Las Ciencias de Lo Diminuto

Consecuencias del Progreso Cientifico y Tecnico Los Cambios Sociales

PROGRESOS EN LA CIENCIA Y TÉCNICA
CONSECUENCIAS DEL PROGRESO TÉCNICO:

El progreso brindó acceso a una vida más saludable y larga, más cómoda y descansada y con mejores oportunidades de desarrollo intelectual y de esparcimiento. El progreso ha traído también consigo problemas cuya solución se busca. La lucha exitosa contra las enfermedades prolongó la vida humana y la disminución de la mortalidad infantil.

Ambos provocaron un súbito incremento de la población mundial, llamada «explosión demográfica». Este crecimiento vertiginoso (unos 70 millones por año) nos conduce a un tota! de 4 000 millones de seres humanos. Para atenderlos, debe aplicarse la explotación intensiva de los recursos naturales. Hay que afrontar, además, el problema de la enorme masa de residuos descartados por los procesos industriales que contamina y «destruye» la naturaleza (problema ecológico).

El extraordinario incremento del consumo de combustibles ocasionó graves problemas de escasez y de contaminación. Ambos pueden ser solucionados mediante el aprovechamiento de la energía solar. La superpoblación y la mecanización del campo provocan la concentración de vastas masas humanas en las ciudades, origen de numerosos problemas de convivencia en todos sus aspectos, naturales y sociales.

Los países menos desarrollados fueron incapaces de incrementar suficientemente su producción respecto del aumento de su población. Como consecuencia rebajan los niveles de vida hasta provocar en ocasiones «el hambre» de vastos sectores.

CULTURA La filosofía reflejó los profundos cambios ocurridos en las condiciones de vida: gran libertad de decisión en la esfera personal y mayor tiempo disponible dieron al individuo oportunidad de enfrentarse mejor consigo mismo. El ateísmo y la incredulidad predominantes a principios de siglo tendían a cerrar el camino de la explicación y justificación de la existencia humana.

Surgen entonces escuelas de pensamiento que encaran el problema, corno el existencialismo, del francés Jean Paul Sartre. El positivismo lógico de John Dewey, norteamericano, y Bertrand Russell, inglés, que afirma la inutilidad de buscar el significado de la vida o de tratar de comprender la naturaleza del Universo. Jacques Maritain, católico francés, desarrolló el tomismo, doctrina basada en las enseñanzas de Aristóteles y Santo Tomás de Aquino; ofrece una explicación del Universo por el razonamiento y la lógica, fundado en ideas básicas de la fe religiosa.

La Sociología estudió los problemas vitales surgidos de las multitudinarias concentraciones urbanas: el «conformismo», reemplazante de la propia personalidad por la de la masa; la «alienación», angustiosa sensación de soledad y aislamiento, propia del anonimato de las grandes ciudades.

El Psicoanálisis, originado en los trabajos del doctor Sigmund Freud, trata las perturbaciones anímicas provocadas por esta situación. La novela predomina en la literatura contemporánea: expone ideas filosóficas (novela de tesis), problemas sociológicos, descripción de ambientes y caracteres personales. La novela informativa, de escaso valor literario, pero muy difundida expone temas estudiados por sus autores en forma muy minuciosa.

La pintura. En la búsqueda de nuevas formas de expresión estética se destacó el cubismo del español Pablo Picasso; su «pintura abstracta», así llamada por no reproducir las formas de la vida real que representa por «símbolos», figuras convencionales. El surrealismo, cuyo exponente actual es Salvador Dalí, español, muestra los pensamientos y sueños del hombre contemporáneo. La música y la escultura se caracterizaron por la búsqueda de formas de expresión no convencionales.

La Arquitectura destacó su funcionalidad y simplicidad; sintió la influencia de nuevos elementos de construcción, como la del hormigón armado. Sobresalieron el suizo Carlos Jeanneret (Le Corbusier, imagen izq. ) y el norteamericano Frank Lloyd Wright. La pugna entre dos grupos de naciones esencialmente opuestos, encabezados por los Estados Unidos y por Rusia, constituye el problema angustioso de la Historia actual.

En la práctica, la existencia de un tercer grupo de naciones «no comprometidas» tiene mucho de ficción porque están infiltradas por uno u otro bando. Los organismos internacionales que persiguen el fin supremo del mantenimiento de la paz como las Naciones Unidas, de permanentes gestiones activas, y asambleas periódicas, y el Parlamento Europeo, órgano de la Liga de las Naciones, que se reúne periódicamente, procuran encontrar soluciones razonables y equitativas a los intereses en pugna. Los gastos militares absorben directa e indirectamente la mayor parte de los presupuestos nacionales, substraídos de esa manera a un más humano destino, exigido por las necesidades apremiantes: alimento, indumentaria, salud, ocupación remunerada, servicios sociales, educación, en constante crecimiento por el aumento de la población mundial, que excede el de los medios para satisfacerla.

Una confrontación armada dejaría al virtual vencedor poco menos destruido que el vencido y posiblemente incapacitado para reponerse. ¿El fin de nuestra civilización? La respuesta debe darla la fe en un Dios Creador que ama a sus criaturas, que ha comprometido ampararlas en las grandes crisis, a través de los siglos.

Todos los credos que sustentan esta. esperanza: católicos, ortodoxos, iglesias cristianas disidentes, musulmanes, judíos, religiones de oriente, cifran su confianza en la Promesa.

El Papa Juan Pablo II, culminando la doctrina de la Iglesia de la fraternidad en el Padre Común y su Misericordia, ha recogido en sus giras por los más diversos ámbitos del mundo la formidable adhesión de millares de oyentes, en demostraciones colectivas jamás igualadas. Los católicos como él, y los coincidentes en la divina Bondad de un Ser Supremo, pongamos nuestro afán en seguirlo y prestémosle nuestro apoyo entusiasta.

Cuestionamientos al Progreso Tecnológico del Siglo XX

Fuente Consultada: Historia 3 de José C. Astolfi

Grandes Cambios Cientificos Tecnicos Sociales en el Siglo XX

Grandes Cambios Científicos Técnicos Sociales en el Siglo XX

PROGRESOS EN LA CIENCIA Y TÉCNICA
A partir de la década de 1940, el progreso de la ciencia aplicada y el desarrollo de la técnica, adquirieron un ritmo vertiginoso impulsados por la guerra y la competencia comercial. Los Estados Unidos, empeñados en mantener la preponderancia mundial de su liderazgo tecnológico, encabezaron estas actividades.

La investigación, hasta entonces limitada al laboratorio y a la Universidad, fue notablemente ampliada. Hoy la llevan a cabo grandes empresas fabriles privadas y entes estatales, que invierten cuantiosos recursos en refinado instrumental de precisión. La investigación, cuidadosamente planificada de antemano, es confiada a profesionales organizados en el trabajo en equipo.

Como consecuencia de esto, también se ha extendido el llamado desarrollo, consistente en encontrar técnicas adecuadas para aplicar los descubrimientos científicos.

Biografia de Albert Einstein: Relatividad Especial y Efecto Fotoeléctrico Carta HistóricaEste progreso de nuestro siglo fue posible gracias a la obra de Alberto Einstein, nacido en Alemania en 1879. Estudió física en el Kaiser Wilhelm Instituto de Berlín. En 1921 ganó el Premio Nobel de ese año. Pasó a los Estados Unidos en 1933 para eludir la persecución nazi contra los judíos.

Continuó su labor en la Universidad de Princeton, hasta fallecer en 1955. Sus teorías, de extraordinaria audacia intelectual, modificaron radicalmente las ciencias físicas, dotándolas de nuevas bases filosóficas. Con el conjunto de sus ideas constituyó su Teoría de la Relatividad, ésta afirma que la materia puede transformarse en energía.

Niels Bohr, Enrico Fermi y James Chadwick, entre otros, profundizaron el estudio de la constitución íntima del atonto. Sus primeras aplicaciones fueron de índole militar. En el centro científico de Oak Ridge (EE. UU.) se fabricó la primera «bomba atómica», cuyo extraordinario poder proviene de la transformación de materia en enegía. Hoy en día son múltiples los usos pacíficos de la energía atómica.

En 1957 entró en funcionamiento en Shippingport, cerca de la ciudad de Pittsburgh, la primera central nuclear productora de electricidad comercial. Luego se multiplicaron las unidades de ese tipo por todo el mundo. El submarino «Nautilus» fue el primer buque impulsado por energía atómica, seguido por rompehielos, portaaviones y barcos mercantes. Se tratan actualmente proyectos de navíos espaciales atómicos para explorar otras galaxias.
Partículas radiactivadas se utilizan en diagnósticos y tratamientos médicos y para la detección de fallas en máquinas.

El rayo láser —haz concentrador de luz—, descubierto por Teodoro Maiman en 1960, se emplea tanto en cirugía como en corte de metales; otra aplicación en proyecto es la transmisión de energía a distancia.

La exploración del espacio exterior se inició con trabajos sobre proyectiles guiados («bombas voladoras») efectuados en Alemania durante la guerra. Terminada la contienda, estos científicos, ingenieros y técnicos pasaron a los Estados Unidos y a Rusia, y allí continuaron sus trabajos. Entre ellos estaba }, director del programa espacial norteamericano y responsable de la llegada del hombre a la luna.

El 4 de octubre de 1957, Rusia colocó en órbita al Sputnik, primer satélite artificial de la Tierra. El 12 de abril de 1961 hizo lo propio con Yuri Gagarin, el primer astronauta.

El 20 de julio de 1969, a las 23 (hora argentina) pisó la Luna el norteamericano Neil Armstrong. Inmediatamente después lo hizo su compañero Aldrin. Collins, el tercer componente de la tripulación, permaneció en órbita lunar. La hazaña, conocida como Misión Apolo 11, fue transmitida por televisión en vivo y en directo y vista con toda nitidez en nuestro país. Vueltos a la Tierra tres días después, luego de un viaje que en total insumió ocho días, fueron largamente agasajados.

Siguieron otras expediciones en que los astronautas exploraron parte de la superficie lunar recorriéndola en vehículos. Los rusos realizaron una tarea similar empleando artefactos no tripulados.

Otros navíos no tripulados (sondas espaciales) enviaron fotografías, imágenes televisivas y gran acopio de informaciones desde Marte y Venus, extendidas a los demás planetas de nuestro sistema solar.

Los satélites de comunicaciones facilitan el uso de la televisión y el teléfono y su empleo intercontinental. Satélites en órbita llenan otros objetivos como la predicción del tiempo, descubrimiento de yacimientos minerales subterráneos, tareas geográficas, y como radiofaros para guía de aviones y barcos. Están dotados de cámaras e instrumentos de muy alta sensibilidad, ya que pueden distinguir un objeto del tamaño de una pelota de golf desde una altura de 500 km.

En los últimos años se ha encarado la exploración de las profundidades y del suelo oceánico, donde existen ricos yacimientos minerales. El estudio de vegetales y peces desconocidos hasta entonces, hallados a miles de metros de profundidad, esclarece y aumenta los conocimientos sobre la evolución de las especies.

La astronomía recibió un notable impulso debido al progreso técnico. La observación estelar adquirió gran precisión mediante telescopios puestos en órbita: libres de la interferencia de la atmósfera. El análisis espectrográfico (descomposición por el prisma de la luz de las estrellas) permitió detectar la presencia de elementos químicos. La información directa obtenida por los vehículos espaciales en los planetas y la utilización de gigantescas antenas en forma de pantalla (radiotelescopio) que captan ondas electromagnéticas y radiales emitidas por cuerpos celestes, aumentaron notablemente el conocimiento del cosmos.

Mencionaremos los importantes descubrimientos de los «agujeros negros«, inmensas extensiones donde la materia se concentra hasta adquirir densidades imposibles de imaginar, y los «quasars», objetos que emiten enorme energía.

La electrónica nació con el invento de la válvula triodo, obtenida por Lee De Forest en 1907. Tomó como punto de partida experiencias de Edison sobre descargas eléctricas en el vacío. La válvula encontró rápidamente aplicación amplificando señales de radiofonía. Más tarde fue un elemento vital en la construcción de computadoras.

La televisión comercial, iniciada por Alien B. Du Mont en 1939, extendió el campo de la electrónica. El descubrimiento de los semiconductores (elementos que permiten el paso de la corriente eléctrica en un solo sentido), la invención del transistor, los circuitos impresos y la miniaturización han erigido a la electrónica en técnica indispensable para la vida del hombre.

Las investigaciones de Luis de Gouffignal y Vannevar Bush abrieron el camino a la construcción de la primera computadora, por sistema mecánico. Fue completada en abril de 1944 por Howard Aiken. John Mauchly, de la Universidad de Pennsylvania, construyó en 1946 a ENIAC, nombre de la primera computadora electrónica a válvulas. Los avances posteriores de la electrónica multiplicaron las posibilidades de funcionamiento y la perfección de la computadora.

PROGRESOS EN LA CIENCIA Y TÉCNICA

La cibernética, fruto de los trabajos de Norberto Wiener y su equipo del Intitulo Tecnológico de Massachussets (M.I.T.), recibió luego importantes aportes, como el de Herbert Simón, de la Universidad de Chicago. Esta disciplina estudia el mecanismo de funcionamiento de la mente humana y luego lo reproduce, mediante el uso de computadoras, para la dirección automática de procesos industriales y otros de la más variada índole.

Una aplicación es el sistema de guía de proyectiles (misiles) que viajan miles de kilómetros hacia un objetivo prefijado, corrigiendo automáticamente su curso con referencia a la posición de las estrellas.

La Química investigó profundamente la naturaleza de las reacciones utilizando los conocimientos de la física nuclear y de otras disciplinas afines, como la termodinámica y la metalurgia. Grandes progresos brindó el empleo del microscopio electrónico.

Está basado en la ampliación de la imagen por un campo magnético, fenómeno observado por Luis de Broglie en 1932. La espectrografía y !a cromatografía (separación de elementos por filtración), agilizaron los procedimientos de análisis.

La aparición de los productos sintéticos data de 1931, con la obtención del neoprene (sustituto de la goma) porNiewland y Garothers. Este último inventó el nylon en 1937. Las fibras artificiales y los plásticos tienen infinidad de aplicaciones. Los últimos descubrimientos permiten obtener proteínas alimenticias a partir del petróleo.

La Biología y la Medicina, al par de otras ciencias, se vieron favorecidas por la utilización del microscopio electrónico. Facilitó el hallazgo y el estudio de los virus, responsables de enfermedades muy difundidas como la gripe, la viruela, etc. La lucha prosperó con el descubrimiento de las vacunas, como la de la poliomielitis (parálisis infantil) realizado por los doctores Jonathan Salk en 1954 y Albert Sabin, y con el uso de antibióticos: la penicilina, descubierta por Fleming en 1930, la sulfamida, por Domagk en 1935, y la estreptomicina, porWaksman en 1940.

La existencia de las hormonas, hallada por Claude Bernard, fue seguida por el aislamiento de las mismas, la adrenalina, en 1903, y la insulina, descubierta por Haig, entre otras. Son utilizadas en el tratamiento de enfermedades. El control del funcionamiento de los órganos que las secretan constituye la endocrinología.

El estudio de las vitaminas, iniciado por el alemán C. Funk en 1912, su obtención y posterior producción hicieron posible la erradicación de las enfermedades provocadas por la falta de alguna de aquéllas, como el escorbuto, el beri beri y ciertas formas de anemia. En algunos países se agregan vitaminas a los productos de consumo masivo (pan, leche, etc.) para mejorar la dieta alimentaria.

Se difundió el transplante de órganos y la colocación de aparatos mecánicos o electrónicos en el cuerpo humano. Se extendió el uso de elementos radiactivos y se facilitó la exactitud del diagnóstico, mediante sondas de fibra óptica, que permiten ver en el interior del cuerpo humano (por ejemplo en venas y arterias y en el sistema gástrico) y aparatos de tomografía computada que trazan verdaderos mapas radiográficos en tres dimensiones.
La investigación más reciente profundiza el conocimiento del origen de la vida y las leyes de la herencia biológica mediante el estudio de los genes.

Crick, Watson y Wilkins descubrieron en 1960 el ácido deoxiribonucleico (DNA), compuesto fundamental del gen que rige las leyes de la herencia. Experiencias de ataque por bacterias permiten modificar la estructura molecular del DNA, y de ese modo producir plantas y animales de características más convenientes.

La mecanización y el uso intensivo de productos químicos (herbicidas, pesticidas y abonos sintéticos), revolucionó la agricultura. Aumentó el rendimiento, los cultivos se extendieron a zonas anteriormente no aptas: se obtuvieron semillas y frutos de mejor calidad y mayor tamaño.

La inseminación artificial mejoró la calidad del ganado. Con el motor a reacción el transporte aéreo adquirió gran preponderancia, aumentando su velocidad y capacidad de carga; se transportan más de 300 pasajeros por vuelo. El Concorde, franco británico, viaja a una velocidad de crucero de 2.200 kilómetros por hora.

Cuestionamientos al Progreso Tecnológico del Siglo XX

Fuente Consultada: Historia 3 de José C. Astolfi

Principio de Pascal Presion de los Fluidos Resumen Teoria Liquidos

Principio de Pascal Presión de los Fluídos

Para sumergir totalmente en agua una colchoneta inflable necesitamos empujarla hacia abajo. Es más fácil sostener un objeto pesado dentro del agua que fuera de ella. Cuando buceamos pareciera que nos apretaran los tímpanos.

Éstos y muchos otros ejemplos nos indican que un líquido en equilibrio ejerce una fuerza sobre un cuerpo sumergido. Pero, ¿qué origina esa fuerza?, ¿en qué dirección actúa?, ¿también el aire en reposo ejerce fuerza sobre los cuerpos?, ¿qué determina que un cuerpo flote o no? Éstas son algunas de las cuestiones que aborda la estática de fluidos: el estudio del equilibrio en líquidos y gases.

Un fluido en reposo en contacto con la superficie de un sólido ejerce fuerza sobre todos los puntos de dicha superficie. Si llenamos de agua una botella de plástico con orificios en sus paredes observamos que los chorritos de agua salen en dirección perpendicular a las paredes. Esto muestra que la dirección de la fuerza que el líquido ejerce en cada punto de la pared es siempre perpendicular a la superficie de contacto.

En el estudio de los fluidos, resulta necesario conocer cómo es la fuerza que se ejerce en cada punto de las superficies, más que la fuerza en sí misma. Una persona acostada o parada sobre una colchoneta aplica la misma fuerza en ambos casos (su peso). Sin embargo, la colchoneta se hunde más cuando se concentra la fuerza sobre la pequeña superficie de los pies. El peso de la persona se reparte entre los puntos de la superficie de contacto: cuanto menor sea esta superficie, más fuerza corresponderá a cada punto.

Se define la presión como el cociente entre el módulo de la fuerza ejercida per­pendicularmente a una superficie (F perpendicular)  y el área (A) de ésta:

En fórmulas es: p=F/A 

La persona parada ejerce una presión mayor sobre la colchoneta que cuando está acostada sobre ella. La fuerza por unidad de área, en cada caso, es distinta. Cuando buceamos, la molestia que sentimos en los oídos a una cierta profundidad no depende de cómo orientemos la cabeza: el líquido ejerce presión sobre nuestros tímpanos independientemente de la inclinación de los mismos. La presión se manifiesta como una fuerza perpendicular a la superficie, cualquiera sea la orientación de ésta.

Densidad y peso específico
La densidad es una magnitud que mide la compactibili­dad de los materiales, es decir, la cantidad de materia contenida en un cierto volumen. Si un cuerpo está hecho de determinado material, podemos calcular su densidad como el cociente entre la masa del cuerpo y su volumen:d = m/V

Análogamente, se define el peso específico como el peso de un determinado volumen del material. Por lo tanto:    p=P/V    (peso dividido el volumen, pero el peso es la masa (m) por la aceleracion de la gravedad (g)) Se puede entonces escribir: p=(m.g)/V.

Como vimos antes, m/V es la densidad d, entonces p=d.g

Las unidades de presión que se utilizan normalmente son:

SistemaUnidadNombre
M.K.S.N/m²Pascal (Pa)
TECNICOKg/m²
C.G.S.dina/cm²Baría

EL PRINCIPIO DE PASCAL

En las figuras se muestran dos situaciones: en la primera se empuja el líquido contenido en un recipiente mediante un émbolo; en la segunda, se empuja un bloque sólido. ¿Cuál es el efecto de estas acciones? ¿Qué diferencia un caso de otro?

La característica estructural de los fluidos hace que en ellos se transmitan presiones, a diferencia de lo que ocurre en los sólidos, que transmiten fuerzas. Este comportamiento fue descubierto por el físico francés Blaise Pascal (1623-1662) , quien estableció el siguiente principio:

Un cambio de presión aplicado a un fluido en reposo dentro de un recipiente se transmite sin alteración a través de todo el fluido. Es igual en todas las direcciones y actúa mediante fuerzas perpendiculares a las paredes que lo contienen.

El principio de Pascal fundamenta el funcionamiento de las genéricamente llamadas máquinas hidráulicas: la prensa, el gato, el freno, el ascensor y la grúa, entre otras.

Cuando apretamos una chinche, la fuerza que el pulgar hace sobre la cabeza es igual a la que la punta de la chinche ejerce sobre la pared. La gran superficie de la cabeza alivia la presión sobre el pulgar; la punta afilada permite que la presión sobre la pared alcance para perforarla.

Cuando caminamos sobre un terreno blando debemos usar zapatos que cubran una mayor superficie de apoyo de tal manera que la presión sobre el piso sea la mas pequeña posible. Seria casi imposible para una mujer, inclusive las mas liviana, camina con tacos altos sobre la arena, porque se hundiría inexorablemente.

El peso de las estructuras como las casas y edificios se asientan sobre el terreno a través de zapatas de hormigón o cimientos para conseguir repartir todo el peso en la mayor cantidad de área para que de este modo la tierra pueda soportarlo, por ejemplo un terreno normal, la presión admisible es de 1,5 Kg/cm².

La Presa Hidráulica

El principio de Pascal fundamenta el funcionamiento de las genéricamente llamadas máquinas hidráulicas: la prensa, el gato, el freno, el ascensor y la grúa, entre otras.

Este dispositivo, llamado prensa hidráulica, nos permite prensar, levantar pesos o estampar metales ejerciendo fuerzas muy pequeñas. Veamos cómo lo hace.

El recipiente lleno de líquido de la figura consta de dos cuellos de diferente sección cerrados con sendos tapones ajustados y capaces de res-balar libremente dentro de los tubos (pistones). Si se ejerce una fuerza (F1) sobre el pistón pequeño, la presión ejercida se transmite, tal como lo observó Pascal, a todos los puntos del fluido dentro del recinto y produce fuerzas perpendiculares a las paredes. En particular, la porción de pared representada por el pistón grande (A2) siente una fuerza (F2) de manera que mientras el pistón chico baja, el grande sube. La presión sobre los pistones es la misma, No así la fuerza!

Como p1=p2 (porque la presión interna es la misma para todos lo puntos)

Entonces: F1/A1 es igual F2/A2 por lo que despejando un termino se tiene que: F2=F1.(A2/A1)

Si, por ejemplo, la superficie del pistón grande es el cuádruple de la del chico, entonces el módulo de la fuerza obtenida en él será el cuádruple de la fuerza ejercida en el pequeño.

La prensa hidráulica, al igual que las palancas mecánicas, no multiplica la energía. El volumen de líquido desplazado por el pistón pequeño se distribuye en una capa delgada en el pistón grande, de modo que el producto de la fuerza por el desplazamiento (el trabajo) es igual en ambas ramas. ¡El dentista debe accionar muchas veces el pedal del sillón para lograr levantar lo suficiente al paciente!

UN POCO DE HISTORIA
PASCAL Y TORRICELLI

Las experiencias de Torricelli llegaron a oídos de Blas Pascal, que en la misma época vivía en la ciudad de Rúan. Entusiasmado con las ideas del físico italiano, repitió las experiencias y se convenció de que aquél tenía razón. Además, aprovechando que en su villa se construían excelentes tubos de vidrio, hizo construir uno de alrededor de once metros de largo, y realizó la experiencia de Torricelli, pero con agua, comprobando que alcanzaba una altura de 10,33 metros.

Debido a una disputa con físicos que sostenían todavía la vieja doctrina del horror al vacío, Pascal hizo esta experiencia hasta con vino, aplastando los argumentos de los adversarios.

Si la teoría de Torricelli es correcta, pensó Pascal, ¿qué debe ocurrir cuando se hace la experiencia de Torricelli a distintas alturas, subiendo una montaña, por ejemplo? La presión atmosférica debe ir disminuyendo, y por lo tanto la columna de mercurio, que al nivel del suelo tiene una altura de unos 76 cm, debe ir disminuyendo también.

Pascal decidió realizar el experimento, pero por su salud no pudo hacerlo personalmente. Envió a unos amigos, quienes ascendieron al Puy-de-Dóme, en la Auvernia, en 1649. Con gran emoción, los expedicionarios comprobaron que, a medida que ascendían por la montaña, el nivel del mercurio bajaba. El descenso alcanzó unos 8 cm al llegar a la cima.

ALGUNOS «MISTERIOS»
La presión de la atmósfera es capaz de sostener una columna de agua de unos 10 metros de altura y de cualquier sección. Pues bien, llene un vaso e inviértalo, rápidamente. ¿Impedirá la presión atmosférica que se vuelque el agua? Todos sabemos que no. ¿Por qué? Recuerde la experiencia del vaso citada al comienzo: colocábamos un papel. ¿Cuál es la función del papel? En el tubo de vainilla, el papel no era necesario…

Y a propósito… Si decimos que la presión atmosférica sostiene una columna de mercurio de 76 cm de altura, ¿para qué se usa la cubeta con mercurio en la experiencia de Torricelli? ¿Por qué no invierte el tubo lleno de mercurio tranquilamente en el aire? Si se usa un tubo suficientemente delgado, ¿sucederá con el mercurio lo mismo que con el agua del tubo de vainilla?

Ejemplo 1:
 Calcular qué altura alcanza el agua si se hace con ella la experiencia de Torricelli.

Datos:
presión atmosférica p = 1.033 g/cm2;
peso específico del agua @ = 1 g/cm3

Se necesita una columna de agua que produzca esa presión. Su altura h será tal que:
p =  h . @ ==> h=p/@ = 1.033 g/cm2  / 1 g/cm3  = 1033 cm.= 10,33 m.

Ejemplo 2:
Admitiendo que el peso específico del aire es de 1,3 g/dm3, calcular cuál es la presión atmosférica a 100 m de altura, si al nivel del suelo es de 1 033 g/cm2.

A  1.033 g/cm2 hay que restarle la presión ejercida por una columna de aire de 100 m de altura:
h @=- 100 m . 1,3 g/dm3 = 10.000 cm . 0,0013 g/cm3  = 13g/cm2

Luego, a 100 m de altura
p’ = 1.033 g/cm2 – 13 g/cm2 = 1.020 g/cm2

Ejemplo 3:
Calcular cuánto desciende la columna de mercurio del tubo de Torricelli cuando se lo eleva 100 m.
A 100 m la presión es de 1.020 g/cm2.

El mercurio llegará a una altura h tal que: h [email protected] = p  ===>  h=p/@
1020 gcm2 / 13,6 g/cm= 75 cm.

La columna ha descendido 1 cm.

Estos problemas sugieren inmediatamente la idea de averiguar la altura a que se encuentra una persona midiendo simplemente la presión atmosférica a esa altura. Es el principio que se usa para medir la altura a la que vuela un avión.

Nanociencia Nanotecnologia Que es la Nanociencia? Aplicaciones de la

Nanociencia Nanotecnologia ¿Qué es la Nanociencia?

Uno de los avances mas espectaculares llevados a cabo en Física e Ingeniería en años recientes es el experimentado por la nanotecnología: la habilidad de diseñar, controlar y modificar materiales a nivel cuasi-microscópico ó “mesoscópico”. La nanotecnología nos promete la posibilidad —largamente soñada— de influir en las propiedades de los materiales con el fin de producir materiales “inteligentes” para todo tipo de aplicaciones.

Es ahora frecuente ver en las más prestigiosas revistas científicas reportes sobre avances en diseño de microcircuitos, microestructuras artificiales y máquinas microscópicas. Ahora es posible el crecimiento sistemático y controlado de pequeñas estructuras artificiales compuestas de varia capas delgadas de materiales diferentes, algunas de unos pocos átomos de ancho mediante técnicas, tales como los “haces moleculares epitaxiales”.

A escala comercial, quizás la aplicación mas espectacular a la fecha es el uso de la magnetoresistencia gigante, descubierta en 1998, en las cabezas lectoras de la mayoría de los discos duros de los computadores actuales.

Estos y otros avances relacionados, han provocado un explosivo interés en el tema y el término nanotecnología se ha convertido en palabra clave de muchas propuestas de investigación en ciencia de materiales e ingeniería.

ORÍGENES: E 29 de diciembre de 1959, por ejemplo, el físico Richard Feynman -uno de los científicos más importantes del siglo XX- miró con determinación a si audiencia en una conferencia en el Instituto de Tecnología de California EE.UU., se aclaró la garganta y dijo: «Hay mucho lugar allá abajo» y lanzó no uno, sino dos desafíos a los presentes en el auditorio: le daría 1.000 dólares a aquel capaz de hacer un motor más pequeño que 8 mm3 y a quien lograra escribir los 24 volúmenes de la Enciclopedia Británica en la cabeza de un alfiler, es decir, reducir unas 25.000 veces un texto.

Casi sin querer  (o saberlo), este premio Nobel de física había abierto las puertas de lo desconocido. Había dado a luz un nuevo campo científico, de dominio íntimos, liliputienses, vírgenes: habían nacido las nanociencias.

Richard Feynman

La electrónica había encontrado su camino en la miniaturización.

Y Feynman, todo un provocador, estaba seguro de que se podía bajar incluso unos pisos más: en teoría, nada impedía manipular conjuntos de átomos, reordenarlos con suma precisión como si fueran ladrillos 1.000 millones de veces más pequeños que un metro, un «nanómetro», o sea, el tamaño de un virus.

Y hacerlo, pese a que, como muchos comprobaron más tarde, el comportamiento de la materia cambia por debajo de un cierto tamaño.

Las leyes que rigen son distintas. El tamaño importa: en este mundo ínfimo donde las cosas no pesan casi nada, la gravedad mucho no importa. (Fuente: Todo lo que necesitas saber sobre ciencias, Federico Kukso)

La opinión pública y la dirigencia política desconocen casi por completo el desafío de las nanotecnologias, portadoras de muchas más esperanzas y peligros que todas las tecnologías hasta hoy conocidas.

Su difusión potencial preocupa a los ciudadanos, mientras las industrias prometen el advenimiento de materiales milagrosos. Como ya ocurrió con los organismos genéticamente modificados (OGM), el ritmo de desarrollo de sus aplicaciones es más rápido que el control de los peligros que encierran.

Qué tienen en común un neumático inteligente y una crema sol milagrosa? ¿O una prenda de vestir isotérmica, cuyo color cambia con nuestro humor, y una pintura resistente a las manchas? ¿O un “acero” tan liviano como el plástico y un interruptor sin cable? ¿O las medias que no toman olor y la destrucción selectiva de una célula cancerosa? En todos los casos, se trata de aplicaciones de la nanotecnología.

Hoy se sabe cómo producir esos objetos cuyo tamaño está en el orden del millonésimo de milímetro (0,000001mm). Constituidos por una pequeña cantidad de átomos o de moléculas, están dotados de extraordinarias características físicas, químicas o biológicas que les otorgan resistencia, flexibilidad, liviandad o capacidad de almacenamiento de información. Esta confluencia de la materia, la electrónica y la biología se presta a aplicaciones informáticas, industriales, ambientales y médicas.

El significado de la «nano» es una dimensión: 10 elevado a -9.

Esto es: 1 manómetro = 0,000000001 metros. Es decir, un manómetro es la mil millonésima parte de un metro, o millonésima parte de un milímetro. También: 1 milímetro = 1.000.000 manómetros. Una definición de nanociencia es aquella que se ocupa del estudio de los objetos cuyo tamaño es desde cientos a décimas de manómetros.

Hay varias razones por las que la Nanociencia se ha convertido en un importante campo científico con entidad propia. Una es la disponibilidad de nuevos instrumentos capaces de «ver» y «tocar» a esta escala dimensional. A principios de los ochenta fue inventado en Suiza (IBM-Zurich) uno de los microscopios capaz de «ver» átomos. Unos pocos años más tarde el Atomic Force Microscope fue inventado incrementando las capacidades y tipos de materiales que podían ser investigados…

En respuesta a estas nuevas posibilidades los científicos han tomado conciencia de potencial futuro de la actividad investigadora en estos campos. La mayor parte de los países han institucionalizado iniciativas para promover la nanociencia y la nanotecnología, en sus universidades y laboratorios.

Así, la más extendida revolución tecnológica que haya conocido la humanidad está tal vez en vías de nacer en laboratorios de Tokio, Berkeley o Grenoble. Revolución, porque las nanotecnologias permiten eliminar la barrera entre lo real y lo virtual, entre lo vivo y lo material. Extendida, porque la posibilidad de poner inteligencia en todas las partes de nuestro cuerpo y en nuestro medio ambiente abre perspectivas económicas infinitas, estimadas en un billón de dólares a partir de 2015.

La palabra «nanotecnología» es usada extensivamente para definir las ciencias y técnicas que se aplican al un nivel de nanoescala, esto es unas medidas extremadamente pequeñas «nanos» que permiten trabajar y manipular las estructuras moleculares y sus átomos. En síntesis nos llevaría a la posibilidad de fabricar materiales y máquinas a partir del reordenamiento de átomos y moléculas. El desarrollo de esta disciplina se produce a partir de las propuestas de Richard Feynman

nanotecnologia

RIESGO SANITARIO
Pero esta revolución plantea una cantidad infinita de preguntas. Los industriales, tras el escándalo del amianto y el rechazo a los OGM, tratan de desactivar las objeciones críticas mediante una concertación con algunos grupos ciudadanos. Pero el argumento que plantea que ya vivimos en medio de nanopartículas errantes a las que se supone inofensivas—producidas por la naturaleza, la industria y los motores de vehículos— no basta para cerrar el debate sobre el peligro sanitario y, menos aun, sobre los riesgos para la libertad.

A mediados de 2006 ya se contaban 700 productos que contenían componentes nanométricos y 1.400 clases de nano partículas vendidas por unos SO productores. A pesar de la creación de grupos de trabajo y de la organización de debates públicos en todo el mundo, el control de los riesgos —por la vía de normas, leyes y una obligación de transparencia— parece muy retrasado con respecto al ritmo de desarrollo de las aplicaciones que, por otra parte, son muchas veces desconocidas por razones de secreto industrial y, sobre todo, militar.

Se sabe, sin embargo, que su tamaño les permite a esas partículas no sólo alojarse en las vías respiratorias, sino también atravesar la piel, penetrar las células basta su núcleo, vencer membranas consideradas infranqueables o alojarse en el sistema nervioso central. Millones de trabajadores corren el riesgo de resultar expuestos a las nanopartículas. Ya se puede prever una acumulación en la naturaleza de “migajas” nanométricas capaces de perturbar los ecosistemas y de intoxicar al ser humano. ¿Podrá argüirse, cómo con el amianto, que no sabíamos?

LA TENTACIÓN DE FAUSTO
El riesgo para la libertad parece mucho mayor que el de la toxicidad, porque con la generalización de losnanochips se corre el riesgo de relanzar la tentación de Fausto, de crear el ser perfecto, de buen desempeño y alta resistencia. A través del sistema de Radio Frequency Identification (RIFID) se abre la vía para vigiar a los individuos y su comportamiento. La difusión de partículas inteligentes también puede servir para la vigilancia del medio ambiente, para la marcación antirrobo, para los sistemas de información militar o para la acción de los terroristas, de sectas y de “Estados canallas”.

Como con los OGM, que se imponen a pesar de las dudas y de las moratorias locales, las nanociencias llaman a la construcción de un sistema de responsabilidades entre quien toma las decisiones políticas, el científico, el industrial y el ciudadano. Confirman que un Estado no puede —suponiendo que quiera hacerlo— adoptar por sí solo el principio de la protección máxima, sin correr el riesgo de ver que los demás acaparen patentes y mercados. Se plantea así la cuestión del crecimiento de las desigualdades ente quienes dominan esta arma económica suprema y quienes no pueden hacerlo.

A CORTO PLAZO:

Nanotecnología purificadera: El 73 por ciento del agua que hay en el mundo es salada, y el 2,7 por ciento del agua dulce que puede servir para consumo humano está contaminado por fuentes industriales. Una solución podría llegar de parte de un proyecto que llevan a cabo el Instituto Politécnico Nacional de México, la Pontificia Universidad Javeriana de Colombia, e instituciones de Francia y España, que comenzaron a usar una tecnología que combina biotecnología y nanotecnología, para purificar aguas, incluyendo a las industriales. El sistema se basa en nanopartículas de óxido de titanio que se colocan sobre superficies de vidrio o de cristal y después se someten a altas temperaturas para que se adhieran.

Es en presencia de luz solar o ultravioleta que se producen especies oxidantes que degradan el material orgánico en el agua contaminada. Una prueba indica que, aplicada a un lote de 800 mililitros de agua con 1,5 gramo de nanopartículas de óxido de titanio, se removió la totalidad de los compuestos tóxicos.»

Detección Rápida del Cáncer: Pruebas de cáncer más rápidas Científicos estadounidenses han usado con éxitonanosensores para detectar exitosamente cáncer en la sangre de los pacientes. La prueba más reciente puede detectar concentraciones mínimas de marcadores biológicos, en el orden de una millonésima parte de gramo por mililitro, el equivalente a ser capaz de detectar un grano de sal disuelto en una piscina grande. En vez de tener que esperar varios días los resultados del laboratorio, la prueba ofrece una lectura en minutos.

LA ESTRELLA DEL SIGLO XXI: EL GRAFENO: Un nuevo material de ficción (un nanomaterial), 200 veces mas resistente que el acero, pero flexible, impermeable y conductor de la electricidad.

En este material los átomos están dispuestos en hojas tridimensionales: el grafeno es ultrafino -sus átomos de carbono se agrupan siguiendo un modelo parecido a un panal de abejas-, transparente, flexible, impermeable, presenta una elevada conductividad eléctrica y, encima, es doscientas veces más resistente que el acero. «Con solo apretar un botón en un paquete de galletitas, sabremos sus ingredientes y calorías», asegura el belga Jan Genoe del Instituto Imec de Nanoelectrónica de Lovaina. «En unos años, veremos pantallas de este material en todas partes.»

Con el grafeno, los celulares podrían volverse casi tan delgados y flexibles como el papel y prácticamente indestructibles. También podría abrir el camino a las placas solares flexibles: los metales convencionales absorben la luz. Por el contrario, el grafeno, incorporado en un panel solar, facilitará el aporte de energía a numerosos dispositivos. Y hay más: «el papel electrónico enrollable -asegura uno de los descubridores del grafeno, Kostya Novoselov- podría estar disponible en 2015″.

LOS FULLERENOS, Historia
Hasta 1985 se pensó que el elemento más estudiado por el hombre, el carbono, sólo podía existir, en estado puro, en forma de diamante -sustancia de gran dureza que no conduce la electricidad- y de grafito -material bastante blando y buen conductor de la electricidad- Ese año, motivados por el descubrimiento de nuevos compuestos del carbono realizado en el espacio exterior, el químico británico Harold W. Kroto (1939- ) y los estadounidenses Robert F. Curl (1933-) y Richard E. Smalley (1943-) estudiaron el agregado de pequeños grupos de átomos de carbono llamados clusters.

Robert F. Curl                           Richard E. Smalley

Estos científicos observaron que se producía un agregado con un número máximo de 60 átomos de carbono y trataron de determinar su estructura espacial. Luego de varios intentos para encontrar una estructura formada sólo por hexágonos la forma más común que adopta el carbono), se convencieron de que la única disposición posible era la de una pelota de fútbol, constituida por 20 hexágonos y 12 pentágonos.

Esta nueva forma natural del carbono se conoce con el nombre de futboleno, o también buckminsterfullereno debido a la similitud estructural con las formas geométricas de las cúpulas geodésicas inventadas por el arquitecto estadounidense Richard Buckminster Fuller 1895-1983).

El trabajo de estos científicos fue arduo: durante cinco años buscaron un método que permitiera crear cantidades visibles de futboleno. Sabían que la sustancia se producía en forma natural durante la combustión del carbón, pero cuando juntaban hollín en benceno, éste se depositaba en el fondo y no se obtenía el compuesto amarillo tan buscado.

En mayo de 1990, mientras estudiaba el polvo interestelar, el físico Wolfgang Krátschmer y sus colaboradores evaporaron una barra de grafito calentándola con una corriente de helio y observaron que en el hollín había una sustancia diferente.

Años más tarde y luego de varios estudios, Krátschmer mezcló unas gotas de benceno con este hollín, y el solvente incoloro se volvió rojo. Varios estudios posteriores permitieron concluir que se trataba de una solución concentrada de fullerenos. ¡El futboleno es amarillo cuando forma una película, y rojo, cuando está en solución!

Curl y Smalley continuaron con el estudio de estas sustancias, hasta que en 1996 recibieron el premio Nobel de Química. Tal como es común en la historia de las ciencias, a partir de este descubrimiento se abrieron nuevos campos para la investigación en terrenos muy alejados de los objetivos iniciales de los científicos.

Se han descubierto nuevos fullerenos de 60 y 70 átomos de carbono, y algunos de ellos tienen utilidad como superconductores a bajas temperaturas cuando se incorporan otros elementos a su estructura. Finalmente, se comprobó que el futboleno es biológicamente activo y podría llegar a emplearse en la lucha contra el cáncer.
Fuente: Investigación y Ciencia, N° 183, diciembre de 1991.

LA NANOCIENCIA SE INSPIRA EN LA NATURALEZA: Los científicos se inspiran en la naturaleza, tratando de imitar propiedades a nanoescalas que tienen algunas plantas y animales y que podrían utilizarse para fabricar nuevos materiales utilizando esas misma propiedades, por ejemplo las que siguen abajo:

nanociencia, cuadro de aplicaciones

CRONOLOGÍA:

1959 El físico Richard Feynman advirtió en una conferencia en el Instituto Tecnológico de California: «A mi modo de ver, los principios de la física no se pronuncian en contra de la posibilidad de maniobrar las cosas átomo por átomo».

1980 Se estrenó la película Viaje fantástico, basada en el libro de Isaac Asimov, con Raquel Welch. Cuenta la travesía de un grupo de científicos que reducen su tamaño al de una partícula y se introducen en el interior del cuerpo de un investigador para destrozar el tumor que lo está matando.

1970 Se diseñó la primera nanoestructura: un liposoma.

1974 El japonés Norio Taniguchi utilizó por primera vez la palabra «nanotecnología» en un paper.

1981 El físico suizo Heinrich Rohrer y el alemán Gerd Binnig desarrollaron el microscopio de efecto túnel, que permite manipular átomos.

1985 El químico inglés Harold Kroto descubrió los fulerenos, macromoléculas de carbono individuales utilizadas para hacer nanotubos.

1989 Investigadores del Almadén Research Center de IBM manipularon con precisión 35 átomos de xenón para formar el logo de la empresa de informática. 1999 Aparecieron en el mercado los primeros productos con nanotecnología. 2002 Michael Crichton publicó Presa, un tecnothriiler en el que unos nanobots inteligentes escapan al control humano y se convierten en entes autónomos, autorreplicantes y peligrosos.

2010 Se creó un nanobot capaz de mover átomos y moléculas.

2012 Se desarrolló un método en impresoras 3D para la fabricación de es culturas con estructuras tan pequeñas como un grano de arena.

Naturaleza de la Materia

MAS EN INTERNET:
> Centro Nacional de Investigación Científica (CNRS): www.cnrs.fr

> Portal creado por iniciativa del Ministerio Delegado para la Investigación y las Nuevas Tecnologías: www.nanomicro.recherche.gouv.fr

> Action Group on Erosion, Technology and Concentration: www.etcgroup.org/en

> VivAgora, plataforma de protección, información y diálogo por una participación ciudadana en las decisiones científicas y técnicas:www.vivagora.org