Tectónica de Placas

El magnetismo terrestre – Planeta Tierra y los polos magnéticos

El Magnetismo Terrestre – Los Polos Magnéticos

Hasta el siglo XVI el hombre no intuyó que la Tierra se comportaba como un gigantesco imán. Desde entonces, diversos científicos se aplicaron al estudio del magnetismo terrestre, contribuyendo de manera fundamental a aumentar el conocimiento y la comprensión de este fenómeno.

El magnetismo terrestre - Planeta Tierra y los polos magnéticos

La existencia del campo magnético de la Tierra es conocida desde muy antiguo, por sus aplicaciones a la navegación a través de la brújula. En el año 1600, el físico inglés de la corte de Isabel I, William Gilbert, publicó la obra titulada De magnete, considerada como el primer tratado de magnetismo. Gilbert talló un imán en forma de bola y estudió la distribución del campo magnético en su superficie.

Encontró que la inclinación del campo en este imán esférico coincidía con lo que se sabía acerca de la distribución del campo terrestre. De este experimento concluyó que la Tierra era un gigantesco imán esférico. Posteriormente, los estudiosos del geomagnetismo observaron que, tomando en cuenta la declinación, la mejor representación del campo terrestre sería un imán esférico cuyo eje de rotación estuviera desviado unos 110 del eje geográfico de la Tierra.

La Tierra es un imán

Un imán suspendido horizontalmente adopta una posición tal que uno de sus extremos apunta aproximadamente hacia el polo norte geográfico. Este extremo se llama polo norte del imán; el opuesto se denomina polo sur. Los polos del mismo nombre de dos imanes se repelen y los de nombre contrario se atraen.

El polo norte de la aguja de una brújula apunta al polo norte geográfico, porque la Tierra misma es un imán: el polo sur de este imán está cerca del polo norte geográfico y, como los polos contrarios de dos imanes se atraen mutuamente, resulta que el polo norte de la brújula es atraído por el polo sur del imán terrestre, que está en las proximidades del polo norte geográfico.

Sin embargo, la brújula indica cuál es la dirección de la línea geográfica Norte-Sur sólo de un modo aproximado. Los polos norte y sur geográficos son los dos puntos donde el eje de rotación de la Tierra corta a la superficie terrestre. Normalmente, la aguja de la brújula se desvía hacia el Este o hacia el Oeste del norte geográfico. Este ángulo de desviación se denomina declinación.

Una aguja magnética suspendida por su centro de gravedad no se mantiene en posición horizontal. el extremo que señala al Norte se inclina hacia el suelo en el hemisferio septentrional, y lo mismo hace el extremo que señala al Sur, en el hemisferio meridional. Este ángulo de desviación de la aguja respecto de la horizontal se llama inclinación magnética. El valor de la inclinación, al igual que el de la declinación, es diferente de un punto a otro de la superficie de la Tierra.

El campo magnético terrestre se caracteriza también por su intensidad. La intensidad de un campo magnético se mide en gauss. El campo magnético terrestre es bastante débil, del orden de 0,3 gauss en las proximidades del ecuador y de 0,7 gauss en las regiones polares.

El alineamiento en general Norte-Sur de las líneas magnéticas, de acuerdo con el eje de rotación terrestre, sugiere que el campo, en lo fundamental; constituye un dipolo. Resulta inclinado unos 110 respecto al eje de rotación terrestre, y presenta considerables irregularidades (no corresponde al campo de un dipolo perfecto).

Hipótesis del magnetismo terrestre

Hay dos modos de producir un campo magnético: bien por medio de un cuerpo imanado, bien a través de una corriente eléctrica. Antiguamente, se creía que el magnetismo terrestre estaba originado por un gigantesco imán situado dentro de la Tierra (hipótesis del imán permanente). Ciertamente, la Tierra contiene yacimientos de minerales de hierro, y se cree que su núcleo está compuesto por hierro y níquel, sustancias altamente magnéticas. Si este núcleo, cuyo radio excede de los 3.400 km, es en efecto un imán permanente, el campo magnético terrestre puede muy bien ser atribuido a él.

Sin embargo, las sustancias ferromagnéticas, como el hierro y el níquel, pierden su magnetismo por encima del denominado punto de Curie, que es de 770 °C para el hierro y de 360 °C para el níquel. Como la temperatura del núcleo es superior a estos valores (es mayor de 2.000 0C), ni el níquel ni el hierro pueden conservar su ferromagnetismo. El núcleo terrestre no puede ser, pues, un imán permanente.

Otras teorías, posteriores a la de la imanación permanente, están basadas en la rotación de cargas eléctricas. También se han propuesto diversas hipótesis que se fundamentan en el fenómeno termoeléctrico y el efecto Hall. Sin embargo, todas han sido abandonadas a favor de las que postulan la existencia en el núcleo de la  Tierra de fenómenos semejantes a los de una dinamo autoexcitada.

Varios indicios geofísicos sobre la existencia de un núcleo terrestre de naturaleza fluida y alta densidad, compuesto casi en su totalidad de hierro, sirven de base  a las teorías que sitúan el origen del campo magnético en procesos dinámicos que  tienen lugar en su interior. J. Larmor, en 1919, fue el primero en proponer este tipo  de proceso como constitutivo de un efecto de dinamo auto excitada, que originaría el campo magnético terrestre. El fenómeno se basa en que el movimiento de circulación de material conductor en presencia de un campo magnético genera corrientes eléctricas que, a su vez, realimentan el campo inductor. En el caso de la Tierra o este movimiento afecta al material fluido del núcleo. En 1934, Cowling demostró, en oposición a Larmor, que un mecanismo con simetría de revolución no podía servir como explicación de la generación de un campo magnético estable. Desde 1946 se vuelve a dar impulso a las teorías de la dinamo autoinducída, debido a los trabajos pioneros de W. M. Elsasser, E. C. Bullard y H. Gellman; en la actualidad es, prácticamente, la única manera de explicar el origen del campo geomagnético.

Variaciones del campo magnético terrestre

Los estudios permanentes que se realizan en cualquier observatorio demuestran que el campo magnético terrestre no es constante, sino que cambia continuamente. Hay una variación pequeña y bastante regular de un día a otro (variación diurna). La variación en la declinación es de algunos minutos de arco, y la variación en la intensidad es del orden de 10-4gauss.

Algunos días se producen perturbaciones mucho mayores, que alcanzan hasta varios grados en la declinación y 0,01 gauss en la intensidad. Son las llamadas tormentas magnéticas, generadas por corrientes eléctricas que tienen lugar en las capas superiores de la atmósfera. A unos cuantos centenares de kilómetros por encima de la superficie terrestre existe una zona llamada ionosfera, en la que hay electrones libres arrancados a los átomos de oxígeno y nitrógeno por la radiación solar. Las partículas cargadas positiva y negativamente (iones y electrones) hacen que el aire en la ionosfera sea un conductor eléctrico. Estas corrientes eléctricas de la ionosfera originan campos magnéticos que causan variaciones transitorias del campo magnético terrestre.

Variación secular: el campo geomagnético deriva hacia el Oeste

Las variaciones temporales del campo magnético terrestre, de periodo tan largo que sólo se aprecian al comparar valores medios anuales durante varios años, reciben el nombre de variación secular. Un fenómeno de la variación secular hace referencia a que la distribución del campo geomagnético se mueve lentamente hacia el Oeste. El promedio de avance es del orden de 0,18v de longitud por año. A esta velocidad, la distribución del campo daría la vuelta completa a la Tierra en unos 2.000 años. A diferencia de las tempestades magnéticas, que ocurren por causas externas, las anomalías alargo plazo y su marcha hacia el Oeste se deben a causas localizadas en el interior de la Tierra. Los cambios internos tienen lugar de modo muy lento y abarcan hasta millares de millones de años. En comparación, dos mil años es, pues, un tiempo muy corto. Este elemento constituye una de las claves fundamentales en el estudio del magnetismo terrestre.

Paleomagnetismo

El paleomagnetismo es la ciencia qué estudia el magnetismo antiguo de la Tierra. El fundamento dé esta disciplina es la propiedad que tienen ciertas rocas en las que existen granos de minerales magnéticos, como la magnetita, de adquirir una imanación inducida por el campo magnético terrestre y en su misma dirección. Cada grano de magnetita se convierte así en un pequeño imán. Una roca que contenga este mineral tendrá una imanación que será la suma de la de todos sus pequeños granos de magnetita. Esta imanación tiene la propiedad de que, aunque cambie después la dirección del campo magnético terrestre, ella permanece inalterada y se conserva constante. El estudio de la imanación de rocas antiguas permite conocer la dirección que tuvo el campo magnético terrestre en otras épocas.

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23) y Wikipedia

El magma los volcanes cristalizacion magmática Formación Fósiles

El Magma los Volcanes Cristalización Magmática Formación Fósiles

El magma los volcanes cristalizacion magmática Formación FósilesDebajo de la corteza terrestre existe una región grande y profunda, parecida a un océano semifluido y muy caliente, compuesta por materiales fundidos que constituyen el magma y que, a veces, salen proyectados al exterior con gran intensidad a través de los volcanes

El nombre de magma designa la materia en estado semifluido —resultado de la fusión de silicatos y otros compuestos que integran las rocas— que forma la región situada debajo de la corteza terrestre. Debido a las condiciones a que están sometidos (altas presiones y elevadas temperaturas), los materiales magmáticos muestran propiedades que no se corresponden con las del estado sólido y tampoco con las de un líquido o fluido, según los principios generales de la física.

En el magma aparecen en suspensión diferentes tipos de cristales y fragmentos de rocas parcialmente fundidas, así como carbonatos, sulfuros y distintos componentes volátiles disueltos. La interacción de las diversas condiciones físicas determina las características del magma, tanto en lo que se refiere a su composición química como a su viscosidad, resistencia, plasticidad y movimiento.

Tipos de magmas

Una primera clasificación de los distintos tipos de magmas hace referencia a su contenido en sílice. Los magmas con más de un 60% de anhídrido silícico son los llamados ácidos, mientras que los que poseen menos de dicha cantidad se denominan básicos.

Según el estado del gas que contienen, se pueden distinguir; el hipomagma o magma profundo, no saturado de gases, los cuales se encuentran en disolución debido a que la presión exterior es superior a la tensión de vapor del magma; el piromagma, sobresaturado de gases, que constituyen una fase en forma de burbujas debido a que la presión exterior es inferior a la tensión de vapor; y el epimagma o magma desgasificado, del que forman parte solamente minerales fundidos (los gases escapan del resto del magma debido a la escasa presión externa).

Cuando el epimagma se proyecta al exterior por los puntos más débiles de la corteza terrestre, las masas de magma dan origen a los volcanes y forman, por enfriamiento, las rocas magmáticas, también llamadas ígneas o eruptivas, cuyo grado de cristalización es variable, y entre las que se encuentran el granito, el basalto o los pórfidos.

El ascenso de los magmas depende de sus condiciones físico-químicas (viscosidad, densidad, contenido en elementos volátiles, etc.), de las particularidades tectónicas de la región donde se encuentran y de las rocas que han de atravesar. Los magmas ácidos son ligeros y viscosos, ascienden con facilidad y originan grandes depósitos. Los magmas básicos, de mayor densidad, son menos viscosos y ascienden con mayor dificultad que los anteriores.

Al ser mezclas de diversas sustancias, los magmas no tienen un punto de fusión definido, sino un intervalo de fusión. De igual manera, no se puede hablar de temperatura de cristalización, sino de intervalo de cristalización.

LOS VOLCANES:
En el interior de la Tierra se encuentra en su mayor parte en estado liquido e incandescente a elevadísimas temperaturas. A esa inmensa masa de roca fundida, que además contiene cristales disueltos y vapor de agua, entre otros gases se la conoce como magma terrestre. Cuando parte de ese magma surge hacia el exterior a través de los fenómenos volcánicos, se la llama lava. Al alcanzar la superficie de la corteza o el fondo oceánico , la lava comienza a enfriarse y se convierte así en diversos tipos de roca sólida, según su composición original. Ésta es la base de los procesos por los que se ha formado la superficie de nuestro planeta y por los cuales sigue en permanente cambio. Los científicos estudian la lava para conocer en profundidad nuestro planeta

Cristalización magmática

El magma se origina cuando en un lugar de la corteza o del manto superior la temperatura alcanza un punto en el que los minerales con menor punto de fusión empiezan a fundirse (inicio de fusión parcial de las rocas). Sin embargo, la temperatura de fusión no depende sólo del tipo de roca, sino también de otros factores como la presión a la que se encuentra o la presencia o ausencia de agua. El incremento de presión en condiciones de ausencia de agua dificulta la fusión, por lo que, con la profundidad, tiende a aumentar la temperatura de fusión de las rocas. Por el contrario, fa presencia de agua disminuye el punto de fusión.

Tras su formación, el magma asciende, pues es menos denso que las rocas que lo rodean. Durante el ascenso se enfría y empieza a cristalizar, formándose minerales cada vez de más baja temperatura, según una secuencia fija y ordenada conocida como serie de cristalización de Bowen.

La serie de Bowen hace referencia a dos grandes líneas de cristalización. Una de ellas indica el orden en que se forman los silicatos ricos en hierro y magnesio (llamados ferromagnesianos). Se denomina serie discontinua porque los cristales formados van siendo sustituidos por otros de estructura distinta y más compleja medida que desciende la temperatura.

La otra serie de cristalización es la de las plagioclasas. Recibe el nombre de serle continua porque los minerales formados sucesivamente tienen la misma estructura y sólo cambia la proporción relativa de sodio y calcio.Al final de la cristalización, a la vez que la plagioclasa sódica (albita> y las micas se forman el cuarzo y la ortosa.

 Diferenciación magmática

Algunas veces, a medida que se produce la cristalización de un magma si la diferencia de densidad entre los minerales ya formados y el líquido residual es alta y si la viscosidad de éste es baja, los cristales recién formados pueden quedar aislados del resto del magma, que por tanto se verá enriquecido progresivamente en sílice De continuar el proceso, se obtendrá, a partir de un solo magma, una serie de rocas ígneas de distinta composición, por cristalización fraccionada. Este proceso es denominado diferenciación magmática, y puede originaria formación de rocas ácidas a partir de magmas básicos o intermedios.

Fases de cristalización magmática

El enfriamiento de un magma en el interior de la corteza da lugar a una serie de fases sucesivas de cristalización, a temperaturas cada vez más bajas. La primera es la denominada frise ortomagmática, que. se produce en general por encima de los 700 °C (dependiendo de la composición del resto de las condiciones físicas). En ella cristaliza la mayor parte del magma formando las rocas plutónicas.

La fase pegmatítica tiene lugar más o menos entre los 700 y 550 0C. A estas temperaturas, el residuo fundid6 está muy enriquecido en volátiles, por lo que se introduce a través de grietas, donde cristaliza originando yacimentos filonianos de pegmátitas. Los minerales que se forman son silicatos ricos en sílice (cuarzo, ortosa, albita),en grupos hidroxilo (micas) y en elementos como el boro (turmalina), el fósforo (apatito), el flúor (fluorita), etc.

En la tercera fase, denominada neumatolítica, que tiene lugar aproximadamente entre los 550 y 375 °C, el residuo de cristalización está compuesto básicamente por volátiles, que penetran en las rocas encajantes y dan lugar a filones formados por minerales como la moscovita, el cuarzo, el topacio, óxidos y sulfuros metálicos, etc. Igualmente, los volátiles actúan sobre los minerales de las rocas ígneas o del encajante, transformándolos.

La última fase, llamada hidrotermal, se inicia por debajo de los 375 °C da lugar a vetas y filones de cuarzo y calcita, a minerales metálicos y a transformaciones de minerales ya formados.

El magmatismo y la tectónica de placas

El origen del magma se relaciona a menudo con la dinámica global de la corteza y el manto terrestres, ya que, en general, tiene lugar en los bordes de placas. En las dorsales, el magma se forma básicamente por descompresión de los materiales del manto superior, a poca profundidad, y da lugar a rocas básicas (basaltos y gabros).

En las zonas de subducción, el magma se origina a una profundidad de hasta 150 Km. por fusión parcial de la corteza oceánica y/o del manto y la corteza situados por encima. Este proceso da lugar a la formación de rocas en su mayoría intermedias (andesitas y granodioritas).

En las áreas de colisión continental, en relación con los procesos orogénicos, se produce la fusión parcial de la corteza, y surgen esencialmente rocas ácidas, como el granito. Existen también zonas concretas de magmatismo de intraplaca, que se deben a la existencia de puntos calientes en el manto.

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23) y Wikipedia