Que es Mach 1?

Historia de los Submarinos Partes, Características y Evolución

Resumen de la Historia de los Submarinos
Partes, Características y Evolución

La historia de la invención del submarino está marcada por sucesos legendarios, como las supuestas noticias escritas sobre la inmersión de Alejandro Magno en una pequeña profundidad marina a bordo de una campana de vidrio estanca. .

¿Quién no recuerda las aventuras del capitán Nemo, héroe de la novela de Julio Verne, Veinte mil leguas de viaje submarino?

Dejando aparte algunas otras iniciativas no documentadas muy rigurosamente (p. ej., el mensajero que se dice envió el general romano Lúculo, sumergido a bordo de una piel de cabra, para burlar el asedio de una flota enemiga, o el ingenio a bordo del cual se sumergió Leonardo da Vinci en 1490), parece que el primer submarino propiamente dicho fue obra del inglés William Bourne, jefe de la artillería naval de la reina Isabel I, quien en 1578 describió una nave capaz de variar su índice de flotación tomando o expulsando agua para ello.

El proyecto de Bourne —no hay indicios de que llegara a ser realizado— serviría para que, hacia 1620, un ingeniero holandés al servicio de la Marina inglesa, Cornelius van Drebbel (1572-1634), construyera un submarino más práctico, aunque igualmente rudimentario (una especie de bote de remos cubierto de cuero).

En realidad el submarino es un producto maravilloso de la ciencia mecánica y naval moderna, pero como decíamo antes la idea de navegar bajo las aguas tiene más de tres siglos; ya Leonardo de Vinci había estudiado la posibilidad de  que el hombre se  aventurase por los  abismos submarinos.

Hoy se está casi seguro de que el primer constructor de sumergibles fue el holandés Cornelio Drebbel (1572-1634), quien había construido para el rey Jacobo I de Inglaterra un barco submarino con el cual recorrió la distancia que separa Greenwich de Westminster, navegando sin incidentes bajo las aguas del Támesis. El francés De Son construyó en Rotterdam, en 1653, un barco de este tipo propulsado por una rueda de alabes.

En Estados Unidos de Norteamérica, David Bushnel construyó hacia 1775 el primer submarino que fue utilizado contra Inglaterra durante la guerra de la Independencia americana.

Este barco, llamado Tortuga (American Turtle), sólo podía transportar una persona.

invento del submarino

El americano Roberto Fulton, constructor del primer barco a vapor, ideó igualmente un submarino, el Nautilus; pero los gobiernos francés e inglés, a quienes se lo había ofrecido, rechazaron la invención porque juzgaron ese medio de combate poco leal y porque era absurda la idea de que existieran naves sumergibles.

En 1800 Roberto Fulton presentó a Napoleón I el plan de un submarino, el Nautilus.

El proyecto fue ejecutado y los ensayos probaron el valor del invento. Otros proyectos y otras tentativas se sucedieron en Francia, en Baviera y en Suecia.

El Zambullidor, cuya propulsión por primera vez no era ejercida por un hombre sino por un motor de aire comprimido, se construyó en Rochefort y se lanzó en 1863.

Casi en la misma época, durante la guerra de Secesión americana, un torpedero sumergible pequeño llamado David, logró luego de numerosos ensayos y múltiples aventuras, hundir un barco de guerra.

La violencia de la explosión fue fatal para el mismo David, que al estar demasiado cerca del navio que torpedeaba, se hundió también con los nueve hombres de a bordo.

Los proyectos y los ensayos continuaron desde esa época, trayendo nuevas mejoras tanto en los medios de inmersión y de propulsión como en el casco. En Francia los acumuladores eléctricos constituyeron para los submarinos el medio de propulsión que debía permitirles funcionar sumergidos sin peligro. En 1885 el ingeniero Goulet los aplicó por primera vez a un submarino minúsculo. Un año más tarde, en Francia, Gustavo Zédé dirigía la construcción del Gymnote concebido por Dupuy de Lome.

Tenía 17 metros de largo y desplazaba 30 toneladas. Su velocidad en inmersión era de 4,5 nudos. Estaba provisto en cada extremo de un prisma a reflexión total, antepasado del periscopio del submarino actual.

¿Existe alguna diferencia entre los términos sumergible y submarino? Los dos vocablos son equivalentes, pero se ha hecho corriente el uso de la palabra submarino para los tipos que tienen una reserva de empuje menor, es decir que son menos aptos para recorrer grandes distancias en superficie.

Esos modelos han sido superados y ahora se dice corrientemente tanto submarino como sumergible. ¿Cuáles son las características que debe presentar un submarino para ser un buen instrumento de navegación? Se las puede enumerar del siguiente modo: buena velocidad en superficie, rapidez de inmersión, gran autonomía que asegure un vasto radio de acción, abundantes reservas de aire, espacio habitable y cómodo para la tripulación.

La forma debe ser estudiada para asegurar la velocidad de navegación en superficie y la estabilidad en la inmersión. Por otra parte la estructura debe ser concebida para que resista a las fuertes presiones que soporta el casco a medida que el submarino se hunde en las aguas.

Por lo general el sumergible está constituído por un casco interno en forma de huso, cuyo corte es mas menos circular y otro extremo que se prolonga más allá de las paredes internas, en las dos extremidades y le da la forma de un torpedo. El espacio entre los dos cascos esta dividido en compartimientos estancos que se llenan de agua cuando el submarino se sumerge; asimismo se encuentran ahí los depósitos de combustibles.

El problema más importante que los constructores deben afrontar es el de la inmersión a la profundidad requerida, que debe ejecutarse rápida y fácilmente. El submarino, como cualquier otro cuerpo, flota mientras su peso sea inferior al peso del agua que corresponde a su volumen. En virtud de un principio físico, es necesario por consiguiente aumentar mucho su peso para lograr la inmersión.

Para ello se llenan de agua tanques adecuados, una vez que las aberturas hacia el exterior han sido cuidadosamente cerradas. En el curso de la segunda guerra mundial, Alemania había construido submarinos de bolsillo que podían sumergirse en 25 segundos y aguantar hasta 3 días bajo el agua.

Si un sumergible navega a escasa profundidad puede, para descubrir a sus adversarios, recurrir a uno o varios periscopios. Cuando no son utilizados, se los hace entrar en el casco y la abertura se cierra automáticamente. Pero en tiempo de guerra, como la condición esencial del submarino es la de ser invisible, el periscopio puede presentar inconvenientes, puesto que deja una estela fácil de localizar sobre todo por aviones.

Cuando el sumergible navega en inmersión, la profundidad media es de 40 metros, aunque ahora es posible descender a más de 100 metros. Para dirigirlo hacia el enemigo, se recurre a los hidrófonos, que permiten percibir las vibraciones producidas por las hélices de los barcos y las de los motores. En los modelos más recientes se utilizan aparatos ultrasónicos, mediante los cuales es posible determinar la dirección y la distancia de un obstáculo, de modo comparable a la acción del radar.

En la torrecilla de comando pueden estar instalados las antenas de radio y uno o dos tubos para el periscopio y el schnorkel, conducto doble que rige la purificación del aire y la evacuación de los gases provocados por el funcionamiento de los motores Diesel, que el submarino tiene para navegar en superficie. Cuando debe deslizarse en inmersión dispone de motores eléctricos que funcionan con acumuladores.

Durante la segunda guerra mundial se adoptaron aparatos consistentes en dos tubos que se podían hacer bajar y entrar en el casco cuando no se empleaban, uno de los cuales servía para evacuar el humo producido por los motores a explosión, mientras el otro permitía introducir aire fresco en el submarino. Así se posibilitaba la navegación en inmersión durante varios días con evidentes ventajas para la seguridad.

La más reciente conquista en el campo de la propulsión es el Nautilus, el sumergible americano impulsado por energía atómica. Este progreso le asegura una gran autonomía en inmersión y abre nuevos horizontes a toda la navegación submarina.

Queda sobreentendida la realización de prodigios técnicos para ubicar, en el restringido espacio de que se disponía, un lugar habitación casi confortable para la tripulación, que debe encontrar en el submarino todo lo necesario para la subsistencia. El sumergible lleva reservas de víveres y de agua dulce y tiene comedores de oficiales lo bastante cómodos como para que la vida a bordo sea aceptable.

El peligro mayor en la navegación submarina es la irrupción del agua en el interior del casco. Un medio eficaz de defensa son los compartimientos estancos, que impiden al agua inundar todo el navio. Para que el submarino pueda volver a la superficie se extrae aquélla mediante bombas de aire comprimido. Si esto no es ya posible, el sumergible señala su posición mediante una boya que contiene un aparato telefónico ligado al navio. Se emplean también señales de humo.

En caso de accidente, para dar a la tripulación oportunidad de salvarse, es necesario disponer de medios rápidos para ascender a la superficie o esperar socorro. Por eso cada submarino está provisto de dispositivos para la purificación del aire, como también de aparatos de salvamento individuales que permiten a la tripulación abandonar el navio.

submarino partes

Este corte a lo largo de un submarino permite hacerse una idea de la disposición de las piezas, que comprenden: doble fondo para los depósitos de agua de lastre y agua potable, la cámara de torpedos, los tanques de aire comprimido, los depósitos de municiones y de acumuladores, los motores Diesel y los motores eléctricos, la sala de maniobras, los comedores para la tripulación. Sumergido el submarino, la visión de los objetos que están en la superficie se efectúa con el periscopio.

Ver: Imagen de las Partes de un Submarino

¿Cuáles son los objetivos para un sumergible en tiempo de guerra? Establecer barreras submarinas a la entrada de los puertos, cerca de las costas, explorar los mares surcados por barcos enemigos, torpedear a los barcos de guerra aislados o en convoyes, fijar minas, transportar armas. Les está prohibido destruir los barcos de comercio sin una previa inspección de la patente. Pero esta regla de honestidad internacional no ha sido siempre observada.

A comienzos de la primera guerra mundial, las grandes potencias marítimas tenían una flota submarina de regular importancia. Durante la guerra se descubrió que su efectividad como medio de ataque era superior a todo lo previsto y en consecuencia, después de 1918, las potencias trataron de desarrollar aún más su flota submarina.

Luego vino la segunda guerra mundial. El submarino desempeñó nuevamente misiones importantes. La extensión de las zonas de ocupación y la importancia de las fuerzas en pugna tuvieron, como consecuencia, destrucciones espantosas de navios de superficie pero también pérdidas  en submarinos  igualmente  considerables.

El submarino es sobre todo un arma ofensiva. Su armamento consiste, en un cierto número de tubos lanzatorpedos, cañones y ametralladoras antiaéreas. Alemania, al final de la guerra, empleaba torpedos acústicos que eran atraídos automáticamente hacia los navios enemigos por el ruido de las hélices.

En todos los océanos se desarrollaban cazas a menudo agotadoras que duraban muchos días, incluso semanas, hasta descubrir al enemigo. Cuando no se trataba de un solo navio, el sumergible evitaba el ataque inmediato para no dar la alarma; seguía al convoy sin abandonarlo y cuando otros submarinos alertados se unían a él se desencadenaba el ataque.

El Mediterráneo fue el más mortal de los campos de acción, pues su superficie, relativamente restringida, permitía a los enemigos la vigilancia constante del pasaje de navios y la transparencia de las aguas facilitaba a los aviones ubicar a los submarinos.

A los episodios de heroísmo debemos agregar los de solidaridad humana, cuando las tripulaciones de los sumergibles se sacrificaron generosamente para no abandonar a los náufragos de los navios torpedeados, aun con peligro de sus vidas. Tales episodios prueban que si el furor de destrucción y la violencia se han desencadenado, no se llega nunca a ahogar completamente el sentimiento de fraternidad.

ETAPAS DE FLOTACIÓN DE UN SUBMARINO

//historiaybiografias.com/archivos_varios5/submarino3.jpg

ALGO MAS SOBRE SUBMARINOS…

Roberto Fulton, norteamericano nacido en 1775, es también considerado como el prier  hombre que fabricó un submarino prácico, hizo demostraciones con él a Napoleón: destruyó un buque fijándole una carga a su fondo , mas tarde repitió la experiencia ante el Almirantazgo británico.

Cuando un submarino está en la superficie se ve que tiene la forma de un gran cigarro con la timonera blindada en el centro del navio y de la cual salen dos columnas: son los periscopios de los cuales se levanta uno u otro solamente cuando el barco está apenas bajo la superficie del mar. uno es un periscopio de gran poder y largo alcance que puede ser apuntado hacia el cielo para advertir la presencia de aviones enemigos.

El otro es un periscopio de bajo poder y corto alcance, o de ataque, en cuyo ocular se hallan las líneas graduadas que permiten al capitán observar mejor su objetivo y le facilita el cálculo del instante de disparo de los torpedos.

Fuera del casco de presión y contenidos en lo que parecen ser protuberancias en cada costado, están los grandes tanques de lastre. Cuando se halla en la superficie el submarino flota como cualquier otro barco.

En razón de que sus tanques están vacíos no pesa más que el agua que desplaza. Para sumergirlo se hace entrar agua en los tanques de lastre (que están abiertos por el fondo) hasta que el peso total del navio sea ligeramente mayor que el agua desplazada.

De popa a proa están los tanques accesorios que ayudan a mantener el buque horizontal. Si se llena el delantero y se vacía el trasero, la proa se hará más pesada y la nave zambullirá. Esos tanques, que se hallan dentro del casco, están conectados por cañerías, de manera que la nave puede ser nivelada bombeando el agua de uno a otro sin aumentar el peso total.

Los tanques grandes son inundados mediante válvulas que permiten la entrada del agua del mar, y se los vacía por medio de aire comprimido. Una vez sumergido el submarino no tiene estabilidad natural; un aumento de la velocidad o una alteración en la dirección, el movimiento de dos o tres miembros de la tripulación, de un lugar del barco a otro, puede producir una alteración de la inclinación que debe ser corregida inmediatamente moviendo los estabilizadores (aígo así como timones horizontales) para asegurar que el navio conserve su nivelación.

La mayor parte de los submarinos es propulsada por motores diesel, pero como éstos necesitan aire sólo pueden ser usados cuando la nave está en la superficie; para moverse bajo las aguas se utilizan motores eléctricos que funcionan por baterías. En consecuencia debe ascender a la superficie de vez en cuadno para recargar las baterias por medio de un generador diesel. Ya este problema no existe en los submarinos modernos que emplean energía nuclear.

Fuente Consultada:
LO SE TODO Tomo III Editorial CODEX Historia del Submarino
Enciclopedia Tecno-Científico Volumen VII Editorial CODEX

Yeager rompio la barrera del sonido Bell X1 Velocidad del sonido

Yeager rompió la barrera del sonido, el Bell X1

Dos días antes de que intentara romper la barrera del sonido, el capitán Charles “Chuck’ Yeager, (foto izquierda) de la Fuerza Aérea de Estados Unidos, casi perdió el conocimiento en un accidente ecuestre y se rompió dos costillas.

A la mañana siguiente un médico de la localidad le vendó el cuerpo, pero ni siquiera así pudo mover el brazo derecho debido al dolor. No obstante, sabía que si sus superiores se enteraban de su estado, pospondrían el proyecto secreto programado para el 14 de octubre de 1947.

El avión cohete Bell X-1 se dejaría caer del compartimiento de bombas de un Superfortaleza B-29, y después de planear brevemente comenzaría a ascender cuando Yeager encendiera los cuatro cohetes en rápida sucesión.

Para salir del vientre del B-29 y entrar en la pequeña cabina del X-1 (conocido también como XS- 1), Yeager tenía que deslizarse hacia abajo por una pequeña escalera. Después había que bajar la puerta de la cabina por medio de una extensión desprendible del compartimiento de bombas.

Una vez que la puerta estuviera colocada en la forma debida, Yeager debía cerrarla desde el lado derecho. Era ésta una operación que resultaba muy simple, mas no para quien tenía dos costillas fracturadas y el brazo derecho sin poder moverlo. Entonces, su ingeniero de vuelo, Jack Ridley, tuvo una idea genial: el piloto podía quizá usar una especie de bastón con la mano izquierda, y utilizarlo para elevar la manija de la puerta y asegurarla.

La velocidad del sonido es la velocidad de propagación de las ondas sonoras, un tipo de ondas mecánicas longitudinales producido por variaciones de presión del medio. Estas variaciones de presión (captadas por el oído humano) producen en el cerebro la percepción del sonido. El sonido no se transporta por el vacío porque no hay moléculas a través de las cuales transmitirse.

En general, la velocidad del sonido es mayor en los sólidos que en los líquidos y en los líquidos es mayor que en los gases.

La velocidad del sonido en el aire (a una temperatura de 20 ºC) es de 340 m/s (1.224 km/h)

En el aire, a 0 ºC, el sonido viaja a una velocidad de 331 m/s y si sube en 1 ºC la temperatura,
la velocidad del sonido aumenta en 0,6 m/s.

En el agua es de 1.600 m/s, En la madera es de 3.900 m/s, En el acero es de 5.100 m/s

“Echamos un vistazo alrededor del hangar y descubrimos una escoba, rememoró en cierta ocasión Yeager. “Jack cortó un palo de escoba de unos 25 cm., que se ajustó a la manija de la puerta. Luego me escurrí dentro del X-1 e intentamos probar el remedio. Él sostuvo la puerta contra el fuselaje y, usando el palo de escoba para elevar la manija, me di cuenta de que podía yo maniobrar para asegurarla como se requería», añadió.

Hacia las 8:00 a.m. del 14 de octubre, el B-29 despegó de la Base Aérea Muroc (ahora Base Edwards) en el desierto de Mojave, al sur de California. A pesar del dolor que sentía, Yeager, de 24 años de edad, tenía un tranquilo optimismo.

Ya había hecho vatios vuelos de prueba en el avión cohete y quería ser el primer hombre en volar a una velocidad supersónica, a unos 1.126 km/h y alrededor de 12.200 m sobre el nivel del mar.

La velocidad de un gavión comparada con la del sonido se conoce como número mach, por el, físico austriaco Ernst Mach (1838-1916). Cuando un avión vuela a la velocidad del sonido se dice que viaja a 1 mach.

A menos que un avión esté diseñado para el vuelo supersónico, las fuertes ráfagas de viento lo golpean al acercarse a 1 mach y lo vuelven inestable; el X-1, con su nariz y sus líneas aerodinámicas, en teoría no sería afectado por ese fenómeno. Sin embargo, la inercia del avión lanzaba al piloto por la cabina con tanta fuerza, que éste corría el riesgo de golpearse y quedar inconsciente. Para protegerse, Yeager llevaba una gorra de cuero encima de su casco de aviador.

Cuando el B-29 se acercaba a 2100 m de altura, Yeager se dirigió al compartimiento de bombas, donde había unas barandillas que descendían junto al X- 1; empujó la escalera de aluminio y se deslizó con los pies por delante en la cabina del X-1.

Allí tuvo que soportar un. frío intenso. 1’Aás tarde relataría: “Tiritando, uno se frota las manos con todo y guantes y se pone la mascarilla de oxígeno. El frío de los centenares de litros de oxígeno líquido que lleve la nave hace que uno se paralice. No hay calefactor ni descongelador; no se puede hacer nada más que apretar las mandíbulas y dejar correr los minutos… es como tratar de trabajar y concentrarse dentro de un congelador.”

Durante los vuelos de prueba la transpiración de Yeager avía formado una capa de escarcha en el parabrisa. Para evitarla el jefe de mecánicos había puesto un revestimiento de champú sobre el vidrio. «Por alguna razón desconocida», dijo Yeager, «funciono como anticongelante y continuamos usándolo incluso después de que el gobierno compro un producto químico especial que costaba 18 dólares la botella.”

Barrera rota De sólo 9.5 m de largo y con una envergadura de 8.5 m, el Bell X-1 piloteado
por el capitán “Chuck Yeager rompió la barrera del sonido a 1126 km/h.

Los dos aviones, todavía uno dentro y del otro, volaban a unos 4.570 m y seguían ascendiendo. A los 6.100 m, el piloto del B-29, el mayor Bob Cárdenas, comenzó la cuenta regresiva; al terminar apretó el botón de apertura y el X-1 quedo libre con una sacudida, cayendo con la nariz hacia arriba.

Cayó aproximadamente 150 metros, mientras Yeager luchaba desesperadamente con los controles. Por fin logró poner la nariz del aparato hacia abajo y entonces encendió los cuatro cohetes; sabia que el combustible podía estallar al. conectar el encendido, pero todo funcionó conforme a lo planeado y el avión comenzó a traquetear y a tragarse una tonelada de combustible por minuto”, según relató.

El X-1 ascendía a una velocidad de 0.88 mach y comenzó a balancearse. Yeager accionó de inmediato el interruptor del estabilizador y el avión se niveló a los 11.000 m de altura. Apagó dos de los cohetes y a los 12.200 m subía a 0.92 mach; de nuevo niveló el aparato, esta vez a 12.800 m. Encendió el cohete número tres e instantáneamente llegó a 0.96 mach… y la velocidad seguía en aumento.

“¡Volamos a velocidad supersónica!”, exclamó. “Y todo estaba tan suave como la piel de un bebé; mi abuela podría sentarse aquí a beber limonada. Yo elevé entonces la nariz del avión para reducir la velocidad. Estaba atónito. Después de toda la ansiedad, romper la barrera del sonido resultó como correr en una pista perfectamente pavimentada.”

Para conservar intacta su carga de 2 00 metros de oxígeno liquido y alcohol, el X-1 iba sujeto en el compartimiento de bombas de un Superfortaleza B-29. Para iniciar su vuelo, el X-l se dejó caer del avión nodriza como si fuera una bomba.

Para eliminar el riesgo de una explosión en el momento de aterrizar el X-1, Yeager dejó escapar el resto del combustible y siete minutos después el avión descendía sin peligro. Yeager había allanado el camino para la exploración espacial.

“Me convertí en héroe ese día”, dijo con orgullo. “Como siempre, los carros de bomberos se abalanzaron hacia el lugar donde la nave se detuvo. Y como de costumbre. el jefe de bomberos me llevó de regreso al hangar. Ese cálido sol del desierto era en verdad maravilloso, pero aún me dolían las costillas.”

Explicación Física Sobre Romper La Barrera del Sonido

Fuente Consultada:
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia – Enciclopedia Encarta – Enciclopedia Consultora

Historia del Globo Aerostático Viaje al Polo en Globo y Dirigible

Historia del Globo Aerostático
Viaje al Polo en Globo

HISTORIA DE LA ÉPOCA: En 1782, a los hermanos Joseph-Michel (1740-1810) y Jackes-Etienne Montgolfier (1745-1799) se les ocurrió pensar que si se calentaba el aire, se expandía y se hacía más liviano que el aire frío. Para demostrarlo, introdujeron aire caliente en una bolsa de papel y comprobaron que se elevaba.

Aprovecharon, entonces, este mismo principio para construir el primer globo aerostático. Después de numerosos ensayos elevaron en Annonay, su ciudad natal en Francia, un globo fabricado con papel y tela de embalaje.

El 19 de septiembre de ese mismo año, en Versalles, ante los reyes de Francia, repitieron la experiencia, pero en esta ocasión del globo pendía una barquilla en la que ubicaron un cordero, un gallo y un pato. El aeróstato recorrió 3 kilómetros y aterrizó sin novedad. Dos meses después, el 21 de noviembre, tuvo lugar el primer vuelo tripulado por el hombre, el físico francés Jean Francois Pilatre de Rozier (1756-1783) y un compañero; los tripulantes recorrieron alrededor de 9 kilómetros en 25 minutos.

Primer Globo Aerostatico

Primer Globo Aerostático

Rápidamente se fueron perfeccionando los aeróstatos, y en los primeros años del siglo XIX se efectuaron ascensiones hasta cerca de 10.000 metros. En algunas de ellas, los navegantes murieron por asfixia. Los dirigibles aparecieron a fines del siglo pasado (Santos Dumont), y en esos mismos años se alcanza la altura de 18.500 metros con un globo portador de aparatos registradores, que anotaron una temperatura de 60 grados bajo cero. Todos esos aparatos se basan en el principio de Arquímedes, y, por lo tanto, se los infla con gases menos densos que el aire (si se los inflase con aire, ninguno subiría un solo metro).

Otro francés, el físico Jacques Alexander César Charles (1746-1823) alargó la duración de los vuelos al colocar una hoguera en la barquilla que mantenía el airecaliente por más tiempo. También construyó, el 27 de agosto de 1783, el primer globo de hidrógeno. El reemplazo del aire por este gas, mucho más liviano, mejoró la capacidad de ascensión de los globos.

Restaba, ahora, encontrar la manera de dirigir el rumbo de los globos. El ingeniero francés Henry Giffard construyó en 1852 el primer aeróstato fusiforme. Impulsado por una máquina de vapor y alimentado con hidrógeno como gas sustentador, el aeróstato se elevó sobre el hipódromo de París y alcanzó una velocidad de 10 km/h.

En este sentido trabajó el inventor alemán Ferdinand Adolf August Heinrich von Zeppelin (1838-1917), quien confirió a los globos una forma aerodinámica. Para lograrlo, utilizó aluminio, que es un material resistente y liviano. Su primer dirigible parecía un gran cigarro del cual pendía la barquilla con el motor y una hélice, hoy recordado como Zeppelin. Los dirigibles dejaron de usarse sobre todo por los grandes desastres que ocasionaron.

El más impactante fue la célebre explosión del Hindenburg en Nueva Jersey, el 6 de mayo de 1937. Actualmente se utilizar, para publicidad, transporte de carga pesada y para investigación. En este sentido, los globos meteorológicos funcionan de un modo curioso: un globo de hidrógeno se eleva transportando una radiosonda.

En la ascensión, la sonda emite señales a la estación terrestre donde éstas son decodificadas y convertidas en valores de presión temperatura y humedad. Al cabo de 90 minutos, el globo ha alcanzado una altitud de 27 a 30 km. Allí, la presión atmosférica es muy baja, e globo estalla, y la sonda desciende a tierra suspendida de un paracaídas.

Los observatorios meteorológicos sueltan diariamente varios globos, para sondear la atmósfera y determinar la dirección y velocidad de los vientos a distintas alturas. Una de las finalidades de esta operación es informar a los aviones sobre las condiciones del tiempo que deben afrontar.

También se envían los llamados radiosondas, que son globos-portadores de instrumental para explorar las altas capas de la atmósfera. Como a medida que el globo asciende, la presión exterior es cada vez menor, el volumen del globo se hace cada vez mayor, al dilatarse el gas interior. Llega un momento en que la dilatación es mayor que la que puede soportar el material, y el globo estalla. Los aparatos caen con paracaídas, y así es posible recuperar el instrumental (aunque a veces cae en lugares despoblados).

Últimamente se ha desarrollado una nueva técnica en la exploración de las más altas capas de la atmósfera, a las que hasta hace unos pocos años ni se soñaba en llegar. Se hace mediante cohetes y satélites artificiales. El instrumental, que se acondiciona cuidadosamente en su interior, recoge datos valiosísimos sobre las condiciones del aire en tan altas regiones.

BREVE HISTORIA DE LA AEROSTACIÓN.
Después de los experimentos de Montgolfier, los ensayos se sucedieron con rapidez. El día 21 de noviembre de 1783 tuvo lugar la primera ascensión de un globo tripulado por el hombre. Pilatre de Rozier y el marqués de Arlandes mostraron gran valor al subir a «La Montgolfiera», construido por su inventor. La envoltura era de algodón y tenía unos 15 m de diámetro.

En su parte inferior el globo estaba dotado de una pequeña galería circular desde donde los aeronautas alimentaban y cuidaban un pequeño hornillo destinado a mantener caliente el aire que proporciona la fuerza ascensional. En nuestros días causa asombro considerar el hecho de que dos hombres se atreviesen a tripular un globo que si se mantenía en el aire era gracias al auxilio de un simple brasero.

Pocos días después, de diciembre de 1783, Charles y Robert efectuaron una magnífica ascensión en un globo muy perfeccionado pues constaba de una envoltura impermeabilizada hinchada con hidrógeno, red y barquilla. Además, y en previsión de cualquier posible contingencia, instalaron válvula de seguridad y se proveyeron de lastre, cuerda-freno y áncora. A partir de entonces fueron numerosísimas las ascensiones que*se llevaron a cabo con fines deportivos o científicos. El célebre físico Gay-Lussac llegó hasta 6.500 m de altura y llevó a cabo mediciones y observaciones relativas a la composición del aire, humedad, variaciones de la aguja magnética, «etcétera.

El día 13 de junio de 1784, Pilatre de Rozier y Romain perecieron al intentar cruzar el Canal de la Mancha. El globo que tripulaban estaba lleno de hidrógeno y en su interior se hallaba un lóbulo con aire caliente. El hornillo destinado a mantener constante la temperatura provocó la explosión del globo y ocasionó la primera catástrofe aérea de la Historia.

Mejor suerte cupo a Blanchard y a su compañero Jefries, quienes lograron efectuar la travesía del Canal de la Mancha desde Dover a Calais. El propio Blanchard llevó a cabo la primera ascensión sobre suelo americano, cubriendo en forma admirable el trayecto de Filadelfia a Nueva Jersey, donde entregó un mensaje para Jorge Washington. Otro récord memorable fue el conseguido por Carlos Green, quien en 1836 logró recorrer a través del aire los 700 km. que separan Londres de Nieder-hausen (Alemania). El día 2 de septiembre de 1894, un globo tripulado por Francisco Arban sobrevoló por vez primera el macizo de los Alpes.

El inglés Tomás Harris fue el protagonista de una historia de amor desarrollada en las alturas. Durante una ascensión efectuada en compañía de su novia, se produjo un pequeño desgarrón en la envoltura del globo, el cual comenzó a descender. Cuendo Tomás Harris tras arrojar todo el lastre vio que la caída era inevitable, se lanzó al vacío en un desesperado intento de aligerar así el peso del globo y salvar la vida de su amada.

La ascensión que con carácter científico efectuó Tissandier en 1875 terminó también trágicamente puesto que si bien logró alcanzar la altura de 9.000 m, la falta de oxígeno ocasionó la muerte por asfixia a dos amigos que le acompañaban.

Ante los frecuentes accidentes que se producían surgió la necesidad de contar con un medio eficaz que amparase al aeronauta y le permitiera saltar del globo.

La invención del paracaídas se debe a J. Garnerín, quien lo ensayó por primera vez el día 22 de octubre de 1797. El acontecimiento tuvo lugar ante el público de París que contempló lleno de asombro el lento descenso del audaz inventor sujeto a una gigantesca sombrilla.

Viaje en Globo aerostatico

Henri Giffard (1825-1882) exhibe su diseño de globo, cuya canasta tiene capacidad para albergar a 50 personas, en el Jardín des Tuileries, durante la Exposición Universal de París 1878. El ingeniero francés realizó, además, el primer vuelo controlado de un dirigible, el 24 de septiembre de 1852: un recorrido de 24 kilómetros desde Paris de donde partió su nave, llena con hidrógeno, a 8 kilómetros por hora, e impulsada por un pequeño motor a vapor.

LA EXPEDICIÓN ANDRÉE AL POLO NORTE. De entre los numerosos vuelos realizados mediante globos, destaca el llevado a cabo por el ingeniero sueco Andrée, quien en compañía de sus amigos Frankel y Strindberg planeó una arriesga-dísima expedición al Polo Norte en la que los tres iban a perecer de frío e inanición.

En el año 1896 iniciaron los preparativos trasladándose a la Isla de los Daneses, en Spitzberg, donde colocaron el globo Oernen, de 4.500 metros cúbicos, los instrumentos y los víveres. Sin embargo, no pudieron emprender la ascensión hasta junio del año siguiente, con bastante mala suerte pues al ascender se rompieron la mitad de las cuerdas-freno dispuestas para ahorrar lastre y facilitar la dirección del globo. En las primeras horas, los exploradores enviaron noticias mediante palomas mensajeras; unos días más tarde, fueron halladas un par de boyas. Después, el silencio más absoluto corroboró la suposición de que habían sufrido un grave accidente.

El mundo ignoró los detalles de la tragedia por espacio de 34 años, hasta que en 1930 los tripulantes de un buque cazafocas hallaron en la Isla Blanca restos de la expedición. En aquellas inmensas soledades y bajo la lona de-una tienda abatida se hallaban los cadáveres de los héroes junto a los cuales estaban el libro de notas de Andrée, la carta de navegar de Strindberg y unas películas. Un poco más allá y cubiertos por la nieve, aparecían los trineos y la canoa. Las fotografías y los escritos han permitido conocer con detalle el desarrollo de la tragedia.

Consiguieron llegar a los 82° 55′ y 7″ de latitud (800 Km. del Polo), después de un accidentadísimo vuelo de 65 horas que acabó al abatirse el aeróstato debido al peso de la capa de hielo que se formó sobre la envoltura. Desembarcaron el día 14 de julio, y el 21 emprendieron la retirada hacia el Sur. La marcha, como muy bien puede suponerse fue difícil y penosa. A pesar del intenso frío y de la carencia de alimentos consiguieron llegar a la Isla Blanca el día 5 de octubre. Su capacidad de resistencia fue verdaderamente extraordinaria ya que la última nota escrita lleva fecha del 17 de octubre.

DESCRIPCIÓN DE LA TRAGEDIA EN EL POLO NORTE: A fines del siglo XIX la exploración polar creaba fascinación y curiosidad a toda la comunidad científica de la época. Los buques expedicionarios habían partido uno tras otro hacia el helado silencio del Ártico, y no se había vuelto a saber mas de ellos durante meses o años. Cuando al final regresaban derrotados y maltrechos, los exploradores contaban sus aventuras en la impenetrable inmensidad de hielo, hablaban de los témpanos, traidores y movedizos, que imposibilitaban la navegación.

«De vez en cuando se aireaba la idea de que tal vez una expedición aérea tuviera éxito donde previamente habían fracasado las marinas, pero la cosa no pasaba del comentario porque, después de todo, no había globo que hubiera permanecido en el aire el tiempo que un viaje polar requeriría, y mucho menos en latitudes en que la capa de hielo que se formaría en la superficie del aeróstato, podía provocar un aterrizaje forzoso y, con mucha probabilidad, catastrófico. Pero existía también el problema de los vientos dominantes.

Salomón August Andrée.Las expediciones aerostáticas que se dirigieran al Polo tendrían que confiar con optimismo en que una de las corrientes del sur llevaría el globo hasta aquella región, para luego proseguir la marcha hasta los poblados más septentrionales. Los obstáculos parecían insuperables para cualquiera que no tuviera el entusiasmo del sueco Salomón August Andrée.

Andrée había visitado a Estados Unidos durante su mocedad y se había hecho amigo del aeronauta norteamericano John Wise. Posteriormente había formado parte de la expedición que estudió los fenómenos polares en Spitsbergen, junto a la costa norte de Noruega. Más tarde había trabajado como ingeniero jefe en la oficina sueca de patentes. Era enérgico, valiente y con voluntad de hierro. Tanto por sus estudios como por su temperamento, Andrée estaba formidablemente dotado para la aventura que se había propuesto.

En 1895 Andrée dio a conocer el plan de su expedición polar, en globo, en una serie de conferencias, bien recibidas, en las que mezclaba la ciencia con el patriotismo. Los suecos, decía en ellas, se han «caracterizado durante siglos por el más intrépido valor», estaban acostumbrados a los caprichos del clima polar «y la propia naturaleza les había enseñado a soportarlos». Esta llamada al orgullo nacional y la excelente reputación de Andrée, contribuyeron a que se recaudaran las ayudas necesarias para financiar la expedición entre ellas la del Rey Osear de Suecia y del filántropo Alfred Nobel.

El globo que iba a transportar a Andrée y a dos compañeros cuidadosamente seleccionados, estaba hecho ex profeso para el viaje. La meticulosa especificación que Andrée había preparado para el aeróstato -al que puso el nombre de Ornen (Águila)- preveía una envoltura de 4.814 m3, hecha de seda china doble, para proporcionarle resistencia y durabilidad. El globo no tenía válvula en la parte superior, al objeto de que la nieve no la atascara, pero llevaba dos en la zona inferior de la envoltura. Por encima de la red había otra capa de seda para proteger más al aeróstato contra la nieve y el hielo.

Andrée pensaba regular la altitud con tres cuerdas de arrastre, unidas por secciones, cada una de las cuales tendría 335 m de longitud. Llevaría también otras sogas más cortas. De la barquilla sobresalían tres palos horizontales, a los que iban sujetas tres velas cuadradas, con las cuales se esperaba poder modificar hasta 30° la derrota.

La góndola de mimbre era cerrada, cilíndrica, de 1,60 m de profundidad. En ella irían tres trineos, un barco de lona, tres literas, herramientas, armas, otros artículos y comida suficiente para cuatro meses. La partida sería en el verano de 1896, desde un lugar situado en el extremo noroeste de Spitsbergen, a unos 1.297 km del Polo. Andrée calculaba con optimismo que el viento constante del sur los llevaría al Polo en tres días.

El aterrizaje, como dependía de la dirección del viento, podría realizarse en cualquier lugar de Siberia, Canadá o Alaska. El Ornen fue inflado con hidrógeno y quedó alojado en «un hangar para globos», de 30 m de alto, esperando a que soplara la brisa deseada. Pero no sopló ni en todo el mes de julio ni en todo el mes de agosto, con lo que terminó el efímero verano ártico y se hizo tarde para comenzar la expedición.

En 1897, Andrée, que entonces tenía 43 años, y sus tripulantes Nils Strindberg y Knut Fraenkel volvieron a Spitsbergen para volver a probar fortuna. El entusiasta Strindberg, de 24 años, era profesor de educación física en la universidad de Estocolmo y un consumado fotógrafo. Fraenkel, de 27 años, era musculoso, de profesión ingeniero y aficionado al alpinismo. Para prepararse para la expedición ambos hombres habían ido a París, a aprender aerostación. El 11 de julio, después de seis semanas de espera, empezó a soplar el tan largamente esperado viento del sur. El momento había llegado y, en consecuencia, se procedió a sacar el globo de su cobertizo. Los tres exploradores subieron a bordo, mientras la tripulación de tierra esperaba órdenes sosteniendo las maromas de amarre.

A la 1:46 de la tarde, Andrée dio la señal para soltar al Ornen y éste comenzó a subir perezosamente por encima del puerto y fue flotando hacia el nordeste. De repente, la nave bajó de modo imprevisto y tocó el agua para luego rebotar y volver a subir ayudada por la tripulación que arrojó más de 200 kilos de lastre. Los ayudantes de tierra estuvieron mirando con emoción al globo hasta que éste no fue más que un punto en el horizonte del Norte.

Todo parecía ir bien, pero Andrée ya sabía que no era así. Las secciones de la parte inferior de las tres largas maromas de arrastre -que en el plan de Andrée eran vitales para regular la altitud y la dirección -se habían desprendido, no se sabía por qué, y yacían en la costa como grandes serpientes enroscadas. El Ornen continuó su vuelo libre hacia lo desconocido.

Los millones de personas que, en todas las partes del mundo, habían seguido ávidamente a través de los periódicos los preparativos de la expedición, quedaban ahora a la espera de noticias de los exploradores. Estas no podrían llegar más que, o con palomas mensajeras o metidas en las boyas que arrojara el globo. La expedición no disponía de otros medios de comunicación.

Cuatro días después de la salida del Ornen, el capitán de un buque noruego mató a una paloma que se había posado en las jarcias de su velero. En un pequeño cilindro atado a la pata del animal había un mensaje de Andrée. Había sido escrito el 13 de julio, al mediodía, en un punto situado a unos 370 Km. al norte del lugar de despegue. «Buena velocidad hacia el E. 10° S.

A bordo todos bien. Este es el tercer mensaje por paloma mensajera», decía la nota.

Las otras dos no llegaron, y el verano transcurrió sin que se supiera más de los expedicionarios. Después llegó el otoño y, tras él, la larga noche del invierno ártico. Siguió sin saberse nada de Andrée y su tripulación.

Si continuaban vivos tendrían que estar matando osos para alimentarse, y metidos en algún improvisado refugio para poder soportar el frío.

Por supuesto, era posible sobrevivir en aquellas condiciones, porque otros ya habían sobrevivido. El padre de Strindberg se mostraba optimista: «Habrá que esperar un año, por lo menos», escribió, «para empezar a preocuparse, e incluso entonces no habglobo aerostaticorá que ponerse demasiado pesimista».

Pasó más de un año. Salieron barcos en busca de los exploradores y volvieron sin encontrar ni rastro de ellos. En febrero de 1899 llegaron noticias trágicas: los miembros de una tribu nórdica habían encontrado los cadáveres de tres suecos al norte de Siberia.

La noticia era falsa. Tres meses después salió a la costa de Islandia una boya con un mensaje de Andrée, pero había sido escrito 12 horas después de la partida de los desaparecidos. Al año siguiente  apareció un mensaje parecido en una playa noruega. Para entonces ya habían transcurrido tres años y la creencia de que los exploradores habían perecido era cada vez más firme.

Durante 33 años no se supo nada del Ornen, pero en el verano de 1930, un par de cazadores de morsas, de un buque noruego tropezaron con los esqueletos de los tres exploradores en el sombrío corazón ártico de la isla de White, a unos 450 Km. de donde había despegado el globo.

Los diarios, los cuadernos de notas y las cartas que los tres hombres habían escrito eran aun legibles y según constaba, el Ornen, que al perder accidentalmente las cuerdas de arrastre se había visto aligerado en 540 kg, había subido la primera tarde del vuelo a 700 m, mucho más de lo que Andrée tenía previsto.

El viento había impulsado al globo hacia el noroeste el primer día, luego hacia el oeste y después hacia el este de nuevo. Había permanecido 13 horas inmovilizado, al quedar trabada una de las cuerdas que colgaban de él de un gran trozo de hielo.

La densa niebla impedía la visibilidad y el agua nieve había recubierto la superficie del globo de una carga tal de hielo, que había hecho descender varias veces a la nave y a la atestada góndola chocar contra los salientes helados del terreno. Y esto había ocurrido 8 veces en 30 minutos.

En la ropa interior llevaba cosida una A, y en el bolsillo, un diario. En él aparecían las últimas palabras escritas por Salomón August Andrée, el aeronauta sueco, que junto con Knut Frankel y Nils Strindberg, había desaparecido en 1897, cuando trataban de llegar al Polo Norte. Se aclaraba así el misterioso final de la expedición salida 33 años antes de Spitsbergen.

Junto a los restos de Andrée se encontraban los de sus acompañantes y varios cilindros metálicos que contenían negativos fotográficos impresionados. Un experto fotógrafo de Estocolmo consiguió revelar 20 negativos. Algunas de las fantasmales fotografías, deterioradas por los años de permanencia en la humedad y el frío árticos.»

OTRA HISTORIA, PERO CON DIRIGIBLES
AL POLO EN DIRIGIBLE. Durante el año 1926 el explorador noruego Amundsen efectuó una expedición polar que tuvo gran resonancia. Gracias a la munificencia del norteamericano Ellswort que financió la empresa, pudo adquirirse el dirigible N-i construido por Nobile. Tenía 19.000 m3 y 106 m de longitud e iba provisto de tres motores de 240 HP, dispuestos en barquillas independientes y desarrollaba la velocidad de 100 km/h.

El N-i, adquirido por Noruega y bautizado con el nombre de Norge, partió de Roma, llegó felizmente a Oslo y siguió luego hasta Spitzberg. El día n de mayo la aeronave emprendió el vuelo desde Kingsbay hacia el Polo Norte, que fue alcanzado al cabo de 15 horas de navegación, sobre deslumbrantes blancuras. Aunque el viaje de regreso se vio dificultado grandemente por la sobrecarga debida a la costra helada que se formó en la parte superior de la envoltura, el Norge consiguió aterrizar en Teller (Alaska) después de 71 horas de lento vuelo.

El general italiano Nobile, que había participado en la expedición dirigida por Amundsen, quiso organiza* por su cuenta un vuelo al Polo. El día 15 de abril de 1928, el dirigible Italia salía de Milán, ciudad que patrocinaba la empresa, para dirigirse a Spitzberg. Una vez allí y tras unos vuelos de exploración sobre las tierras de Francisco José, Nicolás II y Nueva Zembla, el 23 de mayo el Italia se dispuso a cubrir la última etapa hasta el Polo, del que no iba a regresar jamás.

En efecto, después de 16 horas de vuelo, la aeronave alcanzó el Norte geográfico de la Tierra, en cuyo lugar lanzó la cruz ofrecida por el Papa y la bandera de Italia. Durante el regreso se desataron fuertes borrascas de viento y nieve. Sobre el Italia se formó una espesa capa de nieve helada que le hizo perder altura, hasta que una ráfaga de viento huracanado le estrelló contra un banco de hielo. A consecuencia del golpe el dirigible se partió en dos, y mientras el sector donde se hallaban Nobile y ocho tripulantes más quedaba sobre los hielos, la otra sección con el resto de la dotación, se remontó de nuevo y desapareció para siempre.

El sobrecogedor silencio que siguió a los desesperados «SOS» lanzados por el radiotelegrafista de la aeronave tuvo la virtud de movilizar a numerosos equipos de salvamento que partieron en busca de los accidentados. Amundsen voló inmediatamente en auxilio de Nobile y pereció.

El día 20 de junio, ante la expectación del mundo entero, el comandante italiano Maddalena, que participaba en la búsqueda, consiguió localizar con su hidroavión a los supervivientes del dirigible que fueron auxiliados con víveres y medicamentos, lanzados en paracaldas. Tres días después, el aviador escandinavo Lundborg logró aterrizar con su avioneta provista de skis, sobre el banco de hielo donde se hallaba el grupo. Nobile, en forma todavía incomprensible y ante el estupor unánime del mundo civilizado, abandonó a sus compañeros y se salvó con el avión de Lundborg.

Para colmo de desgracias, y con ocasión de efectuar un segundo viaje sobre el improvisado campo, el avión de Lundborg capotó al aterrizar, quedando a su vez prisionero de los hielos hasta el 6 de julio en que fue salvado por otro aviador que también tuvo la audacia de aterrizar sobre el banco de hielo.

A consecuencia de diferencias surgidas entre los náufragos, éstos se dividieron en dos grupos. El encabezado por Malmgren, inició una marcha dantesca entre aquellas frías soledades, hasta alcanzar el rompehielos ruso Krasin (13 de julio). El drama no había terminado, ya que Malmgren rendido por el frío y la fatiga, había pedido a sus compañeros que le abandonasen y prosiguieran el camino hacia la salvación. Nobile, caído en desgracia y abrumado por el peso de tanta responsabilidad, se trasladó a vivir a Rusia.

Fuente Consultada:
Grandes Épocas de la Aviación Tomo 40 Los Aeronautas II
Química I Polimodal  de Alegría-Bosack-Dal Fávero-Franco-Jaul-Rossi

Problemas Tecnicos en los Primeros Ferrocarriles Argentinos Historia

La idea de aplicar la máquina de vapor al transporte se llevó por primera vez a la práctica ya en 1769 bajo la forma de un complicado artefacto, destinado a correr sobre railes, construido por un francés, Nicolás Cugnot.

Posteriormente, el inglés Richard Trevithick fabricó locomotoras (1801-1808), si bien estas últimas habían sido pensadas sólo para el servicio de las minas de hulla y tenían una aplicación limitada.

Sin embargo, a pesar de la victoria de Stephenson, hubo que resolver muchos problemas de ingeniería antes de que los caminos de hierro pudieran desempeñar un papel importante en el comercio. Primeramente, por ejemplo, las ruedas con pestañas que se usaban para mantener los vagones, en la vía se subían sobre los railes en las curvas, y tuvo que transcurrir algún tiempo antes de descubrirse que las ruedas debían quedar holgadas sobre los carriles. y que podían acoplarse a dispositivos giratorios debajo de los coches.

También los frenos dejaban mucho que desear presionaban contra las ruedas, y no fueron seguros y de fácil manejo hasta que George Westinghouse perfeccionó el freno de aire comprimido (1886). Además los enganches tenían tanto juego que al arrancar el tren los vagones recibían tan fuertes .sacudidas, sobre todo los últimos, que los viajeros eran violentamente proyectados hacia atrás.

El tendido de puentes y la perforaci6n de túneles planteó a su vez dificultades a los primeros constructores de líneas férreas. Los puentes de piedra no resistían bien la vibración; los de ‘madera estaban expuestos a la acción de la intemperie y del fuego; además, abrir agujeros en el suelo con barrenas de mano era, por no darle un calificativo más duro, un trabajo agotador.

Sin embargo, con el tiempo los puentes fueron construyéndose de hierro y acero (el de Brooklyn, colgante, de acero y de 486 m de longitud, quedó terminado en 1883); la excavación de túneles se simplificó con el invento de la barrena de aire comprimido… Por si estas dificultades técnicas no hubieran bastado, produjese cierta hostilidad del público hacia los ferrocarriles en sus primeros años de existencia. No sólo los campesinos residentes a lo largo de las líneas férreas se quejaban de que las máquinas calentadas con leña, espantaban con su chisporreteo a caballos y vacas, sino que se aducían toda suerte de argumentos contra la nueva forma de transporte.

Algunos militares llegaron a creer que el traslado de la tropa por ferrocarril Volvería a los hombres tan muelles que no servirían ya para la lucha. Varios médicos de renombre temieron que los pasajeros contrajesen enfermedades pulmonares por efecto del aire húmedo de los túneles y algunos moralistas advirtieron que los tramos oscuros ofrecían a los hombres groseros una ocasión irresistible de besar a las señoras, e incluso llegaron a aconsejar a las presuntas víctimas de tales abusos que se pusieran alfileres entre los dientes cuando el tren penetrase en un túnel.

 Fuente Consultada:

Shepard B. Clough, en «La Evolución Económica de la civilización occidental”

Historia de los Primeros Faros Marinos Tipos Materiales Construcion

Historia de los Primeros Faros Marinos
Tipos Materiales y Construción

El encanto de la vida del mar no perdería sus atractivos si no existieran, entre otros peligros, el de embarrancar en las rocas de la costa, los bancos de arena y los profundos remolinos. Desde que los primitivos navegantes lanzaron sus naves a través del mar, atentos vigilantes, desde tierra, trataron de auxiliarles facilitándoles medios de llegar al puerto.

En aquellos remotos tiempos, indudablemente, se valían para ello de hogueras, que encendían en los puntos elevados de la costa; y ya, en una antigua poesía, se hace mención de un faro—el de Segeum, en Troad—, que fue quizá el primero que, mantenido con regularidad, sirvió de guía a los marineros.

La más famosa de estas construcciones destinadas a señales se construyó en el año 275 antes de Jesucristo, en la pequeña isla de Pharos, en la entrada del puerto de Alejandría. Se dice tenía 182 metros de altura, y su nombre quedó para denominar otras semejantes. Fue destruida en el siglo XIII por un terremoto. Los romanos construyeron muchas torres de esta clase, una de las cuales, de sección cuadrada, con cerca de 39,50 metros de altura, construcción de piedra que data probablemente del siglo IV, se conserva todavía en La Coruña.

El Estado español la restauró, preservándola con una protección exterior de granito y poniéndola en condiciones de servicio después de cientos de años de estar apagada. Es el faro más antiguo que existe.

Todos estos antiguos faros, y muchos de los modernos, se han establecido en tierra; generalmente en una elevación, fuera del alcance de las olas. El más antiguo de los faros cimentados en el mar es la hermosa torre de Cordouan, asentada sobre el fondo de roca en la desembocadura del río Oironda, a 100 kilómetros de Burdeos, en Francia. Comenzó su construcción en el año de 1584 y se terminó en 1611.

La primitiva cúpula fue reemplazada por una alta torre de 63 metros de altura, con un fanal a 59,75 metros sobre la marea alta. Hasta el siglo XVIII la luz se producía por una hoguera, alimentada con troncos de roble, y, después, hasta ser modernizada, con fuego de carbón.

Durante los siglos XVII y XVIII se construyeron en Europa muchos faros que, como el descrito, quemaban leña o carbón en cestillos de hierro.

El primer faro que se construyó en Norteamérica fue el de la isla de Little Brewster en 1716, a la entrada del puerto de Boston. En él se instaló un gran cañón para hacer señales en tiempo de nieblas espesas. La primitiva torre fue destruida durante la revolución, siendo reconstruida en 1783.

Durante el período colonial, diez torres más se elevaron en la costa del Atlántico, pero todas ellas han sido destruidas o derribadas, excepto cinco, que son: Sandy Hook, cabo Henlopen, del promontorio Portland, Tybee y cabo Henry. Las primitivas torres de Sandy Hook y cabo Henlopen se utilizan todavía; de las demás, unas están abandonadas y otras medio derruidas. El faro de Sandy Hook es el más antiguo de América.

DIVERSOS TIPOS DE FAROS

TIPOS DE FAROS

Los faros, como hemos dicho, pueden establecerse en tierra firme, o sobre rocas o bancos de arena, y expuestos directamente a los embates del mar. Los primeros varían muchísimo en cuanto a su altura y disposición general. Si el edificio está situado en un punto elevado de la costa, la torre no precisa tener gran altura, como se puede ver en el grabado del faro de Punta Reyes, de California, o en el cabo Mendocino, del mismo Estado. La torre de este último sólo tiene seis metros de altura, pero está sobre un cantil que se eleva 128,60 m. sobre el mar y es el faro situado a mayor altura en los Estados Unidos. (hasta 1930)

En la costa del Atlántico, sin embargo, como en su mayor parte es baja, se hace preciso que los faros, construidos en tierra, sean por sí mismos de gran elevación, si han de ser eficaces. Ejemplo de éstos es el de cabo Hatteras; tiene 61 metros de altura y es, por tanto, el más alto, de Norteamérica. Otros de estructura notable son los de cabo Henry y cabo Charles, en Virginia, y la bellísima torre de Punta Pigeon, en California. El pequeño faro de Manan, sobre la costa de Maine, es también una hermosa edificación de granito de 35 metros de altura.

El faro de Tillamook, en la costa de Oregón, está colocado sobre una gran roca, expuesta a las furias del mar y separado una milla de tierra firme; dicha roca, alta y acantilada, hace muy difícil y peligroso el desembarque. La torre se eleva 41,45 metros sobre marea alta, y, a pesar de ello, en 1887, las olas, rompiendo contra la estructura, causaron averías de consideración, y en 1912, el aprovisionamiento del faro estuvo suspendido durante siete semanas, porque los encargados por el Gobierno para realizar la operación no pudieron aproximarse a la roca, a causa de un violento temporal.

También el faro del arrecife de St. George, separado de tierra unas seis millas en la costa norte de California, se encuentra en las mismas condiciones. Se terminó en 1892, y su coste fue de unos 700.000 dólares, resultando la obra, de esta clase, más cara de los Estados Unidos. Muchas de las construcciones en la costa no son más que sencillas estructuras bien estudiadas para instalar el fanal y los aparatos acústicos necesarios en caso de niebla, además de las indispensables viviendas para los torreros y sus familias.

Los faros enclavados directamente en el mar son siempre más interesantes que los de tierra firme, no tanto por las particularidades de su estructura, sino, tal vez, por la simpatía que inspiran sus servidores, expuestos, constantemente, a toda clase de peligros. Son muy numerosos los faros de este género, pero el de las rocasEddystone, a 22 kilómetros de Plymouth, Inglaterra, es, entre ellos, el más famoso. Este peligroso arrecife, expuesto a los violentos temporales de sudoeste, queda completamente sumergido durante las mareas equinocciales. Él faro primitivo que se construyó sobre dichas rocas en 1695-1700 fue arrastrado por el mar, pereciendo sus ocupantes.

El segundo, construido en gran parte de madera, bajo la dirección del ingeniero Juan Smeaton, era una estructura de sillares de piedra, que pesaban, próximamente, una tonelada cada uno, y cuyas hiladas estaban engatilladas entre sí por medio de espigas de madera, y el que, en 1881, ha substituido a éste, descansa sobre una base de 13 metros de diámetro y 6,70 metros de altura, apoyándose directamente sobre el mismo arrecife, en el cual se hace firme mediante fuertes pernos de bronce. Pesa 4.668 toneladas, y su luz se eleva 55,70 metros sobre el nivel de la marea alta.

La obra de cantería de esta singular construcción está ejecutada de manera que existe una trabazón completa de todos los sillares por el corte especial de ellos. Otros faros de este mismo género son el de la roca Bell ySkerryvore, sobre la costa de Escocia, y el de la roca Bishop, en las islas Scilly.

Entre los faros de América, enclavados en el mar, el más conocido es el del arrecife de Minots, frente a Cohasset, en la bahía de Massachusetts. La primera luz que señalaba estos bajos, y que aparecía sólo en la baja marea, estaba instalada sobre pilastras metálicas fijas en excavaciones practicadas en la misma roca; se terminó este faro en 1848, y, nueve años después, una galerna lo llevó mar adentro, ahogándose los torrerosque le ocupaban.

El faro actual, de fina estructura, se terminó en 1860, y su ejecución fue empresa de las más difíciles en su clase. Las hiladas inferiores van asentadas cuidadosamente sobre la roca y fijos a ella los sillares mediante sólidos pernos. Tiene su torre 32,60 metros de altura, y, en ella, se ha dispuesto las habitaciones de lostorreros solamente, habiéndose construido viviendas para sus familias frente al faro y en la costa próxima.

En los Grandes Lagos hay dos excelentes modelos de faros que, como los anteriores, están construidos sobre bajos fondos. El que marca el escollo Spestade, en el extremo norte del lago Hurón, es una torre de piedra, sumergida 3,35 metros en el agua, a diez millas de la orilla, y expuesta a la acción de los grandes témpanos de hielo. Para cimentar esta torre, se construyó un gran cajón o ataguìa alrededor del lugar de emplazamiento, agotándose después el agua por medio de bombas, quedando al descubierto, a 3,35 metros bajo el nivel del lago, la roca sobre la que se cimentó cuidadosamente la torre de mampostería. Terminada en 1874, aquel mismo invierno soportó valientemente las embestidas de los hielos.

El faro de la roca Stannard, terminado en 1882, marca el bajo más peligroso del Lago Superior. Está situado a 24 millas (38,4 kilómetros) de la orilla, siendo el que dista más de tierra en los Estados Unidos. Como el del arrecife Spectacle, este faro descansa sobre un fondo cubierto por 11 pies de agua, y fue construido por el mismo procedimiento que aquél.

faro

El problema que se presenta al proyectar una obra de esta índole varía mucho si la cimentación sumergida descansa sobre arena o grava, o ha de levantarse sobre fondo de roca. La más notable construcción sobre arena es la de Rothersand, a diez millas de la costa de Alemania, en la desembocadura del río Weser. Este banco de arena está cubierto por 20 pies de agua, y el primer intento que se hizo para cimentar, con un cajón sumergido, fracasó por completo.

En 1883, sin embargo, se ideó un cajón de palastro de 14,30 metros de largo, 11,27 metros de ancho y 18,89 metros de profundidad, que fue remolcado hasta el banco de arena y sumergido unos 23,27 metros, a contar desde la baja mar. A 2,45 metros sobre el borde inferior, había un diafragma que, cerrándolo por la parte superior, formaba la cámara de trabajo, provista de un tubo cilíndrico, en el que se dispuso un cierre de aire estanco, y permitía entrar y salir a los obreros.

faros

La arena se desalojaba por presión neumática, y, a medida que el cajón bajaba, se iba prolongando, por la parte superior, con nuevas planchas de hierro. Cuando el cajón llegó a profundidad conveniente, se rellenó de mampostería y hormigón. La torre es una construcción metálica, protegida de bloques, en la que está montado el reflector a 23,75 metros sobre la marea alta. Se ilumina con luz eléctrica, estando alimentado este faro por cables submarinos que transmiten la corriente desde la costa próxima.

El faro del banco Fourteen-Foot, en la bahía de Delaware, se construyó por este mismo procedimiento en 1887. En éste, sin embargo, el cajón fue de madera, con un borde cortante de siete pies de altura. Sobre esta especie de balsa, se colocó un cilindro de hierro de 10,66 metros de diámetro y 5,50 metros de altura, y todo así dispuesto, se remolcó al lugar donde se sumergió, llenándole de agua.

Cuando estuvo bien asentado sobre el fondo, se agotó la cámara inferior, excavándose después la arena, que era transportada al exterior por una tubería. Conforme se profundizaba la excavación, los bordes cortantes de la cámara se hundían en la arena, y esta acción era favorecida por la carga del cilindro de hierro, cuyo interior iba rellenándose de hormigón.

El faro del bajío Diamond, frente al cabo Hatteras, trató de fundarse siguiendo este mismo sistema, pero no pudo conseguirse debido a la fuerza de las olas y violentas corrientes del Océano.

Estos problemas de cimentación sobre fondos de poca consistencia pueden resolverse, en muchos casos, por el empleo de pilotes a rosca o barreno, que consisten en fuertes columnas de hierro provistas, en su extremo inferior, de una especie de rosca de paso muy largo, que permite, literalmente, atornillarse en el fondo arenoso del mar, armándose después, sobre estas columnas, la estructura superior. La primera construcción de esta clase fue la de Brandywine Shoai, en la bahía de Delaware, en 1,80 metros de agua.

En lugar de construir los faros, como hasta ahora se ha venido haciendo, con piedra, ladrillo y cemento armado, parece que existe la tendencia de substituir estos materiales por el hierro; las nuevas construcciones en que interviene casi exclusivamente este último ofrecen mucha más seguridad y son más ligeras. El faro de Punta Arena, en California, fue el primero que se construyó en los Estados Unidos con cemento armado, habiéndose empleado este mismo sistema en todos los faros a lo largo del canal de Panamá. También se ha utilizado el cemento armado en el faro de la isla de Navassa, entre Haití y Jamaica; fue construido a expensas del Gobierno norteamericano, sobre aquella isla rocosa, porque situada, precisamente, en la ruta natural desde Colón a la entrada del canal de Panamá, constituye un peligro constante para la navegación. La elegante torre se ha construido con el mayor cuidado, teniendo en cuenta los violentos huracanes frecuentes en aquellos lugares, y tiene una altura de 45,70 metros. Su luz es de 47.000 bujías, con un radio de 50 kilómetros.

La lente Fresnel y otros progresos:

Hacia el año de 1822, un físico francés, llamado Agustín Fresnel, señaló una nueva era en los sistemas de iluminación de faros, creando unas curiosas lentes, al propio tiempo reflectoras y refractoras, que se colocan alrededor de una luz única, situada en el centro. El todo constituye un aparato que consiste en «una lente polizonal» encerrando una semilla lámpara central. Esta lente está formada por prismas de cristal, dispuestos en planos o tableros, de los cuales, la parte central es dióptrica o refractora solamente, y la superior e interior son, a la vez, refractoras y reflectoras, como en el sistema «catadióptrico».

Eas ventajas de este sistema son las de aumentar el brillo de la luz, por el hecho de que una gran parte de ella, que procede de la lámpara, se concentra, mediante los prismas, en rayos que se distinguen mejor desde el mar, consiguiéndose también una economía en el aceite o el medio iluminante empleado. Una lente Fresnes, del tipo más perfecto, da un rendimiento efectivo de un 60 por 100 próximamente de la luz de que se trata; el resto representa la pérdida en la parte superior e inferior de la linterna y la absorbida por el cristal de las lentes.

Estas lentes Fresnel se clasifican por su orden o tamaño, y dicho tamaño se mide por la distancia desde el centro de la luz hasta la superficie interna de la lente. Así, en una luz de «primer orden» la referida distancia es de 905 milímetros; en una de «segundo orden», 690 milímetros, y en una luz de «sexto orden», 147 1/2 milímetros.

I,a primera lente Fresnel que se instaló en los Estados Unidos fué montada en el faro de Navesink en el año 1841, en la entrada de la bahía de Nueva York, y la mayor de este tipo, instalada a expensas del mismo país, es la de la Punta Makapuu, Oahu, Hawai, y es la primera luz que divisa el marino al aproximarse a aquellas islas, desde los Estados Unidos. Es mayor que las clasificadas como de primer orden; tiene 1,30 metros de radio y, por lo tanto, el diámetro interior es de 2,75 metros, aproximadamente, estándo encerrada en una linterna de 4,87 metros de diámetro, también interior. Una lente Fresnel de gran tamaño es uno de los aparatos ópticos más hermosos; el perfecto pulimento de las lentes, con sus múltiples facetas brillantes y su gran armadura de metal, le dan la atractiva apariencia de una enorme joya.

Con objeto de diferenciar un faro con respecto a otro, se asigna a cada uno características especiales. Los distintivos de color se emplean generalmente para pequeños faros de orden inferior, en los que se usan por lo común lentes de color rojo. El empleo de lentes coloreadas supone, sin embargo, una gran pérdida en potencia lumínica, pues se calcula que con el rojo, que es el más eficaz, dicha pérdida alcanza un 60 por 100.

En muchos casos no se necesita más que una luz fija, aunque haya peligro de confundirla con otras de la costa o de buques que pueda haber en las inmediaciones. Ea construcción de ellas consiste en una lámpara central y una sola lente que dirige su haz luminoso sobre un determinado sector del horizonte. Los faros importantes son, o del tipo de «destellos» o de «eclipses». En los primeros gira toda la lente, y cada une de los bastidores o lentes parciales aparece como reflejo intenso a la vista del espectador. Con objeto de conseguir un movimiento suave y rápido, la lente entera se apoya sobre flotadores en un depósito de mercurio; de esta manera, lentes que pesan siete toneladas, dan fácilmente una revolución completa en medio minuto.

La lente de Punta Ki-lauea, Hawai, construida en Francia, a un coste de 12.000 dólares, pesa cuatro toneladas. Está montada, por medio de flotadores, sobre mercurio, da una revolución completa cada veinte segundos, y produce un doble destello de 940.000 bujías cada diez segundos. Este doble destello se consigue disponiendo simétricamente cuatro lentes dos a cada extremo de un mismo diáme tro. Como es natural, variando la dis^ posición de las lentes, su forma y su color, puede obtenerse una gran variedad de faros.

Fuente Consultada:
Historia de las Comunicaciones Transportes Terrestres J.K. Bridges Capítulo «Puentes en la Antigüedad»
Colección Moderna de Conocimientos Tomo II Fuerza Motriz W.M. Jackson , Inc.

Lo Se Todo Tomo III

Vuelo sin escalas alrededor del mundo Burt Rutan y su Voyager

Vuelo sin Escalas Alrededor del Mundo: Burt Rutan y su Voyager

Amelia Earhart
Cruzar El Canal de la Mancha
Exploración de África

BURT RUTAN

Nacido en Estacada, Oregon (unos 50 Km. al sureste de Portland) y criado en Dinuba, California, Rutan demostró desde edad temprana un interés agudo en aeronaves. Antes de cumplir los ocho años, diseñaba y construía modelos de aviones.

Elbert R. Rutan, más conocido por Burt, comenzó a volar  en 1959, se graduó de ingeniero aeronáutico en 1965, trabajó en la base Edwards de la Fuerza Aérea de California hasta 1974 en que armó su propia empresa y diseñó y construyó numerosos aviones de formas no convencionales usando materiales compuestos.

En 1982 formó Scaled Composites en el desierto de Mojave para diseñar nuevos aviones: uno de los primeros fue el Beechcraft Starship en 1983

En 1984 presentó su Voyager construido para dar la vuelta al mundo sin reabastecerse. Tras dos años de puesta a punto, logró la hazaña en 1986, al mando de su hermano Dick Rutan y Jeana Yeager.

avión Voyager

Datos del Voyager diseño canard bimotor en tandem. Costo: U$S 2.000.000 El motor principal, un Teledyne Continental de 100 HP refrigerado a agua y de uso permanente; el secundario a aire y de uso solo en los momentos necesarios con 139 HP.

Peso del planeador: 420 Kg.. Peso de los 2 motores: 400kgr. Peso total vacio 820 Kg.. Peso del combustible al despegar: 3.200 Kg. en 17 tanques. Peso total al despegue: 4200 Kg.

Datos del viaje: el despegue tomó 5500m. Tardó tres horas en ascender 8000 pies. Recorrido: 40.200 Km. Duración: nueve dias y cuatro minutos. Combustible remanente al aterrizar: 48 Kg.; Vel. media 214 kph.

Rutan hizo también el Space Ship One con el que llevó en junio de 2004, pasajeros civiles al espacio exterior (más de 100 km. de altura) y luego repitió el viaje varias veces, en lo que parece el inicio de una nueva posibilidad de turismo aventura.

El británico Richard Branson patrocinó la vuelta al mundo en solitario, que cumplió Steve Fosset en 2005 con máquina construida por Rutan, y anuncia para 2007 viajes comerciales al espacio exterior a 130 Km. de altura, a un precio de U$S 200.000 con 4 minutos carentes de gravedad.

Primera Mujer en Dar la Vuelta al Mundo en Avion Historia del Vuelo

Amalia Earhart: Primera Mujer en Dar la Vuelta al Mundo en Avión

El 20 de mayo de 1932, la temeraria Amelia Earhart despegó en Harbor Grace, Terranova, con destino a París: aterrizó en una granja de Londonderry, Irlanda, espantando a las vacas y convirtiéndose en la primera mujer en sobrevolar el Atlántico. La hazaña le valió la Medalla de Oro de la National Geographic Society, de manos del presidente estadounidense Herbert Hoover. No fue el último récord de Amelia: tres años más tarde fue la primera persona en cruzar por el cielo el Pacífico. En 1937 se proponía un nuevo desafío a bordo de su bimotor Lockheed Electra: dar la vuelta al mundo con su copiloto Fred Noonan. El 2 de julio iniciaron una de las etapas, partiendo desde Lae, Nueva Guinea, con condiciones atmosféricas inciertas y rumbo a la isla Howland. En las horas que siguieron, Amelia envió sus últimos mensajes, antes de perder contacto y desaparecer para siempre en el misterio.

LA MAÑANA del 2 de julio de 1937, en Lae (isla de Nueva Guinea) Amelia Earhart encendió los motores de su Lockheed Electra. Escuchó durante unos momentos el ronco rugir de los motores, y luego enfiló el avión plateado hacia el extremo de la pista. Cargado con casi 4 mil litros de combustible, el Electra recorrió lentamente el trayecto hasta el rocoso malecón que señalaba el fin de la pista.

A menos de 50 metros del precipicio, Earhart se remontó en el aire. La nave se desplomó por un momento antes de iniciar el ascenso, lento pero continuo, hacia las nubes. Minutos después, desaparecía de vista. La pequeña congregación de observadores vitoreó.

Earhart y su navegante, Fred Noonan, se dirigían a la isla Howland a 4,113 kilómetros de distancia -el trayecto más largo de su viaje alrededor del mundo. Hasta ese día, ningún piloto había volado alrededor del mundo siguiendo su línea más ancha, el ecuador, como lo estaba haciendo Earhart, y ninguna mujer había circunnavegado el planeta.

Al finalizar su viaje de 46,670 kilómetros, podría sumar ese récord a su lista de logros aeronáuticos, que incluían el primer «solo» transatlántico realizado por una mujer. También sería su última proeza, como confió a un reportero al iniciar el viaje, ya que deseaba vivir de manera más reposada al volver a casa. Su sueño jamás se realizó. Quienes presenciaron su despegue aquella brumosa mañana en Lae, fueron los últimos en ver a Earhart y a Noonan. El avión desapareció en algún lugar del Pacífico.

avion de amelia

SE HIZO FAMOSA PORQUE VOLABA y su desaparición la volvió legendaria. A más de 60 años de que
Amelia Earhart remontara el aire en su reluciente Electra por última vez, el público no ha
dejado de devorar los relatos de sus asombrosas aventuras. Certificada como aviadora a
escasas dos décadas del primer vuelo de los hermanos Wright, Earhart utilizó su fama para
promover la aviación y la igualdad para las mujeres pilotos.
(Fuente Consultada: Revista National Geographic Enero 1998)

El primer intento  de vuelo transcontinental En 1928, una mujer, por primera vez en la historia, fue pasajera de uno de los primeros vuelos que atravesaron el océano Atlántico, catorce años más tarde logró recorrer sola la gran extensión de agua intercontinental. Resultó ser el símbolo de la nueva mujer independiente de principios del siglo XX. Desapareció en 1937 en la región sudeste del océano Pacífico intentando culminar su viaje transcontinental.

ameliaLa pasión de Amelia: Amelia Earhart nació en 1898 en Atchison (Kansas, Estados Unidos) y estudió en la Universidad de Columbia y en la Escuela de Verano de Harvard. Desarrolló una pasión por los asuntos aéreos desde su juventud, por lo que se desempeñó arduamente en variados oficios —operadora telefónica, administrativa—para poder financiar su deseo de volar.

Amelia Earhart, quien en 1932 se convirtió en la primer mujer en cruzar el Atlántico volando en solitario y sin escalas. Murió cinco años después, con solo 39 años, cuando intentaba ser la primera mujer en dar la vuelta al mundo en avión, esta vez con un copiloto.

Fue reconocida por numerosos méritos entre los que se destacan los primeros vuelos de Hawai a California, y de este estado, a México. También estableció un nuevo récord de velocidad del vuelo transcontinental desde América.

Fue asesora de mujeres estudiantes en la Universidad de Purdue que procuraban organizarse para reclamar por sus derechos civiles. En 1937 puso en práctica el proyecto más asombroso de su carrera: pretendía circunvolar la Tierra en un Lockheed L10 Electra para poder testear los efectos orgánicos y mecánicos de un vuelo de larga duración con el empleo del avión como un laboratorio móvil. Acompañada de un navegante, Earhart partió y cumplió la mayor parte del trayecto pero el avión nunca llegó a destino.

Las últimas noticias acerca del vuelo fueron proporcionadas por la administración australiana en Papua-Nueva Guinea. Se enviaron numerosos equipos de rescate pero ninguno pudo encontrar alguna pista cierta acerca de los tripulantes y el avión.

Distancia: 35.000 km. Países: Estados Unidos, Puerto Rico, Venezuela, Surinam, Brasil, Senegal, Mali, Chad, Sudán, Etiopía, Pakistán, India, Birmania, Tailandia, Singapur, Indonesia, Australia y Nueva Guinea.

La circunvalación aérea Amelia tomó la decisión de no esperar hasta el año siguiente para respetar el plan previsto. Debido a las condiciones climáticas hostiles era un riesgo volar sobre la región caribeña y el continente africano. Por lo tanto, dispuso hacerlo hacia el Este (en sentido contrario a lo pautado) para regresar a su país avanzando por el Oriente.

Después de la entrega del Electra reconstruido, el 21 de mayo de 1937, Amelia partió desde Los Ángeles (California, Estados Unidos) hacia el estado de Florida. Unos días atrás había expuesto que ese sería su último viaje de larga distancia, necesario para cumplir un profundo deseo latente.

El 1°. de junio Amelia, y su navegante Fred Noonan (1893-1937) despegaron del aeropuerto de Miami (Florida) con destino a California después de viajar alrededor del mundo. El recorrido sobrevolaba San Juan (Puerto Rico), el extremo nordeste brasileño, alcanzaba África y continuaba hacia el Mar Rojo. Desde ese lugar se proyectaba otro comienzo pues nadie antes había volado sin detenerse desde la península arábiga hasta la India.

La ciudad de Karachi localizada al sur de Pakistán fue abandonada por el Electra el 17 de junio, con destino a los centros urbanos de Calcuta, Rangún, Bangkok, Singapur y Bandoeng (Indonesia). La partida desde Bandoeng se retrasó por unos cuantos días debido a las condiciones climáticas adversas que ofrecía el monzón (viento periódico del océano índico).

Durante ese lapso se revisaron y ajustaron algunos instrumentos de medición específicos para vuelos de larga distancia y luego, Amelia se enfermó de disentería (enfermedad infecciosa que se caracteriza por la inflamación y ulceración del intestino grueso), por ello tuvo que permanecer cuidada por un médico.

El 27 de junio, ambos tripulantes del Electra dejaron atrás el territorio indonesio y se adentraron en el cielo australiano. Los instrumentos de medición fueron nuevamente testeados en la escala Darwin (extremo norte de la isla continente). Asimismo. Earhart empacó los paracaídas puesto que no tendrían ninguna utilidad en la etapa sucesiva.

Dos días más tarde, ya habían recorrido 35 mil kilómetro;-solo quedaban 11 mil para cumplir el viaje alrededor del mundo Aterrizaron en Lae (Nueva Guinea) y Amelia envió desde allí su último artículo al periódico estadounidense Herald Tribune (Tribuna del heraldo) acompañado de una serie de fotografías que retrataban su cansancio y su deterioro físico.

El bote de la Guardia Costera de los Estados Unidos, Itasca, desde hacía unos días estaba anclado frente a la costa de Howland con objeto de servir de contacto radial para el vuelo. Sin embargo, la interferencia que provocó el propio Electra en el precario sistema de radio existente en la región, impidió cualquier comunicación posible. Últimos contactos

A la hora 0 —del horario de Greenwich— del día 2 de julio, Amelia partió desde Lae con combustible suficiente como para cumplir veinte horas de vuelo sin escalas. Siete horas después, el Electra reportó su curso a 30 kilómetros al suroeste de las islas Nukumanu.

Si bien se supo que antes de partir Amelia había recibido el pronóstico para la región, aún se desconoce si supo acerca del aumento de la velocidad del viento (16 kilómetros por hora) que posteriormente tuvo lugar. Alas ocho realizó el último contacto radial con Lae informando que se encontraba a 3600 metros de altura rumbo a la isla de Howland. No existe evidencia alguna acerca del trayecto preciso del avión después de Nukumanu. El Itasca recibió algunas transmisiones cortas con señal de variada intensidad pero los guardacostas no pudieron establecer su localización debido a la precariedad de la indicación por radio.

Casi doce horas más tarde se registró el siguiente mensaje que provenía del Electra: «KHAQQ llamando a Itasca. Debemos estar sobre ustedes pero no podemos verlos! el combustible está bajando». Alas 20.14, el equipo de guardacostas recibió la última transmisión de voz de Amelia informando su posición; continuó conectado infructuosamente hasta las 21.30, momento en que determinó que el avión debía haber efectuado un aterrizaje forzoso en el océano Pacífico y se disponía a organizar el rescate de los tripulantes.

El presidente de los Estados Unidos, Franklin Roosevelt, dictaminó que nueve buques navales y sesenta y seis aviones fueran a explorar la región, tarea que se cumplió durante quince días. El esposo de Amelia continuó buscándola pero en octubre desistió de encontrarla con vida. Realizó una compilación de las cartas que Amelia le había enviado desde las escalas que había efectuado durante su histórico vuelo transcontinental, y publicó una obra llamada «Ultimo vuelo», donde puede leerse «Por favor, entiende que estoy advertida acerca de los riesgos… quiero hacerlo porque quiero hacerlo. Las mujeres debemos tratar de hacer cosas como los hombres lo han hecho. Cuando ellos fracasan, su desilusión debe ser solo un desafío para los demás«.

Explicaciones acerca de la desaparición Entre las hipótesis que se ofrecieron para intentar explicar lo que había sucedido, durante aquella época también se creyó que los japoneses atacaron al Lockheed Electra porque habían pensado que se trataba de una misión de espionaje enviada por el gobierno de los Estados Unidos.

Las especulaciones al respecto imaginaron a Earhart tomada prisionera y que había sido mantenida con vida hasta después de finalizada la Segunda Guerra Mundial (1945). Tiempo después se estableció que el avión se había ido a pique a 50 ó 100 kilómetros de la costa de la isla de Howland. La tripulación aérea contaba con un bote salvavidas pero nunca fue encontrado. Algunos investigadores consideraron que el combustible que contenían pudo haber permitido mantener a flote la aeronave.

OTRAS PIONERAS DE LA AVIACIÓN: Las mujeres se sumaron muy pronto al entusiasmo que despertaba la aviación en los primeros años del siglo XX. La primera en volar en avión (sin pilotear) fue la estadounidense Edith Ogilby Berg. Vestida de calle, en septiembre de 1908 viajó como acompañante del pionero Wilbur Wright durante una exhibición en la ciudad francesa de Le Mans.

De delicada figura y hermosos ojos negros, la baronesa francesa Raymonde de Laroche (1886-1919), obtuvo el brevet N° 36 de la Federación Aeronáutica Internacional tras rendir su examen de piloto en marzo de 1910. Fue la primera mujer en el mundo a quien se le concedió. Sin embargo, desde octubre del año anterior ya volaba sola. Murió en 1919, al estrellarse su avión contra una colina.

En 1912 tuvo lugar en Londres un Congreso de Aviadoras. Asistieron numerosas damas pilotos que intercambiaron sus experiencias bajo la presidencia de la primera aviadora británica, Hilda Beatrice Hewlett (164-1943).  La estadounidense Harriet Quimby (1875-1912) fue la primera que obtuvo su brevet en EE.UU., durante 1911.

Un año después, el 16 de abril, se hizo Argentina, el mérito de haberse transformado en la primera mujer aviadora correspondió a Amalia Celia Figueredo de Pietra (1895-1985). El 1° de octubre de 1914 rindió examen y obtuvo el brevet Internacional de Piloto.

Fuente Consultada: Grandes Enigmas de la Historia de Alfred L. Daves
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia – Enciclopedia Encarta – Enciclopedia Consultora

Primer Vuelo Sin Escala Para Cruzar el Oceano Atlantico

Primer Vuelo Sin Escala Para Cruzar el Océano Atlántico

HISTORIA DEL PRIMER VUELO TRANSOCEÁNICO SIN ESCALA ACOMPAÑADO

Primer vuelo a través del Atlántico sin detenerse fue efectuado apenas 16 años ;después de que los hermanos Wright hicieron su primer recorrido de 37 m por aire sobre las arenas de Kitty Hawk, Carolina del Norte. (icografía: Brown y Alcock)

 Arthur Whitten BrownDicho vuelo fue realizado por el capitán inglés John Alcock, veterano de la guerra Guerra Mundial, y el teniente Arthur Whitten Brown, piloto que renuncio a  su nacionalidad estadounidense para incorporarse a la Real Fuerza Aérea británica durante ese conflicto bélico.

En 1919 cinco equipos ingleses compitieron por un premio de 10 000 libras esterlinas ofrecido por un periódico a quien hiciera el vuelo. El primer intento fue de este a oeste, pero el avión cayó al frente a la costa irlandesa, así que otros equipos decidieron volar desde Terranova hasta Irlanda aprovechando vientos dominantes: un avión chocó al despegar, y a otro le falló el motor tras 960 Km. de vuelo, por lo que su tripulación tuvo que ser rescatada en el mar. El tercero era un biplano de cabina abierta al que sus tripulantes —Alcock y Brown— le adaptaron dos motores de Rolls-Royce.

No obstante el mal tiempo, Alcock decidió despegar el 14 de junio, acicateado por el hecho de saber que un hidroavión estadounidense acababa de hacer la primera travesía trasatlántica, aunque con escalas: había tenido que interrumpir su viaje y aterrizar en las Azores tras 57 horas y 16 minutos de vuelo continuo.

Alcock y Brown calcularon que podían hacer el viaje en menos tiempo. Durante varias horas esperaron a que amainaran los vientos contrarios, y después despegaron aprovechando una corriente a favor de 64 km/h desde una pista llena de baches en un lugar llamado Monday’s Pool. cerca de Saint John.

Una vez que comenzaron a volar en mar abierto, Brown hizo rápidamente todas las observaciones que pudo del océano y el horizonte, pero pronto un denso banco de niebla ocultó las aguas y gruesos nubarrones taparon el sol. El primer contratiempo surgió una hora después del despegue: se. desprendió una pequeña hélice que había sido colocada sobre un ala para impulsar el generador de un radiotransmisor inalámbrico, por lo cual podían recibir mensajes pero no enviarlos.

El segundo problema ocurrió una hora después, cuando el motor de estribor comenzó a hacer un fuerte ruido debido a un tubo de escape roto que finalmente cayó al mar.

Los dos hombres tenían un teléfono para comunicarse, pero por el estruendo de los motores preferían no usarlo: durante la mayor parte del vuelo se comunicaron con ademanes y notas.

Cuando anocheció, Brown encendió una lámpara eléctrica para estudiar su mapa y revisar los motores desde la cabina. Al amanecer el avión entró en una nube tan densa que no podían ver las puntas de las alas ni la del fuselaje, y peor aún, perdieron el sentido de la horizontalidad y el aparato comenzó a balancearse con violencia (Alcock calculó más tarde que durante unos minutos volaron de cabeza). Después el avión perdió velocidad e inclinó la nariz; por las vueltas que daba la aguja de la brújula, la tripulación dedujo que estaban volando en círculos.

De pronto el avión salió de la nube: allí estaba el mar, al parecer en sentido vertical, así que Alcock tuvo que nivelar rápidamente el aparato. El biplano estaba a sólo 15 m por encima de las olas y volaba rumbo a América; entonces Alcock hizo dar vuelta al aparato y reanudó el viaje hacia el este.

Apenas acababan de recuperarse del susto cuando el avión se encontró bajo una tormenta de nieve y granizo. La nieve se acumuló en el medidor de combustible, fijado fuera de la cabina, por lo que a ratos Alcock tenía que salir de ésta y arrodillarse en el fuselaje para limpiar el medidor.

Para colmo, el hielo cubrió los tacómetros instalados encima de los motores, y taponó los tubos que activaban el anemómetro y los carburadores. Para poder limpiarlos Alcock tuvo que arrastrarse a lo largo de las alas.

Cuando podían, los dos pilotos comían sandwiches y chocolates y bebían café. Alcock procuraba no apartarse de los controles del aparato, y mantenía permanentemente un pie sobre la barra del timón y una mano sobre la palanca de mando. Cuando los tanques traseros se vaciaron, el avión se fue de cabeza, y un buen rato Alcock maniobró la rueda de control para enderezarlo.

Entonces divisaron dos puntos en el horizonte: eran las islas Eashal y Turbot, frente a la costa de Irlanda. Diez minutos después, a las 8:25 am., el biplano cruzó la costa y se dirigió hacia un campo situado cerca de una estación de comunicación inalámbrica en Clifden, en el condado de Galway.

Alcock maniobró para hacer un aterrizaje perfecto, pero el campo resultó ser un pantano: con un chapoteo el avión se inclinó y enterró la nariz en el fango. El combustible de un tubo roto inundó la cabina, pero Alcock ya había apagado la corriente eléctrica y no se incendió.

caida de un avion

El avión se había desviado sólo 16 Km. del curso que Brown había planeado en Terranova. Él y Alcock se estrecharon las manos solemnemente. El personal de la estación llegó corriendo, y una vez que se cercioraron de que no había heridos, les preguntaron: “¿De dónde vienen?” Uno de los pilotos contestó: “De América.” Las sonrisas escépticas que provocó la respuesta se transformaron en felicitaciones cuando comprobaron que en efecto habían cruzado el Atlántico.

Los aviadores estaban entumecidos y agotados, y llevaban 40 horas sin dormir. Habían tardado 15 horas y 57 minutos en recorrer 3.024 km, y permanecieron en el aire durante 16 horas y 28 minutos. Su marca fue la mejor hasta que Charles Lindbergh hizo ,solo, su histórica travesía en 1927. Cinco días después de su aterrizaje Alcock y Brown fueron nombrados caballeros. Alcock murió en 1919, y Brown en 1948.

CÓMO SE ORIENTARON PARA CRUZAR EL OCÉANO: Si el piloto de una aeronave pequeña comete un error de sólo un grado en la lectura de su brújula, puede desviarse de su curso hasta 1.5 Km. después de casi 100 Km de vuelo.

El vuelo de Alcock y Brown cubrió cerca de 3 000 Km. sobre un océano sin relieves, expuestos al error por los vientos en contra. Sin una navegación experta quizá no hubiesen llegado a las islas irlandesas, Haberse apartado sólo 16 Km. de su curso fue una hazaña excepcional.

Para seguir el curso que trazaron entre Terranova e Irlanda, Brown se valió tan sólo del cálculo y de la observación astronómica, comprobando el uno con la otra,

Para asegurarse de que volaban en la dirección correcta usó constantemente la brújula. El anemómetro le indicaba la velocidad aparente, pero él tenía que calcular el efecto del viento, que podía acelerar o retardar el avance. Un indicador de deriva le servía para saber cuánto se apartaban de su curso, y con ayuda de su reloj podía determinar la distancia recorrida y la dirección precisa de vuelo desde el último cálculo. Entonces podía comunicar a Alcock que corrigiera el rumbo y marcaba su posición en el mapa.

Como no había puntos de referencia para confirmar los cálculos, Brown localizaba un “punto fijo” en el cielo con un sextante, que mide el ángulo de una estrella o de cualquier otro cuerpo celeste por encima del horizonte. Tomando lecturas de tres estrellas conocidas y contando el tiempo exacto de cada una, podía consultar las cartas de navegación y trazar tres líneas sobre el mapa. El punto de intersección indicaba la posición del avión.

Fuente Consultada:
Como Funcionan Las Mayoría de las Cosas de Reader`s Digest – Wikipedia – Enciclopedia Encarta – Enciclopedia Consultora