Otras Cuestiones de Y. Perelman

Cuadrar un circulo con regla y compas Cuadratura del Circulo Problema

Problema de Cuadrar un Círculo con Regla y Compás

Los Tres Problemas Geométricos Más Famosos De La Antigüedad

menu

Problema 1:Duplicación de un Cubo   Problema 2: Trisecar un Angulo   Problema 3:Cuadrar Un Circulo

Introducción: Clásico problema de los griegos, el de cuadrar un circulo, osea obtener un cuadrado de igual superficie de un circulo:Antes de abordar la historia de la Geometría alejandrina y como complemento a lo dicho en el capítulo anterior, vale la pena de hablar de los tres problemas que más preocuparon a los griegos desde que aquella ciencia empezó a Construirse racionalmente.

Estos tres problemas son: la duplicación del cubo, la trisección del ángulo y la cuadratura del círculo, que los griegos no supieron resolver, ni nosotros tampoco.

La única ventaja que tenemos sobre ellos es la de saber por qué son irresolubles. Como dichos problemas han trastornado a tantas cabezas de aficionados a la Matemática y todavía existe una pintoresca fauna de locos inofensivos que cree haberlos resuelto, conviene precisar lo que quiere decir “resolver un problema” que es, precisamente, lo que no saben los pobres ilusos que se caracterizan tanto por su ignorancia de Matemática actual y de la historia de esta ciencia como la testaruda resistencia pasiva que oponen a todo intento para convencerles de su error.

En primer lugar, decir que un problema es irresoluble no tiene sentido si no se indica con qué medios o instrumentos, porque pudiera ocurrir que un problema que n tiene solución con ciertos recursos, la tenga con otros; y e segundo lugar, hay que distinguir entre la posibilidad y resolubilidad de de un problema: un problema es posible cuando admite una solución, aunque ésta no se pueda obtener por medio de construcciones elementales, de modo que la resolubilidad es un concepto relativo porque, en sentido absoluto, todo problema posible es resoluble.

La resolución de un problema consiste esencialmente en reducirlo a otro ya resuelto, y, por tanto, se debe llegar a uno, considerado como fundamental, cuya solución se supone dada por uno o varios de los postulados que se refieren al uso legítimo de los instrumentos necesarios para ciertas construcciones geométrica que para los griegos eran la regla y el compás: únicos aparatos de su actividad matemática hasta el punto de que no concedían carta de naturaleza científica a las figuras cuya construcción exige instrumentos distintos de aquéllos.

Con la regla se puede construir la recta que pasa por dos puntos, el punto común a dos rectas no paralelas, y, en general, los problemas de primer grado, es decir: los que, expresados en lenguaje analítico, sólo contienen la primera potencia de la incógnita, y si en el problema entran nociones métricas como las de paralelismo, longitudes de segmentos, valores angulares, etc., es irresoluble con la regla; con el compás es posible describir una circunferencia centro y radio dados, o de centro dado y que pase por punto dado, y determinar los puntos comunes a dos circunferencias secantes, y, por último, con la regla y el compás son resolubles muchísimos problemas siempre que su expresión algebraica sólo contenga raíces cuadradas. Modernamente se ha demostrado que la regla y el compás se pueden sustituir por una regla de bordes paralelos; pero esto no lo sabían los griegos ni lo saben tampoco los actuales cultivadores de la Matemática patológica.

3) Cuadratura de un Círculo:

El tercer problema famoso: la cuadratura del círculo, es el más popular de todos y también fue abordado por Hipócrates, quien consiguió cuadrar algunos meniscos ó lúnulas, es decir: figuras limitadas por arcos de circunferencia, como la ACED (fig. 20) y la ACDB (fig. 21), la primera de las cuales, por ejemplo, limitada por el cuadrante AED y la semicircunferencia ACD de diámetro igual a la cuerda de aquél, equivale al triángulo rectángulo AOD formado por dicha cuerda y por los radios OA y OD que pasan por sus extremos, como se demuestra fácilmente. Los descubrimientos de Hipócrates hicieron concebir la esperanza de cuadrar el círculo por sucesivas cuadraturas de lúnulas, y como todos los intentos fueron estériles, se pensó en otros medios que condujeron al descubrimiento de algunas curvas notables, como la concoide de Nicomedes y la cisoide de Diocles, matemáticos ambos de la épocas alejandrina.

Conclusión:
Los problemas de duplicar el cubo y trisecar el ángulo, son problemas irracionales, es decir problemas cuyas soluciones son irracionales, y como dependen de ecuaciones de tercer grado no se pueden resolver con a regla y el compás por exigir construcciones en el espacio. La cuadratura del círculo es de otra naturaleza, pues depende del número PI que no puede ser solución de ninguna ecuación de coeficientes enteros, según demostró Lindemann el año 1882, y, por tanto, dicha cuadratura también es imposible con regla y compás. A pesar de que desde el año 1775 la Academia de Cien­cias de París tomó el acuerdo —adoptado después por otras— de rechazar las pretendidas soluciones de estos tres problemas, siguen lloviendo sobre las corporaciones, científicas multitud de comunicaciones acerca de los mismos, que, naturalmente, van a parar al cesto de papeles sin ser leídas, y esto —que ya está divulgado hasta la saciedad de libros y revistas— no ha bastado, ni basta, ni bastará para curar la enfermedad que padecen los duplicadores, trisectores y cuadradores, a los que hay que añadir los “demostra­dores» del Postulado de Euclides, empeñados en no emplear más armas que las de los griegos antiguos porque ignoran la existencia de las bombas atómicas de la Matemática actual que han demostrado la insuficiencia de los primitivos artefactos bélicos.

Ni qué decir tiene que la ignorancia de los duplicadores, trisectores, cuadradores y postuladores, va unida a una insigne pedantería que les inspira un olímpico desdén por quienes les aconsejan honestamente que se enteren de los trabajos hechos por sus predecesores para soslayar el peligro de descubrir Mediterráneos, porque todos ellos excepción— se creen genios desconocidos, y desde 1uego superiores al medio matemático de su época, y los más enterados se consideran en el caso de un Ruffini, que no con siguió que el Instituto de Francia examinara su demostración de la imposibilidad de resolver por radicales las ecuaciones algebraicas de grado superior al cuarto, o de un Grauss, que no quiso publicar sus investigaciones sobre las Geometrías no-euclídeas por temor al “clamoreo de los beocios”.

El culpable de la imposibilidad de construir un cuadrado y un circulo con el mismo área es el número pi, el famoso 3,1416. Claro que no termina ahí, sino que tiene infinitos decimales. Pi es un número que los matemáticos llaman trascendente, esto es, que no se puede obtener como solución de una ecuación que contenga, además de la consabida incógnita, números positivos, negativos o fracciones -lo que se conoce como números racionales-. Por este motivo, el área de un cuadrado, lado por lado, nunca puede ser igual a la de un círculo, pi por el radio al cuadrado.

Trisecar un angulo con reglas y compás Trisección Problema

Problema de  Trisecar un ángulo con reglas y compás

Los Tres Problemas Geométricos Más Famosos De La Antigüedad

x

Problema 1:Duplicación de un Cubo   Problema 2: Trisecar un Angulo   Problema 3:Cuadrar Un Circulo

Introducción: Antes de abordar la historia de la Geometría alejandrina y como complemento a lo dicho en el capítulo anterior, vale la pena de hablar de los tres problemas que más preocuparon a los griegos desde que aquella ciencia empezó a Construirse racionalmente. Estos tres problemas son: la duplicación del cubo, la trisección del ángulo y la cuadratura del círculo, que los griegos no supieron resolver. – ni nosotros tampoco.

La única ventaja que tenemos sobre ellos es la de saber por qué son irresolubles. Como dichos problemas han trastornado a tantas cabezas de aficionados a la Matemática y todavía existe una pintoresca fauna de locos inofensivos que cree haberlos resuelto, conviene precisar lo que quiere decir “resolver un problema” que es, precisamente, lo que no saben los pobres  ilusos que se caracterizan tanto por su ignorancia de Matemática actual y de la historia de esta ciencia como la testaruda resistencia pasiva que oponen a todo intento para convencerles de su error.

En primer lugar, decir que un problema es irresoluble no tiene sentido si no se indica con qué medios o instrumentos, porque pudiera ocurrir que un problema que n tiene solución con ciertos recursos, la tenga con otros; y e segundo lugar, hay que distinguir entre la posibilidad y resolubilidad de de un problema: un problema es posible cuando admite una solución, aunque ésta no se pueda obtener por medio de construcciones elementales, de modo que la resolubilidad es un concepto relativo porque, en sentido absoluto, todo problema posible es resoluble.

La resolución de un problema consiste esencialmente en reducirlo a otro ya resuelto, y, por tanto, se debe llegar a uno, considerado como fundamental, cuya solución se  supone dada por uno o varios de los postulados que se refieren al uso legítimo de los instrumentos necesarios para ciertas construcciones geométrica que para los griegos .eran la regla y el compás: únicos aparatos de su actividad matemática hasta el punto de que no concedían carta de naturaleza científica a las figuras cuya construcción exige instrumentos distintos de aquéllos.

Con la regla se puede construir la recta que pasa por dos puntos, el punto común a dos rectas no paralelas, y, en general, los problemas de primer grado, es decir: los que, expresados en lenguaje analítico, sólo contienen la primera  potencia de la incógnita, y si en el problema entran nociones métricas como las de paralelismo, longitudes de segmentos, valores angulares, etc., es irresoluble con la regla; con el compás es posible describir una circunferencia centro y radio dados, o de centro dado y que pase por punto dado, y determinar los puntos comunes a dos circunferencias secantes, y, por último, con la regla y el compás son resolubles muchísimos problemas siempre que su expresión algebraica sólo contenga raíces cuadradas. Modernamente se ha demostrado que la regla y el compás se pueden sustituir por una regla de bordes paralelos; pero esto no lo sabían los griegos ni lo saben tampoco los actuales cultivadores de la Matemática patológica.

2) Trisección de un Angulo:

El problema de la trisección del ángulo —aunque se ignora su origen— no sería aventurado suponer que se lo plantearon los geómetras cuando supieron bisecarlo por el método que hemos aprendido en el Bachillerato, durante cuyos estudios también nos han dicho que el problema de la trisección es posible en algunos casos particulares: po­sible —se entiende— con regla y compás.

Para la solución general los griegos utilizaron la curva construida por Hippias de Elea llamada despuéscudratriz porque también servía para cuadrar el círculo. La cuadratiz (fig. 19) es la curva que pasa por los puntos de intersección de las diversas posiciones del lado AB del cuadrado ABCD girando con movimiento uniforme alrededor de A hasta ocupar la posición AD y el lado BC trasladándose paralelamente a sí mismo y también con movimiento uniforme hasta llegar también a AD.

Hippias imaginó un aparato para describir mecánicamente la curva, de cuya generación se deduce que trazan una recta cualquiera AB, la razón de cuadrante BED al arco BE es la misma que la del segmento BA al GH, de modo que para trisecar el ángulo EAD basta determinar JI = 1/3GH y el ángulo JAD es la tercera parte delEAD.

Conclusión:
Los problemas de duplicar el cubo y trisecar el ángulo, son problemas irracionales, es decir problemas cuyas soluciones son irracionales, y como dependen de  ecuaciones de tercer grado no se pueden resolver con  a regla y el compás  por exigir construcciones en el espacio. La cuadratura del círculo es de otra naturaleza, pues depende del número PI que no puede ser solución de ninguna ecuación de coeficientes enteros, según demostró Lindemann el año 1882, y, por tanto, dicha cuadratura también  es imposible con regla y compás.  A pesar de que desde el año 1775 la Academia de Ciencias de París tomó el acuerdo —adoptado después por otras— de rechazar las pretendidas soluciones de estos tres problemas, siguen lloviendo sobre las corporaciones, científicas multitud de comunicaciones acerca de los mismos, que, naturalmente, van a parar al cesto de papeles sin ser leídas, y esto —que ya está divulgado hasta la saciedad de libros y revistas— no ha bastado, ni basta, ni bastará para curar la enfermedad que padecen los duplicadores, trisectores y cuadradores, a los que hay que añadir los “demostra­dores» del Postulado de Euclides, empeñados en no emplear más armas que las de los griegos antiguos porque ignoran la existencia de las bombas atómicas de la Matemática actual que han demostrado la insuficiencia de los primitivos artefactos bélicos.

Ni qué decir tiene que la ignorancia de los duplicadores, trisectores, cuadradores y postuladores, va unida a una insigne pedantería que les inspira un olímpico desdén por quienes les aconsejan honestamente que se enteren de los trabajos hechos por sus predecesores para soslayar el peligro de descubrir Mediterráneos, porque todos ellos excepción— se creen genios desconocidos, y desde 1uego superiores al medio matemático de su época, y los más enterados se consideran en el caso de un Ruffini, que no con siguió que el Instituto de Francia  examinara su demostración de la imposibilidad de resolver por radicales las ecuaciones algebraicas de grado superior al cuarto, o de un Grauss, que no quiso publicar sus investigaciones sobre las Geometrías no-euclídeas por temor al “clamoreo de los beocios”.

Duplicar el volumen de un cubo Problema de la Antiguedad

Problema de Duplicar el Volumen de un Cubo

Los Tres Problemas Geométricos Más Famosos De La Antigüedad

menu

Problema 1:Duplicación de un Cubo   Problema 2: Trisecar un Angulo   Problema 3:Cuadrar Un Circulo

Introducción:
En este post vamos a presentar los tres problemas mas famosos que más preocuparon a los griegos desde que aquella ciencia empezó a construirse racionalmente. Estos tres problemas son: la duplicación del cubo, la trisección del ángulo y la cuadratura del círculo, que los griegos no supieron resolver, ni nosotros tampoco.

La única ventaja que tenemos sobre ellos es la de saber por qué son irresolubles. Como dichos problemas han trastornado a tantas cabezas de aficionados a la Matemática y todavía existe una pintoresca fauna de locos inofensivos que cree haberlos resuelto, conviene precisar lo que quiere decir “resolver un problema” que es, precisamente, lo que no saben los pobres ilusos que se caracterizan tanto por su ignorancia de Matemática actual y de la historia de esta ciencia como la testaruda resistencia pasiva que oponen a todo intento para convencerles de su error.

En primer lugar, decir que un problema es irresoluble no tiene sentido si no se indica con qué medios o instrumentos, porque pudiera ocurrir que un problema que n tiene solución con ciertos recursos, la tenga con otros; y e segundo lugar, hay que distinguir entre la posibilidad y resolubilidad de de un problema: un problema es posible cuando admite una solución, aunque ésta no se pueda obtener por medio de construcciones elementales, de modo que la resolubilidad es un concepto relativo porque, en sentido absoluto, todo problema posible es resoluble.

La resolución de un problema consiste esencialmente en reducirlo a otro ya resuelto, y, por tanto, se debe llegar a uno, considerado como fundamental, cuya solución se supone dada por uno o varios de los postulados que se refieren al uso legítimo de los instrumentos necesarios para ciertas construcciones geométrica que para los griegos .eran la regla y el compás: únicos aparatos de su actividad matemática hasta el punto de que no concedían carta de naturaleza científica a las figuras cuya construcción exige instrumentos distintos de aquéllos.

Con la regla se puede construir la recta que pasa por dos puntos, el punto común a dos rectas no paralelas, y, en general, los problemas de primer grado, es decir: los que, expresados en lenguaje analítico, sólo contienen la primera potencia de la incógnita, y si en el problema entran nociones métricas como las de paralelismo, longitudes de segmentos, valores angulares, etc., es irresoluble con la regla; con el compás es posible describir una circunferencia centro y radio dados, o de centro dado y que pase por punto dado, y determinar los puntos comunes a dos circunferencias secantes, y, por último, con la regla y el compás son resolubles muchísimos problemas siempre que su expresión algebraica sólo contenga raíces cuadradas. Modernamente se ha demostrado que la regla y el compás se pueden sustituir por una regla de bordes paralelos; pero esto no lo sabían los griegos ni lo saben tampoco los actuales cultivadores de la Matemática patológica.

1) Duplicación del Cubo:

El de la duplicación del cubo tiene un origen fabuloso y constituye el tema de una carta de Eratóstenes al rey Ptolomeo, que dice así: “Cuéntase que uno de los antiguos poetas trágicos hacía aparecer en escena a Minos en el momento en que se construía la tumba de Glauco, y, al observar que sólo medía cien pies por cada lado, dijo: “Es un espacio muy pequeño para sepulcro de un rey; duplicadla conservando su forma cúbica, duplicando cada lado”. Es evidente que se equivocaba porque duplicando los lados de una figura plana se cuadruplica, mientras que una sólida se octuplica; y entonces, se propuso a los geómetras la cuestión de duplicar una figura sólida dada conservando su forma, y este problema se llamó duplicación del cubo.

Después de un largo período de incertidumbre, Hipócrates de Quío encontró que si entre dos rectas, una de las cuales es doble de la otra, se insertan dos medias en proporción continua, el cubo quedará doblado, con lo que no hizo sino transformar la dificultad en otra no menor. Se cuenta también que, más tarde, los de Delos, obligados por el oráculo a duplicar el altar, tropezaron con la misma dificultad y entonces enviaron embajadores a los geómetras que, con Platón, frecuentaban la Academia, para que resolvieran la cuestión.

Se ocuparon de ella diligentemente y se dice que, al proponerse insertar dos medias entre dos rectas, lo consiguieron Arquitas de Tarento con el semicírculo y Eudoxio mediante ciertas curvas. A estos siguieron otros que se esforzaron por hacer más perfectas las demostraciones; pero no pudieron efectuar la construcción y acomodarla a la práctica, excepto, acaso, Menecmo, y cón gran trabajo”.

En este importante documento hist6rico, Eratóstenes se hace eco de dos fábulas: una toma como punto de partida la escena en que Eurípides hace cometer al legendario rey de Creta, ante la tumba de su hijo, el error de decir que duplicando la arista de un cubo se duplica su volumen, error que corrige Eratóstenes haciendo observar que duplicando los lados de una “figura plana” —el cuadrado— se cuadruplica [su área] (fig. 13) y haciendo lo mismo con una “sólida” —el cubo (fig. 14) se octuplica [su volumen]; y la otra leyenda alude a la orden de la pitonisa de Delos de duplicar el altar dedicado a Apolo para aplacar la ira de los dioses que habían desencadenado una epidemia en la isla.

Es probable que el problema de duplicar el cubo, también llamado problema de Delos o problema délico, no fuera inspirado por la megalomanía de Minos ni por el oráculo de la sibila, sino por los propios geómetras puesto que sabiendo desde los tiempos de Pitágoras que el cuadrado construido sobre la diagonal de otro tiene doble área que éste (fig. 15), es decir: sabiendo duplicar el cuadrado mediante la construcción gráfica de la raíz cuadrada de 2 y guiados por su espíritu de generalización, parece natural que quisieran trasportar al espacio el mismo problema, lo que les llevó al de extraer la raíz cúbica de 2, y ante la imposibilidad de construir con la regla y el compás la arista de un cubo de doble volumen que otro, redujeron el problema a otro y, según Eratóstenes, fue Hipócrates de Quío el primero que lo intentó.

Este geómetra —a quien no hay que confundir con su homónimo y contemporáneo el de Cos, padre de la Medicina— nació hacia 450 antes de C. y fue comerciante hasta que los recaudadores de la Aduana ateniense que residían en el Quersoneso lo despojaron de sus bienes y, para reclamar los, se trasladó a Atenas, cuyos ciudadanos se burlaron de él por la ingenuidad que suponía en un extranjero creer que se le iba a hacer justicia. Otros historiadores opinan que la, presencia de Hipócrates en la capital del Ática obedeció al intento de recuperar. las mercancías de uno de sus barcos apresados por piratas atenienses en las proximidades de Bizancio, lo cual era también una tontería.

Sea de ello lo que fuere, es lo cierto que Hipócrates aparece en Atenas por los años de 430, y mientras gestionaba la reivindicación de sus derechos —en lo que están de acuerdo todos los eruditos, ya que no en la causa de la reivindicación— asistió a las lecciones de los filósofos y abrió una escuela de Geometría que fue la que echó las bases del método de reducción que, como hemos dicho antes, consiste en trasformar un problema en otro ya resuelto.

Es posible que tal procedimiento, que parece inseparable de la investigación matemática, hubiera sido empleado antes de Hipócrates, pero fue éste quien descubrió d trato lógico común a muchos métodos para resolver problemas y demostrar teoremas y quien lo aplicó cuestiones.

Conclusión:
Los problemas de duplicar el cubo y trisecar el ángulo, son problemas irracionales, es decir problemas cuyas soluciones son irracionales, y como dependen de ecuaciones de tercer grado no se pueden resolver con a regla y el compás por exigir construcciones en el espacio. La cuadratura del círculo es de otra naturaleza, pues depende del número PI que no puede ser solución de ninguna ecuación de coeficientes enteros, según demostró Lindemann el año 1882, y, por tanto, dicha cuadratura también es imposible con regla y compás.

A pesar de que desde el año 1775 la Academia de Ciencias de París tomó el acuerdo —adoptado después por otras— de rechazar las pretendidas soluciones de estos tres problemas, siguen lloviendo sobre las corporaciones, científicas multitud de comunicaciones acerca de los mismos, que, naturalmente, van a parar al cesto de papeles sin ser leídas, y esto —que ya está divulgado hasta la saciedad en libros y revistas— no ha bastado, ni basta, ni bastará para curar la enfermedad que padecen los duplicadores, trisectores y cuadradores, a los que hay que añadir los “demostra­dores» del Postulado de Euclides, empeñados en no emplear más armas que las de los griegos antiguos porque ignoran la existencia de las bombas atómicas de la Matemática actual que han demostrado la insuficiencia de los primitivos artefactos bélicos.

Ni qué decir tiene que la ignorancia de los duplicadores, trisectores, cuadradores y postuladores, va unida a una insigne pedantería que les inspira un olímpico desdén por quienes les aconsejan honestamente que se enteren de los trabajos hechos por sus predecesores para soslayar el peligro de descubrir Mediterráneos, porque todos ellos excepción— se creen genios desconocidos, y desde luego superiores al medio matemático de su época, y los más enterados se consideran en el caso de un Ruffini, que no con siguió que el Instituto de Francia examinara su demostración de la imposibilidad de resolver por radicales las ecuaciones algebraicas de grado superior al cuarto, o de un Grauss, que no quiso publicar sus investigaciones sobre las Geometrías no-euclídeas por temor al “clamoreo de los beocios”.

Problemas de Fisica De Yakov Perelman Problemas Para Pensar

Problemas de Física De Yakov Perelman
Problemas Para Pensar

1-El Problema de la Plataforma:

Una persona de 60 kg de peso (600 N) se encuentra sobre una plataforma de 30 kg (300 N),  suspendida mediante cuatro cuerdas que pasan por unas poleas como muestra la figura. ¿Con  qué fuerza la persona debe tirar del extremo de la cuerda a para sostener la plataforma donde se encuentra?

2-El Problema de la Curvatura:

¿Qué esfuerzo hay que aplicar a una soga tendiéndola para que no se curve?

¿Cómo hay que tender la cuerda para que no forme comba?

3-El Problema de las Pesas:

Una polea suspendida de una balanza de resorte sostiene una cuerda con sendas pesas, de 1 kg y 2 kg, en los extremos.

¿Qué carga marca el fiel del dinamómetro?