Todo Sobre Ecología

El Impacto Ambiental En La Historia de la Humanidad Resumen

Resumen del Impacto Ambiental En La Historia de la Humanidad

El medio ambiente, como sabemos, constituye el entorno vital y, aplicado al ser humano, se puede definir como el conjunto de factores fisicoquímicos, biológicos, estéticos, culturales y económicos que interaccionan con él y la comunidad en que vive. Este concepto implica directa e íntimamente al ser humano no sólo en el ámbito espacial, sino también en el temporal, ya que el uso que la humanidad hace de determinado espacio se relaciona con su herencia cultural e histórica.

El medio ambiente provee al ser humano de materias pilmas y energía para su desarrollo sobre el planeta. Pero como indicamos en el capítulo 11, sólo una parte de esos recursos es renovable, y su tratamiento debe ser cuidadoso para evitar situaciones irreversibles.

El hombre, en el transcurso de los milenios, ha modificado sin cesar el ambiente físico y biológico en el que vive: ha construido ciudades y canales, ha excavado galerías para procurarse energía, ha descendido al subsuelo para buscar carbono, petróleo, metano y uranio; ha roturado terrenos esteparios e inmensos territorios forestales; ha matado innumerables animales terrestres y marinos para satisfacer sus necesidades alimentarias.

Si, por una parte, su acción ha contribuido a mejorar las condiciones de vida de la humanidad, por otra ha provocado enormes y graves trastornos ambientales. Especialmente durante las últimas décadas, de resultas del gran desarrollo industrial, el hombre ha causado distintas formas de contaminación del ambiente.

Aire, agua y suelos están gravemente afectados; la radioactividad está alcanzando niveles alarmantes en grandes zonas del mundo. La contaminación acústica ha aumentado mucho en las grandes ciudades y llega a provocar daños al oído; más frecuentes son, no obstante, los perjuicios extraauditivos: sobre los sistemas nervioso y endocrino, sobre el estado psicológico y sobre los aparatos respiratorio y cardiovascular.

Las causas de la degradación ambiental no acaban ahí: la explotación de los recursos naturales se efectúa de un modo irracional, sin preocuparse por distinguir entre recursos renovables y recursos no renovables; la deforestación salvaje, además de destruir estos hábitats, provoca la erosión y su secuela: pérdida de la capacidad de retención hídrica de los suelos, desprendimientos de tierras, inundaciones; el avance de los desiertos elimina terrenos fértiles.

El uso indiscriminado de abonos y pesticidas ha envenenado ríos y mares. Pero hoy el hombre se ve obligado a contar con una disponibilidad limirada en cuanto a fuentes de energía. La escasez de los recursos exige una gestión racional del patrimonio natural a disposición del hombre.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

A lo largo de la historia de la humanidad se produjeron cambios sustanciales en la forma de valorar el medio ambiente que no se han dado por igual ni han sido los mismos en todo el planeta, y que han tenido gran influencia sobre las culturas y religiones de los diferentes lugares.

A modo de simplificación, estos cambios se pueden englobar en cuatro etapas: una primera de yugo (la naturaleza domina al hombre); otra de exploración y enfrentamiento en igualdad de condiciones; otra en que se ejerce progresivo control (el hombre domina a la naturaleza), y una cuarta y última etapa abierta que podrá ser de destrucción o de integración.

1. El hombre dominado por la naturaleza

homo habilis

El primer homínido, Homo habilis, era un organismo que competía con otras especies por el alimento y el abrigo y que no contaba con grandes ventajas sobre el resto de los seres vivos. Éstos representaban para nuestros ancestros o bien enemigos, recursos o le eran indiferentes.

Pero cuando Homo erectus comenzó a dominar el fuego y «doblegó» el bosque, la incipiente humanidad explotó los recursos con más eficacia, en la medida justa para satisfacer sus necesidades sin producir la desaparición de las especies, de un modo que hoy se llamaría sustentable. Más tarde, Homo sapiens neanderthalensis perfeccionaría las herramientas, los utensilios, como arpones y lanzas, y comenzaría a aventajar paulatinamente a otras especies, explotando mejor los recursos.

2. El hombre como testigo de la naturaleza

arte rupestre un toro

Con el hombre moderno, Homo sapiens sapiens, comenzó la etapa de análisis y observación de la naturaleza. Aunque también pudo haber comenzado en esta etapa la primera clara evidencia de impacto ambiental, por ejemplo, con la extinción de algunas especies de mamíferos al llegar los primitivos pobladores humanos a América.

El hombre moderno pudo luchar de igual a igual con la naturaleza y hasta «tomarse un tiempo» para contemplarla y recrearla en sus pinturas rupestres. Y a medida que fue ejerciendo cierto grado de control, como lo hizo con el desarrollo de la agricultura y de ¡a ganadería hace 10.000 años a.C. (Revolución Neolítica), pasó paulatinamente de una situación de enfrentamiento a otra de yuxtaposición.

Este período corresponde a momentos clave de la civilización que permitieron desarrollar la curiosidad de los naturalistas, quienes dirigieron su atención a la multitud de organismos y procesos que hay en la naturaleza, aunque sin interés por conocer la Interacción de nuestra especie con los ecosistemas ni considerar el desarrollo, y duró hasta la época de los grandes inventos.

3. El hombre domina a la naturaleza

torres de petroleo

El desarrollo de la civilización trajo aparejada una gradual transformación de los ecosistemas, y ya en la antigua Grecia se originaron problemas ambientales de erosión, desertlficación y contaminación por excesivo uso de fertilizantes. Pero estos procesos comenzaron a agravarse al comienzo de la Revolución Industrial, cuando empezaron a explotarse como fuentes de energía el petróleo, el carbón y el gas natural, dando comienzo así al deterioro de la calidad del agua y del aire.

Más tarde, con la construcción de represas hidroeléctricas, el desarrollo de las centrales nucleares, el crecimiento de las ciudades, el creciente uso de nuevas tecnologías aplicadas a todas las actividades humanas, etc., comenzó una etapa en que el hombre sojuzgó completamente a la naturaleza, llegando a hacer peligrar su existencia.

4. El hombre ¿destruirá a la naturaleza o se integrará con ella?

incendio forestal

El ser humano ha llevado al medio ambiente hasta un colapso casi total, al punto de producirse una paulatina y continua pérdida de la biodiversidad. Las actividades humanas contaminan cada vez más el aire, el agua y el suelo, cambian el paisaje, agotan muchos recursos minerales, forestales y energéticos, deterioran la capa de ozono y producen un cambio climático global.

En este contexto, el reconocimiento de que la humanidad es un elemento más de la naturaleza resulta fundamental y comienza a despertar en muchas conciencias. El futuro del planeta dependerá del comportamiento actual de nuestra especie. El incesante crecimiento del consumo de recursos debe ser sustituido por otro cada vez más sostenible y equilibrado.

Fuente Consultada:
Biologia y Ciencias de la Tierra Editorial Santillana Polimodal Cuniglio, Barderi, Bilenca, Granieri y Otros
Enciclopedia Temática Espasa – La Ecologia –

Caracteristicas de la Tundra Flora y Fauna Ubicación Geografica

Características de la Tundra Flora y Fauna, Ubicación Geográfica

La delgada capa donde se desarrolla la vida en la Tierra se denomina biosfera. Esta capa está formada por el suelo, el aire y las aguas marinas y continentales, formando diferentes ecosistemas. Dentro de estos ecosistemas podemos encontrar biomas terrestres, aéreos y acuáticos.

La mayoría de los seres vivos existentes en cada uno de los biomas de nuestro planeta se desarrolla en una delgada capa que se extiende hasta los 200 m de profundidad en los océanos, porque hasta allí llega la luz solar. En el ambiente terrestre y aéreo, los límites de la vida están fijados por las temperaturas y el acceso al oxígeno, aunque algunos seres vivos están adaptados a la vida en condiciones extremas.

Las TUNDRAS son praderas desnudas e incultas que comprenden las regiones más septentrionales de Europa, Siberia, Canadá y Alaska, así como el límite meridional de Groenlandia. Constituyen en total más de la vigésima parte de la superficie de la tierra.

El subsuelo está perpetuamente helado en las regiones árticas: se trata, en cierto modo, de una capa de cemento de diez a cien metros de espesor. Los rusos la llaman merzlota y los noruegos tjale. Durante el corto verano ártico, el deshielo sólo afecta a una capa superficial y el agua no puede infiltrarse en el suelo.

Caracteristicas:

1-En la tundra, la superficie del suelo se encuentra permanentemente congelada, el promedio de temperatura es de -28ºC.

2-Las plantas más numerosas en la tundra son los arbustos, el musgo y los líquenes.

3-Las especies de animales que viven en la tundra han tenido que adaptarse a las frías condiciones climáticas. Por ejemplo gruesas capas de grasa debajo de la piel, construcción de túneles para vivir.

4-Contienen la mayor concentración de carbono atrapado en el suelo,  y mientras se mantenga congelada nos protegerá de ese posible escape de dioxido carbónico a la atmósfera.
5-Por su posición geográfica, muy cercano a los polos el Sol tiene posiciones muy particulares, ya sea verano o invierno. En verano permanece en el horizonte y en invierno está oculto durante días o meses. Debido a este ocultamiento el suelo se congela.
6-La gran amenaza de la tundra es el calentamiento global que podría descongela la superficie y liberar gran cantidad de dioxido de carbono.

Tundra artico

La tundra es un  terreno abierto y llano en  la zona comprendida entre la costa del océano glacial Ártico y el límite septentrional de los bosques de coniferas. A pesar del frío y la nieve, las plantas y las flores, para desarrollarse, aprovechan unas semanas de temperaturas más benignas. Algunas incluso logran dar cierto atractivo a la tundra con el cambiante reflejo  de  sus  colores. La superficie presenta un aspecto pedregoso o pantanoso, y la vegetación dominante se compone de ciperáceas, ericáceas, musgos y líquenes, así como, en algunas zonas más restringidas, sauces del Ártico. En las montañas de la zona templada aparece un tipo de planicie parecida, por encima del límite altitudinal de los árboles, a la que se denomina tundra alpina. En la región antártica también existen algunas zonas de tundra.

Ver: Fauna en el Ártico

En la llanura se forman, pues, tolladares y charcas cenagosas a través de los cuales se hace difícil el paso de las aguas. Esta tundra temblorosa está, además, constantemente sometida a grandes variaciones de temperatura.

Así, la superficie se seca y fragmenta en bloques de forma poligonal. Allí donde el suelo es desigual, las capas afectadas por el deshielo se deslizan lentamente sobre las masas heladas hasta formar accidentes de terreno —llamados pingóos— que pueden alcanzar una altura de cien metros.

La tundra no presenta en todas partes un carácter uniforme. Su aspecto varía según su situación y bajo la influencia de numerosos factores. Las nieves no desaparecen nunca por completo en las regiones más septentrionales de Canadá y Groenlandia y allí la tundra no es sino un árido desierto. Son los barren grounds.

En otros lugares, este desierto helado se transforma durante algunas semanas en un jardín tornasolado en el que un número increíble de plantas se ríen del clima.  Las investigaciones han demostrado que ciertas especies que se encuentran en el sudoeste de Groenlandia han sobrevivido a la época glacial. Una delgada capa de suelo blando sobre un escudo de hielo les basta para seguir con vida.

Durante el transcurso del mes de mayo, musgos y liqúenes se abren camino a través de la nieve y el hielo. El débil calor del sol de medianoche y muy poca humedad les bastan. En junio se produce un milagro: por todas partes surgen flores. Las zaragatonas o pulicarias, los cálices sobrios y delicados del brezo de las nieves, la cinco en rama y tantas otras más.

En Alaska florecen miles de miosotis; en Spitzberg, ranúnculos y adormideras amarillas o azules. Allí donde la humedad es favorable, por entre las rocas aparecen liqúenes amarillos, anaranjados, rosados o blancos en forma de aceituna. Estos liqúenes son unos extraordinarios vegetales. Parecen planos, pero, en realidad, están constituidos por dos organismos totalmente distintos: un alga y un hongo.

tundra flora

De todos los vegetales polares, son los más resistentes, y cualquier cosa asegura su supervivencia: una neblina de junio, un hilo de sol, una rendija un poco resguardada en una roca. Tienen el mérito de que visten a la tundra con un manto multicolor. El más bello de todos es, sin duda, el Caloplaca elegans, de un rojo poco acentuado.

La vida brota en todas partes, incluso en los sitios más inesperados. Entre las morrenas, en el límite del casquete glacial, por espacio de unos días, florecen adormideras, jacintos y heléchos. Las frambuesas silvestres, las moras y los arándanos crecen hasta 160 km. más allá del círculo polar; ¡golosinas con las que se deleitan esquímales y lapones. Extrañas herbáceas completan la riqueza vegetal de la tundra.

Naturalmente, las regiones polares no tienen árboles, salvo en su límite meridional donde la tundra está ligeramente poblada de ellos y forma la transición con la taiga, región natural subártica cubierta de coniferas, que comprende Siberia y Canadá.

liquenes tundra

Es fácil comprender por qué los árboles no pueden crecer en el Gran Norte: las tempestades son allí tan violentas que arrancan todo lo que encuentran a su paso. Además, está la capa de tjale siempre helada en la que no pueden agarrar las raíces. Pese a estas condiciones climáticas excepcionales, se encuentran, no obstante, algunos abedules y sauces enanos cuyas hojas aparecen en el mes de junio. El descubrimiento de la vida en estas regiones es una experiencia apasionante.

Hasta ahora se han enumerado unas 480 especies de musgos, hierbas y flores. Su corto período de crecimiento y floración ha sido estudiado, así como su resistencia a las bajas temperaturas, la producción de semillas, etc. De este modo, la ciencia ha llegado a comprobar que las enfermedades de los vegetales se desconocen prácticamente en las regiones árticas y que el suelo es a veces relativamente fértil e incluso apto para el cultivo. En efecto, carece de bacterias y se encuentra lejos de estar agotado.

¿Sería, pues, posible practicar cierta forma de agricultura en las regiones polares árticas?. Los sabios opinan que en ciertos lugares se pueden obtener dos o tres cosechas por estación. Sobre este punto, los rusos parecen haber dejado ya de hacer ensayos: han cultivado una variedad de té capaz de resistir una temperatura de 15° bajo cero.

Unas expediciones han recogido patatas silvestres en la cordillera de los Andes (América del Sur) y las han cruzado con variedades de uso corriente: la estación experimental de Kirovsk cultiva más de 1.200 hectáreas de patatas que resisten sin dificultad heladas de 18° bajo cero. Gracias a un nuevo tipo de invernaderos, los rusos han logrado producir hortalizas, espárragos y tomates en las cercanías del polo Norte. En Alaska se pueden comer fresas de bosque y frambuesas. La explotación de las regiones polares ¿aportará la solución al problema de la alimentación humana?.

Los pueblos eurasiáticos, principalmente los lapones, han domesticado el reno, del que depende toda su economía. Se ven obligados a seguir los rebaños durante sus emigraciones y se esfuerzan en encontrarles los mejores pastos. Las tiendas se instalan en los lugares donde los animales se detienen para apacentarse. Todo procede del reno: la carne, la leche y las pieles que permiten la fabricación de vestidos, tiendas, calzados y patines para los trineos. Además, el reno es un excelente animal de tiro. Durante el corto verano ártico, el aire retiene mil ruidos. ¡Qué contraste con el silencio helado del invierno!… Centenares de pájaros marinos, patos y gaviotas, llenan el aire con sus gritos. Las golondrinas de mar tienen la particularidad de que crían a su progenitura en Groenlandia y en el norte de Canadá,  pero  en cuanto  se acerca el invierno emigran hacia el Sur para dirigirse al Antartico, vía América o Europa, donde pasan sus vacaciones de verano… De todos los huéspedes marinos, la foca es, sin duda, el más simpático.

fauna tundra

El corto verano ártico basta para asegurar posibilidades de vida a numerosas especies animales. La tundra está habitada por los caribúes y los bueyes almizcleros. Los primeros son emigrantes que se desplazan a largas distancias. Los segundos son mucho más sedentarios. Los lapones han hecho del reno un animal doméstico. En las aguas, la foca es el animal más simpático

Ver: Ampliar Fauna de la Tundra

Fuente Consultada:
Enciclopedia Juvenil Edit. Credsa AZETA – La Tundra
Microsoft ® Encarta ® 2009. © 1993-2008 Microsoft Corporation.

Nanociencia Nanotecnologia Que es la Nanociencia? Aplicaciones de la

Nanociencia Nanotecnologia ¿Qué es la Nanociencia?

Uno de los avances mas espectaculares llevados a cabo en Física e Ingeniería en años recientes es el experimentado por la nanotecnología: la habilidad de diseñar, controlar y modificar materiales a nivel cuasi-microscópico ó “mesoscópico”. La nanotecnología nos promete la posibilidad —largamente soñada— de influir en las propiedades de los materiales con el fin de producir materiales “inteligentes” para todo tipo de aplicaciones.

Es ahora frecuente ver en las más prestigiosas revistas científicas reportes sobre avances en diseño de microcircuitos, microestructuras artificiales y máquinas microscópicas. Ahora es posible el crecimiento sistemático y controlado de pequeñas estructuras artificiales compuestas de varia capas delgadas de materiales diferentes, algunas de unos pocos átomos de ancho mediante técnicas, tales como los “haces moleculares epitaxiales”.

A escala comercial, quizás la aplicación mas espectacular a la fecha es el uso de la magnetoresistencia gigante, descubierta en 1998, en las cabezas lectoras de la mayoría de los discos duros de los computadores actuales.

Estos y otros avances relacionados, han provocado un explosivo interés en el tema y el término nanotecnología se ha convertido en palabra clave de muchas propuestas de investigación en ciencia de materiales e ingeniería.

ORÍGENES: E 29 de diciembre de 1959, por ejemplo, el físico Richard Feynman -uno de los científicos más importantes del siglo XX- miró con determinación a si audiencia en una conferencia en el Instituto de Tecnología de California EE.UU., se aclaró la garganta y dijo: «Hay mucho lugar allá abajo» y lanzó no uno, sino dos desafíos a los presentes en el auditorio: le daría 1.000 dólares a aquel capaz de hacer un motor más pequeño que 8 mm3 y a quien lograra escribir los 24 volúmenes de la Enciclopedia Británica en la cabeza de un alfiler, es decir, reducir unas 25.000 veces un texto.

Casi sin querer  (o saberlo), este premio Nobel de física había abierto las puertas de lo desconocido. Había dado a luz un nuevo campo científico, de dominio íntimos, liliputienses, vírgenes: habían nacido las nanociencias.

Richard Feynman

La electrónica había encontrado su camino en la miniaturización.

Y Feynman, todo un provocador, estaba seguro de que se podía bajar incluso unos pisos más: en teoría, nada impedía manipular conjuntos de átomos, reordenarlos con suma precisión como si fueran ladrillos 1.000 millones de veces más pequeños que un metro, un «nanómetro», o sea, el tamaño de un virus.

Y hacerlo, pese a que, como muchos comprobaron más tarde, el comportamiento de la materia cambia por debajo de un cierto tamaño.

Las leyes que rigen son distintas. El tamaño importa: en este mundo ínfimo donde las cosas no pesan casi nada, la gravedad mucho no importa. (Fuente: Todo lo que necesitas saber sobre ciencias, Federico Kukso)

La opinión pública y la dirigencia política desconocen casi por completo el desafío de las nanotecnologias, portadoras de muchas más esperanzas y peligros que todas las tecnologías hasta hoy conocidas.

Su difusión potencial preocupa a los ciudadanos, mientras las industrias prometen el advenimiento de materiales milagrosos. Como ya ocurrió con los organismos genéticamente modificados (OGM), el ritmo de desarrollo de sus aplicaciones es más rápido que el control de los peligros que encierran.

Qué tienen en común un neumático inteligente y una crema sol milagrosa? ¿O una prenda de vestir isotérmica, cuyo color cambia con nuestro humor, y una pintura resistente a las manchas? ¿O un “acero” tan liviano como el plástico y un interruptor sin cable? ¿O las medias que no toman olor y la destrucción selectiva de una célula cancerosa? En todos los casos, se trata de aplicaciones de la nanotecnología.

Hoy se sabe cómo producir esos objetos cuyo tamaño está en el orden del millonésimo de milímetro (0,000001mm). Constituidos por una pequeña cantidad de átomos o de moléculas, están dotados de extraordinarias características físicas, químicas o biológicas que les otorgan resistencia, flexibilidad, liviandad o capacidad de almacenamiento de información. Esta confluencia de la materia, la electrónica y la biología se presta a aplicaciones informáticas, industriales, ambientales y médicas.

El significado de la «nano» es una dimensión: 10 elevado a -9.

Esto es: 1 manómetro = 0,000000001 metros. Es decir, un manómetro es la mil millonésima parte de un metro, o millonésima parte de un milímetro. También: 1 milímetro = 1.000.000 manómetros. Una definición de nanociencia es aquella que se ocupa del estudio de los objetos cuyo tamaño es desde cientos a décimas de manómetros.

Hay varias razones por las que la Nanociencia se ha convertido en un importante campo científico con entidad propia. Una es la disponibilidad de nuevos instrumentos capaces de «ver» y «tocar» a esta escala dimensional. A principios de los ochenta fue inventado en Suiza (IBM-Zurich) uno de los microscopios capaz de «ver» átomos. Unos pocos años más tarde el Atomic Force Microscope fue inventado incrementando las capacidades y tipos de materiales que podían ser investigados…

En respuesta a estas nuevas posibilidades los científicos han tomado conciencia de potencial futuro de la actividad investigadora en estos campos. La mayor parte de los países han institucionalizado iniciativas para promover la nanociencia y la nanotecnología, en sus universidades y laboratorios.

Así, la más extendida revolución tecnológica que haya conocido la humanidad está tal vez en vías de nacer en laboratorios de Tokio, Berkeley o Grenoble. Revolución, porque las nanotecnologias permiten eliminar la barrera entre lo real y lo virtual, entre lo vivo y lo material. Extendida, porque la posibilidad de poner inteligencia en todas las partes de nuestro cuerpo y en nuestro medio ambiente abre perspectivas económicas infinitas, estimadas en un billón de dólares a partir de 2015.

La palabra «nanotecnología» es usada extensivamente para definir las ciencias y técnicas que se aplican al un nivel de nanoescala, esto es unas medidas extremadamente pequeñas «nanos» que permiten trabajar y manipular las estructuras moleculares y sus átomos. En síntesis nos llevaría a la posibilidad de fabricar materiales y máquinas a partir del reordenamiento de átomos y moléculas. El desarrollo de esta disciplina se produce a partir de las propuestas de Richard Feynman

nanotecnologia

RIESGO SANITARIO
Pero esta revolución plantea una cantidad infinita de preguntas. Los industriales, tras el escándalo del amianto y el rechazo a los OGM, tratan de desactivar las objeciones críticas mediante una concertación con algunos grupos ciudadanos. Pero el argumento que plantea que ya vivimos en medio de nanopartículas errantes a las que se supone inofensivas—producidas por la naturaleza, la industria y los motores de vehículos— no basta para cerrar el debate sobre el peligro sanitario y, menos aun, sobre los riesgos para la libertad.

A mediados de 2006 ya se contaban 700 productos que contenían componentes nanométricos y 1.400 clases de nano partículas vendidas por unos SO productores. A pesar de la creación de grupos de trabajo y de la organización de debates públicos en todo el mundo, el control de los riesgos —por la vía de normas, leyes y una obligación de transparencia— parece muy retrasado con respecto al ritmo de desarrollo de las aplicaciones que, por otra parte, son muchas veces desconocidas por razones de secreto industrial y, sobre todo, militar.

Se sabe, sin embargo, que su tamaño les permite a esas partículas no sólo alojarse en las vías respiratorias, sino también atravesar la piel, penetrar las células basta su núcleo, vencer membranas consideradas infranqueables o alojarse en el sistema nervioso central. Millones de trabajadores corren el riesgo de resultar expuestos a las nanopartículas. Ya se puede prever una acumulación en la naturaleza de “migajas” nanométricas capaces de perturbar los ecosistemas y de intoxicar al ser humano. ¿Podrá argüirse, cómo con el amianto, que no sabíamos?

LA TENTACIÓN DE FAUSTO
El riesgo para la libertad parece mucho mayor que el de la toxicidad, porque con la generalización de losnanochips se corre el riesgo de relanzar la tentación de Fausto, de crear el ser perfecto, de buen desempeño y alta resistencia. A través del sistema de Radio Frequency Identification (RIFID) se abre la vía para vigiar a los individuos y su comportamiento. La difusión de partículas inteligentes también puede servir para la vigilancia del medio ambiente, para la marcación antirrobo, para los sistemas de información militar o para la acción de los terroristas, de sectas y de “Estados canallas”.

Como con los OGM, que se imponen a pesar de las dudas y de las moratorias locales, las nanociencias llaman a la construcción de un sistema de responsabilidades entre quien toma las decisiones políticas, el científico, el industrial y el ciudadano. Confirman que un Estado no puede —suponiendo que quiera hacerlo— adoptar por sí solo el principio de la protección máxima, sin correr el riesgo de ver que los demás acaparen patentes y mercados. Se plantea así la cuestión del crecimiento de las desigualdades ente quienes dominan esta arma económica suprema y quienes no pueden hacerlo.

A CORTO PLAZO:

Nanotecnología purificadera: El 73 por ciento del agua que hay en el mundo es salada, y el 2,7 por ciento del agua dulce que puede servir para consumo humano está contaminado por fuentes industriales. Una solución podría llegar de parte de un proyecto que llevan a cabo el Instituto Politécnico Nacional de México, la Pontificia Universidad Javeriana de Colombia, e instituciones de Francia y España, que comenzaron a usar una tecnología que combina biotecnología y nanotecnología, para purificar aguas, incluyendo a las industriales. El sistema se basa en nanopartículas de óxido de titanio que se colocan sobre superficies de vidrio o de cristal y después se someten a altas temperaturas para que se adhieran.

Es en presencia de luz solar o ultravioleta que se producen especies oxidantes que degradan el material orgánico en el agua contaminada. Una prueba indica que, aplicada a un lote de 800 mililitros de agua con 1,5 gramo de nanopartículas de óxido de titanio, se removió la totalidad de los compuestos tóxicos.»

Detección Rápida del Cáncer: Pruebas de cáncer más rápidas Científicos estadounidenses han usado con éxitonanosensores para detectar exitosamente cáncer en la sangre de los pacientes. La prueba más reciente puede detectar concentraciones mínimas de marcadores biológicos, en el orden de una millonésima parte de gramo por mililitro, el equivalente a ser capaz de detectar un grano de sal disuelto en una piscina grande. En vez de tener que esperar varios días los resultados del laboratorio, la prueba ofrece una lectura en minutos.

LA ESTRELLA DEL SIGLO XXI: EL GRAFENO: Un nuevo material de ficción (un nanomaterial), 200 veces mas resistente que el acero, pero flexible, impermeable y conductor de la electricidad.

En este material los átomos están dispuestos en hojas tridimensionales: el grafeno es ultrafino -sus átomos de carbono se agrupan siguiendo un modelo parecido a un panal de abejas-, transparente, flexible, impermeable, presenta una elevada conductividad eléctrica y, encima, es doscientas veces más resistente que el acero. «Con solo apretar un botón en un paquete de galletitas, sabremos sus ingredientes y calorías», asegura el belga Jan Genoe del Instituto Imec de Nanoelectrónica de Lovaina. «En unos años, veremos pantallas de este material en todas partes.»

Con el grafeno, los celulares podrían volverse casi tan delgados y flexibles como el papel y prácticamente indestructibles. También podría abrir el camino a las placas solares flexibles: los metales convencionales absorben la luz. Por el contrario, el grafeno, incorporado en un panel solar, facilitará el aporte de energía a numerosos dispositivos. Y hay más: «el papel electrónico enrollable -asegura uno de los descubridores del grafeno, Kostya Novoselov- podría estar disponible en 2015″.

LOS FULLERENOS, Historia
Hasta 1985 se pensó que el elemento más estudiado por el hombre, el carbono, sólo podía existir, en estado puro, en forma de diamante -sustancia de gran dureza que no conduce la electricidad- y de grafito -material bastante blando y buen conductor de la electricidad- Ese año, motivados por el descubrimiento de nuevos compuestos del carbono realizado en el espacio exterior, el químico británico Harold W. Kroto (1939- ) y los estadounidenses Robert F. Curl (1933-) y Richard E. Smalley (1943-) estudiaron el agregado de pequeños grupos de átomos de carbono llamados clusters.

Robert F. Curl                           Richard E. Smalley

Estos científicos observaron que se producía un agregado con un número máximo de 60 átomos de carbono y trataron de determinar su estructura espacial. Luego de varios intentos para encontrar una estructura formada sólo por hexágonos la forma más común que adopta el carbono), se convencieron de que la única disposición posible era la de una pelota de fútbol, constituida por 20 hexágonos y 12 pentágonos.

Esta nueva forma natural del carbono se conoce con el nombre de futboleno, o también buckminsterfullereno debido a la similitud estructural con las formas geométricas de las cúpulas geodésicas inventadas por el arquitecto estadounidense Richard Buckminster Fuller 1895-1983).

El trabajo de estos científicos fue arduo: durante cinco años buscaron un método que permitiera crear cantidades visibles de futboleno. Sabían que la sustancia se producía en forma natural durante la combustión del carbón, pero cuando juntaban hollín en benceno, éste se depositaba en el fondo y no se obtenía el compuesto amarillo tan buscado.

En mayo de 1990, mientras estudiaba el polvo interestelar, el físico Wolfgang Krátschmer y sus colaboradores evaporaron una barra de grafito calentándola con una corriente de helio y observaron que en el hollín había una sustancia diferente.

Años más tarde y luego de varios estudios, Krátschmer mezcló unas gotas de benceno con este hollín, y el solvente incoloro se volvió rojo. Varios estudios posteriores permitieron concluir que se trataba de una solución concentrada de fullerenos. ¡El futboleno es amarillo cuando forma una película, y rojo, cuando está en solución!

Curl y Smalley continuaron con el estudio de estas sustancias, hasta que en 1996 recibieron el premio Nobel de Química. Tal como es común en la historia de las ciencias, a partir de este descubrimiento se abrieron nuevos campos para la investigación en terrenos muy alejados de los objetivos iniciales de los científicos.

Se han descubierto nuevos fullerenos de 60 y 70 átomos de carbono, y algunos de ellos tienen utilidad como superconductores a bajas temperaturas cuando se incorporan otros elementos a su estructura. Finalmente, se comprobó que el futboleno es biológicamente activo y podría llegar a emplearse en la lucha contra el cáncer.
Fuente: Investigación y Ciencia, N° 183, diciembre de 1991.

LA NANOCIENCIA SE INSPIRA EN LA NATURALEZA: Los científicos se inspiran en la naturaleza, tratando de imitar propiedades a nanoescalas que tienen algunas plantas y animales y que podrían utilizarse para fabricar nuevos materiales utilizando esas misma propiedades, por ejemplo las que siguen abajo:

nanociencia, cuadro de aplicaciones

CRONOLOGÍA:

1959 El físico Richard Feynman advirtió en una conferencia en el Instituto Tecnológico de California: «A mi modo de ver, los principios de la física no se pronuncian en contra de la posibilidad de maniobrar las cosas átomo por átomo».

1980 Se estrenó la película Viaje fantástico, basada en el libro de Isaac Asimov, con Raquel Welch. Cuenta la travesía de un grupo de científicos que reducen su tamaño al de una partícula y se introducen en el interior del cuerpo de un investigador para destrozar el tumor que lo está matando.

1970 Se diseñó la primera nanoestructura: un liposoma.

1974 El japonés Norio Taniguchi utilizó por primera vez la palabra «nanotecnología» en un paper.

1981 El físico suizo Heinrich Rohrer y el alemán Gerd Binnig desarrollaron el microscopio de efecto túnel, que permite manipular átomos.

1985 El químico inglés Harold Kroto descubrió los fulerenos, macromoléculas de carbono individuales utilizadas para hacer nanotubos.

1989 Investigadores del Almadén Research Center de IBM manipularon con precisión 35 átomos de xenón para formar el logo de la empresa de informática. 1999 Aparecieron en el mercado los primeros productos con nanotecnología. 2002 Michael Crichton publicó Presa, un tecnothriiler en el que unos nanobots inteligentes escapan al control humano y se convierten en entes autónomos, autorreplicantes y peligrosos.

2010 Se creó un nanobot capaz de mover átomos y moléculas.

2012 Se desarrolló un método en impresoras 3D para la fabricación de es culturas con estructuras tan pequeñas como un grano de arena.

Naturaleza de la Materia

MAS EN INTERNET:
> Centro Nacional de Investigación Científica (CNRS): www.cnrs.fr

> Portal creado por iniciativa del Ministerio Delegado para la Investigación y las Nuevas Tecnologías: www.nanomicro.recherche.gouv.fr

> Action Group on Erosion, Technology and Concentration: www.etcgroup.org/en

> VivAgora, plataforma de protección, información y diálogo por una participación ciudadana en las decisiones científicas y técnicas:www.vivagora.org