La Mecánica Clásica

Tabla de Radiaciones Electromagneticas y Ejemplos

Tabla de Radiaciones Electromagnéticas Ejemplos

Todas las emisión de radiaciones están presentes en los aspectos más variados de nuestra realidad, desde la función clorofílica de las plantas hasta las comunicaciones intercontinentales. Tal variedad de fenómenos determina, con frecuencia, una confusión sobre las particularidades y características de cada tipo de radiación; porque, aun cuando en conjunto sean todas emisiones de ondas sinusoidales, sus frecuencias y longitudes de onda peculiares les permiten desarrollar efectos  determinados.   Así,  los  rayos X,  que tienen  frecuencias muy altas pero cortas longitudes de onda, pueden atravesar perfectamente los tejidos animales y otros diversos materiales.

La radiación electromagnética se propaga en forma de ondas creadas por la oscilación en el espacio de campos eléctricos y magnéticos perpendiculares entre sí y a la dirección de propagación. Todas las ondas electromagnéticas viajan a la misma velocidad en el vacío, la velocidad de la luz c (300.000 Km/seg.), pero los distintos tipos de ondas tienen diferente longitud de onda y diferente frecuencia.

Estas dos magnitudes están relacionadas por la ecuación λ.f=c, de modo que a cada frecuencia le corresponde una única longitud de onda. El espectro completo de radiaciones electromagnéticas comprende una amplia variedad en longitudes de onda, desde las enormes ondas de baja frecuencia tan grandes como la Tierra, hasta los penetrantes rayos gamma, con longitudes más pequeñas que el núcleo de los átomos. Estos distintos tipos de radiación, si bien son producidos y detectados de maneras que les son propias, responden todos a la misma descripción ondulatoria de campos electromagnéticos.

Según la teoría electromagnética, las partículas cargadas aceleradas, como los electrones en una corriente variable dentro de un cable, irradian energía en forma de ondas. Las ondas de radio, de menos de 1010 Hz y longitudes mayores que 1 cm, pueden producirse y detectarse por circuitos eléctricos capaces de producir corrientes variables.

Este tipo de ondas es el que se ha utilizado para transmitir información «sin hilos», es decir, sin un cable que se extienda entre el transmisor y el receptor de información, desde los famosos experimentos de Hein-rich Hertz en el siglo pasado.

Al igual que la luz visible, las ondas de radio pueden ser reflejadas, refractadas y absorvidas.

En el cuadro siguiente se han reunido, por orden decreciente de frecuencias y creciente de longitudes de onda, los principales tipos de radiaciones que existen; los procesos de emisión, sus causas y medios de detección permitirán catalogar, de modo simple y rápido, las diversas clases de radiaciones, cuya serie, en conjunto, se denomina espectro electromagnético.

Es interesante observar que los receptores sensoriales del hombre sólo perciben las radiaciones de una pequeña zona del espectro (luz visible  y rayos  infrarrojos).

LA RADIACIÓN SE PRODUCE ENPOR FRECUENCIA
(CICLOS/SEG.)
TIPO DE LA RADIACIÓNPUEDE SER
DETECTADA POR
Explosión atómicaNúcleo atómico en oscilación1020Rayos gammaContador Geiger
Tubo de rayos X Trayectoria espiral de un electrón interno1018Rayos XPantalla de rayos X
Lámpara Trayectoria espiral de un electrón externo1016Rayos ultravioleta
Luz visible
Cámara fotográficaOjo
Estufa Trayectoria espiral de un electrón externo1012
1014
Rayos infrarrojos Receptores corporales
Sol Trayectoria espiral de un electrón1010 Micro-ondasPantalla de radar
Circuito oscilanteAntena Oscilación de la Carga En Un Conductor

106

104

Ondasde radio TelevisiónReceptor de radio

 

Ya se sabía que la luz era un movimiento ondulatorio antes de que Maxwell hiciera sus descubrimientos, pero no se había podido establecer de qué tipo era. Maxwell pudo demostrar que las oscilaciones provenían del campo eléctrico y magnético. Las ondas de Hertz tenían una longitud de onda de unos 60 cm, o sea que tenían una longitud de onda mucho más larga que las ondas de luz.

Actualmente reconocemos un espectro de radiación electromagnética que se extiende de  10 elevado a -15 m a 10 elevado a la 9 m.

Se subdivíde en franjas más pequeñas que a veces se solapan.

La ampliación del campo de la observación astronómica de las longitudes de onda visibles a otras longitudes de onda electromagnéticas ha revolucionado nuestro conocimiento del universo.

Las ondas de radio tienen una gama amplia de longitudes de onda, desde unos cuantos milímetros hasta varios kilómetros.

Las microondas son ondas de radio con longitudes de onda más cortas, entre I mm y 30 cm. Se utilizan en el radar y en los hornos de microondas.

Las ondas del infrarrojo de diferentes longitudes de onda son irradiadas por cuerpos a determinadas temperaturas. (Cuerpos a temperaturas más altas irradian bien ondas visibles, bien del ultravioleta).

La Tierra y su atmósfera irradian ondas del infrarrojo con longitudes de onda medías de unos 10 micrometros (u m) o I0″5 m (I u m = 10-6 m) a una temperatura media de 250K (-23°C).

Las ondas visibles tienen longitudes de onda de 400-700 nanómetros (nm) y  1 nm = 10 elevado a -9 m). El punto más alto de la radiación solar (con una temperatura de 6000K/6270°C) se alcanza a una longitud de onda de unos 550 nm, que es donde el ojo humano es más sensible.

Las ondas ultravioletas tienen longitudes de onda de entre unos 380 nm hasta 60 nm. La radiación de estrellas más bien calientes (más de 25.000K/25.000°C) se desvía hacia las zonas violetas y ultravioletas del espectro.

Los rayos X tienen longitudes de onda de aprox. 10 nm a 10 elevado a -4 nm.

Los rayos gamma tienen longitudes de onda menores a 10″‘1 m. Los emiten determinados núcleos radioactivos y se desprenden en algunas reacciones nucleares.

Nótese que los rayos cósmicos que continuamente bombardean la Tierra desde el espacio exterior no son ondas electromagnéticas, sino protones y partículas x (es decir, núcleos de átomos de hidrógeno y helio; de alta velocidad, además de algunos núcleos más pesados.

frecuencias y longitud de onda del espectro electromagneticoHaz Clic Para Otra Tabla

Teoria del Rozamiento Que es? Porque hay rozamiento?

Teoría del Rozamiento ¿Que es y Porque hay Rozamiento?

Quien intente deslizar un bote sobre una playa seca y plana encontrará una considerable oposición. La fuerza que tiende a oponerse al deslizamiento de un sólido sobre otro se denomina rozamiento. El rozamiento forma parte de nuestra vida diaria. Por ejemplo, no podríamos caminar si nuestros pies no se aferraran por rozamiento al piso. Los frenos de un automóvil utilizan el rozamiento entre las cintas de freno y la campana del mismo, móvil, para detenerlo. Desde luego, este efecto tiene, también, un factor desventajoso. La fricción entre las partes móviles de cualquier máquina es la causa principal de su desgaste.

La fuerza de rozamiento entre dos sólidos no depende de las superficies en contacto. Esto puede parecer sorprendente a menos que recordemos que aun las superficies más pulidas son en realidad como diminutas cadenas montañosas; sólo toman contacto entre sí en los pocos lugares en que los picos de una descansan sobre los picos de la otra. La fuerza de frotamiento depende, en cambio, de la fuerza que comprime una superficie contra la otra.

En el caso de un objeto apoyado sobre una superficie horizontal, la fuerza de frotamiento que se opone a todo intento de hacerlo deslizar es directamente proporcional al peso del objeto. En otras palabras, la relación entre la fuerza de rozamiento y la carga es constante. Esta relación se denomina coeficiente de fricción por deslizamiento. Varía de un par de sustancias a otro.

A la escala atómica, aun la superficie más finamente pulida está muy lejos de ser plana. Por ejemplo, la figura de mas abajo, muestra el perfil real, considerablemente amplificado, de una superficie de acero que pudiera considerarse como muy bien pulida. Fácilmente podemos creer que al colocar dos cuerpos de este tipo en contacto, el área real microscópica de contacto es mucho menor que el área macroscópica aparente de contacto; en un caso especial estas áreas pueden estar fácilmente en la relación de 1 a 104.

La superficie real (microscópica) de contacto es proporcional a la fuerza normal, porque las puntas de contacto se deforman plásticamente bajo los grandes esfuerzos que se desarrollan en estos puntos. De hecho, muchos puntos de contacto quedan “soldados en frío” entre sí. Este fenómeno, la adherencia superficial, se debe a que en los puntos de contacto, las moléculas, en las caras opuestas de la superficie, están tan cercanas unas a las otras que ejercen fuerzas intermoleculares intensas entre si.

Cuando un cuerpo (digamos un metal) se jala sobre la superficie de otro, la resistencia por rozamiento está relacionada con la ruptura de esos millares de pequeñas soldaduras, que continuamente se vuelven a formar conforme se presentan nuevas oportunidades de contacto. Experimentos con rastreadores radiactivos han permitido averiguar que, en el proceso de ruptura, pequeños fragmentos de una superficie metálica pueden ser arrancados y quedar adheridos a la otra superficie. Si la rapidez relativa del movimiento de las dos superficies es suficientemente grande, puede haber una fusión local en ciertas zonas de contacto, aun cuando la superficie en conjunto pueda sentirse sólo ligeramente caliente.

El coeficiente de rozamiento depende de muchas variables, tales como la naturaleza de los materiales, el acabado superficial, películas superficiales, temperatura y grado de contaminación. Por ejemplo, si en un recipiente al alto vacío se colocan dos superficies metálicas que se han limpiado cuidado­samente y como consecuencia del vacío no se pueden formar películas de óxido en las superficies, el coeficiente de rozamiento se eleva a valores enorme’­y las superficies quedan, de hecho, firmemente “soldadas” entre sí. Al dejar penetrar una pequeña cantidad de aire al recipiente de modo que puedan formarse películas de óxido en las superficies opuestas, el coeficiente de rozamiento se reduce a su valor “normal”.

Con estas complicaciones no es sorprendente que no haya una teoría exacta del rozamiento en seco y que las leyes del mismo sean empíricas. Sin embargo, la teoría de la adherencia superficial en el rozamiento entre metales conduce a comprender fácilmente las dos leyes del rozamiento mencionadas anteriormente. (1) El área microscópica de contacto que determina la fuerza de rozamiento fk. es proporcional a la fuerza normal N y, por consiguiente, fk es proporcional a N, como lo muestra la Figura.

El hecho de que la fuerza de rozamiento sea independiente del área aparente de contacto, significa, por ejemplo, que la fuerza que se requiere para arrastrar un “ladrillo” de metal sobre una mesa metálica es la misma, cualquiera que sea la cara del ladrillo que esté en contacto con la mesa. Podemos entender esta circunstancia solamente si el área microscópica de contacto es la misma para todas las posi­ciones del ladrillo, y en efecto, así es.

El «dibujo» de las cubiertas de automóvil tiene por objeto fundamental mejorar su adherencia en caminos mojados o grasosos. Una cubierta lisa no puede hacer contacto con la superficie húmeda, porque lo película de agua atrapada bajo aquella actúa como lubricante. Pero si la cubierta posee una cantidad de superficies de goma separadas entre sí, cada trozo de! dibujo hace contacto con la superficie del camino, porque el agua es desalojada hacia esos espacios intermedios.

Cuando se apoya sobre la cara más grande, hay un número relativamente grande de superficies de contacto relativamente pequeñas que sostienen la carga; cuando se apoya sobre la cara más pequeña existe menor número de contactos (porque el área aparente de contacto es menor), pero el área de cada contacto individual es mayor exac­tamente en la misma proporción debido a la mayor presión ejercida por el ladrillo que está sostenido sobre este menor número de contactos que soportan la misma carga. La fuerza de rozamiento que se opone a que un cuerpo ruede sobre otro es mucho menor que la fuerza necesaria para el resbalamiento, y, de hecho, ésta es la ventaja de la rueda sobre el trineo.

La reducción de rozamiento que se obtiene, se debe, sobre todo, al hecho de que en el rodamiento, las soldaduras en los contactos microscópicos son “peladas” más bien que “cortadas” como tiene que hacerse en el rozamiento por resbalamiento. Esta circunstancia puede reducir la fuerza de rozamiento hasta 1000 veces.

La resistencia al rozamiento por deslizamiento en superficies secas se puede reducir considerablemente mediante la lubricación. En el mural de una gruta en Egipto fechado 1900 A. c. se ve una gran estatua de piedra que se va deslizando en una rastra mientras un hombre, enfrente de la rastra, va echando aceite lubricante en su camino. Una técnica mucho más efectiva es introducir una capa de gas entre las superficies que resbalan; el “disco de hielo seco” y la chumacera sobre soportes de gas, son ejemplos.

Se puede reducir el rozamiento todavía más, suspendiendo un objeto en rotación en un espacio vacío por medio de fuerzas magnéticas. Por ejemplo, J. W. Beams ha hecho girar un rotor de 13.6 Kg. de este tipo a 1.000 rev/seg; cuando se suspendió la fuerza impulsora, el rotor perdió velocidad a razón de solamente 1 rev/seg por día.

El frotamiento por rodaje es mucho menor que el que se produce por deslizamiento. Por eso es mucho más fácil hacer rodar un tronco que tratar de arrastrarlo, y explica el hecho de que la rueda sea un implemento imprescindible para casi todos los vehículos terrestres. Por el mismo motivo, los rodamientos de bolilla sirven para facilitar los movimientos y disminuir el desgaste de cualquier pieza en movimiento. La energía gastada en vencer las fuerzas de rozamiento se convierte en calor.

Un ejemplo convincente de esto es el antiguo método de encender fuego frotando dos maderas entre sí. El calor producido por el rozamiento entre el vehículo espacial y la atmósfera, cuando retorna a Tierra, es uno de los mayores peligros para los astronautas. Éste es, quizás, el mejor ejemplo de lo antedicho. Efectivamente, en su entrada en la atmósfera, una cápsula espacial se consumiría como una tea si no estuviera acorazada y aislada por un escudo refractario capaz de soportar los 900° C producidos por la tremenda fricción. Las fuerzas de frotamiento que se oponen al movimiento entre las moléculas de gases y líquidos se denomina viscosidad. Se estudiará en un artículo posterior.

LA FRICCIÓN DE ROZAMIENTO
La otra fuerza que se opone al movimiento de la pelota o de cualquier otro cuerpo es, según hemos dicho, la fricción.

Si pretendemos empujar sobre el suelo un cajón pesado, debemos realizar un gran esfuerzo muscular, puesto que las superficies del cajón y del suelo no están perfectamente pulidas y la aspereza del uno y del otro, como es natural, provocan una resistencia al movimiento, que se llama fricción de rozamiento.
Diremos pues que: Se produce la fricción de rozamiento cuando un cuerpo roza sobre otro. Se comprende fácilmente que cuanto más pesado es el cuerpo y más irregulares las superficies de roce, tanto mayor será la fricción.

LA FRICCIÓN DE RODAMIENTO
Efectuemos ahora lo que hicieron hace miles y miles de años nuestros antepasados: coloquemos rodillos debajo del cajón y veremos que para impulsarlo se requiere un esfuerzo mucho menor que el anterior, pero con todo, se necesitará asimismo cierto esfuerzo muscular, porque siempre subsisten irregularidades en el rodillo y en el suelo, que generan una resistencia al movimiento.

Existe fricción de rodamiento si un cuerpo rueda sobre otro. Pero habremos comprobado, que a igualdad de peso que comprime, la fricción de rodamiento es mucho menor que la fricción de rozamiento. Ello explica por qué la invención de la rueda, lograda unos 3.000 años a. C., fue una etapa fundamental en la historia de la civilización.

¿ÚTIL 0 PERJUDICIAL?
¿Es la fricción un inconveniente? ¿Es deseable? Indudablemente, para las máquinas representa un obstáculo, dado que absorbe una gran parte de la potencia desarrollada, y por ello se hace todo íc posible para disminuir la fricción. Las piezas móviles de las máquinas se construyen sumamente pulidas, y durante el movimiento se lubrican con aceites especiales, llamados precisamente lubricantes.

La función de los lubricantes es la de formar una delgadísima película sobre las superficies de roce, que disminuye la fricción y hace «resbalar» las asperezas de ambas superficies.Uno de los mejores sistemas para evitar la fricción consiste en el empleo de cojinetes de bolillas, inventados en 1907, para hacer girar los ejes.Por otra parte, sin fricción, nuestra vida sería imposible.

No podríamos dar un paso, ni siquiera realizar el más mínimo movimiento; porque no habiendo fricción entre el suelo y las plantas de los pies, no tardaríamos en caer. No podrían moverse los vehículos, ya que las ruedas girarían sin tomar contacto con el asfalto, y tampoco funcionarían los frenos.Para finalizar, cabe reconocer que aunque las resistencias del medio y de la fricción cuestan dinero y fatiga, vemos que nuestro mundo está perfectamente coordinado, y lamentarse sería francamente injusto.

Es necesario a menudo controlar el rozamiento: Esto puede significar disminuir el rozamiento, como en las partes móviles de un automóvil, o aumentarlo, como en los frenos o llantas del propio vehículo. Los dos factores pueden ser fácilmente regulados, ya que dependen de la naturaleza de las superficies y de la clase del movimiento. Unos pocos ejemplos podrán ilustrar esto.

Las balatas de los frenos están hechos de un material seleccionado para que presenten mucho rozamiento y resistan al desgaste. Además, deben permanecer secas para incrementar el rozamiento. Se diseñan salientes en las llantas de los tractores para aumentar el rozamiento y resistir el desgaste. Los dibujos de una llanta de automóvil se disponen también para aumentar el rozamiento.

Una manera muy corriente de reducir el rozamiento es substituir el de deslizamiento por el de rodadura. Cojinetes o rodamientos de rodillos y de bolas se utilizan en los ejes de las ruedas de los automóviles, bicicletas y patines de ruedas. Sirven para suministrar rozamiento de rodadura entre el eje fijo y la rueda giratoria. Estos cojinetes o rodamientos están generalmente encerrados en un soporte, que sirve para mantener cada rodillo o bola en su posición adecuada.

Otro modo de disminuir el rozamiento, es por medio de la lubricación, en general, por medio de aceites, grasa o grafito, colocados entre las superficies de deslizamiento o de rodadura. El aceite forma una película delgada entre las superficies móviles. Aunque esta película es muy delgada, algunas veces de sólo unas pocas moléculas de espesor, casi evita por completo que una superficie toque a la otra, cambiando así la naturaleza de las dos superficies enfrentadas y reduciendo el rozamiento y el desgaste. Lubrica de una manera distinta el grafito, formado por cristales planos y lisos que fácilmente deslizan unos sobre otros.

Si se quiere hacer un experimento que esté casi libre de rozamiento, se coloca un trozo de hielo seco y se hace resbalar sobre una mesa. El hielo seco es bióxido de carbono sólido. A la temperatura y presión ambientes, el hielo seco se evapora sin pasar por el estado líquido, por tanto, en la base del trozo se está formando una determinada cantidad constante de bióxido de carbono gaseoso. El hielo seco flota sobre una delgada película de gas, que actúa como un magnífico lubricante entre el trozo de hielo y la mesa.

Pedazos pequeños de hielo seco pueden cargarse con grandes pesos para que puedan deslizarse casi sin rozamiento en experimentos para probar las leyes del movimiento.

Fuente Consultada:
Física I Resnick – Halliday
Revista TECNIRAMA N°30