Particulas del Universo

Primeros Huevos de Dinosaurios Encontrados Fosilizados

Primeros Huevos de Dinosaurios Encontrados Fosilizados

En 1923, un miembro de la expedición del Museo Americano de Historia Natural de Estados Unidos, dirigida por el doctor Roy Chapman Andrews, a la zona de areniscas rojas del desierto de Gobi, en Mongolia, encontró un nido completo de huevos de dinosaurios fosilizados.

Los huevos habían sido puestos a fines del período cretácico, hace unos 80 millones de años. Estaban enterrados cerca de la superficie, que había estado expuesta a los efectos de la erosión durante millones de años también. Los dinosaurios fueron animales dominantes —es decir, de gran importancia por su influencia sobre todas las restantes formas de vida— en la era Mesozoica. Se los divide en dos grandes órdenes, siendo, por una parte, parientes de los cocodrilos y, por otra, antecesores de los pájaros.

Los primeros representantes de los dinosaurios que aparecieron en escena eran de tamaño pequeño, pero, en conjunto, se observa en ellos una evolución gradual hacia dimensiones cada vez más gigantescas. Algunos constituyeron los mayores animales terrestres que han existido. Unos eran carnívoros y otros, la mayoría, herbívoros.

Los primeros dinosaurios se caracterizaron por ser bípedos (marchaban de pie sobre las patas posteriores). Sin embargo, se ha observado que a lo largo de su evolución muchos tendieron a adquirir la postura cuadrúpeda, sobre todo los herbívoros. Bastantes carnívoros conservaron la posición bípeda.

La clasificación que se ha hecho de los dinosaurios se basa en las afinidades de su esqueleto y de la estructura de los huesos con los reptiles o los pájaros. Aquellos que presentaban semejanzas con los reptiles se clasifican en el orden de los saurisquios.

huevos de dinosaurios hallados en Gobi Mongolia

El descubrimiento de los huevos de dinosaurio es uno de los raros hallazgos (como el de las impresiones de las membranas interdigitales momificadas) que nos ilustran sobre el modo de vida de estos seres. Quizá si los detalles de su biología estuviesen más claros, podrían conocerse las causas de la desaparición repentina de los dinosaurios, después de un período de florecimiento espectacular. Se ha pensado, fundamentalmente, en cambios climáticos que afectaron de tal modo a la flora, que las especies herbívoras, demasiado especializadas, no, pudieron adaptarse a un cambio de régimen alimenticio. La desaparición de los herbívoros trajo consigo la de los carnívoras que vivían a costa de ellos. La imposibilidad de los dinosaurios de evolucionar, y adaptarse a las cambiantes condiciones, parece radicar en la extremada especialización de su forma de vida. De hecho, es una regla; comprobada por el estudio de los fósiles, que las formas de animales se adaptan mejor a las condiciones cambiantes cuanto menos evolucionadas están, es decir, cuanto menos especializadas se hallan   en   una   forma   de  vida   determinada.

A pesar de los abundantes datos existentes sobre la morfología de los dinosaurios, nuestros conocimientos sobre su biología y costumbres se apoyan, en muchos aspectos, solamente en conjeturas. Se sabe que la médula espinal presentaba, en algunas formas, un ensanchamiento a la altura de la cintura pelviana (caderas), que podía tener un tamaño mayor que el del cerebro (ganglios cerebroides).

Este ganglio actuaría como un centro local de reflejos en las formas gigantes, dado el tiempo considerable que los reflejos habían de tardar en recorrer el largo camino existente entre el cerebro y las patas. Desde que se comenzó a estudiarlos, se supuso que estos antecesores de animales realmente ovíparos (que ponen huevos), fueron ovíparos también, pero no se tuvo una prueba material hasta dicho hallazgo de huevos fosilizados del Protoceratops, pequeño reptil antecesor de los dinosaurios cornúpetas a que nos hemos referido.

El mismo no presenta, sin embargo, traza de cuernos, pero sí el citado repliegue posterior de la cabeza. En una expedición previa a Mongolia ya se había encontrado parte de la cascara de un huevo, pero el descubrimiento, realizado después, del nido entero, en una zona desértica —a cientos de kilómetros de distancia de los habitantes más próximos— sobrepasó las esperanzas.

Por fin se había conseguido la prueba de que, al menos, algunos dinosaurios ponían huevos. Además, este dinosaurio (Protoceratops) los ponía (en cantidad de 15 o más) en un nido, de la misma forma que los ponen las tortugas y muchas aves actuales. Las rocas de color rojo ladrillo donde, se encontraron los huevos se componen de granos de arena fina y roja. Son blandas y se desmenuzan e, indudablemente, fueron formadas por la arena arrastrada por el viento. Mongolia debe de haber sido un desierto muy seco y cálido cuando el Protoceratops vivía.

Probablemente, los huevos fueron enterrados a demasiada profundidad por la arena movediza, de forma que los rayos solares no pudieron incubarlos. Poco a poco se fueron hundiendo cada vez más, a causa de la continua presión ofrecida por la gran carga de arena que soportaban encima y, a su vez, la arena que los rodeaba fue comprimiéndose y trasformándose en roca arenisca.

Entretanto, los huevos mismos fueron rellenándose de arena, al fosilizarse, y conservaron su estructura. Las condiciones de Mongolia resultaban ideales para la formación de fósiles, y de hecho el país es el lugar perfecto para buscarlos. Había muy poca humedad, y el aire, indudablemente, velaba por los restos animales, arrastrando la arena, que los enterraba en enseguida, lo que evitaría su descomposición. Además, desde que se extinguióle! Protoceratops, se ha sumergido uña pequeña extensión de Mongolia,, por lo que las rocas sedimentarias (rocas formadas bajo el agua) se han depositado sobre la arenisca sólo en contados lugares.

El Protoceratops vivía en condiciones desérticas. Sin embargo, debió de haber algunos ríos o lagunas cerca del nido, ya que se han encontrado fósiles de tortugas en los alrededores, y el esqueleto de la cola del Protoceratops hace pensar que este animal pasaba parte de su vida en el agua. Su pico córneo y la escasez de dientes sugieren que era herbívoro, y quizás arrancaba las hojas y las ramas de las plantas o arbustos del desierto.

Además de abandonar el agua para ir a comer, ponía sus huevos en hoyos que cavaba en la arena de las dunas. Colocaba los huevos en círculos, con el extremo más alargado dirigido hacia el centro del nido. La cascara era dura. Los huesos que se encontraron cerca del nido fueron después cuidadosamente conjuntados. Es curioso el hecho de haberse hallado cierta cantidad de esqueletos de jóvenes animales, próximos unos a otrosflo que hace pensar en la existencia de una especie de “colonia infantil”, o de un lugar de cría.

También se han encontrado esqueletos de adultos, que no tenían más qué unos dos metros de longitud. La placa o expansión de la cabeza que protege el cuello está muy desarrollada, y en ella van insertos los músculos de la mandíbula y de la cabeza.

El notable descubrimiento de parte del esqueleto de un dinosaurio con forma de avestruz, el Oviraptor (“ladrón de huevos”), en el nido del Protoceratops, hace pensar que dicho ser estaba realmente robando los huevos del nido. Por desgracia, sólo se ha conservado una pequeña parte de este esqueleto, pero es tan semejante al de otros dinosaurios con forma de avestruz, que el Oviraptor, probablemente, presentaba el aspecto que se le da en el grabado.

SIEMPRE SIGUIERON LOS DESCUBRIMIENTOS EN EL MUNDO

Huevos Hallados en China, Cuando Se Excavaba Para Una Zanja

La ciudad de Heyuan, en China, es conocida popularmente como “la ciudad de los dinosaurios”, debido a los constantes descubrimientos de fósiles en su territorio. Esta vez, unos obreros han descubierto 43 huevos de dinosaurio mientras instalaban un nuevo sistema de cañerías, y muchos están intactos.

Fuente Consultada:
Revista TECNIRAMA N° 67
Enciclopedia de la Ciencia y La Tecnología

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

Feymann Richard Fisico Premio Nobel Teoría Electrodinámica Cuántica

Feymann Richard Físico Premio Nobel
Teoría Electrodinámica Cuántica

El físico norteamericano Richard Phillips Feynman mereció el Premio Nobel en 1965  por sus estudios en el campo de la electrodinámica cuántica. Fue uno de los teóricos  más originales de la posguerra, ya que contribuyó de manera fundamental en muchos campos de la física.

Su genial visión de fabricar productos en base a un  reordenamiento de átomos y moléculas dio pie al nacimiento de una de disciplinas científicas más prometedoras de la era moderna: la nanotecnología

Feymann Richard Físico

“Para la existencia de la ciencia son necesarias mentes que no acepten que
la naturaleza debe seguir ciertas condiciones preconcebidas.”

NUEVAS FRONTERAS
Con una curiosidad ilimitada ante los fenómenos de la naturaleza, Richard Feynman hizo contribuciones relevantes en diversos campos de la física y también fue un excelente divulgador, capaz de transmitir su pasión por la ciencia.

De una intuición extraordinaria, buscaba siempre abordar los problemas de la física de manera diferente de la de sus colegas, quería presentar las cuestiones conocidas fuera de los caminos ya trillados.

La historia cuenta que durante una reunión de la Sociedad Americana de Física de la división de la Costa Oeste, en 1959, Feynman ofreció por primera vez una visión de la tecnología totalmente nueva, imaginando enciclopedias escritas en la cabeza de un pin.

“Hay mucho sitio al fondo”, dijo en aquella célebre conferencia. Pero el fondo al que se refería no era el de la abarrotada sala de actos. Hablaba de otro fondo: el de las fronteras de la física, el mundo que existe a escala molecular, atómica y subatómica.

Un Visionario: Por primera vez, alguien pedía investigación para hacer cosas como escribir todos los libros de la Biblioteca del Congreso en una pieza plástica del tamaño de una mota de polvo, miniaturizar las computadoras, construir maquinarias de tamaño molecular y herramientas de cirugía capaces de introducirse en el cuerpo del paciente y operar desde el interior de sus tejidos.

La conferencia de Feynman está considerada como una de las más importantes y famosas de la historia de la física, que hoy cobra una vigencia no prevista en aquel entonces.

Por eso muchos científicos consideran que Richard Feynman marca de algún modo el nacimiento de la nanotecnología, ciencia que se aplica a un nivel de nanoescala, esto es, unas medidas extremadamente pequeñas, “nanos”, que permiten trabajar y manipular las estructuras moleculares y sus átomos. (ver: nanotecnologia)

El futuro es impredecible: A pesar de que Feynman ignoraba en aquel entonces la capacidad de los átomos y las moléculas de unirse en estructuras complejas guiadas por sus interacciones físicas y químicas (algo muy presente hoy en día a escala nanométrica), queda su impresionante clarividencia en saber identificar en la naturaleza un abundante depósito de recursos, poniendo de manifiesto al mismo tiempo su confianza en el carácter ilimitado de la creatividad humana.

PORQUE SE LO RECUERDA:

    1. Es considerado una de las figuras pioneras de la nanotecnología, y una de las primeras personas en proponer la realización futura de las computadoras cuánticas.
    1. Su forma apasionada de hablar de física lo convirtió en un conferencista popular; muchas de sus charlas han sido publicadas en forma de libro, e incluso grabadas para la televisión.
    1. Feynman fue asignado al comité de investigación de la explosión en vuelo del transbordador de la NASA Challenger, en 1986. Demostró que el problema había sido un equipo defectuoso y no un error de un astronauta.
  1. Entre sus trabajos se destaca la elaboración de los diagramas de Feynman, una forma intuitiva de visualizar las interacciones de partículas atómicas en electrodinámica cuántica mediante aproximaciones gráficas en el tiempo.

Cronología:
NACIMIENTO: Richard Feymann nació el 11 de mayo en Nueva York. Descendiente cíe judíos rusos y polacos, estudiu física cu el Instituto Tecnológico de Massa-chusetts v se doctoró en la Universidad de Priiiceton.

PROYECTO MANHATTAN Participó en el proyecto Manhattan, que dio origen a la primera bomba atómica. Posteriormente, en 1950, fue nombrado titular de la cátedra de física teórica en el California Institute of Technology (foto).

PREMIO NOBEL: Recibió el Nobel de Física junto con J. Schwinger y S. Tomonaga, por sus trabajos en electrodinámica cuántica. Se mostró cómo abordar el estudio cuántico y relativista de sistemas con cargas eléctricas.

INTRODUCCIÓN AL CONCEPTO DEL QUARK: Trabajó en el acelerador de partículas de Stanford, período en el que introdujo la teoría de I partones, hipotéticas partículas localizadas en el núcleo atómico que daría pie más tarde al concepto de quark.

MUERTE: Tras luchar denodadamente durante cinco años con un cáncer abdominal, Feynman falleció el 15 de febrero, dos semanas después de dictar su última exposición como docente: su última clase versó sobre la curvatura espacio-temporal.

Fuente Consultada:Gran Atlas de la Ciencia La Materia National Geographic – Edición Clarín –

Historia de Ciencia Tecnica Tecnologia y Sus Avances

Historia de la Ciencia ,Técnica y Tecnología
Curiosidades y Avances Científicos

INTROUDUCCIÓN: Si consideramos la ciencia como la investigación sistemática de la realidad a través de la observación, la experimentación y la inducción (conocido como método cientí

Sin duda, se realizaron descubrimientos, pero de forma fragmentaria. La mitología y la religión dominaron como formas de explicar el mundo.

Esto empezó a cambiar con las especulaciones de los primeros filósofos griegos, que excluían las causas sobrenaturales de sus explicaciones sobre la realidad.

Al llegar el s. III a.C. la ciencia griega era muy elaborada y producía modelos teóricos que han dado forma desde entonces al desarrollo de la ciencia.

Con la caída de Grecia ante el imperio Romano, la ciencia perdió su estado de gracia. Se lograron pocos avances importantes, salvo en medicina, y el trabajo realizado estaba firmemente enraizado en las tradiciones y los marcos conceptuales griegos.

Durante varios siglos, desde la caída del imperio Romano en el s. V d.C, la ciencia fue prácticamente desconocida en Europa occidental. Sólo la civilización islámica conservó los conocimientos griegos , y los transmitió más tarde de nuevo a Occidente.

Entre los s. XIII y XV se lograron algunos avances en el campo de la mecánica y la óptica, mientras que algunos hombres como Roger Bacon insistieron en la importancia de la experiencia y de la observación personal.

El s. XVI señaló la llegada de la llamada “revolución científica”, un período de progreso científico que empezó con Copérnico y culminó con Isaac Newton.

La ciencia no sólo logró descubrimientos conceptuales sino que consiguió también un enorme prestigio.

La ciencia y todo lo que la rodeaba llegaron a estar muy de moda a finales del s. XVII, y atrajeron una gran cantidad de patrocinios reales y gubernamentales.

Dos hitos de esta nueva moda fueron la fundación de la Académie de Sciences por Luis XIV en Francia y de la Royal Society por Carlos II en Inglaterra.

En el curso del s. XIX la ciencia se profesionalizó y se estructuró en carreras y jerarquías emergentes, centradas en universidades, departamentos de gobierno y organizaciones comerciales.

Esta tendencia no se interrumpió con la llegada del s. XX, que ha visto cómo la ciencia dependía cada vez más de los avances tecnológicos, avances que no han escaseado.

La ciencia moderna es inmensa y extremadamente compleja. Es virtualmente imposible llegar a tener una visión global consistente de lo que ocurre en la ciencia.

Por este motivo, mucha gente la ve con algo de suspicacia. Sin embargo, la civilización occidental está completamente sometida a la creencia de que el progreso científico es un valor positivo y una fuerza que contribuye al bien de la humanidad.

Aunque algunos de los mayores peligros y horrores del mundo tienen sus raíces en el esfuerzo científico, también existe la esperanza de que, con el tiempo, la ciencia proporcionará soluciones viables para ellos.

Marie Curie (1867-1934) cientifica

Ejemplo de científico abnegado y apasionado por el descubrimiento y estudio de la naturaleza. Marie Curie (1867-1934). La científica polaca que, con su marido francés Pierre (1859-1906) y Henri Becquerel (1852-1908), recibió el premio Nobel de física de 1903 por el descubrimiento de la radioactividad. También recibió el de química de 1911 por el descubrimiento de dos elementos, el radio y el polonio.

MENU DE LOS PRINCIPALES TEMAS CIENTÍFICOS TRATADOS EN EL SITIO

bullet-historia1 Teoría Especial de la Relatividad
bullet-historia1Concepto de Palanca y Máquinas Simples
bullet-historia1 Concepto de Cantidad de Calor-Caloría-Equilibrio Termico
bullet-historia1 Anécdotas Matemáticas
bullet-historia1Las Radiaciones de un Núcleo Atómico
bullet-historia1 Tres Grandes Matemáticos
bullet-historia1 Ideas Geniales De Las Ciencias
bullet-historia1 Inventos Geniales
bullet-historia1 Medición Radio Terrestre En La Antigüedad
bullet-historia1 El Número Pi
bullet-historia1 El Átomo
bullet-historia1 La Partículas Elementales del la Materia
bullet-historia1 El Sistema Solar
bullet-historia1 Astronomía Para Principiantes
bullet-historia1 Conceptos Informáticos
bullet-historia1 La Vida de las Estrellas
bullet-historia1 El Genoma Humano
bullet-historia1 Estudio del Cuerpo Humano
bullet-historia1 Seres Humanos en el Espacio
bullet-historia1 Humanos en el Fondo del Mar
bullet-historia1 Los Tres Problemas Griegos
bullet-historia1 La Misión Apolo XI
bullet-historia1 El Big Bang
bullet-historia1 SQL Para Bases de Datos
bullet-historia1 Los Efectos de Una Explosión Nuclear
bullet-historia1 El Agua Potable
bullet-historia1 Hidrógeno: El Combustible del Futuro
bullet-historia1 El Planeta Sedna o Planetoide Sedna?
bullet-historia1La Energía Nuclear y Sus Usos
bullet-historia1El Petróleo:Una Noble Sustancia
bullet-historia1El Movimiento De Los Satélites Artificiales
bullet-historia1Porque hay rozamiento entre dos superficies?
bullet-historia1Consultas En Un Diccionario Medico Etimológico
bullet-historia1 Internet y la WEB
bullet-historia1La Inteligencia Humana (Con Un Test)
bullet-historia1Dos Bellos Teoremas (La Raíz de 2 y Los 5 Sólidos Pitagóricos)
bullet-historia1Tres Conceptos Físicos Modernos
Efecto Fotoeléctrico-Radiación Cuerpo Negro-El Cuanto de Energía
bullet-historia1Conceptos Básicos de Cohetería Moderna
bullet-historia1 Curiosas Cuestiones Físicas Explicadas Por Yakov Perelman
bullet-historia1 Tres Principios Físicos Básicos
Pascal-Arquímedes-Bernoulli
bullet-historia1 Hormigones y Morteros-Cálculo de Materiales por m3
bullet-historia1 Centrales Generadoras de Energía
bullet-historia1 Los Combustibles Fósiles
bullet-historia1 La Célula y La Clonación
bullet-historia1 Experimento De Las Esferas de Maldemburgo
bullet-historia1 Teoría del Campo Unificado
bullet-historia1 La Presión Atmosférica y La Experiencia de Torricelli
bullet-historia1 La Teoría Cinética de los Gases
bullet-historia1Fórmula Matemática de la belleza Universal
bullet-historia1Método Gráfico (árabe) Para Resolver Una Ecuación de 2° Grado
bullet-historia1 La Inteligencia Artificial
bullet-historia1 La Inmunidad Humana
bullet-historia1Motores de Combustión Interna y Eléctricos
bullet-historia1 Pilas y Baterías – Principio Físico de Funcionamiento
bullet-historia1Bell o Meucci Quien inventó el teléfono?
bullet-historia1 Las Vacunas
bullet-historia1Las Vitaminas
bullet-historia1 La Poliomielitis
bullet-historia1La Leyes de Kepler
bullet-historia1 Eclipses de Sol y de Luna
bullet-historia1 La Medición del la velocidad de la Luz
bullet-historia1 Nuestra Querida Estrella: El Sol
bullet-historia1 Las Leyes de la Mecánica Clásica de Newton
bullet-historia1 Las Leyes del Péndulo Físico
bullet-historia1 La Matemática en el Siglo XX – Desafíos Sin Resolver
bullet-historia1 Aprende a Resolver Una Ecuación de 2do. Grado
bullet-historia1 A que llamamos el pensamiento lateral? Problemas
bullet-historia1 Desalinizar El Agua de Mar
bullet-historia1 La Economía Como Ciencia
bullet-historia1 Conceptos Básicos Sobre La Ciencia
bullet-historia1 Teoría de la Deriva de los Continentes
bullet-historia1 La Lucha contra las infecciones: los antibióticos
bullet-historia1 Últimos avances científicos en medicina (2007)
bullet-historia1 La Era Espacial: Las Misiones Espaciales
bullet-historia1 Teorías Físicas Que Fracasaron
bullet-historia1 Descubriendo Nuevos Metales en el Siglo XVII
bullet-historia1 El Experimento del Siglo XXI: “La Máquina de Dios”
bullet-historia1 Enanas Blancas, Neutrones y Agujeros Negros

Teoría Especial de la Relatividad Explicacion Sencilla y Breve

La Teoría Especial de la Relatividad
Explicación Sencilla y Breve

albert einstein

1905:Año Maravilloso El Efecto Fotoeléctrico El Movimiento Browiano Antecedentes de la Física – Implicancias de la Teoría  –  Explicación de la Teoría

Trataré de explicarte la Teoría de Einstein como a un principiante  que no tiene ni la menor idea de conceptos físicos. Supongo que sabes algo de matemática elemental y que sólo tienes un gran interés por las ciencias y que estás dispuesto a leer con pasión estas páginas para entender someramente lo que pensó este genio hace 100 años y que revolucionó todo el saber científico de aquella época. ¡Cuando estés listo puedes empezar!

TEORÍA DE LA RELATIVIDAD: A finales del siglo XIX la comunidad científica sabía que había mucho por crear e inventar, aplicando los diversos principios  físicos descubiertos, tales como la electricidad, magnetismo y mecánica, pero estaban convencidos de que ya casi no quedaba nada nuevo por explicar, la naturaleza había sido descubierta en su totalidad y ahora sólo tenía que comenzar a aplicarse esos conocimientos a las  actividades del ser humano para su propio beneficio y bienestar. 

Hasta ese momento los cimientos de la física eran dos grandes columnas construidas por dos de los científicos más grandiosos de la ciencia. Una, la teoría de la mecánica, donde todos los conocimientos de cinemática y dinámica desde Aristóteles hasta Galileo, fueron condensados en una sola teoría, conocida hoy como la Mecánica Clásica, o Mecánica Newtoniana. La otra columna sustentaba la otra mitad de la física, referente a los efectos magnéticos y eléctricos conocidos desde los griegos hasta los últimos avances de Oersted, Faraday y Lenz. Toda esta información técnica fue unificada en la Teoría del Electromagnetismo del genial científico inglés James Maxwell.

Pero en realidad algo andaba mal, pues fueron apareciendo algunos nuevos cuestionamientos o efectos físicos desconocidos, y se pensó que “puliendo” un poco los conceptos del momento podrían explicarlos fácilmente, así que  casi fueron subestimados por gran parte de los investigadores de esa época.

Esos nuevos fenómenos y cuestiones fueron:

  1. a)El efecto fotoeléctrico
  2. b)La fórmula de la radiación de un cuerpo caliente
  3. c)Las rayas en los espectros de emisión del Hidrógeno

(Nota: esos efectos los puedes estudiar en este sitio)

Amigo, sigamos con lo nuestro….

El concepto de relatividad ya existía y se conocía como la Relatividad de Galileo, y prácticamente consistía en la suma algebraica  de velocidades según sea el sistema de referencia que se adopte. Por ejemplo, suponte que estás parado en el andén de una estación de trenes y en un instante pasa moviéndose hacia la derecha un vagón de pasajeros a la velocidad de 60 km/h con respecto a ti, que te encuentras detenido al costado de las vías. Para un pasajero sentado adentro del mismo vagón dicho tren se mueve a 0 Km/h, es decir, se encuentra detenido con respecto a ÉL, pues ambos se mueven juntos. Ese pasajero con respecto a TI, a qué velocidad de desplaza?… no hay dudas, pasa a la misma velocidad que el vagón, o sea a 60 km/h.

Supongamos ahora que un segundo pasajero se levanta de su asiento y comienza a caminar hacia la derecha a 10 km/h respecto del vagón. A qué velocidad se mueve éste respecto del pasajero sentado, creo que tampoco hay dudas, y es de 10 km./h. pues vagón-pasajero sentado pertenecen al mismo sistema.

Bien, pero ahora ese pasajero a qué velocidad se desplaza respecto a TI que te encuentras sobre  el andén? Para este caso, la velocidad del pasajero será de 70 Km./h, es decir, que como ambos tienen el mismo sentido de desplazamiento dichas velocidades se suman: 60+10=70.

Si otro pasajero se levanta pero camina hacia la izquierda a 15 km/h, ahora la velocidad del mismo respecto a tu posición, será de: 60-15=45, porque tienen sentidos contrarios.

Si se quiere determinar la velocidad del primer pasajero que se paró, respecto del segundo, es de: 10+15=25 Km/h. Es como si se estuvieran alejando uno del otro a razón de 25 km/h adentro del mismo vagón. En el supuesto caso que ambos ahora se acercaran hacia sus asientos nuevamente a la misma velocidad, también la velocidad de uno respecto del otro será de 10+15=25 Km./h., pero ahora acercándose uno al otro. Se puede usar el signo (-) para indicar que se alejan y el signo (+) para indicar que se acercan, solo es una convención.

Qué pasa si uno de ellos, mientras camina hacia la izquierda a 15 km./h, saca una pelotita y la lanza hacia la derecha a razón de 50 km/h hacia la derecha?Cuál será la velocidad de la pelotita respecto a TI, que sigues detenido en el andén? Bien, ahora (será) el cálculo es así: 60+50-15=95 Km./h.

60 del vagón hacia la derecha + 50 de la pelota hacia la derecha – 15 del pasajero hacia la izquierda=95

… Amigo, me sigues el conceptoEstás de acuerdo?.

Es tal como indicaba al inicio, la relatividad de Galileo, solo consiste en sumar velocidades usando el signo (+) o (-) según sea el sentido de las mismas (en realidad la suma es vectorial, pero para el alcance de esta explicación alcanza con este definición)

Si se invierte la situación y ahora el pasajero  desea determinar tu velocidad (que estás sobre el andén) respecto a su posición En este caso la situación es  exactamente la misma, para el pasajero, es él quien se encuentra detenido y es el andén quien se mueve acercándose hacia él a la velocidad de 60 km/h, es decir son dos situaciones totalmente equivalentes, cada observador tiene su propia visión de la situación, y cada uno tomará los mismos valores antes calculados.

Para comenzar a darle propiedades a estos conceptos, en física se dice que cada objeto en movimiento o detenido, tiene su propio marco de medición o de coordenadas, es decir, que cada observador estudia y mensura  la situación desde su propio sistema de referencia.

Se puede decir que cada pasajero tiene un sistema de referencia, la pelotita tiene otro, y tú que te encuentras detenido también tienes el tuyo. En el caso del pasajero sentado, el sistema será el mismo que el del vagón, porque ambos se mueven simultáneamente. Cada uno observa al resto desde su propia ubicación, y sumará o restará las velocidades según sea el sentido del movimiento de los diversos objetos estudiados. Cuando todos los sistemas de referencia se mueven respecto de los demás a velocidades uniformes, se dice que esos sistemas son inerciales.

Resumiendo todo lo antedicho, significa que cada observador tiene su propio y único sistema de referencia. Por ejemplo tú que estás en este momento leyendo este apunte, te encuentras en reposo con respecto al sistema de referencia Tierra, es decir, que tú con respecto al piso estás a cero de velocidad. Pero imagina ahora que alguien te está mirando desde la Luna.

Este observador va a  concluir que túestás girando sobre un eje a la velocidad de 1vuelta/día. Si seguimos alejándonos, y alguien se detiene en el Sol, dirá que tienes dos movimientos, uno sobre tu eje y otro alrededor del sol, con una velocidad que tarda 365 días en recorrer toda la órbita. Como puedes observar, cada observador desde su propio marco de referencia tiene sus propias conclusiones.

Unas líneas más arriba cuando hablábamos de los sistemas inerciales, es importante destacar, una de sus principales características, y consiste en que cada uno de esos sistemas las leyes de la física, como la conservación de la energía, de la cantidad de movimiento lineal y angular, etc. se cumplen para cualquier observador que esté dentro o fuera del sistema de referencia en estudio.

Por ejemplo, si adentro del vagón armo un laboratorio y realizo una serie de investigaciones de principios físicos, TODOS ELLOS SE VERIFICARÁN TAL COMO SI LOS ESTUVIESE HACIENDO SOBRE LA TIERRA. Lo mismo ocurre con la pelotita, si armo sobre ella otro laboratorio y realizo más experiencias, las mismas responderán a los principios físicos conocidos. Y así sobre cualquier sistema de referencia inercial que utilice, siempre en cada uno de ellos se verificarán las leyes de la mecánica y del electromagnetismo. Si nos ponemos a pensar esto no tiene nada raro, pues nuestro laboratorio de la Tierra, no es más que otro laboratorio armado sobre una pelotita en movimiento en algún rincón del universo.

Seguramente  si pasa alguna nave espacial cerca del planeta, y nos observa y mide nuestros experimentos obtendrá otros valores numéricos distintos a los nuestros, pero sus conclusiones físicas serán exactamente iguales a las nuestras. De todo lo antedicho, se puede concluir que no existe ningún sistema de referencia ideal, que en física se llama sistema absoluto. Es decir no existe un sistema que se encuentre totalmente en reposo y podamos referenciar todas las mediciones a ese sistema especial. No hay en el universo un sistema que sea dueño de la verdad absoluta de todas las mediciones, pues todos están en movimiento y cada uno tiene su propia realidad.

Volviendo ahora al inicio de este apunte, por allá en los primeros años del siglo XX, los científicos estaban muy concentrados tratando de determinar las diversas propiedades de la luz, tales como su velocidad exacta, su naturaleza, su energía, su medio de propagación, etc. En realidad nadie sabíacómohacía para llegar de un lugar a otro. Así como el sonido usa el aire para desplazarse, la luz qué medio usa para moverse? La primera respuesta fue que utiliza un medio que se encuentra en todo el universo, que es transparente, de baja densidad e inunda todos los huecos del espacio, este medio se llamo: ÉTER

Desde su propuesta, los físicos se pusieron a tratar de encontrarlo, porque seria fantástico encontrar algo que se encuentre fijo en todo el universo para tener una  referencia fija. Los primeros encargados de buscar este medio fueron dos grandes físicos experimentales, conocidos como Michelson-Morley, y así se conoce hasta nuestros días al experimento realizado. Básicamente el experimento consistía en emitir un rayo de luz en un sentido, por ejemplo, en dirección al movimiento de la tierra, y otro en sentido contrario, de tal manera que en un sentido la velocidad de la tierra se sume a la de la luz  y para el otro caso se reste (el primer rayo es mas veloz que el segundo).

Esos haces de luz, luego de recorrer una misma distancia, se hacen reflejar en unos espejos para que retornen al punto de partida. Como un rayo es más rápido que otro, y deben recorrer la misma distancia, entonces llegarán al punto de partida con un retardo de tiempo, pues uno demorará más que otro en recorrer ese mismo espacio.

El experimento se hizo de diversas formas, perfeccionando los métodos de medición del sistema. Se efectuaron distintas mediciones durantes varios años, JAMÁS SE PUDO MEDIR UNA DIFERENCIA, los haces siempre llegaban al mismo tiempo, la velocidad de la tierra no les influenciaba para nada.

Conclusión: EL ÉTER NO EXISTÍA, y entonces en qué se apoyaba la luz para trasladarse?. (En este sitio: El Fin de Eter)

Es aquí donde entra en escena un jovencito alemán, estudiante avanzado de ciencias físicas en Zurich, dotado de una genialidad especial, que le permitió dar una explicación clara y correcta de lo que realmente pasaba con la luz, y los objetos que se mueven a velocidad cercanas. Ese genial hombrecito, fue Albert Einstein, que en los momentos libres que tenia en su trabajo en una  oficina de patentes,  reformuló toda la física clásica de Newton conocida hasta ese momento. De aquí en más la mecánica clásica sería solo un caso particular de una mecánica más amplia y general, llamada más tarde Física Relativista, y que se aplica a las partículas que se mueven a grandes velocidades. A partir de ese momento Albert Eisntein pasaría a ser el físico más grande de la comunidad científica de todos los tiempos.

Einstein partió para su teoría física desde dos postulados que parecen inofensivos pero tienen todo el poder para explicar la naturaleza del universo (los postulados son afirmaciones sin demostración) Más tarde dichos postulados fueron demostrados con la experiencia.

Ellos son: 

1-La luz se mueve siempre a velocidad constante de 300.000 Km/seg, independientemente de la velocidad de la fuente emisor. 

2-No existe ningún experimento posible en una nave que nos permita saber si nos estamos moviendo.

Observa que el primer postulado ignora la relatividad de Galileo, donde se suman las velocidades. Por ejemplo, si sobre el tren un pasajero saca una linterna y envía un haz de luz, cuál será la velocidad del haz respecto a ti que estás detenido en el andén?. Según Galileo seria: 300000+ la velocidad del tren.

Pues bien, Albert , pidiendo perdón a Newton, niega toda esa teoría y propone una nueva a partir de estos postulados. A partir de los postulados que Einstein había formulado, la velocidad de la luz siempre seria constante de 300.000 Km/s  “salga a la velocidad que salga”, no interesa la velocidad de la fuente. Además la luz no necesita de un medio material para transportarse, se mueve a través del vacío.

Si la velocidad de la luz dependiera de la velocidad del emisor, se tendría una forma de determinar el movimiento uniforme, experiencia que negaría al segundo postulado. Por ejemplo, si hacemos un ejercicio mental, que tanto le gustaba a Albert, suponte que vas sobre una nave que va aumentando rápidamente su velocidad y tú tienes un espejo en la mano donde te puedes ver reflejado.  Resulta que cuando viajes a una velocidad superior a la de la luz, tu cara desaparecerá del espejo porque ya la luz que tu rostro irradia no lo alcanzará.

Otra situación similar para reflexionar es la siguiente: suponte parado al fondo de una calle desde donde puedes observar la siguiente bocacalle a una cuadra de distancia. Hacia ti viene un auto a gran velocidad y por la calle perpendicular se le acerca una motocicleta en el mismo instante de cruzarse, de tal manera que el auto debe hacer una “S” para evitar la colisión. En este caso, si las velocidades se sumaran, la velocidad de la luz que emite el auto te llegaría antes que la de la moto ya que éste se dirige hacia ti. Por lo tanto verías al automóvil hacer una “S en el aire” si saber por qué, ya que la luz de la moto aún no te ha llegado.

Estos últimos ejemplos son creaciones mentales, pero hay casos reales en el universo, como el moviendo de estrellas,  donde se ha determinado fehacientemente que los postulados anteriores se cumplen y que la velocidad de una onda es siempre constante independiente del centro emisor.

En 1905, Einstein, que años mas tarde recordaría que pasó por  uno de los momentos másduros y pesados de su vida científica, tuvo que aceptar que cada sistema de referencia tiene su propio espacio-tiempo, y que la idea de un tiempo absoluto como lo había planteado dos siglos antes Newton estaba errada. Matemáticamente la velocidad es igual al espacio recorrido sobre el tiempo empleado. Pero ahora bien, si la velocidad de la luz siempre debía ser la misma, no quedaba duda que el núcleo de la cuestión estaba en esos dos rígidos conceptos,  y que el sentido común no nos dejaba analizarlos, porque eran obvios. Cómo la hora sería distinta, según  la mida detenido en la vereda o subido a una carreta?. No es eso ridículo, sin sentido.

Ahora bien apliquemos esos nuevos conceptos nacidos de los postulados de Albert, a otro ejercicio mental. Nuevamente recurriremos a dos naves espaciales en el medio del oscuro vacío en un rinconcito del universo, a miles de kilómetros de nuestra querida Tierra. Suponte que una nave tiene un reloj de luz, una especie de linterna que emite un rayo de luz hacia arriba y al llegar al techo se refleja en un espejo, para volver al punto de partida. Supongamos que el tiempo transcurrido desde la salida del rayo hasta su regreso es de 1 segundo. Para un astronauta adentro de esa nave, observará que la luz sale verticalmente hacia arriba, llega al espejo y regresa al origen, es decir, recorre dos veces la altura de la nave en un segundo. Ese astronauta puedes ser tú es este mismo momento, donde ves subir y bajar un rayo de luz, a razón de 1 seg. por ciclo.

Ahora la segunda nave también tiene instalado exactamente el mismo sistema de reloj, con igual tiempo por ciclo y ella pasa a tu costado a una velocidad v de por ejemplo 10.000 km/h.  Mi pregunta es la siguiente: cómo ves la trayectoria del rayo de luz desde tu nave? No crees que así como ves subir o bajar al rayo, también lo ves , simultáneamente, avanzar con la nave? Qué crees,… no tengo razón?. Realmente es así, el rayo sube y se desplaza horizontalmente, de tal forma que es movimiento compuesto es una línea inclinada hacia arriba que nace en el reloj.

Para el astronauta de la nave la luz sólo sube y baja, pero para ti “que estás fuera de su sistema de referencia” el rayo hace otro recorrido. Por lo antedicho, el rayo recorre “para ti que estás afuera” una distancia mayor que la doble altura que observa el astronauta interior a la nave. Si ahora aplicas el primer postulado de Einstein, donde afirma que la velocidad de la luz es siempre la misma, podrás concluir que  el tiempo que tarda la luz desde que sale del reloj hasta que regresa es mayor que el que tú mides en tu propia nave que sólo sube y baja verticalmente. Por lo tanto, cuando mides el tiempo en una nave que se mueve con respecto a ti podrás observar que dicho tiempo se hace más lento, porque cuando en tu nave mides un segundo en la otra pasa una fracción más. Resumiendo, el tiempo trascurrido en un sistema (nave) que se mueve es siempre más lento, es decir, los relojes atrasan.

Si analizas la situación, pero ahora invertida, notarás que el segundo astronauta, el que se mueve en el caso anterior, observará exactamente lo mismo que tú. Él observará que su rayo sólo baja y sube en un segundo, y que es el de la otra nave el que recorre más distancia, por lo tanto concluirá que es  su reloj el que anda bien, pero el de la otra nave está atrasando.

Algo parecido ocurre con la toma de mediciones de distancias, que es consecuencia del atraso del tiempo. Si el espacio recorrido es igual a la velocidad por el tiempo empleado, notarás fácilmente que cuando calculamos la distacia recorrida por un móvil, el espacio será distinto según se tome el tiempo de un sistema de referencia u otro.  Si estoy detenido y observo pasar la nave a cierta velocidad v, el espacio en mi sistema será igual a dicha velocidad por el tiempo t. Pero resulta que ese tiempo t es menor en el sistema en movimiento, por lo tanto la nave recorrerá menos distancia en su sistema, que el calculado para el nuestro.

Resumiendo, se dice que las distancias se acortan.

Explicacion Matemática de la Teoría:

Es sólo una consideración intuítiva, en realidad Albert inició sus deducciones apoyandosé en las transformaciones de Lorentz.

Sino entiendes las fórmulas y deducciones enviame un mail que recibirás mas explicaciones.

Nota que el tiempo Delta_t es mayor a Delta_t’ en un factor gamma.

Qué significa?

Que cuando la luz en tu reloj, demore por ejemplo 1seg. entre subir y bajar, tu observarás que la luz en la otra nave demorará más en recorrer esa trayectoria triangular. Cuando haces los cálculos observarás que ese tiempo se amplía en un factor gamma (que es mayor que 1) respecto a tu tiempo propio.

Este factor será cada vez mayor cuanto mayor sea la velocidad de la nave.

Suponiendo que v=0.8c (80% de c), el tiempo en la otra nave se incrementará en un 66%, respecto del tuyo, por lo tanto, medirás: 1.66 seg.

Cuando la velocidad llegue a la velocidad de la luz, gamma será infinito.

Un Caso Real:

En la atmósfera, a unos 10.000 m. aproximadamente de altura, aparecen partículas elementales llamada muones que se desplazan a una velocidad muy cercana a la de luz, a unos 0.998 de c. Esa partículas son muy inestables y en reposo tienen un tiempo de vida de 0,00000002 s. (2×10-8), es decir sumamente corto.

Bien, si se calcula sin tener en cuenta la física relativista, se observara que al multiplicar el tiempo de vida por su velocidad, los muones sólo recorrerían unos 600 metros, antes de desaparecer,  por lo que ninguno podría llegar a la superficie de la Tierra.

Experiencias realizadas en tierra, han confirmado la aparición de millones de ellos, contrariando a los cálculos físicos  aplicados. Justamente ahí surge el error, porque en el sistema del muon, a esa velocidad, el tiempo en el sistema Tierra es unas 15 veces superior, y ese es el tiempo que hay tomar para efectuar los cálculos (15 x 2 microsegundos=30).

Con ese nuevo tiempo los 600 m iniciales se transformarían en 9000 m. y explicaría por qué llegan a la superficie. Esos 9000 en el sistema Tierra, se reducen a 600 m. en el sistema muon, porque ahora se debe usar el tiempo del muon.

Como se puede observar las diferencias de tiempo y espacio están directamente relacionadas con la velocidad del sistema. A mayor velocidad mayores diferencias, pero sólo notables cuando la velocidad se aproxima a la de la luz. Cuando la velocidad es baja, inclusive, por ejemplo, la velocidad de un cohete al salir del planeta, es de unos 40.000 km/h se la considera baja y los efectos relativistas no pueden considerarse, porque prácticamente no existen.

Para estas velocidades la teoría de Newton se aplica con total eficacia, sin dudar en que podamos caer en errores. Las fórmulas que más abajo vamos a determinar cuando se aplican para ejemplos con bajas velocidades, se transforman automáticamente en las fórmulas obtenidas de la Mecánica de Newton, por lo que esta última pasa a ser un caso especial de unamás general, conocida hoy como la Teoría Especial de la Relatividad.

Matemáticamente, las fórmulas de Tiempo y Espacio se pueden obtener usando el ejemplo anterior de las naves en el espacio. Lógicamente Einstein no las obtuvo así, para ello se valió de unas transformadas conocidas como de Lorentz, que fue otro científico contemporáneo que estaba estudiando el tema. La matemática utilizada por el científico no fue tan elemental, pero tampoco se apoyó en la más avanzada matemática conocida en esa época.

No fue así para la resolución de las ecuaciones que explican la Teoría General de Relatividad, cuando el movimiento es acelerado, donde tuvo que auxiliarse de herramientas actualizadas del análisis matemático. Aplicar dichas ecuaciones a distintas situaciones físicas genera más de un dolor de cabeza a los avanzados estudiantes de ciencias exactas, cuando deben realizar sus prácticas.

Como te he dicho, Einstein encontró que la teoría de Newton “estaba mal” y eso no significó que las cosas comenzaran a caerse para arriba. Incluso si decimos que la teoría de Newton es “incorrecta”, da la impresión de que entonces la teoría de Einstein es la “correcta”.  Mañana mismo o dentro de algunos años, un hipotético físico, por ejemplo Jacob Newenstein, puede descubrir que la teoría de Einstein “está mal” en serio. Pero aunque eso pase, las cosas no van a empezar a caerse contra el techo, ni a moverse más rápido que la luz.  

Einstein simplemente elaboró una descripción de la naturaleza más precisa que la de Newton, y es posible que alguien halle una aún mejor. Pero la naturaleza no va a modificar su comportamiento para satisfacer la teoría de algún físico: es el científico quien deberá exprimir sus sesos para que su teoría describa a la naturaleza mejor que todas las teorías anteriores.

Corrección de Textos y Ortografía: Ernesto Eracher.

Experimento de Michelson Morley Resumen Explicación Buscando el Eter

Resumen del Experimento de Michelson Morley
Explicación de la Búsqueda del Éter

Todos oímos hablar alguna vez de Einstein y su teoría de la relatividad, que E=mc², que la velocidad de la luz es constante, y un montón de otras cosas que suenan lindo pero no significan nada. Para poder entender por qué estos términos siguen vigentes luego de casi 100 años de inventados, primero hay que hacer un poco de historia.

El año 1905 quedará como el annus mirabilis (año prodigioso) de Einstein, el año en que este físico de 26 años irrumpió en el mundo de la física, literalmente desde la nada, publicando cuatro importantísimos artículos científicos, cada uno de los cuales podría considerarse como un gran descubrimiento científico.

Estos artículos, de los que el más significativo fue el que exponía la teoría especial de la relatividad, aparecieron todos en Annalen der Physik, la principal revista de física de Alemania.

Todos los artículos que se enviaban debían ser evaluados antes de publicarse; puesto que las credenciales de Einstein como físico estaban en orden y como utilizaba el lenguaje de las matemáticas y la física para expresar sus ideas, los físicos que evaluaron su trabajo lo consideraron adecuado para su publicación, aunque algunos de ellos tuvieran dificultades para comprenderlo, y realmente creyeron que la teoría de la relatividad no era correcta.

Ver Biografía de Albert Einstein

Introducción Histórica:

La física clásica comenzó allá por el año 1688 con un libro publicado por el británico Isaac Newton (llamado Principia Mathematica o algo así), en el cual especificaba 3 leyes de movimiento (todo cuerpo se mueve en línea recta y a velocidad constante cuando no es afectado por ninguna fuerza, cuando se aplica una fuerza sobre un cuerpo este ejerce la misma fuerza pero en dirección contraria, y que la aceleración producida por una fuerza neta en un objeto es directamente proporcional a la magnitud de la fuerza e inversamente proporcional a la masa) y que también contenía la ley de gravitación de Newton (dos cuerpos son atraídos entre sí en proporción inversa al cuadrado de la distancia).

Esto que puede sonar complicado en realidad se puede resumir en unas pocas ecuaciones.

Con estas cuatro simples leyes se pudo explicar por primera vez hechos aparentemente tan variados como el por qué las manzanas se caen de los árboles y por qué la Luna gira alrededor de la Tierra.

Newton también realizó observaciones sobre la naturaleza de la luz, alegando que la misma estaba compuesta de partículas (“corpúsculos”) y rechazando la idea de que la luz estaba compuesta de ondas, ya que las ondas necesitan un medio por el cual desplazarse (por ejemplo, el sonido se desplaza por el aire, o cuando tiramos una piedra al agua se ve que se generan ondas en el agua justo en el lugar donde tiramos una piedra) y la luz se desplaza por el vacío del espacio.

Si deseas puedes continuar hacia abajo con las conclusiones de la teoría  

El experimento Michelson-Morley

Pero la ciencia fue avanzando, y los instrumentos de medición fueron mejorando. Los datos obtenidos por los científicos demostraban que la luz se comportaba como una onda, ero si esto ocurría, entonces debería haber una “cosa” no detectada hasta el momento, que cubre todo el universo, por la cual se desplaza la luz.

A esta cosa indetectable hasta entonces se la denominó éter lumínico. La tierra y todos los objetos, incluyendo la luz, se deberían desplazar a través del éter.

Un día de 1881, un señor llamado Michelson realizó un experimento con el fin de calcular la velocidad de la tierra cuando se mueve a través del éter (experimento de Michelson-Morley).

Para calcular esto, disparó varios rayos de luz en varias direcciones y calculó el tiempo que tardaban en regresar con un aparato inventado por él llamado interferómetro.

Teóricamente, los rayos de luz que menos tardaran en regresar indicarían la dirección en la que se mueve la tierra dentro del éter (o sea, indicarían el “adelante”), mientras que los que más tardaran en llegar indicarían el “arriba”.

Grande fue la sorpresa de este tipo cuando no descubrió ninguna diferencia en los tiempos de recorrido de la luz: la velocidad de la luz era constante midiera como se la midiera.

Esto significaba una cosa: la luz se movía a una velocidad constante… ¿pero con respecto a qué? Según la teoría de newton, si yo voy corriendo a 20 km/h, la velocidad de la luz que yo emito sería 20km/h mayor de la luz que emitiría si estoy quieto. Pero no, la luz parecía tener siempre la velocidad de 299.792,458 km/s, independientemente de la velocidad de la tierra.

ESQUEMA DEL EXPERIMENTO: Demostrada ya la existencia de las ondas, quedaba pendiente el delicado problema del éter: el medio en el que, según Maxwell, se propagaban dichas ondas.

Como, por definición, era un medio inmaterial, no había forma de observarlo directamente. Fue entonces cuando se le ocurrió al físico norteamericano Albert Abraham Michelson (1852-1931) una idea realmente «cósmica»: puesto que la Tierra se halla en movimiento con relación a las estrellas (su velocidad orbital es de 30 km/s), este desplazamiento debería traducirse en la existencia de un «viento de éter», esto es, en

esquema experimento de michelson morley

Esquema del Experimento de Michelson-Morley.
Un rayo luminoso incide sobre un espejo semitransparente. El rayo reflejado va a parar a un segundo espejo; el que lo atraviesa sigue su trayecto rectilíneo y va a reflejarse en un tercer espejo. Ambos rayos, superpuestos, alcanzan el ojo del observador. Éste ve, en general, unas franjas de interferencias, alternativamente claras y oscuras. Como los dos brazos del dispositivo tienen la misma longitud, se puede utilizar el eventual desplazamiento de las franjas para detectar diferencias entre las velocidades de la luz en las dos direcciones. Michelson y Morley confiaban en que podrían medir alguna diferencia entre la velocidad de la luz propagándose en dirección norte-sur y la de la luz propagándose en dirección este-oeste. Pero no hallaron ninguna diferencia.

Teoría de la relatividad

Acá apareció un simple profesor alemán que trabajaba en una oficina de patentes en Suiza. En el año 1905 publicó un ensayo titulado “Sobre la electrodinámica de los cuerpos en movimiento” en el cual suponía que la velocidad de la luz es la misma desde donde se la mida: la velocidad de la luz es igual si la mido cuando estoy parado o cuando estoy yendo a una velocidad de 100.000 km/seg o a cualquier otra velocidad, un hecho que puede parecer antinatural. Decir esto contradecía las leyes de Newton, que estaban vigentes desde hacía más de doscientos años.

Esta es la base de la teoría de la relatividad: todos los fenómenos físicos se producen del mismo modo en un marco de referencia inerte (por “inerte” se quiere decir “a velocidad constante”). O sea, suponiendo que esté en una habitación sin ventanas ni otro contacto con el exterior, sería imposible determinar si estoy en movimiento o no, ya que cualquier experimento que realice dará el mismo resultado independientemente del movimiento. Obviamente asumir esto les costó a los científicos, la mayoría hasta se rehusaba a aceptar la teoría.

Pero Einsten no se inmutó, y en 1915 publicó una extensión a su teoría de la relatividad (conocida como la teoría general de la relatividad) en la que tomaba en cuenta los efectos de la gravedad y otras yerbas. Hasta ahí las teorías de Einstein eran sólo eso: teorías.

Las manzanas se seguían cayendo de los árboles, la luna seguía girando sobre la Tierra, lo demás poco importaba. Pero en 1919 un eclipse solar permitió comprobar que la luz era desviada por campos gravitatorios fuertes (en este caso el del Sol), justo como la teoría de Einstein y no la de Newton había predicho. El nombre Albert Einstein se volvió famoso de la noche a la mañana. Su teoría había logrado explicar la realidad mejor que la teoría de Newton.

Algunas consecuencias de la teoría de la relatividad

Para aceptar que la velocidad de la luz es constante desde donde se la mida, Einstein se vio obligado a aceptar algunas otras cosas raras, como por ejemplo:

     Nada puede viajar más rápido que la luz: La velocidad de la luz es el límite de velocidad del Universo.

A mayor velocidad, el tiempo pasa más lento: Si, esto suena muy extraño. Si tengo dos relojes perfectamente sincronizados, y pongo uno en un cohete supersónico, cuando el reloj vuelva a mis manos se notará que la hora que marca este reloj será inferior a la hora que marca el reloj que no se movió. Pero este paso más lento del tiempo es sólo aparente, si una persona viajara junto con el reloj no le sería posible percibir ninguna alteración en el paso del tiempo (el paso del tiempo en este caso es “relativo” al observador). El paso del tiempo se hace cada vez más lento a medida que uno se acerca a la velocidad de la luz, hasta hacerse 0 justo cuando se alcanza dicha velocidad. Por esto, se puede decir que la luz no envejeció ni un segundo desde el Big Bang.

A mayor velocidad, se produce un encogimiento en la dirección del movimiento: Por ej., si yo tengo una regla de 30 cm y de algún modo logro que viaje a 260.000 km/s (0,866 veces la velocidad de la luz) veré que la regla tiene ahora una longitud de… ¡15 cm!. De nuevo, este cambio es aparente: si yo pudiera propulsarme hasta alcanzar la misma velocidad de la regla, vería que vuelve a tener 30 cm.

e=mc2: Probablemente la ecuación más famosa de la física moderna. Esto quiere decir nada más y nada menos que la materia es una forma de energía y viceversa, donde e = energía, m = masa, c = velocidad de la luz. La masa y la energía se pueden transformar libremente. Este fue el principio de la reacción nuclear y la bomba atómica. Por ejemplo, si se convierte un gramo de masa en energía de acuerdo a la famosa ecuación, se estaría obteniendo suficiente energía como para darle a una familia entera electricidad suficiente por 10 años.   

Bueno, esta es una introducción a este interesante tema. Si algunas partes suenan confusas, entiéndanme, algunas cosas son realmente difíciles de explicar :

 Si quieren más información, acá les tiro un par de lugares donde pueden consultar:

– El libro “Nueva Guía para la Ciencia” de Isaac Asimov tiene una demostración de  e=mc2 que se entiende con conocimientos básicos de álgebra.

Esta es sola una de las miles que se encuentran explicando el tema, una gran mayoría son     muy buenas  y hacen que estos revolucionarios conceptos sean “digeridos” por los más profanos.

albert einstein

1905:Año Maravilloso El Efecto Fotoeléctrico El Movimiento Browiano Antecedentes de la Física – Implicancias de la Teoría  –  Explicación de la Teoría

Como se Produce la Energia Nuclear Usos y Aplicaciones

Como se Produce la Energía Nuclear o Atómica
Usos y Aplicaciones

En el siglo XIX, los combustibles fósiles -carbón, petróleo y gas- fueron los grandes protagonistas del impulso industrial. Aún en la actualidad, estos recursos proveen casi el 90% de la energía empleada en el mundo.

La certidumbre de que la existencia de carbón, gas y petróleo era limitada llevó a la búsqueda de fuentes de energía renovables.

La gran fuerza liberada por el átomo, trágicamente experimentada por Estados Unidos sobre Hiroshima y Nagasaki en 1945, hizo pensar en el aprovechamiento de la energía nuclear con fines pacíficos.

Fue así cómo, en el marco de la guerra fría, las potencias mundiales, además de incrementar su arsenal atómico, se esforzaron por desarrollar la energía nuclear con fines pacíficos, en especial a través de la construcción de centrales atómicas.

Diversos accidentes, como el ocurrido en 1979 en la central nuclear de Three Mile Island, en Estados Unidos, pusieron en evidencia que el uso de la energía atómica era realmente peligroso para la humanidad. Entre otros motivos, porque el almacenamiento definitivo de residuos que permanecen miles de años altamente radioactivos plantea problemas por ahora irresolubles.

LA ENERGÍA NUCLERA o ATÓMICA

Radiactividad natural: madame curieDescubierta accidentalmente por Henri Becquerel, en 1896, y estudiada en profundidad por Pierre y Marie Curie (fig. izquierda), a quienes se debe el nombre, la radiactividad natural es el fenómeno según el cual determinados materiales, como, por ejemplo, las sales de uranio, emiten radiaciones espontáneamente.

Las radiaciones emitidas son de tres tipos que se denominan alfa, beta y gamma, y tienen las siguientes características:

Las radiaciones alfa son poco penetrantes, ya que son detenidas por una hoja de papel y se desvían en presencia de campos magnéticos y eléctricos intensos. Están formadas por partículas cuya masa es de 4 u y cuya carga, positiva, es igual a dos veces la carga del electrón.

Las radiaciones beta son más penetrantes que las radiaciones alfa, aunque son detenidas por una lámina metálica. En realidad consisten en un flujo de electrones.

Las radiaciones gamma son muy penetrantes para detenerlas se precisa una pared gruesa de plomo o cemento. Son radiaciones electromagnéticas de alta frecuencia y, por lo tanto, muy energéticas.


rayos atomicos

Los rayos alfa buscan el polo negativo y los beta el positivo, pues cargas opuestas se atraen

Fuerzas Nucleares

Como ya sabes, entre cargas eléctricas del mismo signo existen fuerzas eléctricas de repulsión. Si esto es así, ¿cómo es posible que los protones permanezcan unidos en un volumen tan reducido como el que tiene el núcleo?

Los protones y los neutrones se mantienen unidos en los núcleos debido a la acción de otro tipo de fuerzas distinto de las fuerzas eléctricas y de las fuerzas gravitatorias. Estas fuerzas, a las que llamaremos fuerzas nucleares, son de atracción y mucho más intensas que las fuerzas eléctricas.

Las fuerzas nucleares son de corto alcance, ya que se anulan cuando las distancias son superiores a unos pocos femtómetros.

A partir de esta distancia predominarán las fuerzas eléctricas, que tenderán a separar a los protones.

Estabilidad Nuclear

Según la proporción entre protones y neutrones de un núcleo, éste es estable o no. Actualmente se conocen más de 300 núcleos estables. La radiactividad tiene su origen en la estabilidad nuclear. Si el núcleo es estable, el elemento no es radiactivo; pero cuando la relación entre los componentes del núcleo no es la adecuada, éste emite partículas y radiaciones electromagnéticas hasta alcanzar la estabilidad.

Se llaman isótopos radiactivos o radioisótopos todos aquellos isótopos que emiten radiaciones. Muchos elementos químicos tienen isótopos radiactivos cuyos núcleos emiten radiaciones y partículas de forma espontánea, a la vez que se transforman en núcleos de otros elementos. Así, por ejemplo, uno de los isótopos del carbono, el carbono-14, es radiactivo y se transforma, espontáneamente, en un núcleo de nitrógeno.

Es posible conseguir que un núcleo estable se transforme en un radioisótopo. Si a un núcleo estable llega una partícula con suficiente energía, el núcleo puede desestabilizarse y volverse radiactivo para recuperar la estabilidad. Cuando esto sucede, se habla de radiactividad artificial, en oposición a la radiactividad espontánea o radiactividad natural.

Período de Semidesintegración

Toda desintegración natural es un proceso aleatorio, es decir, no se puede predecir exactamente cuándo un núcleo determinado va a desintegrarse. Ahora bien, es posible calcular la probabilidad de que un núcleo se desintegre en un tiempo determinado. Con este fin se asocia a cada sustancia radiactiva una magnitud característica llamada período de semidesintegración.

El período de semidesintegración, de una sustancia radiactiva es el tiempo necesario para que se desintegre la mitad de los núcleos presentes en una muestra de dicha sustancia. Es decir, si tenemos una masa m de una sustancia y al cabo de 14 días tenemos la mitad (m/2) de esa sustancia (la otra mitad se ha desintegrado), diremos que su período de semidesintegración es de 14 días.

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion

Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones. La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg. En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg. Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen. La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman. Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio. Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares. En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.
E = m.c2

donde E es la energía desprendida, m es el defecto de masa y e es la velocidad de propagación de la luz en el vacío. Debido al elevado valor de e, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía

einstein

Albert Einstein (1879-1955)

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones. En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente. Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor. Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria5.jpg

USOS DE LA ENERGIA NUCLEAR

ELECTRICIDAD

uso energia nuclear

En cada vez mas países, como en España, más del 20% de la electricidad consumida anualmente se produce en las centrales nucleares

MEDICINA

uso en medicina energia nuclear

Las técnicas de diagnóstico y tratamiento de La medicina nuclear son fiables y precisas: radiofármacos, gammagrafia. radioterapia, esterilización…

HIDROLOGÍA

uso nuclear en hidrologia

Los isótopos se utilizan para seguir los movimientos del ciclo del agua e investigar las fuentes subterráneas y su posible contaminación.

AGRICULTURA Y ALIMENTACIÓN

uso en agricultura de la energia nuclear

Control de plagas de insectos, mejora de las variedades de cultivo, conservación de alimentos.

MINERÍA

uso en mineria de la enrgia nuclear

A través de sondas nucleares se puede determinar la composición de las capas de la corteza terrestre.

INDUSTRIA

Los isótopos y radiaciones se usan para el desarrollo y mejora de los procesos industriales, el control de calidad y la automatización.

ARTE

la energia nuclear en el arte

Las técnicas nucleares permiten comprobar la autenticidad y antigüedad de las obras de arte, asi como llevar a cabo su restauración

MEDIO AMBIENTE

uso nuclear en el medio ambiente

Técnicas como el Análisis por Activación Neutrónica permiten la detección y el análisis de diversos contaminantes

EXPLORACIÓN ESPACIAL

energia nuclear en la exploracion espacial

Las pilas nucleares se utilizan para alimentar la instrumentación de satélites y de sondas espaciales

 

COSMOLOGÍA

El estudio de la radiactividad de los meteoritos permite confirmar la antigüedad del universo.

Las Centrales Nucleares

La generación de electricidad es el empleo más importante de la energía liberada en una fisión nuclear. Para ello es necesario controlar la reacción de fisión en cadena; hace falta un sistema que impida que el número de fisiones por unidad de tiempo sobrepase ciertos límites.

Esto se logra mediante el reactor nuclear Un reactor nuclear consiste básicamente en un recipiente en cuyo interior se encuentra el combustible nuclear (uranio o plutonio).

Dicho combustible se suele introducir en forma de pastillas encapsuladas en una serie de vainas metálicas ,rodeadas por un material moderador, que forman el interior del reactor. Para el control de la reacción existen unas barras deslizantes, compuestas de un material capaz de absorber neutrones (boro o grafito).

Según se introduzcan más o menos barras de control en el interior del reactor, el número de neutrones absorbidos será mayor o menor, de este modo se puede controlar el número de fisiones que ocurren por unidad de tiempo.

Si las barras se introducen totalmente, la reacción de fisión se detiene. Todo el conjunto del reactor se halla encerrado por el blindaje biológico, que es una envoltura de metal y hormigón cuya finalidad es impedir el paso de la radiación o gases contaminantes o radiactivos al medio ambiente.

La energía liberada por la fisión del combustible se manifiesta en forma de calor, que se extrae mediante un refrigerante que suele ser agua y que, a causa del calor recibido, se convierte en vapor a alta presión.

El vapor así producido es utilizado para mover turbinas que están acopladas a los generadores eléctricos, posteriormente es enfriado y forzado a circular nuevamente dentro del reactor mediante bombas.

Cuando el combustible empleado es el uranio, puede presentarse en dos variedades: uranio natural o uranio enriquecido. El uranio natural contiene una pequeña proporción de átomos de uranio-235, que es el único que puede fisionar en el reactor.

Por ello es necesario mejorar sustancialmente la eficiencia del reactor, sobre todo en lo que hace a la absorción indeseada de neutrones, esto encarece la estructura del reactor pero generalmente se compensa con el bajo costo del uranio natural. Por el contrario, el uranio enriquecido presenta una proporción mucho más alta de átomos de uranio-235, que se logra mediante un costoso proceso de refinamiento químico.

El uranio-235 va desapareciendo del combustible debido a las fisiones; después de cierto tiempo de funcionamiento del reactor es necesario recambiar el combustible. Esta operación se logra sacando algunas de las vainas que contienen el combustible y reemplazándolas por otras con combustible nuevo.

La generación de electricidad mediante reactores de fisión nuclear presenta grandes ventajas pero también serios inconvenientes.

Entre las ventajas, las más importantes son que no producen contaminación directa de la atmósfera dado que no hay emisión de gases de combustión y que no dependen del suministro de combustibles fósiles que eventualmente han de agotarse.

Los inconvenientes tienen que ver con el tipo de residuos que produce su operación, que consisten en material radiactivo (cuya peligrosidad persiste durante muchos miles de años), por esta razón es muy difícil su tratamiento.

Además, hay que destacar las consecuencias extremadamente graves que tienen para las personas y el medio ambiente los eventuales accidentes que pueden ocurrir, y han ocurrido, en las centrales nucleares. Estas características compiten firmemente entre sí y hacen que el empleo de las centrales nucleares tenga tantos fervientes defensores como opositores.

usina nuclear esquema

Esquema reactor nuclear

La fusión nuclear se presenta como una fuente energética alternativa con muchos menos inconvenientes que la fisión y tantas o más ventajas. Actualmente, la construcción de una central nuclear en base a la fusión se presenta como un serio desafío tecnológico.

La fusión se ha logrado en el laboratorio en condiciones muy especiales que no pueden ser llevadas a la escala necesaria para construir una central nuclear que sea económicamente rentable, es decir, que entregue más energía que la que consume y lo haga a un costo que compita con otros mecanismos de generación.

El problema fundamental radica en que la única forma conocida de lograr fusión es comprimir un gas altamente recalentado, a temperaturas superiores a los millones de grados. Este proceso se logra mediante dispositivos llamados botellas magnéticas.

Recientemente, a principios de 1989, dos científicos reportaron haber descubierto un mecanismo mediante el cual se podía lograr la fusión nuclear a temperatura ambiente.

El anuncio revolucionó a la comunidad científica internacional por las espectaculares consecuencias que esto tendría y se denominó fusión fría al fenómeno. Lamentablemente, pese a que innumerables grupos de investigadores de todo el mundo trataron de repetir el proceso, ninguno logró resultados positivos y actualmente se sospecha que los experimentos originales estuvieran mal hechos.

Ver: Funcionamiento de una Central Nuclear

https://historiaybiografias.com/linea_divisoria5.jpg

La Datación Arqueológica

La datación de una muestra arqueológica es el procedimiento por el cual se determina su antigüedad. El más conocido es el que emplea el isótopo carbono-14 y que permite determinar la edad de restos fósiles o piezas fabricadas por el hombre de hasta 50.000 años de antigüedad.

El carbono está presente en la atmósfera terrestre, formando dióxido de carbono, en tres variedades isotópicas: el carbono-12, -13 y -14. El carbono-12 y -13 son estables, sin embargo el segundo es muy raro: tan sólo 1 de cada 100 átomos de carbono es carbono-13. En cambio, el carbono-14 es radiactivo con un período de semidesintegración de 5700 años.

Al desintegrarse, el carbono-14 se transforma en nitrógeno-14 y emite radiación Beta y debería desaparecer paulatinamente de la atmósfera. Sin embargo, si bien se lo encuentra en proporción escasísima, hay evidencia de que ésta ha permanecido casi inalterada por muchas decenas de miles de años.

Esto es debido a que también existe un mecanismo por el cual se forma carbono-14 a partir del nitrógeno-14. Este hecho tiene lugar en las capas más altas de la atmósfera y consiste en la transmutación del nitrógeno-14 en carbono-14 producida por la radiación cósmica.

El carbono-14 así formado se combina con el oxígeno para dar dióxido de carbono y es transportado a las capas más bajas de la atmósfera por las corrientes de aire. Estos dos mecanismos, el de desintegración y el de creación, han llegado a un equilibrio: la cantidad de carbono-14 que se desintegra durante cierto tiempo es igual a la que se crea en ese tiempo. De tal modo la abundancia de carbono-14 en la atmósfera permanece constante.

Como bien sabes, durante el proceso de fotosíntesis las plantas toman dióxido de carbono de la atmósfera y asimilan el carbono a su organismo. Por este motivo, una parte del carbono que hay en las plantas será carbono-14. Cuando la planta muere, el carbono-14 de su organismo comienza a desaparecer lenta pero inevitablemente, debido a su desintegración.

El resultado de este complicado mecanismo es: ¡un fósil vegetal tiene incorporado su propio reloj! Para saber el tiempo que ha trascurrido desde su muerte bastará con medir la abundancia de carbono-14 que hay en él y que será tanto menor cuanto más tiempo haya transcurrido.

Los físicos han podido establecer cuál es la ley que sigue esta disminución y confeccionaron tablas de la abundancia en función del tiempo. Por lo tanto, una vez conocida esa abundancia bastará con comparar el valor medido con esa tabla para saber la edad del fósil.

Como ya te imaginarás, este fenómeno que afecta el carbono que hay en las plantas también afecta a los animales pues, en algún paso de la cadena alimentada, ellos se nutren de las plantas. También afecta la composición del suelo, pues en la mayor parte de los casos las plantas al morir se integran a él. También a los utensilios y objetos creados por los hombres primitivos, como las vasijas de barro. Por estas razones, este método de datación sirve para analizar una variedad muy grande de muestras. Debemos decir, sin embargo, que falla cuando se trata de determinar edades de más de 50.000 años, en cuyo caso se emplean otros métodos.

https://historiaybiografias.com/linea_divisoria5.jpg

Utilización en medicina y otras áreas

Aprovechando la acción destructiva de las radiaciones sobre la materia, los radioisótopos se emplean en medicina en el tratamiento contra el cáncer, radiando con cobalto-60 los tumores que se quieren eliminar.

También se emplean en la esterilización de material médico y quirúrgico.Los radioisótopos pueden introducirse en un organismo vivo o en cualquier otro material y puede seguirse su trayectoria a través de él. Por ello se emplean como trazadores o marcadores en investigaciones médicas, químicas, industriales, etc.

Por ejemplo, el isótopo yodo -131 se utiliza en medicina para diagnosticar enfermedades de la tiroides. En química y biología, los isótopos radiactivos se utilizan para realizar estudios sobre velocidad y mecanismo de reacciones. En la industria, se emplean para localizar fugas en el transporte de fluidos, por ejemplo, en un oleoducto.

https://historiaybiografias.com/linea_divisoria5.jpg

 Desventajas del uso de radioisótopos

En contrapartida a su utilidad, el manejo de materiales radiactivos plantea problemas de difícil resolución. Entre ellos se destacan la eliminación de los residuos radiactivos que se producen y el control de la seguridad de las personas encargadas de su manipulación y de las comunidades próximas a las instalaciones nucleares.
De hecho, un accidente nuclear de la magnitud del ocurrido en la central de Chernobil puede haber afectado, según algunas estimaciones, la salud de más de medio millón de personas, sin contar las enormes pérdidas materiales que ha originado. (VER DESCRIPCIÓN DEL PROCESO DE LA FISIÓN DEL URANIO)

https://historiaybiografias.com/linea_divisoria5.jpg

Ampliación: Los beneficios de la energía nuclear

La energía nuclear es cuestionada debido a los daños que puede causar al ambiente y a los seres vivos si no existe un control estricto de los reactores nucleares y de los desechos radiactivos, y por su utilización en la fabricación de armamento altamente destructivo.

Sin embargo, la energía nuclear puede tener múltiples usos beneficiosos para la humanidad, no solo en la generación de energía eléctrica —una fuente de energía menos contaminante que el petróleo o el carbón—. sino también por su aplicación en otras áreas de la actividad científica y productiva. Entre ellas:

1 | Agricultura y alimentación

a) Control de plagas. En la llamada técnica de los insectos estériles se suministran altas emisiones de radiación para esterilizar insectos machos en laboratorio y que no dejen descendencia al aparearse. De este modo es posible controlar su población sin utilizar productos químicos nocivos.

b) Mutaciones. La irradiación aplicada a semillas permite cambiar la información genética de ciertas variedades de vegetales para obtener nuevas variedades con características particulares.

c) Conservación de alimentos. Las radiaciones son utilizadas para eliminar microorganismos patógenos presentes en los alimentos y aumentar, de este modo, su período de conservación.

2 | Hidrología

Mediante técnicas nucleares, es posible desarrollar estudios sobre los recursos hídricos. Por ejemplo, caracterizar y medir corrientes de aguas, fugas en embalses, identificar el origen de las aguas subterráneas, etcétera.

3 | Medicina

Se utilizan radiaciones y radioisótopos como agentes terapéuticos y de diagnóstico. En el diagnóstico, se utilizan fármacos radiactivos para estudios de tiroides, hígado, riñon, para mediciones de hormonas, enzimas, etcétera. En terapia médica se pueden combatir ciertos tipos de cáncer con resultados exitosos, especialmente cuando se detectan tempranamente.

4 | Medio ambiente

Se utilizan técnicas nucleares para la detección y análisis de diversos contaminantes del medio ambiente.

5 | Industria e investigación

a) Trazadores. Se elaboran sustancias radiactivas que son introducidas en un determinado proceso y, luego, se detecta la trayectoria de la sustancia por su emisión radiactiva. En el ámbito de la Biología, la introducción de compuestos radiactivos marcados ha permitido observar las actividades biológicas hasta en sus más mínimos detalles.

b) Imágenes. Es posible obtener imágenes de piezas utilizando radiografías que reciben el nombre de gammagrafía y neutrografía. Por ejemplo, se puede comprobar la calidad en piezas cerámicas, detectar la humedad en materiales de construcción, etcétera.

a) Datación. Se emplean técnicas isotópicas para determinar la edad en formaciones geológicas y arqueológicas. Por ejemplo, se utiliza la técnica de carbono-14, para determinar la edad de fósiles.

https://historiaybiografias.com/linea_divisoria5.jpg

CRONOLOGÍA

1938 — Otto Hahn, Lise Meitner y Fritz Strassman descubren en Alemania la fisión nuclear del uranio.

1942 — Primera reacción nuclear en cadena en un laboratorio de Chicago dirigido por Enrico Fermi.

1945 — El bombardero Enola Gay lanza la primera bomba atómica de fisión nuclear sobre la ciudad japonesa de Hiroshima. Poco después, los Estados Unidos lanzan la segunda sobre Nagasaki.

1949 — La Unión Soviética realiza su primera prueba nuclear en Kazajstán.

1952 — Estados Unidos hace explotar su primera bomba de fusión nuclear en el atolón de Bikini, en el Océano Pacífico. Los británicos realizan su primera prueba en las islas australianas de Monte Bello.

1956 — Gran Bretaña pone en marcha su primera central nuclear comercial, en Sellafield, con una potencia de 50 Mw. Francia pone en marcha su primera central nuclear experimental, en Marcoule, en el departamento de Chusclan, en el Gard, con una potencia de 7 Mw.

1959 — Francia pone en marcha dos nuevos reactores nucleares en Chusclan, de 40 Mw cada una.

1960 — Francia realiza su primer ensayo nuclear en el desierto del Sahara.

1968 — España construye su primera central nuclear de las nueve que posee actualmente, se llama José Cabrera y se encuentra en el término municipal de Almonacid de Zorita, en Guadalajara, junto al río Tajo, con una potencia de 160 Mw.

boton

Interesante Link Para Investigar: Foro Nuclear

https://historiaybiografias.com/linea_divisoria5.jpg

LISTA DE TEMAS RELACIONADOS
Fuente Consultada: Físico Químico de Pilar Escudero y Otrosmenu de el atomo

Historia de la Energia
Nuclear
Efectos De Una
Explosión Nuclear
Funcionamiento
De Una Central Nuclear

Aplicaciones Energia Atomica despues de la Guerra Mundial Historia

Historia Evolución Tecnológica Post Guerra Mundial: La Energía Atómica

Aunque fue la culminación de varios años de intensas investigaciones, la explosión de las primeras bombas atómicas constituyó para el mundo entero un acontecimiento totalmente inesperado. De inmediato se hizo evidente, sin embargo, que era posible seguir dos líneas de desarrollo.

Una de ellas era puramente militar: cada una de las grandes potencias tenía que demostrar su capacidad de construir independientemente la nueva arma, si quería mantener su credibilidad militar. En aquel momento, la única forma de defensa parecía ser la capacidad demostrable de recurrir a represalias del mismo tipo.

La segunda línea de desarrollo era la posibilidad de utilizar esta fuente totalmente nueva de energía no de manera descontrolada, como en la bomba, sino mediante el desarrollo de tecnologías completamente innovadoras que la controlaran y la pusieran al servicio de la industria.

Aplicaciones Energia Atomica

De hecho, los dos aspectos estaban estrechamente interrelacionados, como lo demuestran los acontecimientos en el Reino Unido. En ese país, hasta 1951, el programa de energía atómica había estado orientado en gran medida a los aspectos militares, que imponían la necesidad de producir plutonio.

A partir del mencionado año, las dos líneas comenzaron a acercarse dado que las pilas atómicas diseñadas para producir plutonio también se podían utilizar para generar energía eléctrica. Una de ellas fue la denominada Pippa, que producía plutonio y generaba electricidad como subproducto. Esta pila fue la base de energía de Calder Hall, la primera central nuclear importante del mundo, que se inauguró en 1956.

Sorprendentemente, teniendo en cuenta la enorme cantidad de dinero y trabajo que habían dedicado al proyecto Manhattan, los norteamericanos demostraron escaso interés por el desarrollo de la energía atómica como fuente controlada de electricidad en los primeros años de la posguerra. Sólo la marina norteamericana se dedicó a estudiar seriamente el tema, al reconocer su enorme potencial para mantener a las naves indefinidamente en alta mar, sin necesidad de repostar.

En 1955 se construyó el submarino Nautilus, primero de una larga serie de naves subacuáticas propulsadas por energía atómica. En 1959, los soviéticos produjeron el rompehielos nuclear Lenin. Sin embargo, tan sólo en 1957 se inauguró la primera central nuclear de Estados Unidos, en Shippingport, Pennsylvania.

También en este caso, los soviéticos se habían colocado a la cabeza, con la entrada en funcionamiento en 1954, en Obninsk (cerca de Moscú), de una pequeña central nuclear que utilizaba uranio como combustible y grafito como moderador. El calor generado en el núcleo del reactor pasaba en primer lugar a un sistema de circuito cerrado de agua a alta presión y luego era transferido a un sistema independiente de agua, que generaba el vapor necesario para poner en marcha las turbinas.

Un sistema en cierto modo similar de refrigeración por agua fue desarrollado por Estados Unidos para el reactor de Shippingport y por Canadá para los reactores Candu, construidos en los años 50.

La refrigeración por agua tiene la ventaja de ser sencilla y barata, pero tiene también sus inconvenientes. En caso de emergencia (por ejemplo, demasiado calor generado en el núcleo), el agua se convertiría rápidamente en vapor y dejaría de cumplir con su vital función de refrigeración. Por este motivo, Francia y el Reino Unido se inclinaron por los reactores refrigerados con gas, ya que éste no cambia de estado por mucho que se caliente. El primer reactor del Reino Unido, el de Calder Hall, tenía un sistema de refrigeración a gas.

Mientras tanto, en los años 50, se estaba desarrollando un nuevo tipo de reactor que utilizaba como combustible una combinación de uranio-238 y plutonio-239. Los neutrones generados por el plutonio interactúan con el uranio y producen más plutonio; de esta forma se consigue varias veces más energía que en los reactores convencionales con una misma cantidad de uranio.

El primer reactor de este tipo fue inaugurado en la localidad escocesa de Dounreay en 1959, y la central nuclear Phénix, de características similares, entró en funcionamiento poco después en Marcoule, Francia. Al finalizar la década de los años 40, se había dedicado considerable atención a la posibilidad de utilizar otro tipo distinto de refrigerante para los reactores. Se trataba del metal sodio, que funde a 98 °C, ligeramente por debajo del punto de ebullición del agua y muy por debajo de la temperatura normal de operación de los reactores.

Esquema de un Reactor Nuclear

Desde el punto de vista termodinámico, viene a constituir un medio interesante de transferencia del calor, pero presenta varios inconvenientes. Es un elemento muy reactivo químicamente, capaz de provocar corrosión en la mayoría de los materiales con los que entra en contacto. Más concretamente, reacciona de forma explosiva con el agua.

Precisamente esta propiedad lo descartó como refrigerante para los reactores submarinos (tema que interesaba a la marina norteamericana), aunque los Laboratorios Argonne, cerca de Chicago, y General Electric, en Schenectady, habían realizado varios estudios.

La Conferencia atómica de 1955
Al final de la Segunda Guerra Mundial, Estados Unidos era la única nación que poseía la bomba atómica. Durante casi una década trató de mantener d «secreto» y, por medio de unas leyes draconianas y una reserva sin precedentes en tiempos de paz, intentó evitar que se propagaran los conocimientos de la tecnología nuclear. Sin embargo, en 1949 la Unión Soviética hizo estallar su primera bomba atómica.

Cuando Eisenhower ocupó el cargo de presidente de los Estados Unidos en 1952, al comprender que era inevitable que se propagaran los conocimientos nucleares, decidió adoptar dos iniciativas con el fin de internacionalizar la energía atómica y garantizar que la difusión de esta tecnología fuera aplicada con fines pacíficos y no militares.

En su famosa alocución titulada «Átomos para la paz», pronunciada ante la Asamblea General de las Naciones Unidas en 1953, propuso la fundación de la Agencia Internacional de Energía Atómica con el propósito de controlar la aplicación pacífica de dicha tecnología. La segunda iniciativa de los Estados Unidos llevó a la Conferencia Internacional sobre Usos Pacíficos de la Energía Atómica, celebrada en el Palais des Nations, en Ginebra, entre el 8 y el 20 de agosto de 1955.

En la conferencia fueron presentadas unas 450 ponencias científicas. Setenta y tres Estados y ocho agencias especializadas de las Naciones Unidas enviaron a sus respectivas delegaciones, las cuales estaban formadas por un total de 1.428 delegados, aparte de los 350 observadores procedentes en su mayor parte de universidades y empresas comerciales.

El extraordinario éxito de la conferencia, a la que asistieron 905 periodistas y en la que participaron numerosos expertos en ciencia nuclear, se debió a su carácter técnico más que político. Los científicos procedentes de diversos países, los cuales habían estado trabajando aisladamente, pudieron comprobar que básicamente habían llegado a las mismas conclusiones.

La ciencia y la tecnología han hecho grandes progresos desde 1955 y muchos países han comprobado que las ilimitadas perspectivas de una tecnología nuclear pacífica no eran tan benéficas como habían supuesto en un principio. Pero el intercambio de información entre Oriente y Occidente, el Norte y el Sur, contribuyó a aliviar las tensiones internacionales y sentó las bases para la creación de la Agencia Internacional de Energía Atómica, la cual está funcionando con éxito desde 1957, fecha de su fundación.

Hallar Coordenadas Geográficas de un Lugar Latitud y Longitud Terrestre

Hallar Coordenadas Geográficas de un lugar Latitud y Longitud

Coordenadas geográficas: latitud y longitud

Para conocer latitud y longitud de un punto de la superficie de la Tierra, primero tenemos que conocer algunos conceptos que nos ayudarán a comprender mejor el tema. Observa en la figura que Tierra está recorrida por líneas imaginarias que forman una red como la de los pescadores; las líneas que corren en sentido vertical se llaman meridianos y las otras, en sentido horizontal, son los paralelos.

hallar las coordendas geograficas

De todos ellos interesa nombrar al Ecuador, que es el paralelo mayor y divide la Tierra en dos partes iguales llamadas hemisferios Norte (boreal o septentrional) y Sur (austral o meridional); el meridiano de Greenwich, que la divide en dos partes iguales, pero en este caso determina los hemisferios Este (oriental) y Oeste (occidental).

Hacemos referencia especial al Ecuador y a Greenwich porque con ellos se determina la latitud y longitud respectivamente.

Entonces ahora podemos definir que la latitud de un punto en la superficie terrestre, es la distancia que existe entre ese punto y el Ecuador. Se mide en grados y varía de 0° a 90° Norte y de 0° a 90° Sur, siendo 0° el Ecuador y 90° los polos. La longitud, en cambio, es la distancia que existe entre el punto de la superficie terrestre y el meridiano de Greenwich. También se mide en grados, y varía entre 0° y 180° Este y 0° y 180° Oeste.

Todos los puntos de la superficie terrestre pueden localizarse por su latitud y longitud. Los que se encuentran sobre un mismo paralelo tienen la misma latitud, por eso para localizarlos exactamente se debe establecer también

El Sistema de Coordenadas Geográficas determina todas las posiciones de la superficie terrestre utilizando las dos coordenadas angulares de un sistema de coordenadas esféricas que está alineado con el eje de rotación de la Tierra. Este define dos ángulos medidos desde el centro de la Tierra: 

La latitud mide el ángulo entre cualquier punto y el ecuador. Las líneas de latitud se llaman paralelos y son círculos paralelos al ecuador en la superficie de la Tierra.

La longitud mide el ángulo a lo largo del ecuador desde cualquier punto de la Tierra. Se acepta que Greenwich en Londres es la longitud 0 en la mayoría de las sociedades modernas. Las líneas de longitud son círculos máximos que pasan por los polos y se llaman meridianos.

Combinando estos dos ángulos, se puede expresar la posición de cualquier punto de la superficie de la Tierra.

Por ejemplo, Baltimore, Maryland (en los Estados Unidos), tiene latitud 39,3 grados norte, y longitud 76,6 grados oeste. Así un vector dibujado desde el centro de la tierra al punto 39,3 grados norte del ecuador y 76,6 grados al oeste de Greenwich pasará por Baltimore.

Principales Datos del Planeta Tierra Geográficos Físicos Demográficos

Principales Datos Geográficos del Planeta Tierra

Algunos Datos Físicos sobre el Planeta  Tierra

Peso estimado (masa): 5.940.000.000.000.000.000.000 Toneladas métricas
Edad estimada: 4.600 millones de años
Población actual: 7.000.000.000 personas
Área superficial: 510.066.000 km2
Área terrestre: 148.647.000 km2 (29.1%)
Área oceánica: 335.258.000 km2
Total área acuática: 361.419.000 km2 (70.9%)
Tipo de agua: 97% salada, 3% dulce
Circunferencia en el ecuador: 40.066 km
Circunferencia en los polos: 39.992 km
Diámetro en el ecuador: 12.753 km
Diámetro en los polos: 12.710 km
Radio en el ecuador: 6.376 km
Radio en los polos: 6.355 km
Velocidad orbital: La Tierra orbita al sol a 107.320 km por hora
Órbita del Sol: La Tierra orbita al sol una vez cada 365 días, 5 horas, 48 minutos y 46 segundos.

https://historiaybiografias.com/linea_divisoria3.jpg

Información General del Planeta Tierra

elementos del planeta tierra

Ver: Un Gran Planisferio

LA TIERRA EN CIFRAS: 

Diámetro de la Tierra en el ecuador: 12.756 Km.

Circunferencia de la Tierra en el ecuador: 40.076 Km.

Diámetro de la Tierra de uno a otro polo: 12.713,82 Km.

Circunferencia de la Tierra en los polos (meridianos): 40.009,152 Km.

Longitud de un grado de latitud en el ecuador: 110,576 Km.
(Como la Tierra no es una esfera perfecta, el achatamiento de los polos hace que la longi­tud de un grado de latitud en los polos sea ligeramente mayor).

Longitud de un grado de longitud en el ecuador: 111,307 Km.
(La extensión de un grado de longitud es mayor en el ecuador y disminuye gradualmente hacia los polos).

Superficie de fa Tierra: 510.101.000 Km.2

Volumen de la Tierra: 1.083.320.000.000 Km.3

Peso de la Tierra: 5.977 trillones de toneladas ó 5.977.000.000.000.000.000.000 t.

Velocidad de rotación de la Tierra sobre su eje. En el ecuador: 1.620 Km./hora

Velocidad de revolución de la Tierra alrededor del Sol: 107 118 Km./hora

Velocidad a la que el Sol arrastra a fa Tierra alrededor del centro de la Vía Láctea: 273,58 Km./segundo

Velocidad a la que la Vía Láctea se traslada en el espacio: más de 270 Km./s.

Los antiguos griegos fueron los primeros en advertir que nuestro planeta es esférico. Aristóteles, quien vivió hace unos veintitrés siglos, indicó que la tierra era redonda. Basó su afirmación en que algunas estrellas, que eran visibles desde Grecia, no podían ser vistas desde Egipto, situado al Sur. Más tarde otro sabio griego, Eratóstenes, geógrafo y astrónomo de Alejandría, logró medir, por primera vez, la circunferencia terrestre. Eratóstenes supo que en Siena (hoy llamada Asuán), ciudad del sur de Egipto, la luz llegaba verticalmente hasta el fondo de un pozo el mediodía del 21 de junio. En Alejandría, al norte de Siena, a la misma hora de ese día los rayos solares formaban un ángulo de 7.2° con una pared vertical. Ver Técnica Utilizada

FORMA Y MOVIMIENTOS DEL PLANETA TIERRA

La Forma De La Tierra: Respecto a la redondez del planeta algunos griegos advirtieron hace mas de 2000 años que la Tierra tenía cierta curvatura e inclusive uno de ellos llegó a comprobar su forma esférica, midiendo el diámetro con un error relativamente pequeño. Este conocimiento fue olvidado, y muchos siguieron pensando siglos después que la tierra era plana.

Cuando después del descubrimiento de América, Juan Sebastián Elcano completó el viaje alrededor del mundo que había comenzado bajo la dirección de Femando de Magallanes, navegando siempre bacía el Oeste, nadie pudo albergar dudas sobre la esfericidad de la tierra.

En el proceso por el cual el hombre llegó a aceptar la redondez terrestre hubo varias pruebas que fueron ofrecidas sucesivamente. Estas pruebas fueron:

1) Todos los planetas son esféricos y no hay razón para pensar que la tierra es una excepción.

2) La forma en que los buques aparecen y desaparecen en el horizonte.

Si desde la orilla del mar se observa la partida de un buque al irse alejando lo primero que se oculta es el casco; después el puente y, por último, las chimeneas. Si la tierra fuera plana, se estaría viendo el buque completo, aunque cada vez de menor tamaño, hasta perderse en el horizonte.

La forma en que se ve desaparecer el buque prueba que hay una curvatura en la superficie terrestre, pero como desde cualquier puerto que zarpe un buque, desaparecerá siempre en la misma forma y a iguales distancias, no hay duda que la tierra es una esfera, que es el único sólido cuya curvatura es igual en todas las distancias.

3) El aumento del horizonte visible con el ascenso del observador.
Si una persona sube a una torre, o asciende en un avión sobre una región llana y mira en torno, notará que el horizonte presenta forma circular y que según va ascendiendo aumenta el área que abarca el círculo del horizonte. Si la tierra no fuera esférica, el círculo del horizonte visible sería siempre igual.

Una persona de estatura normal tiene un campo de visión de unos 4.6 Km2 en un día despejado, pero si asciende a una torre o a un edificio de 30 metros de altura, su vista abarcará 21 Km2. Desde un avión que vuele a 7.500 metros de altitud podemos ver un área de casi 300 Km2.

4) La sombra de la tierra en los eclipses.
Cuando la tierra se interpone entre el sol y la luna ocurre un eclipse de luna. Durante este eclipse la sombra de la tierra es la que oculta a la luna y esta sombra es siempre circular. Como la tierra gira mientras dura el eclipse, si su forma no fuera esférica su sombra no sería circular en todo momento, pues solamente una esfera es igualmente curvada en toda su superficie.

5) Los viajes alrededor del mundo. La prueba decisiva de la esfericidad terrestre fueron los viajes de circunnavegación, pero una vuelta al mundo, navegando en la misma dirección, prueba solamente que la superficie terrestre es ligeramente curva. La prueba real es que todos los viajes de circunnavegación aérea, cuyas rutas siguen los llamados círculos máximos, requieren recorridos de igual duración.

Consecuencias de la redondez de la tierra.

La forma esférica de la tierra tiene varias consecuencias importantes:
1) La diferencia de temperatura y de iluminación entre las distintas regiones de nuestro planeta.
Si la tierra fuera plana toda su superficie recibiría igual cantidad de energía solar; no habría entonces diferencias de temperatura entre las distintas regiones de nuestro planeta. Pero como la tierra es esférica, la zona ecuatorial recibe los rayos solares casi verticalmente, mientras la inclinación de los rayos se va haciendo mayor desde el ecuador bacía los polos.

Mientras mayor es la inclinación de los rayos solares mayor es el área que cubre la misma cantidad de insolación y, en consecuencia, la intensidad de la insolación es menor, según indica la figura 50. Por ello, mientras en las regiones ecuatoriales hay mucho calor, en los polos hay frío todo el año.

2) Los diferencias de clima y de vegetación entre los distintas regiones. Como la temperatura es uno de los elementos fundamentales del clima, las diferencias entre las temperaturas de las distinta regiones determinan importantes diferencias de clima. Los griegos clasificaron los climas en tórridos, templados y fríos, de acuerdo con la inclinación u oblicuidad de los rayos solares al llegar a distintas zonas de la tierra. Precisamente clima significa inclinación en griego. La vegetación de las distintas regiones depende mucho de la temperatura. Los diferentes tipos de vegetación son así, en gran parte, -una consecuencia de la esfericidad de la tierra.

3) El peso casi uniforme de los cuerpos en todos los puntos de la tierra.
Como la tierra es casi esférica, todos los puntos de su superficie están aproximadamente a igual distancia de su centro. El peso de los cuerpos representa la fuerza de atracción de la gravedad liada el centro de la tierra; y como la distancia al centro de la tierra es en todas partes prácticamente igual, todos los cuerpos pesan casi igual en todos los puntos de la tierra.

Nota: Esta igualdad del peso facilita el comercio, pues si un cuerpo pesara más en un lugar que en otro sería muy difícil el intercambio de mercancías. Debido a la diferencia que existe entre la distancia de los polos al centro de la tierra (6357 Km.) y de un punto situado en el ecuador al centro de la tierra (6.378 Km.) los cuerpos pesan ligeramente más según nos alejamos del ecuador y nos acercamos a los polos. Esta diferencia, que sirve para probar que la tierra no es una esfera perfecta, es tan pequeña que no afecta el intercambio comercial.

MOVIMIENTOS DE LA TIERRA

Nuestro planeta es una esfera en movimiento. La tierra se encuentra sometida a tres movimientos principales:

1) Un movimiento de rotación, sobre su eje, que realiza en un período de casi 24 horas (un día);

2) un movimiento de traslación alrededor del sol, que realiza en un período aproximado de 365 días (un año); y

3) el movimiento que realiza junto con los demás astros integrantes del sistema solar siguiente al sol en su traslación en torno al centro de la  Vía Láctea.

Movimiento de rotación. La tierra gira sobre sí misma, en torno a un eje cuyos” extremos son los polos. Cada 24 horas, aproximadamente (1), la tierra completa una vuelta sobre su eje; este es el período que llamamos día.

La tierra realiza su movimiento de rotación de oeste a este, a una velocidad de unos 27 kilómetros por minuto en el ecuador. Esta velocidad disminuye desde el ecuador nacía los polos.

Hasta Hace poco más de 400 años los hombres creían que la tierra se mantenía inmóvil en el espacio y que los demás astros se movían a su alrededor. Esta creencia se basaba en lo que podemos observar a simple vista. Cada amanecer nos parece ver salir el sol por el este, ascender en el cielo basta el mediodía, para luego comenzar a descender hasta que se pone por el oeste.

Con la puesta del sol comienza la noche. Este molimiento aparente de la esfera celeste es, precisamente, una consecuencia de la rotación de la tierra. Somos nosotros quienes nos movemos con nuestro planeta.

El movimiento de rotación de la tierra fue comprobado el pasado siglo mediante el notable experimento de Foucault . Otra prueba mucho más sencilla consiste en las fotografías de las estrellas tomadas durante la noche con exposición muy prolongada.

Consecuencias de la rotación de la tierra. El movimiento de rotación de la tierra tiene consecuencias muy importantes para el hombre. Entre ellas figuran:

1) La sucesión de los días y las noches.
En todo instante una mitad de la tierra o hemisferio se encuentra iluminado por los rayos solares, mientras la otra mitad está en tinieblas. En el hemisferio iluminado es día y en el otro es noche. Si la tierra fuera una esfera inmóvil siempre sería día en el hemisferio situado frente al sol y noche en el opuesto; pero como la tierra se mueve, en cada hemisferio se producen cada 24 horas un día (12 horas) y una noche (12 horas). La sucesión de los días y las noches influye decisivamente sobre los hábitos de vida del hombre, pues determina los períodos de actividad y los de descanso.

2) La forma achatada de la tierra.
El abultamiento de la tierra en el ecuador y su achatamiento por los polos es una consecuencia de la fuerza centrífuga desarrollada por la tierra en su rotación, la cual actúa sobre los materiales que forman nuestro planeta. En algunos planetas, como Júpiter, de rotación más rápida y estructura gaseosa, el achatamiento es aún mayor que en la tierra

3) Los puntos cardinales.
Si la tierra fuera una esfera inmóvil no podríamos determinar los puntos cardinales que hacen posible la orientación. El norte y el sur existen porque son los extremos del eje en torno al cual gira la tierra. Al rotar, la tierra se mueve de oeste a este. Estos cuatro puntos constituyen la base del sistema de orientación que utilizamos.

4) El movimiento aparente de la esfera celeste.
Ya vimos que el movimiento de los astros en torno a la tierra no existe realmente, sino que su apariencia se origina en el movimiento de rotación de nuestro planeta.

5) La desviación de los cuerpos en su caída y de los vientos y las corrientes marinas.
La rotación terrestre nace que los cuerpos al caer desde grandes alturas se desvíen. La desviación de los vientos y de las corrientes marinas es también consecuencia de la rotación terrestre.

Movimiento de traslación. Al mismo tiempo que gira sobre sí misma, la tierra se mueve alrededor del sol. Este movimiento de traslación lo completa nuestro planeta cada 365 días y cuarto., que constituyen un año.

La circunferencia que describe la tierra en su movimiento de traslación es llamada órbita. La órbita terrestre mide unos 930 millones de kilómetros y es recorrida por nuestro planeta a una velocidad de 29.7 Km. por segundo.

La órbita de la tierra, como las órbitas de todos los planetas, no es una circunferencia perfecta, sino ligeramente elíptica. Debido a esto la distancia de la tierra al sol varía durante el año. Cuando la tierra está más cerca del sol (perihelio), en los primeros días de enero, la distancia entre ambos astros es cerca de 5.000.000 de kilómetros menor que cuando se encuentran a la mayor distancia (afelio), a principios de julio. 27. La inclinación del eje terrestre.

El eje en torno al cual gira la tierra no se mantiene vertical al plano de la órbita terrestre o eclíptica, sino que presenta una inclinación de unos 23 grados y medio. (Exactamente 23° 27′ 30″.)

LA ROTACIÓN TERRESTRE modifica la circulación de los vientos planetarios y ciclónicos y de las corrientes marinas. En el hemisferio norte los vientos y las corrientes tienden a moverse en dirección contraria a las manecillas del reloj y en el hemisferio sur en la dirección de las manecillas, como se observa en el esquema de arriba.

La inclinación del eje terrestre y el movimiento de traslación, combinados, tienen distintas consecuencias que poseen importancia geográfica, tales como:

1) la distribución desigual de la luz y el calor solares recibidos por cada región de la tierra en el transcurso del año, lo que da lugar a las estaciones;

2) la distinta duración del día y de la noche en las diferentes épocas del año.

Posiciones relativas de la tierra y el sol. Si el eje terrestre no estuviera inclinado ligeramente hacia el sol, cada punto de la tierra recibiría igual cantidad de calor y luz solares durante todo el año.

Debido a la inclinación del eje terrestre los hemisferios norte y sur reciben mayor cantidad de luz y calor durante unos meses, y menor durante otros. Estas variaciones, en la cantidad de luz y calor que reciben las distintas partes de la tierra en el transcurso del año, dan lugar a las estaciones.

De marzo a septiembre el hemisferio norte se encuentra inclinado hacia el sol y recibe más calor y luz que el hemisferio sur; de septiembre a marzo la situación cambia, y es entonces el hemisferio sur el que recibe mayor cantidad de calor y luz solares.

LAS ESTACIONES DEL AÑO:

Los cambios que se producen en la temperatura y la duración del día según la época del año, dan lugar a las estaciones.

Las estaciones son cuatro: verano, otoño, invierno y primavera.

En la denominada zona tropical la temperatura es relativamente alta todo el año: en las zonas polares hay frío todos los meses del año; pero en las zonas templadas los cambios en la temperatura y en la duración de los días y las noches son muy marcados durante las distintas estaciones.

Guando el hemisferio norte se encuentra inclinado hacia el sol, de marzo a septiembre, tenemos la primavera y el verano; cuando se encuentra alejado del sol, sobreviene el otoño y el invierno.

Los cambios de estación ocurren en los solsticios y los equinoccios. En los solsticios los rayos solares llegan a los límites máximos que pueden alcanzar verticalmente al norte y al sur del ecuador. El solsticio de verano ocurre el 21 de junio; fecha que corresponde al día más largo y la noche más corta . en el hemisferio norte. Ese día comienza el verano en el hemisferio norte y el invierno en el sur.

En el solsticio de invierno (22 de diciembre), que señala el comienzo del invierno en el hemisferio norte, ocurre todo lo contrario: en el hemisferio norte es el día más corto y la noche más larga; en el hemisferio sur comienza el verano y es el día más largo y la noche más corta.

Los equinoccios (noches iguales) corresponden al 23 de septiembre (otoño) y al 21 de marzo (primavera), cuando la noche y el día tienen igual duración en todo el planeta.

Con el equinoccio de otoño comienza el otoño en el hemisferio norte y la primavera en el sur; el equinoccio de primavera marca el inicio de la primavera en el hemisferio norte y el otoño en el sur.
Las estaciones alternan, pues, en ambos hemisferios. Cuando en el norte es verano, es invierno en el sur; cuando en el norte es otoño, en el sur es primavera y viceversa.

Trópicos y círculos polares. Los trópicos son líneas imaginarias que indican, sobre la esfera terrestre, los puntos situados más al norte y más al sur del ecuador hasta donde llegan verticalmente los rayos solares durante los solsticios.

El trópico de Cáncer corresponde al hemisferio norte y el trópico de Capricornio al hemisferio sur.
En el solsticio de verano  los rayos tangentes del sol rebasan el polo norte. La línea que señala en torno al polo norte el alcance máximo de los rayos solares este día del año es el denominado círculo polar ártico. En el solsticio de invierno el círculo polar antártico señala el límite máximo de la iluminación en torno al polo sur

Los dos trópicos y los dos círculos polares dividen a la tierra en cinco zonas de iluminación: tropical, templada del norte, templada del sur, glacial ártica y glacial antártica.

Las personas que se encuentran al norte del Trópico de Cáncer o al sur del Trópico de Capricornio nunca pueden ver al Sol exactamente por encima de sus cabezas.

Que el Sol se levanta por el este es una verdad no muy exacta. En realidad, salvo en el ecuador, el Sol sólo se levanta exactamente en el este en los equinoccios de otoño y primavera, alrededor del 21 de marzo y del 23 de setiembre. Y sólo entonces se pone exactamente por el oeste.

En los polos, donde hay aproximadamente seis meses de luz constante y seis meses de oscuridad, el Sol nunca se eleva a más de 23,50 sobre el horizonte.

En los equinoccios, la sombra que provoca al mediodía una persona en las latitudes 45° N. o 45° S.. tiene exactamente la medida de su estatura.

Si quieres vivir a igual distancia del ecuador y del polo sur, tu casa sólo podrá estar situada en la República Argentina, en Chile o en Nueva Zelandia.

La ciudad más austral del mundo es Ushuaia, capital del territorio de Tierra del Fuego, en la Argentina.

La ciudad más septentrional del mundo se encuentra en Groenlandia. Su nombre es Etah.

Si pudiéramos cavar un pozo desde Shangai, China, directamente a través del centro de la Tierra, apareceríamos cerca de Buenos Aires, la capital argentina. Estos puntos de la Tierra, diametralmente opuestos, son denominados antípodas. Entre ellos existe una diferencia horaria de 12 horas.

Si navegáramos en línea recta hacia el sur desde la Isla de Vancouver, en Canadá, no hallaríamos tierra hasta llegar a la Antártida.

Si navegáramos directamente hacia el norte desde Belem (Pará), en Brasil, no hallaríamos tierra hasta llegar a Groenlandia.

Partiendo de Los Ángeles, en California (EE. UU.), se podría navegar en línea recta hacia el sur sin encontrar tierra hasta llegar a la Antártida. Yendo por el contrario, desde Los Ángeles hacia el norte, se podría llegar por tierra hasta las cercanías del polo.

Es posible navegar constantemente alrededor del mundo siguiendo el paralelo 600 5. La distancia recorrida sería aproximadamente igual a la mitad de la circunferencia de la Tierra en el ecuador y casi similar también a la distancia de uno a otro polo a lo largo de un meridiano.

El meridiano 17000, llega desde el Polo Norte hasta el Polo Sur sin pasar por tierra, salvo algunos pequeños islotes del océano Pacífico.

La Unión Soviética, el país más extenso del mundo, tiene una superficie mayor que la de toda América del Sur.

Por su superficie, Asia podría contener a todo el continente americano y aun contaría con espacio libre.

Tokio, la ciudad más poblada del mundo, tiene más habitantes que toda Australia.

La superficie de la República Argentina permitiría contener en su territorio los doce países europeos siguientes: España, Portugal, Francia, Italia, Bélgica, Holanda, Gran Bretaña, Suecia, Noruega, Dinamarca, Austria y Hungría. Aún sobraría lugar.

Las siete novenas partes de la población mundial viven al norte del paralelo correspondiente a los 200 de latitud Norte.

Europa es el continente más densamente poblado. Dejando de lado el Principado de Mónaco, que tiene 22 000 habitantes en una superficie de 1,5 Km.2, el país europeo con mayor densidad de población es Holanda, que tiene más de 375 habitantes por kilómetro cuadrado.

El continente con menor densidad de población es Oceanía, que cuenta con menos de 2 habitantes por kilómetro cuadrado.

Entre 1900 y 1950, la población mundial ascendió de 1600 a 2 500 millones de habitantes, es decir, más de un 50%. Hoy somos mas de 6000 millones de personas compartiendo los recursos del planeta.

tabla planeta tierra

https://historiaybiografias.com/linea_divisoria3.jpg

Los países más grandes de la Tierra (en extensión)

1 – Rusia: 17.075.400 km2
2 – Canadá: 9.330.970 km2
3 – China: 9.326.410 Km2
4 – Estados Unidos: 9.166.600 km2
5 – Brasil: 8.456.510 km2
6 – Australia: 7.617.930 km2
7 – India: 2.973.190 km2
8 – Argentina: 2.736.690 km2
9 – Kazajstán: 2.717.300 km2
10 – Sudán: 2.376.000 km2
11 – Argelia: 2.381.740 Km2
12 – Rep. Democrática del Congo: 2.345.410 Km2
13 – México: 1.972.550 Km2
14 – Arabia Saudí: 1.960.582 Km2
15 – Indonesia: 1.919.440 Km2

Los países más pequeños de la Tierra (en extensión)

1 – Vaticano: 0.44 km2
2 – Mónaco: 1.95 Km2
3 – Nauru: 21.2 Km2
4 – Tuvalu: 26 Km2
5 – San Marino: 61 Km2
6 – Liechtenstein: 160 Km2
7 – Islas Marshall: 181 Km2
8 – Seychelles: 270 Km2
9 – Maldivas: 300 Km2
10 – San Cristóbal y Nieves: 360 Km2

Las ciudades más pobladas del planeta

1 -Shangai, China: 13,3 millones
2- Bombay, India: 12,6 millones
3- Buenos Aires, Argentina: 11,92 millones
4 -Moscú, Rusia: 11,3 millones
5- Karachi, Pakistán: 10,9 millones
6- Delhi, India: 10,4 millones
7 – Manila, Filipinas: 10,3 millones
8 – Sao Paulo, Brasil: 10,26 millones
9 – Seúl, Corea del Sur: 10,2 millones
10 – Estambul, Turquía: 9,6 millones
11 – Yakarta, Indonesia: 9,0 millones
12 – Ciudad de México, México: 8,7 millones
13 – Lagos, Nigeria: 8,68 millones
14 – Lima, Perú: 8,38 millones
15 – Tokio, Japón: 8,3 millones
16 – Nueva York, EE.UU.: 8,09 millones
17 – El Cairo, Egipto: 7,6 millones
18 – Londres, Reino Unido: 7,59 millones
19 – Teherán, Irán: 7,3 millones
20 – Beijing (Pekín), China: 7,2 millones

Las cifras mostradas indican la población dentro de los límites reconocidos de la ciudad, y no incluyen a las personas que viven en las cercanías inmediatas fuera de los lindes establecidos para esta. Para ver la lista de las áreas metropolitanas más grandes refiérase al siguiente apartado.

Áreas metropolitanas más pobladas del mundo

1 – Tokio, Japón: 31,2 millones
2 – Nueva York–área de Philadelphia, EE.UU.: 30,1 millones
3 – Ciudad de México, México: 21,5 millones
4 – Seul, Corea del Sur: 20,15 millones
5 – Sao Paulo, Brasil: 19,9 millones
6 – Yakarta, Indonesia: 18,2 millones
7 – Osaka-Kobe-Kyoto, Japón: 17,6 millones
8 – Nueva Delhi, India: 17,36 millones
9 – Mumbai, India: (Bombay) 17,34 millones
10 – Los Ángeles, EE.UU.: 16,7 millones
11 – El Cairo, Egipto: 15,86 millones
12 – Calcuta, India: 14,3 millones
13 – Manila, Filipinas: 14,1 millones
14 – Shangai, China: 13,9 millones
15 – Buenos Aires, Argentina: 13,2 millones
16 – Moscú, Rusia: 12,2 millones

Las cifras mostradas indican la población dentro del área inmediata que rodea a los límites establecidos de la ciudad, y también incluye a la población que habita dentro de los límites de esta. Para ver la lista de las ciudades más pobladas refiérase al apartado anterior.

Los países más poblados del mundo

1 – China: 1.298.847.624
2 – India: 1.065.070.607
3 – Estados Unidos: 293.027.571
4 – Indonesia: 238.452.952
5 – Brasil: 184.101.109
6 – Pakistán: 159.196.336
7 – Rusia: 143.782.338
8 – Bangladesh: 141.340.476
9 – Nigeria: 137.253.500
10 – Japón: 127.333.002
11 – México: 106.202.903
12 – Filipinas: 87.857.473
13 – Vietnam: 83.535.576
14 – Alemania: 82.468.000
15 – Egipto: 77.505.756

Los países menos habitados del mundo

1 – Vaticano: 770
2 – Tuvalu: 9.750
3 – Nauru: 10.000
4 – Palau: 16.000
5 – San Marino: 25.000
6 – Liechtenstein: 29.000
7 – Mónaco: 30.000
8 – San Cristóbal y Nieves: 41.000
9 – Islas Marshall: 52.000
10 – Andorra: 64.000

Los 10 idiomas más hablados del mundo

1 -Chino Mandarín: más de 1.000 millones
2 – Inglés: 512 millones
3 – Hindi: 498 millones
4 – Español: 391 millones
5 – Ruso: 280 millones
6 – Árabe: 245 millones
7 – Bengalí: 211 millones
8 – Portugués: 192 millones
9 – Malayo-Indonesio: 160 millones
10 – Japonés: 125 millones

Los océanos más extensos del mundo (por tamaño)

1 – Pacífico: 155.557.000 km2
2 – Atlántico: 76.762.000 km2
3 – Índico: 68.556.000 km2
4 – Antártico: 20.327.000 km2
5 – Ártico: 14.056.000 km2

Las mayores islas del mundo (por tamaño)

1 – Australia: 7.617.930 km2 *
2 – Groenlandia: 2.175.600 km2
3 – Nueva Guinea: 792.500 km2
4 – Borneo (Indonesia): 725.500 km2
5 – Madagascar: 587.000 km2
6 – Baffin (Ártico canadiense): 507.500 km2
7 – Sumatra (Indonesia): 427.300 km2
8 – Honshu (Japón): 227.400 km2
9 – Gran Bretaña: 218.100 km2
10 – Victoria (Ártico canadiense): 217.300 km2

*Generalmente considerada masa de tierra continental y no oficialmente una isla. Aunque sin duda es la isla más grande del planeta, y en combinación con Oceanía, el continente más pequeño de la Tierra.

Los mayores mares del mundo

1 – Mar de la China Meridional: 2.974.600 km2
2 – Mar Caribe: 2.515.900 km2
3 – Mar Mediterráneo: 2.510.000 km2
4 – Mar de Bering: 2,261,100 km2
5 – Golfo de México: 1.507.600 km2
6 – Mar Arábigo: 1.498.320 km2
7 – Mar de Okhotsk: 1,392,100 km2
8 – Mar del Japón: 1.012.900 km2
9 – Bahía del Hudson: 730.100 km2
10 – Mar de China Oriental: 664.600 km2
11 – Mar de Andaman: 564.900 km2
12 – Mar Negro: 507.900 km2
13 – Mar Rojo: 453.000 km2

Los ríos más largos del mundo

1 – Nilo, África: 6.825 km
2 – Amazonas, Sudamérica: 6.437 km
3 – Chang Jiang (Yangzi), Asia: 6.380 km
4 – Mississippi, Norteamérica: 5.971 km
5 – Yeniséi, Asia: 5.536 km
6 – Huáng Hé (Amarillo), Asia: 5.464 km
7 – Obi, Asia: 5.410 km
8 – Amur, Asia: 4.416 km
9 – Lena, Asia: 4.400 km
10 – Congo, África: 4.370 km
11 – Mackenzie, Norteamérica: 4.241 km
12 – Mekong, Asia: 4,184 km
13 – Níger, África: 4.171 km

Los mayores lagos del planeta

1 – Mar Caspio, Asia-Europa: 371.000 km2
2 – Superior, Norteamérica: 82.100 km2
3 – Victoria, África: 69.500 km2
4 – Hurón, Norteamérica: 59.600 km2
5 – Michigan, Norteamérica: 57.800 km2
6 – Tanganica, África: 32.900 km2
6 – Baikal, Asia: 31.500 km2
7 – Gran lago del Oso, Norteamérica: 31.300 km2
8 – Mar de Aral, Asia: 30.700 km2
9 – Nyassa (o Malawi), África: 28.900 km2
10 – Gran lago del Esclavo, Cánada: 28.568 km2
11 – Erie, Norteamérica: 25.667 km2
12 – Winnipeg, Canadá: 24.387 km2
13 – Ontario, Norteamérica: 19.529 km2
14 – Balkhash, Kazajstán: 18.300 km2

Las 10 montañas más altas del mundo

1 – Everest: 8.850 m (Nepal)
2 – Qogir (K2): 8.611 m (Pakistán)
3 – Kangchenjunga: 8.586 m (Nepal)
4 – Lhotse: 8.501 m (Nepal)
5 – Makalu I: 8.462 m (Nepal)
6 – Cho Oyu: 8.201 m (Nepal)
7 – Dhaulagiri: 8.167 m (Nepal)
8 – Manaslu I: 8.156 m (Nepal)
9 – Nanga Parbat: 8.125 m (Pakistán)
10 – Annapurna I: 8.091 m (Nepal)

Fuente Consultada: Astroseti.org

Las Distancias en El Universo:Cifras Astronomicas Medidas y Escalas

LAS DISTANCIAS EN EL UNIVERSO

Las Distancias en El Universo:Cifras Astronomicas Medidas y Escalas

A medida que la Tierra gira sobre su eje, un punto sobre el ecuador se mueve a unos 1.600 Km. por hora.

En su giro alrededor del Sol, la Tierra recorre unos 30 Km. por segundo. En un día recorre más de 2 500.000 Km.

Es bastante curioso comprobar que el diámetro de la órbita terrestre es casi exactamente mil veces mayor que la distancia recorrida por la luz en un segundo.

El recorrido anual de la Tierra alrededor del Sol es de casi mil millones de Km. Un niño de diez años de edad ha viajado casi diez mil millones de Km. aun cuando nunca haya salido de la localidad en que vive.

Al girar la Vía Láctea sobre sí misma, el Sol y sus planetas se mueven a unos 250 Km. por segundo. Aun así, el Sol necesita unos 200 millones de años para realizar un giro completo alrededor del centro de la galaxia.

Las galaxias se alejan velozmente unas de otras en el universo. Algunas de ellas recorren más de 100 000 Km. por segundo.

Se necesitaría más de un millón de esferas iguales a la Tierra para hacer una esfera igual a la del Sol.

Algunas de las grandes “llamaradas” que brotan del Sol (protuberancias solares) alcanzan una altura de varios cientos de miles de kilómetros. La más alta que se haya registrado tenía 1 600 000 kilómetros:

Se necesitarían 27 000 millones de soles para hacer una esfera tan grande como la estrella roja gigante llamada Epsilon de Auriga.

Cada hora, alrededor de un millón de meteoritos llega a nuestra atmósfera. Casi todos, salvo muy raras excepciones, se desintegran antes de llegar a la superficie de la Tierra. No obstante, los meteoritos pueden representar un verdadero peligro para los viajes espaciales.

En nuestra galaxia de la Vía Láctea existen por lo menos 200.000 millones de estrellas.

Se sabe que en el universo existen más de cien mil millones de galaxias.

Si todas las estrellas de la Vía Láctea tuvieran nombre, se necesitarían 4.000 años para decirlos todos, suponiendo que se pronunciara uno por segundo sin detenerse.

En todas las galaxias juntas debe haber, probablemente, tantas estrellas como granos de arena existen en todas las playas del globo terrestre.

La estrella más cercana a nuestro Sol está a 40 billones de Km. de éste.

Pese a los millones de estrellas existentes, el espacio no está ocupado en exceso. Se halla tan cubierto de estrellas como lo estaría América del Sur de ardillas si hubiera solamente tres de ellas corriendo por todo el continente.

La longitud de nuestra galaxia es de alrededor de 100 000 años luz (100 000 veces 10 billones de Km.).

Nuestro Sol está a unos 30 000 años luz (30 000 veces 10 billones de Km.) del centro de la Vía Láctea.

La Gran Espiral de Andrómeda es la galaxia más cercana a nuestra Vía Láctea. Está a una distancia de más de 2 millones de años luz (20 trillones de km).

Las galaxias más lejanas que pueden ser observadas con nuestros telescopios están a una distancia de unos 2 000 millones de años luz, aproximada mente.

La temperatura en la superficie del Sol es de 6 000 °C. En su interior alcanza a 14 millones de grados.

En un año, el Sol utiliza 22 trillones de toneladas de su hidrógeno para producir la energía que irradia. Pero, a pesar de esto, sus reservas de hidrógeno le permitirán existir todavía durante miles de millones de años.

La Nebulosa del Cangrejo es una inmensa nube de gas que se extiende a lo largo de 25 000 billones de Km. Desde hace 5 000 años, esta nebulosa crece a razón de 1.000 Km. por segundo.

Una cucharada de la materia que forma ciertas estrellas (las estrellas enanas) pesaría en la Tierra más de una tonelada.

La atracción de la gravedad en la superficie de la estrella enana que acompaña a Sirio (Sirio B) es 250 000 veces mayor que en la superficie de la Tierra.

Porque se Dilata el Agua al Congelarse? Resumen Explicacion Facil

Porque se Dilata el Agua al Congelarse?

Primero cabria preguntar: ¿por qué son sólidos los sólidos? ¿Y por qué son líquidos los líquidos? Entre las moléculas de una sustancia sólida hay una cierta atracción que las mantiene firmemente unidas en una posición fija. Es difícil separarlas y, por consiguiente la sustancia es sólida.

Sin embargo, las moléculas contienen energía de movimiento y vibran alrededor de esas posiciones fijas. Al subir la temperatura, van ganando cada vez más energía y vibrando con mayor violencia. En último término adquieren tanta energía que la atracción de las demás moléculas no basta ya para retenerlas. Rompen entonces las ligaduras y empiezan a moverse por su cuenta, resbalando y deslizándose sobre sus compañeras. El sólido se ha licuado: se ha convertido en un líquido.

Cristal de Agua Congelada

La mayoría de los sólidos son cristalinos. Es decir, las moléculas no sólo permanecen fijas en su sitio, sino que están ordenadas en formaciones regulares, en filas y columnas. Esta regularidad se rompe, cuando las moléculas adquieren suficiente energía para salirse de la formación, y entonces el sólido se funde.

La disposición regular de las moléculas en un sólido cristalino suele darse en una especie de orden compacto. Las moléculas se apiñan unas contra otras, con muy poco espacio entre medías. Pero al fundirse la sustancia, las moléculas, al deslizarse unas sobre otras, se empujan y desplazan. El efecto general de estos empujones es que las moléculas se separan un poco más. La sustancia se expande y su densidad aumenta. Así pues, en general los líquidos son menos densos que los sólidos.

O digámoslo así: los sólidos se expanden al fundirse y los líquidos se contraen al congelarse.

Sin embargo, mucho depende de cómo estén situadas las moléculas en la forma sólida. En el hielo, por ejemplo, las moléculas de agua están dispuestas en una formación especialmente laxa, en una formación tridimensional que en realidad deja muchos «huecos».

Al aumentar la temperatura, las moléculas quedan sueltas y empiezan a moverse cada una por su lado, con los empujones y empellones de rigor. Lo cual las separaría, si no fuese porque de esta manera muchas de ellas pasan a rellenar esos huecos. Y al rellenarlos, el agua líquida ocupa menos espacio que el hielo sólido, a pesar de los empujones moleculares. Al fundirse 1 centímetro cúbico de hielo sólo se forman 0,9 centímetros cúbicos de agua.

Como el hielo es menos denso que el agua, flota sobre ella. Un centímetro cúbico de hielo se hunde en el agua hasta que quedan 0,9 centímetros cúbicos por debajo de la superficie. Estos 0,9 cm3 desplazan 0,9 cm3 de agua líquida, que pesan tanto como el centímetro cúbico entero de hielo.

El hielo es sostenido entonces por el empuje del agua, quedando 0,1 centímetros cúbicos por encima de la superficie. Todo esto es válido para el hielo en general. Cualquier trozo de hielo flota en el agua, con una décima parte por encima de la superficie y nueve décimas por debajo.

Esta circunstancia resulta muy afortunada para la vida en general, pues tal como son las cosas, cualquier hielo que se forme en una masa de agua, flota en la superficie. Aísla las capas más profundas y reduce la cantidad de calor que escapa de abajo. Gracias a ello las aguas profundas no suelen congelarse, ni siquiera en los climas más gélidos. En cambio, en épocas más calurosas el hielo flotante recibe el pleno efecto del Sol y se funde rápidamente.

Si el hielo fuese más denso que el agua, se hundiría al fondo a medida que fuese formándose, dejando al aire libre otra capa de agua, que a su vez se congelaría también. Además el hielo del fondo, no tendría posibilidad ninguna de recoger el calor del Sol y fundirse. Si el hielo fuese más denso que el agua, las reservas acuáticas del planeta estarían casi todas ellas congeladas, aunque la Tierra no estuviese más lejos del Sol que ahora.

Ver Propiedades y Características Generales del Agua

Fuente Consultada: Cien Preguntas Sobre La Ciencia de Isaac Asimov

curiosidades sobre la ciencia

Que es la poliagua? Molecula de Agua

¿Qué es la poliagua? Molécula de Agua

Al describir la molécula de agua suele decirse que está compuesta por dos átomos de hidrógeno y uno de oxígeno: H2O. Sí la cosa acabara ahí, sería una molécula pequeña con bajo punto de ebullición. El sulfuro de hidrógeno (H2S), que tiene una molécula parecida, pero más pesada (porque el S es más pesado que el O), es un gas que no se lícúa hasta los -61,8º C. Si el agua no, fuese más que H2O, se licuaría a una temperatura todavía más baja, quizá alrededor de los –80º C.

Pero consideremos la forma de las moléculas de agua Los tres átomos forman un ángulo casi recto, con el de oxígeno en el vértice. El oxígeno comparte dos electrones con cada uno de los átomos de hidrógeno, pero el reparto no es equitativo. El oxígeno ejerce una mayor atracción sobre los electrones, de modo que éstos, con su carga eléctrica negativa, están muy del lado del oxígeno. Por eso, aunque la molécula de agua es eléctricamente neutra en su conjunto, la parte del oxígeno tiene una pequeña carga negativa, mientras que los dos átomos de hidrógeno tienen pequeñas cargas positivas que contrarrestan a aquélla.

Las cargas de signo opuesto se atraen. Hay, pues, una tendencia a que dos moléculas del agua se alineen de manera que el extremo negativo (el del oxígeno) de una de ellas quede adyacente al positivo (el del hidrógeno) de la siguiente. Esto constituye un «enlace de hidrógeno» que es veinte veces más débil que los enlaces normales que unen al hidrógeno y al oxígeno dentro de la molécula. Sin embargo, basta para que las moléculas de agua sean «pegajosas».

Debido a esta pegajosidad, las molécula de agua se unen con más facilidad y se separan con más dificultad que si no fuese así. Para superar esa fuerza pegajosa y hacer que hierva el agua, hace falta calentarla a 100º C. Cuando la temperatura baja hasta 0ª C, la prevalencia de enlaces de hidrógeno es tal, que las moléculas de agua quedan fijas en su sitio, formándose hielo. De no ser por los enlaces de hidrógeno la temperatura tendría que ser mucho más baja para que esto ocurriera.

En una molécula como la del H2S no sucede la mismo, porque el átomo de azufre y el de hidrógeno tienen una apetencia de electrones aproximadamente igual. No hay acumulación de cargas ni a un lado ni al otro y, por consiguiente, la molécula no es «pegajosa».

Supongamos ahora que tenemos moléculas de agua en un espacio muy limitado, un tubo de vidrio muy fino, pongamos por caso. En estas condiciones tendrán que apelotonarse unas contra otras más de lo normal. El átomo de oxígeno de una de las moléculas se verá empujado muy cerca del átomo de hidrógeno del vecino, tanto, que el enlace de hidrógeno se hará tan fuerte como un enlace ordinario. Las dos moléculas se convierten en una, y a esta doble molécula se podrá enganchar otra, y luego otra, etc.

Al final habrá multitud de moléculas fuertemente, unidas entre sí, con todos los hidrógenos y oxígenos formando hexágonos regulares. La sustancia múltiple resultante es un ejemplo de «polímero». Es «agua polimerizada», o «poliagua» en abreviatura.

Para poder romper esta sustancia (anunciada por vez primera por químicos soviéticos en 1965) en moléculas H2O de vapor de agua, hay que calentarla hasta 500º C. Y debido también a que las moléculas están aquí mucho más apelotonadas que en el agua ordinaria, la poliagua tiene una densidad 1,5 veces superior a la del agua normal.

Sin embargo, la noción de poliagua no ha sido aceptada universalmente. Muchos químicos. piensan que lo que se ha llamado poliagua es en realidad agua que ha cogido impurezas o que ha disuelto un poco de vidrio. En este caso puede ser que la poliagua ni siquiera exista.

Mas sobre las Propiedades del Agua

Fuente Consultada: Cien Preguntas Sobre La Ciencia de Isaac Asimov

¿Qué es la «poliagua»? Si sigue siendo H2O, ¿cuál es la diferencia?

preguntas curiosas sobre la ciencia

Los gases nobles Gases Inertes Argon Neon Helio

Los Gases Nobles – Gases Inertes

¿Qué tienen de noble los gases nobles?

Los elementos que reaccionan difícilmente o que no reaccionan en absoluto con otros elementos se denominan «inertes». El nitrógeno y el platino son ejemplos de elementos inertes.

En la última década del siglo pasado se descubrieron en la atmósfera una serie de gases que no parecían intervenir en ninguna reacción química.

Estos nuevos gases —helio, neón, argón, criptón, xenón y radón— son más inertes que cualquier otro elemento y se agrupan bajo el nombre de «gases inertes».

Los elementos inertes reciben a veces el calificativo de «nobles» porque esa resistencia a reaccionar con otros elementos recordaba un poco a la altanería de la aristocracia. El oro y el platino son ejemplo de «metales nobles», y por la misma razón se llamaba a veces «gases nobles» a los gases inertes.

Hasta 1962 el nombre más común era el de «gases inertes», quizá porque lo de nobles parecía poco apropiado en sociedades democráticas.

https://historiaybiografias.com/archivos_varios5/gases-nobles.jpg

La razón de que los gases inertes sean inertes es que el conjunto de electrones de cada uno de sus átomos está distribuido en capas especialmente estables. La más exterior, en concreto, tiene ocho electrones.

Así la distribución electrónica del neón es (2, 8) y la del argón (2, 8, 8). Como la adición o sustracción de electrones rompe esta distribución estable, no pueden producirse cambios electrónicos. Lo cual significa que no se pueden producir reacciones químicas y que esos elementos son inertes.

Ahora bien, el grado de inercia depende de la fuerza con que el núcleo, cargado positivamente y situado en el centro del átomo, sujeta a los ocho electrones de la capa exterior. Cuantas más capas electrónicas haya entre la exterior y el centro, más débil será la atracción del núcleo central.

Quiere esto decir que el gas inerte más complejo es también el menos inerte. El gas inerte de estructura atómica más complicada es el radón. Sus átomos tienen una distribución electrónica de (2, 8, 18, 32, 18, 8).

El radón, sin embargo, está sólo constituido por, isótopos radiactivos y es un elemento con el que difícilmente se pueden hacer experimentos químicos. El siguiente en orden de complejidad es el xenón, que es estable. Sus átomos tienen una distribución electrónica de (2, 8, 18, 18, 8).

Los electrones más exteriores de los átomos de xenón y radón están bastante alejados del núcleo y, por consiguiente, muy sueltos.

En presencia de átomos que tienen una gran apetencia de electrones, son cedidos rápidamente. El átomo con mayor apetencia de electrones es el flúor, y así fue como en 1962 el químico canadiense Neil Bartlett consiguió formar compuestos de xenón y flúor.

Desde entonces se ha conseguido formar también compuestos de radón y criptón. Por eso los químicos rehuyen el nombre de «gases inertes», porque, a fin de cuentas, esos átomos no son completamente inertes. Hoy día se ha impuesto la denominación de «gases nobles» y existe toda una rama de la química que se ocupa de los «compuestos de gases nobles».

Naturalmente, cuanto más pequeño es el átomo de un gas noble, más inerte es, y. no se ha encontrado nada que sea capaz de arrancarles algún electrón. El argón, cuya distribución electrónica es (2, 8, 8), y el neón, con (2, 8), siguen siendo completamente inertes. Y el más inerte de todos es el helio, cuyos átomos contienen una sola capa electrónica con dos electrones (que es lo máximo que puede alojar esa primera capa).

Fuente Consultada: Cien Preguntas Sobre La Ciencia de Isaac Asimov

preguntas curiosas gases

El Efecto Coriolis en el Planeta Tierra Fuerza Coriolis

El Efecto Coriolis en el Planeta Tierra

Moverse por un objeto que sea estacionario o que se desplace a velocidad constante con respecto a un punto fijo no representa ningún problema. Si queremos desplazarnos desde el punto A en uno de los extremos hasta el punto B en el extremo contrario, lo podremos hacer sin experimentar ninguna dificultad.

Pero la situación cambia cuando, las distintas partes del objeto llevan una velocidad diferente. Pensemos en un tiovivo o cualquier otro objeto plano y grande que gire alrededor de su centro. El objeto entero gira de una pieza, pero lo cierto es que cualquier punto cercano al centro describe un círculo pequeño y se mueve despacio mientras que los puntos próximos al borde exterior describen círculos grandes y se mueven, por tanto, muy deprisa.

efecto coriolisImagina que estás en un punto próximo al centro y que quieres dirigirte a otro cerca del borde exterior, siguiendo una línea recta que arranque del centro. En el punto de salida, cerca del centro, participas de la velocidad de dicho punto y, por tanto, te mueves despacio. Sin embargo, a medida que avanzas hacia afuera el efecto de la inercia tiende a que sigas moviéndote despacio mientras que el suelo que pisas va cada vez más rápido.

La combinación de tu lentitud y la rapidez del suelo hacen que te sientas empujado en la dirección opuesta a la del movimiento de giro. Si el tiovivo gira en dirección contraria a la de las manillas del reloj, comprobarás que tu trayectoria se curva cada vez, más en el sentido de las manillas del reloj a medida que avanzas.

Si empiezas en un punto próximo al borde exterior y avanzas hacia el centro, retendrás la rapidez de dicho punto al tiempo que el suelo irá moviéndose cada vez más despacio debajo de tus pies. Por consiguiente, te sentirás empujado cada vez más en la dirección de giro. Sí el tiovivo se mueve en dirección contraria a la de las manillas del reloj, tu trayectoria se curvará cada vez más en el sentido de las agujas del reloj.

Saliendo de un punto próximo al centro, desplazándote hasta un punto cercano al borde exterior y volviendo luego al centro, comprobarás —si sigues siempre el camino de menor resistencia— que has descrito una trayectoria más o menos circular.

Este fenómeno fue estudiado por primera vez con detalle en 1835 por el físico francés Gaspard de Coriolis, y en honor suyo se llama «efecto Coriolis». A veces se denomina «fuerza de Coriolis», pero en realidad no es una fuerza, sino simplemente el resultado de la inercia.

La consecuencia más importante del efecto Coriolis para los asuntos cotidianos tiene que ver con la rotación de la Tierra. Los puntos de la superficie terrestre cercanos al ecuador describen en el lapso de veinticuatro horas un gran círculo y, por tanto, se mueven muy deprisa. Cuanto más al norte (o al sur) nos movamos, menor es el círculo descrito por un punto de la superficie y más despacio se mueve.

Los vientos y corrientes oceánicas que corren hacía el norte desde los trópicos llevan desde el principio, por la misma rotación terrestre, un rápido movimiento de oeste a este. Al desplazarse hacia el norte conservan su velocidad, pero como resulta que la superficie de la Tierra se mueve cada vez más despacio, el viento o la corriente se adelanta y empieza a curvarse hacia el este. Al final acaban por moverse en grandes círculos: a derechas en el hemisferio norte y a izquierdas en el hemisferio sur.

Es, precisamente el efecto Coriolis el que inicia ese movimiento circular que, concentrado en mayor grado (y, por tanto, más energéticamente) da origen a los huracanes, y en grado aún mayor, a los tornados.

Fuente Consultada: Cien Preguntas Sobre La Ciencia de Isaac Asimov

¿Qué es el efecto Coriolis?

preguntas curiosas ciencia

La Vida Media de un Isotopo Quimico La Desintegracion Radiactiva

La Vida Media de un Isótopo Químico

Hay átomos que son inestables. Abandonados a su suerte, tarde o temprano experimentan espontáneamente un cambio. De su núcleo saldrá una partícula energética o un fotón de rayos gamma y el átomo se convertirá en otro diferente. (Los isótopos son tipos particulares de átomos.) Una serie de átomos inestables agrupados en un lugar radiarán partículas o rayos gamma en todas direcciones, por lo cual se dice que son radiactivos.

No hay ningún modo de predecir cuándo un átomo radiactivo va a experimentar un cambio. Puede que sea al cabo de un segundo o de un año o de billones de años. Por tanto, es imposible medir la «vida entera» de un átomo radiactivo, es decir el tiempo que permanecerá inalterado. La «vida entera» puede tener cualquier valor, y por consiguiente no tiene sentido hablar de ella.

Pero supongamos que lo que tenemos es una multitud de átomos de un determinado isótopo radiactivo concentrados en un lugar. En cualquier momento dado habrá algunos que estén experimentando un cambio. En esas condiciones se comprueba que aunque es imposible saber cuándo va a cambiar un átomo concreto, sí que se puede predecir que al cabo de tantos segundos cambiarán tantos y tantos átomos de un total de un cuatrillón, pongamos por caso.

https://historiaybiografias.com/archivos_varios5/vida-media-isotopo.jpg

Todo es cuestión de estadística. Es imposible saber si Fulanito de tal va a morir o no en un accidente de coche en tal y tal año, pero sí se puede predecir con bastante precisión cuántos habitantes del país van a morir en carretera ese año.

Dado un número grande de átomos de un isótopo determinado, es posible medir la cantidad de radiación en un momento dado y predecir la radiación (el número de átomos que cambian) en cualquier tiempo futuro. Y se comprueba que, en virtud de cómo se producen esos cambios, siempre hace falta el mismo tiempo para que cambien 1/10 de todos los átomos, independientemente de cuántos hubiese al principio. Es más, siempre hace falta el mismo tiempo para que cambien 2/10 de ellos, ó 4/17, ó 19/573, o cualquier otra fracción, independientemente del número inicial de átomos.

Así pues, en lugar de hablar de la «vida entera» de los átomos de un isótopo particular —que carecería de sentido—, se suele hablar del tiempo que tarda en cambiar una fracción determinada de los átomos, lo cual es muy fácil de medir. La fracción más simple es 1/2, y por eso se suele hablar del tiempo que tiene que pasar para que la mitad de los átomos de un isótopo experimenten un cambio. Esa es la «vida media» del isótopo.

Cuanto más estable es un isótopo, menos probable es que sus átomos experimenten un cambio y que un número dado de átomos experimenten un cambio al cabo de una hora, por ejemplo, después de iniciar las observaciones. Esto significa que hace falta más tiempo para que la mitad de los átomos cambien.

Con otras palabras: cuanto más larga es la vida media de un isótopo, tanto más estable; cuanto más corta la vida media, menos estable.

Algunas vidas medias son verdaderamente grandes. El isótopo torio-232 tiene una vida media de catorce mil millones de años. Haría falta todo ese tiempo para que la mitad de cualquier cantidad de torio-232 se desintegrara.

Por eso queda todavía tanto torio-232 en la corteza terrestre, pese a que lleva allí (desintegrándose continuamente) casi cinco mil millones de años.

Pero también hay vidas medias que son muy cortas. La del isótopo helio-5 es aproximadamente igual a una cienmillonésima parte de una billonésima de segundo.

Fuente Consultada: Cien Preguntas Sobre La Ciencia de Isaac Asimov

¿Vida Media de un Isótopo Químico?

preguntas curiosas: derretimiento de los casquetes polares

El Principio de Incertidumbre de Heisemberg Resumen Fácil

El Principio de Incertidumbre de Heisemberg

Ver También:

La Revolución Científica Siglo XV
El Mas Grande Científico de la Historia
Numeros Primos Cuales Son Los Numeros Primos
Origen y Formacion de los Oceanos Teoría
La Velocidad de la Acción de la Gravedad

Antes de explicar la cuestión de la incertidumbre, empecemos por preguntar: ¿qué es la certidumbre? Cuando uno sabe algo de fijo y exactamente acerca de un objeto, tiene certidumbre sobre ese dato, sea cual fuere.

¿Y cómo llega uno a saber una cosa? De un modo o de otro, no hay más remedio que interaccionar con el objeto. Hay que pesarlo para averiguar su peso, golpearlo para ver cómo es de duro, o quizá simplemente mirarlo para ver dónde está. Pero grande o pequeña, tiene que haber interacción.

Pues bien, esta interacción introduce siempre algún cambio en la propiedad que estamos tratando de determinar. O digámoslo así: el aprender algo modifica ese algo por el mismo hecho de aprenderlo, de modo que, a fin de cuentas, no lo hemos aprendido exactamente.

Supongamos, por ejemplo, que queremos medir la temperatura del agua caliente de un baño. Metemos un termómetro y medimos la temperatura del agua. Pero el termómetro está frío, y su presencia en el agua la enfría una chispa. Lo que obtenemos sigue siendo una buena aproximación de la temperatura, pero no exactamente hasta la billonésima de grado. El termómetro ha modificado de manera casi imperceptible la temperatura que estaba midiendo.

O supongamos que queremos medir la presión de un neumático. Para ello utilizamos una especie de barrita que es empujada hacia afuera por una cierta cantidad del aire que antes estaba en el neumático. Pero el hecho de que se escape este poco de aire significa que la presión ha disminuido un poco por el mismo acto de medirla.

¿Es posible inventar aparatos de medida tan diminutos, sensibles e indirectos que no introduzcan ningún cambio en la propiedad medida?

El físico alemán Werner Heisenberg llegó, en 1927, a la conclusión de que no. La pequeñez de un dispositivo de medida tiene un límite. Podría ser tan pequeño como una partícula subatómica, pero no más. Podría utilizar tan sólo un cuanto de energía, pero no menos. Una sola partícula y un solo cuanto de energía son suficientes para introducir ciertos cambios. Y aunque nos limitemos a mirar una cosa para verla, la percibimos gracias a los fotones de luz que rebotan en el objeto, y eso introduce ya un cambio.

Tales cambios son harto diminutos, y en la vida corriente de hecho los ignoramos; pero los cambios siguen estando ahí. E imaginemos lo que ocurre cuando los objetos que estarnos manejando son diminutos y cualquier cambio, por diminuto que sea, adquiere su importancia.

Si lo que queremos, por ejemplo, es determinar la posición de un electrón, tendríamos que hacer rebotar un cuanto de luz en él —o mejor un fotón de rayos gamma— para «verlo». Y ese fotón, al chocar, desplazaría por completo al electrón.

Heisenberg logró demostrar que es imposible idear ningún método para determinar exacta y simultáneamente la posición y el momento de un objeto. Cuanto mayor es la precisión con que determinamos la posición, menor es la del momento, y viceversa. Heisenberg calculó la magnitud de esa inexactitud o «incertidumbre» de dichas propiedades, y ese es su «principio de incertidumbre».

El principio implica una cierta «granulación» del universo. Si ampliamos una fotografía de un periódico, llega un momento en que lo único que vemos son pequeños granos o puntos y perdemos todo detalle. Lo mismo ocurre si miramos el universo demasiado cerca.

Hay quienes se sienten decepcionados por esta circunstancia y lo toman como una confesión de eterna ignorancia. Ni mucho menos. Lo que nos interesa saber es cómo funciona el universo, y el principio de incertidumbre es un factor clave de su funcionamiento. La granulación está ahí, y eso es todo. Heisenberg nos lo ha mostrado y los físicos se lo agradecen.

Fuente Consultada: Cien Preguntas Sobre La Ciencia de Isaac Asimov


preguntas curiosas: derretimiento de los casquetes polares

Las Particulas Subatomicas del Universo Cuantas Particulas Hay?

Las Partículas Subatómicas del Universo

En realidad no hay una respuesta concreta a esta pregunta, porque de entrada no sabemos cómo es de grande el universo. Sin embargo hagamos algunas hipótesis.

Uno de los cálculos es que hay unas 100.000.000.000 ( ó 1011, un 1 seguido de 11 ceros) de galaxias en el universo. Cada una de estas galaxias tiene por término medio una masa 100.000.000.000 (ó 10¹¹) mayor que la del Sol.

Quiere decirse que la cantidad total de materia en el universo es igual a 10¹¹ x 10¹¹ ó 10²³ veces la masa del Sol. Dicho con otras palabras, en el universo hay materia suficiente para hacer 10.000.000.000.000.000.000.000 (diez mil trillones) de soles como el nuestro.

La masa del Sol es de 2  10³³ gramos. Esto significa que la cantidad total de materia en el universo tiene una masa de 1022x2x10³³gramos.
Lo cual puede escribirse como 20.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000. Dicho con palabras, veinte nonillones.

Procedamos ahora desde el otro extremo. La masa del universo está concentrada casi por entero en los nucleones que contiene. (Los nucleones son las partículas que constituyen los componentes principales del núcleo atómico.) Los nucleones son cosas diminutas y hacen falta 6x 10²³ de ellos para juntar una masa de 1 gramo.

Pues bien, si 6 x 1023 nucleones hacen 1 gramo y si hay 2 x 1055 gramos en el universo, entonces el número total de nucleones en el universo es 6 x 1023 x 2 x1055 ó 12 x1078, que de manera más convencional se escribiría 1,2 x1079.

Los astrónomos opinan que el 90 por 100 de los átomos del universo son hidrógeno, el 9 por 100 helio y el 1 por 100 elementos más complicados. Una muestra típica de 100 átomos consistiría entonces en 90 átomos de hidrógeno, 9 átomos de helio y 1 átomo de oxígeno (por ejemplo).

Los núcleos de los átomos de hidrógeno contendrían 1 nucleón cada uno: 1 protón. Los núcleos de los átomos de helio contendrían 4 nucleones cada uno: 2 protones y 2 neutrones. El núcleo del átomo de oxígeno contendría 16 nucleones: 8 protones y 8 neutrones.

Los cien átomos juntos contendrían, por tanto, 142 nucleones: 116 protones y 26 neutrones

Existe una diferencia entre estos dos tipos de nucleones. El neutrón no tiene carga eléctrica y no es preciso considerar ninguna partícula que lo acompañe. Pero el protón tiene una carga eléctrica positiva y como el universo es, según se cree, eléctricamente neutro en su conjunto, tiene que existir un electrón (con una carga eléctrica negativa) por cada protón.

Así pues, por cada 142 nucleones hay 116 electrones (para compensar los 116 protones). Para mantener la proporción, los 1,2 x  1079 nucleones del universo tienen que ir acompañados de 1 x1079 electrones. Sumando los nucleones y electrones, tenemos un número total de 2,2 x  1079 partículas de materia en el universo. Lo cual se puede escribir como 22.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 (ó 22 tredecillones).

Si el universo es mitad materia y mitad antimateria, entonces la mitad de esas partículas son antinucleones y antielectrones. Pero esto no afectaría al número total.

De las demás partículas, las únicas que existen en cantidades importantes en el universo son los fotones, los neutrinos y posiblemente los gravitones. Pero como son partículas sin masa no las contaré. Veintidós tredecíllones es después de todo suficiente y constituye un universo apreciable.

Ver: Todo Sobre El Átomo

Fuente Consultada: Cien Preguntas Sobre La Ciencia de Isaac Asimov