Polinomios Online

Calculo Superior,Limite,Derivada,Integrales Online Ecuaciones

 CALCULO SUPERIOR ONLINE

RESOLVER EXPRESIONES ALGEBRAICAS
Evaluar Una ExpresiónExpandir Una ExpresiónResolver Una Ecuación
CALCULO SUPERIOR
Hallar Un LimiteDerivarIntegrarSuma de Riemann
GRAFICAR FUNCIONES MATEMÁTICAS
Gráfica Paramétrica 2DGrafica Normal 2DGráfica 3D

 Sistema de Ecuaciones

Geometría Analítica Online

Descargar Software Gratuitos Para Ingeniería Civil

Ponte esta herramienta de cálculo, con capacidad de conversión entre diferentes unidades de medida, bases numéricas, funciones científicas, fórmulas, estadísticas, matrices, números primos, operaciones con fechas, fracciones, números complejos, polinomios, etc.

Formula del Vértice de una Parabola Cuadrática Ejemplo Online

Fórmula del Vértice de una Parábola Cuadrática
Ejemplo Online

La función general de segundo grado y = ax² + bx+c  representa gráficamente en el plano cartesiano una parábola.

Asignando valores reales a la variable independiente x para obtener los valores de la variable dependiente y, podemos graficar sobre un par de ejes coordenados la curca parabólica.

Por Ejemplo:
—    Elaborar el gráfico de la función:      y  =   x² — 2 x — 2.

En donde según la fórmula general, los coefecientes son: a=1, b=-2 , c=-2

Se elabora la siguiente tabla:

x-3-2-10123
y1361-2-3-21

LLevando estos puntos a plano cartesiano, se tiene la siguiente curva:

grafica parábola

Se puede graficar desde aquí

Para calcular el vértice de cualquier parabola, usamos la siguiente fórmula:

formula vertice parabola cuadrática

Fórmula General Vértice Parabola Cuadrática

Para el caso que venimos estudiando es:

Coordenada X=(-(-2)/2.1)=1

Coordenada Y=(-(-2)²/4.1)-2)=-3

Coordenadas del vértice es: V(1,-3)


Software Gratuito Para Ingeniería Civil Esfuerzos en Estructuras

Software Gratuito Para Ingeniería Civil

ACLARACIÓN: SON TODOS EXCELENTES SOFTWARES Y PROBADOS,
LAMENTABLEMENTE
FUNCIONAN CON 32 BITS, POR LO QUE SE DEBER UTILIZAR VIRTUAL-BOX, QUE CREA UNA PC VIRTUAL CON EL SISTEMA OPERATIVO QUE TE INTERESA (Más Abajo se puede descargar)

LISTADO DE SOFTWARE IDEAL PARA LOS ESTUDIANTES DE INGENIERIA

ingenieria civilingenieria civilingenieria civil
Método de Cross para
estructuras aporticadas de n pisos
por n tramos.(Para n>1)
Software Cálculo de esfuerzos en armaduras metálicasisostáticas e hiperestáticas (además podrás determinarcorrimientos de los nudos)Software Para Calculo de Esfuerzos en arcos biarticulados con un cálculo de una estructura parabólica.
ingenieria civilingenieria civilingenieria civil
Sumatoria de fuerzas concurrentes.
(para estudiantes principiantes)
Software Para Resolver Sistema de ecuaciones
lineales para n ecuaciones con n incógnitas.
Software Para Calcular de centro de gravedad y momentosde inercia de secciones formadas con lacombinación de figuras planas.
ingenieria civilingenieria civilingenieria civil
Software Para Calcular de centro de gravedad ymomentos de inercia de secciones formadas con la combinación de figuras planas.Software Para La Determinación de centro de gravedad y momentos de inercia de secciones formadas con perfiles doble T ,Z, U y otros. Software para graficar funciones matemáticas:
debes escribir la función que te interesa estudiar y listo. Muy bueno y completo.
ingenieria civil ingenieria civilingenieria civil
Software para calcular tubos de hormigón armado.
(ATENCIÓN: Fuera de servicio)
Conversor de Medidas De Longitud,
Superficie, Presión, Energía, Temperatura, Tiempo, Potencia, Ángulos, Iluminación, Monedas, etc.
Espectacular Software
Software Para Que Al Dosificar Hormigones y
Morteros Determines Los Materiales
Y El Costo Por m3-Basado en el libro
El Calculista de S. Goldenhorn
SOFTWARE: Método de Cross Para Vigas Continuas
Hallar Online Los
Esfuerzos en un Pórtico
30 Tablas Online Para Determinar Áreas, Momentos de Inercia, Módulos Resistente y Radio de Giro Para Piezas de Sección Plana Hallar Online Los
Esfuerzos en una Viga Simplemente Apoyada (M.F. y E.C.)
ACCASOFTWARE: DESCARGA DE TRES SOFTWARE PARA INGENIERÍA CIVIL
software 1software 2 software 3
Descargar Descargar Descargar
https://www.accasoftware.com/es/descargas
Para Mas Información ver este video

Tabla de Perfiles
Laminados

También en: PDF

Importante: Todos estos programas de deben colocar adentro de una misma carpeta acompañados por otros tres archivos (del Visual Basic) que son: threed.vbx, grid.vbx y vbrun300.dlll. A estos archivos los debes bajar picando en el texto en blanco acá arriba.
Luego te diriges al software que te interesa bajar y pica sobre su portada.

Tablas de Esfuerzos En Vigas Isostáticas. Reacciones
en Apoyos, Mto. Flector
y Esfuerzo de Corte

ATENCIÓN: Recuerda Bajar Los 3 Archivos Indispensables Para La Corrida de Estos Últimos Programas

Ideal Para Estudiantes:
Decenas de Problemas Resueltos de Resistencia de Materiales-Estructuras Metálicas y Hormigón Armado

CalcMAT

Potente herramienta de cálculo, con capacidad de conversión entre diferentes unidades de medida, bases numéricas, funciones científicas, fórmulas, estadísticas, matrices, números primos, operaciones con fechas, fracciones, números complejos, polinomios, etc.

  • Armado rápido de pilares y vigas a partir de la sección y el área de acero.
  • Reparto de cargas entre pilotes.
  • Cálculo de zapatas rígidas.
  • Diseño de cables de pretensado con salida a Excel y Autocad del trazado. Incluye manual y ejemplo.

CalcMat
Ver Las Características Del Software

PARA ESTUDIANTES
Descargar Un Excelente Software Para Determinar Los Esfuerzos en Diversas Piezas Cargadas

ingenieria civil

Una Maravillosa Herramienta Online Para Hacer Todo Tipo de Cálculos Matemáticos Desde Algebra Básica hasta Cálculo Superior Ideal Para Todos Los Niveles De Estudio

ingenieria civil

Sistema de Ecuaciones Lineales Online Para Resolver Tus Problemas De Cálculo

ingenieria civil

Tabla de Constantes Físicas Tabla de Constantes Físicas

Conversión de Unidades Online

Curso de Hormigón Armado

Medidas de Perfiles Online

CREAR UNA PC VIRTUAL PARA CORRER SOFTWARE DE 32 BITS

//historiaybiografias.com/archivos_varios5/virtual_box.jpg

Haz “clic” para descargar VirtualBox en forma gratuita, luego se instala y configura como una máquina virtual

Problemas Matemáticos Online Combinacion de Fichas Circulares

Problemas Matemáticos Online
Combinacion de Fichas Circulares

Este ejercicio consiste en distribuir 32 fichas de colores (8 amarillas,8 verdes,8 azules y 8 naranjas), en los pares de círculos blancos, de tal manera que cada par tenga una combinación distinta a los demás.
Tenga en cuenta que una combinación verde-azul es distinta de azul-verde.
No tiene la solución porque es fácil ir probando.

Fuerza de rozamiento Importancia Fuerza Concepto Definicion

CONCEPTO E IMPORTANCIA DE LA FUERZA DE ROZAMIENTO

Si no existiera rozamiento: Ya hemos visto lo diversas e inesperadas que son las formas en que se manifiesta el rozamiento a nuestro alrededor. El rozamiento toma parte muy importante incluso allí donde nosotros ni lo sospechamos. Si el rozamiento desapareciera repentinamente, muchos de los fenómenos ordinarios se desarrollarían de formas completamente distintas.

El papel del rozamiento fue descrito de una manera muy pintoresca por el físico francés Guillaume: “Todos hemos tenido ocasión de salir a la calle cuando ha helado. !Cuánto trabajo nos ha costado evitar las caídas! ¡Cuántos movimientos cómicos tuvimos que hacer para poder seguir en pie! Esto nos obliga a reconocer que, de ordinario, la tierra por que andamos posee una propiedad muy estimable, gracias a la cual podemos conservar el equilibrio sin gran esfuerzo.

vida en condicones extremas

Esta misma idea se nos ocurre cuando vamos en bicicleta por un pavimento resbaladizo o cuando un caballo se escurre en el asfalto y se cae. Estudiando estos fenómenos llegamos a descubrir las consecuencias a que nos conduce el rozamiento.

Los ingenieros procuran evitar el rozamiento en las máquinas, y hacen bien. En la Mecánica aplicada se habla del rozamiento como de un fenómeno muy pernicioso, y esto es cierto, pero solamente dentro de los límites de un estrecho campo especial. En todos los demás casos debemos estar agradecidos al rozamiento.

El nos da la posibilidad de andar, de estar sentados y de trabajar sin temor a que los libros o el tintero se caigan al suelo o de que la mesa resbale hasta toparse con algún rincón o la pluma se nos escurra de entre los dedos.

El rozamiento es un fenómeno tan difundido que, salvo raras excepciones, no hay que pedirle ayuda; él mismo nos la ofrece.

El rozamiento da estabilidad. Los albañiles nivelan el suelo de manera que las mesas y las sillas se quedan allí donde las ponemos. Si sobre una mesa colocamos platos, vasos, etc., podemos estar tranquilos de que no se moverán de sus sitios, a no ser que esto ocurra en un barco cuando hay oleaje.

Imaginémonos que el rozamiento se puede eliminar por completo. En estas condiciones, los cuerpos, tengan las dimensiones de una peña o las de un pequeño granito de arena, no podrán apoyarse unos en otros: todos empezarán a resbalar o rodar y así continuarán hasta que se encuentren a un mismo nivel. Si no hubiera rozamiento, la Tierra sería una esfera sin rugosidades, lo mismo que una gota de agua.”

A esto podemos añadir, que si no existiera el rozamiento los clavos y los tornillos se saldrían de las paredes, no podríamos sujetar nada con las manos, los torbellinos no cesarían nunca, los sonidos no dejarían de oírse jamás y producirían ecos sin fin, que se reflejarían en las paredes sin debilitarse.

Arriba, un trineo cargado sobre un camino de hielo; dos caballos arrastran una carga de 70 toneladas. Abajo, el camino de hielo; A, carril; B, deslizaderas del trineo; C, nieve apisonada; D, fundamento de tierra de la carretera

Las heladas nos dan siempre buenas lecciones de la gran importancia que tiene el rozamiento. En cuanto nos sorprenden en la calle nos sentimos incapaces de dar un paso sin temor a caernos. Como muestra instructiva reproducimos las noticias que publicaba un periódico en una ocasión (en diciembre de 1927):

“Londres, 21. Debido a la fuerte helada, el tráfico urbano y tranviario se ha hecho muy difícil en Londres. Cerca de 1 400 personas han ingresado en los hospitales con fracturas de brazos y piernas”.
“Cerca del Hyde Park chocaron tres automóviles y dos vagones del tranvía. Los automóviles resultaron totalmente destruidos por la explosión de la gasolina …”

“París, 21. La helada ha ocasionado en París y sus alrededores numerosos accidentes …”

Y sin embargo, el hecho de que el hielo ofrezca poco rozamiento puede ser útil para fines técnicos. Un ejemplo son los trineos ordinarios. Otra demostración aun más convincente son los llamados caminos de hielo, que se hacían para transportar los leños desde el lugar de la tala hasta el ferrocarril o hasta el punto de lanzamiento a un río para su transporte por flotación. Por estos caminos , que tienen una especie de raíles lisos helados, un par de caballos puede arrastrar un trineo cargado con 70 toneladas de troncos.

Fuente Yakov Perelman
Física Recreativa

Ir al Menú de Cuestiones Físicas

La Fuerza de Gravedad, es Grande? Valor de la Fuerza de Atraccion

LA FUERZA DE GRAVEDAD, ¿CUÁN GRANDE ES?…

¿Es grande la fuerza de la atracción?: “Si la caída de los cuerpos no fuera una cosa que vemos a cada instante, sería para nosotros el fenómeno más asombroso”, escribía el célebre astrónomo francés Arago. La costumbre hace que el hecho de que la Tierra atraiga a todos los cuerpos nos parezca un fenómeno natural y ordinario. Pero cuando se nos dice que los cuerpos también se atraen entre sí nos resistimos a creerlo, porque en las condiciones normales de nuestra vida no vemos nada semejante.

Efectivamente, ¿por qué en torno nuestro no se manifiesta constantemente, en las circunstancias normales, la ley de la atracción universal? ¿Por qué no vemos cómo se atraen entre sí las mesas, las sandías, las personas?.

Porque cuando los objetos son pequeños la fuerza de atracción que ejercen es muy pequeña.

Citaré un ejemplo ilustrativo. Dos personas que se encuentren a dos metros de distancia entre sí se atraen mutuamente, pero la fuerza de esta atracción es insignificante. Suponiendo que estas dos personas tienen un peso medio, la atracción será de 1/100 de miligramo.

Esto quiere decir que estas dos personas se atraen mutuamente con la misma fuerza con que una pesita de 1/100.000 de gramo presiona sobre el platillo de una balanza.

Solamente las balanzas de extraordinaria sensibilidad de los laboratorios de investigación pueden apreciar un peso tan insignificante.  


La atracción del Sol hace que se curve la trayectoria de la Tierra E. La inercia hace que el planeta tienda a seguir la línea tangente ER

Claro está que esta fuerza no puede hacer que nos movamos del sitio, puesto que lo impide el rozamiento entre las suelas de nuestros zapatos y el suelo. Para que nos movamos, estando sobre un suelo de madera, por ejemplo (la fuerza de rozamiento entre las suelas de los zapatos y el suelo será en este caso igual al 30% del peso de nuestro cuerpo) hace falta que sobre nosotros actúe una fuerza mínima de 20 kg.

Resulta cómico comparar esta fuerza con la de una centésima de miligramo, que es la que ejerce la atracción. Un miligramo es la milésima parte de un gramo, y un gramo es la milésima parte de un kilogramo; por lo tanto, 0,01 mg. será… ¡la mitad de la mil millonésima parte de la fuerza necesaria para hacer que nos movamos del sitio! Siendo así, ¿qué tiene de particular que, en condiciones normales, no nos demos ni la más leve cuenta de la atracción entre los cuerpos terrestres?

Si no existiera el rozamiento sería otra cosa; entonces nada impediría que hasta la más leve atracción provocara la aproximación de los cuerpos entre sí. Pero en este caso la aproximación mutua de dos personas producida por una fuerza de atracción de 0,01 mg sería también muy lenta, es decir, se realizaría con unavelocidad insignificante.

Por medio de cálculos se puede demostrar que, si no existiera rozamiento, dos personas situadas a 2 m de distancia se aproximarían entre sí (por influjo de la atracción mutua) 3 cm durante la primera hora, 9 cm durante la segunda y 15 cm durante la tercera. El movimiento de aproximación se iría acelerando, pero las dos personas no llegarían a juntarse antes de cinco horas.

La atracción entre los cuerpos terrestres se puede notar en aquellos casos en que la fuerza de rozamiento no es un obstáculo, es decir, cuando los cuerpos no se mueven. Un peso colgado de un hilo se halla sometido a la atracción de la Tierra (por eso el hilo está dirigido verticalmente), pero si cerca de este peso se encuentra un cuerpo cuya masa sea grande, aquél será atraído por éste y el hilo se desviará ligeramente de su posición vertical y tomará la dirección de la resultante entre la atracción de la Tierra y la del cuerpo, que será relativamente muy pequeña.

La desviación de una plomada en las proximidades de una gran montaña fue observada por vez primera en el año 1775 en Escocia, por Maskelyne, quien comparó la dirección de dicha plomada con la del polo celeste, por los dos lados de una misma montaña. Posteriormente se realizaron otros experimentos más perfectos, utilizando balanzas especiales, que permitieron determinar exactamente la fuerza de la atracción.

Como hemos visto, la fuerza de la atracción entre masas pequeñas es insignificante. A medida que aumenten las masas crece la atracción proporcionalmente al producto de éstas. Pero hay algunas personas propensas a exagerar esta fuerza. Hasta un científico, aunque no físico, sino zoólogo, intentó demostrarme en una ocasión que la atracción que suele observarse entre los barcos se debe a la atracción universal.

Por medio de cálculos no es difícil demostrar que la atracción universal no tiene nada que ver con esto. Dos navíos de línea de 25.000 t cada uno que se encuentren a 100 m de distancia entre sí se atraerán mutuamente con una fuerza total de… 1400 g. Lógicamente esta fuerza es incapaz de producir el más mínimo acercamiento entre dichos barcos. La causa verdadera de la misteriosa atracción que existe entre los barcos es otra, que explicaremos en el capítulo dedicado a las propiedades de los líquidos.

Pero la fuerza de atracción, que es tan insignificante entre masas pequeñas, se hace muy sensible cuando se trata de masas tan colosales como las de los cuerpos celestes. Baste decir que incluso un planeta tan alejado de nosotros como Neptuno, que gira casi en el límite del sistema solar, nos manda su “saludo” atrayendo a la Tierra con una fuerza de… ¡18 millones de toneladas! A pesar de la enorme distancia que nos separa del Sol, la Tierra se mantiene en su órbita gracias a su atracción.

Si la atracción que ejerce el Sol desapareciera por cualquier causa, la Tierra, siguiendo una dirección tangencial a su órbita actual, se lanzaría a recorrer eternamente la profundidad insondable del espacio cósmico.  

Fuente Yakov Perelman
Física Recreativa

Ir al Menú de Cuestiones Fisicas

vida en condicones extremas

Variacion de la Presion Con La Altura Formula y Ejemplo

Variacion de la Presion Con La Altura Formula y Ejemplo

atmosfera


En los artículos anteriores hemos viajado mentalmente por las entrañas de la Tierra.

Nos ha ayudado a realizar estos viajes la fórmula que relaciona la presión del aire con la profundidad.

Ahora vamos a tener el valor de remontarnos a las alturas y aplicando esta misma fórmula veremos como varía la presión del aire en ellas.

En este caso la fórmula toma el aspecto siguiente:

p= 0,999 h/8


donde p es la presión en atmósferas y h es la altura en metros.

El número decimal 0,999 ha sustituido al 1,001, porque cuando nos trasladamos hacia arriba 8 m la presión no aumenta en 0,001, sino que disminuye en 0,001.

Para empezar resolvamos el problema siguiente: ¿A qué altura hay que elevarse para que la presión del aire se reduzca a la mitad?.

Para esto haremos p =0,5 en nuestra fórmula y buscaremos la altura h .

Tendremos la ecuación:

0,5 = 0,999 h/8


cuya resolución no presenta dificultades para los lectores que sepan manejar los logaritmos.

La respuesta h =5,6 km determina la altura a la cual la presión del aire debe reducirse a la mitad.

Sigamos subiendo tras los valerosos aeronautas soviéticos que en los estratostatos “URSS” y “OAX – 1” establecieron en 1933 y 1934 respectivamente los records del mundo de altura, el primero con una marca de 19 km y el segundo con la de 22 km. Estas altas regiones de la atmósfera se hallan ya en la llamada “estratosfera”.

Por esto, los globos en que se realizaron estas ascensiones no se llaman aeróstatos, sino estratostatos.

Calculemos cuál es la presión atmosférica a esas alturas.

Para la altura de 19 km hallamos que la presión del aire debe ser : 

0,999 19.000/8 = 0,095 atm = 72 mm.


Para los 22 km de altura

0,999 22.000/8 = 0,066 atm = 50 mm.


Pero si leemos las notas de los “estratonautas” veremos que a las alturas antedichas se indican otras presiones. A 19 km de altura la presión era de 50 mm y a la de 22 km, de 45 mm.

¿Por qué no se cumplen los cálculos? ¿En qué consiste nuestro error?

La ley de Mariotte para los gases es perfectamente aplicable a estas presiones tan bajas. Pero cometimos un error al considerar que la temperatura del aire es igual en todo el espesor de los 20 km, cuando en realidad desciende notablemente al aumentar la altura.

Se considera que, por término medio, la temperatura desciende 6,5° por cada kilómetro de elevación.

Así ocurre hasta los 11 km de altura, donde es igual a 56° bajo cero. Después, durante un espacio considerable permanece invariable. Si tenemos en cuenta esta circunstancia (para esto no son suficientes los procedimientos de las matemáticas elementales), se obtiene un resultado que concuerda mucho mejor con la realidad.

Por esta misma razón, los resultados de los cálculos que antes hicimos, relativos a la presión del aire a grandes profundidades, también deben considerarse solamente como aproximados.

Para terminar debemos decir que el “techo” alcanzado por el hombre ahora es mucho más alto. Muchos aviones fabricados en serie vuelan ya a 25-30 kilómetros de altura. Ya en el año 1961 los aviadores soviéticos establecieron el récord del mundo de altura con una marca de 34,7 km.  

Fuente Yakov Perelman Física Recreativa

Ir al Menú de Cuestiones Físicas

 

Como es la vida adentro de una mina profunda Presión y Temperatura

La Vida Adentro de una Mina Profunda-Presión y Temperatura

mina profunda

Ver: Descarga de los Libros de Física y Matemática Curiosa de Perelman

¿Quién ha llegado más cerca del centro de la Tierra? (En realidad, no en las novelas.) Los mineros, naturalmente. Ya sabemos  que la mina más profunda se encuentra en Africa del Sur. Su profundidad es mayor de 3 km.

Al decir esto tenemos en cuenta no la penetración de los taladros de perforación de pozos, que han alcanzado hasta 7,5 km, sino las profundidades a que han penetrado los propios hombres. El escritor francés, doctor Luc Durtain que visitó un pozo de la mina Morro Velho, cuya profundidad es de cerca de 2.300 m, escribía:

“Los célebres yacimientos auríferos de Morro Velho se encuentran a 400 Km. de Río de Janeiro. Después de 16 horas de viaje en tren por sitios montañosos, descendemos a un valle profundo rodeado por la selva. Una compañía inglesa explota aquí filones auríferos a una profundidad a la que antes nunca había descendido el hombre.”

El filón va oblicuamente hacia abajo. La mina lo sigue formando seis pisos. Pozos verticales y galerías horizontales. Un hecho que caracteriza extraordinariamente a la sociedad contemporánea es que la mina más profunda que se ha abierto en la corteza terrestre, el intento más intrépido hecho por el hombre para penetrar en las entrañas de la Tierra, es para buscar oro.
Póngase la ropa de trabajo de lona y la cazadora de cuero. Tenga cuidado; cualquier piedrecita que caiga por el pozo puede herirle. Nos va a acompañar uno de los “capitanes” de la mina. Entra usted en la primera galería. Está bien iluminada. Un viento helado a 4° le hace temblar; es la ventilación para refrigerar las profundidades de la mina.

Después de descender en una estrecha jaula metálica por el primer pozo hasta una profundidad de 700 m, llega usted a la segunda galería. Baja usted por el segundo pozo. El aire está caliente. Ya está usted más bajo que el nivel del mar.

A partir del pozo siguiente el aire quema la cara. Sudando a chorros y agachado, porque el techo es bajo, avanza usted en dirección al ruido de las máquinas perforadoras. Envueltos en un polvo denso trabajan unos hombres semidesnudos; el sudor chorrea por sus cuerpos; las botellas de agua pasan de mano en mano. No toque usted los trozos de mineral recién desprendidos, están a 57° de temperatura.

¿Y para qué esta realidad tan espantosa y abominable?… Cerca de 10 kilogramos de oro al día …”

Al describir las condiciones físicas que existían en el fondo de la mina y el grado de explotación a que estaban sometidos los mineros, el autor francés menciona la alta temperatura pero nada dice de que la presión del aire fuera grande.

Calculemos cuál será esta presión a 2.300 m de profundidad. Si la temperatura fuera la misma que en la superficie de la tierra, de acuerdo con la fórmula que conocemos, la densidad del aire aumentaría en

(1,001) 2.300/8 = 1,33 veces.

Pero en realidad la temperatura no permanece invariable, sino que se eleva. Por esto la densidad del aire no aumenta tanto, sino menos.

En definitiva, tenemos que la diferencia entre la presión del aire en el fondo de la mina y en la superficie de la tierra no es más que un poco mayor que la que existe entre la del aire caliente del verano y la del aire frío del invierno.

Por esto se comprende que esta circunstancia no llamase la atención del visitante de la mina.

En cambio tiene mucha importancia la notable humedad del aire a estas mismas profundidades, que hace que la permanencia en ellas sea insoportable cuando la temperatura es alta.

En una de las minas de Africa del Sur (Johannesburg), de una profundidad de 2.553 m, a 50° de temperatura la humedad llega al 100%; en esta mina se instaló lo que se llama “clima artificial”. La acción refrigerante de esta instalación equivale a 2.000 t de hielo.  

Fuente Consultada:
Física Recreativa de Yakov Perelman

Ir al Menú de Cuestiones Físicas