energianuclear

Las Franjas de Fraunhofer y Concepto de Espectroscopia

Significado de las Franjas de Fraunhofer-Concepto de Espectroscopia

Las llamadas Líneas de Fraunhofer, son líneas oscuras identificables en el espectro de absorción del Sol, que William H. Wollaston observó por primera vez en 1802; más tarde, Joseph von Fraunhofer las describió detalladamente.

De las 25.000 líneas del espectro solar, Fraunhofer llegó a contar 576, asignando letras para identificar las más destacadas.Las líneas son el resultado de la absorción de ciertas longitudes de onda de luz por átomos de gas de la atmósfera del Sol.

Espectro con las Líneas de Fraunhofer
Espectro con las Líneas de Fraunhofer

Introducción a la Espectroscopia

El descubrimiento del espectro solar y de la compleja naturaleza de la luz estimuló poderosamente a los científicos a proseguir siempre adelante en el camino abierto por Newton.

Los estudios sobre las luces monocromáticas y sobre el fenómeno de la dispersión óptica se multiplicaron con gran rapidez, llegándose muy pronto a resultados fundamentales.

Espectroscopio y espectros

El instrumento básico de todas estas investigaciones fue el espectroscopio.

Está formado esencialmente por un prisma colocado entre dos tubos debidamente orientados, cada uno de los cuales contiene una o varias lentes.

espectroscopio
Espectroscopio

La luz entra en el primer tubo por una hendidura muy fina; de allí, a través de una lente que hace los rayos paralelos, llega al prisma y es refractada.

Los rayos refractados entran en el segundo tubo y, concentrados por la lente del mismo, quedan por último recogidos en una pantalla donde forman la imagen de la hendidura de entrada.

En algunos espectroscopios, en lugar de prisma se emplea un retículo de difracción, que está formado por una lámina transparente en la cual se trazan rayas muy finas y espesas.

El retículo funciona con arreglo al principio de interferencia y provoca la descomposición de la luz blanca en los varios colores que la componen.

Si a la hendidura del espectroscopio llega luz procedente directamente de una fuente luminosa, la imagen que se forma en la pantalla toma el nombre de espectro de emisión.

esquema funcionamiento espectroscopio

La experiencia demuestra que los espectros de emisión son continuos, esto es, sin intervalos de ningún espacio oscuro, si la fuente luminosa está constituida por cuerpos sólidos o líquidos incandescentes (carbón encendido, alcohol ardiendo, etc.), discontinuos, o sea formados únicamente por rayas luminosas, más o menos numerosas, sobre el fondo oscuro, si la fuente luminosa está constituida por cuerpos en estado de gas o de vapor (hidrógeno, oxígeno, vapores de sodio, etc.).

Además, y esta es una prueba de importancia fundamental, toda sustancia luminosa en estado de gas emite un espectro (de rayas o grupos de rayas que alternan con los espacios oscuros en la formación del espectro discontinuo) característico e inconfundible.

Esto significa que con el espectroscopio se puede efectuar el análisis químico (de emisión) de una sustancia; para ello bastará con evaporar una determinada cantidad en una llama para reconocer inmediatamente, por el examen de las rayas del espectro emitidas por la misma, qué elementos se hallan contenidos en ella.

Cuando se reflexiona sobre los muchos elementos (cesio, rubidio, etc.) que han sido descubiertos mediante el análisis espectroscópico de emisión, se comprende fácilmente la importancia de esta técnica tan preciosa para la investigación científica.

Pero además, la espectroscopia ha conseguido otros valiosos resultados, pues gracias a ella la ciencia ha podido penetrar donde ningún telescopio lo hubiera logrado: en el interior del Sol y de las estrellas más alejadas, revelándose de esta manera como uno de los más poderosos instrumentos de investigación que el hombre jamás tuvo a su disposición.

Espectro de luz blanca
Espectro de luz blanca

Las Rayas de Fraunhofer

En 1802, el físico inglés William H. Wollaston (1766-1828), mientras estudiaba el espectro solar recogido en una pantalla, notó que aparecían unas rayas oscuras muy finas.

Trece años más tarde, en 1815, el físico alemán Joseph von Fraunhofer (1787-1826), estando observando cuidadosamente el espectro solar, no sólo confirmó el descubrimiento de Wollaston, sino que comprobó que las rayas oscuras eran muy marcadas y numerosas.

Este experimento, repetido y confirmado por otros científicos en años posteriores, valiéndose de instrumentos de observación cada vez más perfeccionados y potentes, permitió llegar a la conclusión de que -se trataba no de un fenómeno pasajero sino de una auténtica característica del espectro solar. La cosa tuvo una gran resonancia.

¿Qué eran las rayas de Fraunhofer? ¿Qué significado podía tener aquel fenómeno?.

La respuesta llegó años más tarde, o sea cuando Gustavo R. Kirchhoff (1824-1887), junto con Robert W. Bunsen (1791-1860) idearon y perfeccionaron lo que bien puede llamarse el prototipo del espectroscopio moderno.

Kirchhoff, en una célebre memoria publicada en 1859 enunció una teoría, confirmada luego por innumerables experimentos, que permitía explicar de modo coherente y riguroso el origen y el significado de las rayas oscuras del espectro solar y la coincidencia de éstas con las rayas claras del espectro de las sustancias terrestres.

Además, esta teoría permitió definir e interpretar otro tipo de espectro fundamental: el espectro de absorción.

Supongamos que tenemos una fuente luminosa (por ejemplo, una lámpara eléctrica corriente) que da un espectro continuo.

Interpongamos entre ella y la hendidura del espectroscopio una sustancia en estado gaseoso, por ejemplo vapores de mercurio; entonces podremos ver que nuestro espectro continuo aparece surcado por unas rayas negras, como si los vapores de mercurio, al interferir con los rayos luminosos de la lámpara, interceptaran y anularan cierto número de ellos.

Tratemos de obtener con otro espectroscopio el espectro de emisión de los vapores de mercurio; como se trata de una sustancia en estado gaseoso, su espectro será, como ya se ha dicho antes, discontinuo, es decir, constituido por cierto número de rayas brillantes separadas por espacios oscuros.

Fotografiemos el primer espectro y el espectro de emisión de los vapores de mercurio y comparémoslos entre sí. Podremos constatar que las rayas negras del primer espectro coinciden perfectamente con las rayas brillantes del segundo.

Nos hallamos ante un hecho importantísimo que, traducido en palabras, se puede expresar de la manera siguiente: iodo cuerpo es capaz de absorber las mismas radiaciones que es capaz de emitir.

Por tanto, el espectro de absorción es el espectro continuo de una fuente luminosa a la que se superpone el espectro discontinuo de una sustancia en estado gaseoso, es decir, un espectro continuo luminoso surcado por rayas negras.

Una vez comprendido el significado de las rayas oscuras que surcan el espectro solar, los físicos se dieron inmediatamente cuenta de las enormes posibilidades de investigación que podía proporcionar un modesto espectroscopio.

Bastaría determinar con exactitud los espectros de emisión de todos los elementos químicos conocidos en la Tierra y compararlos con las rayas negras del espectro solar, para establecer cuáles y cuántos de ellos se hallaban contenidos en la atmósfera del Sol.

El único obstáculo para el logro de este propósito consistía en la perturbación producida por el gas y por los vapores que forman la atmósfera terrestre. Pero pronto se llegó a solucionar este problema.

La historia de las conquistas científicas debidas al análisis espectroscópico es historia reciente y la simple enumeración de todos los datos conseguidos hasta ahora constituye una cosecha de resultados cuya importancia y significado son difíciles de valorar en toda su extensión.

Se han podido reconocer en el Sol gran número de elementos ya conocidos en la Tierra.

Elementos cuya existencia en algunos casos se sospechaba, pero que todavía no se había logrado su identificación, fueron descubiertos en el Sol antes que en la superficie terrestre (como por ejemplo, el helio).

Además, la investigación espectroscópica dirigida a las estrellas (incluidas las más alejadas de nosotros), ha permitido descubrir que son muy parecidas a nuestro Sol, confirmándose así las hipótesis formuladas por los astrónomos respecto a la constitución del universo.

Finalmente, el examen espectroscópico, con sus consideraciones de índole muy diversa, ha abierto a la ciencia nuevos horizontes en un campo totalmente nuevo y de enorme interés, el campo de las reacciones termonucleares.

Uno de los aspectos más interesantes de la espectroscopia es, sin duda alguna, haber contribuido de manera eficaz a la determinación de la estructura del átomo e incluso al modo de lograr este descubrimiento.

Desde los primeros pasos de la espectroscopia, cuando todavía no se conocía bien qué podían ser las rayas que se observaban en los espectros, los científicos iban recogiendo gran cantidad de datos, catalogaban cada línea nueva que descubrían, organizaban en serie las diversas rayas basándose en su aspecto y archivaban grandes catálogos con todos los espectros conocidos.

Cuando se formularon las primeras teorías sobre la estructura atómica y se consideró que las rayas espectrales eran de origen atómico, todo el trabajo de los precursores apareció, de pronto, como algo esencial.

Los datos recogidos permitían apreciaciones precisas sobre el valor de las diversas teorías.

Y no sólo esto, sino que los nuevos descubrimientos que se iban logrando poco a poco (descubrimiento de nuevas rayas, algunas de las cuales eran dobles y triples, etc.), permitían someter a una prueba ulterior las diversas teorías atómicas, de modo que, si conseguían explicar los nuevos efectos descubiertos, podían ser consideradas como válidas; en caso contrario, habría que abandonarlas sin remedio.

Este método de investigar, que hemos explicado a propósito de la espectroscopia es característico de la investigación científica.

A esto hay que añadir que, junto a la espectroscopia óptica, existen otras ramas del saber que no estudian la luz, sino otros fenómenos electromagnéticos análogos a ella, aunque no producen fenómenos luminosos.

Se trata de las radioondas, de los rayos X y de los rayos gamma, a cada uno de los cuales corresponde una rama determinada de la espectroscopia.

Todas estas clases de radiaciones están vinculadas a la estructura de los átomos y de los núcleos y proporcionan nuevos informes sobre la materia que amplían y completan los facilitados por la espectroscopia «clásica». Por ejemplo, el estudio de las radioondas ha dado origen a una nueva rama de la astronomía, la radioastronomía.

De todas las conquistas que la espectroscopia ha hecho posibles, todo lo dicho no es más que un breve esbozo; otras muchas metas, muy importantes, se han logrado hasta ahora y podrán lograrse en adelante.

De todas formas, el resultado más importante, el de mayor significado no sólo para la ciencia sino sobre todo para el hombre es éste: que en el Sol, en las estrellas, en el punto más remoto del universo, la materia está constituida por los mismos elementos de que está hecha la Tierra, y donde quiera que pueda llegar la mirada del hombre merced a los más potentes telescopios, las transformaciones químicas y físicas ocurren exactamente como en la superficie terrestre, igual que podemos reproducirlas artificialmente en nuestros laboratorios.

En resumen, el Universo es un todo único, constituido siempre por los mismos elementos.

Fuente Consultada: Biblioteca Temática Uteha El Mundo Que Nos Rodea Tomo X – Los Espectros de Luz – Editorial Hispano America

Biografia de Fermi Enrico y La Primera Reaccion en Cadena

Biografia de Fermi Enrico y La Primera Reaccion en Cadena Controlada

Enrico Fermi nació en Roma, Italia, el 29 de septiembre de 1901. Murió 28 de noviembre de 1954.

Era hijo de un oficial de ferrocarril, estudió en la Universidad de Pisa desde 1918 hasta 1922 y más tarde en las Universidades de Leyden y Gottingen.

Se convirtió en profesor de física teórica en la Universidad de Roma en 1927.

El dominio completo de la desintegración del átomo se alcanzó en 1942, cuando el italiano Enrico Fermi hizo funcionar, en la Universidad de Chicago, la primera pila atómica.

En ella se provocó la primera desintegración autosostenida y controlada, es decir, la reacción en cadena.

La desintegración de un átomo provoca la de otro, y así sucesivamente, hasta alcanzar la energía y el calor que se requieren.

A raíz de este trabajo se conoce a Fermi como el «Padre de la Bomba Atómica».

El átomo, intuido y conocido por el hombre desde el siglo V antes de Cristo, siendo la base fundamental de la materia, ha sido estudiado y penetrado hasta arrancarle sus secretos y convertirlo, al menos por ahora, en el elemento más destructor que jamás la humanidad haya conocido.

Fuente Consultada: Libros Maravillosos Sobre Física

Biografia de Fermi Enrico y La Primera Reaccion en Cadena

Sagaz teórico y brillante experimentador, FERMI, con sus colaboradores, sometió una larga serie de elementos al bombardeo por neutrones.

Una pequeña ampolla que contenía una mezcla de polvo de berilio y de radón constituía la fuente de proyectiles y lanzaba por segundo 20.000.000 de neutrones contra blancos formados por las sustancias elegidas para la investigación.

Las energías individuales de los proyectiles se repartían sobre una escala amplia; muchos alcanzaban hasta 8.000.000 de electrón-voltios.

La mayoría de los sesenta y tres elementos que FERMI y sus colaboradores investigaban, cedieron a la acción transformadora del bombardeo y se volvieron activos.

Si bien la duración de la vida del núcleo activado raramente sobrepasó algunos minutos, FERMI y sus colaboradores lograron identificar la naturaleza química de los elementos portadores de la actividad inducida.

De las sustancias examinadas por FERMI, más de cuarenta se revelaron transmutables por la irradiación neutrónica. Así los muros del núcleo se habían abierto al intruso neutrón.

Mas, seis meses después de sus primeros ensayos de bombardeó neutrónico, FERMI y su equipo, guiados por un azar benévolo, realizaron un descubrimiento de excepcionales alcances.

Al procurar mejorar el rendimiento de las transmutaciones, notaron que la intensidad de la activación como función de la distancia a la fuente, presentaba anomalías que dependían —así parecía— de la materia que rodeaba a la fuente neutrónica.

Comprobaron que el pasaje de los proyectiles a través de sustancias hidrogenadas como agua y parafina, en vez, disminuir —como hubiera podido creerse—, aumentaba de manera sorprendente, a menudo en la relación de uno a cien, la eficacia de los proyectiles y la consiguiente actividad de la materia bombardeada.

FERMI interpretó con admirable sagacidad el efecto imprevisto: los neutrones —al penetrar en la sustancia hidrogenada— pierden rápidamente energía en sus reiterados choques con los protones.

Enrico FermiExpulsados por la fuente con una velocidad de varios millares de kilómetros por segundo, se convierten al atravesar una pantalla de parafina en neutrones lentos con una velocidad del orden de un kilómetro por segundo, casi desprovistos de energía y mas o menos en equilibrio térmico con la materia que los rodea.

El efecto descubierto por FERMI es sumamente extraño y sin modelo en nuestro mundo microscópico donde la eficacia de los proyectiles crece con su energía cinética.

Lo mismo sucede con proyectiles cargados en el mundo microscópico. Los físicos que habían bombardeado los blancos atómicos con partículas alfa, con deutones o protones, pusieron su empeño en acelerar los proyectiles: los tubos de descarga de COCKCROFT los generadores electroestáticos de VAN DE GRAAFF, los ciclotrones LAWRENCE, fueron inventados y construidos, en primer término para servir a esa finalidad. Antes del descubrimiento de FERMI los investigadores hubieran comprendido difícilmente que e: menester moderar la velocidad de un proyectil para aumento su eficacia.

Mas con los neutrones que no llevan carga y que por ende, están libres de toda repulsión por parte de las barro ras de potencial eléctrico de los núcleos, el problema cambio de aspecto.

Dada su pequeña velocidad, los neutrones lento —explicó FERMI— tienen tiempo para sufrir la acción de lo núcleos que atraviesan y dejarse capturar por éstos gracias a un efecto de resonancia con las capas neutrónicas de los núcleos efecto del cual la mecánica ondulatoria permite dar cuenta.

La facilidad con que los neutrones lentos se incorporan en los núcleos, provocando su transmutación, permitió a FERMI y a sus colaboradores producir isótopos radiactivos de una larga serie de elementos

Los isótopos así obtenidos, más pesados que la sustancia primitiva, se desintegran expulsando electrones negativos; como la pérdida de una carga negativa equivale a la ganancia de una Positiva, se forman de esta manera nuevos núcleos con números atómicos más elevados que el núcleo primitivo.

Este proceso que FERMI encontró como regla para el bombardeo neutrónico de los elementos pesados, cobró particular interés cuando el físico italiano atacó en 1934 al más pesado de los elementos naturales, el uranio.

El núcleo de este último radiactivo en estado natural, se desintegra irradiando una partícula alfa, disminuyéndose así en dos su número atómico.

Sin embargo, era de esperar que el núcleo de uranio, expuesto al bombardeo neutrónico, al capturar un neutrón, se desintegrara con emisión de un electrón, lo cual aumentaría su número atómico en una unidad, formando entonces un elemento desconocido de número 93.

Si éste resultaba radiactivo a su vez, podía dar nacimiento a un elemento de número 94 expulsando un electrón. Átomos nuevos, inexistentes en la naturaleza terrestre, aparecerían así y ocuparían en la tabla de MENDELEIEV casillas situadas mas allá del uranio, elementos transuranianos.

IRENE CURIE

En efecto, en la primavera de 1934, FERMI creía haber producido núcleos con números atómicos mayores que el del uranio.

Guiada por la misma hipótesis, IRENE CURIE, procuró establecer la naturaleza química de la enigmática sustancia engendrada por el bombardeo neutrónico del uranio.

Llegó al sorprendente resultado de que las propiedades del elemento desconocido eran análogas a las del lantano.

El número atómico de este último es 57, el número de su masa 139; los números correspondientes de uranio son 92 y 238.

¿Cómo admitir, se preguntó IRENE CURIE, que la desintegración del uranio hubiese producido lantano?. (imagen izq. Irene Curie y Su esposo Joliet)

Todas las reacciones nucleares conocidas hasta entonces habían llevado a elementos cercanos en número atómico y en número másico a los de la sustancia primitiva.

Ni IRENE CURIE ni su colaborador PAUL SAVITCH sospecharon que se encontraban ante una reacción nuclear de tipo completamente nuevo, y estaban lejos de pensar que el intrigante fenómeno con que habían tropezado tenía alcances formidables, superiores a los del supuesto hallazgo de un elemento transuraniano.

La presencia del lantano entre los productos de la desintegración del uranio, hizo nacer dudas en el espíritu del físico berlinés OTTO HAHN (1879-1968), quien resolvió repetir y verificar a fondo las experiencias parisienses.

HAHN y su colaborador FRITZ STRASSMANN

Para identificar los nuevos radio-elementos, HAHN y su colaborador FRITZ STRASSMANN (1902) (foto derecha: Hahn y Meitner) acudieron a los procedimientos clásicos de precipitación y cristalización fraccionadas.

Sin embargo, cuando trataron de separar el nuevo radio-elemento del bario —empleado como elemento de arrastre—, fracasaron todos sus esfuerzos.

Ante la imposibilidad de realizar la aludida separación, HAHN y STRASSMANN terminaron por admitir, tras muchas vacilaciones, que el núcleo de uranio bombardeado por neutrones, en lugar de limitarse emitir partículas de pocas masa, se habría quebrado en gruesos fragmentos, de los cuales uno sería posiblemente el núcleo del bario y el otro probablemente el del kriptón.

Las masas de los dos fragmentos serían sólo aproximadamente iguales, ya que la ruptura puede producirse de distintas maneras y puede originar incluso más de dos fragmentos.

Hipótesis osada fue ésta HAHN y STEASSMANN formularon en enero de 1939 con toda las reservas, puesto que ese tipo de reacción nuclear no tenía precedentes en la experiencia.

Sin embargo, el irrecusable testimonio de los hechos no tardo en apuntalar sólidamente la Suposición de los dos investigadores y las confirmaciones que afluyeron de todas partes pusieron pronto fuera de duda la realidad del fenómeno que HAHN y STBASSMANN habían bautizado como KERNSPAITUNG: partición o “fisión” del núcleo uránico. El nuevo fenómeno concentró casi inmediatamente el interés de todos los laboratorios de física atómica en el viejo y en el nuevo continente.

En efecto, si el núcleo de uranio se divide en gruesos fragmentos, la suma de las masas de estos es considerablemente inferior a aquella del núcleo inicial.

En lugar de la masa que desaparece , se libera una cantidad extraordinaria de energía, a la que el cálculo asigna por núcleo cerca de 200.000.000 de electrón-voltios.

Así, la ruptura de todos los átomos presentes de una molécula-gramo de uranio liberaría una cantidad de energia equivalente a 6.000.000 de kilovatios-hora, la suficiente para llevar a la ebullición instantánea 50.000.000 de litros de agua.

Dos investigadores expulsados de Alemania por el régimen hitleriano, LISA MEITNER (1878-1969) y ROBERT FRISCH (1904), simultáneamente con aportar la primera prueba experimental al fenómeno de HAHN y STRASSMANN, bosquejaron una teoría de la “fisión” nuclear.

¿Cómo explicar que una excitación moderada la captura de un neutrón, baste para producir una ruptura explosiva del núcleo?.

¿Por qué esta captura provoca fisiones en los núcleos más pesados y no en los livianos? La respuesta que MEITNER y FRISCH sugirieron se inspiró en el modelo de BOHR del núcleo.

BOHR había asimilado el núcleo a una gota líquida; ésta, puesta en vibración, puede quebrarse en dos gotitas más pequeñas, como el núcleo puede dividirse en dos fragmentos gracias al aporte de una energía exterior.

El fenómeno tiene mayor probabilidad de producirse cuanto mas pesado y menos estable es el núcleo considerado.

En el núcleo muy complejo del uranio repleto de protones, las fuerzas repulsivas que se ejercen entre las partículas cargadas son casi tan grandes como las fuerzas de intercambio protono-neutrónicas garantes de la cohesión del núcleo.

Es pues lógico admitir, concluyeron LISA MEITNER y FRISCH, que una excitación moderada de esos núcleos puede determinar su ruptura.

Guiado por consideraciones teóricas, BOHR (foto izquierda) y su discípulo WHEELER reconocieron, en febrero de 1939, que el uranio “fisionable” por neutrones lentos no es el isótopo corriente con el número másico 238, sino el isótopo raro con número másico 235, presente en el uranio natural en cantidades muy reducidas (0,7%).

Poco antes FERMI había sugerido que durante el proceso de la “fisión” del núcleo de uranio, además de los pesados fragmentos animados por una tremenda energía cinética, se lanzan también neutrones.

Esta suposición abrió una perspectiva de formidables alcances e hizo entrever la posibilidad de una reacción auto sustentadora, es decir, una reacción en cadena, capaz de poner al alcance del hombre la liberación de la energía atómica en una escala ponderable.

En efecto, por considerable que sea la energía de 200.000.000 de electrón-voltios liberada por la ruptura de un solo núcleo, la cantidad total de la energía liberada no pasaría de la escala microscópica, si solamente parte infinitesimal de los núcleos presentes se desintegrara por el bombardeo.

Pero el problema cambia de aspecto si el proyectil neutrónico expulsa del átomo neutrones que pueden servir a su vez como proyectiles.

Al penetrar éstos en los núcleos vecinos, producen nuevos proyectiles, y de esta manera la “fisión” de un núcleo entraña rápidamente la de otros y la reacción, una vez desencadenada, es susceptible de mantenerse por sí misma, propagándose como fuego en un pajar.

Distinta en todos sus aspectos de las reacciones nucleares estudiadas hasta entonces, la reacción en cadena prometía la utilización práctica de la energía nuclear, ya como fuerza propulsiva de máquinas, ya como explosivo para superbombas.

Esta promesa dio excepcional importancia a la perspectiva abierta por FERMI y confirió jerarquía histórica a la reunión de eminentes físicos realizada a fines de enero de 1939 en Washington en la que el problema fue discutido.

Fuente Consultada: Historia de la Ciencia Desidero Papp

Temas Relacionados:

Teoría de la Desintegración Nuclear
Usos de la Energia Nuclear Aplicaciones y Beneficios
Historia de la Energia Nuclear:Resumen del Descubrimento
Funcionamiento de una Central Nuclear: Caracteristicas y Partes
El Uranio en Argentina Reservas de Uranio en el Mundo

Enlace Externo:Enrico Fermi, el arquitecto de la era nuclear

Biografía Giordano Bruno: Condenado Por Herejia a la Hoguera

Biografía: Giordano Bruno, Condenado a la Hoguera

GIORDANO BRUNO, condenado a la hoguera

(Nola, 1548 – Roma, 17 de febrero de 1600).

 Filósofo italiano.

Cursó los estudios primarios en su ciudad natal.

Movido por una profunda vocación religiosa, ingresa muy joven en la Orden dominicana.

Sus nuevas teorías contra la concepción cosmológica aristotélica, influido en muchos aspectos por Copérnico, pronto le ocasionaron importantes problemas con las autoridades de la diócesis, por lo que decide abandonar la ciudad.

Giordano ve en Europa amplias posibilidades para desarrollar su teoría filosófica y comienza una gira por diferentes países del continente.

Sobre el arte de retener en la memoria las verdades adquiridas y descubrir otras mediante la combinación de diferentes términos, inspirados en el «Ars magna» de Raimundo Lulio (1232), compone una serie de escritos que obtuvieron una considerable resonancia.

Tuvo gran aceptación –quizás por su prestigio de gran maestro en el arte combinatorio de Lulio- su comedia «Candelaio».

PRIMEROS PROBLEMAS:

Comenzaron durante su adoctrinamiento, al rechazar tener imágenes de santos, aceptando sólo el crucifijo.

En 1566 tuvo lugar el primer procedimiento en su contra por sospechas de herejía.

Dicho proceso no prosperó y, en 1572, fue ordenado como sacerdote dominico en Salerno y pasó al estudio de Santo Domingo Mayor, recibiendo en 1575 el título de Doctor en Teología de la Orden.

En 1576 fue acusado de desviarse en la doctrina religiosa y tuvo que abandonar la orden, huyendo a Roma, donde consiguió asilo en el Convento de Santa María, en Minerva. Después de viajar por Italia y Francia llegó a Ginebra. Allí abandonó los hábitos.

Bruno residió durante bastante tiempo en Oxford, donde compuso la mayoría de sus diálogos italianos.

También vivió en Alemania, donde realizó sus poemas latinos.

Tras aceptar una proposición de Giovanni Mocenigo para que le enseñara el arte de la memoria, se traslada a Venecia.

Sin embargo, pronto todas sus ilusiones se verán frustradas cuando el mismo Mocenigo, poco después de su llegada a la ciudad italiana, le denuncia a la Inquisición.

Al poco tiempo, el filósofo es trasladado a Roma en calidad de arrestado y tiene que sufrir una condena de siete años en la cárcel.

A las numerosas invitaciones que Bruno recibió para que se retractase de sus teorías filosóficas, siempre respondió con negativas y su caso hubo de ser sometido nuevamente a sentencia con el veredicto final de pena capital.

Fue quemado vivo en la plaza de Campo dei Fiori.

El Juicio a Giordano Bruno:

A instancias de Giovanni Moncenigo, noble veneciano, regresó a Italia. Moncenigo se convierte en su protector, para impartir cátedra particular.

El 21 de mayo de 1591 Moncenigo traiciona a Bruno entregándolo a la Santa Inquisición.

El 27 de Enero de 1593 se ordena el encierro de Giordano Bruno en el Palacio del Santo Oficio, en el Vaticano.

Estuvo en la cárcel durante casi ocho años mientras se disponía el juicio —bajo el tribunal de Venecia—, en el que se le adjudicaban cargos por blasfemia, herejía e inmoralidad; principalmente por sus enseñanzas sobre los múltiples sistemas solares y sobre la infinitud del universo.

Durante la ocupación napoleónica se han perdido la mayoría de los folios de ese juicio.

En 1599 se expusieron los cargos en contra de Bruno. Las multiples ofertas de retractación fueron desestimadas.

Finalmente, sin que se tenga conocimiento del motivo, Giordano Bruno decidió reafirmarse en sus ideas y el 20 de enero de 1600 el Papa Clemente VIII ordenó que fuera llevado ante las autoridades seculares.

El 8 de febrero fue leída la sentencia en donde se le declaraba herético impenitente, pertinaz y obstinado.

Fue expulsado de la iglesia y sus trabajos fueron quemados en la plaza pública.

Durante todo el proceso fue acompañado por monjes de la iglesia.

Antes de ser ejecutado en la hoguera uno de ellos le ofreció un crucifijo para besarlo pero Bruno lo rechazó, diciendo que moriría como un mártir y que su alma subiría con el fuego al paraíso.

Fue quemado el 17 de febrero de 1600 en Campo dei Fiori, Roma.

OBRAS:

Sus obras más importantes son

«La cena del Miércoles de Ceniza», «Della causa, principio ed Uno y Dell’infinito Universo e mondi»; todas ellas se refieren a la filosofía naturalista de que era propulsor.

De carácter moral son sus diálogos: «Lo spaccio della bestia trionfante», «Cabala del cavallo Pegaseo», «Degli eroici furori», etc. Destacan también sus tres poemas latinos: «Dei minimo», «De monade» y «De immenso et innumerabilibus».

En cuanto a su pensamiento, Bruno afirma que el más alto grado del conocimiento humano es la íntima unión con la naturaleza en su sustancial unidad, expuesto concienzudamente en «Degli eroici furori».

Según Bruno, el hombre debe dirigir sus actos en perfecta conformidad a la necesidad natural, así como el ideal para el conocimiento humano consistiría en la identificación total con la naturaleza.

Una Anécdota Histórica:

Giovanni Mocinego —personaje que traicionara a Giordano— fue acusado de herejía por descubrírsele tratando de dominar las mentes ajenas, cosa que Bruno se negó a enseñarle. Nunca se le tomó preso ni existió proceso en su contra.

El Papa Clemente VIII dudó de la sentencia impuesta a Giordano antes de dictarla por dos razones:

1) No deseaba convertir a Bruno en un mártir

2) pensó en un momento que podía ser un ser santificado.

Filippo Bruno dijo al momento de recibir su sentencia: «ustedes tienen más miedo al leer mi sentencia que yo al recibirla».

PARA SABER MAS…

• GIORDANO BRUNO, UNA VIDA ERRANTE

Uno de los pensadores más importantes del tiempo de Kepler y Galileo que, como éstos, fue víctima de la persecución eclesiástica fue Giordano Bruno (1548-1600), muerto en la hoguera a manos de la Santa Inquisición.

• FORMACIÓN RELIGIOSA

Su formación fue eminentemente religiosa, primero en la orden de predicadores y luego, en 1565,60 la de los dominicos; en ellas se especializó en dialéctica, en filosofía aristotélica y en la teología de santo Tomás de Aquino.

Pero Bruno no aceptaba todos los dogmas cristianos, poniendo en duda las imágenes de los santos, por lo que tuvo que sufrir pronto las sospechas por herejía.

De todos modos, en 1572fue ordenado sacerdote dominico en Salerno y obtuvo su doctorado en Teología, aunque cuatro años después volvió a ponerse en duda su entrega a la Iglesia, y acabó marchándose a Roma, para luego huir a Francia y Ginebra, donde abandonó su carrera eclesiástica.

Allí, entró en contacto con Calvino, fundador de una república protestante, a la que criticó tan duramente que fue encarcelado, hasta que se vio obligado a retractarse y salir de Ginebra.

 • CONDENA Y HOGUERA

Instalado en Francia como profesor en la Universidad de París, en 1581, gracias al permiso del rey Enrique III, empezó a divulgar sus primeras obras, para más tarde viajara Londres como secretario de un embajador francés y en donde daría clases de cosmología copernicana en Oxford.

En 1585, volvió a Francia, pero como siguió teniendo problemas con el orden establecido, retomó su itinerario por distintas ciudades europeas, como Marburgo, Wittenberg, Praga, Helmstedty Frankfurt, donde logró publicar buena parte de su obra.

Al fin, merced a la ayuda del noble veneciano Giovanni Moncenigo, Bruno regresó a Italia.

Pero su destino no se apartaba de las persecuciones por herejía. En 1592, Moncenigo lo denunció ante la inquisición; acusado de cometer blasfemias, tener una conducta inmoral y afirmar que el universo es infinito, permaneció encarcelado en el palacio del Santo Oficio del Vaticano, desde enero de 1593 hasta el día en que fue quemado vivo el 16 de febrero de 1600, en Campo de Fiori.

Según cuentan las crónicas, Bruno se negó a retractarse, durante su largo encierro; llegó a tal punto la confianza en sus ideas, que en el momento previo a la ejecución, cuando un monje le ofreció un crucifijo para besarlo, el pensador lo rechazó diciendo que no iba a morir como un mártir y que su alma ascendería al paraíso.

Antes déla hoguera, tuvo tiempo de dirigirse a los jueces y pronunciar esta rotunda frase: «Tembláis más vosotros al anunciar esta sentencia que yo al recibirla».

Fue autor de obras decisivas, entre ellas Sobre el infinito universo y los mundos (1584) y De los heroicos furores (1585). / T M