con la exactitud con es necesario hacer las mediciones en ingeniería. Con toda confianza podemos tomarla como constante para un material dado, independientemente de la temperatura.

En la Tabla  se muestra una lista de los valores experimentales del coeficiente medio de dilatación lineal de algunos sólidos comunes. Para todas las sustancias se encuentran en la lista, el cambio de tamaño consiste en una dilatación al elevarse la temperatura, porque a es positivo. El orden de magnitud de la dilatación es aproximadamente de 1 milímetro por metro de longitud por 100 modulos Celsius.

EJjemplo: Se va a elaborar el rayado de una escala métrica de acero de manera que los intervalos de milímetro sean exactos dentro de un margen de precisión de 5×10-5mm. a una cierta temperatura. ¿Cuál es la máxima variación de temperatura permisible durante el rayado?

[email protected]

Tenemos: 5 x 10-5 mm = (11 X 10-6/C)(1.0 mm) DT

en la expresión anterior hemos usado @ para el acero, tomada de la Tabla. De esta expresión se obtiene DT=5 C°. La misma temperatura a la cual se haga el proceso de rayado será la temperatura a la cual deba conservarse la escala cuando se use y deberá mantenerse siempre dentro de un margen de aproximadamente 5 C°.

Nótese (tabla)  que si se usara la aleación invar en lugar del acero, entonces, para la misma tolerancia requerida, se podría permitir una variación de temperatura de aproximadamente 75 C° o para la misma variación de temperatura (DT = 5°), la tolerancia que se obtendría sería más de un orden de magnitud mejor.

TABLA ALGUNOS VALORES DE @

Aluminio 23 X 10-6     Goma dura 80 X 10-6

Latón 19 X 10-6       Hielo 51X10-6

Cobre 17 X 10-6         Invar 0.7 X 10-6

VIDRIO (ordinario) 9 x 10-6  Plomo 29 X 10-6

Vidrio (pyrex) 3.2 x 10-6    Acero 11 X 10-6

Al nivel microscópico la dilatación térmica de un sólido sugiere un aumento en la separación media entre los átomos en el sólido. La curva de energía Potencial para dos átomos adyacentes en un sólido cristalino en función de su separación internuclear es una curva asimétrica como la de figura.

 Al acercarse los átomos, disminuyendo su separación del valor de equilibrio  entran en juego intensas fuerzas de repulsión y la curva de potencial se eleva con gran pendiente (F — dU/dr); conforme los átomos se separan aumentando su separación con respecto al valor de equilibrio.

Ver: Concepto de Cantidad de Calor