Maravillas de la Ingeniería

Calculo de la Dosificacion de Materiales Para Hormigones y Morteros

Calculo de la Dosificación de Materiales Para Hormigones y Morteros-Ejemplos

compuesto de una mezcla de construcción

INTRODUCCIÓN: ¿QUE SE MEZCLA?

Áridos:
La Arena:
Sirve para reducir las fisuras que aparecen en la mezcla, al endurecerse y dar volumen.

La Piedra: Se utiliza en la preparación de hormigones resistentes como para bases, columnas, losas, puede usarse canto rodado, que es la piedra de río o piedra partida (de cantera) o arcilla expandida.

El Cascote: Puede ser de ladrillo o de demolición de obras viejas. Se utiliza en hormigones pobres o de bajas resitencias para contrapisos y cimientos.

Aglomerantes:

La Cal y El Cemento: Los dos reaccionan en contacto con el agua, sufriendo un proceso que empieza por el fragüe. Hay mezclas que como aglomerantes llevan solamente cemento (se las llama concreto) y otras donde el aglutinante principal es la cal, a la que se le puede agregar un poco de cemento para reforzarla (cal reforzada). Las cales se venden en bolsas de 25 o 30 Kg. según la marca y el cemento en bolsas de 50 Kg.

Cemento de Albañilería: Es un producto que se puede usar en reemplazo de la cal reforzada.Se vende en bolsas de 30 o 40 Kg. según la marca, como Plasticor, Hidralit,Calcemit,etc.

Líquidos:
El Agua:
Dá plasticidad a la mezcla para que sea trabajable y provoca la reacción química que produce el fragüe.

El Hidrófugo: Es un producto químico que se agrega al agua para aumentar la impermeabilidad.
Existen varios productos de este tipo como cerecita, sika, etc. que se usan según indicaciones de cada fabricante.

Los Aditivos: Se agregan al agua estos aditivos, que son de todo tipo como aceleradores de fragüe, mejoradores plásticos, retardadores de fragüe, etc.

linea divisoria

—- TABLA DE  MEZCLAS MAS HABITUALES —-

Hormigón
De Cascotes
Hormigón
De Piedra
MorteroMortero: Cal Reforzada
(1)
Mortero: Cal Reforzada
(2)
Mortero: Cal Reforzada
(3)
Mortero: Cal Reforzada
(4)
Para Cimientos
y Contrapisos
Para Columnas,
Vigas,Losas…
Carpetas,Dinteles
Tomar Juntas…
 Paredes de
Ladrillo Común
Paredes de
Bloques Hormig.
Revoque GruesoRevoque Fino
1 CAL1 CEMENTO1 CEMENTO1 CAL1 CAL1 CAL1 CAL AEREA
1/8 CEMENTO3 ARENA3 ARENA1/2 CEMENTO1 CEMENTO1/4 CEMENTO1/8 CEMENTO
4 ARENA3 PIEDRA 3 ARENA6 ARENA3 ARENA 2 ARENA
8 CASCOTES      
OTRA OPCIÓN
1 CEM. ALBAÑIL.1 CEMENTO 1 CEM. ALBAÑIL.1 CEM. ALBAÑIL.  
4 ARENA3 ARENA 5 ARENA5 ARENA
8 CASCOTES3 CANTO ROD.     

OTRAS DOSIFICACIONES DE MORTERO PARA PEGAR LADRILLOS

Para Pared de 15cm. y 20 cm. con bloques cerámicos hay dos opciones de morteros:
Con Cemento: 1:1/8:3 (cal-cemento-arena)
Con Cem. Albañileria: 1:5 (cem. albañileria-arena)

Para Pared de 10cm. y 20 cm. con bloques de Hormigón hay dos opciones de morteros:
Con Cemento: 1:1:6 (cal-cemento-arena)
Con Cem. Albañileria: 1:5 (cem. albañileria-arena)

Para Pared de 10cm., 18cm. y 20 cm. con ladrillos huecos hay dos opciones de morteros:
Con Cemento: 1:1/2:3 (cal-cemento-arena)
Con Cem. Albañileria: 1:5 (cem. albañileria-arena)

Para Pared de 10cm., 15cm. con ladrillos comunes hay dos opciones de morteros:
Con Cemento: 1:1/2:3 (cal-cemento-arena)
Con Cem. Albañileria: 1:5 (cem. albañileria-arena)

Para Pared de 20 cm y 30 cm. con ladrillos comunes hay dos opciones de morteros:
Con Cemento: 1:1/4:3 (cal-cemento-arena)
Con Cem. Albañileria: 1:7 (cem. albañileria-arena)

Para Morteros de Colocación de Baldozas o Mosaicos: 1:1/4:3 (cal-cemento-arena)

Para Morteros Impermeables: 1:3 (cemento-arena)

Para Morteros de Revoques Gruesos: 1:1/4:3 (cal-cemento-arena)

Para Morteros de Revoques Finos: 1:1/8:2 (cal-cemento-arena)

TABLA DE MATERIALES NECESARIOS PARA 1M³ DE HORMIGÓN

tabla materiales por m3 de hormigon

Significa que para un hormigón estructural, donde mezclamos 1 balde de cemento+ 2 de arena+ 3 de piedra, necesitaremos para elaborar 1.0m³ : 300 Kg. de cemento, ósea 6 bolsas, mas 0,65 m³ de arena mas 0,65 m³ de piedra. En el software de mas abajo puede hacer los calculos de materiales desees, tanto para hormigones como morteros.

linea divisoria

EXPLICACIÓN TÉCNICA DE LA DOSIFICACIÓN CON EJEMPLOS:
Por ejemplo
una mezcla 1:2:4 significa que cuando se van a mezclar los materiales, se debe colocar 1 balde cemento,2 de arena y 4 de piedra, es decir, se dosifica por volumen. Como luego de apisonar las mezclas sufren una merma se recurre al uso de unos coeficientes de aporte, que es un valor propio de cada material, y se usa para establecer con cierta exactitud la cantidad de materiales necesarios para a comprar para un determinado volumen de mezcla a fabricar.

VALORES DE LOS COEFICIENTES DE APORTE PARA CADA MATERIAL

Arena gruesa (naturalmente humeda) 0.63
Arena Mediana (naturalmente humeda) 0.60
Arena gruesa seca 0.67
Arena fina seca 0.54
Cal en pasta 1.00
Cal en polvo 0.45
Canto rodado o grava 0.66
Cascote de ladrillo 0.60
Cemento Portland 0.47
Cemento Blancos 0.37
Mármol granulado 0.52
Piedra partida (pedregullo) 0.51
Polvo de ladrillo puro 0.56
Polvo de ladrillo de demolición 0.53
Yeso París 1.40

(*):El cemento de albañilería no está en la tabla pero para mis calculo uso: 0.47 como el cemento
(*) Estos valores y método se han basado en el libro El Calculista de Simón Goldehorn

linea divisoria

EJEMPLOS DE COMO SE CALCULAN LOS MATERIALES POR M³

Ejemplo Uno: Calcular un hormigón estructural: 1:3:3, que significa que se deben colocar 1 balde de cemento, mas 3 de arena, más 3 de piedra partida.

El volumen aparente de esta mezcla será 1+3+3=7 y siempre se estima un 9% de agua, es decir, para este caso el 9% de 7 es 0.63, por lo que el volumen aparente de esta mezcla será: 7+0.63=7.63 unidades (baldes, canastos, m3, etc)

Ahora para obtener el volumen real de la mezcla hay que recurrir a los coeficiente de aportes antes indicado y afectarlo a cada material interviniente, en este caso es:

Cemento 1 x 0.47=0.47

Arena     3 x 0.63=1.89

Piedra    3 x 0.51=1.53

El total es ahora: 0.47+1.89+1.53=3.89 y se le suma el agua (0.63), lo que dá: 4.52 unidades.

Entonces, ahora para calcular los materiales por m3 de mezcla es:

1m3 de cemento pesa 1400 Kg. que dividido este volumen real (4.52) dá: 310 Kg. es decir unas 6 bolsas por m3.

3m3 de arena dividido este volumen real es:0.67 m3 de arena

Y para los 3m3 de piedra partida es también 3/4.42= 0.67 m3.

Por lo tanto para hacer 1 m3 de hormigón 1:3:3 se deben mezclar:
309 Kg. de cemento (6 bolsas)
0.67m3 de arena
0.67m3 de piedra partida.

Ejemplo Dos:

Calcular una mezcla para mortero 1/4:1:3:1 significa: 0.25 de cemento,1 de cal en pasta hidratada,3 de arena y 1 de polvo de ladrillos.

Volumen aparente:0.25+1+3+1=5.25 + 9% de agua=5.72 unidades

Volumen real: 0.25 x 0.47 + 1 x 1 + 3 x 0.63 + 1 x 0.53 = 3.54 + 0.47 del agua= 4.012 unidades

Entonces es:

Cemento (0.25 x 1400)/4.012= 87 Kg.

Cal Hidraulica (1 x 600)/4.012=150 Kg.   (Para 1m3 de cal en pasta se usa unos 600Kg.)

Arena (3/4.012)= .75 (no hace falta el peso especifico porque la arena se vende por m3)}

Polvo ladrillo (1/4.012)=0.25 (idem. a la arena)

Entonces para esta mezclas es:
87 kg. de cemento,
150 Kg. de cal,
0.75m3 de arena y
0.25 m3 de polvo de ladrillos.

PESOS ESPECÍFICOS DE LOS MATERIALES DE CONSTRUCCIÓN (Kg./m3)

Arena seca1450
Arena naturalmente humeda1650
Arena muy mojada2000
Cal viva en terrones900-1100
Cal hidráulica viva, en polvo850-1150
Cal en pasta1300
Cemento Portland1200-1400
Cemento Blanco1100
Cemento fraguado2700-3000
Escorias de Coque600
Canto Rodado (Grava)1750
Hormigón armado2400
Hormigón de Cascotes1800
Ladrillos Comunes1350-1600
Ladrillos de Maquina1580
Mampostería de Piedra2250
Mármol2700-2800
Mortero de Cal y Arena fraguado1650
Mortero de Cemento, Cal y Arena fraguado1700-1900
Nieve suelta150
Nieve congelada500
Papel en libros1000
Polvo de ladrillos de demolición1000
Porcelana 2400
Tierra arcillosa seca1600
Tierra Humeda1850
Tiza1000
Yeso en polvo1200

CALCULO ONLINE DE LOS MATERIALES SEGUN EL TIPO DE PARED

 

Proceso de Elaboración del Cemento Portland

Bajar Un Software Para Calcular Dosificaciones de Mezclas y Hormigones

ALGO MAS SOBRE EL HORMIGÓN….

HORMIGÓN: Mezcla de cemento, arena, grava o piedra triturada y agua. El cemento portland, que es el más importante componente del hormigón, puede adquirirse con facilidad, ya que existen numerosas fábricas que lo producen y lo distribuyen ampliamente. Por lo general, los otros componentes se hallan cerca del lugar de construcción.

El hormigón se prepara casi siempre en el mismo lugar de la obra. Después de mezclado, con una sustancia plástica a la que es posible darle con facilidad la forma que se desea. Sin embargo, después de fraguado adquiere una consistencia dura y resistente, por lo que soporta la acción del fuego y del agua, así como las inclemencias del tiempo y las presiones inertes y continuas.

Es por esto que se emplea mucho en la construcción de edificios, carreteras, pistas de aeropuertos, puentes, redes de alcantarillado y otras obras en las que los factores duración y resistencia son primordiales. Se usa también en la fabricación de partes prevaciadas, tales como bloques de construcción, y conductos para agua y desagüe. Se puede decir que el empleo del hormigón no tiene límites. Como quiera que se endurece al contacto con el agua, se utiliza en la construcción de muelles y espigones. Aun se emplea para hacer barcos durante contiendas bélicas prolongadas, cuando por lo general existe gran escasez de acero y mano de obra especializada. Los componentes del hormigón (cemento, arena, cascajo y agua) deben mezclarse en determinadas proporciones.

Durante la operación de mezcla, se produce una reacción química entre el cemento y el agua formando una pasta que al recubrir las partículas de arena y de cascajo hace que éstas se liguen entre sí y constituyan una masa sólida.

Para obtener una buena mezcla se deben seguir ciertas reglas. La más importante es no emplear mucha agua, puesto que la consistencia del hormigón se debe en gran parte a la fuerza adhesiva de la pasta formada por el cemento y el agua. Si se emplea esta última con exceso, la pasta de cemento resulta acuosa y débil. En cambio, si se ponen las cantidades adecuadas, la pasta liga bien el cascajo y la arena, resultando una masa fuerte y compacta.

El hormigón es muy resistente a la compresión, pero carece de elasticidad. En vista de que ciertas construcciones de hormigón (puentes, edificios, etc.) están sometidas tanto a esfuerzos de compresión como de tracción, se refuerza la masa de hormigón con barras o mallas de acero, para obtener un material de alta resistencia a la compresión y a la tracción. Este recibe el nombre de hormigón armado, y se emplea tanto en la construcción de partes simples como en obras de la magnitud de un rascacielos.

UNA CURIOSIDAD DEL TEMA…

«Hace unos dos mil años, los albañiles emplearon materiales, avanzadísimos entonces, en la enorme cúpula de hormigón que coronaba un nuevo templo de la capital del Lacio. Hoy, el techo del Panteón sigue entero. Se está endureciendo, ya que los compuestos de calcio de la estructura reaccionan gradualmente con el dióxido de carbono para formar caliza y otros minerales cuya resistencia supera la del hormigón.»

Basado en estas apreciaciones, el ingeniero estadounidense Roger H. Jones patentó en 1996 un método que permite acortar, desde miles de años hasta minutos, el proceso de endurecimiento, que podría afectar delgadas paredes o gruesas estructuras empleadas para depositar residuos radiactivos. La lentitud de la fragua del hormigón se debe a que el agua tapa los poros del material por donde entraría el dióxido de carbono.

Jones sometió una mezcla de hormigón y cemento Portland a la acción del dióxido de carbono a alta presión y registró lo que ocurría: el gas expulsaba el agua del material y modificaba su composición química. La resistencia del cemento Portland aumentaba en un 84%.

Otras investigaciones permitieron aplicar este método a otros materiales. Las experiencias demuestran que cuando la presión se eleva a 75 atmósferas y la temperatura a 31 °C, el dióxido de carbono tiene la densidad de un líquido, pero mantiene la compresibilidad de un gas. En este estado llamado supercrítico, el dióxido carece de tensión superficial y puede penetrar los poros y grietas de una sustancia sin encontrar resistencia.

Una aplicación posible sería tratar con dióxido de carbono a presión las cenizas producidas en las centrales de carbón, previa mezcla con silicato de sodio, óxido de calcio y agua. En un principio, la pasta obtenida es un material débil y soluble en agua, pero al hacerla reaccionar con el dióxido de carbono supercrítico se hace resistente, estable e insoluble en agua. Su resistencia es comparable al cemento mezclado con fibra de vidrio: se construyó un pequeño muro con una abertura cuadrada de 30 cm de lado que resistió un peso de 240 kilogramos.

Lo ideal sería instalar una planta de procesamiento de las cenizas cerca de una central térmica: de este modo se evitarían los vertederos de cenizas, se dispondría de electricidad barata para alimentar la planta y se podría aprovechar el calor desperdiciado en la chimenea.

El proceso elimina de la atmósfera un gas, que en exceso se considera contaminante ambiental y que además recicla las cenizas. También se ha demostrado que en el momento de tratar el cemento con el dióxido supercrítico pueden agregarse metales o plásticos y, de esta manera, mejorar la flexibilidad, la durabilidad o capacidad de conducción eléctrica.  Fuente: Investigación y Ciencia, N.° 245

Fuente Consultada:
Lo Se Todo Tomo I
Enciclopedia BARSA Tomo 8
QUÍMICA I Polimodal Alegría-Bosack-Dal Fávero-Franco-Jaul-Ross

Viaducto Millau Datos Constructivos Puente Mas Alto del Mundo

Construcción y Datos Técnicos del Viaducto Millau
El Puente Mas Alto del Mundo

El viaducto de Millau en Aveyron (Francia) es el puente más alto del mundo. Inaugurado el 14 de diciembre de 2004 tras 36 meses de trabajos de construcción, la estructura alcanza una altura máxima de 343 metros sobre el río Tarn, y una longitud de 2.460 m, entre el Causse du Larzac y el Causse Rouge; tiene 7 pilares de hormigón, y el tablero tiene una anchura de 32 metros.

El proyecto, de cerca de 400 millones de euros, implicaba la construcción de una sección de peaje de 2.46 km de la autopista A75 entre Clement-Ferrand y Beziers. A 270 metros por encima del río Tarn en su punto más alto, el Viaducto de Millau cruza un valle de 2km en la zona de montañas del Macizo Central y forma el tramo final en la autopista A75 de Paris a Barcelona.

Vista viaducto millau en francia

Viaducto Millau (Francia):Vista Aerea del Puente Mas Alto del Mundo

El puente fue diseñado por el arquitecto británico Lord Norman Foster y construido por el contratista francés Eiffage en menos de tres años.En el año 2001 comenzó la construcción del viaducto de Millau, el puente más elevado del mundo, con 343 metros de altura máxima sobre el río Tarn, veinte metros más elevado que la Torre Eiffel.

Vista torres del viaducto millau

Vista de las Torres de Soporte del Puente Millau

una grua armando la torre soporte del viaducto Millau

Una alta grua armando la torre soporte del viaducto Millau

EL VIADUCTO MILLAU EN CIFRAS: Una obra concedida al grupo Eiffage por 75 años, trás la puesta en servicio del viaducto, y de una exigencia de funcionamiento perfecto para un periodo mínimo de 120 años. Una inversión de 320 millones de euros (2,1 mil millones de francos) financiados en fondos propios por Eiffage.

Altura total (al vértice de las pilas): 343 m. (Torre Eiffel: 320,75 m.)

Altura del tablero por encima del Tarn: 270 m.

Longitud total: 2 460 m.

Los tramos 8 en total (6 de 342 m. y 2 de 204 m.) reposan sobre 7 pilas y sostenidos por vientos fijados a 7 pilas de 90m de altura cada una.

Atura de la pila más alta (hormigón): 240 m debajo de tablero.

Tablero de acero: 36000 toneladas de armazón metálico (7 veces la torre Eiffel).

Hormigón de los estribos y pilas: 85 000 m3 de los cuales más de 50 000 m3 de hormigón de altas prestaciones (igual o superior a B60), o sea en total más de 205 000 toneladas de hormigón (40 veces la Torre Eiffel).

Superficie de las pilas de hormigón: – a base de los zócalos de fundación: 200 m2 – debajo del tablero: 30 m2

Pendiente: 3 % aproximadamente (subida en el sentido Clermont-Ferrand-Béziers)

Barrera de peaje: 18 vías cubiertas por una cubierta realizada con la tecnología BSI (Hormigón Especial Industrial), en Ceracem (cerámica de cemento moldeable en frío) patentada por Eiffage Construcción.

Plantilla en el sitio durante la obra: 500 personas aproximadamente (fuente Eiffage).

Construccion del Viaducto Millau

Vista de la Construccion del Viaducto Millau

Viaducto Millau El Puente Mas Alto del Mundo El viaducto en todo su trayecto está apoyado sobre siete pilastras de hormigón huecas que sostendrán el tablero tendrán alturas que oscilarán entre 70 y 245 metros y descansarán cada una en una base de hormigón apoyada sobre pilotes anclados a una profundidad de 15 metros. Por encima del tablero se sitúan los pilones metálicos donde se apoyan los tirantes de sujeción, que agregan otros 90 metros de altura a la obra.

La obra de ingeniería, dirigida por Michel Virlogeux, está a cargo de la empresa Eiffage TP, tercer grupo francés y quinto europeo del sector de la construcción y obras públicas, mientras que Eiffel se encarga de los elementos metálicos.

En total costará 320 millones de euros, 300 para la obra y 20 para la estación de peaje, cuya concesión explotará la Compagnie Eiffage du Yiaduc de Millau durante 75 años después de su puesta en servicio.

Seis veces más pesado que la Torre Eiffel: La construcción e instalación del tablero, de 36.000 toneladas, seis veces el peso de la Torre Eiffel, significó todo un desafio técnico. Se optó por uno metálico por ser más liviano, pero sobre todo por las condiciones de seguridad. «Un 96 por ciento de las horas trabajadas por los obreros transcurre sobre plataformas, por la parte de atrás de los estribos», subraya Marc Buonomo, responsable de Eiffel.

Esto mitigará el impacto de las inclemencias meteorológicas -nieve, viento, frío- y los peligros del trabajo a gran altura. Además, los operarios cuentan con cabinas con zona de descanso y comida, sanitarios y ascensor, lo que implica un hito en cuanto a condiciones de seguridad laboral en este tipo de obras.

La seguridad es humana y también técnica, ya que las vigas metálicas transversales resultan mucho menos sensibles a los vientos laterales -uno de los problemas del proyecto- que las vigas voladizas de hormigón.

Vista Aerea Viaducto Millau Francia

Vista Aerea de la Construcción del Viaducto Millau Francia

La colocación del tablero, por fases, se realizó mediante espectaculares maniobras. Los elementos, prefabricados en las plantas de Eifel, se instalaron por lanzamiento con tecnología hidráulica desde sendas plataformas situadas a cada orilla del río Tarn. «Usamos un sistema de traslado formado por 64 gatos hidráulicos controlados por computadora», explicó Buonomo.

El lanzamiento requiere la instalación de cinco pilotes metálicos provisionales, que sirven de apoyos intermedios entre dos pilastras consecutivas, para los vanos más largos. Estas estructuras, de 175 metros de altura, se arman utilizando sistemas telescópicos que optimizan las condiciones de seguridad al limitar las alturas a las que operan los trabajadores a 12 metros como máximo.

viaducto millau en francia

El lanzamiento de un puente consiste en construir su tablero sobre las plataformas de acceso y  empujarlo con la ayuda de gatos hidráulicos horizontales hasta que alcance su posición definitiva. Este procedimiento es muy conocido, eficaz y seguro para vanos pequeños o medianos.

Los tramos del puente avanzan guiados por GPS
Cada uno de los tramos del tablero, equipado con un pilón y puntales provisionales en el extremo, avanzarán el uno hacia el otro, y quedarán soldados una vez unidos, a más de 245 metros de altura. Entonces, otros cinco pilones metálicos, en forma de Y invertida, se encaminarán hasta su posición final, «donde se levantarán por vaivén», revela Buonomo. Los siete pilones también son prefabricados y ensamblados in situ en un área especial en la parte posterior de los estribos. El conjunto de los puntales (superficies centrales) está pensado para armarse y tensarse.

Las obras comenzaron en el año 2001 y hacia mediados de 2003 se llevó a cabo la instalación del segundo segmento del tablero a partir del pilar sur, mediante deslizamiento a una velocidad de 8 metros por hora y guiado por GPS. Así se salvó una brecha de 90 metros sobre las gargantas del río Tarn. En julio se realizaron los primeros avances por el lado norte, donde se colocó un tramo de 171 metros de tablero por el mismo procedimiento.

En octubre de 2003 se levantó el pilar P2, de 245 metros de altura. Las siete pilastras tienen que construirse en 16 meses, «un imperativo que nos hizo optar por acciones simultáneas, tratándose cada pilastra como una obra totalmente independiente con su propia grúa», dice Pierre Martín, responsable de Eiffage.

Este tipo de montaje, al reducir el volumen de materiales que se coloca in situ, también contribuye a disminuir el impacto ecológico, ya que requiere menos maquinaria y camiones, menos material inerte para transportar y menos ruidos ambientales.

Año de terminación: 2004
Propiedad: Ministerio Francés de Fomento
Arquitecto-Ingeniero: Norman Foster (arquitecto) y Michel Virlogeux (ingeniero)
Contratista General: Grupo Eiffage